1 /*-
2 * Copyright (c) 2016-2020 Netflix, Inc.
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
7 * 1. Redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer.
9 * 2. Redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution.
12 *
13 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
14 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
16 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
17 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
18 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
19 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
20 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
21 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
22 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23 * SUCH DAMAGE.
24 *
25 */
26
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29
30 #include "opt_inet.h"
31 #include "opt_inet6.h"
32 #include "opt_ipsec.h"
33 #include "opt_ratelimit.h"
34 #include "opt_kern_tls.h"
35 #if defined(INET) || defined(INET6)
36 #include <sys/param.h>
37 #include <sys/arb.h>
38 #include <sys/module.h>
39 #include <sys/kernel.h>
40 #ifdef TCP_HHOOK
41 #include <sys/hhook.h>
42 #endif
43 #include <sys/lock.h>
44 #include <sys/malloc.h>
45 #include <sys/lock.h>
46 #include <sys/mutex.h>
47 #include <sys/mbuf.h>
48 #include <sys/proc.h> /* for proc0 declaration */
49 #include <sys/socket.h>
50 #include <sys/socketvar.h>
51 #include <sys/sysctl.h>
52 #include <sys/systm.h>
53 #ifdef STATS
54 #include <sys/qmath.h>
55 #include <sys/tree.h>
56 #include <sys/stats.h> /* Must come after qmath.h and tree.h */
57 #else
58 #include <sys/tree.h>
59 #endif
60 #include <sys/refcount.h>
61 #include <sys/queue.h>
62 #include <sys/tim_filter.h>
63 #include <sys/smp.h>
64 #include <sys/kthread.h>
65 #include <sys/kern_prefetch.h>
66 #include <sys/protosw.h>
67 #ifdef TCP_ACCOUNTING
68 #include <sys/sched.h>
69 #include <machine/cpu.h>
70 #endif
71 #include <vm/uma.h>
72
73 #include <net/route.h>
74 #include <net/route/nhop.h>
75 #include <net/vnet.h>
76
77 #define TCPSTATES /* for logging */
78
79 #include <netinet/in.h>
80 #include <netinet/in_kdtrace.h>
81 #include <netinet/in_pcb.h>
82 #include <netinet/ip.h>
83 #include <netinet/ip_icmp.h> /* required for icmp_var.h */
84 #include <netinet/icmp_var.h> /* for ICMP_BANDLIM */
85 #include <netinet/ip_var.h>
86 #include <netinet/ip6.h>
87 #include <netinet6/in6_pcb.h>
88 #include <netinet6/ip6_var.h>
89 #include <netinet/tcp.h>
90 #define TCPOUTFLAGS
91 #include <netinet/tcp_fsm.h>
92 #include <netinet/tcp_log_buf.h>
93 #include <netinet/tcp_seq.h>
94 #include <netinet/tcp_timer.h>
95 #include <netinet/tcp_var.h>
96 #include <netinet/tcp_syncache.h>
97 #include <netinet/tcp_hpts.h>
98 #include <netinet/tcp_ratelimit.h>
99 #include <netinet/tcp_accounting.h>
100 #include <netinet/tcpip.h>
101 #include <netinet/cc/cc.h>
102 #include <netinet/cc/cc_newreno.h>
103 #include <netinet/tcp_fastopen.h>
104 #include <netinet/tcp_lro.h>
105 #ifdef NETFLIX_SHARED_CWND
106 #include <netinet/tcp_shared_cwnd.h>
107 #endif
108 #ifdef TCP_OFFLOAD
109 #include <netinet/tcp_offload.h>
110 #endif
111 #ifdef INET6
112 #include <netinet6/tcp6_var.h>
113 #endif
114 #include <netinet/tcp_ecn.h>
115
116 #include <netipsec/ipsec_support.h>
117
118 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
119 #include <netipsec/ipsec.h>
120 #include <netipsec/ipsec6.h>
121 #endif /* IPSEC */
122
123 #include <netinet/udp.h>
124 #include <netinet/udp_var.h>
125 #include <machine/in_cksum.h>
126
127 #ifdef MAC
128 #include <security/mac/mac_framework.h>
129 #endif
130 #include "sack_filter.h"
131 #include "tcp_rack.h"
132 #include "rack_bbr_common.h"
133
134 uma_zone_t rack_zone;
135 uma_zone_t rack_pcb_zone;
136
137 #ifndef TICKS2SBT
138 #define TICKS2SBT(__t) (tick_sbt * ((sbintime_t)(__t)))
139 #endif
140
141 VNET_DECLARE(uint32_t, newreno_beta);
142 VNET_DECLARE(uint32_t, newreno_beta_ecn);
143 #define V_newreno_beta VNET(newreno_beta)
144 #define V_newreno_beta_ecn VNET(newreno_beta_ecn)
145
146
147 MALLOC_DEFINE(M_TCPFSB, "tcp_fsb", "TCP fast send block");
148 MALLOC_DEFINE(M_TCPDO, "tcp_do", "TCP deferred options");
149
150 struct sysctl_ctx_list rack_sysctl_ctx;
151 struct sysctl_oid *rack_sysctl_root;
152
153 #define CUM_ACKED 1
154 #define SACKED 2
155
156 /*
157 * The RACK module incorporates a number of
158 * TCP ideas that have been put out into the IETF
159 * over the last few years:
160 * - Matt Mathis's Rate Halving which slowly drops
161 * the congestion window so that the ack clock can
162 * be maintained during a recovery.
163 * - Yuchung Cheng's RACK TCP (for which its named) that
164 * will stop us using the number of dup acks and instead
165 * use time as the gage of when we retransmit.
166 * - Reorder Detection of RFC4737 and the Tail-Loss probe draft
167 * of Dukkipati et.al.
168 * RACK depends on SACK, so if an endpoint arrives that
169 * cannot do SACK the state machine below will shuttle the
170 * connection back to using the "default" TCP stack that is
171 * in FreeBSD.
172 *
173 * To implement RACK the original TCP stack was first decomposed
174 * into a functional state machine with individual states
175 * for each of the possible TCP connection states. The do_segment
176 * functions role in life is to mandate the connection supports SACK
177 * initially and then assure that the RACK state matches the conenction
178 * state before calling the states do_segment function. Each
179 * state is simplified due to the fact that the original do_segment
180 * has been decomposed and we *know* what state we are in (no
181 * switches on the state) and all tests for SACK are gone. This
182 * greatly simplifies what each state does.
183 *
184 * TCP output is also over-written with a new version since it
185 * must maintain the new rack scoreboard.
186 *
187 */
188 static int32_t rack_tlp_thresh = 1;
189 static int32_t rack_tlp_limit = 2; /* No more than 2 TLPs w-out new data */
190 static int32_t rack_tlp_use_greater = 1;
191 static int32_t rack_reorder_thresh = 2;
192 static int32_t rack_reorder_fade = 60000000; /* 0 - never fade, def 60,000,000
193 * - 60 seconds */
194 static uint8_t rack_req_measurements = 1;
195 /* Attack threshold detections */
196 static uint32_t rack_highest_sack_thresh_seen = 0;
197 static uint32_t rack_highest_move_thresh_seen = 0;
198 static int32_t rack_enable_hw_pacing = 0; /* Due to CCSP keep it off by default */
199 static int32_t rack_hw_pace_extra_slots = 2; /* 2 extra MSS time betweens */
200 static int32_t rack_hw_rate_caps = 1; /* 1; */
201 static int32_t rack_hw_rate_min = 0; /* 1500000;*/
202 static int32_t rack_hw_rate_to_low = 0; /* 1200000; */
203 static int32_t rack_hw_up_only = 1;
204 static int32_t rack_stats_gets_ms_rtt = 1;
205 static int32_t rack_prr_addbackmax = 2;
206 static int32_t rack_do_hystart = 0;
207 static int32_t rack_apply_rtt_with_reduced_conf = 0;
208
209 static int32_t rack_pkt_delay = 1000;
210 static int32_t rack_send_a_lot_in_prr = 1;
211 static int32_t rack_min_to = 1000; /* Number of microsecond min timeout */
212 static int32_t rack_verbose_logging = 0;
213 static int32_t rack_ignore_data_after_close = 1;
214 static int32_t rack_enable_shared_cwnd = 1;
215 static int32_t rack_use_cmp_acks = 1;
216 static int32_t rack_use_fsb = 1;
217 static int32_t rack_use_rfo = 1;
218 static int32_t rack_use_rsm_rfo = 1;
219 static int32_t rack_max_abc_post_recovery = 2;
220 static int32_t rack_client_low_buf = 0;
221 static int32_t rack_dsack_std_based = 0x3; /* bit field bit 1 sets rc_rack_tmr_std_based and bit 2 sets rc_rack_use_dsack */
222 #ifdef TCP_ACCOUNTING
223 static int32_t rack_tcp_accounting = 0;
224 #endif
225 static int32_t rack_limits_scwnd = 1;
226 static int32_t rack_enable_mqueue_for_nonpaced = 0;
227 static int32_t rack_disable_prr = 0;
228 static int32_t use_rack_rr = 1;
229 static int32_t rack_non_rxt_use_cr = 0; /* does a non-rxt in recovery use the configured rate (ss/ca)? */
230 static int32_t rack_persist_min = 250000; /* 250usec */
231 static int32_t rack_persist_max = 2000000; /* 2 Second in usec's */
232 static int32_t rack_sack_not_required = 1; /* set to one to allow non-sack to use rack */
233 static int32_t rack_default_init_window = 0; /* Use system default */
234 static int32_t rack_limit_time_with_srtt = 0;
235 static int32_t rack_autosndbuf_inc = 20; /* In percentage form */
236 static int32_t rack_enobuf_hw_boost_mult = 2; /* How many times the hw rate we boost slot using time_between */
237 static int32_t rack_enobuf_hw_max = 12000; /* 12 ms in usecs */
238 static int32_t rack_enobuf_hw_min = 10000; /* 10 ms in usecs */
239 static int32_t rack_hw_rwnd_factor = 2; /* How many max_segs the rwnd must be before we hold off sending */
240
241 /*
242 * Currently regular tcp has a rto_min of 30ms
243 * the backoff goes 12 times so that ends up
244 * being a total of 122.850 seconds before a
245 * connection is killed.
246 */
247 static uint32_t rack_def_data_window = 20;
248 static uint32_t rack_goal_bdp = 2;
249 static uint32_t rack_min_srtts = 1;
250 static uint32_t rack_min_measure_usec = 0;
251 static int32_t rack_tlp_min = 10000; /* 10ms */
252 static int32_t rack_rto_min = 30000; /* 30,000 usec same as main freebsd */
253 static int32_t rack_rto_max = 4000000; /* 4 seconds in usec's */
254 static const int32_t rack_free_cache = 2;
255 static int32_t rack_hptsi_segments = 40;
256 static int32_t rack_rate_sample_method = USE_RTT_LOW;
257 static int32_t rack_pace_every_seg = 0;
258 static int32_t rack_delayed_ack_time = 40000; /* 40ms in usecs */
259 static int32_t rack_slot_reduction = 4;
260 static int32_t rack_wma_divisor = 8; /* For WMA calculation */
261 static int32_t rack_cwnd_block_ends_measure = 0;
262 static int32_t rack_rwnd_block_ends_measure = 0;
263 static int32_t rack_def_profile = 0;
264
265 static int32_t rack_lower_cwnd_at_tlp = 0;
266 static int32_t rack_limited_retran = 0;
267 static int32_t rack_always_send_oldest = 0;
268 static int32_t rack_tlp_threshold_use = TLP_USE_TWO_ONE;
269
270 static uint16_t rack_per_of_gp_ss = 250; /* 250 % slow-start */
271 static uint16_t rack_per_of_gp_ca = 200; /* 200 % congestion-avoidance */
272 static uint16_t rack_per_of_gp_rec = 200; /* 200 % of bw */
273
274 /* Probertt */
275 static uint16_t rack_per_of_gp_probertt = 60; /* 60% of bw */
276 static uint16_t rack_per_of_gp_lowthresh = 40; /* 40% is bottom */
277 static uint16_t rack_per_of_gp_probertt_reduce = 10; /* 10% reduction */
278 static uint16_t rack_atexit_prtt_hbp = 130; /* Clamp to 130% on exit prtt if highly buffered path */
279 static uint16_t rack_atexit_prtt = 130; /* Clamp to 100% on exit prtt if non highly buffered path */
280
281 static uint32_t rack_max_drain_wait = 2; /* How man gp srtt's before we give up draining */
282 static uint32_t rack_must_drain = 1; /* How many GP srtt's we *must* wait */
283 static uint32_t rack_probertt_use_min_rtt_entry = 1; /* Use the min to calculate the goal else gp_srtt */
284 static uint32_t rack_probertt_use_min_rtt_exit = 0;
285 static uint32_t rack_probe_rtt_sets_cwnd = 0;
286 static uint32_t rack_probe_rtt_safety_val = 2000000; /* No more than 2 sec in probe-rtt */
287 static uint32_t rack_time_between_probertt = 9600000; /* 9.6 sec in usecs */
288 static uint32_t rack_probertt_gpsrtt_cnt_mul = 0; /* How many srtt periods does probe-rtt last top fraction */
289 static uint32_t rack_probertt_gpsrtt_cnt_div = 0; /* How many srtt periods does probe-rtt last bottom fraction */
290 static uint32_t rack_min_probertt_hold = 40000; /* Equal to delayed ack time */
291 static uint32_t rack_probertt_filter_life = 10000000;
292 static uint32_t rack_probertt_lower_within = 10;
293 static uint32_t rack_min_rtt_movement = 250000; /* Must move at least 250ms (in microseconds) to count as a lowering */
294 static int32_t rack_pace_one_seg = 0; /* Shall we pace for less than 1.4Meg 1MSS at a time */
295 static int32_t rack_probertt_clear_is = 1;
296 static int32_t rack_max_drain_hbp = 1; /* Extra drain times gpsrtt for highly buffered paths */
297 static int32_t rack_hbp_thresh = 3; /* what is the divisor max_rtt/min_rtt to decided a hbp */
298
299 /* Part of pacing */
300 static int32_t rack_max_per_above = 30; /* When we go to increment stop if above 100+this% */
301
302 /* Timely information */
303 /* Combine these two gives the range of 'no change' to bw */
304 /* ie the up/down provide the upper and lower bound */
305 static int32_t rack_gp_per_bw_mul_up = 2; /* 2% */
306 static int32_t rack_gp_per_bw_mul_down = 4; /* 4% */
307 static int32_t rack_gp_rtt_maxmul = 3; /* 3 x maxmin */
308 static int32_t rack_gp_rtt_minmul = 1; /* minrtt + (minrtt/mindiv) is lower rtt */
309 static int32_t rack_gp_rtt_mindiv = 4; /* minrtt + (minrtt * minmul/mindiv) is lower rtt */
310 static int32_t rack_gp_decrease_per = 20; /* 20% decrease in multiplier */
311 static int32_t rack_gp_increase_per = 2; /* 2% increase in multiplier */
312 static int32_t rack_per_lower_bound = 50; /* Don't allow to drop below this multiplier */
313 static int32_t rack_per_upper_bound_ss = 0; /* Don't allow SS to grow above this */
314 static int32_t rack_per_upper_bound_ca = 0; /* Don't allow CA to grow above this */
315 static int32_t rack_do_dyn_mul = 0; /* Are the rack gp multipliers dynamic */
316 static int32_t rack_gp_no_rec_chg = 1; /* Prohibit recovery from reducing it's multiplier */
317 static int32_t rack_timely_dec_clear = 6; /* Do we clear decrement count at a value (6)? */
318 static int32_t rack_timely_max_push_rise = 3; /* One round of pushing */
319 static int32_t rack_timely_max_push_drop = 3; /* Three round of pushing */
320 static int32_t rack_timely_min_segs = 4; /* 4 segment minimum */
321 static int32_t rack_use_max_for_nobackoff = 0;
322 static int32_t rack_timely_int_timely_only = 0; /* do interim timely's only use the timely algo (no b/w changes)? */
323 static int32_t rack_timely_no_stopping = 0;
324 static int32_t rack_down_raise_thresh = 100;
325 static int32_t rack_req_segs = 1;
326 static uint64_t rack_bw_rate_cap = 0;
327 static uint32_t rack_trace_point_config = 0;
328 static uint32_t rack_trace_point_bb_mode = 4;
329 static int32_t rack_trace_point_count = 0;
330
331
332 /* Weird delayed ack mode */
333 static int32_t rack_use_imac_dack = 0;
334 /* Rack specific counters */
335 counter_u64_t rack_saw_enobuf;
336 counter_u64_t rack_saw_enobuf_hw;
337 counter_u64_t rack_saw_enetunreach;
338 counter_u64_t rack_persists_sends;
339 counter_u64_t rack_persists_acks;
340 counter_u64_t rack_persists_loss;
341 counter_u64_t rack_persists_lost_ends;
342 #ifdef INVARIANTS
343 counter_u64_t rack_adjust_map_bw;
344 #endif
345 /* Tail loss probe counters */
346 counter_u64_t rack_tlp_tot;
347 counter_u64_t rack_tlp_newdata;
348 counter_u64_t rack_tlp_retran;
349 counter_u64_t rack_tlp_retran_bytes;
350 counter_u64_t rack_to_tot;
351 counter_u64_t rack_hot_alloc;
352 counter_u64_t rack_to_alloc;
353 counter_u64_t rack_to_alloc_hard;
354 counter_u64_t rack_to_alloc_emerg;
355 counter_u64_t rack_to_alloc_limited;
356 counter_u64_t rack_alloc_limited_conns;
357 counter_u64_t rack_split_limited;
358
359 counter_u64_t rack_multi_single_eq;
360 counter_u64_t rack_proc_non_comp_ack;
361
362 counter_u64_t rack_fto_send;
363 counter_u64_t rack_fto_rsm_send;
364 counter_u64_t rack_nfto_resend;
365 counter_u64_t rack_non_fto_send;
366 counter_u64_t rack_extended_rfo;
367
368 counter_u64_t rack_sack_proc_all;
369 counter_u64_t rack_sack_proc_short;
370 counter_u64_t rack_sack_proc_restart;
371 counter_u64_t rack_sack_attacks_detected;
372 counter_u64_t rack_sack_attacks_reversed;
373 counter_u64_t rack_sack_used_next_merge;
374 counter_u64_t rack_sack_splits;
375 counter_u64_t rack_sack_used_prev_merge;
376 counter_u64_t rack_sack_skipped_acked;
377 counter_u64_t rack_ack_total;
378 counter_u64_t rack_express_sack;
379 counter_u64_t rack_sack_total;
380 counter_u64_t rack_move_none;
381 counter_u64_t rack_move_some;
382
383 counter_u64_t rack_input_idle_reduces;
384 counter_u64_t rack_collapsed_win;
385 counter_u64_t rack_collapsed_win_seen;
386 counter_u64_t rack_collapsed_win_rxt;
387 counter_u64_t rack_collapsed_win_rxt_bytes;
388 counter_u64_t rack_try_scwnd;
389 counter_u64_t rack_hw_pace_init_fail;
390 counter_u64_t rack_hw_pace_lost;
391
392 counter_u64_t rack_out_size[TCP_MSS_ACCT_SIZE];
393 counter_u64_t rack_opts_arry[RACK_OPTS_SIZE];
394
395
396 #define RACK_REXMTVAL(tp) max(rack_rto_min, ((tp)->t_srtt + ((tp)->t_rttvar << 2)))
397
398 #define RACK_TCPT_RANGESET(tv, value, tvmin, tvmax, slop) do { \
399 (tv) = (value) + slop; \
400 if ((u_long)(tv) < (u_long)(tvmin)) \
401 (tv) = (tvmin); \
402 if ((u_long)(tv) > (u_long)(tvmax)) \
403 (tv) = (tvmax); \
404 } while (0)
405
406 static void
407 rack_log_progress_event(struct tcp_rack *rack, struct tcpcb *tp, uint32_t tick, int event, int line);
408
409 static int
410 rack_process_ack(struct mbuf *m, struct tcphdr *th,
411 struct socket *so, struct tcpcb *tp, struct tcpopt *to,
412 uint32_t tiwin, int32_t tlen, int32_t * ofia, int32_t thflags, int32_t * ret_val);
413 static int
414 rack_process_data(struct mbuf *m, struct tcphdr *th,
415 struct socket *so, struct tcpcb *tp, int32_t drop_hdrlen, int32_t tlen,
416 uint32_t tiwin, int32_t thflags, int32_t nxt_pkt);
417 static void
418 rack_ack_received(struct tcpcb *tp, struct tcp_rack *rack,
419 uint32_t th_ack, uint16_t nsegs, uint16_t type, int32_t recovery);
420 static struct rack_sendmap *rack_alloc(struct tcp_rack *rack);
421 static struct rack_sendmap *rack_alloc_limit(struct tcp_rack *rack,
422 uint8_t limit_type);
423 static struct rack_sendmap *
424 rack_check_recovery_mode(struct tcpcb *tp,
425 uint32_t tsused);
426 static void
427 rack_cong_signal(struct tcpcb *tp,
428 uint32_t type, uint32_t ack, int );
429 static void rack_counter_destroy(void);
430 static int
431 rack_ctloutput(struct inpcb *inp, struct sockopt *sopt);
432 static int32_t rack_ctor(void *mem, int32_t size, void *arg, int32_t how);
433 static void
434 rack_set_pace_segments(struct tcpcb *tp, struct tcp_rack *rack, uint32_t line, uint64_t *fill_override);
435 static void
436 rack_do_segment(struct mbuf *m, struct tcphdr *th,
437 struct socket *so, struct tcpcb *tp, int32_t drop_hdrlen, int32_t tlen,
438 uint8_t iptos);
439 static void rack_dtor(void *mem, int32_t size, void *arg);
440 static void
441 rack_log_alt_to_to_cancel(struct tcp_rack *rack,
442 uint32_t flex1, uint32_t flex2,
443 uint32_t flex3, uint32_t flex4,
444 uint32_t flex5, uint32_t flex6,
445 uint16_t flex7, uint8_t mod);
446
447 static void
448 rack_log_pacing_delay_calc(struct tcp_rack *rack, uint32_t len, uint32_t slot,
449 uint64_t bw_est, uint64_t bw, uint64_t len_time, int method, int line,
450 struct rack_sendmap *rsm, uint8_t quality);
451 static struct rack_sendmap *
452 rack_find_high_nonack(struct tcp_rack *rack,
453 struct rack_sendmap *rsm);
454 static struct rack_sendmap *rack_find_lowest_rsm(struct tcp_rack *rack);
455 static void rack_free(struct tcp_rack *rack, struct rack_sendmap *rsm);
456 static void rack_fini(struct tcpcb *tp, int32_t tcb_is_purged);
457 static int rack_get_sockopt(struct inpcb *inp, struct sockopt *sopt);
458 static void
459 rack_do_goodput_measurement(struct tcpcb *tp, struct tcp_rack *rack,
460 tcp_seq th_ack, int line, uint8_t quality);
461 static uint32_t
462 rack_get_pacing_len(struct tcp_rack *rack, uint64_t bw, uint32_t mss);
463 static int32_t rack_handoff_ok(struct tcpcb *tp);
464 static int32_t rack_init(struct tcpcb *tp);
465 static void rack_init_sysctls(void);
466 static void
467 rack_log_ack(struct tcpcb *tp, struct tcpopt *to,
468 struct tcphdr *th, int entered_rec, int dup_ack_struck);
469 static void
470 rack_log_output(struct tcpcb *tp, struct tcpopt *to, int32_t len,
471 uint32_t seq_out, uint16_t th_flags, int32_t err, uint64_t ts,
472 struct rack_sendmap *hintrsm, uint16_t add_flags, struct mbuf *s_mb, uint32_t s_moff, int hw_tls);
473
474 static void
475 rack_log_sack_passed(struct tcpcb *tp, struct tcp_rack *rack,
476 struct rack_sendmap *rsm);
477 static void rack_log_to_event(struct tcp_rack *rack, int32_t to_num, struct rack_sendmap *rsm);
478 static int32_t rack_output(struct tcpcb *tp);
479
480 static uint32_t
481 rack_proc_sack_blk(struct tcpcb *tp, struct tcp_rack *rack,
482 struct sackblk *sack, struct tcpopt *to, struct rack_sendmap **prsm,
483 uint32_t cts, int *moved_two);
484 static void rack_post_recovery(struct tcpcb *tp, uint32_t th_seq);
485 static void rack_remxt_tmr(struct tcpcb *tp);
486 static int rack_set_sockopt(struct inpcb *inp, struct sockopt *sopt);
487 static void rack_set_state(struct tcpcb *tp, struct tcp_rack *rack);
488 static int32_t rack_stopall(struct tcpcb *tp);
489 static void rack_timer_cancel(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts, int line);
490 static uint32_t
491 rack_update_entry(struct tcpcb *tp, struct tcp_rack *rack,
492 struct rack_sendmap *rsm, uint64_t ts, int32_t * lenp, uint16_t add_flag);
493 static void
494 rack_update_rsm(struct tcpcb *tp, struct tcp_rack *rack,
495 struct rack_sendmap *rsm, uint64_t ts, uint16_t add_flag);
496 static int
497 rack_update_rtt(struct tcpcb *tp, struct tcp_rack *rack,
498 struct rack_sendmap *rsm, struct tcpopt *to, uint32_t cts, int32_t ack_type, tcp_seq th_ack);
499 static int32_t tcp_addrack(module_t mod, int32_t type, void *data);
500 static int
501 rack_do_close_wait(struct mbuf *m, struct tcphdr *th,
502 struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen,
503 int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos);
504 static int
505 rack_do_closing(struct mbuf *m, struct tcphdr *th,
506 struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen,
507 int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos);
508 static int
509 rack_do_established(struct mbuf *m, struct tcphdr *th,
510 struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen,
511 int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos);
512 static int
513 rack_do_fastnewdata(struct mbuf *m, struct tcphdr *th,
514 struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen,
515 int32_t tlen, uint32_t tiwin, int32_t nxt_pkt, uint8_t iptos);
516 static int
517 rack_do_fin_wait_1(struct mbuf *m, struct tcphdr *th,
518 struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen,
519 int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos);
520 static int
521 rack_do_fin_wait_2(struct mbuf *m, struct tcphdr *th,
522 struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen,
523 int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos);
524 static int
525 rack_do_lastack(struct mbuf *m, struct tcphdr *th,
526 struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen,
527 int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos);
528 static int
529 rack_do_syn_recv(struct mbuf *m, struct tcphdr *th,
530 struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen,
531 int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos);
532 static int
533 rack_do_syn_sent(struct mbuf *m, struct tcphdr *th,
534 struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen,
535 int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos);
536 struct rack_sendmap *
537 tcp_rack_output(struct tcpcb *tp, struct tcp_rack *rack,
538 uint32_t tsused);
539 static void tcp_rack_xmit_timer(struct tcp_rack *rack, int32_t rtt,
540 uint32_t len, uint32_t us_tim, int confidence, struct rack_sendmap *rsm, uint16_t rtrcnt);
541 static void
542 tcp_rack_partialack(struct tcpcb *tp);
543 static int
544 rack_set_profile(struct tcp_rack *rack, int prof);
545 static void
546 rack_apply_deferred_options(struct tcp_rack *rack);
547
548 int32_t rack_clear_counter=0;
549
550 static inline void
551 rack_trace_point(struct tcp_rack *rack, int num)
552 {
553 if (((rack_trace_point_config == num) ||
554 (rack_trace_point_config = 0xffffffff)) &&
555 (rack_trace_point_bb_mode != 0) &&
556 (rack_trace_point_count > 0) &&
557 (rack->rc_tp->t_logstate == 0)) {
558 int res;
559 res = atomic_fetchadd_int(&rack_trace_point_count, -1);
560 if (res > 0) {
561 rack->rc_tp->t_logstate = rack_trace_point_bb_mode;
562 } else {
563 /* Loss a race assure its zero now */
564 rack_trace_point_count = 0;
565 }
566 }
567 }
568
569 static void
570 rack_swap_beta_values(struct tcp_rack *rack, uint8_t flex8)
571 {
572 struct sockopt sopt;
573 struct cc_newreno_opts opt;
574 struct newreno old;
575 struct tcpcb *tp;
576 int error, failed = 0;
577
578 tp = rack->rc_tp;
579 if (tp->t_cc == NULL) {
580 /* Tcb is leaving */
581 return;
582 }
583 rack->rc_pacing_cc_set = 1;
584 if (strcmp(tp->t_cc->name, CCALGONAME_NEWRENO) != 0) {
585 /* Not new-reno we can't play games with beta! */
586 failed = 1;
587 goto out;
588
589 }
590 if (CC_ALGO(tp)->ctl_output == NULL) {
591 /* Huh, not using new-reno so no swaps.? */
592 failed = 2;
593 goto out;
594 }
595 /* Get the current values out */
596 sopt.sopt_valsize = sizeof(struct cc_newreno_opts);
597 sopt.sopt_dir = SOPT_GET;
598 opt.name = CC_NEWRENO_BETA;
599 error = CC_ALGO(tp)->ctl_output(&tp->t_ccv, &sopt, &opt);
600 if (error) {
601 failed = 3;
602 goto out;
603 }
604 old.beta = opt.val;
605 opt.name = CC_NEWRENO_BETA_ECN;
606 error = CC_ALGO(tp)->ctl_output(&tp->t_ccv, &sopt, &opt);
607 if (error) {
608 failed = 4;
609 goto out;
610 }
611 old.beta_ecn = opt.val;
612
613 /* Now lets set in the values we have stored */
614 sopt.sopt_dir = SOPT_SET;
615 opt.name = CC_NEWRENO_BETA;
616 opt.val = rack->r_ctl.rc_saved_beta.beta;
617 error = CC_ALGO(tp)->ctl_output(&tp->t_ccv, &sopt, &opt);
618 if (error) {
619 failed = 5;
620 goto out;
621 }
622 opt.name = CC_NEWRENO_BETA_ECN;
623 opt.val = rack->r_ctl.rc_saved_beta.beta_ecn;
624 error = CC_ALGO(tp)->ctl_output(&tp->t_ccv, &sopt, &opt);
625 if (error) {
626 failed = 6;
627 goto out;
628 }
629 /* Save off the values for restoral */
630 memcpy(&rack->r_ctl.rc_saved_beta, &old, sizeof(struct newreno));
631 out:
632 if (rack_verbose_logging && (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF)) {
633 union tcp_log_stackspecific log;
634 struct timeval tv;
635 struct newreno *ptr;
636
637 ptr = ((struct newreno *)tp->t_ccv.cc_data);
638 memset(&log.u_bbr, 0, sizeof(log.u_bbr));
639 log.u_bbr.timeStamp = tcp_get_usecs(&tv);
640 log.u_bbr.flex1 = ptr->beta;
641 log.u_bbr.flex2 = ptr->beta_ecn;
642 log.u_bbr.flex3 = ptr->newreno_flags;
643 log.u_bbr.flex4 = rack->r_ctl.rc_saved_beta.beta;
644 log.u_bbr.flex5 = rack->r_ctl.rc_saved_beta.beta_ecn;
645 log.u_bbr.flex6 = failed;
646 log.u_bbr.flex7 = rack->gp_ready;
647 log.u_bbr.flex7 <<= 1;
648 log.u_bbr.flex7 |= rack->use_fixed_rate;
649 log.u_bbr.flex7 <<= 1;
650 log.u_bbr.flex7 |= rack->rc_pacing_cc_set;
651 log.u_bbr.pkts_out = rack->r_ctl.rc_prr_sndcnt;
652 log.u_bbr.flex8 = flex8;
653 tcp_log_event_(tp, NULL, NULL, NULL, BBR_LOG_CWND, error,
654 0, &log, false, NULL, NULL, 0, &tv);
655 }
656 }
657
658 static void
659 rack_set_cc_pacing(struct tcp_rack *rack)
660 {
661 if (rack->rc_pacing_cc_set)
662 return;
663 /*
664 * Use the swap utility placing in 3 for flex8 to id a
665 * set of a new set of values.
666 */
667 rack->rc_pacing_cc_set = 1;
668 rack_swap_beta_values(rack, 3);
669 }
670
671 static void
672 rack_undo_cc_pacing(struct tcp_rack *rack)
673 {
674 if (rack->rc_pacing_cc_set == 0)
675 return;
676 /*
677 * Use the swap utility placing in 4 for flex8 to id a
678 * restoral of the old values.
679 */
680 rack->rc_pacing_cc_set = 0;
681 rack_swap_beta_values(rack, 4);
682 }
683
684 #ifdef NETFLIX_PEAKRATE
685 static inline void
686 rack_update_peakrate_thr(struct tcpcb *tp)
687 {
688 /* Keep in mind that t_maxpeakrate is in B/s. */
689 uint64_t peak;
690 peak = uqmax((tp->t_maxseg * 2),
691 (((uint64_t)tp->t_maxpeakrate * (uint64_t)(tp->t_srtt)) / (uint64_t)HPTS_USEC_IN_SEC));
692 tp->t_peakrate_thr = (uint32_t)uqmin(peak, UINT32_MAX);
693 }
694 #endif
695
696 static int
697 sysctl_rack_clear(SYSCTL_HANDLER_ARGS)
698 {
699 uint32_t stat;
700 int32_t error;
701
702 error = SYSCTL_OUT(req, &rack_clear_counter, sizeof(uint32_t));
703 if (error || req->newptr == NULL)
704 return error;
705
706 error = SYSCTL_IN(req, &stat, sizeof(uint32_t));
707 if (error)
708 return (error);
709 if (stat == 1) {
710 #ifdef INVARIANTS
711 printf("Clearing RACK counters\n");
712 #endif
713 counter_u64_zero(rack_tlp_tot);
714 counter_u64_zero(rack_tlp_newdata);
715 counter_u64_zero(rack_tlp_retran);
716 counter_u64_zero(rack_tlp_retran_bytes);
717 counter_u64_zero(rack_to_tot);
718 counter_u64_zero(rack_saw_enobuf);
719 counter_u64_zero(rack_saw_enobuf_hw);
720 counter_u64_zero(rack_saw_enetunreach);
721 counter_u64_zero(rack_persists_sends);
722 counter_u64_zero(rack_persists_acks);
723 counter_u64_zero(rack_persists_loss);
724 counter_u64_zero(rack_persists_lost_ends);
725 #ifdef INVARIANTS
726 counter_u64_zero(rack_adjust_map_bw);
727 #endif
728 counter_u64_zero(rack_to_alloc_hard);
729 counter_u64_zero(rack_to_alloc_emerg);
730 counter_u64_zero(rack_sack_proc_all);
731 counter_u64_zero(rack_fto_send);
732 counter_u64_zero(rack_fto_rsm_send);
733 counter_u64_zero(rack_extended_rfo);
734 counter_u64_zero(rack_hw_pace_init_fail);
735 counter_u64_zero(rack_hw_pace_lost);
736 counter_u64_zero(rack_non_fto_send);
737 counter_u64_zero(rack_nfto_resend);
738 counter_u64_zero(rack_sack_proc_short);
739 counter_u64_zero(rack_sack_proc_restart);
740 counter_u64_zero(rack_to_alloc);
741 counter_u64_zero(rack_to_alloc_limited);
742 counter_u64_zero(rack_alloc_limited_conns);
743 counter_u64_zero(rack_split_limited);
744 counter_u64_zero(rack_multi_single_eq);
745 counter_u64_zero(rack_proc_non_comp_ack);
746 counter_u64_zero(rack_sack_attacks_detected);
747 counter_u64_zero(rack_sack_attacks_reversed);
748 counter_u64_zero(rack_sack_used_next_merge);
749 counter_u64_zero(rack_sack_used_prev_merge);
750 counter_u64_zero(rack_sack_splits);
751 counter_u64_zero(rack_sack_skipped_acked);
752 counter_u64_zero(rack_ack_total);
753 counter_u64_zero(rack_express_sack);
754 counter_u64_zero(rack_sack_total);
755 counter_u64_zero(rack_move_none);
756 counter_u64_zero(rack_move_some);
757 counter_u64_zero(rack_try_scwnd);
758 counter_u64_zero(rack_collapsed_win);
759 counter_u64_zero(rack_collapsed_win_rxt);
760 counter_u64_zero(rack_collapsed_win_seen);
761 counter_u64_zero(rack_collapsed_win_rxt_bytes);
762 }
763 rack_clear_counter = 0;
764 return (0);
765 }
766
767 static void
768 rack_init_sysctls(void)
769 {
770 struct sysctl_oid *rack_counters;
771 struct sysctl_oid *rack_attack;
772 struct sysctl_oid *rack_pacing;
773 struct sysctl_oid *rack_timely;
774 struct sysctl_oid *rack_timers;
775 struct sysctl_oid *rack_tlp;
776 struct sysctl_oid *rack_misc;
777 struct sysctl_oid *rack_features;
778 struct sysctl_oid *rack_measure;
779 struct sysctl_oid *rack_probertt;
780 struct sysctl_oid *rack_hw_pacing;
781 struct sysctl_oid *rack_tracepoint;
782
783 rack_attack = SYSCTL_ADD_NODE(&rack_sysctl_ctx,
784 SYSCTL_CHILDREN(rack_sysctl_root),
785 OID_AUTO,
786 "sack_attack",
787 CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
788 "Rack Sack Attack Counters and Controls");
789 rack_counters = SYSCTL_ADD_NODE(&rack_sysctl_ctx,
790 SYSCTL_CHILDREN(rack_sysctl_root),
791 OID_AUTO,
792 "stats",
793 CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
794 "Rack Counters");
795 SYSCTL_ADD_S32(&rack_sysctl_ctx,
796 SYSCTL_CHILDREN(rack_sysctl_root),
797 OID_AUTO, "rate_sample_method", CTLFLAG_RW,
798 &rack_rate_sample_method , USE_RTT_LOW,
799 "What method should we use for rate sampling 0=high, 1=low ");
800 /* Probe rtt related controls */
801 rack_probertt = SYSCTL_ADD_NODE(&rack_sysctl_ctx,
802 SYSCTL_CHILDREN(rack_sysctl_root),
803 OID_AUTO,
804 "probertt",
805 CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
806 "ProbeRTT related Controls");
807 SYSCTL_ADD_U16(&rack_sysctl_ctx,
808 SYSCTL_CHILDREN(rack_probertt),
809 OID_AUTO, "exit_per_hpb", CTLFLAG_RW,
810 &rack_atexit_prtt_hbp, 130,
811 "What percentage above goodput do we clamp CA/SS to at exit on high-BDP path 110%");
812 SYSCTL_ADD_U16(&rack_sysctl_ctx,
813 SYSCTL_CHILDREN(rack_probertt),
814 OID_AUTO, "exit_per_nonhpb", CTLFLAG_RW,
815 &rack_atexit_prtt, 130,
816 "What percentage above goodput do we clamp CA/SS to at exit on a non high-BDP path 100%");
817 SYSCTL_ADD_U16(&rack_sysctl_ctx,
818 SYSCTL_CHILDREN(rack_probertt),
819 OID_AUTO, "gp_per_mul", CTLFLAG_RW,
820 &rack_per_of_gp_probertt, 60,
821 "What percentage of goodput do we pace at in probertt");
822 SYSCTL_ADD_U16(&rack_sysctl_ctx,
823 SYSCTL_CHILDREN(rack_probertt),
824 OID_AUTO, "gp_per_reduce", CTLFLAG_RW,
825 &rack_per_of_gp_probertt_reduce, 10,
826 "What percentage of goodput do we reduce every gp_srtt");
827 SYSCTL_ADD_U16(&rack_sysctl_ctx,
828 SYSCTL_CHILDREN(rack_probertt),
829 OID_AUTO, "gp_per_low", CTLFLAG_RW,
830 &rack_per_of_gp_lowthresh, 40,
831 "What percentage of goodput do we allow the multiplier to fall to");
832 SYSCTL_ADD_U32(&rack_sysctl_ctx,
833 SYSCTL_CHILDREN(rack_probertt),
834 OID_AUTO, "time_between", CTLFLAG_RW,
835 & rack_time_between_probertt, 96000000,
836 "How many useconds between the lowest rtt falling must past before we enter probertt");
837 SYSCTL_ADD_U32(&rack_sysctl_ctx,
838 SYSCTL_CHILDREN(rack_probertt),
839 OID_AUTO, "safety", CTLFLAG_RW,
840 &rack_probe_rtt_safety_val, 2000000,
841 "If not zero, provides a maximum usecond that you can stay in probertt (2sec = 2000000)");
842 SYSCTL_ADD_U32(&rack_sysctl_ctx,
843 SYSCTL_CHILDREN(rack_probertt),
844 OID_AUTO, "sets_cwnd", CTLFLAG_RW,
845 &rack_probe_rtt_sets_cwnd, 0,
846 "Do we set the cwnd too (if always_lower is on)");
847 SYSCTL_ADD_U32(&rack_sysctl_ctx,
848 SYSCTL_CHILDREN(rack_probertt),
849 OID_AUTO, "maxdrainsrtts", CTLFLAG_RW,
850 &rack_max_drain_wait, 2,
851 "Maximum number of gp_srtt's to hold in drain waiting for flight to reach goal");
852 SYSCTL_ADD_U32(&rack_sysctl_ctx,
853 SYSCTL_CHILDREN(rack_probertt),
854 OID_AUTO, "mustdrainsrtts", CTLFLAG_RW,
855 &rack_must_drain, 1,
856 "We must drain this many gp_srtt's waiting for flight to reach goal");
857 SYSCTL_ADD_U32(&rack_sysctl_ctx,
858 SYSCTL_CHILDREN(rack_probertt),
859 OID_AUTO, "goal_use_min_entry", CTLFLAG_RW,
860 &rack_probertt_use_min_rtt_entry, 1,
861 "Should we use the min-rtt to calculate the goal rtt (else gp_srtt) at entry");
862 SYSCTL_ADD_U32(&rack_sysctl_ctx,
863 SYSCTL_CHILDREN(rack_probertt),
864 OID_AUTO, "goal_use_min_exit", CTLFLAG_RW,
865 &rack_probertt_use_min_rtt_exit, 0,
866 "How to set cwnd at exit, 0 - dynamic, 1 - use min-rtt, 2 - use curgprtt, 3 - entry gp-rtt");
867 SYSCTL_ADD_U32(&rack_sysctl_ctx,
868 SYSCTL_CHILDREN(rack_probertt),
869 OID_AUTO, "length_div", CTLFLAG_RW,
870 &rack_probertt_gpsrtt_cnt_div, 0,
871 "How many recent goodput srtt periods plus hold tim does probertt last (bottom of fraction)");
872 SYSCTL_ADD_U32(&rack_sysctl_ctx,
873 SYSCTL_CHILDREN(rack_probertt),
874 OID_AUTO, "length_mul", CTLFLAG_RW,
875 &rack_probertt_gpsrtt_cnt_mul, 0,
876 "How many recent goodput srtt periods plus hold tim does probertt last (top of fraction)");
877 SYSCTL_ADD_U32(&rack_sysctl_ctx,
878 SYSCTL_CHILDREN(rack_probertt),
879 OID_AUTO, "holdtim_at_target", CTLFLAG_RW,
880 &rack_min_probertt_hold, 200000,
881 "What is the minimum time we hold probertt at target");
882 SYSCTL_ADD_U32(&rack_sysctl_ctx,
883 SYSCTL_CHILDREN(rack_probertt),
884 OID_AUTO, "filter_life", CTLFLAG_RW,
885 &rack_probertt_filter_life, 10000000,
886 "What is the time for the filters life in useconds");
887 SYSCTL_ADD_U32(&rack_sysctl_ctx,
888 SYSCTL_CHILDREN(rack_probertt),
889 OID_AUTO, "lower_within", CTLFLAG_RW,
890 &rack_probertt_lower_within, 10,
891 "If the rtt goes lower within this percentage of the time, go into probe-rtt");
892 SYSCTL_ADD_U32(&rack_sysctl_ctx,
893 SYSCTL_CHILDREN(rack_probertt),
894 OID_AUTO, "must_move", CTLFLAG_RW,
895 &rack_min_rtt_movement, 250,
896 "How much is the minimum movement in rtt to count as a drop for probertt purposes");
897 SYSCTL_ADD_U32(&rack_sysctl_ctx,
898 SYSCTL_CHILDREN(rack_probertt),
899 OID_AUTO, "clear_is_cnts", CTLFLAG_RW,
900 &rack_probertt_clear_is, 1,
901 "Do we clear I/S counts on exiting probe-rtt");
902 SYSCTL_ADD_S32(&rack_sysctl_ctx,
903 SYSCTL_CHILDREN(rack_probertt),
904 OID_AUTO, "hbp_extra_drain", CTLFLAG_RW,
905 &rack_max_drain_hbp, 1,
906 "How many extra drain gpsrtt's do we get in highly buffered paths");
907 SYSCTL_ADD_S32(&rack_sysctl_ctx,
908 SYSCTL_CHILDREN(rack_probertt),
909 OID_AUTO, "hbp_threshold", CTLFLAG_RW,
910 &rack_hbp_thresh, 3,
911 "We are highly buffered if min_rtt_seen / max_rtt_seen > this-threshold");
912
913 rack_tracepoint = SYSCTL_ADD_NODE(&rack_sysctl_ctx,
914 SYSCTL_CHILDREN(rack_sysctl_root),
915 OID_AUTO,
916 "tp",
917 CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
918 "Rack tracepoint facility");
919 SYSCTL_ADD_U32(&rack_sysctl_ctx,
920 SYSCTL_CHILDREN(rack_tracepoint),
921 OID_AUTO, "number", CTLFLAG_RW,
922 &rack_trace_point_config, 0,
923 "What is the trace point number to activate (0=none, 0xffffffff = all)?");
924 SYSCTL_ADD_U32(&rack_sysctl_ctx,
925 SYSCTL_CHILDREN(rack_tracepoint),
926 OID_AUTO, "bbmode", CTLFLAG_RW,
927 &rack_trace_point_bb_mode, 4,
928 "What is BB logging mode that is activated?");
929 SYSCTL_ADD_S32(&rack_sysctl_ctx,
930 SYSCTL_CHILDREN(rack_tracepoint),
931 OID_AUTO, "count", CTLFLAG_RW,
932 &rack_trace_point_count, 0,
933 "How many connections will have BB logging turned on that hit the tracepoint?");
934 /* Pacing related sysctls */
935 rack_pacing = SYSCTL_ADD_NODE(&rack_sysctl_ctx,
936 SYSCTL_CHILDREN(rack_sysctl_root),
937 OID_AUTO,
938 "pacing",
939 CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
940 "Pacing related Controls");
941 SYSCTL_ADD_S32(&rack_sysctl_ctx,
942 SYSCTL_CHILDREN(rack_pacing),
943 OID_AUTO, "max_pace_over", CTLFLAG_RW,
944 &rack_max_per_above, 30,
945 "What is the maximum allowable percentage that we can pace above (so 30 = 130% of our goal)");
946 SYSCTL_ADD_S32(&rack_sysctl_ctx,
947 SYSCTL_CHILDREN(rack_pacing),
948 OID_AUTO, "pace_to_one", CTLFLAG_RW,
949 &rack_pace_one_seg, 0,
950 "Do we allow low b/w pacing of 1MSS instead of two");
951 SYSCTL_ADD_S32(&rack_sysctl_ctx,
952 SYSCTL_CHILDREN(rack_pacing),
953 OID_AUTO, "limit_wsrtt", CTLFLAG_RW,
954 &rack_limit_time_with_srtt, 0,
955 "Do we limit pacing time based on srtt");
956 SYSCTL_ADD_S32(&rack_sysctl_ctx,
957 SYSCTL_CHILDREN(rack_pacing),
958 OID_AUTO, "init_win", CTLFLAG_RW,
959 &rack_default_init_window, 0,
960 "Do we have a rack initial window 0 = system default");
961 SYSCTL_ADD_U16(&rack_sysctl_ctx,
962 SYSCTL_CHILDREN(rack_pacing),
963 OID_AUTO, "gp_per_ss", CTLFLAG_RW,
964 &rack_per_of_gp_ss, 250,
965 "If non zero, what percentage of goodput to pace at in slow start");
966 SYSCTL_ADD_U16(&rack_sysctl_ctx,
967 SYSCTL_CHILDREN(rack_pacing),
968 OID_AUTO, "gp_per_ca", CTLFLAG_RW,
969 &rack_per_of_gp_ca, 150,
970 "If non zero, what percentage of goodput to pace at in congestion avoidance");
971 SYSCTL_ADD_U16(&rack_sysctl_ctx,
972 SYSCTL_CHILDREN(rack_pacing),
973 OID_AUTO, "gp_per_rec", CTLFLAG_RW,
974 &rack_per_of_gp_rec, 200,
975 "If non zero, what percentage of goodput to pace at in recovery");
976 SYSCTL_ADD_S32(&rack_sysctl_ctx,
977 SYSCTL_CHILDREN(rack_pacing),
978 OID_AUTO, "pace_max_seg", CTLFLAG_RW,
979 &rack_hptsi_segments, 40,
980 "What size is the max for TSO segments in pacing and burst mitigation");
981 SYSCTL_ADD_S32(&rack_sysctl_ctx,
982 SYSCTL_CHILDREN(rack_pacing),
983 OID_AUTO, "burst_reduces", CTLFLAG_RW,
984 &rack_slot_reduction, 4,
985 "When doing only burst mitigation what is the reduce divisor");
986 SYSCTL_ADD_S32(&rack_sysctl_ctx,
987 SYSCTL_CHILDREN(rack_sysctl_root),
988 OID_AUTO, "use_pacing", CTLFLAG_RW,
989 &rack_pace_every_seg, 0,
990 "If set we use pacing, if clear we use only the original burst mitigation");
991 SYSCTL_ADD_U64(&rack_sysctl_ctx,
992 SYSCTL_CHILDREN(rack_pacing),
993 OID_AUTO, "rate_cap", CTLFLAG_RW,
994 &rack_bw_rate_cap, 0,
995 "If set we apply this value to the absolute rate cap used by pacing");
996 SYSCTL_ADD_U8(&rack_sysctl_ctx,
997 SYSCTL_CHILDREN(rack_sysctl_root),
998 OID_AUTO, "req_measure_cnt", CTLFLAG_RW,
999 &rack_req_measurements, 1,
1000 "If doing dynamic pacing, how many measurements must be in before we start pacing?");
1001 /* Hardware pacing */
1002 rack_hw_pacing = SYSCTL_ADD_NODE(&rack_sysctl_ctx,
1003 SYSCTL_CHILDREN(rack_sysctl_root),
1004 OID_AUTO,
1005 "hdwr_pacing",
1006 CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
1007 "Pacing related Controls");
1008 SYSCTL_ADD_S32(&rack_sysctl_ctx,
1009 SYSCTL_CHILDREN(rack_hw_pacing),
1010 OID_AUTO, "rwnd_factor", CTLFLAG_RW,
1011 &rack_hw_rwnd_factor, 2,
1012 "How many times does snd_wnd need to be bigger than pace_max_seg so we will hold off and get more acks?");
1013 SYSCTL_ADD_S32(&rack_sysctl_ctx,
1014 SYSCTL_CHILDREN(rack_hw_pacing),
1015 OID_AUTO, "pace_enobuf_mult", CTLFLAG_RW,
1016 &rack_enobuf_hw_boost_mult, 2,
1017 "By how many time_betweens should we boost the pacing time if we see a ENOBUFS?");
1018 SYSCTL_ADD_S32(&rack_sysctl_ctx,
1019 SYSCTL_CHILDREN(rack_hw_pacing),
1020 OID_AUTO, "pace_enobuf_max", CTLFLAG_RW,
1021 &rack_enobuf_hw_max, 2,
1022 "What is the max boost the pacing time if we see a ENOBUFS?");
1023 SYSCTL_ADD_S32(&rack_sysctl_ctx,
1024 SYSCTL_CHILDREN(rack_hw_pacing),
1025 OID_AUTO, "pace_enobuf_min", CTLFLAG_RW,
1026 &rack_enobuf_hw_min, 2,
1027 "What is the min boost the pacing time if we see a ENOBUFS?");
1028 SYSCTL_ADD_S32(&rack_sysctl_ctx,
1029 SYSCTL_CHILDREN(rack_hw_pacing),
1030 OID_AUTO, "enable", CTLFLAG_RW,
1031 &rack_enable_hw_pacing, 0,
1032 "Should RACK attempt to use hw pacing?");
1033 SYSCTL_ADD_S32(&rack_sysctl_ctx,
1034 SYSCTL_CHILDREN(rack_hw_pacing),
1035 OID_AUTO, "rate_cap", CTLFLAG_RW,
1036 &rack_hw_rate_caps, 1,
1037 "Does the highest hardware pacing rate cap the rate we will send at??");
1038 SYSCTL_ADD_S32(&rack_sysctl_ctx,
1039 SYSCTL_CHILDREN(rack_hw_pacing),
1040 OID_AUTO, "rate_min", CTLFLAG_RW,
1041 &rack_hw_rate_min, 0,
1042 "Do we need a minimum estimate of this many bytes per second in order to engage hw pacing?");
1043 SYSCTL_ADD_S32(&rack_sysctl_ctx,
1044 SYSCTL_CHILDREN(rack_hw_pacing),
1045 OID_AUTO, "rate_to_low", CTLFLAG_RW,
1046 &rack_hw_rate_to_low, 0,
1047 "If we fall below this rate, dis-engage hw pacing?");
1048 SYSCTL_ADD_S32(&rack_sysctl_ctx,
1049 SYSCTL_CHILDREN(rack_hw_pacing),
1050 OID_AUTO, "up_only", CTLFLAG_RW,
1051 &rack_hw_up_only, 1,
1052 "Do we allow hw pacing to lower the rate selected?");
1053 SYSCTL_ADD_S32(&rack_sysctl_ctx,
1054 SYSCTL_CHILDREN(rack_hw_pacing),
1055 OID_AUTO, "extra_mss_precise", CTLFLAG_RW,
1056 &rack_hw_pace_extra_slots, 2,
1057 "If the rates between software and hardware match precisely how many extra time_betweens do we get?");
1058 rack_timely = SYSCTL_ADD_NODE(&rack_sysctl_ctx,
1059 SYSCTL_CHILDREN(rack_sysctl_root),
1060 OID_AUTO,
1061 "timely",
1062 CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
1063 "Rack Timely RTT Controls");
1064 /* Timely based GP dynmics */
1065 SYSCTL_ADD_S32(&rack_sysctl_ctx,
1066 SYSCTL_CHILDREN(rack_timely),
1067 OID_AUTO, "upper", CTLFLAG_RW,
1068 &rack_gp_per_bw_mul_up, 2,
1069 "Rack timely upper range for equal b/w (in percentage)");
1070 SYSCTL_ADD_S32(&rack_sysctl_ctx,
1071 SYSCTL_CHILDREN(rack_timely),
1072 OID_AUTO, "lower", CTLFLAG_RW,
1073 &rack_gp_per_bw_mul_down, 4,
1074 "Rack timely lower range for equal b/w (in percentage)");
1075 SYSCTL_ADD_S32(&rack_sysctl_ctx,
1076 SYSCTL_CHILDREN(rack_timely),
1077 OID_AUTO, "rtt_max_mul", CTLFLAG_RW,
1078 &rack_gp_rtt_maxmul, 3,
1079 "Rack timely multiplier of lowest rtt for rtt_max");
1080 SYSCTL_ADD_S32(&rack_sysctl_ctx,
1081 SYSCTL_CHILDREN(rack_timely),
1082 OID_AUTO, "rtt_min_div", CTLFLAG_RW,
1083 &rack_gp_rtt_mindiv, 4,
1084 "Rack timely divisor used for rtt + (rtt * mul/divisor) for check for lower rtt");
1085 SYSCTL_ADD_S32(&rack_sysctl_ctx,
1086 SYSCTL_CHILDREN(rack_timely),
1087 OID_AUTO, "rtt_min_mul", CTLFLAG_RW,
1088 &rack_gp_rtt_minmul, 1,
1089 "Rack timely multiplier used for rtt + (rtt * mul/divisor) for check for lower rtt");
1090 SYSCTL_ADD_S32(&rack_sysctl_ctx,
1091 SYSCTL_CHILDREN(rack_timely),
1092 OID_AUTO, "decrease", CTLFLAG_RW,
1093 &rack_gp_decrease_per, 20,
1094 "Rack timely decrease percentage of our GP multiplication factor");
1095 SYSCTL_ADD_S32(&rack_sysctl_ctx,
1096 SYSCTL_CHILDREN(rack_timely),
1097 OID_AUTO, "increase", CTLFLAG_RW,
1098 &rack_gp_increase_per, 2,
1099 "Rack timely increase perentage of our GP multiplication factor");
1100 SYSCTL_ADD_S32(&rack_sysctl_ctx,
1101 SYSCTL_CHILDREN(rack_timely),
1102 OID_AUTO, "lowerbound", CTLFLAG_RW,
1103 &rack_per_lower_bound, 50,
1104 "Rack timely lowest percentage we allow GP multiplier to fall to");
1105 SYSCTL_ADD_S32(&rack_sysctl_ctx,
1106 SYSCTL_CHILDREN(rack_timely),
1107 OID_AUTO, "upperboundss", CTLFLAG_RW,
1108 &rack_per_upper_bound_ss, 0,
1109 "Rack timely highest percentage we allow GP multiplier in SS to raise to (0 is no upperbound)");
1110 SYSCTL_ADD_S32(&rack_sysctl_ctx,
1111 SYSCTL_CHILDREN(rack_timely),
1112 OID_AUTO, "upperboundca", CTLFLAG_RW,
1113 &rack_per_upper_bound_ca, 0,
1114 "Rack timely highest percentage we allow GP multiplier to CA raise to (0 is no upperbound)");
1115 SYSCTL_ADD_S32(&rack_sysctl_ctx,
1116 SYSCTL_CHILDREN(rack_timely),
1117 OID_AUTO, "dynamicgp", CTLFLAG_RW,
1118 &rack_do_dyn_mul, 0,
1119 "Rack timely do we enable dynmaic timely goodput by default");
1120 SYSCTL_ADD_S32(&rack_sysctl_ctx,
1121 SYSCTL_CHILDREN(rack_timely),
1122 OID_AUTO, "no_rec_red", CTLFLAG_RW,
1123 &rack_gp_no_rec_chg, 1,
1124 "Rack timely do we prohibit the recovery multiplier from being lowered");
1125 SYSCTL_ADD_S32(&rack_sysctl_ctx,
1126 SYSCTL_CHILDREN(rack_timely),
1127 OID_AUTO, "red_clear_cnt", CTLFLAG_RW,
1128 &rack_timely_dec_clear, 6,
1129 "Rack timely what threshold do we count to before another boost during b/w decent");
1130 SYSCTL_ADD_S32(&rack_sysctl_ctx,
1131 SYSCTL_CHILDREN(rack_timely),
1132 OID_AUTO, "max_push_rise", CTLFLAG_RW,
1133 &rack_timely_max_push_rise, 3,
1134 "Rack timely how many times do we push up with b/w increase");
1135 SYSCTL_ADD_S32(&rack_sysctl_ctx,
1136 SYSCTL_CHILDREN(rack_timely),
1137 OID_AUTO, "max_push_drop", CTLFLAG_RW,
1138 &rack_timely_max_push_drop, 3,
1139 "Rack timely how many times do we push back on b/w decent");
1140 SYSCTL_ADD_S32(&rack_sysctl_ctx,
1141 SYSCTL_CHILDREN(rack_timely),
1142 OID_AUTO, "min_segs", CTLFLAG_RW,
1143 &rack_timely_min_segs, 4,
1144 "Rack timely when setting the cwnd what is the min num segments");
1145 SYSCTL_ADD_S32(&rack_sysctl_ctx,
1146 SYSCTL_CHILDREN(rack_timely),
1147 OID_AUTO, "noback_max", CTLFLAG_RW,
1148 &rack_use_max_for_nobackoff, 0,
1149 "Rack timely when deciding if to backoff on a loss, do we use under max rtt else min");
1150 SYSCTL_ADD_S32(&rack_sysctl_ctx,
1151 SYSCTL_CHILDREN(rack_timely),
1152 OID_AUTO, "interim_timely_only", CTLFLAG_RW,
1153 &rack_timely_int_timely_only, 0,
1154 "Rack timely when doing interim timely's do we only do timely (no b/w consideration)");
1155 SYSCTL_ADD_S32(&rack_sysctl_ctx,
1156 SYSCTL_CHILDREN(rack_timely),
1157 OID_AUTO, "nonstop", CTLFLAG_RW,
1158 &rack_timely_no_stopping, 0,
1159 "Rack timely don't stop increase");
1160 SYSCTL_ADD_S32(&rack_sysctl_ctx,
1161 SYSCTL_CHILDREN(rack_timely),
1162 OID_AUTO, "dec_raise_thresh", CTLFLAG_RW,
1163 &rack_down_raise_thresh, 100,
1164 "If the CA or SS is below this threshold raise on the first 3 b/w lowers (0=always)");
1165 SYSCTL_ADD_S32(&rack_sysctl_ctx,
1166 SYSCTL_CHILDREN(rack_timely),
1167 OID_AUTO, "bottom_drag_segs", CTLFLAG_RW,
1168 &rack_req_segs, 1,
1169 "Bottom dragging if not these many segments outstanding and room");
1170
1171 /* TLP and Rack related parameters */
1172 rack_tlp = SYSCTL_ADD_NODE(&rack_sysctl_ctx,
1173 SYSCTL_CHILDREN(rack_sysctl_root),
1174 OID_AUTO,
1175 "tlp",
1176 CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
1177 "TLP and Rack related Controls");
1178 SYSCTL_ADD_S32(&rack_sysctl_ctx,
1179 SYSCTL_CHILDREN(rack_tlp),
1180 OID_AUTO, "use_rrr", CTLFLAG_RW,
1181 &use_rack_rr, 1,
1182 "Do we use Rack Rapid Recovery");
1183 SYSCTL_ADD_S32(&rack_sysctl_ctx,
1184 SYSCTL_CHILDREN(rack_tlp),
1185 OID_AUTO, "post_rec_labc", CTLFLAG_RW,
1186 &rack_max_abc_post_recovery, 2,
1187 "Since we do early recovery, do we override the l_abc to a value, if so what?");
1188 SYSCTL_ADD_S32(&rack_sysctl_ctx,
1189 SYSCTL_CHILDREN(rack_tlp),
1190 OID_AUTO, "nonrxt_use_cr", CTLFLAG_RW,
1191 &rack_non_rxt_use_cr, 0,
1192 "Do we use ss/ca rate if in recovery we are transmitting a new data chunk");
1193 SYSCTL_ADD_S32(&rack_sysctl_ctx,
1194 SYSCTL_CHILDREN(rack_tlp),
1195 OID_AUTO, "tlpmethod", CTLFLAG_RW,
1196 &rack_tlp_threshold_use, TLP_USE_TWO_ONE,
1197 "What method do we do for TLP time calc 0=no-de-ack-comp, 1=ID, 2=2.1, 3=2.2");
1198 SYSCTL_ADD_S32(&rack_sysctl_ctx,
1199 SYSCTL_CHILDREN(rack_tlp),
1200 OID_AUTO, "limit", CTLFLAG_RW,
1201 &rack_tlp_limit, 2,
1202 "How many TLP's can be sent without sending new data");
1203 SYSCTL_ADD_S32(&rack_sysctl_ctx,
1204 SYSCTL_CHILDREN(rack_tlp),
1205 OID_AUTO, "use_greater", CTLFLAG_RW,
1206 &rack_tlp_use_greater, 1,
1207 "Should we use the rack_rtt time if its greater than srtt");
1208 SYSCTL_ADD_S32(&rack_sysctl_ctx,
1209 SYSCTL_CHILDREN(rack_tlp),
1210 OID_AUTO, "tlpminto", CTLFLAG_RW,
1211 &rack_tlp_min, 10000,
1212 "TLP minimum timeout per the specification (in microseconds)");
1213 SYSCTL_ADD_S32(&rack_sysctl_ctx,
1214 SYSCTL_CHILDREN(rack_tlp),
1215 OID_AUTO, "send_oldest", CTLFLAG_RW,
1216 &rack_always_send_oldest, 0,
1217 "Should we always send the oldest TLP and RACK-TLP");
1218 SYSCTL_ADD_S32(&rack_sysctl_ctx,
1219 SYSCTL_CHILDREN(rack_tlp),
1220 OID_AUTO, "rack_tlimit", CTLFLAG_RW,
1221 &rack_limited_retran, 0,
1222 "How many times can a rack timeout drive out sends");
1223 SYSCTL_ADD_S32(&rack_sysctl_ctx,
1224 SYSCTL_CHILDREN(rack_tlp),
1225 OID_AUTO, "tlp_cwnd_flag", CTLFLAG_RW,
1226 &rack_lower_cwnd_at_tlp, 0,
1227 "When a TLP completes a retran should we enter recovery");
1228 SYSCTL_ADD_S32(&rack_sysctl_ctx,
1229 SYSCTL_CHILDREN(rack_tlp),
1230 OID_AUTO, "reorder_thresh", CTLFLAG_RW,
1231 &rack_reorder_thresh, 2,
1232 "What factor for rack will be added when seeing reordering (shift right)");
1233 SYSCTL_ADD_S32(&rack_sysctl_ctx,
1234 SYSCTL_CHILDREN(rack_tlp),
1235 OID_AUTO, "rtt_tlp_thresh", CTLFLAG_RW,
1236 &rack_tlp_thresh, 1,
1237 "What divisor for TLP rtt/retran will be added (1=rtt, 2=1/2 rtt etc)");
1238 SYSCTL_ADD_S32(&rack_sysctl_ctx,
1239 SYSCTL_CHILDREN(rack_tlp),
1240 OID_AUTO, "reorder_fade", CTLFLAG_RW,
1241 &rack_reorder_fade, 60000000,
1242 "Does reorder detection fade, if so how many microseconds (0 means never)");
1243 SYSCTL_ADD_S32(&rack_sysctl_ctx,
1244 SYSCTL_CHILDREN(rack_tlp),
1245 OID_AUTO, "pktdelay", CTLFLAG_RW,
1246 &rack_pkt_delay, 1000,
1247 "Extra RACK time (in microseconds) besides reordering thresh");
1248
1249 /* Timer related controls */
1250 rack_timers = SYSCTL_ADD_NODE(&rack_sysctl_ctx,
1251 SYSCTL_CHILDREN(rack_sysctl_root),
1252 OID_AUTO,
1253 "timers",
1254 CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
1255 "Timer related controls");
1256 SYSCTL_ADD_U32(&rack_sysctl_ctx,
1257 SYSCTL_CHILDREN(rack_timers),
1258 OID_AUTO, "persmin", CTLFLAG_RW,
1259 &rack_persist_min, 250000,
1260 "What is the minimum time in microseconds between persists");
1261 SYSCTL_ADD_U32(&rack_sysctl_ctx,
1262 SYSCTL_CHILDREN(rack_timers),
1263 OID_AUTO, "persmax", CTLFLAG_RW,
1264 &rack_persist_max, 2000000,
1265 "What is the largest delay in microseconds between persists");
1266 SYSCTL_ADD_S32(&rack_sysctl_ctx,
1267 SYSCTL_CHILDREN(rack_timers),
1268 OID_AUTO, "delayed_ack", CTLFLAG_RW,
1269 &rack_delayed_ack_time, 40000,
1270 "Delayed ack time (40ms in microseconds)");
1271 SYSCTL_ADD_S32(&rack_sysctl_ctx,
1272 SYSCTL_CHILDREN(rack_timers),
1273 OID_AUTO, "minrto", CTLFLAG_RW,
1274 &rack_rto_min, 30000,
1275 "Minimum RTO in microseconds -- set with caution below 1000 due to TLP");
1276 SYSCTL_ADD_S32(&rack_sysctl_ctx,
1277 SYSCTL_CHILDREN(rack_timers),
1278 OID_AUTO, "maxrto", CTLFLAG_RW,
1279 &rack_rto_max, 4000000,
1280 "Maximum RTO in microseconds -- should be at least as large as min_rto");
1281 SYSCTL_ADD_S32(&rack_sysctl_ctx,
1282 SYSCTL_CHILDREN(rack_timers),
1283 OID_AUTO, "minto", CTLFLAG_RW,
1284 &rack_min_to, 1000,
1285 "Minimum rack timeout in microseconds");
1286 /* Measure controls */
1287 rack_measure = SYSCTL_ADD_NODE(&rack_sysctl_ctx,
1288 SYSCTL_CHILDREN(rack_sysctl_root),
1289 OID_AUTO,
1290 "measure",
1291 CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
1292 "Measure related controls");
1293 SYSCTL_ADD_S32(&rack_sysctl_ctx,
1294 SYSCTL_CHILDREN(rack_measure),
1295 OID_AUTO, "wma_divisor", CTLFLAG_RW,
1296 &rack_wma_divisor, 8,
1297 "When doing b/w calculation what is the divisor for the WMA");
1298 SYSCTL_ADD_S32(&rack_sysctl_ctx,
1299 SYSCTL_CHILDREN(rack_measure),
1300 OID_AUTO, "end_cwnd", CTLFLAG_RW,
1301 &rack_cwnd_block_ends_measure, 0,
1302 "Does a cwnd just-return end the measurement window (app limited)");
1303 SYSCTL_ADD_S32(&rack_sysctl_ctx,
1304 SYSCTL_CHILDREN(rack_measure),
1305 OID_AUTO, "end_rwnd", CTLFLAG_RW,
1306 &rack_rwnd_block_ends_measure, 0,
1307 "Does an rwnd just-return end the measurement window (app limited -- not persists)");
1308 SYSCTL_ADD_U32(&rack_sysctl_ctx,
1309 SYSCTL_CHILDREN(rack_measure),
1310 OID_AUTO, "min_target", CTLFLAG_RW,
1311 &rack_def_data_window, 20,
1312 "What is the minimum target window (in mss) for a GP measurements");
1313 SYSCTL_ADD_U32(&rack_sysctl_ctx,
1314 SYSCTL_CHILDREN(rack_measure),
1315 OID_AUTO, "goal_bdp", CTLFLAG_RW,
1316 &rack_goal_bdp, 2,
1317 "What is the goal BDP to measure");
1318 SYSCTL_ADD_U32(&rack_sysctl_ctx,
1319 SYSCTL_CHILDREN(rack_measure),
1320 OID_AUTO, "min_srtts", CTLFLAG_RW,
1321 &rack_min_srtts, 1,
1322 "What is the goal BDP to measure");
1323 SYSCTL_ADD_U32(&rack_sysctl_ctx,
1324 SYSCTL_CHILDREN(rack_measure),
1325 OID_AUTO, "min_measure_tim", CTLFLAG_RW,
1326 &rack_min_measure_usec, 0,
1327 "What is the Minimum time time for a measurement if 0, this is off");
1328 /* Features */
1329 rack_features = SYSCTL_ADD_NODE(&rack_sysctl_ctx,
1330 SYSCTL_CHILDREN(rack_sysctl_root),
1331 OID_AUTO,
1332 "features",
1333 CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
1334 "Feature controls");
1335 SYSCTL_ADD_S32(&rack_sysctl_ctx,
1336 SYSCTL_CHILDREN(rack_features),
1337 OID_AUTO, "cmpack", CTLFLAG_RW,
1338 &rack_use_cmp_acks, 1,
1339 "Should RACK have LRO send compressed acks");
1340 SYSCTL_ADD_S32(&rack_sysctl_ctx,
1341 SYSCTL_CHILDREN(rack_features),
1342 OID_AUTO, "fsb", CTLFLAG_RW,
1343 &rack_use_fsb, 1,
1344 "Should RACK use the fast send block?");
1345 SYSCTL_ADD_S32(&rack_sysctl_ctx,
1346 SYSCTL_CHILDREN(rack_features),
1347 OID_AUTO, "rfo", CTLFLAG_RW,
1348 &rack_use_rfo, 1,
1349 "Should RACK use rack_fast_output()?");
1350 SYSCTL_ADD_S32(&rack_sysctl_ctx,
1351 SYSCTL_CHILDREN(rack_features),
1352 OID_AUTO, "rsmrfo", CTLFLAG_RW,
1353 &rack_use_rsm_rfo, 1,
1354 "Should RACK use rack_fast_rsm_output()?");
1355 SYSCTL_ADD_S32(&rack_sysctl_ctx,
1356 SYSCTL_CHILDREN(rack_features),
1357 OID_AUTO, "non_paced_lro_queue", CTLFLAG_RW,
1358 &rack_enable_mqueue_for_nonpaced, 0,
1359 "Should RACK use mbuf queuing for non-paced connections");
1360 SYSCTL_ADD_S32(&rack_sysctl_ctx,
1361 SYSCTL_CHILDREN(rack_features),
1362 OID_AUTO, "hystartplusplus", CTLFLAG_RW,
1363 &rack_do_hystart, 0,
1364 "Should RACK enable HyStart++ on connections?");
1365 /* Misc rack controls */
1366 rack_misc = SYSCTL_ADD_NODE(&rack_sysctl_ctx,
1367 SYSCTL_CHILDREN(rack_sysctl_root),
1368 OID_AUTO,
1369 "misc",
1370 CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
1371 "Misc related controls");
1372 #ifdef TCP_ACCOUNTING
1373 SYSCTL_ADD_S32(&rack_sysctl_ctx,
1374 SYSCTL_CHILDREN(rack_misc),
1375 OID_AUTO, "tcp_acct", CTLFLAG_RW,
1376 &rack_tcp_accounting, 0,
1377 "Should we turn on TCP accounting for all rack sessions?");
1378 #endif
1379 SYSCTL_ADD_S32(&rack_sysctl_ctx,
1380 SYSCTL_CHILDREN(rack_misc),
1381 OID_AUTO, "apply_rtt_with_low_conf", CTLFLAG_RW,
1382 &rack_apply_rtt_with_reduced_conf, 0,
1383 "When a persist or keep-alive probe is not answered do we calculate rtt on subsequent answers?");
1384 SYSCTL_ADD_S32(&rack_sysctl_ctx,
1385 SYSCTL_CHILDREN(rack_misc),
1386 OID_AUTO, "rack_dsack_ctl", CTLFLAG_RW,
1387 &rack_dsack_std_based, 3,
1388 "How do we process dsack with respect to rack timers, bit field, 3 is standards based?");
1389 SYSCTL_ADD_S32(&rack_sysctl_ctx,
1390 SYSCTL_CHILDREN(rack_misc),
1391 OID_AUTO, "prr_addback_max", CTLFLAG_RW,
1392 &rack_prr_addbackmax, 2,
1393 "What is the maximum number of MSS we allow to be added back if prr can't send all its data?");
1394 SYSCTL_ADD_S32(&rack_sysctl_ctx,
1395 SYSCTL_CHILDREN(rack_misc),
1396 OID_AUTO, "stats_gets_ms", CTLFLAG_RW,
1397 &rack_stats_gets_ms_rtt, 1,
1398 "What do we feed the stats framework (1 = ms_rtt, 0 = us_rtt, 2 = ms_rtt from hdwr, > 2 usec rtt from hdwr)?");
1399 SYSCTL_ADD_S32(&rack_sysctl_ctx,
1400 SYSCTL_CHILDREN(rack_misc),
1401 OID_AUTO, "clientlowbuf", CTLFLAG_RW,
1402 &rack_client_low_buf, 0,
1403 "Client low buffer level (below this we are more aggressive in DGP exiting recovery (0 = off)?");
1404 SYSCTL_ADD_S32(&rack_sysctl_ctx,
1405 SYSCTL_CHILDREN(rack_misc),
1406 OID_AUTO, "defprofile", CTLFLAG_RW,
1407 &rack_def_profile, 0,
1408 "Should RACK use a default profile (0=no, num == profile num)?");
1409 SYSCTL_ADD_S32(&rack_sysctl_ctx,
1410 SYSCTL_CHILDREN(rack_misc),
1411 OID_AUTO, "shared_cwnd", CTLFLAG_RW,
1412 &rack_enable_shared_cwnd, 1,
1413 "Should RACK try to use the shared cwnd on connections where allowed");
1414 SYSCTL_ADD_S32(&rack_sysctl_ctx,
1415 SYSCTL_CHILDREN(rack_misc),
1416 OID_AUTO, "limits_on_scwnd", CTLFLAG_RW,
1417 &rack_limits_scwnd, 1,
1418 "Should RACK place low end time limits on the shared cwnd feature");
1419 SYSCTL_ADD_S32(&rack_sysctl_ctx,
1420 SYSCTL_CHILDREN(rack_misc),
1421 OID_AUTO, "iMac_dack", CTLFLAG_RW,
1422 &rack_use_imac_dack, 0,
1423 "Should RACK try to emulate iMac delayed ack");
1424 SYSCTL_ADD_S32(&rack_sysctl_ctx,
1425 SYSCTL_CHILDREN(rack_misc),
1426 OID_AUTO, "no_prr", CTLFLAG_RW,
1427 &rack_disable_prr, 0,
1428 "Should RACK not use prr and only pace (must have pacing on)");
1429 SYSCTL_ADD_S32(&rack_sysctl_ctx,
1430 SYSCTL_CHILDREN(rack_misc),
1431 OID_AUTO, "bb_verbose", CTLFLAG_RW,
1432 &rack_verbose_logging, 0,
1433 "Should RACK black box logging be verbose");
1434 SYSCTL_ADD_S32(&rack_sysctl_ctx,
1435 SYSCTL_CHILDREN(rack_misc),
1436 OID_AUTO, "data_after_close", CTLFLAG_RW,
1437 &rack_ignore_data_after_close, 1,
1438 "Do we hold off sending a RST until all pending data is ack'd");
1439 SYSCTL_ADD_S32(&rack_sysctl_ctx,
1440 SYSCTL_CHILDREN(rack_misc),
1441 OID_AUTO, "no_sack_needed", CTLFLAG_RW,
1442 &rack_sack_not_required, 1,
1443 "Do we allow rack to run on connections not supporting SACK");
1444 SYSCTL_ADD_S32(&rack_sysctl_ctx,
1445 SYSCTL_CHILDREN(rack_misc),
1446 OID_AUTO, "prr_sendalot", CTLFLAG_RW,
1447 &rack_send_a_lot_in_prr, 1,
1448 "Send a lot in prr");
1449 SYSCTL_ADD_S32(&rack_sysctl_ctx,
1450 SYSCTL_CHILDREN(rack_misc),
1451 OID_AUTO, "autoscale", CTLFLAG_RW,
1452 &rack_autosndbuf_inc, 20,
1453 "What percentage should rack scale up its snd buffer by?");
1454 /* Sack Attacker detection stuff */
1455 SYSCTL_ADD_U32(&rack_sysctl_ctx,
1456 SYSCTL_CHILDREN(rack_attack),
1457 OID_AUTO, "detect_highsackratio", CTLFLAG_RW,
1458 &rack_highest_sack_thresh_seen, 0,
1459 "Highest sack to ack ratio seen");
1460 SYSCTL_ADD_U32(&rack_sysctl_ctx,
1461 SYSCTL_CHILDREN(rack_attack),
1462 OID_AUTO, "detect_highmoveratio", CTLFLAG_RW,
1463 &rack_highest_move_thresh_seen, 0,
1464 "Highest move to non-move ratio seen");
1465 rack_ack_total = counter_u64_alloc(M_WAITOK);
1466 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1467 SYSCTL_CHILDREN(rack_attack),
1468 OID_AUTO, "acktotal", CTLFLAG_RD,
1469 &rack_ack_total,
1470 "Total number of Ack's");
1471 rack_express_sack = counter_u64_alloc(M_WAITOK);
1472 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1473 SYSCTL_CHILDREN(rack_attack),
1474 OID_AUTO, "exp_sacktotal", CTLFLAG_RD,
1475 &rack_express_sack,
1476 "Total expresss number of Sack's");
1477 rack_sack_total = counter_u64_alloc(M_WAITOK);
1478 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1479 SYSCTL_CHILDREN(rack_attack),
1480 OID_AUTO, "sacktotal", CTLFLAG_RD,
1481 &rack_sack_total,
1482 "Total number of SACKs");
1483 rack_move_none = counter_u64_alloc(M_WAITOK);
1484 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1485 SYSCTL_CHILDREN(rack_attack),
1486 OID_AUTO, "move_none", CTLFLAG_RD,
1487 &rack_move_none,
1488 "Total number of SACK index reuse of positions under threshold");
1489 rack_move_some = counter_u64_alloc(M_WAITOK);
1490 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1491 SYSCTL_CHILDREN(rack_attack),
1492 OID_AUTO, "move_some", CTLFLAG_RD,
1493 &rack_move_some,
1494 "Total number of SACK index reuse of positions over threshold");
1495 rack_sack_attacks_detected = counter_u64_alloc(M_WAITOK);
1496 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1497 SYSCTL_CHILDREN(rack_attack),
1498 OID_AUTO, "attacks", CTLFLAG_RD,
1499 &rack_sack_attacks_detected,
1500 "Total number of SACK attackers that had sack disabled");
1501 rack_sack_attacks_reversed = counter_u64_alloc(M_WAITOK);
1502 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1503 SYSCTL_CHILDREN(rack_attack),
1504 OID_AUTO, "reversed", CTLFLAG_RD,
1505 &rack_sack_attacks_reversed,
1506 "Total number of SACK attackers that were later determined false positive");
1507 rack_sack_used_next_merge = counter_u64_alloc(M_WAITOK);
1508 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1509 SYSCTL_CHILDREN(rack_attack),
1510 OID_AUTO, "nextmerge", CTLFLAG_RD,
1511 &rack_sack_used_next_merge,
1512 "Total number of times we used the next merge");
1513 rack_sack_used_prev_merge = counter_u64_alloc(M_WAITOK);
1514 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1515 SYSCTL_CHILDREN(rack_attack),
1516 OID_AUTO, "prevmerge", CTLFLAG_RD,
1517 &rack_sack_used_prev_merge,
1518 "Total number of times we used the prev merge");
1519 /* Counters */
1520 rack_fto_send = counter_u64_alloc(M_WAITOK);
1521 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1522 SYSCTL_CHILDREN(rack_counters),
1523 OID_AUTO, "fto_send", CTLFLAG_RD,
1524 &rack_fto_send, "Total number of rack_fast_output sends");
1525 rack_fto_rsm_send = counter_u64_alloc(M_WAITOK);
1526 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1527 SYSCTL_CHILDREN(rack_counters),
1528 OID_AUTO, "fto_rsm_send", CTLFLAG_RD,
1529 &rack_fto_rsm_send, "Total number of rack_fast_rsm_output sends");
1530 rack_nfto_resend = counter_u64_alloc(M_WAITOK);
1531 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1532 SYSCTL_CHILDREN(rack_counters),
1533 OID_AUTO, "nfto_resend", CTLFLAG_RD,
1534 &rack_nfto_resend, "Total number of rack_output retransmissions");
1535 rack_non_fto_send = counter_u64_alloc(M_WAITOK);
1536 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1537 SYSCTL_CHILDREN(rack_counters),
1538 OID_AUTO, "nfto_send", CTLFLAG_RD,
1539 &rack_non_fto_send, "Total number of rack_output first sends");
1540 rack_extended_rfo = counter_u64_alloc(M_WAITOK);
1541 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1542 SYSCTL_CHILDREN(rack_counters),
1543 OID_AUTO, "rfo_extended", CTLFLAG_RD,
1544 &rack_extended_rfo, "Total number of times we extended rfo");
1545
1546 rack_hw_pace_init_fail = counter_u64_alloc(M_WAITOK);
1547 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1548 SYSCTL_CHILDREN(rack_counters),
1549 OID_AUTO, "hwpace_init_fail", CTLFLAG_RD,
1550 &rack_hw_pace_init_fail, "Total number of times we failed to initialize hw pacing");
1551 rack_hw_pace_lost = counter_u64_alloc(M_WAITOK);
1552
1553 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1554 SYSCTL_CHILDREN(rack_counters),
1555 OID_AUTO, "hwpace_lost", CTLFLAG_RD,
1556 &rack_hw_pace_lost, "Total number of times we failed to initialize hw pacing");
1557 rack_tlp_tot = counter_u64_alloc(M_WAITOK);
1558 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1559 SYSCTL_CHILDREN(rack_counters),
1560 OID_AUTO, "tlp_to_total", CTLFLAG_RD,
1561 &rack_tlp_tot,
1562 "Total number of tail loss probe expirations");
1563 rack_tlp_newdata = counter_u64_alloc(M_WAITOK);
1564 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1565 SYSCTL_CHILDREN(rack_counters),
1566 OID_AUTO, "tlp_new", CTLFLAG_RD,
1567 &rack_tlp_newdata,
1568 "Total number of tail loss probe sending new data");
1569 rack_tlp_retran = counter_u64_alloc(M_WAITOK);
1570 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1571 SYSCTL_CHILDREN(rack_counters),
1572 OID_AUTO, "tlp_retran", CTLFLAG_RD,
1573 &rack_tlp_retran,
1574 "Total number of tail loss probe sending retransmitted data");
1575 rack_tlp_retran_bytes = counter_u64_alloc(M_WAITOK);
1576 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1577 SYSCTL_CHILDREN(rack_counters),
1578 OID_AUTO, "tlp_retran_bytes", CTLFLAG_RD,
1579 &rack_tlp_retran_bytes,
1580 "Total bytes of tail loss probe sending retransmitted data");
1581 rack_to_tot = counter_u64_alloc(M_WAITOK);
1582 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1583 SYSCTL_CHILDREN(rack_counters),
1584 OID_AUTO, "rack_to_tot", CTLFLAG_RD,
1585 &rack_to_tot,
1586 "Total number of times the rack to expired");
1587 rack_saw_enobuf = counter_u64_alloc(M_WAITOK);
1588 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1589 SYSCTL_CHILDREN(rack_counters),
1590 OID_AUTO, "saw_enobufs", CTLFLAG_RD,
1591 &rack_saw_enobuf,
1592 "Total number of times a sends returned enobuf for non-hdwr paced connections");
1593 rack_saw_enobuf_hw = counter_u64_alloc(M_WAITOK);
1594 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1595 SYSCTL_CHILDREN(rack_counters),
1596 OID_AUTO, "saw_enobufs_hw", CTLFLAG_RD,
1597 &rack_saw_enobuf_hw,
1598 "Total number of times a send returned enobuf for hdwr paced connections");
1599 rack_saw_enetunreach = counter_u64_alloc(M_WAITOK);
1600 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1601 SYSCTL_CHILDREN(rack_counters),
1602 OID_AUTO, "saw_enetunreach", CTLFLAG_RD,
1603 &rack_saw_enetunreach,
1604 "Total number of times a send received a enetunreachable");
1605 rack_hot_alloc = counter_u64_alloc(M_WAITOK);
1606 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1607 SYSCTL_CHILDREN(rack_counters),
1608 OID_AUTO, "alloc_hot", CTLFLAG_RD,
1609 &rack_hot_alloc,
1610 "Total allocations from the top of our list");
1611 rack_to_alloc = counter_u64_alloc(M_WAITOK);
1612 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1613 SYSCTL_CHILDREN(rack_counters),
1614 OID_AUTO, "allocs", CTLFLAG_RD,
1615 &rack_to_alloc,
1616 "Total allocations of tracking structures");
1617 rack_to_alloc_hard = counter_u64_alloc(M_WAITOK);
1618 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1619 SYSCTL_CHILDREN(rack_counters),
1620 OID_AUTO, "allochard", CTLFLAG_RD,
1621 &rack_to_alloc_hard,
1622 "Total allocations done with sleeping the hard way");
1623 rack_to_alloc_emerg = counter_u64_alloc(M_WAITOK);
1624 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1625 SYSCTL_CHILDREN(rack_counters),
1626 OID_AUTO, "allocemerg", CTLFLAG_RD,
1627 &rack_to_alloc_emerg,
1628 "Total allocations done from emergency cache");
1629 rack_to_alloc_limited = counter_u64_alloc(M_WAITOK);
1630 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1631 SYSCTL_CHILDREN(rack_counters),
1632 OID_AUTO, "alloc_limited", CTLFLAG_RD,
1633 &rack_to_alloc_limited,
1634 "Total allocations dropped due to limit");
1635 rack_alloc_limited_conns = counter_u64_alloc(M_WAITOK);
1636 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1637 SYSCTL_CHILDREN(rack_counters),
1638 OID_AUTO, "alloc_limited_conns", CTLFLAG_RD,
1639 &rack_alloc_limited_conns,
1640 "Connections with allocations dropped due to limit");
1641 rack_split_limited = counter_u64_alloc(M_WAITOK);
1642 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1643 SYSCTL_CHILDREN(rack_counters),
1644 OID_AUTO, "split_limited", CTLFLAG_RD,
1645 &rack_split_limited,
1646 "Split allocations dropped due to limit");
1647 rack_persists_sends = counter_u64_alloc(M_WAITOK);
1648 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1649 SYSCTL_CHILDREN(rack_counters),
1650 OID_AUTO, "persist_sends", CTLFLAG_RD,
1651 &rack_persists_sends,
1652 "Number of times we sent a persist probe");
1653 rack_persists_acks = counter_u64_alloc(M_WAITOK);
1654 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1655 SYSCTL_CHILDREN(rack_counters),
1656 OID_AUTO, "persist_acks", CTLFLAG_RD,
1657 &rack_persists_acks,
1658 "Number of times a persist probe was acked");
1659 rack_persists_loss = counter_u64_alloc(M_WAITOK);
1660 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1661 SYSCTL_CHILDREN(rack_counters),
1662 OID_AUTO, "persist_loss", CTLFLAG_RD,
1663 &rack_persists_loss,
1664 "Number of times we detected a lost persist probe (no ack)");
1665 rack_persists_lost_ends = counter_u64_alloc(M_WAITOK);
1666 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1667 SYSCTL_CHILDREN(rack_counters),
1668 OID_AUTO, "persist_loss_ends", CTLFLAG_RD,
1669 &rack_persists_lost_ends,
1670 "Number of lost persist probe (no ack) that the run ended with a PERSIST abort");
1671 #ifdef INVARIANTS
1672 rack_adjust_map_bw = counter_u64_alloc(M_WAITOK);
1673 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1674 SYSCTL_CHILDREN(rack_counters),
1675 OID_AUTO, "map_adjust_req", CTLFLAG_RD,
1676 &rack_adjust_map_bw,
1677 "Number of times we hit the case where the sb went up and down on a sendmap entry");
1678 #endif
1679 rack_multi_single_eq = counter_u64_alloc(M_WAITOK);
1680 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1681 SYSCTL_CHILDREN(rack_counters),
1682 OID_AUTO, "cmp_ack_equiv", CTLFLAG_RD,
1683 &rack_multi_single_eq,
1684 "Number of compressed acks total represented");
1685 rack_proc_non_comp_ack = counter_u64_alloc(M_WAITOK);
1686 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1687 SYSCTL_CHILDREN(rack_counters),
1688 OID_AUTO, "cmp_ack_not", CTLFLAG_RD,
1689 &rack_proc_non_comp_ack,
1690 "Number of non compresseds acks that we processed");
1691
1692
1693 rack_sack_proc_all = counter_u64_alloc(M_WAITOK);
1694 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1695 SYSCTL_CHILDREN(rack_counters),
1696 OID_AUTO, "sack_long", CTLFLAG_RD,
1697 &rack_sack_proc_all,
1698 "Total times we had to walk whole list for sack processing");
1699 rack_sack_proc_restart = counter_u64_alloc(M_WAITOK);
1700 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1701 SYSCTL_CHILDREN(rack_counters),
1702 OID_AUTO, "sack_restart", CTLFLAG_RD,
1703 &rack_sack_proc_restart,
1704 "Total times we had to walk whole list due to a restart");
1705 rack_sack_proc_short = counter_u64_alloc(M_WAITOK);
1706 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1707 SYSCTL_CHILDREN(rack_counters),
1708 OID_AUTO, "sack_short", CTLFLAG_RD,
1709 &rack_sack_proc_short,
1710 "Total times we took shortcut for sack processing");
1711 rack_sack_skipped_acked = counter_u64_alloc(M_WAITOK);
1712 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1713 SYSCTL_CHILDREN(rack_attack),
1714 OID_AUTO, "skipacked", CTLFLAG_RD,
1715 &rack_sack_skipped_acked,
1716 "Total number of times we skipped previously sacked");
1717 rack_sack_splits = counter_u64_alloc(M_WAITOK);
1718 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1719 SYSCTL_CHILDREN(rack_attack),
1720 OID_AUTO, "ofsplit", CTLFLAG_RD,
1721 &rack_sack_splits,
1722 "Total number of times we did the old fashion tree split");
1723 rack_input_idle_reduces = counter_u64_alloc(M_WAITOK);
1724 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1725 SYSCTL_CHILDREN(rack_counters),
1726 OID_AUTO, "idle_reduce_oninput", CTLFLAG_RD,
1727 &rack_input_idle_reduces,
1728 "Total number of idle reductions on input");
1729 rack_collapsed_win_seen = counter_u64_alloc(M_WAITOK);
1730 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1731 SYSCTL_CHILDREN(rack_counters),
1732 OID_AUTO, "collapsed_win_seen", CTLFLAG_RD,
1733 &rack_collapsed_win_seen,
1734 "Total number of collapsed window events seen (where our window shrinks)");
1735
1736 rack_collapsed_win = counter_u64_alloc(M_WAITOK);
1737 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1738 SYSCTL_CHILDREN(rack_counters),
1739 OID_AUTO, "collapsed_win", CTLFLAG_RD,
1740 &rack_collapsed_win,
1741 "Total number of collapsed window events where we mark packets");
1742 rack_collapsed_win_rxt = counter_u64_alloc(M_WAITOK);
1743 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1744 SYSCTL_CHILDREN(rack_counters),
1745 OID_AUTO, "collapsed_win_rxt", CTLFLAG_RD,
1746 &rack_collapsed_win_rxt,
1747 "Total number of packets that were retransmitted");
1748 rack_collapsed_win_rxt_bytes = counter_u64_alloc(M_WAITOK);
1749 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1750 SYSCTL_CHILDREN(rack_counters),
1751 OID_AUTO, "collapsed_win_bytes", CTLFLAG_RD,
1752 &rack_collapsed_win_rxt_bytes,
1753 "Total number of bytes that were retransmitted");
1754 rack_try_scwnd = counter_u64_alloc(M_WAITOK);
1755 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1756 SYSCTL_CHILDREN(rack_counters),
1757 OID_AUTO, "tried_scwnd", CTLFLAG_RD,
1758 &rack_try_scwnd,
1759 "Total number of scwnd attempts");
1760 COUNTER_ARRAY_ALLOC(rack_out_size, TCP_MSS_ACCT_SIZE, M_WAITOK);
1761 SYSCTL_ADD_COUNTER_U64_ARRAY(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_sysctl_root),
1762 OID_AUTO, "outsize", CTLFLAG_RD,
1763 rack_out_size, TCP_MSS_ACCT_SIZE, "MSS send sizes");
1764 COUNTER_ARRAY_ALLOC(rack_opts_arry, RACK_OPTS_SIZE, M_WAITOK);
1765 SYSCTL_ADD_COUNTER_U64_ARRAY(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_sysctl_root),
1766 OID_AUTO, "opts", CTLFLAG_RD,
1767 rack_opts_arry, RACK_OPTS_SIZE, "RACK Option Stats");
1768 SYSCTL_ADD_PROC(&rack_sysctl_ctx,
1769 SYSCTL_CHILDREN(rack_sysctl_root),
1770 OID_AUTO, "clear", CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_MPSAFE,
1771 &rack_clear_counter, 0, sysctl_rack_clear, "IU", "Clear counters");
1772 }
1773
1774 static __inline int
1775 rb_map_cmp(struct rack_sendmap *b, struct rack_sendmap *a)
1776 {
1777 if (SEQ_GEQ(b->r_start, a->r_start) &&
1778 SEQ_LT(b->r_start, a->r_end)) {
1779 /*
1780 * The entry b is within the
1781 * block a. i.e.:
1782 * a -- |-------------|
1783 * b -- |----|
1784 * <or>
1785 * b -- |------|
1786 * <or>
1787 * b -- |-----------|
1788 */
1789 return (0);
1790 } else if (SEQ_GEQ(b->r_start, a->r_end)) {
1791 /*
1792 * b falls as either the next
1793 * sequence block after a so a
1794 * is said to be smaller than b.
1795 * i.e:
1796 * a -- |------|
1797 * b -- |--------|
1798 * or
1799 * b -- |-----|
1800 */
1801 return (1);
1802 }
1803 /*
1804 * Whats left is where a is
1805 * larger than b. i.e:
1806 * a -- |-------|
1807 * b -- |---|
1808 * or even possibly
1809 * b -- |--------------|
1810 */
1811 return (-1);
1812 }
1813
1814 RB_PROTOTYPE(rack_rb_tree_head, rack_sendmap, r_next, rb_map_cmp);
1815 RB_GENERATE(rack_rb_tree_head, rack_sendmap, r_next, rb_map_cmp);
1816
1817 static uint32_t
1818 rc_init_window(struct tcp_rack *rack)
1819 {
1820 uint32_t win;
1821
1822 if (rack->rc_init_win == 0) {
1823 /*
1824 * Nothing set by the user, use the system stack
1825 * default.
1826 */
1827 return (tcp_compute_initwnd(tcp_maxseg(rack->rc_tp)));
1828 }
1829 win = ctf_fixed_maxseg(rack->rc_tp) * rack->rc_init_win;
1830 return (win);
1831 }
1832
1833 static uint64_t
1834 rack_get_fixed_pacing_bw(struct tcp_rack *rack)
1835 {
1836 if (IN_FASTRECOVERY(rack->rc_tp->t_flags))
1837 return (rack->r_ctl.rc_fixed_pacing_rate_rec);
1838 else if (rack->r_ctl.cwnd_to_use < rack->rc_tp->snd_ssthresh)
1839 return (rack->r_ctl.rc_fixed_pacing_rate_ss);
1840 else
1841 return (rack->r_ctl.rc_fixed_pacing_rate_ca);
1842 }
1843
1844 static uint64_t
1845 rack_get_bw(struct tcp_rack *rack)
1846 {
1847 if (rack->use_fixed_rate) {
1848 /* Return the fixed pacing rate */
1849 return (rack_get_fixed_pacing_bw(rack));
1850 }
1851 if (rack->r_ctl.gp_bw == 0) {
1852 /*
1853 * We have yet no b/w measurement,
1854 * if we have a user set initial bw
1855 * return it. If we don't have that and
1856 * we have an srtt, use the tcp IW (10) to
1857 * calculate a fictional b/w over the SRTT
1858 * which is more or less a guess. Note
1859 * we don't use our IW from rack on purpose
1860 * so if we have like IW=30, we are not
1861 * calculating a "huge" b/w.
1862 */
1863 uint64_t bw, srtt;
1864 if (rack->r_ctl.init_rate)
1865 return (rack->r_ctl.init_rate);
1866
1867 /* Has the user set a max peak rate? */
1868 #ifdef NETFLIX_PEAKRATE
1869 if (rack->rc_tp->t_maxpeakrate)
1870 return (rack->rc_tp->t_maxpeakrate);
1871 #endif
1872 /* Ok lets come up with the IW guess, if we have a srtt */
1873 if (rack->rc_tp->t_srtt == 0) {
1874 /*
1875 * Go with old pacing method
1876 * i.e. burst mitigation only.
1877 */
1878 return (0);
1879 }
1880 /* Ok lets get the initial TCP win (not racks) */
1881 bw = tcp_compute_initwnd(tcp_maxseg(rack->rc_tp));
1882 srtt = (uint64_t)rack->rc_tp->t_srtt;
1883 bw *= (uint64_t)USECS_IN_SECOND;
1884 bw /= srtt;
1885 if (rack->r_ctl.bw_rate_cap && (bw > rack->r_ctl.bw_rate_cap))
1886 bw = rack->r_ctl.bw_rate_cap;
1887 return (bw);
1888 } else {
1889 uint64_t bw;
1890
1891 if (rack->r_ctl.num_measurements >= RACK_REQ_AVG) {
1892 /* Averaging is done, we can return the value */
1893 bw = rack->r_ctl.gp_bw;
1894 } else {
1895 /* Still doing initial average must calculate */
1896 bw = rack->r_ctl.gp_bw / rack->r_ctl.num_measurements;
1897 }
1898 #ifdef NETFLIX_PEAKRATE
1899 if ((rack->rc_tp->t_maxpeakrate) &&
1900 (bw > rack->rc_tp->t_maxpeakrate)) {
1901 /* The user has set a peak rate to pace at
1902 * don't allow us to pace faster than that.
1903 */
1904 return (rack->rc_tp->t_maxpeakrate);
1905 }
1906 #endif
1907 if (rack->r_ctl.bw_rate_cap && (bw > rack->r_ctl.bw_rate_cap))
1908 bw = rack->r_ctl.bw_rate_cap;
1909 return (bw);
1910 }
1911 }
1912
1913 static uint16_t
1914 rack_get_output_gain(struct tcp_rack *rack, struct rack_sendmap *rsm)
1915 {
1916 if (rack->use_fixed_rate) {
1917 return (100);
1918 } else if (rack->in_probe_rtt && (rsm == NULL))
1919 return (rack->r_ctl.rack_per_of_gp_probertt);
1920 else if ((IN_FASTRECOVERY(rack->rc_tp->t_flags) &&
1921 rack->r_ctl.rack_per_of_gp_rec)) {
1922 if (rsm) {
1923 /* a retransmission always use the recovery rate */
1924 return (rack->r_ctl.rack_per_of_gp_rec);
1925 } else if (rack->rack_rec_nonrxt_use_cr) {
1926 /* Directed to use the configured rate */
1927 goto configured_rate;
1928 } else if (rack->rack_no_prr &&
1929 (rack->r_ctl.rack_per_of_gp_rec > 100)) {
1930 /* No PRR, lets just use the b/w estimate only */
1931 return (100);
1932 } else {
1933 /*
1934 * Here we may have a non-retransmit but we
1935 * have no overrides, so just use the recovery
1936 * rate (prr is in effect).
1937 */
1938 return (rack->r_ctl.rack_per_of_gp_rec);
1939 }
1940 }
1941 configured_rate:
1942 /* For the configured rate we look at our cwnd vs the ssthresh */
1943 if (rack->r_ctl.cwnd_to_use < rack->rc_tp->snd_ssthresh)
1944 return (rack->r_ctl.rack_per_of_gp_ss);
1945 else
1946 return (rack->r_ctl.rack_per_of_gp_ca);
1947 }
1948
1949 static void
1950 rack_log_dsack_event(struct tcp_rack *rack, uint8_t mod, uint32_t flex4, uint32_t flex5, uint32_t flex6)
1951 {
1952 /*
1953 * Types of logs (mod value)
1954 * 1 = dsack_persists reduced by 1 via T-O or fast recovery exit.
1955 * 2 = a dsack round begins, persist is reset to 16.
1956 * 3 = a dsack round ends
1957 * 4 = Dsack option increases rack rtt flex5 is the srtt input, flex6 is thresh
1958 * 5 = Socket option set changing the control flags rc_rack_tmr_std_based, rc_rack_use_dsack
1959 * 6 = Final rack rtt, flex4 is srtt and flex6 is final limited thresh.
1960 */
1961 if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
1962 union tcp_log_stackspecific log;
1963 struct timeval tv;
1964
1965 memset(&log, 0, sizeof(log));
1966 log.u_bbr.flex1 = rack->rc_rack_tmr_std_based;
1967 log.u_bbr.flex1 <<= 1;
1968 log.u_bbr.flex1 |= rack->rc_rack_use_dsack;
1969 log.u_bbr.flex1 <<= 1;
1970 log.u_bbr.flex1 |= rack->rc_dsack_round_seen;
1971 log.u_bbr.flex2 = rack->r_ctl.dsack_round_end;
1972 log.u_bbr.flex3 = rack->r_ctl.num_dsack;
1973 log.u_bbr.flex4 = flex4;
1974 log.u_bbr.flex5 = flex5;
1975 log.u_bbr.flex6 = flex6;
1976 log.u_bbr.flex7 = rack->r_ctl.dsack_persist;
1977 log.u_bbr.flex8 = mod;
1978 log.u_bbr.timeStamp = tcp_get_usecs(&tv);
1979 TCP_LOG_EVENTP(rack->rc_tp, NULL,
1980 &rack->rc_inp->inp_socket->so_rcv,
1981 &rack->rc_inp->inp_socket->so_snd,
1982 RACK_DSACK_HANDLING, 0,
1983 0, &log, false, &tv);
1984 }
1985 }
1986
1987 static void
1988 rack_log_hdwr_pacing(struct tcp_rack *rack,
1989 uint64_t rate, uint64_t hw_rate, int line,
1990 int error, uint16_t mod)
1991 {
1992 if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
1993 union tcp_log_stackspecific log;
1994 struct timeval tv;
1995 const struct ifnet *ifp;
1996
1997 memset(&log, 0, sizeof(log));
1998 log.u_bbr.flex1 = ((hw_rate >> 32) & 0x00000000ffffffff);
1999 log.u_bbr.flex2 = (hw_rate & 0x00000000ffffffff);
2000 if (rack->r_ctl.crte) {
2001 ifp = rack->r_ctl.crte->ptbl->rs_ifp;
2002 } else if (rack->rc_inp->inp_route.ro_nh &&
2003 rack->rc_inp->inp_route.ro_nh->nh_ifp) {
2004 ifp = rack->rc_inp->inp_route.ro_nh->nh_ifp;
2005 } else
2006 ifp = NULL;
2007 if (ifp) {
2008 log.u_bbr.flex3 = (((uint64_t)ifp >> 32) & 0x00000000ffffffff);
2009 log.u_bbr.flex4 = ((uint64_t)ifp & 0x00000000ffffffff);
2010 }
2011 log.u_bbr.timeStamp = tcp_get_usecs(&tv);
2012 log.u_bbr.bw_inuse = rate;
2013 log.u_bbr.flex5 = line;
2014 log.u_bbr.flex6 = error;
2015 log.u_bbr.flex7 = mod;
2016 log.u_bbr.applimited = rack->r_ctl.rc_pace_max_segs;
2017 log.u_bbr.flex8 = rack->use_fixed_rate;
2018 log.u_bbr.flex8 <<= 1;
2019 log.u_bbr.flex8 |= rack->rack_hdrw_pacing;
2020 log.u_bbr.pkts_out = rack->rc_tp->t_maxseg;
2021 log.u_bbr.delRate = rack->r_ctl.crte_prev_rate;
2022 if (rack->r_ctl.crte)
2023 log.u_bbr.cur_del_rate = rack->r_ctl.crte->rate;
2024 else
2025 log.u_bbr.cur_del_rate = 0;
2026 log.u_bbr.rttProp = rack->r_ctl.last_hw_bw_req;
2027 TCP_LOG_EVENTP(rack->rc_tp, NULL,
2028 &rack->rc_inp->inp_socket->so_rcv,
2029 &rack->rc_inp->inp_socket->so_snd,
2030 BBR_LOG_HDWR_PACE, 0,
2031 0, &log, false, &tv);
2032 }
2033 }
2034
2035 static uint64_t
2036 rack_get_output_bw(struct tcp_rack *rack, uint64_t bw, struct rack_sendmap *rsm, int *capped)
2037 {
2038 /*
2039 * We allow rack_per_of_gp_xx to dictate our bw rate we want.
2040 */
2041 uint64_t bw_est, high_rate;
2042 uint64_t gain;
2043
2044 gain = (uint64_t)rack_get_output_gain(rack, rsm);
2045 bw_est = bw * gain;
2046 bw_est /= (uint64_t)100;
2047 /* Never fall below the minimum (def 64kbps) */
2048 if (bw_est < RACK_MIN_BW)
2049 bw_est = RACK_MIN_BW;
2050 if (rack->r_rack_hw_rate_caps) {
2051 /* Rate caps are in place */
2052 if (rack->r_ctl.crte != NULL) {
2053 /* We have a hdwr rate already */
2054 high_rate = tcp_hw_highest_rate(rack->r_ctl.crte);
2055 if (bw_est >= high_rate) {
2056 /* We are capping bw at the highest rate table entry */
2057 rack_log_hdwr_pacing(rack,
2058 bw_est, high_rate, __LINE__,
2059 0, 3);
2060 bw_est = high_rate;
2061 if (capped)
2062 *capped = 1;
2063 }
2064 } else if ((rack->rack_hdrw_pacing == 0) &&
2065 (rack->rack_hdw_pace_ena) &&
2066 (rack->rack_attempt_hdwr_pace == 0) &&
2067 (rack->rc_inp->inp_route.ro_nh != NULL) &&
2068 (rack->rc_inp->inp_route.ro_nh->nh_ifp != NULL)) {
2069 /*
2070 * Special case, we have not yet attempted hardware
2071 * pacing, and yet we may, when we do, find out if we are
2072 * above the highest rate. We need to know the maxbw for the interface
2073 * in question (if it supports ratelimiting). We get back
2074 * a 0, if the interface is not found in the RL lists.
2075 */
2076 high_rate = tcp_hw_highest_rate_ifp(rack->rc_inp->inp_route.ro_nh->nh_ifp, rack->rc_inp);
2077 if (high_rate) {
2078 /* Yep, we have a rate is it above this rate? */
2079 if (bw_est > high_rate) {
2080 bw_est = high_rate;
2081 if (capped)
2082 *capped = 1;
2083 }
2084 }
2085 }
2086 }
2087 return (bw_est);
2088 }
2089
2090 static void
2091 rack_log_retran_reason(struct tcp_rack *rack, struct rack_sendmap *rsm, uint32_t tsused, uint32_t thresh, int mod)
2092 {
2093 if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
2094 union tcp_log_stackspecific log;
2095 struct timeval tv;
2096
2097 if ((mod != 1) && (rack_verbose_logging == 0)) {
2098 /*
2099 * We get 3 values currently for mod
2100 * 1 - We are retransmitting and this tells the reason.
2101 * 2 - We are clearing a dup-ack count.
2102 * 3 - We are incrementing a dup-ack count.
2103 *
2104 * The clear/increment are only logged
2105 * if you have BBverbose on.
2106 */
2107 return;
2108 }
2109 memset(&log.u_bbr, 0, sizeof(log.u_bbr));
2110 log.u_bbr.flex1 = tsused;
2111 log.u_bbr.flex2 = thresh;
2112 log.u_bbr.flex3 = rsm->r_flags;
2113 log.u_bbr.flex4 = rsm->r_dupack;
2114 log.u_bbr.flex5 = rsm->r_start;
2115 log.u_bbr.flex6 = rsm->r_end;
2116 log.u_bbr.flex8 = mod;
2117 log.u_bbr.inhpts = tcp_in_hpts(rack->rc_inp);
2118 log.u_bbr.timeStamp = tcp_get_usecs(&tv);
2119 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
2120 log.u_bbr.pkts_out = rack->r_ctl.rc_out_at_rto;
2121 log.u_bbr.delivered = rack->r_ctl.rc_snd_max_at_rto;
2122 log.u_bbr.pacing_gain = rack->r_must_retran;
2123 TCP_LOG_EVENTP(rack->rc_tp, NULL,
2124 &rack->rc_inp->inp_socket->so_rcv,
2125 &rack->rc_inp->inp_socket->so_snd,
2126 BBR_LOG_SETTINGS_CHG, 0,
2127 0, &log, false, &tv);
2128 }
2129 }
2130
2131 static void
2132 rack_log_to_start(struct tcp_rack *rack, uint32_t cts, uint32_t to, int32_t slot, uint8_t which)
2133 {
2134 if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
2135 union tcp_log_stackspecific log;
2136 struct timeval tv;
2137
2138 memset(&log.u_bbr, 0, sizeof(log.u_bbr));
2139 log.u_bbr.flex1 = rack->rc_tp->t_srtt;
2140 log.u_bbr.flex2 = to;
2141 log.u_bbr.flex3 = rack->r_ctl.rc_hpts_flags;
2142 log.u_bbr.flex4 = slot;
2143 log.u_bbr.flex5 = rack->rc_inp->inp_hptsslot;
2144 log.u_bbr.flex6 = rack->rc_tp->t_rxtcur;
2145 log.u_bbr.flex7 = rack->rc_in_persist;
2146 log.u_bbr.flex8 = which;
2147 if (rack->rack_no_prr)
2148 log.u_bbr.pkts_out = 0;
2149 else
2150 log.u_bbr.pkts_out = rack->r_ctl.rc_prr_sndcnt;
2151 log.u_bbr.inhpts = tcp_in_hpts(rack->rc_inp);
2152 log.u_bbr.timeStamp = tcp_get_usecs(&tv);
2153 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
2154 log.u_bbr.pkts_out = rack->r_ctl.rc_out_at_rto;
2155 log.u_bbr.delivered = rack->r_ctl.rc_snd_max_at_rto;
2156 log.u_bbr.pacing_gain = rack->r_must_retran;
2157 log.u_bbr.cwnd_gain = rack->rc_has_collapsed;
2158 log.u_bbr.lt_epoch = rack->rc_tp->t_rxtshift;
2159 log.u_bbr.lost = rack_rto_min;
2160 TCP_LOG_EVENTP(rack->rc_tp, NULL,
2161 &rack->rc_inp->inp_socket->so_rcv,
2162 &rack->rc_inp->inp_socket->so_snd,
2163 BBR_LOG_TIMERSTAR, 0,
2164 0, &log, false, &tv);
2165 }
2166 }
2167
2168 static void
2169 rack_log_to_event(struct tcp_rack *rack, int32_t to_num, struct rack_sendmap *rsm)
2170 {
2171 if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
2172 union tcp_log_stackspecific log;
2173 struct timeval tv;
2174
2175 memset(&log.u_bbr, 0, sizeof(log.u_bbr));
2176 log.u_bbr.inhpts = tcp_in_hpts(rack->rc_inp);
2177 log.u_bbr.flex8 = to_num;
2178 log.u_bbr.flex1 = rack->r_ctl.rc_rack_min_rtt;
2179 log.u_bbr.flex2 = rack->rc_rack_rtt;
2180 if (rsm == NULL)
2181 log.u_bbr.flex3 = 0;
2182 else
2183 log.u_bbr.flex3 = rsm->r_end - rsm->r_start;
2184 if (rack->rack_no_prr)
2185 log.u_bbr.flex5 = 0;
2186 else
2187 log.u_bbr.flex5 = rack->r_ctl.rc_prr_sndcnt;
2188 log.u_bbr.timeStamp = tcp_get_usecs(&tv);
2189 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
2190 log.u_bbr.pkts_out = rack->r_ctl.rc_out_at_rto;
2191 log.u_bbr.delivered = rack->r_ctl.rc_snd_max_at_rto;
2192 log.u_bbr.pacing_gain = rack->r_must_retran;
2193 TCP_LOG_EVENTP(rack->rc_tp, NULL,
2194 &rack->rc_inp->inp_socket->so_rcv,
2195 &rack->rc_inp->inp_socket->so_snd,
2196 BBR_LOG_RTO, 0,
2197 0, &log, false, &tv);
2198 }
2199 }
2200
2201 static void
2202 rack_log_map_chg(struct tcpcb *tp, struct tcp_rack *rack,
2203 struct rack_sendmap *prev,
2204 struct rack_sendmap *rsm,
2205 struct rack_sendmap *next,
2206 int flag, uint32_t th_ack, int line)
2207 {
2208 if (rack_verbose_logging && (tp->t_logstate != TCP_LOG_STATE_OFF)) {
2209 union tcp_log_stackspecific log;
2210 struct timeval tv;
2211
2212 memset(&log.u_bbr, 0, sizeof(log.u_bbr));
2213 log.u_bbr.flex8 = flag;
2214 log.u_bbr.inhpts = tcp_in_hpts(rack->rc_inp);
2215 log.u_bbr.cur_del_rate = (uint64_t)prev;
2216 log.u_bbr.delRate = (uint64_t)rsm;
2217 log.u_bbr.rttProp = (uint64_t)next;
2218 log.u_bbr.flex7 = 0;
2219 if (prev) {
2220 log.u_bbr.flex1 = prev->r_start;
2221 log.u_bbr.flex2 = prev->r_end;
2222 log.u_bbr.flex7 |= 0x4;
2223 }
2224 if (rsm) {
2225 log.u_bbr.flex3 = rsm->r_start;
2226 log.u_bbr.flex4 = rsm->r_end;
2227 log.u_bbr.flex7 |= 0x2;
2228 }
2229 if (next) {
2230 log.u_bbr.flex5 = next->r_start;
2231 log.u_bbr.flex6 = next->r_end;
2232 log.u_bbr.flex7 |= 0x1;
2233 }
2234 log.u_bbr.applimited = line;
2235 log.u_bbr.pkts_out = th_ack;
2236 log.u_bbr.timeStamp = tcp_get_usecs(&tv);
2237 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
2238 if (rack->rack_no_prr)
2239 log.u_bbr.lost = 0;
2240 else
2241 log.u_bbr.lost = rack->r_ctl.rc_prr_sndcnt;
2242 TCP_LOG_EVENTP(rack->rc_tp, NULL,
2243 &rack->rc_inp->inp_socket->so_rcv,
2244 &rack->rc_inp->inp_socket->so_snd,
2245 TCP_LOG_MAPCHG, 0,
2246 0, &log, false, &tv);
2247 }
2248 }
2249
2250 static void
2251 rack_log_rtt_upd(struct tcpcb *tp, struct tcp_rack *rack, uint32_t t, uint32_t len,
2252 struct rack_sendmap *rsm, int conf)
2253 {
2254 if (tp->t_logstate != TCP_LOG_STATE_OFF) {
2255 union tcp_log_stackspecific log;
2256 struct timeval tv;
2257 memset(&log.u_bbr, 0, sizeof(log.u_bbr));
2258 log.u_bbr.inhpts = tcp_in_hpts(rack->rc_inp);
2259 log.u_bbr.flex1 = t;
2260 log.u_bbr.flex2 = len;
2261 log.u_bbr.flex3 = rack->r_ctl.rc_rack_min_rtt;
2262 log.u_bbr.flex4 = rack->r_ctl.rack_rs.rs_rtt_lowest;
2263 log.u_bbr.flex5 = rack->r_ctl.rack_rs.rs_rtt_highest;
2264 log.u_bbr.flex6 = rack->r_ctl.rack_rs.rs_us_rtrcnt;
2265 log.u_bbr.flex7 = conf;
2266 log.u_bbr.rttProp = (uint64_t)rack->r_ctl.rack_rs.rs_rtt_tot;
2267 log.u_bbr.flex8 = rack->r_ctl.rc_rate_sample_method;
2268 log.u_bbr.timeStamp = tcp_get_usecs(&tv);
2269 log.u_bbr.delivered = rack->r_ctl.rack_rs.rs_us_rtrcnt;
2270 log.u_bbr.pkts_out = rack->r_ctl.rack_rs.rs_flags;
2271 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
2272 if (rsm) {
2273 log.u_bbr.pkt_epoch = rsm->r_start;
2274 log.u_bbr.lost = rsm->r_end;
2275 log.u_bbr.cwnd_gain = rsm->r_rtr_cnt;
2276 /* We loose any upper of the 24 bits */
2277 log.u_bbr.pacing_gain = (uint16_t)rsm->r_flags;
2278 } else {
2279 /* Its a SYN */
2280 log.u_bbr.pkt_epoch = rack->rc_tp->iss;
2281 log.u_bbr.lost = 0;
2282 log.u_bbr.cwnd_gain = 0;
2283 log.u_bbr.pacing_gain = 0;
2284 }
2285 /* Write out general bits of interest rrs here */
2286 log.u_bbr.use_lt_bw = rack->rc_highly_buffered;
2287 log.u_bbr.use_lt_bw <<= 1;
2288 log.u_bbr.use_lt_bw |= rack->forced_ack;
2289 log.u_bbr.use_lt_bw <<= 1;
2290 log.u_bbr.use_lt_bw |= rack->rc_gp_dyn_mul;
2291 log.u_bbr.use_lt_bw <<= 1;
2292 log.u_bbr.use_lt_bw |= rack->in_probe_rtt;
2293 log.u_bbr.use_lt_bw <<= 1;
2294 log.u_bbr.use_lt_bw |= rack->measure_saw_probe_rtt;
2295 log.u_bbr.use_lt_bw <<= 1;
2296 log.u_bbr.use_lt_bw |= rack->app_limited_needs_set;
2297 log.u_bbr.use_lt_bw <<= 1;
2298 log.u_bbr.use_lt_bw |= rack->rc_gp_filled;
2299 log.u_bbr.use_lt_bw <<= 1;
2300 log.u_bbr.use_lt_bw |= rack->rc_dragged_bottom;
2301 log.u_bbr.applimited = rack->r_ctl.rc_target_probertt_flight;
2302 log.u_bbr.epoch = rack->r_ctl.rc_time_probertt_starts;
2303 log.u_bbr.lt_epoch = rack->r_ctl.rc_time_probertt_entered;
2304 log.u_bbr.cur_del_rate = rack->r_ctl.rc_lower_rtt_us_cts;
2305 log.u_bbr.delRate = rack->r_ctl.rc_gp_srtt;
2306 log.u_bbr.bw_inuse = tcp_tv_to_usectick(&rack->r_ctl.act_rcv_time);
2307 log.u_bbr.bw_inuse <<= 32;
2308 if (rsm)
2309 log.u_bbr.bw_inuse |= ((uint32_t)rsm->r_tim_lastsent[(rsm->r_rtr_cnt-1)]);
2310 TCP_LOG_EVENTP(tp, NULL,
2311 &rack->rc_inp->inp_socket->so_rcv,
2312 &rack->rc_inp->inp_socket->so_snd,
2313 BBR_LOG_BBRRTT, 0,
2314 0, &log, false, &tv);
2315
2316
2317 }
2318 }
2319
2320 static void
2321 rack_log_rtt_sample(struct tcp_rack *rack, uint32_t rtt)
2322 {
2323 /*
2324 * Log the rtt sample we are
2325 * applying to the srtt algorithm in
2326 * useconds.
2327 */
2328 if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
2329 union tcp_log_stackspecific log;
2330 struct timeval tv;
2331
2332 /* Convert our ms to a microsecond */
2333 memset(&log, 0, sizeof(log));
2334 log.u_bbr.flex1 = rtt;
2335 log.u_bbr.flex2 = rack->r_ctl.ack_count;
2336 log.u_bbr.flex3 = rack->r_ctl.sack_count;
2337 log.u_bbr.flex4 = rack->r_ctl.sack_noextra_move;
2338 log.u_bbr.flex5 = rack->r_ctl.sack_moved_extra;
2339 log.u_bbr.flex6 = rack->rc_tp->t_rxtcur;
2340 log.u_bbr.flex7 = 1;
2341 log.u_bbr.flex8 = rack->sack_attack_disable;
2342 log.u_bbr.timeStamp = tcp_get_usecs(&tv);
2343 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
2344 log.u_bbr.pkts_out = rack->r_ctl.rc_out_at_rto;
2345 log.u_bbr.delivered = rack->r_ctl.rc_snd_max_at_rto;
2346 log.u_bbr.pacing_gain = rack->r_must_retran;
2347 /*
2348 * We capture in delRate the upper 32 bits as
2349 * the confidence level we had declared, and the
2350 * lower 32 bits as the actual RTT using the arrival
2351 * timestamp.
2352 */
2353 log.u_bbr.delRate = rack->r_ctl.rack_rs.confidence;
2354 log.u_bbr.delRate <<= 32;
2355 log.u_bbr.delRate |= rack->r_ctl.rack_rs.rs_us_rtt;
2356 /* Lets capture all the things that make up t_rtxcur */
2357 log.u_bbr.applimited = rack_rto_min;
2358 log.u_bbr.epoch = rack_rto_max;
2359 log.u_bbr.lt_epoch = rack->r_ctl.timer_slop;
2360 log.u_bbr.lost = rack_rto_min;
2361 log.u_bbr.pkt_epoch = TICKS_2_USEC(tcp_rexmit_slop);
2362 log.u_bbr.rttProp = RACK_REXMTVAL(rack->rc_tp);
2363 log.u_bbr.bw_inuse = rack->r_ctl.act_rcv_time.tv_sec;
2364 log.u_bbr.bw_inuse *= HPTS_USEC_IN_SEC;
2365 log.u_bbr.bw_inuse += rack->r_ctl.act_rcv_time.tv_usec;
2366 TCP_LOG_EVENTP(rack->rc_tp, NULL,
2367 &rack->rc_inp->inp_socket->so_rcv,
2368 &rack->rc_inp->inp_socket->so_snd,
2369 TCP_LOG_RTT, 0,
2370 0, &log, false, &tv);
2371 }
2372 }
2373
2374 static void
2375 rack_log_rtt_sample_calc(struct tcp_rack *rack, uint32_t rtt, uint32_t send_time, uint32_t ack_time, int where)
2376 {
2377 if (rack_verbose_logging && (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF)) {
2378 union tcp_log_stackspecific log;
2379 struct timeval tv;
2380
2381 /* Convert our ms to a microsecond */
2382 memset(&log, 0, sizeof(log));
2383 log.u_bbr.flex1 = rtt;
2384 log.u_bbr.flex2 = send_time;
2385 log.u_bbr.flex3 = ack_time;
2386 log.u_bbr.flex4 = where;
2387 log.u_bbr.flex7 = 2;
2388 log.u_bbr.timeStamp = tcp_get_usecs(&tv);
2389 TCP_LOG_EVENTP(rack->rc_tp, NULL,
2390 &rack->rc_inp->inp_socket->so_rcv,
2391 &rack->rc_inp->inp_socket->so_snd,
2392 TCP_LOG_RTT, 0,
2393 0, &log, false, &tv);
2394 }
2395 }
2396
2397
2398
2399 static inline void
2400 rack_log_progress_event(struct tcp_rack *rack, struct tcpcb *tp, uint32_t tick, int event, int line)
2401 {
2402 if (rack_verbose_logging && (tp->t_logstate != TCP_LOG_STATE_OFF)) {
2403 union tcp_log_stackspecific log;
2404 struct timeval tv;
2405
2406 memset(&log.u_bbr, 0, sizeof(log.u_bbr));
2407 log.u_bbr.inhpts = tcp_in_hpts(rack->rc_inp);
2408 log.u_bbr.flex1 = line;
2409 log.u_bbr.flex2 = tick;
2410 log.u_bbr.flex3 = tp->t_maxunacktime;
2411 log.u_bbr.flex4 = tp->t_acktime;
2412 log.u_bbr.flex8 = event;
2413 log.u_bbr.timeStamp = tcp_get_usecs(&tv);
2414 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
2415 log.u_bbr.pkts_out = rack->r_ctl.rc_out_at_rto;
2416 log.u_bbr.delivered = rack->r_ctl.rc_snd_max_at_rto;
2417 log.u_bbr.pacing_gain = rack->r_must_retran;
2418 TCP_LOG_EVENTP(tp, NULL,
2419 &rack->rc_inp->inp_socket->so_rcv,
2420 &rack->rc_inp->inp_socket->so_snd,
2421 BBR_LOG_PROGRESS, 0,
2422 0, &log, false, &tv);
2423 }
2424 }
2425
2426 static void
2427 rack_log_type_bbrsnd(struct tcp_rack *rack, uint32_t len, uint32_t slot, uint32_t cts, struct timeval *tv)
2428 {
2429 if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
2430 union tcp_log_stackspecific log;
2431
2432 memset(&log.u_bbr, 0, sizeof(log.u_bbr));
2433 log.u_bbr.inhpts = tcp_in_hpts(rack->rc_inp);
2434 log.u_bbr.flex1 = slot;
2435 if (rack->rack_no_prr)
2436 log.u_bbr.flex2 = 0;
2437 else
2438 log.u_bbr.flex2 = rack->r_ctl.rc_prr_sndcnt;
2439 log.u_bbr.flex7 = (0x0000ffff & rack->r_ctl.rc_hpts_flags);
2440 log.u_bbr.flex8 = rack->rc_in_persist;
2441 log.u_bbr.timeStamp = cts;
2442 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
2443 log.u_bbr.pkts_out = rack->r_ctl.rc_out_at_rto;
2444 log.u_bbr.delivered = rack->r_ctl.rc_snd_max_at_rto;
2445 log.u_bbr.pacing_gain = rack->r_must_retran;
2446 TCP_LOG_EVENTP(rack->rc_tp, NULL,
2447 &rack->rc_inp->inp_socket->so_rcv,
2448 &rack->rc_inp->inp_socket->so_snd,
2449 BBR_LOG_BBRSND, 0,
2450 0, &log, false, tv);
2451 }
2452 }
2453
2454 static void
2455 rack_log_doseg_done(struct tcp_rack *rack, uint32_t cts, int32_t nxt_pkt, int32_t did_out, int way_out, int nsegs)
2456 {
2457 if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
2458 union tcp_log_stackspecific log;
2459 struct timeval tv;
2460
2461 memset(&log, 0, sizeof(log));
2462 log.u_bbr.flex1 = did_out;
2463 log.u_bbr.flex2 = nxt_pkt;
2464 log.u_bbr.flex3 = way_out;
2465 log.u_bbr.flex4 = rack->r_ctl.rc_hpts_flags;
2466 if (rack->rack_no_prr)
2467 log.u_bbr.flex5 = 0;
2468 else
2469 log.u_bbr.flex5 = rack->r_ctl.rc_prr_sndcnt;
2470 log.u_bbr.flex6 = nsegs;
2471 log.u_bbr.applimited = rack->r_ctl.rc_pace_min_segs;
2472 log.u_bbr.flex7 = rack->rc_ack_can_sendout_data; /* Do we have ack-can-send set */
2473 log.u_bbr.flex7 <<= 1;
2474 log.u_bbr.flex7 |= rack->r_fast_output; /* is fast output primed */
2475 log.u_bbr.flex7 <<= 1;
2476 log.u_bbr.flex7 |= rack->r_wanted_output; /* Do we want output */
2477 log.u_bbr.flex8 = rack->rc_in_persist;
2478 log.u_bbr.inhpts = tcp_in_hpts(rack->rc_inp);
2479 log.u_bbr.timeStamp = tcp_get_usecs(&tv);
2480 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
2481 log.u_bbr.use_lt_bw = rack->r_ent_rec_ns;
2482 log.u_bbr.use_lt_bw <<= 1;
2483 log.u_bbr.use_lt_bw |= rack->r_might_revert;
2484 log.u_bbr.pkts_out = rack->r_ctl.rc_out_at_rto;
2485 log.u_bbr.delivered = rack->r_ctl.rc_snd_max_at_rto;
2486 log.u_bbr.pacing_gain = rack->r_must_retran;
2487 TCP_LOG_EVENTP(rack->rc_tp, NULL,
2488 &rack->rc_inp->inp_socket->so_rcv,
2489 &rack->rc_inp->inp_socket->so_snd,
2490 BBR_LOG_DOSEG_DONE, 0,
2491 0, &log, false, &tv);
2492 }
2493 }
2494
2495 static void
2496 rack_log_type_pacing_sizes(struct tcpcb *tp, struct tcp_rack *rack, uint32_t arg1, uint32_t arg2, uint32_t arg3, uint8_t frm)
2497 {
2498 if (tp->t_logstate != TCP_LOG_STATE_OFF) {
2499 union tcp_log_stackspecific log;
2500 struct timeval tv;
2501
2502 memset(&log, 0, sizeof(log));
2503 log.u_bbr.flex1 = rack->r_ctl.rc_pace_min_segs;
2504 log.u_bbr.flex3 = rack->r_ctl.rc_pace_max_segs;
2505 log.u_bbr.flex4 = arg1;
2506 log.u_bbr.flex5 = arg2;
2507 log.u_bbr.flex6 = arg3;
2508 log.u_bbr.flex8 = frm;
2509 log.u_bbr.timeStamp = tcp_get_usecs(&tv);
2510 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
2511 log.u_bbr.pkts_out = rack->r_ctl.rc_out_at_rto;
2512 log.u_bbr.applimited = rack->r_ctl.rc_sacked;
2513 log.u_bbr.delivered = rack->r_ctl.rc_snd_max_at_rto;
2514 log.u_bbr.pacing_gain = rack->r_must_retran;
2515 TCP_LOG_EVENTP(tp, NULL, &tptosocket(tp)->so_rcv,
2516 &tptosocket(tp)->so_snd,
2517 TCP_HDWR_PACE_SIZE, 0, 0, &log, false, &tv);
2518 }
2519 }
2520
2521 static void
2522 rack_log_type_just_return(struct tcp_rack *rack, uint32_t cts, uint32_t tlen, uint32_t slot,
2523 uint8_t hpts_calling, int reason, uint32_t cwnd_to_use)
2524 {
2525 if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
2526 union tcp_log_stackspecific log;
2527 struct timeval tv;
2528
2529 memset(&log.u_bbr, 0, sizeof(log.u_bbr));
2530 log.u_bbr.inhpts = tcp_in_hpts(rack->rc_inp);
2531 log.u_bbr.flex1 = slot;
2532 log.u_bbr.flex2 = rack->r_ctl.rc_hpts_flags;
2533 log.u_bbr.flex4 = reason;
2534 if (rack->rack_no_prr)
2535 log.u_bbr.flex5 = 0;
2536 else
2537 log.u_bbr.flex5 = rack->r_ctl.rc_prr_sndcnt;
2538 log.u_bbr.flex7 = hpts_calling;
2539 log.u_bbr.flex8 = rack->rc_in_persist;
2540 log.u_bbr.lt_epoch = cwnd_to_use;
2541 log.u_bbr.timeStamp = tcp_get_usecs(&tv);
2542 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
2543 log.u_bbr.pkts_out = rack->r_ctl.rc_out_at_rto;
2544 log.u_bbr.delivered = rack->r_ctl.rc_snd_max_at_rto;
2545 log.u_bbr.pacing_gain = rack->r_must_retran;
2546 log.u_bbr.cwnd_gain = rack->rc_has_collapsed;
2547 TCP_LOG_EVENTP(rack->rc_tp, NULL,
2548 &rack->rc_inp->inp_socket->so_rcv,
2549 &rack->rc_inp->inp_socket->so_snd,
2550 BBR_LOG_JUSTRET, 0,
2551 tlen, &log, false, &tv);
2552 }
2553 }
2554
2555 static void
2556 rack_log_to_cancel(struct tcp_rack *rack, int32_t hpts_removed, int line, uint32_t us_cts,
2557 struct timeval *tv, uint32_t flags_on_entry)
2558 {
2559 if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
2560 union tcp_log_stackspecific log;
2561
2562 memset(&log.u_bbr, 0, sizeof(log.u_bbr));
2563 log.u_bbr.inhpts = tcp_in_hpts(rack->rc_inp);
2564 log.u_bbr.flex1 = line;
2565 log.u_bbr.flex2 = rack->r_ctl.rc_last_output_to;
2566 log.u_bbr.flex3 = flags_on_entry;
2567 log.u_bbr.flex4 = us_cts;
2568 if (rack->rack_no_prr)
2569 log.u_bbr.flex5 = 0;
2570 else
2571 log.u_bbr.flex5 = rack->r_ctl.rc_prr_sndcnt;
2572 log.u_bbr.flex6 = rack->rc_tp->t_rxtcur;
2573 log.u_bbr.flex7 = hpts_removed;
2574 log.u_bbr.flex8 = 1;
2575 log.u_bbr.applimited = rack->r_ctl.rc_hpts_flags;
2576 log.u_bbr.timeStamp = us_cts;
2577 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
2578 log.u_bbr.pkts_out = rack->r_ctl.rc_out_at_rto;
2579 log.u_bbr.delivered = rack->r_ctl.rc_snd_max_at_rto;
2580 log.u_bbr.pacing_gain = rack->r_must_retran;
2581 TCP_LOG_EVENTP(rack->rc_tp, NULL,
2582 &rack->rc_inp->inp_socket->so_rcv,
2583 &rack->rc_inp->inp_socket->so_snd,
2584 BBR_LOG_TIMERCANC, 0,
2585 0, &log, false, tv);
2586 }
2587 }
2588
2589 static void
2590 rack_log_alt_to_to_cancel(struct tcp_rack *rack,
2591 uint32_t flex1, uint32_t flex2,
2592 uint32_t flex3, uint32_t flex4,
2593 uint32_t flex5, uint32_t flex6,
2594 uint16_t flex7, uint8_t mod)
2595 {
2596 if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
2597 union tcp_log_stackspecific log;
2598 struct timeval tv;
2599
2600 if (mod == 1) {
2601 /* No you can't use 1, its for the real to cancel */
2602 return;
2603 }
2604 memset(&log.u_bbr, 0, sizeof(log.u_bbr));
2605 log.u_bbr.timeStamp = tcp_get_usecs(&tv);
2606 log.u_bbr.flex1 = flex1;
2607 log.u_bbr.flex2 = flex2;
2608 log.u_bbr.flex3 = flex3;
2609 log.u_bbr.flex4 = flex4;
2610 log.u_bbr.flex5 = flex5;
2611 log.u_bbr.flex6 = flex6;
2612 log.u_bbr.flex7 = flex7;
2613 log.u_bbr.flex8 = mod;
2614 TCP_LOG_EVENTP(rack->rc_tp, NULL,
2615 &rack->rc_inp->inp_socket->so_rcv,
2616 &rack->rc_inp->inp_socket->so_snd,
2617 BBR_LOG_TIMERCANC, 0,
2618 0, &log, false, &tv);
2619 }
2620 }
2621
2622 static void
2623 rack_log_to_processing(struct tcp_rack *rack, uint32_t cts, int32_t ret, int32_t timers)
2624 {
2625 if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
2626 union tcp_log_stackspecific log;
2627 struct timeval tv;
2628
2629 memset(&log.u_bbr, 0, sizeof(log.u_bbr));
2630 log.u_bbr.flex1 = timers;
2631 log.u_bbr.flex2 = ret;
2632 log.u_bbr.flex3 = rack->r_ctl.rc_timer_exp;
2633 log.u_bbr.flex4 = rack->r_ctl.rc_hpts_flags;
2634 log.u_bbr.flex5 = cts;
2635 if (rack->rack_no_prr)
2636 log.u_bbr.flex6 = 0;
2637 else
2638 log.u_bbr.flex6 = rack->r_ctl.rc_prr_sndcnt;
2639 log.u_bbr.pkts_out = rack->r_ctl.rc_out_at_rto;
2640 log.u_bbr.delivered = rack->r_ctl.rc_snd_max_at_rto;
2641 log.u_bbr.pacing_gain = rack->r_must_retran;
2642 log.u_bbr.timeStamp = tcp_get_usecs(&tv);
2643 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
2644 TCP_LOG_EVENTP(rack->rc_tp, NULL,
2645 &rack->rc_inp->inp_socket->so_rcv,
2646 &rack->rc_inp->inp_socket->so_snd,
2647 BBR_LOG_TO_PROCESS, 0,
2648 0, &log, false, &tv);
2649 }
2650 }
2651
2652 static void
2653 rack_log_to_prr(struct tcp_rack *rack, int frm, int orig_cwnd, int line)
2654 {
2655 if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
2656 union tcp_log_stackspecific log;
2657 struct timeval tv;
2658
2659 memset(&log.u_bbr, 0, sizeof(log.u_bbr));
2660 log.u_bbr.flex1 = rack->r_ctl.rc_prr_out;
2661 log.u_bbr.flex2 = rack->r_ctl.rc_prr_recovery_fs;
2662 if (rack->rack_no_prr)
2663 log.u_bbr.flex3 = 0;
2664 else
2665 log.u_bbr.flex3 = rack->r_ctl.rc_prr_sndcnt;
2666 log.u_bbr.flex4 = rack->r_ctl.rc_prr_delivered;
2667 log.u_bbr.flex5 = rack->r_ctl.rc_sacked;
2668 log.u_bbr.flex6 = rack->r_ctl.rc_holes_rxt;
2669 log.u_bbr.flex7 = line;
2670 log.u_bbr.flex8 = frm;
2671 log.u_bbr.pkts_out = orig_cwnd;
2672 log.u_bbr.timeStamp = tcp_get_usecs(&tv);
2673 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
2674 log.u_bbr.use_lt_bw = rack->r_ent_rec_ns;
2675 log.u_bbr.use_lt_bw <<= 1;
2676 log.u_bbr.use_lt_bw |= rack->r_might_revert;
2677 TCP_LOG_EVENTP(rack->rc_tp, NULL,
2678 &rack->rc_inp->inp_socket->so_rcv,
2679 &rack->rc_inp->inp_socket->so_snd,
2680 BBR_LOG_BBRUPD, 0,
2681 0, &log, false, &tv);
2682 }
2683 }
2684
2685 #ifdef NETFLIX_EXP_DETECTION
2686 static void
2687 rack_log_sad(struct tcp_rack *rack, int event)
2688 {
2689 if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
2690 union tcp_log_stackspecific log;
2691 struct timeval tv;
2692
2693 memset(&log.u_bbr, 0, sizeof(log.u_bbr));
2694 log.u_bbr.flex1 = rack->r_ctl.sack_count;
2695 log.u_bbr.flex2 = rack->r_ctl.ack_count;
2696 log.u_bbr.flex3 = rack->r_ctl.sack_moved_extra;
2697 log.u_bbr.flex4 = rack->r_ctl.sack_noextra_move;
2698 log.u_bbr.flex5 = rack->r_ctl.rc_num_maps_alloced;
2699 log.u_bbr.flex6 = tcp_sack_to_ack_thresh;
2700 log.u_bbr.pkts_out = tcp_sack_to_move_thresh;
2701 log.u_bbr.lt_epoch = (tcp_force_detection << 8);
2702 log.u_bbr.lt_epoch |= rack->do_detection;
2703 log.u_bbr.applimited = tcp_map_minimum;
2704 log.u_bbr.flex7 = rack->sack_attack_disable;
2705 log.u_bbr.flex8 = event;
2706 log.u_bbr.timeStamp = tcp_get_usecs(&tv);
2707 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
2708 log.u_bbr.delivered = tcp_sad_decay_val;
2709 TCP_LOG_EVENTP(rack->rc_tp, NULL,
2710 &rack->rc_inp->inp_socket->so_rcv,
2711 &rack->rc_inp->inp_socket->so_snd,
2712 TCP_SAD_DETECTION, 0,
2713 0, &log, false, &tv);
2714 }
2715 }
2716 #endif
2717
2718 static void
2719 rack_counter_destroy(void)
2720 {
2721 counter_u64_free(rack_fto_send);
2722 counter_u64_free(rack_fto_rsm_send);
2723 counter_u64_free(rack_nfto_resend);
2724 counter_u64_free(rack_hw_pace_init_fail);
2725 counter_u64_free(rack_hw_pace_lost);
2726 counter_u64_free(rack_non_fto_send);
2727 counter_u64_free(rack_extended_rfo);
2728 counter_u64_free(rack_ack_total);
2729 counter_u64_free(rack_express_sack);
2730 counter_u64_free(rack_sack_total);
2731 counter_u64_free(rack_move_none);
2732 counter_u64_free(rack_move_some);
2733 counter_u64_free(rack_sack_attacks_detected);
2734 counter_u64_free(rack_sack_attacks_reversed);
2735 counter_u64_free(rack_sack_used_next_merge);
2736 counter_u64_free(rack_sack_used_prev_merge);
2737 counter_u64_free(rack_tlp_tot);
2738 counter_u64_free(rack_tlp_newdata);
2739 counter_u64_free(rack_tlp_retran);
2740 counter_u64_free(rack_tlp_retran_bytes);
2741 counter_u64_free(rack_to_tot);
2742 counter_u64_free(rack_saw_enobuf);
2743 counter_u64_free(rack_saw_enobuf_hw);
2744 counter_u64_free(rack_saw_enetunreach);
2745 counter_u64_free(rack_hot_alloc);
2746 counter_u64_free(rack_to_alloc);
2747 counter_u64_free(rack_to_alloc_hard);
2748 counter_u64_free(rack_to_alloc_emerg);
2749 counter_u64_free(rack_to_alloc_limited);
2750 counter_u64_free(rack_alloc_limited_conns);
2751 counter_u64_free(rack_split_limited);
2752 counter_u64_free(rack_multi_single_eq);
2753 counter_u64_free(rack_proc_non_comp_ack);
2754 counter_u64_free(rack_sack_proc_all);
2755 counter_u64_free(rack_sack_proc_restart);
2756 counter_u64_free(rack_sack_proc_short);
2757 counter_u64_free(rack_sack_skipped_acked);
2758 counter_u64_free(rack_sack_splits);
2759 counter_u64_free(rack_input_idle_reduces);
2760 counter_u64_free(rack_collapsed_win);
2761 counter_u64_free(rack_collapsed_win_rxt);
2762 counter_u64_free(rack_collapsed_win_rxt_bytes);
2763 counter_u64_free(rack_collapsed_win_seen);
2764 counter_u64_free(rack_try_scwnd);
2765 counter_u64_free(rack_persists_sends);
2766 counter_u64_free(rack_persists_acks);
2767 counter_u64_free(rack_persists_loss);
2768 counter_u64_free(rack_persists_lost_ends);
2769 #ifdef INVARIANTS
2770 counter_u64_free(rack_adjust_map_bw);
2771 #endif
2772 COUNTER_ARRAY_FREE(rack_out_size, TCP_MSS_ACCT_SIZE);
2773 COUNTER_ARRAY_FREE(rack_opts_arry, RACK_OPTS_SIZE);
2774 }
2775
2776 static struct rack_sendmap *
2777 rack_alloc(struct tcp_rack *rack)
2778 {
2779 struct rack_sendmap *rsm;
2780
2781 /*
2782 * First get the top of the list it in
2783 * theory is the "hottest" rsm we have,
2784 * possibly just freed by ack processing.
2785 */
2786 if (rack->rc_free_cnt > rack_free_cache) {
2787 rsm = TAILQ_FIRST(&rack->r_ctl.rc_free);
2788 TAILQ_REMOVE(&rack->r_ctl.rc_free, rsm, r_tnext);
2789 counter_u64_add(rack_hot_alloc, 1);
2790 rack->rc_free_cnt--;
2791 return (rsm);
2792 }
2793 /*
2794 * Once we get under our free cache we probably
2795 * no longer have a "hot" one available. Lets
2796 * get one from UMA.
2797 */
2798 rsm = uma_zalloc(rack_zone, M_NOWAIT);
2799 if (rsm) {
2800 rack->r_ctl.rc_num_maps_alloced++;
2801 counter_u64_add(rack_to_alloc, 1);
2802 return (rsm);
2803 }
2804 /*
2805 * Dig in to our aux rsm's (the last two) since
2806 * UMA failed to get us one.
2807 */
2808 if (rack->rc_free_cnt) {
2809 counter_u64_add(rack_to_alloc_emerg, 1);
2810 rsm = TAILQ_FIRST(&rack->r_ctl.rc_free);
2811 TAILQ_REMOVE(&rack->r_ctl.rc_free, rsm, r_tnext);
2812 rack->rc_free_cnt--;
2813 return (rsm);
2814 }
2815 return (NULL);
2816 }
2817
2818 static struct rack_sendmap *
2819 rack_alloc_full_limit(struct tcp_rack *rack)
2820 {
2821 if ((V_tcp_map_entries_limit > 0) &&
2822 (rack->do_detection == 0) &&
2823 (rack->r_ctl.rc_num_maps_alloced >= V_tcp_map_entries_limit)) {
2824 counter_u64_add(rack_to_alloc_limited, 1);
2825 if (!rack->alloc_limit_reported) {
2826 rack->alloc_limit_reported = 1;
2827 counter_u64_add(rack_alloc_limited_conns, 1);
2828 }
2829 return (NULL);
2830 }
2831 return (rack_alloc(rack));
2832 }
2833
2834 /* wrapper to allocate a sendmap entry, subject to a specific limit */
2835 static struct rack_sendmap *
2836 rack_alloc_limit(struct tcp_rack *rack, uint8_t limit_type)
2837 {
2838 struct rack_sendmap *rsm;
2839
2840 if (limit_type) {
2841 /* currently there is only one limit type */
2842 if (V_tcp_map_split_limit > 0 &&
2843 (rack->do_detection == 0) &&
2844 rack->r_ctl.rc_num_split_allocs >= V_tcp_map_split_limit) {
2845 counter_u64_add(rack_split_limited, 1);
2846 if (!rack->alloc_limit_reported) {
2847 rack->alloc_limit_reported = 1;
2848 counter_u64_add(rack_alloc_limited_conns, 1);
2849 }
2850 return (NULL);
2851 }
2852 }
2853
2854 /* allocate and mark in the limit type, if set */
2855 rsm = rack_alloc(rack);
2856 if (rsm != NULL && limit_type) {
2857 rsm->r_limit_type = limit_type;
2858 rack->r_ctl.rc_num_split_allocs++;
2859 }
2860 return (rsm);
2861 }
2862
2863 static void
2864 rack_free(struct tcp_rack *rack, struct rack_sendmap *rsm)
2865 {
2866 if (rsm->r_flags & RACK_APP_LIMITED) {
2867 if (rack->r_ctl.rc_app_limited_cnt > 0) {
2868 rack->r_ctl.rc_app_limited_cnt--;
2869 }
2870 }
2871 if (rsm->r_limit_type) {
2872 /* currently there is only one limit type */
2873 rack->r_ctl.rc_num_split_allocs--;
2874 }
2875 if (rsm == rack->r_ctl.rc_first_appl) {
2876 if (rack->r_ctl.rc_app_limited_cnt == 0)
2877 rack->r_ctl.rc_first_appl = NULL;
2878 else {
2879 /* Follow the next one out */
2880 struct rack_sendmap fe;
2881
2882 fe.r_start = rsm->r_nseq_appl;
2883 rack->r_ctl.rc_first_appl = RB_FIND(rack_rb_tree_head, &rack->r_ctl.rc_mtree, &fe);
2884 }
2885 }
2886 if (rsm == rack->r_ctl.rc_resend)
2887 rack->r_ctl.rc_resend = NULL;
2888 if (rsm == rack->r_ctl.rc_end_appl)
2889 rack->r_ctl.rc_end_appl = NULL;
2890 if (rack->r_ctl.rc_tlpsend == rsm)
2891 rack->r_ctl.rc_tlpsend = NULL;
2892 if (rack->r_ctl.rc_sacklast == rsm)
2893 rack->r_ctl.rc_sacklast = NULL;
2894 memset(rsm, 0, sizeof(struct rack_sendmap));
2895 TAILQ_INSERT_HEAD(&rack->r_ctl.rc_free, rsm, r_tnext);
2896 rack->rc_free_cnt++;
2897 }
2898
2899 static void
2900 rack_free_trim(struct tcp_rack *rack)
2901 {
2902 struct rack_sendmap *rsm;
2903
2904 /*
2905 * Free up all the tail entries until
2906 * we get our list down to the limit.
2907 */
2908 while (rack->rc_free_cnt > rack_free_cache) {
2909 rsm = TAILQ_LAST(&rack->r_ctl.rc_free, rack_head);
2910 TAILQ_REMOVE(&rack->r_ctl.rc_free, rsm, r_tnext);
2911 rack->rc_free_cnt--;
2912 uma_zfree(rack_zone, rsm);
2913 }
2914 }
2915
2916
2917 static uint32_t
2918 rack_get_measure_window(struct tcpcb *tp, struct tcp_rack *rack)
2919 {
2920 uint64_t srtt, bw, len, tim;
2921 uint32_t segsiz, def_len, minl;
2922
2923 segsiz = min(ctf_fixed_maxseg(tp), rack->r_ctl.rc_pace_min_segs);
2924 def_len = rack_def_data_window * segsiz;
2925 if (rack->rc_gp_filled == 0) {
2926 /*
2927 * We have no measurement (IW is in flight?) so
2928 * we can only guess using our data_window sysctl
2929 * value (usually 20MSS).
2930 */
2931 return (def_len);
2932 }
2933 /*
2934 * Now we have a number of factors to consider.
2935 *
2936 * 1) We have a desired BDP which is usually
2937 * at least 2.
2938 * 2) We have a minimum number of rtt's usually 1 SRTT
2939 * but we allow it too to be more.
2940 * 3) We want to make sure a measurement last N useconds (if
2941 * we have set rack_min_measure_usec.
2942 *
2943 * We handle the first concern here by trying to create a data
2944 * window of max(rack_def_data_window, DesiredBDP). The
2945 * second concern we handle in not letting the measurement
2946 * window end normally until at least the required SRTT's
2947 * have gone by which is done further below in
2948 * rack_enough_for_measurement(). Finally the third concern
2949 * we also handle here by calculating how long that time
2950 * would take at the current BW and then return the
2951 * max of our first calculation and that length. Note
2952 * that if rack_min_measure_usec is 0, we don't deal
2953 * with concern 3. Also for both Concern 1 and 3 an
2954 * application limited period could end the measurement
2955 * earlier.
2956 *
2957 * So lets calculate the BDP with the "known" b/w using
2958 * the SRTT has our rtt and then multiply it by the
2959 * goal.
2960 */
2961 bw = rack_get_bw(rack);
2962 srtt = (uint64_t)tp->t_srtt;
2963 len = bw * srtt;
2964 len /= (uint64_t)HPTS_USEC_IN_SEC;
2965 len *= max(1, rack_goal_bdp);
2966 /* Now we need to round up to the nearest MSS */
2967 len = roundup(len, segsiz);
2968 if (rack_min_measure_usec) {
2969 /* Now calculate our min length for this b/w */
2970 tim = rack_min_measure_usec;
2971 minl = (tim * bw) / (uint64_t)HPTS_USEC_IN_SEC;
2972 if (minl == 0)
2973 minl = 1;
2974 minl = roundup(minl, segsiz);
2975 if (len < minl)
2976 len = minl;
2977 }
2978 /*
2979 * Now if we have a very small window we want
2980 * to attempt to get the window that is
2981 * as small as possible. This happens on
2982 * low b/w connections and we don't want to
2983 * span huge numbers of rtt's between measurements.
2984 *
2985 * We basically include 2 over our "MIN window" so
2986 * that the measurement can be shortened (possibly) by
2987 * an ack'ed packet.
2988 */
2989 if (len < def_len)
2990 return (max((uint32_t)len, ((MIN_GP_WIN+2) * segsiz)));
2991 else
2992 return (max((uint32_t)len, def_len));
2993
2994 }
2995
2996 static int
2997 rack_enough_for_measurement(struct tcpcb *tp, struct tcp_rack *rack, tcp_seq th_ack, uint8_t *quality)
2998 {
2999 uint32_t tim, srtts, segsiz;
3000
3001 /*
3002 * Has enough time passed for the GP measurement to be valid?
3003 */
3004 if ((tp->snd_max == tp->snd_una) ||
3005 (th_ack == tp->snd_max)){
3006 /* All is acked */
3007 *quality = RACK_QUALITY_ALLACKED;
3008 return (1);
3009 }
3010 if (SEQ_LT(th_ack, tp->gput_seq)) {
3011 /* Not enough bytes yet */
3012 return (0);
3013 }
3014 segsiz = min(ctf_fixed_maxseg(tp), rack->r_ctl.rc_pace_min_segs);
3015 if (SEQ_LT(th_ack, tp->gput_ack) &&
3016 ((th_ack - tp->gput_seq) < max(rc_init_window(rack), (MIN_GP_WIN * segsiz)))) {
3017 /* Not enough bytes yet */
3018 return (0);
3019 }
3020 if (rack->r_ctl.rc_first_appl &&
3021 (SEQ_GEQ(th_ack, rack->r_ctl.rc_first_appl->r_end))) {
3022 /*
3023 * We are up to the app limited send point
3024 * we have to measure irrespective of the time..
3025 */
3026 *quality = RACK_QUALITY_APPLIMITED;
3027 return (1);
3028 }
3029 /* Now what about time? */
3030 srtts = (rack->r_ctl.rc_gp_srtt * rack_min_srtts);
3031 tim = tcp_tv_to_usectick(&rack->r_ctl.act_rcv_time) - tp->gput_ts;
3032 if (tim >= srtts) {
3033 *quality = RACK_QUALITY_HIGH;
3034 return (1);
3035 }
3036 /* Nope not even a full SRTT has passed */
3037 return (0);
3038 }
3039
3040 static void
3041 rack_log_timely(struct tcp_rack *rack,
3042 uint32_t logged, uint64_t cur_bw, uint64_t low_bnd,
3043 uint64_t up_bnd, int line, uint8_t method)
3044 {
3045 if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
3046 union tcp_log_stackspecific log;
3047 struct timeval tv;
3048
3049 memset(&log, 0, sizeof(log));
3050 log.u_bbr.flex1 = logged;
3051 log.u_bbr.flex2 = rack->rc_gp_timely_inc_cnt;
3052 log.u_bbr.flex2 <<= 4;
3053 log.u_bbr.flex2 |= rack->rc_gp_timely_dec_cnt;
3054 log.u_bbr.flex2 <<= 4;
3055 log.u_bbr.flex2 |= rack->rc_gp_incr;
3056 log.u_bbr.flex2 <<= 4;
3057 log.u_bbr.flex2 |= rack->rc_gp_bwred;
3058 log.u_bbr.flex3 = rack->rc_gp_incr;
3059 log.u_bbr.flex4 = rack->r_ctl.rack_per_of_gp_ss;
3060 log.u_bbr.flex5 = rack->r_ctl.rack_per_of_gp_ca;
3061 log.u_bbr.flex6 = rack->r_ctl.rack_per_of_gp_rec;
3062 log.u_bbr.flex7 = rack->rc_gp_bwred;
3063 log.u_bbr.flex8 = method;
3064 log.u_bbr.cur_del_rate = cur_bw;
3065 log.u_bbr.delRate = low_bnd;
3066 log.u_bbr.bw_inuse = up_bnd;
3067 log.u_bbr.rttProp = rack_get_bw(rack);
3068 log.u_bbr.pkt_epoch = line;
3069 log.u_bbr.pkts_out = rack->r_ctl.rc_rtt_diff;
3070 log.u_bbr.timeStamp = tcp_get_usecs(&tv);
3071 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
3072 log.u_bbr.epoch = rack->r_ctl.rc_gp_srtt;
3073 log.u_bbr.lt_epoch = rack->r_ctl.rc_prev_gp_srtt;
3074 log.u_bbr.cwnd_gain = rack->rc_dragged_bottom;
3075 log.u_bbr.cwnd_gain <<= 1;
3076 log.u_bbr.cwnd_gain |= rack->rc_gp_saw_rec;
3077 log.u_bbr.cwnd_gain <<= 1;
3078 log.u_bbr.cwnd_gain |= rack->rc_gp_saw_ss;
3079 log.u_bbr.cwnd_gain <<= 1;
3080 log.u_bbr.cwnd_gain |= rack->rc_gp_saw_ca;
3081 log.u_bbr.lost = rack->r_ctl.rc_loss_count;
3082 TCP_LOG_EVENTP(rack->rc_tp, NULL,
3083 &rack->rc_inp->inp_socket->so_rcv,
3084 &rack->rc_inp->inp_socket->so_snd,
3085 TCP_TIMELY_WORK, 0,
3086 0, &log, false, &tv);
3087 }
3088 }
3089
3090 static int
3091 rack_bw_can_be_raised(struct tcp_rack *rack, uint64_t cur_bw, uint64_t last_bw_est, uint16_t mult)
3092 {
3093 /*
3094 * Before we increase we need to know if
3095 * the estimate just made was less than
3096 * our pacing goal (i.e. (cur_bw * mult) > last_bw_est)
3097 *
3098 * If we already are pacing at a fast enough
3099 * rate to push us faster there is no sense of
3100 * increasing.
3101 *
3102 * We first caculate our actual pacing rate (ss or ca multiplier
3103 * times our cur_bw).
3104 *
3105 * Then we take the last measured rate and multipy by our
3106 * maximum pacing overage to give us a max allowable rate.
3107 *
3108 * If our act_rate is smaller than our max_allowable rate
3109 * then we should increase. Else we should hold steady.
3110 *
3111 */
3112 uint64_t act_rate, max_allow_rate;
3113
3114 if (rack_timely_no_stopping)
3115 return (1);
3116
3117 if ((cur_bw == 0) || (last_bw_est == 0)) {
3118 /*
3119 * Initial startup case or
3120 * everything is acked case.
3121 */
3122 rack_log_timely(rack, mult, cur_bw, 0, 0,
3123 __LINE__, 9);
3124 return (1);
3125 }
3126 if (mult <= 100) {
3127 /*
3128 * We can always pace at or slightly above our rate.
3129 */
3130 rack_log_timely(rack, mult, cur_bw, 0, 0,
3131 __LINE__, 9);
3132 return (1);
3133 }
3134 act_rate = cur_bw * (uint64_t)mult;
3135 act_rate /= 100;
3136 max_allow_rate = last_bw_est * ((uint64_t)rack_max_per_above + (uint64_t)100);
3137 max_allow_rate /= 100;
3138 if (act_rate < max_allow_rate) {
3139 /*
3140 * Here the rate we are actually pacing at
3141 * is smaller than 10% above our last measurement.
3142 * This means we are pacing below what we would
3143 * like to try to achieve (plus some wiggle room).
3144 */
3145 rack_log_timely(rack, mult, cur_bw, act_rate, max_allow_rate,
3146 __LINE__, 9);
3147 return (1);
3148 } else {
3149 /*
3150 * Here we are already pacing at least rack_max_per_above(10%)
3151 * what we are getting back. This indicates most likely
3152 * that we are being limited (cwnd/rwnd/app) and can't
3153 * get any more b/w. There is no sense of trying to
3154 * raise up the pacing rate its not speeding us up
3155 * and we already are pacing faster than we are getting.
3156 */
3157 rack_log_timely(rack, mult, cur_bw, act_rate, max_allow_rate,
3158 __LINE__, 8);
3159 return (0);
3160 }
3161 }
3162
3163 static void
3164 rack_validate_multipliers_at_or_above100(struct tcp_rack *rack)
3165 {
3166 /*
3167 * When we drag bottom, we want to assure
3168 * that no multiplier is below 1.0, if so
3169 * we want to restore it to at least that.
3170 */
3171 if (rack->r_ctl.rack_per_of_gp_rec < 100) {
3172 /* This is unlikely we usually do not touch recovery */
3173 rack->r_ctl.rack_per_of_gp_rec = 100;
3174 }
3175 if (rack->r_ctl.rack_per_of_gp_ca < 100) {
3176 rack->r_ctl.rack_per_of_gp_ca = 100;
3177 }
3178 if (rack->r_ctl.rack_per_of_gp_ss < 100) {
3179 rack->r_ctl.rack_per_of_gp_ss = 100;
3180 }
3181 }
3182
3183 static void
3184 rack_validate_multipliers_at_or_below_100(struct tcp_rack *rack)
3185 {
3186 if (rack->r_ctl.rack_per_of_gp_ca > 100) {
3187 rack->r_ctl.rack_per_of_gp_ca = 100;
3188 }
3189 if (rack->r_ctl.rack_per_of_gp_ss > 100) {
3190 rack->r_ctl.rack_per_of_gp_ss = 100;
3191 }
3192 }
3193
3194 static void
3195 rack_increase_bw_mul(struct tcp_rack *rack, int timely_says, uint64_t cur_bw, uint64_t last_bw_est, int override)
3196 {
3197 int32_t calc, logged, plus;
3198
3199 logged = 0;
3200
3201 if (override) {
3202 /*
3203 * override is passed when we are
3204 * loosing b/w and making one last
3205 * gasp at trying to not loose out
3206 * to a new-reno flow.
3207 */
3208 goto extra_boost;
3209 }
3210 /* In classic timely we boost by 5x if we have 5 increases in a row, lets not */
3211 if (rack->rc_gp_incr &&
3212 ((rack->rc_gp_timely_inc_cnt + 1) >= RACK_TIMELY_CNT_BOOST)) {
3213 /*
3214 * Reset and get 5 strokes more before the boost. Note
3215 * that the count is 0 based so we have to add one.
3216 */
3217 extra_boost:
3218 plus = (uint32_t)rack_gp_increase_per * RACK_TIMELY_CNT_BOOST;
3219 rack->rc_gp_timely_inc_cnt = 0;
3220 } else
3221 plus = (uint32_t)rack_gp_increase_per;
3222 /* Must be at least 1% increase for true timely increases */
3223 if ((plus < 1) &&
3224 ((rack->r_ctl.rc_rtt_diff <= 0) || (timely_says <= 0)))
3225 plus = 1;
3226 if (rack->rc_gp_saw_rec &&
3227 (rack->rc_gp_no_rec_chg == 0) &&
3228 rack_bw_can_be_raised(rack, cur_bw, last_bw_est,
3229 rack->r_ctl.rack_per_of_gp_rec)) {
3230 /* We have been in recovery ding it too */
3231 calc = rack->r_ctl.rack_per_of_gp_rec + plus;
3232 if (calc > 0xffff)
3233 calc = 0xffff;
3234 logged |= 1;
3235 rack->r_ctl.rack_per_of_gp_rec = (uint16_t)calc;
3236 if (rack_per_upper_bound_ss &&
3237 (rack->rc_dragged_bottom == 0) &&
3238 (rack->r_ctl.rack_per_of_gp_rec > rack_per_upper_bound_ss))
3239 rack->r_ctl.rack_per_of_gp_rec = rack_per_upper_bound_ss;
3240 }
3241 if (rack->rc_gp_saw_ca &&
3242 (rack->rc_gp_saw_ss == 0) &&
3243 rack_bw_can_be_raised(rack, cur_bw, last_bw_est,
3244 rack->r_ctl.rack_per_of_gp_ca)) {
3245 /* In CA */
3246 calc = rack->r_ctl.rack_per_of_gp_ca + plus;
3247 if (calc > 0xffff)
3248 calc = 0xffff;
3249 logged |= 2;
3250 rack->r_ctl.rack_per_of_gp_ca = (uint16_t)calc;
3251 if (rack_per_upper_bound_ca &&
3252 (rack->rc_dragged_bottom == 0) &&
3253 (rack->r_ctl.rack_per_of_gp_ca > rack_per_upper_bound_ca))
3254 rack->r_ctl.rack_per_of_gp_ca = rack_per_upper_bound_ca;
3255 }
3256 if (rack->rc_gp_saw_ss &&
3257 rack_bw_can_be_raised(rack, cur_bw, last_bw_est,
3258 rack->r_ctl.rack_per_of_gp_ss)) {
3259 /* In SS */
3260 calc = rack->r_ctl.rack_per_of_gp_ss + plus;
3261 if (calc > 0xffff)
3262 calc = 0xffff;
3263 rack->r_ctl.rack_per_of_gp_ss = (uint16_t)calc;
3264 if (rack_per_upper_bound_ss &&
3265 (rack->rc_dragged_bottom == 0) &&
3266 (rack->r_ctl.rack_per_of_gp_ss > rack_per_upper_bound_ss))
3267 rack->r_ctl.rack_per_of_gp_ss = rack_per_upper_bound_ss;
3268 logged |= 4;
3269 }
3270 if (logged &&
3271 (rack->rc_gp_incr == 0)){
3272 /* Go into increment mode */
3273 rack->rc_gp_incr = 1;
3274 rack->rc_gp_timely_inc_cnt = 0;
3275 }
3276 if (rack->rc_gp_incr &&
3277 logged &&
3278 (rack->rc_gp_timely_inc_cnt < RACK_TIMELY_CNT_BOOST)) {
3279 rack->rc_gp_timely_inc_cnt++;
3280 }
3281 rack_log_timely(rack, logged, plus, 0, 0,
3282 __LINE__, 1);
3283 }
3284
3285 static uint32_t
3286 rack_get_decrease(struct tcp_rack *rack, uint32_t curper, int32_t rtt_diff)
3287 {
3288 /*
3289 * norm_grad = rtt_diff / minrtt;
3290 * new_per = curper * (1 - B * norm_grad)
3291 *
3292 * B = rack_gp_decrease_per (default 10%)
3293 * rtt_dif = input var current rtt-diff
3294 * curper = input var current percentage
3295 * minrtt = from rack filter
3296 *
3297 */
3298 uint64_t perf;
3299
3300 perf = (((uint64_t)curper * ((uint64_t)1000000 -
3301 ((uint64_t)rack_gp_decrease_per * (uint64_t)10000 *
3302 (((uint64_t)rtt_diff * (uint64_t)1000000)/
3303 (uint64_t)get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt)))/
3304 (uint64_t)1000000)) /
3305 (uint64_t)1000000);
3306 if (perf > curper) {
3307 /* TSNH */
3308 perf = curper - 1;
3309 }
3310 return ((uint32_t)perf);
3311 }
3312
3313 static uint32_t
3314 rack_decrease_highrtt(struct tcp_rack *rack, uint32_t curper, uint32_t rtt)
3315 {
3316 /*
3317 * highrttthresh
3318 * result = curper * (1 - (B * ( 1 - ------ ))
3319 * gp_srtt
3320 *
3321 * B = rack_gp_decrease_per (default 10%)
3322 * highrttthresh = filter_min * rack_gp_rtt_maxmul
3323 */
3324 uint64_t perf;
3325 uint32_t highrttthresh;
3326
3327 highrttthresh = get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt) * rack_gp_rtt_maxmul;
3328
3329 perf = (((uint64_t)curper * ((uint64_t)1000000 -
3330 ((uint64_t)rack_gp_decrease_per * ((uint64_t)1000000 -
3331 ((uint64_t)highrttthresh * (uint64_t)1000000) /
3332 (uint64_t)rtt)) / 100)) /(uint64_t)1000000);
3333 return (perf);
3334 }
3335
3336 static void
3337 rack_decrease_bw_mul(struct tcp_rack *rack, int timely_says, uint32_t rtt, int32_t rtt_diff)
3338 {
3339 uint64_t logvar, logvar2, logvar3;
3340 uint32_t logged, new_per, ss_red, ca_red, rec_red, alt, val;
3341
3342 if (rack->rc_gp_incr) {
3343 /* Turn off increment counting */
3344 rack->rc_gp_incr = 0;
3345 rack->rc_gp_timely_inc_cnt = 0;
3346 }
3347 ss_red = ca_red = rec_red = 0;
3348 logged = 0;
3349 /* Calculate the reduction value */
3350 if (rtt_diff < 0) {
3351 rtt_diff *= -1;
3352 }
3353 /* Must be at least 1% reduction */
3354 if (rack->rc_gp_saw_rec && (rack->rc_gp_no_rec_chg == 0)) {
3355 /* We have been in recovery ding it too */
3356 if (timely_says == 2) {
3357 new_per = rack_decrease_highrtt(rack, rack->r_ctl.rack_per_of_gp_rec, rtt);
3358 alt = rack_get_decrease(rack, rack->r_ctl.rack_per_of_gp_rec, rtt_diff);
3359 if (alt < new_per)
3360 val = alt;
3361 else
3362 val = new_per;
3363 } else
3364 val = new_per = alt = rack_get_decrease(rack, rack->r_ctl.rack_per_of_gp_rec, rtt_diff);
3365 if (rack->r_ctl.rack_per_of_gp_rec > val) {
3366 rec_red = (rack->r_ctl.rack_per_of_gp_rec - val);
3367 rack->r_ctl.rack_per_of_gp_rec = (uint16_t)val;
3368 } else {
3369 rack->r_ctl.rack_per_of_gp_rec = rack_per_lower_bound;
3370 rec_red = 0;
3371 }
3372 if (rack_per_lower_bound > rack->r_ctl.rack_per_of_gp_rec)
3373 rack->r_ctl.rack_per_of_gp_rec = rack_per_lower_bound;
3374 logged |= 1;
3375 }
3376 if (rack->rc_gp_saw_ss) {
3377 /* Sent in SS */
3378 if (timely_says == 2) {
3379 new_per = rack_decrease_highrtt(rack, rack->r_ctl.rack_per_of_gp_ss, rtt);
3380 alt = rack_get_decrease(rack, rack->r_ctl.rack_per_of_gp_rec, rtt_diff);
3381 if (alt < new_per)
3382 val = alt;
3383 else
3384 val = new_per;
3385 } else
3386 val = new_per = alt = rack_get_decrease(rack, rack->r_ctl.rack_per_of_gp_ss, rtt_diff);
3387 if (rack->r_ctl.rack_per_of_gp_ss > new_per) {
3388 ss_red = rack->r_ctl.rack_per_of_gp_ss - val;
3389 rack->r_ctl.rack_per_of_gp_ss = (uint16_t)val;
3390 } else {
3391 ss_red = new_per;
3392 rack->r_ctl.rack_per_of_gp_ss = rack_per_lower_bound;
3393 logvar = new_per;
3394 logvar <<= 32;
3395 logvar |= alt;
3396 logvar2 = (uint32_t)rtt;
3397 logvar2 <<= 32;
3398 logvar2 |= (uint32_t)rtt_diff;
3399 logvar3 = rack_gp_rtt_maxmul;
3400 logvar3 <<= 32;
3401 logvar3 |= get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt);
3402 rack_log_timely(rack, timely_says,
3403 logvar2, logvar3,
3404 logvar, __LINE__, 10);
3405 }
3406 if (rack_per_lower_bound > rack->r_ctl.rack_per_of_gp_ss)
3407 rack->r_ctl.rack_per_of_gp_ss = rack_per_lower_bound;
3408 logged |= 4;
3409 } else if (rack->rc_gp_saw_ca) {
3410 /* Sent in CA */
3411 if (timely_says == 2) {
3412 new_per = rack_decrease_highrtt(rack, rack->r_ctl.rack_per_of_gp_ca, rtt);
3413 alt = rack_get_decrease(rack, rack->r_ctl.rack_per_of_gp_rec, rtt_diff);
3414 if (alt < new_per)
3415 val = alt;
3416 else
3417 val = new_per;
3418 } else
3419 val = new_per = alt = rack_get_decrease(rack, rack->r_ctl.rack_per_of_gp_ca, rtt_diff);
3420 if (rack->r_ctl.rack_per_of_gp_ca > val) {
3421 ca_red = rack->r_ctl.rack_per_of_gp_ca - val;
3422 rack->r_ctl.rack_per_of_gp_ca = (uint16_t)val;
3423 } else {
3424 rack->r_ctl.rack_per_of_gp_ca = rack_per_lower_bound;
3425 ca_red = 0;
3426 logvar = new_per;
3427 logvar <<= 32;
3428 logvar |= alt;
3429 logvar2 = (uint32_t)rtt;
3430 logvar2 <<= 32;
3431 logvar2 |= (uint32_t)rtt_diff;
3432 logvar3 = rack_gp_rtt_maxmul;
3433 logvar3 <<= 32;
3434 logvar3 |= get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt);
3435 rack_log_timely(rack, timely_says,
3436 logvar2, logvar3,
3437 logvar, __LINE__, 10);
3438 }
3439 if (rack_per_lower_bound > rack->r_ctl.rack_per_of_gp_ca)
3440 rack->r_ctl.rack_per_of_gp_ca = rack_per_lower_bound;
3441 logged |= 2;
3442 }
3443 if (rack->rc_gp_timely_dec_cnt < 0x7) {
3444 rack->rc_gp_timely_dec_cnt++;
3445 if (rack_timely_dec_clear &&
3446 (rack->rc_gp_timely_dec_cnt == rack_timely_dec_clear))
3447 rack->rc_gp_timely_dec_cnt = 0;
3448 }
3449 logvar = ss_red;
3450 logvar <<= 32;
3451 logvar |= ca_red;
3452 rack_log_timely(rack, logged, rec_red, rack_per_lower_bound, logvar,
3453 __LINE__, 2);
3454 }
3455
3456 static void
3457 rack_log_rtt_shrinks(struct tcp_rack *rack, uint32_t us_cts,
3458 uint32_t rtt, uint32_t line, uint8_t reas)
3459 {
3460 if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
3461 union tcp_log_stackspecific log;
3462 struct timeval tv;
3463
3464 memset(&log.u_bbr, 0, sizeof(log.u_bbr));
3465 log.u_bbr.flex1 = line;
3466 log.u_bbr.flex2 = rack->r_ctl.rc_time_probertt_starts;
3467 log.u_bbr.flex3 = rack->r_ctl.rc_lower_rtt_us_cts;
3468 log.u_bbr.flex4 = rack->r_ctl.rack_per_of_gp_ss;
3469 log.u_bbr.flex5 = rtt;
3470 log.u_bbr.flex6 = rack->rc_highly_buffered;
3471 log.u_bbr.flex6 <<= 1;
3472 log.u_bbr.flex6 |= rack->forced_ack;
3473 log.u_bbr.flex6 <<= 1;
3474 log.u_bbr.flex6 |= rack->rc_gp_dyn_mul;
3475 log.u_bbr.flex6 <<= 1;
3476 log.u_bbr.flex6 |= rack->in_probe_rtt;
3477 log.u_bbr.flex6 <<= 1;
3478 log.u_bbr.flex6 |= rack->measure_saw_probe_rtt;
3479 log.u_bbr.flex7 = rack->r_ctl.rack_per_of_gp_probertt;
3480 log.u_bbr.pacing_gain = rack->r_ctl.rack_per_of_gp_ca;
3481 log.u_bbr.cwnd_gain = rack->r_ctl.rack_per_of_gp_rec;
3482 log.u_bbr.flex8 = reas;
3483 log.u_bbr.timeStamp = tcp_get_usecs(&tv);
3484 log.u_bbr.delRate = rack_get_bw(rack);
3485 log.u_bbr.cur_del_rate = rack->r_ctl.rc_highest_us_rtt;
3486 log.u_bbr.cur_del_rate <<= 32;
3487 log.u_bbr.cur_del_rate |= rack->r_ctl.rc_lowest_us_rtt;
3488 log.u_bbr.applimited = rack->r_ctl.rc_time_probertt_entered;
3489 log.u_bbr.pkts_out = rack->r_ctl.rc_rtt_diff;
3490 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
3491 log.u_bbr.epoch = rack->r_ctl.rc_gp_srtt;
3492 log.u_bbr.lt_epoch = rack->r_ctl.rc_prev_gp_srtt;
3493 log.u_bbr.pkt_epoch = rack->r_ctl.rc_lower_rtt_us_cts;
3494 log.u_bbr.delivered = rack->r_ctl.rc_target_probertt_flight;
3495 log.u_bbr.lost = get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt);
3496 log.u_bbr.rttProp = us_cts;
3497 log.u_bbr.rttProp <<= 32;
3498 log.u_bbr.rttProp |= rack->r_ctl.rc_entry_gp_rtt;
3499 TCP_LOG_EVENTP(rack->rc_tp, NULL,
3500 &rack->rc_inp->inp_socket->so_rcv,
3501 &rack->rc_inp->inp_socket->so_snd,
3502 BBR_LOG_RTT_SHRINKS, 0,
3503 0, &log, false, &rack->r_ctl.act_rcv_time);
3504 }
3505 }
3506
3507 static void
3508 rack_set_prtt_target(struct tcp_rack *rack, uint32_t segsiz, uint32_t rtt)
3509 {
3510 uint64_t bwdp;
3511
3512 bwdp = rack_get_bw(rack);
3513 bwdp *= (uint64_t)rtt;
3514 bwdp /= (uint64_t)HPTS_USEC_IN_SEC;
3515 rack->r_ctl.rc_target_probertt_flight = roundup((uint32_t)bwdp, segsiz);
3516 if (rack->r_ctl.rc_target_probertt_flight < (segsiz * rack_timely_min_segs)) {
3517 /*
3518 * A window protocol must be able to have 4 packets
3519 * outstanding as the floor in order to function
3520 * (especially considering delayed ack :D).
3521 */
3522 rack->r_ctl.rc_target_probertt_flight = (segsiz * rack_timely_min_segs);
3523 }
3524 }
3525
3526 static void
3527 rack_enter_probertt(struct tcp_rack *rack, uint32_t us_cts)
3528 {
3529 /**
3530 * ProbeRTT is a bit different in rack_pacing than in
3531 * BBR. It is like BBR in that it uses the lowering of
3532 * the RTT as a signal that we saw something new and
3533 * counts from there for how long between. But it is
3534 * different in that its quite simple. It does not
3535 * play with the cwnd and wait until we get down
3536 * to N segments outstanding and hold that for
3537 * 200ms. Instead it just sets the pacing reduction
3538 * rate to a set percentage (70 by default) and hold
3539 * that for a number of recent GP Srtt's.
3540 */
3541 uint32_t segsiz;
3542
3543 if (rack->rc_gp_dyn_mul == 0)
3544 return;
3545
3546 if (rack->rc_tp->snd_max == rack->rc_tp->snd_una) {
3547 /* We are idle */
3548 return;
3549 }
3550 if ((rack->rc_tp->t_flags & TF_GPUTINPROG) &&
3551 SEQ_GT(rack->rc_tp->snd_una, rack->rc_tp->gput_seq)) {
3552 /*
3553 * Stop the goodput now, the idea here is
3554 * that future measurements with in_probe_rtt
3555 * won't register if they are not greater so
3556 * we want to get what info (if any) is available
3557 * now.
3558 */
3559 rack_do_goodput_measurement(rack->rc_tp, rack,
3560 rack->rc_tp->snd_una, __LINE__,
3561 RACK_QUALITY_PROBERTT);
3562 }
3563 rack->r_ctl.rack_per_of_gp_probertt = rack_per_of_gp_probertt;
3564 rack->r_ctl.rc_time_probertt_entered = us_cts;
3565 segsiz = min(ctf_fixed_maxseg(rack->rc_tp),
3566 rack->r_ctl.rc_pace_min_segs);
3567 rack->in_probe_rtt = 1;
3568 rack->measure_saw_probe_rtt = 1;
3569 rack->r_ctl.rc_lower_rtt_us_cts = us_cts;
3570 rack->r_ctl.rc_time_probertt_starts = 0;
3571 rack->r_ctl.rc_entry_gp_rtt = rack->r_ctl.rc_gp_srtt;
3572 if (rack_probertt_use_min_rtt_entry)
3573 rack_set_prtt_target(rack, segsiz, get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt));
3574 else
3575 rack_set_prtt_target(rack, segsiz, rack->r_ctl.rc_gp_srtt);
3576 rack_log_rtt_shrinks(rack, us_cts, get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt),
3577 __LINE__, RACK_RTTS_ENTERPROBE);
3578 }
3579
3580 static void
3581 rack_exit_probertt(struct tcp_rack *rack, uint32_t us_cts)
3582 {
3583 struct rack_sendmap *rsm;
3584 uint32_t segsiz;
3585
3586 segsiz = min(ctf_fixed_maxseg(rack->rc_tp),
3587 rack->r_ctl.rc_pace_min_segs);
3588 rack->in_probe_rtt = 0;
3589 if ((rack->rc_tp->t_flags & TF_GPUTINPROG) &&
3590 SEQ_GT(rack->rc_tp->snd_una, rack->rc_tp->gput_seq)) {
3591 /*
3592 * Stop the goodput now, the idea here is
3593 * that future measurements with in_probe_rtt
3594 * won't register if they are not greater so
3595 * we want to get what info (if any) is available
3596 * now.
3597 */
3598 rack_do_goodput_measurement(rack->rc_tp, rack,
3599 rack->rc_tp->snd_una, __LINE__,
3600 RACK_QUALITY_PROBERTT);
3601 } else if (rack->rc_tp->t_flags & TF_GPUTINPROG) {
3602 /*
3603 * We don't have enough data to make a measurement.
3604 * So lets just stop and start here after exiting
3605 * probe-rtt. We probably are not interested in
3606 * the results anyway.
3607 */
3608 rack->rc_tp->t_flags &= ~TF_GPUTINPROG;
3609 }
3610 /*
3611 * Measurements through the current snd_max are going
3612 * to be limited by the slower pacing rate.
3613 *
3614 * We need to mark these as app-limited so we
3615 * don't collapse the b/w.
3616 */
3617 rsm = RB_MAX(rack_rb_tree_head, &rack->r_ctl.rc_mtree);
3618 if (rsm && ((rsm->r_flags & RACK_APP_LIMITED) == 0)) {
3619 if (rack->r_ctl.rc_app_limited_cnt == 0)
3620 rack->r_ctl.rc_end_appl = rack->r_ctl.rc_first_appl = rsm;
3621 else {
3622 /*
3623 * Go out to the end app limited and mark
3624 * this new one as next and move the end_appl up
3625 * to this guy.
3626 */
3627 if (rack->r_ctl.rc_end_appl)
3628 rack->r_ctl.rc_end_appl->r_nseq_appl = rsm->r_start;
3629 rack->r_ctl.rc_end_appl = rsm;
3630 }
3631 rsm->r_flags |= RACK_APP_LIMITED;
3632 rack->r_ctl.rc_app_limited_cnt++;
3633 }
3634 /*
3635 * Now, we need to examine our pacing rate multipliers.
3636 * If its under 100%, we need to kick it back up to
3637 * 100%. We also don't let it be over our "max" above
3638 * the actual rate i.e. 100% + rack_clamp_atexit_prtt.
3639 * Note setting clamp_atexit_prtt to 0 has the effect
3640 * of setting CA/SS to 100% always at exit (which is
3641 * the default behavior).
3642 */
3643 if (rack_probertt_clear_is) {
3644 rack->rc_gp_incr = 0;
3645 rack->rc_gp_bwred = 0;
3646 rack->rc_gp_timely_inc_cnt = 0;
3647 rack->rc_gp_timely_dec_cnt = 0;
3648 }
3649 /* Do we do any clamping at exit? */
3650 if (rack->rc_highly_buffered && rack_atexit_prtt_hbp) {
3651 rack->r_ctl.rack_per_of_gp_ca = rack_atexit_prtt_hbp;
3652 rack->r_ctl.rack_per_of_gp_ss = rack_atexit_prtt_hbp;
3653 }
3654 if ((rack->rc_highly_buffered == 0) && rack_atexit_prtt) {
3655 rack->r_ctl.rack_per_of_gp_ca = rack_atexit_prtt;
3656 rack->r_ctl.rack_per_of_gp_ss = rack_atexit_prtt;
3657 }
3658 /*
3659 * Lets set rtt_diff to 0, so that we will get a "boost"
3660 * after exiting.
3661 */
3662 rack->r_ctl.rc_rtt_diff = 0;
3663
3664 /* Clear all flags so we start fresh */
3665 rack->rc_tp->t_bytes_acked = 0;
3666 rack->rc_tp->t_ccv.flags &= ~CCF_ABC_SENTAWND;
3667 /*
3668 * If configured to, set the cwnd and ssthresh to
3669 * our targets.
3670 */
3671 if (rack_probe_rtt_sets_cwnd) {
3672 uint64_t ebdp;
3673 uint32_t setto;
3674
3675 /* Set ssthresh so we get into CA once we hit our target */
3676 if (rack_probertt_use_min_rtt_exit == 1) {
3677 /* Set to min rtt */
3678 rack_set_prtt_target(rack, segsiz,
3679 get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt));
3680 } else if (rack_probertt_use_min_rtt_exit == 2) {
3681 /* Set to current gp rtt */
3682 rack_set_prtt_target(rack, segsiz,
3683 rack->r_ctl.rc_gp_srtt);
3684 } else if (rack_probertt_use_min_rtt_exit == 3) {
3685 /* Set to entry gp rtt */
3686 rack_set_prtt_target(rack, segsiz,
3687 rack->r_ctl.rc_entry_gp_rtt);
3688 } else {
3689 uint64_t sum;
3690 uint32_t setval;
3691
3692 sum = rack->r_ctl.rc_entry_gp_rtt;
3693 sum *= 10;
3694 sum /= (uint64_t)(max(1, rack->r_ctl.rc_gp_srtt));
3695 if (sum >= 20) {
3696 /*
3697 * A highly buffered path needs
3698 * cwnd space for timely to work.
3699 * Lets set things up as if
3700 * we are heading back here again.
3701 */
3702 setval = rack->r_ctl.rc_entry_gp_rtt;
3703 } else if (sum >= 15) {
3704 /*
3705 * Lets take the smaller of the
3706 * two since we are just somewhat
3707 * buffered.
3708 */
3709 setval = rack->r_ctl.rc_gp_srtt;
3710 if (setval > rack->r_ctl.rc_entry_gp_rtt)
3711 setval = rack->r_ctl.rc_entry_gp_rtt;
3712 } else {
3713 /*
3714 * Here we are not highly buffered
3715 * and should pick the min we can to
3716 * keep from causing loss.
3717 */
3718 setval = get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt);
3719 }
3720 rack_set_prtt_target(rack, segsiz,
3721 setval);
3722 }
3723 if (rack_probe_rtt_sets_cwnd > 1) {
3724 /* There is a percentage here to boost */
3725 ebdp = rack->r_ctl.rc_target_probertt_flight;
3726 ebdp *= rack_probe_rtt_sets_cwnd;
3727 ebdp /= 100;
3728 setto = rack->r_ctl.rc_target_probertt_flight + ebdp;
3729 } else
3730 setto = rack->r_ctl.rc_target_probertt_flight;
3731 rack->rc_tp->snd_cwnd = roundup(setto, segsiz);
3732 if (rack->rc_tp->snd_cwnd < (segsiz * rack_timely_min_segs)) {
3733 /* Enforce a min */
3734 rack->rc_tp->snd_cwnd = segsiz * rack_timely_min_segs;
3735 }
3736 /* If we set in the cwnd also set the ssthresh point so we are in CA */
3737 rack->rc_tp->snd_ssthresh = (rack->rc_tp->snd_cwnd - 1);
3738 }
3739 rack_log_rtt_shrinks(rack, us_cts,
3740 get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt),
3741 __LINE__, RACK_RTTS_EXITPROBE);
3742 /* Clear times last so log has all the info */
3743 rack->r_ctl.rc_probertt_sndmax_atexit = rack->rc_tp->snd_max;
3744 rack->r_ctl.rc_time_probertt_entered = us_cts;
3745 rack->r_ctl.rc_time_probertt_starts = rack->r_ctl.rc_lower_rtt_us_cts = us_cts;
3746 rack->r_ctl.rc_time_of_last_probertt = us_cts;
3747 }
3748
3749 static void
3750 rack_check_probe_rtt(struct tcp_rack *rack, uint32_t us_cts)
3751 {
3752 /* Check in on probe-rtt */
3753 if (rack->rc_gp_filled == 0) {
3754 /* We do not do p-rtt unless we have gp measurements */
3755 return;
3756 }
3757 if (rack->in_probe_rtt) {
3758 uint64_t no_overflow;
3759 uint32_t endtime, must_stay;
3760
3761 if (rack->r_ctl.rc_went_idle_time &&
3762 ((us_cts - rack->r_ctl.rc_went_idle_time) > rack_min_probertt_hold)) {
3763 /*
3764 * We went idle during prtt, just exit now.
3765 */
3766 rack_exit_probertt(rack, us_cts);
3767 } else if (rack_probe_rtt_safety_val &&
3768 TSTMP_GT(us_cts, rack->r_ctl.rc_time_probertt_entered) &&
3769 ((us_cts - rack->r_ctl.rc_time_probertt_entered) > rack_probe_rtt_safety_val)) {
3770 /*
3771 * Probe RTT safety value triggered!
3772 */
3773 rack_log_rtt_shrinks(rack, us_cts,
3774 get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt),
3775 __LINE__, RACK_RTTS_SAFETY);
3776 rack_exit_probertt(rack, us_cts);
3777 }
3778 /* Calculate the max we will wait */
3779 endtime = rack->r_ctl.rc_time_probertt_entered + (rack->r_ctl.rc_gp_srtt * rack_max_drain_wait);
3780 if (rack->rc_highly_buffered)
3781 endtime += (rack->r_ctl.rc_gp_srtt * rack_max_drain_hbp);
3782 /* Calculate the min we must wait */
3783 must_stay = rack->r_ctl.rc_time_probertt_entered + (rack->r_ctl.rc_gp_srtt * rack_must_drain);
3784 if ((ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked) > rack->r_ctl.rc_target_probertt_flight) &&
3785 TSTMP_LT(us_cts, endtime)) {
3786 uint32_t calc;
3787 /* Do we lower more? */
3788 no_exit:
3789 if (TSTMP_GT(us_cts, rack->r_ctl.rc_time_probertt_entered))
3790 calc = us_cts - rack->r_ctl.rc_time_probertt_entered;
3791 else
3792 calc = 0;
3793 calc /= max(rack->r_ctl.rc_gp_srtt, 1);
3794 if (calc) {
3795 /* Maybe */
3796 calc *= rack_per_of_gp_probertt_reduce;
3797 rack->r_ctl.rack_per_of_gp_probertt = rack_per_of_gp_probertt - calc;
3798 /* Limit it too */
3799 if (rack->r_ctl.rack_per_of_gp_probertt < rack_per_of_gp_lowthresh)
3800 rack->r_ctl.rack_per_of_gp_probertt = rack_per_of_gp_lowthresh;
3801 }
3802 /* We must reach target or the time set */
3803 return;
3804 }
3805 if (rack->r_ctl.rc_time_probertt_starts == 0) {
3806 if ((TSTMP_LT(us_cts, must_stay) &&
3807 rack->rc_highly_buffered) ||
3808 (ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked) >
3809 rack->r_ctl.rc_target_probertt_flight)) {
3810 /* We are not past the must_stay time */
3811 goto no_exit;
3812 }
3813 rack_log_rtt_shrinks(rack, us_cts,
3814 get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt),
3815 __LINE__, RACK_RTTS_REACHTARGET);
3816 rack->r_ctl.rc_time_probertt_starts = us_cts;
3817 if (rack->r_ctl.rc_time_probertt_starts == 0)
3818 rack->r_ctl.rc_time_probertt_starts = 1;
3819 /* Restore back to our rate we want to pace at in prtt */
3820 rack->r_ctl.rack_per_of_gp_probertt = rack_per_of_gp_probertt;
3821 }
3822 /*
3823 * Setup our end time, some number of gp_srtts plus 200ms.
3824 */
3825 no_overflow = ((uint64_t)rack->r_ctl.rc_gp_srtt *
3826 (uint64_t)rack_probertt_gpsrtt_cnt_mul);
3827 if (rack_probertt_gpsrtt_cnt_div)
3828 endtime = (uint32_t)(no_overflow / (uint64_t)rack_probertt_gpsrtt_cnt_div);
3829 else
3830 endtime = 0;
3831 endtime += rack_min_probertt_hold;
3832 endtime += rack->r_ctl.rc_time_probertt_starts;
3833 if (TSTMP_GEQ(us_cts, endtime)) {
3834 /* yes, exit probertt */
3835 rack_exit_probertt(rack, us_cts);
3836 }
3837
3838 } else if ((us_cts - rack->r_ctl.rc_lower_rtt_us_cts) >= rack_time_between_probertt) {
3839 /* Go into probertt, its been too long since we went lower */
3840 rack_enter_probertt(rack, us_cts);
3841 }
3842 }
3843
3844 static void
3845 rack_update_multiplier(struct tcp_rack *rack, int32_t timely_says, uint64_t last_bw_est,
3846 uint32_t rtt, int32_t rtt_diff)
3847 {
3848 uint64_t cur_bw, up_bnd, low_bnd, subfr;
3849 uint32_t losses;
3850
3851 if ((rack->rc_gp_dyn_mul == 0) ||
3852 (rack->use_fixed_rate) ||
3853 (rack->in_probe_rtt) ||
3854 (rack->rc_always_pace == 0)) {
3855 /* No dynamic GP multiplier in play */
3856 return;
3857 }
3858 losses = rack->r_ctl.rc_loss_count - rack->r_ctl.rc_loss_at_start;
3859 cur_bw = rack_get_bw(rack);
3860 /* Calculate our up and down range */
3861 up_bnd = rack->r_ctl.last_gp_comp_bw * (uint64_t)rack_gp_per_bw_mul_up;
3862 up_bnd /= 100;
3863 up_bnd += rack->r_ctl.last_gp_comp_bw;
3864
3865 subfr = (uint64_t)rack->r_ctl.last_gp_comp_bw * (uint64_t)rack_gp_per_bw_mul_down;
3866 subfr /= 100;
3867 low_bnd = rack->r_ctl.last_gp_comp_bw - subfr;
3868 if ((timely_says == 2) && (rack->r_ctl.rc_no_push_at_mrtt)) {
3869 /*
3870 * This is the case where our RTT is above
3871 * the max target and we have been configured
3872 * to just do timely no bonus up stuff in that case.
3873 *
3874 * There are two configurations, set to 1, and we
3875 * just do timely if we are over our max. If its
3876 * set above 1 then we slam the multipliers down
3877 * to 100 and then decrement per timely.
3878 */
3879 rack_log_timely(rack, timely_says, cur_bw, low_bnd, up_bnd,
3880 __LINE__, 3);
3881 if (rack->r_ctl.rc_no_push_at_mrtt > 1)
3882 rack_validate_multipliers_at_or_below_100(rack);
3883 rack_decrease_bw_mul(rack, timely_says, rtt, rtt_diff);
3884 } else if ((last_bw_est < low_bnd) && !losses) {
3885 /*
3886 * We are decreasing this is a bit complicated this
3887 * means we are loosing ground. This could be
3888 * because another flow entered and we are competing
3889 * for b/w with it. This will push the RTT up which
3890 * makes timely unusable unless we want to get shoved
3891 * into a corner and just be backed off (the age
3892 * old problem with delay based CC).
3893 *
3894 * On the other hand if it was a route change we
3895 * would like to stay somewhat contained and not
3896 * blow out the buffers.
3897 */
3898 rack_log_timely(rack, timely_says, cur_bw, low_bnd, up_bnd,
3899 __LINE__, 3);
3900 rack->r_ctl.last_gp_comp_bw = cur_bw;
3901 if (rack->rc_gp_bwred == 0) {
3902 /* Go into reduction counting */
3903 rack->rc_gp_bwred = 1;
3904 rack->rc_gp_timely_dec_cnt = 0;
3905 }
3906 if ((rack->rc_gp_timely_dec_cnt < rack_timely_max_push_drop) ||
3907 (timely_says == 0)) {
3908 /*
3909 * Push another time with a faster pacing
3910 * to try to gain back (we include override to
3911 * get a full raise factor).
3912 */
3913 if ((rack->rc_gp_saw_ca && rack->r_ctl.rack_per_of_gp_ca <= rack_down_raise_thresh) ||
3914 (rack->rc_gp_saw_ss && rack->r_ctl.rack_per_of_gp_ss <= rack_down_raise_thresh) ||
3915 (timely_says == 0) ||
3916 (rack_down_raise_thresh == 0)) {
3917 /*
3918 * Do an override up in b/w if we were
3919 * below the threshold or if the threshold
3920 * is zero we always do the raise.
3921 */
3922 rack_increase_bw_mul(rack, timely_says, cur_bw, last_bw_est, 1);
3923 } else {
3924 /* Log it stays the same */
3925 rack_log_timely(rack, 0, last_bw_est, low_bnd, 0,
3926 __LINE__, 11);
3927 }
3928 rack->rc_gp_timely_dec_cnt++;
3929 /* We are not incrementing really no-count */
3930 rack->rc_gp_incr = 0;
3931 rack->rc_gp_timely_inc_cnt = 0;
3932 } else {
3933 /*
3934 * Lets just use the RTT
3935 * information and give up
3936 * pushing.
3937 */
3938 goto use_timely;
3939 }
3940 } else if ((timely_says != 2) &&
3941 !losses &&
3942 (last_bw_est > up_bnd)) {
3943 /*
3944 * We are increasing b/w lets keep going, updating
3945 * our b/w and ignoring any timely input, unless
3946 * of course we are at our max raise (if there is one).
3947 */
3948
3949 rack_log_timely(rack, timely_says, cur_bw, low_bnd, up_bnd,
3950 __LINE__, 3);
3951 rack->r_ctl.last_gp_comp_bw = cur_bw;
3952 if (rack->rc_gp_saw_ss &&
3953 rack_per_upper_bound_ss &&
3954 (rack->r_ctl.rack_per_of_gp_ss == rack_per_upper_bound_ss)) {
3955 /*
3956 * In cases where we can't go higher
3957 * we should just use timely.
3958 */
3959 goto use_timely;
3960 }
3961 if (rack->rc_gp_saw_ca &&
3962 rack_per_upper_bound_ca &&
3963 (rack->r_ctl.rack_per_of_gp_ca == rack_per_upper_bound_ca)) {
3964 /*
3965 * In cases where we can't go higher
3966 * we should just use timely.
3967 */
3968 goto use_timely;
3969 }
3970 rack->rc_gp_bwred = 0;
3971 rack->rc_gp_timely_dec_cnt = 0;
3972 /* You get a set number of pushes if timely is trying to reduce */
3973 if ((rack->rc_gp_incr < rack_timely_max_push_rise) || (timely_says == 0)) {
3974 rack_increase_bw_mul(rack, timely_says, cur_bw, last_bw_est, 0);
3975 } else {
3976 /* Log it stays the same */
3977 rack_log_timely(rack, 0, last_bw_est, up_bnd, 0,
3978 __LINE__, 12);
3979 }
3980 return;
3981 } else {
3982 /*
3983 * We are staying between the lower and upper range bounds
3984 * so use timely to decide.
3985 */
3986 rack_log_timely(rack, timely_says, cur_bw, low_bnd, up_bnd,
3987 __LINE__, 3);
3988 use_timely:
3989 if (timely_says) {
3990 rack->rc_gp_incr = 0;
3991 rack->rc_gp_timely_inc_cnt = 0;
3992 if ((rack->rc_gp_timely_dec_cnt < rack_timely_max_push_drop) &&
3993 !losses &&
3994 (last_bw_est < low_bnd)) {
3995 /* We are loosing ground */
3996 rack_increase_bw_mul(rack, timely_says, cur_bw, last_bw_est, 0);
3997 rack->rc_gp_timely_dec_cnt++;
3998 /* We are not incrementing really no-count */
3999 rack->rc_gp_incr = 0;
4000 rack->rc_gp_timely_inc_cnt = 0;
4001 } else
4002 rack_decrease_bw_mul(rack, timely_says, rtt, rtt_diff);
4003 } else {
4004 rack->rc_gp_bwred = 0;
4005 rack->rc_gp_timely_dec_cnt = 0;
4006 rack_increase_bw_mul(rack, timely_says, cur_bw, last_bw_est, 0);
4007 }
4008 }
4009 }
4010
4011 static int32_t
4012 rack_make_timely_judgement(struct tcp_rack *rack, uint32_t rtt, int32_t rtt_diff, uint32_t prev_rtt)
4013 {
4014 int32_t timely_says;
4015 uint64_t log_mult, log_rtt_a_diff;
4016
4017 log_rtt_a_diff = rtt;
4018 log_rtt_a_diff <<= 32;
4019 log_rtt_a_diff |= (uint32_t)rtt_diff;
4020 if (rtt >= (get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt) *
4021 rack_gp_rtt_maxmul)) {
4022 /* Reduce the b/w multiplier */
4023 timely_says = 2;
4024 log_mult = get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt) * rack_gp_rtt_maxmul;
4025 log_mult <<= 32;
4026 log_mult |= prev_rtt;
4027 rack_log_timely(rack, timely_says, log_mult,
4028 get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt),
4029 log_rtt_a_diff, __LINE__, 4);
4030 } else if (rtt <= (get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt) +
4031 ((get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt) * rack_gp_rtt_minmul) /
4032 max(rack_gp_rtt_mindiv , 1)))) {
4033 /* Increase the b/w multiplier */
4034 log_mult = get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt) +
4035 ((get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt) * rack_gp_rtt_minmul) /
4036 max(rack_gp_rtt_mindiv , 1));
4037 log_mult <<= 32;
4038 log_mult |= prev_rtt;
4039 timely_says = 0;
4040 rack_log_timely(rack, timely_says, log_mult ,
4041 get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt),
4042 log_rtt_a_diff, __LINE__, 5);
4043 } else {
4044 /*
4045 * Use a gradient to find it the timely gradient
4046 * is:
4047 * grad = rc_rtt_diff / min_rtt;
4048 *
4049 * anything below or equal to 0 will be
4050 * a increase indication. Anything above
4051 * zero is a decrease. Note we take care
4052 * of the actual gradient calculation
4053 * in the reduction (its not needed for
4054 * increase).
4055 */
4056 log_mult = prev_rtt;
4057 if (rtt_diff <= 0) {
4058 /*
4059 * Rttdiff is less than zero, increase the
4060 * b/w multiplier (its 0 or negative)
4061 */
4062 timely_says = 0;
4063 rack_log_timely(rack, timely_says, log_mult,
4064 get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt), log_rtt_a_diff, __LINE__, 6);
4065 } else {
4066 /* Reduce the b/w multiplier */
4067 timely_says = 1;
4068 rack_log_timely(rack, timely_says, log_mult,
4069 get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt), log_rtt_a_diff, __LINE__, 7);
4070 }
4071 }
4072 return (timely_says);
4073 }
4074
4075 static void
4076 rack_do_goodput_measurement(struct tcpcb *tp, struct tcp_rack *rack,
4077 tcp_seq th_ack, int line, uint8_t quality)
4078 {
4079 uint64_t tim, bytes_ps, ltim, stim, utim;
4080 uint32_t segsiz, bytes, reqbytes, us_cts;
4081 int32_t gput, new_rtt_diff, timely_says;
4082 uint64_t resid_bw, subpart = 0, addpart = 0, srtt;
4083 int did_add = 0;
4084
4085 us_cts = tcp_tv_to_usectick(&rack->r_ctl.act_rcv_time);
4086 segsiz = min(ctf_fixed_maxseg(tp), rack->r_ctl.rc_pace_min_segs);
4087 if (TSTMP_GEQ(us_cts, tp->gput_ts))
4088 tim = us_cts - tp->gput_ts;
4089 else
4090 tim = 0;
4091 if (rack->r_ctl.rc_gp_cumack_ts > rack->r_ctl.rc_gp_output_ts)
4092 stim = rack->r_ctl.rc_gp_cumack_ts - rack->r_ctl.rc_gp_output_ts;
4093 else
4094 stim = 0;
4095 /*
4096 * Use the larger of the send time or ack time. This prevents us
4097 * from being influenced by ack artifacts to come up with too
4098 * high of measurement. Note that since we are spanning over many more
4099 * bytes in most of our measurements hopefully that is less likely to
4100 * occur.
4101 */
4102 if (tim > stim)
4103 utim = max(tim, 1);
4104 else
4105 utim = max(stim, 1);
4106 /* Lets get a msec time ltim too for the old stuff */
4107 ltim = max(1, (utim / HPTS_USEC_IN_MSEC));
4108 gput = (((uint64_t) (th_ack - tp->gput_seq)) << 3) / ltim;
4109 reqbytes = min(rc_init_window(rack), (MIN_GP_WIN * segsiz));
4110 if ((tim == 0) && (stim == 0)) {
4111 /*
4112 * Invalid measurement time, maybe
4113 * all on one ack/one send?
4114 */
4115 bytes = 0;
4116 bytes_ps = 0;
4117 rack_log_pacing_delay_calc(rack, bytes_ps, reqbytes,
4118 0, 0, 0, 10, __LINE__, NULL, quality);
4119 goto skip_measurement;
4120 }
4121 if (rack->r_ctl.rc_gp_lowrtt == 0xffffffff) {
4122 /* We never made a us_rtt measurement? */
4123 bytes = 0;
4124 bytes_ps = 0;
4125 rack_log_pacing_delay_calc(rack, bytes_ps, reqbytes,
4126 0, 0, 0, 10, __LINE__, NULL, quality);
4127 goto skip_measurement;
4128 }
4129 /*
4130 * Calculate the maximum possible b/w this connection
4131 * could have. We base our calculation on the lowest
4132 * rtt we have seen during the measurement and the
4133 * largest rwnd the client has given us in that time. This
4134 * forms a BDP that is the maximum that we could ever
4135 * get to the client. Anything larger is not valid.
4136 *
4137 * I originally had code here that rejected measurements
4138 * where the time was less than 1/2 the latest us_rtt.
4139 * But after thinking on that I realized its wrong since
4140 * say you had a 150Mbps or even 1Gbps link, and you
4141 * were a long way away.. example I am in Europe (100ms rtt)
4142 * talking to my 1Gbps link in S.C. Now measuring say 150,000
4143 * bytes my time would be 1.2ms, and yet my rtt would say
4144 * the measurement was invalid the time was < 50ms. The
4145 * same thing is true for 150Mb (8ms of time).
4146 *
4147 * A better way I realized is to look at what the maximum
4148 * the connection could possibly do. This is gated on
4149 * the lowest RTT we have seen and the highest rwnd.
4150 * We should in theory never exceed that, if we are
4151 * then something on the path is storing up packets
4152 * and then feeding them all at once to our endpoint
4153 * messing up our measurement.
4154 */
4155 rack->r_ctl.last_max_bw = rack->r_ctl.rc_gp_high_rwnd;
4156 rack->r_ctl.last_max_bw *= HPTS_USEC_IN_SEC;
4157 rack->r_ctl.last_max_bw /= rack->r_ctl.rc_gp_lowrtt;
4158 if (SEQ_LT(th_ack, tp->gput_seq)) {
4159 /* No measurement can be made */
4160 bytes = 0;
4161 bytes_ps = 0;
4162 rack_log_pacing_delay_calc(rack, bytes_ps, reqbytes,
4163 0, 0, 0, 10, __LINE__, NULL, quality);
4164 goto skip_measurement;
4165 } else
4166 bytes = (th_ack - tp->gput_seq);
4167 bytes_ps = (uint64_t)bytes;
4168 /*
4169 * Don't measure a b/w for pacing unless we have gotten at least
4170 * an initial windows worth of data in this measurement interval.
4171 *
4172 * Small numbers of bytes get badly influenced by delayed ack and
4173 * other artifacts. Note we take the initial window or our
4174 * defined minimum GP (defaulting to 10 which hopefully is the
4175 * IW).
4176 */
4177 if (rack->rc_gp_filled == 0) {
4178 /*
4179 * The initial estimate is special. We
4180 * have blasted out an IW worth of packets
4181 * without a real valid ack ts results. We
4182 * then setup the app_limited_needs_set flag,
4183 * this should get the first ack in (probably 2
4184 * MSS worth) to be recorded as the timestamp.
4185 * We thus allow a smaller number of bytes i.e.
4186 * IW - 2MSS.
4187 */
4188 reqbytes -= (2 * segsiz);
4189 /* Also lets fill previous for our first measurement to be neutral */
4190 rack->r_ctl.rc_prev_gp_srtt = rack->r_ctl.rc_gp_srtt;
4191 }
4192 if ((bytes_ps < reqbytes) || rack->app_limited_needs_set) {
4193 rack_log_pacing_delay_calc(rack, bytes_ps, reqbytes,
4194 rack->r_ctl.rc_app_limited_cnt,
4195 0, 0, 10, __LINE__, NULL, quality);
4196 goto skip_measurement;
4197 }
4198 /*
4199 * We now need to calculate the Timely like status so
4200 * we can update (possibly) the b/w multipliers.
4201 */
4202 new_rtt_diff = (int32_t)rack->r_ctl.rc_gp_srtt - (int32_t)rack->r_ctl.rc_prev_gp_srtt;
4203 if (rack->rc_gp_filled == 0) {
4204 /* No previous reading */
4205 rack->r_ctl.rc_rtt_diff = new_rtt_diff;
4206 } else {
4207 if (rack->measure_saw_probe_rtt == 0) {
4208 /*
4209 * We don't want a probertt to be counted
4210 * since it will be negative incorrectly. We
4211 * expect to be reducing the RTT when we
4212 * pace at a slower rate.
4213 */
4214 rack->r_ctl.rc_rtt_diff -= (rack->r_ctl.rc_rtt_diff / 8);
4215 rack->r_ctl.rc_rtt_diff += (new_rtt_diff / 8);
4216 }
4217 }
4218 timely_says = rack_make_timely_judgement(rack,
4219 rack->r_ctl.rc_gp_srtt,
4220 rack->r_ctl.rc_rtt_diff,
4221 rack->r_ctl.rc_prev_gp_srtt
4222 );
4223 bytes_ps *= HPTS_USEC_IN_SEC;
4224 bytes_ps /= utim;
4225 if (bytes_ps > rack->r_ctl.last_max_bw) {
4226 /*
4227 * Something is on path playing
4228 * since this b/w is not possible based
4229 * on our BDP (highest rwnd and lowest rtt
4230 * we saw in the measurement window).
4231 *
4232 * Another option here would be to
4233 * instead skip the measurement.
4234 */
4235 rack_log_pacing_delay_calc(rack, bytes, reqbytes,
4236 bytes_ps, rack->r_ctl.last_max_bw, 0,
4237 11, __LINE__, NULL, quality);
4238 bytes_ps = rack->r_ctl.last_max_bw;
4239 }
4240 /* We store gp for b/w in bytes per second */
4241 if (rack->rc_gp_filled == 0) {
4242 /* Initial measurement */
4243 if (bytes_ps) {
4244 rack->r_ctl.gp_bw = bytes_ps;
4245 rack->rc_gp_filled = 1;
4246 rack->r_ctl.num_measurements = 1;
4247 rack_set_pace_segments(rack->rc_tp, rack, __LINE__, NULL);
4248 } else {
4249 rack_log_pacing_delay_calc(rack, bytes_ps, reqbytes,
4250 rack->r_ctl.rc_app_limited_cnt,
4251 0, 0, 10, __LINE__, NULL, quality);
4252 }
4253 if (tcp_in_hpts(rack->rc_inp) &&
4254 (rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT)) {
4255 /*
4256 * Ok we can't trust the pacer in this case
4257 * where we transition from un-paced to paced.
4258 * Or for that matter when the burst mitigation
4259 * was making a wild guess and got it wrong.
4260 * Stop the pacer and clear up all the aggregate
4261 * delays etc.
4262 */
4263 tcp_hpts_remove(rack->rc_inp);
4264 rack->r_ctl.rc_hpts_flags = 0;
4265 rack->r_ctl.rc_last_output_to = 0;
4266 }
4267 did_add = 2;
4268 } else if (rack->r_ctl.num_measurements < RACK_REQ_AVG) {
4269 /* Still a small number run an average */
4270 rack->r_ctl.gp_bw += bytes_ps;
4271 addpart = rack->r_ctl.num_measurements;
4272 rack->r_ctl.num_measurements++;
4273 if (rack->r_ctl.num_measurements >= RACK_REQ_AVG) {
4274 /* We have collected enough to move forward */
4275 rack->r_ctl.gp_bw /= (uint64_t)rack->r_ctl.num_measurements;
4276 }
4277 did_add = 3;
4278 } else {
4279 /*
4280 * We want to take 1/wma of the goodput and add in to 7/8th
4281 * of the old value weighted by the srtt. So if your measurement
4282 * period is say 2 SRTT's long you would get 1/4 as the
4283 * value, if it was like 1/2 SRTT then you would get 1/16th.
4284 *
4285 * But we must be careful not to take too much i.e. if the
4286 * srtt is say 20ms and the measurement is taken over
4287 * 400ms our weight would be 400/20 i.e. 20. On the
4288 * other hand if we get a measurement over 1ms with a
4289 * 10ms rtt we only want to take a much smaller portion.
4290 */
4291 if (rack->r_ctl.num_measurements < 0xff) {
4292 rack->r_ctl.num_measurements++;
4293 }
4294 srtt = (uint64_t)tp->t_srtt;
4295 if (srtt == 0) {
4296 /*
4297 * Strange why did t_srtt go back to zero?
4298 */
4299 if (rack->r_ctl.rc_rack_min_rtt)
4300 srtt = rack->r_ctl.rc_rack_min_rtt;
4301 else
4302 srtt = HPTS_USEC_IN_MSEC;
4303 }
4304 /*
4305 * XXXrrs: Note for reviewers, in playing with
4306 * dynamic pacing I discovered this GP calculation
4307 * as done originally leads to some undesired results.
4308 * Basically you can get longer measurements contributing
4309 * too much to the WMA. Thus I changed it if you are doing
4310 * dynamic adjustments to only do the aportioned adjustment
4311 * if we have a very small (time wise) measurement. Longer
4312 * measurements just get there weight (defaulting to 1/8)
4313 * add to the WMA. We may want to think about changing
4314 * this to always do that for both sides i.e. dynamic
4315 * and non-dynamic... but considering lots of folks
4316 * were playing with this I did not want to change the
4317 * calculation per.se. without your thoughts.. Lawerence?
4318 * Peter??
4319 */
4320 if (rack->rc_gp_dyn_mul == 0) {
4321 subpart = rack->r_ctl.gp_bw * utim;
4322 subpart /= (srtt * 8);
4323 if (subpart < (rack->r_ctl.gp_bw / 2)) {
4324 /*
4325 * The b/w update takes no more
4326 * away then 1/2 our running total
4327 * so factor it in.
4328 */
4329 addpart = bytes_ps * utim;
4330 addpart /= (srtt * 8);
4331 } else {
4332 /*
4333 * Don't allow a single measurement
4334 * to account for more than 1/2 of the
4335 * WMA. This could happen on a retransmission
4336 * where utim becomes huge compared to
4337 * srtt (multiple retransmissions when using
4338 * the sending rate which factors in all the
4339 * transmissions from the first one).
4340 */
4341 subpart = rack->r_ctl.gp_bw / 2;
4342 addpart = bytes_ps / 2;
4343 }
4344 resid_bw = rack->r_ctl.gp_bw - subpart;
4345 rack->r_ctl.gp_bw = resid_bw + addpart;
4346 did_add = 1;
4347 } else {
4348 if ((utim / srtt) <= 1) {
4349 /*
4350 * The b/w update was over a small period
4351 * of time. The idea here is to prevent a small
4352 * measurement time period from counting
4353 * too much. So we scale it based on the
4354 * time so it attributes less than 1/rack_wma_divisor
4355 * of its measurement.
4356 */
4357 subpart = rack->r_ctl.gp_bw * utim;
4358 subpart /= (srtt * rack_wma_divisor);
4359 addpart = bytes_ps * utim;
4360 addpart /= (srtt * rack_wma_divisor);
4361 } else {
4362 /*
4363 * The scaled measurement was long
4364 * enough so lets just add in the
4365 * portion of the measurement i.e. 1/rack_wma_divisor
4366 */
4367 subpart = rack->r_ctl.gp_bw / rack_wma_divisor;
4368 addpart = bytes_ps / rack_wma_divisor;
4369 }
4370 if ((rack->measure_saw_probe_rtt == 0) ||
4371 (bytes_ps > rack->r_ctl.gp_bw)) {
4372 /*
4373 * For probe-rtt we only add it in
4374 * if its larger, all others we just
4375 * add in.
4376 */
4377 did_add = 1;
4378 resid_bw = rack->r_ctl.gp_bw - subpart;
4379 rack->r_ctl.gp_bw = resid_bw + addpart;
4380 }
4381 }
4382 }
4383 if ((rack->gp_ready == 0) &&
4384 (rack->r_ctl.num_measurements >= rack->r_ctl.req_measurements)) {
4385 /* We have enough measurements now */
4386 rack->gp_ready = 1;
4387 rack_set_cc_pacing(rack);
4388 if (rack->defer_options)
4389 rack_apply_deferred_options(rack);
4390 }
4391 rack_log_pacing_delay_calc(rack, subpart, addpart, bytes_ps, stim,
4392 rack_get_bw(rack), 22, did_add, NULL, quality);
4393 /* We do not update any multipliers if we are in or have seen a probe-rtt */
4394 if ((rack->measure_saw_probe_rtt == 0) && rack->rc_gp_rtt_set)
4395 rack_update_multiplier(rack, timely_says, bytes_ps,
4396 rack->r_ctl.rc_gp_srtt,
4397 rack->r_ctl.rc_rtt_diff);
4398 rack_log_pacing_delay_calc(rack, bytes, tim, bytes_ps, stim,
4399 rack_get_bw(rack), 3, line, NULL, quality);
4400 /* reset the gp srtt and setup the new prev */
4401 rack->r_ctl.rc_prev_gp_srtt = rack->r_ctl.rc_gp_srtt;
4402 /* Record the lost count for the next measurement */
4403 rack->r_ctl.rc_loss_at_start = rack->r_ctl.rc_loss_count;
4404 /*
4405 * We restart our diffs based on the gpsrtt in the
4406 * measurement window.
4407 */
4408 rack->rc_gp_rtt_set = 0;
4409 rack->rc_gp_saw_rec = 0;
4410 rack->rc_gp_saw_ca = 0;
4411 rack->rc_gp_saw_ss = 0;
4412 rack->rc_dragged_bottom = 0;
4413 skip_measurement:
4414
4415 #ifdef STATS
4416 stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_GPUT,
4417 gput);
4418 /*
4419 * XXXLAS: This is a temporary hack, and should be
4420 * chained off VOI_TCP_GPUT when stats(9) grows an
4421 * API to deal with chained VOIs.
4422 */
4423 if (tp->t_stats_gput_prev > 0)
4424 stats_voi_update_abs_s32(tp->t_stats,
4425 VOI_TCP_GPUT_ND,
4426 ((gput - tp->t_stats_gput_prev) * 100) /
4427 tp->t_stats_gput_prev);
4428 #endif
4429 tp->t_flags &= ~TF_GPUTINPROG;
4430 tp->t_stats_gput_prev = gput;
4431 /*
4432 * Now are we app limited now and there is space from where we
4433 * were to where we want to go?
4434 *
4435 * We don't do the other case i.e. non-applimited here since
4436 * the next send will trigger us picking up the missing data.
4437 */
4438 if (rack->r_ctl.rc_first_appl &&
4439 TCPS_HAVEESTABLISHED(tp->t_state) &&
4440 rack->r_ctl.rc_app_limited_cnt &&
4441 (SEQ_GT(rack->r_ctl.rc_first_appl->r_start, th_ack)) &&
4442 ((rack->r_ctl.rc_first_appl->r_end - th_ack) >
4443 max(rc_init_window(rack), (MIN_GP_WIN * segsiz)))) {
4444 /*
4445 * Yep there is enough outstanding to make a measurement here.
4446 */
4447 struct rack_sendmap *rsm, fe;
4448
4449 rack->r_ctl.rc_gp_lowrtt = 0xffffffff;
4450 rack->r_ctl.rc_gp_high_rwnd = rack->rc_tp->snd_wnd;
4451 tp->gput_ts = tcp_tv_to_usectick(&rack->r_ctl.act_rcv_time);
4452 rack->app_limited_needs_set = 0;
4453 tp->gput_seq = th_ack;
4454 if (rack->in_probe_rtt)
4455 rack->measure_saw_probe_rtt = 1;
4456 else if ((rack->measure_saw_probe_rtt) &&
4457 (SEQ_GEQ(tp->gput_seq, rack->r_ctl.rc_probertt_sndmax_atexit)))
4458 rack->measure_saw_probe_rtt = 0;
4459 if ((rack->r_ctl.rc_first_appl->r_end - th_ack) >= rack_get_measure_window(tp, rack)) {
4460 /* There is a full window to gain info from */
4461 tp->gput_ack = tp->gput_seq + rack_get_measure_window(tp, rack);
4462 } else {
4463 /* We can only measure up to the applimited point */
4464 tp->gput_ack = tp->gput_seq + (rack->r_ctl.rc_first_appl->r_end - th_ack);
4465 if ((tp->gput_ack - tp->gput_seq) < (MIN_GP_WIN * segsiz)) {
4466 /*
4467 * We don't have enough to make a measurement.
4468 */
4469 tp->t_flags &= ~TF_GPUTINPROG;
4470 rack_log_pacing_delay_calc(rack, tp->gput_ack, tp->gput_seq,
4471 0, 0, 0, 6, __LINE__, NULL, quality);
4472 return;
4473 }
4474 }
4475 if (tp->t_state >= TCPS_FIN_WAIT_1) {
4476 /*
4477 * We will get no more data into the SB
4478 * this means we need to have the data available
4479 * before we start a measurement.
4480 */
4481 if (sbavail(&tptosocket(tp)->so_snd) < (tp->gput_ack - tp->gput_seq)) {
4482 /* Nope not enough data. */
4483 return;
4484 }
4485 }
4486 tp->t_flags |= TF_GPUTINPROG;
4487 /*
4488 * Now we need to find the timestamp of the send at tp->gput_seq
4489 * for the send based measurement.
4490 */
4491 fe.r_start = tp->gput_seq;
4492 rsm = RB_FIND(rack_rb_tree_head, &rack->r_ctl.rc_mtree, &fe);
4493 if (rsm) {
4494 /* Ok send-based limit is set */
4495 if (SEQ_LT(rsm->r_start, tp->gput_seq)) {
4496 /*
4497 * Move back to include the earlier part
4498 * so our ack time lines up right (this may
4499 * make an overlapping measurement but thats
4500 * ok).
4501 */
4502 tp->gput_seq = rsm->r_start;
4503 }
4504 if (rsm->r_flags & RACK_ACKED)
4505 tp->gput_ts = (uint32_t)rsm->r_ack_arrival;
4506 else
4507 rack->app_limited_needs_set = 1;
4508 rack->r_ctl.rc_gp_output_ts = rsm->r_tim_lastsent[(rsm->r_rtr_cnt-1)];
4509 } else {
4510 /*
4511 * If we don't find the rsm due to some
4512 * send-limit set the current time, which
4513 * basically disables the send-limit.
4514 */
4515 struct timeval tv;
4516
4517 microuptime(&tv);
4518 rack->r_ctl.rc_gp_output_ts = rack_to_usec_ts(&tv);
4519 }
4520 rack_log_pacing_delay_calc(rack,
4521 tp->gput_seq,
4522 tp->gput_ack,
4523 (uint64_t)rsm,
4524 tp->gput_ts,
4525 rack->r_ctl.rc_app_limited_cnt,
4526 9,
4527 __LINE__, NULL, quality);
4528 }
4529 }
4530
4531 /*
4532 * CC wrapper hook functions
4533 */
4534 static void
4535 rack_ack_received(struct tcpcb *tp, struct tcp_rack *rack, uint32_t th_ack, uint16_t nsegs,
4536 uint16_t type, int32_t recovery)
4537 {
4538 uint32_t prior_cwnd, acked;
4539 struct tcp_log_buffer *lgb = NULL;
4540 uint8_t labc_to_use, quality;
4541
4542 INP_WLOCK_ASSERT(tptoinpcb(tp));
4543 tp->t_ccv.nsegs = nsegs;
4544 acked = tp->t_ccv.bytes_this_ack = (th_ack - tp->snd_una);
4545 if ((recovery) && (rack->r_ctl.rc_early_recovery_segs)) {
4546 uint32_t max;
4547
4548 max = rack->r_ctl.rc_early_recovery_segs * ctf_fixed_maxseg(tp);
4549 if (tp->t_ccv.bytes_this_ack > max) {
4550 tp->t_ccv.bytes_this_ack = max;
4551 }
4552 }
4553 #ifdef STATS
4554 stats_voi_update_abs_s32(tp->t_stats, VOI_TCP_CALCFRWINDIFF,
4555 ((int32_t)rack->r_ctl.cwnd_to_use) - tp->snd_wnd);
4556 #endif
4557 quality = RACK_QUALITY_NONE;
4558 if ((tp->t_flags & TF_GPUTINPROG) &&
4559 rack_enough_for_measurement(tp, rack, th_ack, &quality)) {
4560 /* Measure the Goodput */
4561 rack_do_goodput_measurement(tp, rack, th_ack, __LINE__, quality);
4562 #ifdef NETFLIX_PEAKRATE
4563 if ((type == CC_ACK) &&
4564 (tp->t_maxpeakrate)) {
4565 /*
4566 * We update t_peakrate_thr. This gives us roughly
4567 * one update per round trip time. Note
4568 * it will only be used if pace_always is off i.e
4569 * we don't do this for paced flows.
4570 */
4571 rack_update_peakrate_thr(tp);
4572 }
4573 #endif
4574 }
4575 /* Which way our we limited, if not cwnd limited no advance in CA */
4576 if (tp->snd_cwnd <= tp->snd_wnd)
4577 tp->t_ccv.flags |= CCF_CWND_LIMITED;
4578 else
4579 tp->t_ccv.flags &= ~CCF_CWND_LIMITED;
4580 if (tp->snd_cwnd > tp->snd_ssthresh) {
4581 tp->t_bytes_acked += min(tp->t_ccv.bytes_this_ack,
4582 nsegs * V_tcp_abc_l_var * ctf_fixed_maxseg(tp));
4583 /* For the setting of a window past use the actual scwnd we are using */
4584 if (tp->t_bytes_acked >= rack->r_ctl.cwnd_to_use) {
4585 tp->t_bytes_acked -= rack->r_ctl.cwnd_to_use;
4586 tp->t_ccv.flags |= CCF_ABC_SENTAWND;
4587 }
4588 } else {
4589 tp->t_ccv.flags &= ~CCF_ABC_SENTAWND;
4590 tp->t_bytes_acked = 0;
4591 }
4592 prior_cwnd = tp->snd_cwnd;
4593 if ((recovery == 0) || (rack_max_abc_post_recovery == 0) || rack->r_use_labc_for_rec ||
4594 (rack_client_low_buf && (rack->client_bufferlvl < rack_client_low_buf)))
4595 labc_to_use = rack->rc_labc;
4596 else
4597 labc_to_use = rack_max_abc_post_recovery;
4598 if (rack_verbose_logging && (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF)) {
4599 union tcp_log_stackspecific log;
4600 struct timeval tv;
4601
4602 memset(&log.u_bbr, 0, sizeof(log.u_bbr));
4603 log.u_bbr.timeStamp = tcp_get_usecs(&tv);
4604 log.u_bbr.flex1 = th_ack;
4605 log.u_bbr.flex2 = tp->t_ccv.flags;
4606 log.u_bbr.flex3 = tp->t_ccv.bytes_this_ack;
4607 log.u_bbr.flex4 = tp->t_ccv.nsegs;
4608 log.u_bbr.flex5 = labc_to_use;
4609 log.u_bbr.flex6 = prior_cwnd;
4610 log.u_bbr.flex7 = V_tcp_do_newsack;
4611 log.u_bbr.flex8 = 1;
4612 lgb = tcp_log_event_(tp, NULL, NULL, NULL, BBR_LOG_CWND, 0,
4613 0, &log, false, NULL, NULL, 0, &tv);
4614 }
4615 if (CC_ALGO(tp)->ack_received != NULL) {
4616 /* XXXLAS: Find a way to live without this */
4617 tp->t_ccv.curack = th_ack;
4618 tp->t_ccv.labc = labc_to_use;
4619 tp->t_ccv.flags |= CCF_USE_LOCAL_ABC;
4620 CC_ALGO(tp)->ack_received(&tp->t_ccv, type);
4621 }
4622 if (lgb) {
4623 lgb->tlb_stackinfo.u_bbr.flex6 = tp->snd_cwnd;
4624 }
4625 if (rack->r_must_retran) {
4626 if (SEQ_GEQ(th_ack, rack->r_ctl.rc_snd_max_at_rto)) {
4627 /*
4628 * We now are beyond the rxt point so lets disable
4629 * the flag.
4630 */
4631 rack->r_ctl.rc_out_at_rto = 0;
4632 rack->r_must_retran = 0;
4633 } else if ((prior_cwnd + ctf_fixed_maxseg(tp)) <= tp->snd_cwnd) {
4634 /*
4635 * Only decrement the rc_out_at_rto if the cwnd advances
4636 * at least a whole segment. Otherwise next time the peer
4637 * acks, we won't be able to send this generaly happens
4638 * when we are in Congestion Avoidance.
4639 */
4640 if (acked <= rack->r_ctl.rc_out_at_rto){
4641 rack->r_ctl.rc_out_at_rto -= acked;
4642 } else {
4643 rack->r_ctl.rc_out_at_rto = 0;
4644 }
4645 }
4646 }
4647 #ifdef STATS
4648 stats_voi_update_abs_ulong(tp->t_stats, VOI_TCP_LCWIN, rack->r_ctl.cwnd_to_use);
4649 #endif
4650 if (rack->r_ctl.rc_rack_largest_cwnd < rack->r_ctl.cwnd_to_use) {
4651 rack->r_ctl.rc_rack_largest_cwnd = rack->r_ctl.cwnd_to_use;
4652 }
4653 #ifdef NETFLIX_PEAKRATE
4654 /* we enforce max peak rate if it is set and we are not pacing */
4655 if ((rack->rc_always_pace == 0) &&
4656 tp->t_peakrate_thr &&
4657 (tp->snd_cwnd > tp->t_peakrate_thr)) {
4658 tp->snd_cwnd = tp->t_peakrate_thr;
4659 }
4660 #endif
4661 }
4662
4663 static void
4664 tcp_rack_partialack(struct tcpcb *tp)
4665 {
4666 struct tcp_rack *rack;
4667
4668 rack = (struct tcp_rack *)tp->t_fb_ptr;
4669 INP_WLOCK_ASSERT(tptoinpcb(tp));
4670 /*
4671 * If we are doing PRR and have enough
4672 * room to send <or> we are pacing and prr
4673 * is disabled we will want to see if we
4674 * can send data (by setting r_wanted_output to
4675 * true).
4676 */
4677 if ((rack->r_ctl.rc_prr_sndcnt > 0) ||
4678 rack->rack_no_prr)
4679 rack->r_wanted_output = 1;
4680 }
4681
4682 static void
4683 rack_post_recovery(struct tcpcb *tp, uint32_t th_ack)
4684 {
4685 struct tcp_rack *rack;
4686 uint32_t orig_cwnd;
4687
4688 orig_cwnd = tp->snd_cwnd;
4689 INP_WLOCK_ASSERT(tptoinpcb(tp));
4690 rack = (struct tcp_rack *)tp->t_fb_ptr;
4691 /* only alert CC if we alerted when we entered */
4692 if (CC_ALGO(tp)->post_recovery != NULL) {
4693 tp->t_ccv.curack = th_ack;
4694 CC_ALGO(tp)->post_recovery(&tp->t_ccv);
4695 if (tp->snd_cwnd < tp->snd_ssthresh) {
4696 /*
4697 * Rack has burst control and pacing
4698 * so lets not set this any lower than
4699 * snd_ssthresh per RFC-6582 (option 2).
4700 */
4701 tp->snd_cwnd = tp->snd_ssthresh;
4702 }
4703 }
4704 if (rack_verbose_logging && (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF)) {
4705 union tcp_log_stackspecific log;
4706 struct timeval tv;
4707
4708 memset(&log.u_bbr, 0, sizeof(log.u_bbr));
4709 log.u_bbr.timeStamp = tcp_get_usecs(&tv);
4710 log.u_bbr.flex1 = th_ack;
4711 log.u_bbr.flex2 = tp->t_ccv.flags;
4712 log.u_bbr.flex3 = tp->t_ccv.bytes_this_ack;
4713 log.u_bbr.flex4 = tp->t_ccv.nsegs;
4714 log.u_bbr.flex5 = V_tcp_abc_l_var;
4715 log.u_bbr.flex6 = orig_cwnd;
4716 log.u_bbr.flex7 = V_tcp_do_newsack;
4717 log.u_bbr.pkts_out = rack->r_ctl.rc_prr_sndcnt;
4718 log.u_bbr.flex8 = 2;
4719 tcp_log_event_(tp, NULL, NULL, NULL, BBR_LOG_CWND, 0,
4720 0, &log, false, NULL, NULL, 0, &tv);
4721 }
4722 if ((rack->rack_no_prr == 0) &&
4723 (rack->no_prr_addback == 0) &&
4724 (rack->r_ctl.rc_prr_sndcnt > 0)) {
4725 /*
4726 * Suck the next prr cnt back into cwnd, but
4727 * only do that if we are not application limited.
4728 */
4729 if (ctf_outstanding(tp) <= sbavail(&tptosocket(tp)->so_snd)) {
4730 /*
4731 * We are allowed to add back to the cwnd the amount we did
4732 * not get out if:
4733 * a) no_prr_addback is off.
4734 * b) we are not app limited
4735 * c) we are doing prr
4736 * <and>
4737 * d) it is bounded by rack_prr_addbackmax (if addback is 0, then none).
4738 */
4739 tp->snd_cwnd += min((ctf_fixed_maxseg(tp) * rack_prr_addbackmax),
4740 rack->r_ctl.rc_prr_sndcnt);
4741 }
4742 rack->r_ctl.rc_prr_sndcnt = 0;
4743 rack_log_to_prr(rack, 1, 0, __LINE__);
4744 }
4745 rack_log_to_prr(rack, 14, orig_cwnd, __LINE__);
4746 tp->snd_recover = tp->snd_una;
4747 if (rack->r_ctl.dsack_persist) {
4748 rack->r_ctl.dsack_persist--;
4749 if (rack->r_ctl.num_dsack && (rack->r_ctl.dsack_persist == 0)) {
4750 rack->r_ctl.num_dsack = 0;
4751 }
4752 rack_log_dsack_event(rack, 1, __LINE__, 0, 0);
4753 }
4754 EXIT_RECOVERY(tp->t_flags);
4755 }
4756
4757 static void
4758 rack_cong_signal(struct tcpcb *tp, uint32_t type, uint32_t ack, int line)
4759 {
4760 struct tcp_rack *rack;
4761 uint32_t ssthresh_enter, cwnd_enter, in_rec_at_entry, orig_cwnd;
4762
4763 INP_WLOCK_ASSERT(tptoinpcb(tp));
4764 #ifdef STATS
4765 stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_CSIG, type);
4766 #endif
4767 if (IN_RECOVERY(tp->t_flags) == 0) {
4768 in_rec_at_entry = 0;
4769 ssthresh_enter = tp->snd_ssthresh;
4770 cwnd_enter = tp->snd_cwnd;
4771 } else
4772 in_rec_at_entry = 1;
4773 rack = (struct tcp_rack *)tp->t_fb_ptr;
4774 switch (type) {
4775 case CC_NDUPACK:
4776 tp->t_flags &= ~TF_WASFRECOVERY;
4777 tp->t_flags &= ~TF_WASCRECOVERY;
4778 if (!IN_FASTRECOVERY(tp->t_flags)) {
4779 rack->r_ctl.rc_prr_delivered = 0;
4780 rack->r_ctl.rc_prr_out = 0;
4781 if (rack->rack_no_prr == 0) {
4782 rack->r_ctl.rc_prr_sndcnt = ctf_fixed_maxseg(tp);
4783 rack_log_to_prr(rack, 2, in_rec_at_entry, line);
4784 }
4785 rack->r_ctl.rc_prr_recovery_fs = tp->snd_max - tp->snd_una;
4786 tp->snd_recover = tp->snd_max;
4787 if (tp->t_flags2 & TF2_ECN_PERMIT)
4788 tp->t_flags2 |= TF2_ECN_SND_CWR;
4789 }
4790 break;
4791 case CC_ECN:
4792 if (!IN_CONGRECOVERY(tp->t_flags) ||
4793 /*
4794 * Allow ECN reaction on ACK to CWR, if
4795 * that data segment was also CE marked.
4796 */
4797 SEQ_GEQ(ack, tp->snd_recover)) {
4798 EXIT_CONGRECOVERY(tp->t_flags);
4799 KMOD_TCPSTAT_INC(tcps_ecn_rcwnd);
4800 tp->snd_recover = tp->snd_max + 1;
4801 if (tp->t_flags2 & TF2_ECN_PERMIT)
4802 tp->t_flags2 |= TF2_ECN_SND_CWR;
4803 }
4804 break;
4805 case CC_RTO:
4806 tp->t_dupacks = 0;
4807 tp->t_bytes_acked = 0;
4808 EXIT_RECOVERY(tp->t_flags);
4809 tp->snd_ssthresh = max(2, min(tp->snd_wnd, rack->r_ctl.cwnd_to_use) / 2 /
4810 ctf_fixed_maxseg(tp)) * ctf_fixed_maxseg(tp);
4811 orig_cwnd = tp->snd_cwnd;
4812 tp->snd_cwnd = ctf_fixed_maxseg(tp);
4813 rack_log_to_prr(rack, 16, orig_cwnd, line);
4814 if (tp->t_flags2 & TF2_ECN_PERMIT)
4815 tp->t_flags2 |= TF2_ECN_SND_CWR;
4816 break;
4817 case CC_RTO_ERR:
4818 KMOD_TCPSTAT_INC(tcps_sndrexmitbad);
4819 /* RTO was unnecessary, so reset everything. */
4820 tp->snd_cwnd = tp->snd_cwnd_prev;
4821 tp->snd_ssthresh = tp->snd_ssthresh_prev;
4822 tp->snd_recover = tp->snd_recover_prev;
4823 if (tp->t_flags & TF_WASFRECOVERY) {
4824 ENTER_FASTRECOVERY(tp->t_flags);
4825 tp->t_flags &= ~TF_WASFRECOVERY;
4826 }
4827 if (tp->t_flags & TF_WASCRECOVERY) {
4828 ENTER_CONGRECOVERY(tp->t_flags);
4829 tp->t_flags &= ~TF_WASCRECOVERY;
4830 }
4831 tp->snd_nxt = tp->snd_max;
4832 tp->t_badrxtwin = 0;
4833 break;
4834 }
4835 if ((CC_ALGO(tp)->cong_signal != NULL) &&
4836 (type != CC_RTO)){
4837 tp->t_ccv.curack = ack;
4838 CC_ALGO(tp)->cong_signal(&tp->t_ccv, type);
4839 }
4840 if ((in_rec_at_entry == 0) && IN_RECOVERY(tp->t_flags)) {
4841 rack_log_to_prr(rack, 15, cwnd_enter, line);
4842 rack->r_ctl.dsack_byte_cnt = 0;
4843 rack->r_ctl.retran_during_recovery = 0;
4844 rack->r_ctl.rc_cwnd_at_erec = cwnd_enter;
4845 rack->r_ctl.rc_ssthresh_at_erec = ssthresh_enter;
4846 rack->r_ent_rec_ns = 1;
4847 }
4848 }
4849
4850 static inline void
4851 rack_cc_after_idle(struct tcp_rack *rack, struct tcpcb *tp)
4852 {
4853 uint32_t i_cwnd;
4854
4855 INP_WLOCK_ASSERT(tptoinpcb(tp));
4856
4857 #ifdef NETFLIX_STATS
4858 KMOD_TCPSTAT_INC(tcps_idle_restarts);
4859 if (tp->t_state == TCPS_ESTABLISHED)
4860 KMOD_TCPSTAT_INC(tcps_idle_estrestarts);
4861 #endif
4862 if (CC_ALGO(tp)->after_idle != NULL)
4863 CC_ALGO(tp)->after_idle(&tp->t_ccv);
4864
4865 if (tp->snd_cwnd == 1)
4866 i_cwnd = tp->t_maxseg; /* SYN(-ACK) lost */
4867 else
4868 i_cwnd = rc_init_window(rack);
4869
4870 /*
4871 * Being idle is no different than the initial window. If the cc
4872 * clamps it down below the initial window raise it to the initial
4873 * window.
4874 */
4875 if (tp->snd_cwnd < i_cwnd) {
4876 tp->snd_cwnd = i_cwnd;
4877 }
4878 }
4879
4880 /*
4881 * Indicate whether this ack should be delayed. We can delay the ack if
4882 * following conditions are met:
4883 * - There is no delayed ack timer in progress.
4884 * - Our last ack wasn't a 0-sized window. We never want to delay
4885 * the ack that opens up a 0-sized window.
4886 * - LRO wasn't used for this segment. We make sure by checking that the
4887 * segment size is not larger than the MSS.
4888 * - Delayed acks are enabled or this is a half-synchronized T/TCP
4889 * connection.
4890 */
4891 #define DELAY_ACK(tp, tlen) \
4892 (((tp->t_flags & TF_RXWIN0SENT) == 0) && \
4893 ((tp->t_flags & TF_DELACK) == 0) && \
4894 (tlen <= tp->t_maxseg) && \
4895 (tp->t_delayed_ack || (tp->t_flags & TF_NEEDSYN)))
4896
4897 static struct rack_sendmap *
4898 rack_find_lowest_rsm(struct tcp_rack *rack)
4899 {
4900 struct rack_sendmap *rsm;
4901
4902 /*
4903 * Walk the time-order transmitted list looking for an rsm that is
4904 * not acked. This will be the one that was sent the longest time
4905 * ago that is still outstanding.
4906 */
4907 TAILQ_FOREACH(rsm, &rack->r_ctl.rc_tmap, r_tnext) {
4908 if (rsm->r_flags & RACK_ACKED) {
4909 continue;
4910 }
4911 goto finish;
4912 }
4913 finish:
4914 return (rsm);
4915 }
4916
4917 static struct rack_sendmap *
4918 rack_find_high_nonack(struct tcp_rack *rack, struct rack_sendmap *rsm)
4919 {
4920 struct rack_sendmap *prsm;
4921
4922 /*
4923 * Walk the sequence order list backward until we hit and arrive at
4924 * the highest seq not acked. In theory when this is called it
4925 * should be the last segment (which it was not).
4926 */
4927 prsm = rsm;
4928 RB_FOREACH_REVERSE_FROM(prsm, rack_rb_tree_head, rsm) {
4929 if (prsm->r_flags & (RACK_ACKED | RACK_HAS_FIN)) {
4930 continue;
4931 }
4932 return (prsm);
4933 }
4934 return (NULL);
4935 }
4936
4937 static uint32_t
4938 rack_calc_thresh_rack(struct tcp_rack *rack, uint32_t srtt, uint32_t cts)
4939 {
4940 int32_t lro;
4941 uint32_t thresh;
4942
4943 /*
4944 * lro is the flag we use to determine if we have seen reordering.
4945 * If it gets set we have seen reordering. The reorder logic either
4946 * works in one of two ways:
4947 *
4948 * If reorder-fade is configured, then we track the last time we saw
4949 * re-ordering occur. If we reach the point where enough time as
4950 * passed we no longer consider reordering has occuring.
4951 *
4952 * Or if reorder-face is 0, then once we see reordering we consider
4953 * the connection to alway be subject to reordering and just set lro
4954 * to 1.
4955 *
4956 * In the end if lro is non-zero we add the extra time for
4957 * reordering in.
4958 */
4959 if (srtt == 0)
4960 srtt = 1;
4961 if (rack->r_ctl.rc_reorder_ts) {
4962 if (rack->r_ctl.rc_reorder_fade) {
4963 if (SEQ_GEQ(cts, rack->r_ctl.rc_reorder_ts)) {
4964 lro = cts - rack->r_ctl.rc_reorder_ts;
4965 if (lro == 0) {
4966 /*
4967 * No time as passed since the last
4968 * reorder, mark it as reordering.
4969 */
4970 lro = 1;
4971 }
4972 } else {
4973 /* Negative time? */
4974 lro = 0;
4975 }
4976 if (lro > rack->r_ctl.rc_reorder_fade) {
4977 /* Turn off reordering seen too */
4978 rack->r_ctl.rc_reorder_ts = 0;
4979 lro = 0;
4980 }
4981 } else {
4982 /* Reodering does not fade */
4983 lro = 1;
4984 }
4985 } else {
4986 lro = 0;
4987 }
4988 if (rack->rc_rack_tmr_std_based == 0) {
4989 thresh = srtt + rack->r_ctl.rc_pkt_delay;
4990 } else {
4991 /* Standards based pkt-delay is 1/4 srtt */
4992 thresh = srtt + (srtt >> 2);
4993 }
4994 if (lro && (rack->rc_rack_tmr_std_based == 0)) {
4995 /* It must be set, if not you get 1/4 rtt */
4996 if (rack->r_ctl.rc_reorder_shift)
4997 thresh += (srtt >> rack->r_ctl.rc_reorder_shift);
4998 else
4999 thresh += (srtt >> 2);
5000 }
5001 if (rack->rc_rack_use_dsack &&
5002 lro &&
5003 (rack->r_ctl.num_dsack > 0)) {
5004 /*
5005 * We only increase the reordering window if we
5006 * have seen reordering <and> we have a DSACK count.
5007 */
5008 thresh += rack->r_ctl.num_dsack * (srtt >> 2);
5009 rack_log_dsack_event(rack, 4, __LINE__, srtt, thresh);
5010 }
5011 /* SRTT * 2 is the ceiling */
5012 if (thresh > (srtt * 2)) {
5013 thresh = srtt * 2;
5014 }
5015 /* And we don't want it above the RTO max either */
5016 if (thresh > rack_rto_max) {
5017 thresh = rack_rto_max;
5018 }
5019 rack_log_dsack_event(rack, 6, __LINE__, srtt, thresh);
5020 return (thresh);
5021 }
5022
5023 static uint32_t
5024 rack_calc_thresh_tlp(struct tcpcb *tp, struct tcp_rack *rack,
5025 struct rack_sendmap *rsm, uint32_t srtt)
5026 {
5027 struct rack_sendmap *prsm;
5028 uint32_t thresh, len;
5029 int segsiz;
5030
5031 if (srtt == 0)
5032 srtt = 1;
5033 if (rack->r_ctl.rc_tlp_threshold)
5034 thresh = srtt + (srtt / rack->r_ctl.rc_tlp_threshold);
5035 else
5036 thresh = (srtt * 2);
5037
5038 /* Get the previous sent packet, if any */
5039 segsiz = min(ctf_fixed_maxseg(tp), rack->r_ctl.rc_pace_min_segs);
5040 len = rsm->r_end - rsm->r_start;
5041 if (rack->rack_tlp_threshold_use == TLP_USE_ID) {
5042 /* Exactly like the ID */
5043 if (((tp->snd_max - tp->snd_una) - rack->r_ctl.rc_sacked + rack->r_ctl.rc_holes_rxt) <= segsiz) {
5044 uint32_t alt_thresh;
5045 /*
5046 * Compensate for delayed-ack with the d-ack time.
5047 */
5048 alt_thresh = srtt + (srtt / 2) + rack_delayed_ack_time;
5049 if (alt_thresh > thresh)
5050 thresh = alt_thresh;
5051 }
5052 } else if (rack->rack_tlp_threshold_use == TLP_USE_TWO_ONE) {
5053 /* 2.1 behavior */
5054 prsm = TAILQ_PREV(rsm, rack_head, r_tnext);
5055 if (prsm && (len <= segsiz)) {
5056 /*
5057 * Two packets outstanding, thresh should be (2*srtt) +
5058 * possible inter-packet delay (if any).
5059 */
5060 uint32_t inter_gap = 0;
5061 int idx, nidx;
5062
5063 idx = rsm->r_rtr_cnt - 1;
5064 nidx = prsm->r_rtr_cnt - 1;
5065 if (rsm->r_tim_lastsent[nidx] >= prsm->r_tim_lastsent[idx]) {
5066 /* Yes it was sent later (or at the same time) */
5067 inter_gap = rsm->r_tim_lastsent[idx] - prsm->r_tim_lastsent[nidx];
5068 }
5069 thresh += inter_gap;
5070 } else if (len <= segsiz) {
5071 /*
5072 * Possibly compensate for delayed-ack.
5073 */
5074 uint32_t alt_thresh;
5075
5076 alt_thresh = srtt + (srtt / 2) + rack_delayed_ack_time;
5077 if (alt_thresh > thresh)
5078 thresh = alt_thresh;
5079 }
5080 } else if (rack->rack_tlp_threshold_use == TLP_USE_TWO_TWO) {
5081 /* 2.2 behavior */
5082 if (len <= segsiz) {
5083 uint32_t alt_thresh;
5084 /*
5085 * Compensate for delayed-ack with the d-ack time.
5086 */
5087 alt_thresh = srtt + (srtt / 2) + rack_delayed_ack_time;
5088 if (alt_thresh > thresh)
5089 thresh = alt_thresh;
5090 }
5091 }
5092 /* Not above an RTO */
5093 if (thresh > tp->t_rxtcur) {
5094 thresh = tp->t_rxtcur;
5095 }
5096 /* Not above a RTO max */
5097 if (thresh > rack_rto_max) {
5098 thresh = rack_rto_max;
5099 }
5100 /* Apply user supplied min TLP */
5101 if (thresh < rack_tlp_min) {
5102 thresh = rack_tlp_min;
5103 }
5104 return (thresh);
5105 }
5106
5107 static uint32_t
5108 rack_grab_rtt(struct tcpcb *tp, struct tcp_rack *rack)
5109 {
5110 /*
5111 * We want the rack_rtt which is the
5112 * last rtt we measured. However if that
5113 * does not exist we fallback to the srtt (which
5114 * we probably will never do) and then as a last
5115 * resort we use RACK_INITIAL_RTO if no srtt is
5116 * yet set.
5117 */
5118 if (rack->rc_rack_rtt)
5119 return (rack->rc_rack_rtt);
5120 else if (tp->t_srtt == 0)
5121 return (RACK_INITIAL_RTO);
5122 return (tp->t_srtt);
5123 }
5124
5125 static struct rack_sendmap *
5126 rack_check_recovery_mode(struct tcpcb *tp, uint32_t tsused)
5127 {
5128 /*
5129 * Check to see that we don't need to fall into recovery. We will
5130 * need to do so if our oldest transmit is past the time we should
5131 * have had an ack.
5132 */
5133 struct tcp_rack *rack;
5134 struct rack_sendmap *rsm;
5135 int32_t idx;
5136 uint32_t srtt, thresh;
5137
5138 rack = (struct tcp_rack *)tp->t_fb_ptr;
5139 if (RB_EMPTY(&rack->r_ctl.rc_mtree)) {
5140 return (NULL);
5141 }
5142 rsm = TAILQ_FIRST(&rack->r_ctl.rc_tmap);
5143 if (rsm == NULL)
5144 return (NULL);
5145
5146
5147 if (rsm->r_flags & RACK_ACKED) {
5148 rsm = rack_find_lowest_rsm(rack);
5149 if (rsm == NULL)
5150 return (NULL);
5151 }
5152 idx = rsm->r_rtr_cnt - 1;
5153 srtt = rack_grab_rtt(tp, rack);
5154 thresh = rack_calc_thresh_rack(rack, srtt, tsused);
5155 if (TSTMP_LT(tsused, ((uint32_t)rsm->r_tim_lastsent[idx]))) {
5156 return (NULL);
5157 }
5158 if ((tsused - ((uint32_t)rsm->r_tim_lastsent[idx])) < thresh) {
5159 return (NULL);
5160 }
5161 /* Ok if we reach here we are over-due and this guy can be sent */
5162 rack_cong_signal(tp, CC_NDUPACK, tp->snd_una, __LINE__);
5163 return (rsm);
5164 }
5165
5166 static uint32_t
5167 rack_get_persists_timer_val(struct tcpcb *tp, struct tcp_rack *rack)
5168 {
5169 int32_t t;
5170 int32_t tt;
5171 uint32_t ret_val;
5172
5173 t = (tp->t_srtt + (tp->t_rttvar << 2));
5174 RACK_TCPT_RANGESET(tt, t * tcp_backoff[tp->t_rxtshift],
5175 rack_persist_min, rack_persist_max, rack->r_ctl.timer_slop);
5176 rack->r_ctl.rc_hpts_flags |= PACE_TMR_PERSIT;
5177 ret_val = (uint32_t)tt;
5178 return (ret_val);
5179 }
5180
5181 static uint32_t
5182 rack_timer_start(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts, int sup_rack)
5183 {
5184 /*
5185 * Start the FR timer, we do this based on getting the first one in
5186 * the rc_tmap. Note that if its NULL we must stop the timer. in all
5187 * events we need to stop the running timer (if its running) before
5188 * starting the new one.
5189 */
5190 uint32_t thresh, exp, to, srtt, time_since_sent, tstmp_touse;
5191 uint32_t srtt_cur;
5192 int32_t idx;
5193 int32_t is_tlp_timer = 0;
5194 struct rack_sendmap *rsm;
5195
5196 if (rack->t_timers_stopped) {
5197 /* All timers have been stopped none are to run */
5198 return (0);
5199 }
5200 if (rack->rc_in_persist) {
5201 /* We can't start any timer in persists */
5202 return (rack_get_persists_timer_val(tp, rack));
5203 }
5204 rack->rc_on_min_to = 0;
5205 if ((tp->t_state < TCPS_ESTABLISHED) ||
5206 ((tp->t_flags & TF_SACK_PERMIT) == 0)) {
5207 goto activate_rxt;
5208 }
5209 rsm = TAILQ_FIRST(&rack->r_ctl.rc_tmap);
5210 if ((rsm == NULL) || sup_rack) {
5211 /* Nothing on the send map or no rack */
5212 activate_rxt:
5213 time_since_sent = 0;
5214 rsm = TAILQ_FIRST(&rack->r_ctl.rc_tmap);
5215 if (rsm) {
5216 /*
5217 * Should we discount the RTX timer any?
5218 *
5219 * We want to discount it the smallest amount.
5220 * If a timer (Rack/TLP or RXT) has gone off more
5221 * recently thats the discount we want to use (now - timer time).
5222 * If the retransmit of the oldest packet was more recent then
5223 * we want to use that (now - oldest-packet-last_transmit_time).
5224 *
5225 */
5226 idx = rsm->r_rtr_cnt - 1;
5227 if (TSTMP_GEQ(rack->r_ctl.rc_tlp_rxt_last_time, ((uint32_t)rsm->r_tim_lastsent[idx])))
5228 tstmp_touse = (uint32_t)rack->r_ctl.rc_tlp_rxt_last_time;
5229 else
5230 tstmp_touse = (uint32_t)rsm->r_tim_lastsent[idx];
5231 if (TSTMP_GT(cts, tstmp_touse))
5232 time_since_sent = cts - tstmp_touse;
5233 }
5234 if (SEQ_LT(tp->snd_una, tp->snd_max) ||
5235 sbavail(&tptosocket(tp)->so_snd)) {
5236 rack->r_ctl.rc_hpts_flags |= PACE_TMR_RXT;
5237 to = tp->t_rxtcur;
5238 if (to > time_since_sent)
5239 to -= time_since_sent;
5240 else
5241 to = rack->r_ctl.rc_min_to;
5242 if (to == 0)
5243 to = 1;
5244 /* Special case for KEEPINIT */
5245 if ((TCPS_HAVEESTABLISHED(tp->t_state) == 0) &&
5246 (TP_KEEPINIT(tp) != 0) &&
5247 rsm) {
5248 /*
5249 * We have to put a ceiling on the rxt timer
5250 * of the keep-init timeout.
5251 */
5252 uint32_t max_time, red;
5253
5254 max_time = TICKS_2_USEC(TP_KEEPINIT(tp));
5255 if (TSTMP_GT(cts, (uint32_t)rsm->r_tim_lastsent[0])) {
5256 red = (cts - (uint32_t)rsm->r_tim_lastsent[0]);
5257 if (red < max_time)
5258 max_time -= red;
5259 else
5260 max_time = 1;
5261 }
5262 /* Reduce timeout to the keep value if needed */
5263 if (max_time < to)
5264 to = max_time;
5265 }
5266 return (to);
5267 }
5268 return (0);
5269 }
5270 if (rsm->r_flags & RACK_ACKED) {
5271 rsm = rack_find_lowest_rsm(rack);
5272 if (rsm == NULL) {
5273 /* No lowest? */
5274 goto activate_rxt;
5275 }
5276 }
5277 if (rack->sack_attack_disable) {
5278 /*
5279 * We don't want to do
5280 * any TLP's if you are an attacker.
5281 * Though if you are doing what
5282 * is expected you may still have
5283 * SACK-PASSED marks.
5284 */
5285 goto activate_rxt;
5286 }
5287 /* Convert from ms to usecs */
5288 if ((rsm->r_flags & RACK_SACK_PASSED) ||
5289 (rsm->r_flags & RACK_RWND_COLLAPSED) ||
5290 (rsm->r_dupack >= DUP_ACK_THRESHOLD)) {
5291 if ((tp->t_flags & TF_SENTFIN) &&
5292 ((tp->snd_max - tp->snd_una) == 1) &&
5293 (rsm->r_flags & RACK_HAS_FIN)) {
5294 /*
5295 * We don't start a rack timer if all we have is a
5296 * FIN outstanding.
5297 */
5298 goto activate_rxt;
5299 }
5300 if ((rack->use_rack_rr == 0) &&
5301 (IN_FASTRECOVERY(tp->t_flags)) &&
5302 (rack->rack_no_prr == 0) &&
5303 (rack->r_ctl.rc_prr_sndcnt < ctf_fixed_maxseg(tp))) {
5304 /*
5305 * We are not cheating, in recovery and
5306 * not enough ack's to yet get our next
5307 * retransmission out.
5308 *
5309 * Note that classified attackers do not
5310 * get to use the rack-cheat.
5311 */
5312 goto activate_tlp;
5313 }
5314 srtt = rack_grab_rtt(tp, rack);
5315 thresh = rack_calc_thresh_rack(rack, srtt, cts);
5316 idx = rsm->r_rtr_cnt - 1;
5317 exp = ((uint32_t)rsm->r_tim_lastsent[idx]) + thresh;
5318 if (SEQ_GEQ(exp, cts)) {
5319 to = exp - cts;
5320 if (to < rack->r_ctl.rc_min_to) {
5321 to = rack->r_ctl.rc_min_to;
5322 if (rack->r_rr_config == 3)
5323 rack->rc_on_min_to = 1;
5324 }
5325 } else {
5326 to = rack->r_ctl.rc_min_to;
5327 if (rack->r_rr_config == 3)
5328 rack->rc_on_min_to = 1;
5329 }
5330 } else {
5331 /* Ok we need to do a TLP not RACK */
5332 activate_tlp:
5333 if ((rack->rc_tlp_in_progress != 0) &&
5334 (rack->r_ctl.rc_tlp_cnt_out >= rack_tlp_limit)) {
5335 /*
5336 * The previous send was a TLP and we have sent
5337 * N TLP's without sending new data.
5338 */
5339 goto activate_rxt;
5340 }
5341 rsm = TAILQ_LAST_FAST(&rack->r_ctl.rc_tmap, rack_sendmap, r_tnext);
5342 if (rsm == NULL) {
5343 /* We found no rsm to TLP with. */
5344 goto activate_rxt;
5345 }
5346 if (rsm->r_flags & RACK_HAS_FIN) {
5347 /* If its a FIN we dont do TLP */
5348 rsm = NULL;
5349 goto activate_rxt;
5350 }
5351 idx = rsm->r_rtr_cnt - 1;
5352 time_since_sent = 0;
5353 if (TSTMP_GEQ(((uint32_t)rsm->r_tim_lastsent[idx]), rack->r_ctl.rc_tlp_rxt_last_time))
5354 tstmp_touse = (uint32_t)rsm->r_tim_lastsent[idx];
5355 else
5356 tstmp_touse = (uint32_t)rack->r_ctl.rc_tlp_rxt_last_time;
5357 if (TSTMP_GT(cts, tstmp_touse))
5358 time_since_sent = cts - tstmp_touse;
5359 is_tlp_timer = 1;
5360 if (tp->t_srtt) {
5361 if ((rack->rc_srtt_measure_made == 0) &&
5362 (tp->t_srtt == 1)) {
5363 /*
5364 * If another stack as run and set srtt to 1,
5365 * then the srtt was 0, so lets use the initial.
5366 */
5367 srtt = RACK_INITIAL_RTO;
5368 } else {
5369 srtt_cur = tp->t_srtt;
5370 srtt = srtt_cur;
5371 }
5372 } else
5373 srtt = RACK_INITIAL_RTO;
5374 /*
5375 * If the SRTT is not keeping up and the
5376 * rack RTT has spiked we want to use
5377 * the last RTT not the smoothed one.
5378 */
5379 if (rack_tlp_use_greater &&
5380 tp->t_srtt &&
5381 (srtt < rack_grab_rtt(tp, rack))) {
5382 srtt = rack_grab_rtt(tp, rack);
5383 }
5384 thresh = rack_calc_thresh_tlp(tp, rack, rsm, srtt);
5385 if (thresh > time_since_sent) {
5386 to = thresh - time_since_sent;
5387 } else {
5388 to = rack->r_ctl.rc_min_to;
5389 rack_log_alt_to_to_cancel(rack,
5390 thresh, /* flex1 */
5391 time_since_sent, /* flex2 */
5392 tstmp_touse, /* flex3 */
5393 rack->r_ctl.rc_tlp_rxt_last_time, /* flex4 */
5394 (uint32_t)rsm->r_tim_lastsent[idx],
5395 srtt,
5396 idx, 99);
5397 }
5398 if (to < rack_tlp_min) {
5399 to = rack_tlp_min;
5400 }
5401 if (to > TICKS_2_USEC(TCPTV_REXMTMAX)) {
5402 /*
5403 * If the TLP time works out to larger than the max
5404 * RTO lets not do TLP.. just RTO.
5405 */
5406 goto activate_rxt;
5407 }
5408 }
5409 if (is_tlp_timer == 0) {
5410 rack->r_ctl.rc_hpts_flags |= PACE_TMR_RACK;
5411 } else {
5412 rack->r_ctl.rc_hpts_flags |= PACE_TMR_TLP;
5413 }
5414 if (to == 0)
5415 to = 1;
5416 return (to);
5417 }
5418
5419 static void
5420 rack_enter_persist(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts)
5421 {
5422 if (rack->rc_in_persist == 0) {
5423 if (tp->t_flags & TF_GPUTINPROG) {
5424 /*
5425 * Stop the goodput now, the calling of the
5426 * measurement function clears the flag.
5427 */
5428 rack_do_goodput_measurement(tp, rack, tp->snd_una, __LINE__,
5429 RACK_QUALITY_PERSIST);
5430 }
5431 #ifdef NETFLIX_SHARED_CWND
5432 if (rack->r_ctl.rc_scw) {
5433 tcp_shared_cwnd_idle(rack->r_ctl.rc_scw, rack->r_ctl.rc_scw_index);
5434 rack->rack_scwnd_is_idle = 1;
5435 }
5436 #endif
5437 rack->r_ctl.rc_went_idle_time = tcp_get_usecs(NULL);
5438 if (rack->r_ctl.rc_went_idle_time == 0)
5439 rack->r_ctl.rc_went_idle_time = 1;
5440 rack_timer_cancel(tp, rack, cts, __LINE__);
5441 rack->r_ctl.persist_lost_ends = 0;
5442 rack->probe_not_answered = 0;
5443 rack->forced_ack = 0;
5444 tp->t_rxtshift = 0;
5445 RACK_TCPT_RANGESET(tp->t_rxtcur, RACK_REXMTVAL(tp),
5446 rack_rto_min, rack_rto_max, rack->r_ctl.timer_slop);
5447 rack->rc_in_persist = 1;
5448 }
5449 }
5450
5451 static void
5452 rack_exit_persist(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts)
5453 {
5454 if (tcp_in_hpts(rack->rc_inp)) {
5455 tcp_hpts_remove(rack->rc_inp);
5456 rack->r_ctl.rc_hpts_flags = 0;
5457 }
5458 #ifdef NETFLIX_SHARED_CWND
5459 if (rack->r_ctl.rc_scw) {
5460 tcp_shared_cwnd_active(rack->r_ctl.rc_scw, rack->r_ctl.rc_scw_index);
5461 rack->rack_scwnd_is_idle = 0;
5462 }
5463 #endif
5464 if (rack->rc_gp_dyn_mul &&
5465 (rack->use_fixed_rate == 0) &&
5466 (rack->rc_always_pace)) {
5467 /*
5468 * Do we count this as if a probe-rtt just
5469 * finished?
5470 */
5471 uint32_t time_idle, idle_min;
5472
5473 time_idle = tcp_get_usecs(NULL) - rack->r_ctl.rc_went_idle_time;
5474 idle_min = rack_min_probertt_hold;
5475 if (rack_probertt_gpsrtt_cnt_div) {
5476 uint64_t extra;
5477 extra = (uint64_t)rack->r_ctl.rc_gp_srtt *
5478 (uint64_t)rack_probertt_gpsrtt_cnt_mul;
5479 extra /= (uint64_t)rack_probertt_gpsrtt_cnt_div;
5480 idle_min += (uint32_t)extra;
5481 }
5482 if (time_idle >= idle_min) {
5483 /* Yes, we count it as a probe-rtt. */
5484 uint32_t us_cts;
5485
5486 us_cts = tcp_get_usecs(NULL);
5487 if (rack->in_probe_rtt == 0) {
5488 rack->r_ctl.rc_lower_rtt_us_cts = us_cts;
5489 rack->r_ctl.rc_time_probertt_entered = rack->r_ctl.rc_lower_rtt_us_cts;
5490 rack->r_ctl.rc_time_probertt_starts = rack->r_ctl.rc_lower_rtt_us_cts;
5491 rack->r_ctl.rc_time_of_last_probertt = rack->r_ctl.rc_lower_rtt_us_cts;
5492 } else {
5493 rack_exit_probertt(rack, us_cts);
5494 }
5495 }
5496 }
5497 rack->rc_in_persist = 0;
5498 rack->r_ctl.rc_went_idle_time = 0;
5499 tp->t_rxtshift = 0;
5500 RACK_TCPT_RANGESET(tp->t_rxtcur, RACK_REXMTVAL(tp),
5501 rack_rto_min, rack_rto_max, rack->r_ctl.timer_slop);
5502 rack->r_ctl.rc_agg_delayed = 0;
5503 rack->r_early = 0;
5504 rack->r_late = 0;
5505 rack->r_ctl.rc_agg_early = 0;
5506 }
5507
5508 static void
5509 rack_log_hpts_diag(struct tcp_rack *rack, uint32_t cts,
5510 struct hpts_diag *diag, struct timeval *tv)
5511 {
5512 if (rack_verbose_logging && rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
5513 union tcp_log_stackspecific log;
5514
5515 memset(&log.u_bbr, 0, sizeof(log.u_bbr));
5516 log.u_bbr.flex1 = diag->p_nxt_slot;
5517 log.u_bbr.flex2 = diag->p_cur_slot;
5518 log.u_bbr.flex3 = diag->slot_req;
5519 log.u_bbr.flex4 = diag->inp_hptsslot;
5520 log.u_bbr.flex5 = diag->slot_remaining;
5521 log.u_bbr.flex6 = diag->need_new_to;
5522 log.u_bbr.flex7 = diag->p_hpts_active;
5523 log.u_bbr.flex8 = diag->p_on_min_sleep;
5524 /* Hijack other fields as needed */
5525 log.u_bbr.epoch = diag->have_slept;
5526 log.u_bbr.lt_epoch = diag->yet_to_sleep;
5527 log.u_bbr.pkts_out = diag->co_ret;
5528 log.u_bbr.applimited = diag->hpts_sleep_time;
5529 log.u_bbr.delivered = diag->p_prev_slot;
5530 log.u_bbr.inflight = diag->p_runningslot;
5531 log.u_bbr.bw_inuse = diag->wheel_slot;
5532 log.u_bbr.rttProp = diag->wheel_cts;
5533 log.u_bbr.timeStamp = cts;
5534 log.u_bbr.delRate = diag->maxslots;
5535 log.u_bbr.cur_del_rate = diag->p_curtick;
5536 log.u_bbr.cur_del_rate <<= 32;
5537 log.u_bbr.cur_del_rate |= diag->p_lasttick;
5538 TCP_LOG_EVENTP(rack->rc_tp, NULL,
5539 &rack->rc_inp->inp_socket->so_rcv,
5540 &rack->rc_inp->inp_socket->so_snd,
5541 BBR_LOG_HPTSDIAG, 0,
5542 0, &log, false, tv);
5543 }
5544
5545 }
5546
5547 static void
5548 rack_log_wakeup(struct tcpcb *tp, struct tcp_rack *rack, struct sockbuf *sb, uint32_t len, int type)
5549 {
5550 if (rack_verbose_logging && rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
5551 union tcp_log_stackspecific log;
5552 struct timeval tv;
5553
5554 memset(&log.u_bbr, 0, sizeof(log.u_bbr));
5555 log.u_bbr.flex1 = sb->sb_flags;
5556 log.u_bbr.flex2 = len;
5557 log.u_bbr.flex3 = sb->sb_state;
5558 log.u_bbr.flex8 = type;
5559 log.u_bbr.timeStamp = tcp_get_usecs(&tv);
5560 TCP_LOG_EVENTP(rack->rc_tp, NULL,
5561 &rack->rc_inp->inp_socket->so_rcv,
5562 &rack->rc_inp->inp_socket->so_snd,
5563 TCP_LOG_SB_WAKE, 0,
5564 len, &log, false, &tv);
5565 }
5566 }
5567
5568 static void
5569 rack_start_hpts_timer(struct tcp_rack *rack, struct tcpcb *tp, uint32_t cts,
5570 int32_t slot, uint32_t tot_len_this_send, int sup_rack)
5571 {
5572 struct hpts_diag diag;
5573 struct inpcb *inp = tptoinpcb(tp);
5574 struct timeval tv;
5575 uint32_t delayed_ack = 0;
5576 uint32_t hpts_timeout;
5577 uint32_t entry_slot = slot;
5578 uint8_t stopped;
5579 uint32_t left = 0;
5580 uint32_t us_cts;
5581
5582 if ((tp->t_state == TCPS_CLOSED) ||
5583 (tp->t_state == TCPS_LISTEN)) {
5584 return;
5585 }
5586 if (tcp_in_hpts(inp)) {
5587 /* Already on the pacer */
5588 return;
5589 }
5590 stopped = rack->rc_tmr_stopped;
5591 if (stopped && TSTMP_GT(rack->r_ctl.rc_timer_exp, cts)) {
5592 left = rack->r_ctl.rc_timer_exp - cts;
5593 }
5594 rack->r_ctl.rc_timer_exp = 0;
5595 rack->r_ctl.rc_hpts_flags = 0;
5596 us_cts = tcp_get_usecs(&tv);
5597 /* Now early/late accounting */
5598 rack_log_pacing_delay_calc(rack, entry_slot, slot, 0, 0, 0, 26, __LINE__, NULL, 0);
5599 if (rack->r_early && (rack->rc_ack_can_sendout_data == 0)) {
5600 /*
5601 * We have a early carry over set,
5602 * we can always add more time so we
5603 * can always make this compensation.
5604 *
5605 * Note if ack's are allowed to wake us do not
5606 * penalize the next timer for being awoke
5607 * by an ack aka the rc_agg_early (non-paced mode).
5608 */
5609 slot += rack->r_ctl.rc_agg_early;
5610 rack->r_early = 0;
5611 rack->r_ctl.rc_agg_early = 0;
5612 }
5613 if (rack->r_late) {
5614 /*
5615 * This is harder, we can
5616 * compensate some but it
5617 * really depends on what
5618 * the current pacing time is.
5619 */
5620 if (rack->r_ctl.rc_agg_delayed >= slot) {
5621 /*
5622 * We can't compensate for it all.
5623 * And we have to have some time
5624 * on the clock. We always have a min
5625 * 10 slots (10 x 10 i.e. 100 usecs).
5626 */
5627 if (slot <= HPTS_TICKS_PER_SLOT) {
5628 /* We gain delay */
5629 rack->r_ctl.rc_agg_delayed += (HPTS_TICKS_PER_SLOT - slot);
5630 slot = HPTS_TICKS_PER_SLOT;
5631 } else {
5632 /* We take off some */
5633 rack->r_ctl.rc_agg_delayed -= (slot - HPTS_TICKS_PER_SLOT);
5634 slot = HPTS_TICKS_PER_SLOT;
5635 }
5636 } else {
5637 slot -= rack->r_ctl.rc_agg_delayed;
5638 rack->r_ctl.rc_agg_delayed = 0;
5639 /* Make sure we have 100 useconds at minimum */
5640 if (slot < HPTS_TICKS_PER_SLOT) {
5641 rack->r_ctl.rc_agg_delayed = HPTS_TICKS_PER_SLOT - slot;
5642 slot = HPTS_TICKS_PER_SLOT;
5643 }
5644 if (rack->r_ctl.rc_agg_delayed == 0)
5645 rack->r_late = 0;
5646 }
5647 }
5648 if (slot) {
5649 /* We are pacing too */
5650 rack->r_ctl.rc_hpts_flags |= PACE_PKT_OUTPUT;
5651 }
5652 hpts_timeout = rack_timer_start(tp, rack, cts, sup_rack);
5653 #ifdef NETFLIX_EXP_DETECTION
5654 if (rack->sack_attack_disable &&
5655 (slot < tcp_sad_pacing_interval)) {
5656 /*
5657 * We have a potential attacker on
5658 * the line. We have possibly some
5659 * (or now) pacing time set. We want to
5660 * slow down the processing of sacks by some
5661 * amount (if it is an attacker). Set the default
5662 * slot for attackers in place (unless the original
5663 * interval is longer). Its stored in
5664 * micro-seconds, so lets convert to msecs.
5665 */
5666 slot = tcp_sad_pacing_interval;
5667 }
5668 #endif
5669 if (tp->t_flags & TF_DELACK) {
5670 delayed_ack = TICKS_2_USEC(tcp_delacktime);
5671 rack->r_ctl.rc_hpts_flags |= PACE_TMR_DELACK;
5672 }
5673 if (delayed_ack && ((hpts_timeout == 0) ||
5674 (delayed_ack < hpts_timeout)))
5675 hpts_timeout = delayed_ack;
5676 else
5677 rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_DELACK;
5678 /*
5679 * If no timers are going to run and we will fall off the hptsi
5680 * wheel, we resort to a keep-alive timer if its configured.
5681 */
5682 if ((hpts_timeout == 0) &&
5683 (slot == 0)) {
5684 if ((V_tcp_always_keepalive || inp->inp_socket->so_options & SO_KEEPALIVE) &&
5685 (tp->t_state <= TCPS_CLOSING)) {
5686 /*
5687 * Ok we have no timer (persists, rack, tlp, rxt or
5688 * del-ack), we don't have segments being paced. So
5689 * all that is left is the keepalive timer.
5690 */
5691 if (TCPS_HAVEESTABLISHED(tp->t_state)) {
5692 /* Get the established keep-alive time */
5693 hpts_timeout = TICKS_2_USEC(TP_KEEPIDLE(tp));
5694 } else {
5695 /*
5696 * Get the initial setup keep-alive time,
5697 * note that this is probably not going to
5698 * happen, since rack will be running a rxt timer
5699 * if a SYN of some sort is outstanding. It is
5700 * actually handled in rack_timeout_rxt().
5701 */
5702 hpts_timeout = TICKS_2_USEC(TP_KEEPINIT(tp));
5703 }
5704 rack->r_ctl.rc_hpts_flags |= PACE_TMR_KEEP;
5705 if (rack->in_probe_rtt) {
5706 /*
5707 * We want to instead not wake up a long time from
5708 * now but to wake up about the time we would
5709 * exit probe-rtt and initiate a keep-alive ack.
5710 * This will get us out of probe-rtt and update
5711 * our min-rtt.
5712 */
5713 hpts_timeout = rack_min_probertt_hold;
5714 }
5715 }
5716 }
5717 if (left && (stopped & (PACE_TMR_KEEP | PACE_TMR_DELACK)) ==
5718 (rack->r_ctl.rc_hpts_flags & PACE_TMR_MASK)) {
5719 /*
5720 * RACK, TLP, persists and RXT timers all are restartable
5721 * based on actions input .. i.e we received a packet (ack
5722 * or sack) and that changes things (rw, or snd_una etc).
5723 * Thus we can restart them with a new value. For
5724 * keep-alive, delayed_ack we keep track of what was left
5725 * and restart the timer with a smaller value.
5726 */
5727 if (left < hpts_timeout)
5728 hpts_timeout = left;
5729 }
5730 if (hpts_timeout) {
5731 /*
5732 * Hack alert for now we can't time-out over 2,147,483
5733 * seconds (a bit more than 596 hours), which is probably ok
5734 * :).
5735 */
5736 if (hpts_timeout > 0x7ffffffe)
5737 hpts_timeout = 0x7ffffffe;
5738 rack->r_ctl.rc_timer_exp = cts + hpts_timeout;
5739 }
5740 rack_log_pacing_delay_calc(rack, entry_slot, slot, hpts_timeout, 0, 0, 27, __LINE__, NULL, 0);
5741 if ((rack->gp_ready == 0) &&
5742 (rack->use_fixed_rate == 0) &&
5743 (hpts_timeout < slot) &&
5744 (rack->r_ctl.rc_hpts_flags & (PACE_TMR_TLP|PACE_TMR_RXT))) {
5745 /*
5746 * We have no good estimate yet for the
5747 * old clunky burst mitigation or the
5748 * real pacing. And the tlp or rxt is smaller
5749 * than the pacing calculation. Lets not
5750 * pace that long since we know the calculation
5751 * so far is not accurate.
5752 */
5753 slot = hpts_timeout;
5754 }
5755 /**
5756 * Turn off all the flags for queuing by default. The
5757 * flags have important meanings to what happens when
5758 * LRO interacts with the transport. Most likely (by default now)
5759 * mbuf_queueing and ack compression are on. So the transport
5760 * has a couple of flags that control what happens (if those
5761 * are not on then these flags won't have any effect since it
5762 * won't go through the queuing LRO path).
5763 *
5764 * INP_MBUF_QUEUE_READY - This flags says that I am busy
5765 * pacing output, so don't disturb. But
5766 * it also means LRO can wake me if there
5767 * is a SACK arrival.
5768 *
5769 * INP_DONT_SACK_QUEUE - This flag is used in conjunction
5770 * with the above flag (QUEUE_READY) and
5771 * when present it says don't even wake me
5772 * if a SACK arrives.
5773 *
5774 * The idea behind these flags is that if we are pacing we
5775 * set the MBUF_QUEUE_READY and only get woken up if
5776 * a SACK arrives (which could change things) or if
5777 * our pacing timer expires. If, however, we have a rack
5778 * timer running, then we don't even want a sack to wake
5779 * us since the rack timer has to expire before we can send.
5780 *
5781 * Other cases should usually have none of the flags set
5782 * so LRO can call into us.
5783 */
5784 inp->inp_flags2 &= ~(INP_DONT_SACK_QUEUE|INP_MBUF_QUEUE_READY);
5785 if (slot) {
5786 rack->r_ctl.rc_last_output_to = us_cts + slot;
5787 /*
5788 * A pacing timer (slot) is being set, in
5789 * such a case we cannot send (we are blocked by
5790 * the timer). So lets tell LRO that it should not
5791 * wake us unless there is a SACK. Note this only
5792 * will be effective if mbuf queueing is on or
5793 * compressed acks are being processed.
5794 */
5795 inp->inp_flags2 |= INP_MBUF_QUEUE_READY;
5796 /*
5797 * But wait if we have a Rack timer running
5798 * even a SACK should not disturb us (with
5799 * the exception of r_rr_config 3).
5800 */
5801 if ((rack->r_ctl.rc_hpts_flags & PACE_TMR_RACK) &&
5802 (rack->r_rr_config != 3))
5803 inp->inp_flags2 |= INP_DONT_SACK_QUEUE;
5804 if (rack->rc_ack_can_sendout_data) {
5805 /*
5806 * Ahh but wait, this is that special case
5807 * where the pacing timer can be disturbed
5808 * backout the changes (used for non-paced
5809 * burst limiting).
5810 */
5811 inp->inp_flags2 &= ~(INP_DONT_SACK_QUEUE|INP_MBUF_QUEUE_READY);
5812 }
5813 if ((rack->use_rack_rr) &&
5814 (rack->r_rr_config < 2) &&
5815 ((hpts_timeout) && (hpts_timeout < slot))) {
5816 /*
5817 * Arrange for the hpts to kick back in after the
5818 * t-o if the t-o does not cause a send.
5819 */
5820 (void)tcp_hpts_insert_diag(inp, HPTS_USEC_TO_SLOTS(hpts_timeout),
5821 __LINE__, &diag);
5822 rack_log_hpts_diag(rack, us_cts, &diag, &tv);
5823 rack_log_to_start(rack, cts, hpts_timeout, slot, 0);
5824 } else {
5825 (void)tcp_hpts_insert_diag(inp, HPTS_USEC_TO_SLOTS(slot),
5826 __LINE__, &diag);
5827 rack_log_hpts_diag(rack, us_cts, &diag, &tv);
5828 rack_log_to_start(rack, cts, hpts_timeout, slot, 1);
5829 }
5830 } else if (hpts_timeout) {
5831 /*
5832 * With respect to inp_flags2 here, lets let any new acks wake
5833 * us up here. Since we are not pacing (no pacing timer), output
5834 * can happen so we should let it. If its a Rack timer, then any inbound
5835 * packet probably won't change the sending (we will be blocked)
5836 * but it may change the prr stats so letting it in (the set defaults
5837 * at the start of this block) are good enough.
5838 */
5839 (void)tcp_hpts_insert_diag(inp, HPTS_USEC_TO_SLOTS(hpts_timeout),
5840 __LINE__, &diag);
5841 rack_log_hpts_diag(rack, us_cts, &diag, &tv);
5842 rack_log_to_start(rack, cts, hpts_timeout, slot, 0);
5843 } else {
5844 /* No timer starting */
5845 #ifdef INVARIANTS
5846 if (SEQ_GT(tp->snd_max, tp->snd_una)) {
5847 panic("tp:%p rack:%p tlts:%d cts:%u slot:%u pto:%u -- no timer started?",
5848 tp, rack, tot_len_this_send, cts, slot, hpts_timeout);
5849 }
5850 #endif
5851 }
5852 rack->rc_tmr_stopped = 0;
5853 if (slot)
5854 rack_log_type_bbrsnd(rack, tot_len_this_send, slot, us_cts, &tv);
5855 }
5856
5857 /*
5858 * RACK Timer, here we simply do logging and house keeping.
5859 * the normal rack_output() function will call the
5860 * appropriate thing to check if we need to do a RACK retransmit.
5861 * We return 1, saying don't proceed with rack_output only
5862 * when all timers have been stopped (destroyed PCB?).
5863 */
5864 static int
5865 rack_timeout_rack(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts)
5866 {
5867 /*
5868 * This timer simply provides an internal trigger to send out data.
5869 * The check_recovery_mode call will see if there are needed
5870 * retransmissions, if so we will enter fast-recovery. The output
5871 * call may or may not do the same thing depending on sysctl
5872 * settings.
5873 */
5874 struct rack_sendmap *rsm;
5875
5876 counter_u64_add(rack_to_tot, 1);
5877 if (rack->r_state && (rack->r_state != tp->t_state))
5878 rack_set_state(tp, rack);
5879 rack->rc_on_min_to = 0;
5880 rsm = rack_check_recovery_mode(tp, cts);
5881 rack_log_to_event(rack, RACK_TO_FRM_RACK, rsm);
5882 if (rsm) {
5883 rack->r_ctl.rc_resend = rsm;
5884 rack->r_timer_override = 1;
5885 if (rack->use_rack_rr) {
5886 /*
5887 * Don't accumulate extra pacing delay
5888 * we are allowing the rack timer to
5889 * over-ride pacing i.e. rrr takes precedence
5890 * if the pacing interval is longer than the rrr
5891 * time (in other words we get the min pacing
5892 * time versus rrr pacing time).
5893 */
5894 rack->r_ctl.rc_hpts_flags &= ~PACE_PKT_OUTPUT;
5895 }
5896 }
5897 rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_RACK;
5898 if (rsm == NULL) {
5899 /* restart a timer and return 1 */
5900 rack_start_hpts_timer(rack, tp, cts,
5901 0, 0, 0);
5902 return (1);
5903 }
5904 return (0);
5905 }
5906
5907 static void
5908 rack_adjust_orig_mlen(struct rack_sendmap *rsm)
5909 {
5910 if (rsm->m->m_len > rsm->orig_m_len) {
5911 /*
5912 * Mbuf grew, caused by sbcompress, our offset does
5913 * not change.
5914 */
5915 rsm->orig_m_len = rsm->m->m_len;
5916 } else if (rsm->m->m_len < rsm->orig_m_len) {
5917 /*
5918 * Mbuf shrank, trimmed off the top by an ack, our
5919 * offset changes.
5920 */
5921 rsm->soff -= (rsm->orig_m_len - rsm->m->m_len);
5922 rsm->orig_m_len = rsm->m->m_len;
5923 }
5924 }
5925
5926 static void
5927 rack_setup_offset_for_rsm(struct rack_sendmap *src_rsm, struct rack_sendmap *rsm)
5928 {
5929 struct mbuf *m;
5930 uint32_t soff;
5931
5932 if (src_rsm->m && (src_rsm->orig_m_len != src_rsm->m->m_len)) {
5933 /* Fix up the orig_m_len and possibly the mbuf offset */
5934 rack_adjust_orig_mlen(src_rsm);
5935 }
5936 m = src_rsm->m;
5937 soff = src_rsm->soff + (src_rsm->r_end - src_rsm->r_start);
5938 while (soff >= m->m_len) {
5939 /* Move out past this mbuf */
5940 soff -= m->m_len;
5941 m = m->m_next;
5942 KASSERT((m != NULL),
5943 ("rsm:%p nrsm:%p hit at soff:%u null m",
5944 src_rsm, rsm, soff));
5945 }
5946 rsm->m = m;
5947 rsm->soff = soff;
5948 rsm->orig_m_len = m->m_len;
5949 }
5950
5951 static __inline void
5952 rack_clone_rsm(struct tcp_rack *rack, struct rack_sendmap *nrsm,
5953 struct rack_sendmap *rsm, uint32_t start)
5954 {
5955 int idx;
5956
5957 nrsm->r_start = start;
5958 nrsm->r_end = rsm->r_end;
5959 nrsm->r_rtr_cnt = rsm->r_rtr_cnt;
5960 nrsm->r_flags = rsm->r_flags;
5961 nrsm->r_dupack = rsm->r_dupack;
5962 nrsm->r_no_rtt_allowed = rsm->r_no_rtt_allowed;
5963 nrsm->r_rtr_bytes = 0;
5964 nrsm->r_fas = rsm->r_fas;
5965 rsm->r_end = nrsm->r_start;
5966 nrsm->r_just_ret = rsm->r_just_ret;
5967 for (idx = 0; idx < nrsm->r_rtr_cnt; idx++) {
5968 nrsm->r_tim_lastsent[idx] = rsm->r_tim_lastsent[idx];
5969 }
5970 /* Now if we have SYN flag we keep it on the left edge */
5971 if (nrsm->r_flags & RACK_HAS_SYN)
5972 nrsm->r_flags &= ~RACK_HAS_SYN;
5973 /* Now if we have a FIN flag we keep it on the right edge */
5974 if (rsm->r_flags & RACK_HAS_FIN)
5975 rsm->r_flags &= ~RACK_HAS_FIN;
5976 /* Push bit must go to the right edge as well */
5977 if (rsm->r_flags & RACK_HAD_PUSH)
5978 rsm->r_flags &= ~RACK_HAD_PUSH;
5979 /* Clone over the state of the hw_tls flag */
5980 nrsm->r_hw_tls = rsm->r_hw_tls;
5981 /*
5982 * Now we need to find nrsm's new location in the mbuf chain
5983 * we basically calculate a new offset, which is soff +
5984 * how much is left in original rsm. Then we walk out the mbuf
5985 * chain to find the righ position, it may be the same mbuf
5986 * or maybe not.
5987 */
5988 KASSERT(((rsm->m != NULL) ||
5989 (rsm->r_flags & (RACK_HAS_SYN|RACK_HAS_FIN))),
5990 ("rsm:%p nrsm:%p rack:%p -- rsm->m is NULL?", rsm, nrsm, rack));
5991 if (rsm->m)
5992 rack_setup_offset_for_rsm(rsm, nrsm);
5993 }
5994
5995 static struct rack_sendmap *
5996 rack_merge_rsm(struct tcp_rack *rack,
5997 struct rack_sendmap *l_rsm,
5998 struct rack_sendmap *r_rsm)
5999 {
6000 /*
6001 * We are merging two ack'd RSM's,
6002 * the l_rsm is on the left (lower seq
6003 * values) and the r_rsm is on the right
6004 * (higher seq value). The simplest way
6005 * to merge these is to move the right
6006 * one into the left. I don't think there
6007 * is any reason we need to try to find
6008 * the oldest (or last oldest retransmitted).
6009 */
6010 #ifdef INVARIANTS
6011 struct rack_sendmap *rm;
6012 #endif
6013 rack_log_map_chg(rack->rc_tp, rack, NULL,
6014 l_rsm, r_rsm, MAP_MERGE, r_rsm->r_end, __LINE__);
6015 l_rsm->r_end = r_rsm->r_end;
6016 if (l_rsm->r_dupack < r_rsm->r_dupack)
6017 l_rsm->r_dupack = r_rsm->r_dupack;
6018 if (r_rsm->r_rtr_bytes)
6019 l_rsm->r_rtr_bytes += r_rsm->r_rtr_bytes;
6020 if (r_rsm->r_in_tmap) {
6021 /* This really should not happen */
6022 TAILQ_REMOVE(&rack->r_ctl.rc_tmap, r_rsm, r_tnext);
6023 r_rsm->r_in_tmap = 0;
6024 }
6025
6026 /* Now the flags */
6027 if (r_rsm->r_flags & RACK_HAS_FIN)
6028 l_rsm->r_flags |= RACK_HAS_FIN;
6029 if (r_rsm->r_flags & RACK_TLP)
6030 l_rsm->r_flags |= RACK_TLP;
6031 if (r_rsm->r_flags & RACK_RWND_COLLAPSED)
6032 l_rsm->r_flags |= RACK_RWND_COLLAPSED;
6033 if ((r_rsm->r_flags & RACK_APP_LIMITED) &&
6034 ((l_rsm->r_flags & RACK_APP_LIMITED) == 0)) {
6035 /*
6036 * If both are app-limited then let the
6037 * free lower the count. If right is app
6038 * limited and left is not, transfer.
6039 */
6040 l_rsm->r_flags |= RACK_APP_LIMITED;
6041 r_rsm->r_flags &= ~RACK_APP_LIMITED;
6042 if (r_rsm == rack->r_ctl.rc_first_appl)
6043 rack->r_ctl.rc_first_appl = l_rsm;
6044 }
6045 #ifndef INVARIANTS
6046 (void)RB_REMOVE(rack_rb_tree_head, &rack->r_ctl.rc_mtree, r_rsm);
6047 #else
6048 rm = RB_REMOVE(rack_rb_tree_head, &rack->r_ctl.rc_mtree, r_rsm);
6049 if (rm != r_rsm) {
6050 panic("removing head in rack:%p rsm:%p rm:%p",
6051 rack, r_rsm, rm);
6052 }
6053 #endif
6054 if ((r_rsm->r_limit_type == 0) && (l_rsm->r_limit_type != 0)) {
6055 /* Transfer the split limit to the map we free */
6056 r_rsm->r_limit_type = l_rsm->r_limit_type;
6057 l_rsm->r_limit_type = 0;
6058 }
6059 rack_free(rack, r_rsm);
6060 return (l_rsm);
6061 }
6062
6063 /*
6064 * TLP Timer, here we simply setup what segment we want to
6065 * have the TLP expire on, the normal rack_output() will then
6066 * send it out.
6067 *
6068 * We return 1, saying don't proceed with rack_output only
6069 * when all timers have been stopped (destroyed PCB?).
6070 */
6071 static int
6072 rack_timeout_tlp(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts, uint8_t *doing_tlp)
6073 {
6074 /*
6075 * Tail Loss Probe.
6076 */
6077 struct rack_sendmap *rsm = NULL;
6078 #ifdef INVARIANTS
6079 struct rack_sendmap *insret;
6080 #endif
6081 struct socket *so = tptosocket(tp);
6082 uint32_t amm;
6083 uint32_t out, avail;
6084 int collapsed_win = 0;
6085
6086 if (TSTMP_LT(cts, rack->r_ctl.rc_timer_exp)) {
6087 /* Its not time yet */
6088 return (0);
6089 }
6090 if (ctf_progress_timeout_check(tp, true)) {
6091 rack_log_progress_event(rack, tp, tick, PROGRESS_DROP, __LINE__);
6092 return (-ETIMEDOUT); /* tcp_drop() */
6093 }
6094 /*
6095 * A TLP timer has expired. We have been idle for 2 rtts. So we now
6096 * need to figure out how to force a full MSS segment out.
6097 */
6098 rack_log_to_event(rack, RACK_TO_FRM_TLP, NULL);
6099 rack->r_ctl.retran_during_recovery = 0;
6100 rack->r_ctl.dsack_byte_cnt = 0;
6101 counter_u64_add(rack_tlp_tot, 1);
6102 if (rack->r_state && (rack->r_state != tp->t_state))
6103 rack_set_state(tp, rack);
6104 avail = sbavail(&so->so_snd);
6105 out = tp->snd_max - tp->snd_una;
6106 if ((out > tp->snd_wnd) || rack->rc_has_collapsed) {
6107 /* special case, we need a retransmission */
6108 collapsed_win = 1;
6109 goto need_retran;
6110 }
6111 if (rack->r_ctl.dsack_persist && (rack->r_ctl.rc_tlp_cnt_out >= 1)) {
6112 rack->r_ctl.dsack_persist--;
6113 if (rack->r_ctl.num_dsack && (rack->r_ctl.dsack_persist == 0)) {
6114 rack->r_ctl.num_dsack = 0;
6115 }
6116 rack_log_dsack_event(rack, 1, __LINE__, 0, 0);
6117 }
6118 if ((tp->t_flags & TF_GPUTINPROG) &&
6119 (rack->r_ctl.rc_tlp_cnt_out == 1)) {
6120 /*
6121 * If this is the second in a row
6122 * TLP and we are doing a measurement
6123 * its time to abandon the measurement.
6124 * Something is likely broken on
6125 * the clients network and measuring a
6126 * broken network does us no good.
6127 */
6128 tp->t_flags &= ~TF_GPUTINPROG;
6129 rack_log_pacing_delay_calc(rack, (tp->gput_ack - tp->gput_seq) /*flex2*/,
6130 rack->r_ctl.rc_gp_srtt /*flex1*/,
6131 tp->gput_seq,
6132 0, 0, 18, __LINE__, NULL, 0);
6133 }
6134 /*
6135 * Check our send oldest always settings, and if
6136 * there is an oldest to send jump to the need_retran.
6137 */
6138 if (rack_always_send_oldest && (TAILQ_EMPTY(&rack->r_ctl.rc_tmap) == 0))
6139 goto need_retran;
6140
6141 if (avail > out) {
6142 /* New data is available */
6143 amm = avail - out;
6144 if (amm > ctf_fixed_maxseg(tp)) {
6145 amm = ctf_fixed_maxseg(tp);
6146 if ((amm + out) > tp->snd_wnd) {
6147 /* We are rwnd limited */
6148 goto need_retran;
6149 }
6150 } else if (amm < ctf_fixed_maxseg(tp)) {
6151 /* not enough to fill a MTU */
6152 goto need_retran;
6153 }
6154 if (IN_FASTRECOVERY(tp->t_flags)) {
6155 /* Unlikely */
6156 if (rack->rack_no_prr == 0) {
6157 if (out + amm <= tp->snd_wnd) {
6158 rack->r_ctl.rc_prr_sndcnt = amm;
6159 rack->r_ctl.rc_tlp_new_data = amm;
6160 rack_log_to_prr(rack, 4, 0, __LINE__);
6161 }
6162 } else
6163 goto need_retran;
6164 } else {
6165 /* Set the send-new override */
6166 if (out + amm <= tp->snd_wnd)
6167 rack->r_ctl.rc_tlp_new_data = amm;
6168 else
6169 goto need_retran;
6170 }
6171 rack->r_ctl.rc_tlpsend = NULL;
6172 counter_u64_add(rack_tlp_newdata, 1);
6173 goto send;
6174 }
6175 need_retran:
6176 /*
6177 * Ok we need to arrange the last un-acked segment to be re-sent, or
6178 * optionally the first un-acked segment.
6179 */
6180 if (collapsed_win == 0) {
6181 if (rack_always_send_oldest)
6182 rsm = TAILQ_FIRST(&rack->r_ctl.rc_tmap);
6183 else {
6184 rsm = RB_MAX(rack_rb_tree_head, &rack->r_ctl.rc_mtree);
6185 if (rsm && (rsm->r_flags & (RACK_ACKED | RACK_HAS_FIN))) {
6186 rsm = rack_find_high_nonack(rack, rsm);
6187 }
6188 }
6189 if (rsm == NULL) {
6190 #ifdef TCP_BLACKBOX
6191 tcp_log_dump_tp_logbuf(tp, "nada counter trips", M_NOWAIT, true);
6192 #endif
6193 goto out;
6194 }
6195 } else {
6196 /*
6197 * We must find the last segment
6198 * that was acceptable by the client.
6199 */
6200 RB_FOREACH_REVERSE(rsm, rack_rb_tree_head, &rack->r_ctl.rc_mtree) {
6201 if ((rsm->r_flags & RACK_RWND_COLLAPSED) == 0) {
6202 /* Found one */
6203 break;
6204 }
6205 }
6206 if (rsm == NULL) {
6207 /* None? if so send the first */
6208 rsm = RB_MIN(rack_rb_tree_head, &rack->r_ctl.rc_mtree);
6209 if (rsm == NULL) {
6210 #ifdef TCP_BLACKBOX
6211 tcp_log_dump_tp_logbuf(tp, "nada counter trips", M_NOWAIT, true);
6212 #endif
6213 goto out;
6214 }
6215 }
6216 }
6217 if ((rsm->r_end - rsm->r_start) > ctf_fixed_maxseg(tp)) {
6218 /*
6219 * We need to split this the last segment in two.
6220 */
6221 struct rack_sendmap *nrsm;
6222
6223 nrsm = rack_alloc_full_limit(rack);
6224 if (nrsm == NULL) {
6225 /*
6226 * No memory to split, we will just exit and punt
6227 * off to the RXT timer.
6228 */
6229 goto out;
6230 }
6231 rack_clone_rsm(rack, nrsm, rsm,
6232 (rsm->r_end - ctf_fixed_maxseg(tp)));
6233 rack_log_map_chg(tp, rack, NULL, rsm, nrsm, MAP_SPLIT, 0, __LINE__);
6234 #ifndef INVARIANTS
6235 (void)RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, nrsm);
6236 #else
6237 insret = RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, nrsm);
6238 if (insret != NULL) {
6239 panic("Insert in rb tree of %p fails ret:%p rack:%p rsm:%p",
6240 nrsm, insret, rack, rsm);
6241 }
6242 #endif
6243 if (rsm->r_in_tmap) {
6244 TAILQ_INSERT_AFTER(&rack->r_ctl.rc_tmap, rsm, nrsm, r_tnext);
6245 nrsm->r_in_tmap = 1;
6246 }
6247 rsm = nrsm;
6248 }
6249 rack->r_ctl.rc_tlpsend = rsm;
6250 send:
6251 /* Make sure output path knows we are doing a TLP */
6252 *doing_tlp = 1;
6253 rack->r_timer_override = 1;
6254 rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_TLP;
6255 return (0);
6256 out:
6257 rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_TLP;
6258 return (0);
6259 }
6260
6261 /*
6262 * Delayed ack Timer, here we simply need to setup the
6263 * ACK_NOW flag and remove the DELACK flag. From there
6264 * the output routine will send the ack out.
6265 *
6266 * We only return 1, saying don't proceed, if all timers
6267 * are stopped (destroyed PCB?).
6268 */
6269 static int
6270 rack_timeout_delack(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts)
6271 {
6272
6273 rack_log_to_event(rack, RACK_TO_FRM_DELACK, NULL);
6274 tp->t_flags &= ~TF_DELACK;
6275 tp->t_flags |= TF_ACKNOW;
6276 KMOD_TCPSTAT_INC(tcps_delack);
6277 rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_DELACK;
6278 return (0);
6279 }
6280
6281 /*
6282 * Persists timer, here we simply send the
6283 * same thing as a keepalive will.
6284 * the one byte send.
6285 *
6286 * We only return 1, saying don't proceed, if all timers
6287 * are stopped (destroyed PCB?).
6288 */
6289 static int
6290 rack_timeout_persist(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts)
6291 {
6292 struct tcptemp *t_template;
6293 int32_t retval = 1;
6294
6295 if (rack->rc_in_persist == 0)
6296 return (0);
6297 if (ctf_progress_timeout_check(tp, false)) {
6298 tcp_log_end_status(tp, TCP_EI_STATUS_PERSIST_MAX);
6299 rack_log_progress_event(rack, tp, tick, PROGRESS_DROP, __LINE__);
6300 counter_u64_add(rack_persists_lost_ends, rack->r_ctl.persist_lost_ends);
6301 return (-ETIMEDOUT); /* tcp_drop() */
6302 }
6303 /*
6304 * Persistence timer into zero window. Force a byte to be output, if
6305 * possible.
6306 */
6307 KMOD_TCPSTAT_INC(tcps_persisttimeo);
6308 /*
6309 * Hack: if the peer is dead/unreachable, we do not time out if the
6310 * window is closed. After a full backoff, drop the connection if
6311 * the idle time (no responses to probes) reaches the maximum
6312 * backoff that we would use if retransmitting.
6313 */
6314 if (tp->t_rxtshift == TCP_MAXRXTSHIFT &&
6315 (ticks - tp->t_rcvtime >= tcp_maxpersistidle ||
6316 TICKS_2_USEC(ticks - tp->t_rcvtime) >= RACK_REXMTVAL(tp) * tcp_totbackoff)) {
6317 KMOD_TCPSTAT_INC(tcps_persistdrop);
6318 tcp_log_end_status(tp, TCP_EI_STATUS_PERSIST_MAX);
6319 counter_u64_add(rack_persists_lost_ends, rack->r_ctl.persist_lost_ends);
6320 retval = -ETIMEDOUT; /* tcp_drop() */
6321 goto out;
6322 }
6323 if ((sbavail(&rack->rc_inp->inp_socket->so_snd) == 0) &&
6324 tp->snd_una == tp->snd_max)
6325 rack_exit_persist(tp, rack, cts);
6326 rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_PERSIT;
6327 /*
6328 * If the user has closed the socket then drop a persisting
6329 * connection after a much reduced timeout.
6330 */
6331 if (tp->t_state > TCPS_CLOSE_WAIT &&
6332 (ticks - tp->t_rcvtime) >= TCPTV_PERSMAX) {
6333 KMOD_TCPSTAT_INC(tcps_persistdrop);
6334 tcp_log_end_status(tp, TCP_EI_STATUS_PERSIST_MAX);
6335 counter_u64_add(rack_persists_lost_ends, rack->r_ctl.persist_lost_ends);
6336 retval = -ETIMEDOUT; /* tcp_drop() */
6337 goto out;
6338 }
6339 t_template = tcpip_maketemplate(rack->rc_inp);
6340 if (t_template) {
6341 /* only set it if we were answered */
6342 if (rack->forced_ack == 0) {
6343 rack->forced_ack = 1;
6344 rack->r_ctl.forced_ack_ts = tcp_get_usecs(NULL);
6345 } else {
6346 rack->probe_not_answered = 1;
6347 counter_u64_add(rack_persists_loss, 1);
6348 rack->r_ctl.persist_lost_ends++;
6349 }
6350 counter_u64_add(rack_persists_sends, 1);
6351 tcp_respond(tp, t_template->tt_ipgen,
6352 &t_template->tt_t, (struct mbuf *)NULL,
6353 tp->rcv_nxt, tp->snd_una - 1, 0);
6354 /* This sends an ack */
6355 if (tp->t_flags & TF_DELACK)
6356 tp->t_flags &= ~TF_DELACK;
6357 free(t_template, M_TEMP);
6358 }
6359 if (tp->t_rxtshift < TCP_MAXRXTSHIFT)
6360 tp->t_rxtshift++;
6361 out:
6362 rack_log_to_event(rack, RACK_TO_FRM_PERSIST, NULL);
6363 rack_start_hpts_timer(rack, tp, cts,
6364 0, 0, 0);
6365 return (retval);
6366 }
6367
6368 /*
6369 * If a keepalive goes off, we had no other timers
6370 * happening. We always return 1 here since this
6371 * routine either drops the connection or sends
6372 * out a segment with respond.
6373 */
6374 static int
6375 rack_timeout_keepalive(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts)
6376 {
6377 struct tcptemp *t_template;
6378 struct inpcb *inp = tptoinpcb(tp);
6379
6380 rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_KEEP;
6381 rack_log_to_event(rack, RACK_TO_FRM_KEEP, NULL);
6382 /*
6383 * Keep-alive timer went off; send something or drop connection if
6384 * idle for too long.
6385 */
6386 KMOD_TCPSTAT_INC(tcps_keeptimeo);
6387 if (tp->t_state < TCPS_ESTABLISHED)
6388 goto dropit;
6389 if ((V_tcp_always_keepalive || inp->inp_socket->so_options & SO_KEEPALIVE) &&
6390 tp->t_state <= TCPS_CLOSING) {
6391 if (ticks - tp->t_rcvtime >= TP_KEEPIDLE(tp) + TP_MAXIDLE(tp))
6392 goto dropit;
6393 /*
6394 * Send a packet designed to force a response if the peer is
6395 * up and reachable: either an ACK if the connection is
6396 * still alive, or an RST if the peer has closed the
6397 * connection due to timeout or reboot. Using sequence
6398 * number tp->snd_una-1 causes the transmitted zero-length
6399 * segment to lie outside the receive window; by the
6400 * protocol spec, this requires the correspondent TCP to
6401 * respond.
6402 */
6403 KMOD_TCPSTAT_INC(tcps_keepprobe);
6404 t_template = tcpip_maketemplate(inp);
6405 if (t_template) {
6406 if (rack->forced_ack == 0) {
6407 rack->forced_ack = 1;
6408 rack->r_ctl.forced_ack_ts = tcp_get_usecs(NULL);
6409 } else {
6410 rack->probe_not_answered = 1;
6411 }
6412 tcp_respond(tp, t_template->tt_ipgen,
6413 &t_template->tt_t, (struct mbuf *)NULL,
6414 tp->rcv_nxt, tp->snd_una - 1, 0);
6415 free(t_template, M_TEMP);
6416 }
6417 }
6418 rack_start_hpts_timer(rack, tp, cts, 0, 0, 0);
6419 return (1);
6420 dropit:
6421 KMOD_TCPSTAT_INC(tcps_keepdrops);
6422 tcp_log_end_status(tp, TCP_EI_STATUS_KEEP_MAX);
6423 return (-ETIMEDOUT); /* tcp_drop() */
6424 }
6425
6426 /*
6427 * Retransmit helper function, clear up all the ack
6428 * flags and take care of important book keeping.
6429 */
6430 static void
6431 rack_remxt_tmr(struct tcpcb *tp)
6432 {
6433 /*
6434 * The retransmit timer went off, all sack'd blocks must be
6435 * un-acked.
6436 */
6437 struct rack_sendmap *rsm, *trsm = NULL;
6438 struct tcp_rack *rack;
6439
6440 rack = (struct tcp_rack *)tp->t_fb_ptr;
6441 rack_timer_cancel(tp, rack, tcp_get_usecs(NULL), __LINE__);
6442 rack_log_to_event(rack, RACK_TO_FRM_TMR, NULL);
6443 if (rack->r_state && (rack->r_state != tp->t_state))
6444 rack_set_state(tp, rack);
6445 /*
6446 * Ideally we would like to be able to
6447 * mark SACK-PASS on anything not acked here.
6448 *
6449 * However, if we do that we would burst out
6450 * all that data 1ms apart. This would be unwise,
6451 * so for now we will just let the normal rxt timer
6452 * and tlp timer take care of it.
6453 *
6454 * Also we really need to stick them back in sequence
6455 * order. This way we send in the proper order and any
6456 * sacks that come floating in will "re-ack" the data.
6457 * To do this we zap the tmap with an INIT and then
6458 * walk through and place every rsm in the RB tree
6459 * back in its seq ordered place.
6460 */
6461 TAILQ_INIT(&rack->r_ctl.rc_tmap);
6462 RB_FOREACH(rsm, rack_rb_tree_head, &rack->r_ctl.rc_mtree) {
6463 rsm->r_dupack = 0;
6464 rack_log_retran_reason(rack, rsm, __LINE__, 0, 2);
6465 /* We must re-add it back to the tlist */
6466 if (trsm == NULL) {
6467 TAILQ_INSERT_HEAD(&rack->r_ctl.rc_tmap, rsm, r_tnext);
6468 } else {
6469 TAILQ_INSERT_AFTER(&rack->r_ctl.rc_tmap, trsm, rsm, r_tnext);
6470 }
6471 rsm->r_in_tmap = 1;
6472 trsm = rsm;
6473 if (rsm->r_flags & RACK_ACKED)
6474 rsm->r_flags |= RACK_WAS_ACKED;
6475 rsm->r_flags &= ~(RACK_ACKED | RACK_SACK_PASSED | RACK_WAS_SACKPASS | RACK_RWND_COLLAPSED);
6476 rsm->r_flags |= RACK_MUST_RXT;
6477 }
6478 /* Clear the count (we just un-acked them) */
6479 rack->r_ctl.rc_last_timeout_snduna = tp->snd_una;
6480 rack->r_ctl.rc_sacked = 0;
6481 rack->r_ctl.rc_sacklast = NULL;
6482 rack->r_ctl.rc_agg_delayed = 0;
6483 rack->r_early = 0;
6484 rack->r_ctl.rc_agg_early = 0;
6485 rack->r_late = 0;
6486 /* Clear the tlp rtx mark */
6487 rack->r_ctl.rc_resend = RB_MIN(rack_rb_tree_head, &rack->r_ctl.rc_mtree);
6488 if (rack->r_ctl.rc_resend != NULL)
6489 rack->r_ctl.rc_resend->r_flags |= RACK_TO_REXT;
6490 rack->r_ctl.rc_prr_sndcnt = 0;
6491 rack_log_to_prr(rack, 6, 0, __LINE__);
6492 rack->r_timer_override = 1;
6493 if ((((tp->t_flags & TF_SACK_PERMIT) == 0)
6494 #ifdef NETFLIX_EXP_DETECTION
6495 || (rack->sack_attack_disable != 0)
6496 #endif
6497 ) && ((tp->t_flags & TF_SENTFIN) == 0)) {
6498 /*
6499 * For non-sack customers new data
6500 * needs to go out as retransmits until
6501 * we retransmit up to snd_max.
6502 */
6503 rack->r_must_retran = 1;
6504 rack->r_ctl.rc_out_at_rto = ctf_flight_size(rack->rc_tp,
6505 rack->r_ctl.rc_sacked);
6506 }
6507 rack->r_ctl.rc_snd_max_at_rto = tp->snd_max;
6508 }
6509
6510 static void
6511 rack_convert_rtts(struct tcpcb *tp)
6512 {
6513 if (tp->t_srtt > 1) {
6514 uint32_t val, frac;
6515
6516 val = tp->t_srtt >> TCP_RTT_SHIFT;
6517 frac = tp->t_srtt & 0x1f;
6518 tp->t_srtt = TICKS_2_USEC(val);
6519 /*
6520 * frac is the fractional part of the srtt (if any)
6521 * but its in ticks and every bit represents
6522 * 1/32nd of a hz.
6523 */
6524 if (frac) {
6525 if (hz == 1000) {
6526 frac = (((uint64_t)frac * (uint64_t)HPTS_USEC_IN_MSEC) / (uint64_t)TCP_RTT_SCALE);
6527 } else {
6528 frac = (((uint64_t)frac * (uint64_t)HPTS_USEC_IN_SEC) / ((uint64_t)(hz) * (uint64_t)TCP_RTT_SCALE));
6529 }
6530 tp->t_srtt += frac;
6531 }
6532 }
6533 if (tp->t_rttvar) {
6534 uint32_t val, frac;
6535
6536 val = tp->t_rttvar >> TCP_RTTVAR_SHIFT;
6537 frac = tp->t_rttvar & 0x1f;
6538 tp->t_rttvar = TICKS_2_USEC(val);
6539 /*
6540 * frac is the fractional part of the srtt (if any)
6541 * but its in ticks and every bit represents
6542 * 1/32nd of a hz.
6543 */
6544 if (frac) {
6545 if (hz == 1000) {
6546 frac = (((uint64_t)frac * (uint64_t)HPTS_USEC_IN_MSEC) / (uint64_t)TCP_RTT_SCALE);
6547 } else {
6548 frac = (((uint64_t)frac * (uint64_t)HPTS_USEC_IN_SEC) / ((uint64_t)(hz) * (uint64_t)TCP_RTT_SCALE));
6549 }
6550 tp->t_rttvar += frac;
6551 }
6552 }
6553 tp->t_rxtcur = RACK_REXMTVAL(tp);
6554 if (TCPS_HAVEESTABLISHED(tp->t_state)) {
6555 tp->t_rxtcur += TICKS_2_USEC(tcp_rexmit_slop);
6556 }
6557 if (tp->t_rxtcur > rack_rto_max) {
6558 tp->t_rxtcur = rack_rto_max;
6559 }
6560 }
6561
6562 static void
6563 rack_cc_conn_init(struct tcpcb *tp)
6564 {
6565 struct tcp_rack *rack;
6566 uint32_t srtt;
6567
6568 rack = (struct tcp_rack *)tp->t_fb_ptr;
6569 srtt = tp->t_srtt;
6570 cc_conn_init(tp);
6571 /*
6572 * Now convert to rack's internal format,
6573 * if required.
6574 */
6575 if ((srtt == 0) && (tp->t_srtt != 0))
6576 rack_convert_rtts(tp);
6577 /*
6578 * We want a chance to stay in slowstart as
6579 * we create a connection. TCP spec says that
6580 * initially ssthresh is infinite. For our
6581 * purposes that is the snd_wnd.
6582 */
6583 if (tp->snd_ssthresh < tp->snd_wnd) {
6584 tp->snd_ssthresh = tp->snd_wnd;
6585 }
6586 /*
6587 * We also want to assure a IW worth of
6588 * data can get inflight.
6589 */
6590 if (rc_init_window(rack) < tp->snd_cwnd)
6591 tp->snd_cwnd = rc_init_window(rack);
6592 }
6593
6594 /*
6595 * Re-transmit timeout! If we drop the PCB we will return 1, otherwise
6596 * we will setup to retransmit the lowest seq number outstanding.
6597 */
6598 static int
6599 rack_timeout_rxt(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts)
6600 {
6601 struct inpcb *inp = tptoinpcb(tp);
6602 int32_t rexmt;
6603 int32_t retval = 0;
6604 bool isipv6;
6605
6606 if ((tp->t_flags & TF_GPUTINPROG) &&
6607 (tp->t_rxtshift)) {
6608 /*
6609 * We have had a second timeout
6610 * measurements on successive rxt's are not profitable.
6611 * It is unlikely to be of any use (the network is
6612 * broken or the client went away).
6613 */
6614 tp->t_flags &= ~TF_GPUTINPROG;
6615 rack_log_pacing_delay_calc(rack, (tp->gput_ack - tp->gput_seq) /*flex2*/,
6616 rack->r_ctl.rc_gp_srtt /*flex1*/,
6617 tp->gput_seq,
6618 0, 0, 18, __LINE__, NULL, 0);
6619 }
6620 if (ctf_progress_timeout_check(tp, false)) {
6621 tcp_log_end_status(tp, TCP_EI_STATUS_RETRAN);
6622 rack_log_progress_event(rack, tp, tick, PROGRESS_DROP, __LINE__);
6623 return (-ETIMEDOUT); /* tcp_drop() */
6624 }
6625 rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_RXT;
6626 rack->r_ctl.retran_during_recovery = 0;
6627 rack->rc_ack_required = 1;
6628 rack->r_ctl.dsack_byte_cnt = 0;
6629 if (IN_FASTRECOVERY(tp->t_flags))
6630 tp->t_flags |= TF_WASFRECOVERY;
6631 else
6632 tp->t_flags &= ~TF_WASFRECOVERY;
6633 if (IN_CONGRECOVERY(tp->t_flags))
6634 tp->t_flags |= TF_WASCRECOVERY;
6635 else
6636 tp->t_flags &= ~TF_WASCRECOVERY;
6637 if (TCPS_HAVEESTABLISHED(tp->t_state) &&
6638 (tp->snd_una == tp->snd_max)) {
6639 /* Nothing outstanding .. nothing to do */
6640 return (0);
6641 }
6642 if (rack->r_ctl.dsack_persist) {
6643 rack->r_ctl.dsack_persist--;
6644 if (rack->r_ctl.num_dsack && (rack->r_ctl.dsack_persist == 0)) {
6645 rack->r_ctl.num_dsack = 0;
6646 }
6647 rack_log_dsack_event(rack, 1, __LINE__, 0, 0);
6648 }
6649 /*
6650 * Rack can only run one timer at a time, so we cannot
6651 * run a KEEPINIT (gating SYN sending) and a retransmit
6652 * timer for the SYN. So if we are in a front state and
6653 * have a KEEPINIT timer we need to check the first transmit
6654 * against now to see if we have exceeded the KEEPINIT time
6655 * (if one is set).
6656 */
6657 if ((TCPS_HAVEESTABLISHED(tp->t_state) == 0) &&
6658 (TP_KEEPINIT(tp) != 0)) {
6659 struct rack_sendmap *rsm;
6660
6661 rsm = RB_MIN(rack_rb_tree_head, &rack->r_ctl.rc_mtree);
6662 if (rsm) {
6663 /* Ok we have something outstanding to test keepinit with */
6664 if ((TSTMP_GT(cts, (uint32_t)rsm->r_tim_lastsent[0])) &&
6665 ((cts - (uint32_t)rsm->r_tim_lastsent[0]) >= TICKS_2_USEC(TP_KEEPINIT(tp)))) {
6666 /* We have exceeded the KEEPINIT time */
6667 tcp_log_end_status(tp, TCP_EI_STATUS_KEEP_MAX);
6668 goto drop_it;
6669 }
6670 }
6671 }
6672 /*
6673 * Retransmission timer went off. Message has not been acked within
6674 * retransmit interval. Back off to a longer retransmit interval
6675 * and retransmit one segment.
6676 */
6677 rack_remxt_tmr(tp);
6678 if ((rack->r_ctl.rc_resend == NULL) ||
6679 ((rack->r_ctl.rc_resend->r_flags & RACK_RWND_COLLAPSED) == 0)) {
6680 /*
6681 * If the rwnd collapsed on
6682 * the one we are retransmitting
6683 * it does not count against the
6684 * rxt count.
6685 */
6686 tp->t_rxtshift++;
6687 }
6688 if (tp->t_rxtshift > TCP_MAXRXTSHIFT) {
6689 tcp_log_end_status(tp, TCP_EI_STATUS_RETRAN);
6690 drop_it:
6691 tp->t_rxtshift = TCP_MAXRXTSHIFT;
6692 KMOD_TCPSTAT_INC(tcps_timeoutdrop);
6693 /* XXXGL: previously t_softerror was casted to uint16_t */
6694 MPASS(tp->t_softerror >= 0);
6695 retval = tp->t_softerror ? -tp->t_softerror : -ETIMEDOUT;
6696 goto out; /* tcp_drop() */
6697 }
6698 if (tp->t_state == TCPS_SYN_SENT) {
6699 /*
6700 * If the SYN was retransmitted, indicate CWND to be limited
6701 * to 1 segment in cc_conn_init().
6702 */
6703 tp->snd_cwnd = 1;
6704 } else if (tp->t_rxtshift == 1) {
6705 /*
6706 * first retransmit; record ssthresh and cwnd so they can be
6707 * recovered if this turns out to be a "bad" retransmit. A
6708 * retransmit is considered "bad" if an ACK for this segment
6709 * is received within RTT/2 interval; the assumption here is
6710 * that the ACK was already in flight. See "On Estimating
6711 * End-to-End Network Path Properties" by Allman and Paxson
6712 * for more details.
6713 */
6714 tp->snd_cwnd_prev = tp->snd_cwnd;
6715 tp->snd_ssthresh_prev = tp->snd_ssthresh;
6716 tp->snd_recover_prev = tp->snd_recover;
6717 tp->t_badrxtwin = ticks + (USEC_2_TICKS(tp->t_srtt)/2);
6718 tp->t_flags |= TF_PREVVALID;
6719 } else if ((tp->t_flags & TF_RCVD_TSTMP) == 0)
6720 tp->t_flags &= ~TF_PREVVALID;
6721 KMOD_TCPSTAT_INC(tcps_rexmttimeo);
6722 if ((tp->t_state == TCPS_SYN_SENT) ||
6723 (tp->t_state == TCPS_SYN_RECEIVED))
6724 rexmt = RACK_INITIAL_RTO * tcp_backoff[tp->t_rxtshift];
6725 else
6726 rexmt = max(rack_rto_min, (tp->t_srtt + (tp->t_rttvar << 2))) * tcp_backoff[tp->t_rxtshift];
6727
6728 RACK_TCPT_RANGESET(tp->t_rxtcur, rexmt,
6729 max(rack_rto_min, rexmt), rack_rto_max, rack->r_ctl.timer_slop);
6730 /*
6731 * We enter the path for PLMTUD if connection is established or, if
6732 * connection is FIN_WAIT_1 status, reason for the last is that if
6733 * amount of data we send is very small, we could send it in couple
6734 * of packets and process straight to FIN. In that case we won't
6735 * catch ESTABLISHED state.
6736 */
6737 #ifdef INET6
6738 isipv6 = (inp->inp_vflag & INP_IPV6) ? true : false;
6739 #else
6740 isipv6 = false;
6741 #endif
6742 if (((V_tcp_pmtud_blackhole_detect == 1) ||
6743 (V_tcp_pmtud_blackhole_detect == 2 && !isipv6) ||
6744 (V_tcp_pmtud_blackhole_detect == 3 && isipv6)) &&
6745 ((tp->t_state == TCPS_ESTABLISHED) ||
6746 (tp->t_state == TCPS_FIN_WAIT_1))) {
6747 /*
6748 * Idea here is that at each stage of mtu probe (usually,
6749 * 1448 -> 1188 -> 524) should be given 2 chances to recover
6750 * before further clamping down. 'tp->t_rxtshift % 2 == 0'
6751 * should take care of that.
6752 */
6753 if (((tp->t_flags2 & (TF2_PLPMTU_PMTUD | TF2_PLPMTU_MAXSEGSNT)) ==
6754 (TF2_PLPMTU_PMTUD | TF2_PLPMTU_MAXSEGSNT)) &&
6755 (tp->t_rxtshift >= 2 && tp->t_rxtshift < 6 &&
6756 tp->t_rxtshift % 2 == 0)) {
6757 /*
6758 * Enter Path MTU Black-hole Detection mechanism: -
6759 * Disable Path MTU Discovery (IP "DF" bit). -
6760 * Reduce MTU to lower value than what we negotiated
6761 * with peer.
6762 */
6763 if ((tp->t_flags2 & TF2_PLPMTU_BLACKHOLE) == 0) {
6764 /* Record that we may have found a black hole. */
6765 tp->t_flags2 |= TF2_PLPMTU_BLACKHOLE;
6766 /* Keep track of previous MSS. */
6767 tp->t_pmtud_saved_maxseg = tp->t_maxseg;
6768 }
6769
6770 /*
6771 * Reduce the MSS to blackhole value or to the
6772 * default in an attempt to retransmit.
6773 */
6774 #ifdef INET6
6775 if (isipv6 &&
6776 tp->t_maxseg > V_tcp_v6pmtud_blackhole_mss) {
6777 /* Use the sysctl tuneable blackhole MSS. */
6778 tp->t_maxseg = V_tcp_v6pmtud_blackhole_mss;
6779 KMOD_TCPSTAT_INC(tcps_pmtud_blackhole_activated);
6780 } else if (isipv6) {
6781 /* Use the default MSS. */
6782 tp->t_maxseg = V_tcp_v6mssdflt;
6783 /*
6784 * Disable Path MTU Discovery when we switch
6785 * to minmss.
6786 */
6787 tp->t_flags2 &= ~TF2_PLPMTU_PMTUD;
6788 KMOD_TCPSTAT_INC(tcps_pmtud_blackhole_activated_min_mss);
6789 }
6790 #endif
6791 #if defined(INET6) && defined(INET)
6792 else
6793 #endif
6794 #ifdef INET
6795 if (tp->t_maxseg > V_tcp_pmtud_blackhole_mss) {
6796 /* Use the sysctl tuneable blackhole MSS. */
6797 tp->t_maxseg = V_tcp_pmtud_blackhole_mss;
6798 KMOD_TCPSTAT_INC(tcps_pmtud_blackhole_activated);
6799 } else {
6800 /* Use the default MSS. */
6801 tp->t_maxseg = V_tcp_mssdflt;
6802 /*
6803 * Disable Path MTU Discovery when we switch
6804 * to minmss.
6805 */
6806 tp->t_flags2 &= ~TF2_PLPMTU_PMTUD;
6807 KMOD_TCPSTAT_INC(tcps_pmtud_blackhole_activated_min_mss);
6808 }
6809 #endif
6810 } else {
6811 /*
6812 * If further retransmissions are still unsuccessful
6813 * with a lowered MTU, maybe this isn't a blackhole
6814 * and we restore the previous MSS and blackhole
6815 * detection flags. The limit '6' is determined by
6816 * giving each probe stage (1448, 1188, 524) 2
6817 * chances to recover.
6818 */
6819 if ((tp->t_flags2 & TF2_PLPMTU_BLACKHOLE) &&
6820 (tp->t_rxtshift >= 6)) {
6821 tp->t_flags2 |= TF2_PLPMTU_PMTUD;
6822 tp->t_flags2 &= ~TF2_PLPMTU_BLACKHOLE;
6823 tp->t_maxseg = tp->t_pmtud_saved_maxseg;
6824 KMOD_TCPSTAT_INC(tcps_pmtud_blackhole_failed);
6825 }
6826 }
6827 }
6828 /*
6829 * Disable RFC1323 and SACK if we haven't got any response to
6830 * our third SYN to work-around some broken terminal servers
6831 * (most of which have hopefully been retired) that have bad VJ
6832 * header compression code which trashes TCP segments containing
6833 * unknown-to-them TCP options.
6834 */
6835 if (tcp_rexmit_drop_options && (tp->t_state == TCPS_SYN_SENT) &&
6836 (tp->t_rxtshift == 3))
6837 tp->t_flags &= ~(TF_REQ_SCALE|TF_REQ_TSTMP|TF_SACK_PERMIT);
6838 /*
6839 * If we backed off this far, our srtt estimate is probably bogus.
6840 * Clobber it so we'll take the next rtt measurement as our srtt;
6841 * move the current srtt into rttvar to keep the current retransmit
6842 * times until then.
6843 */
6844 if (tp->t_rxtshift > TCP_MAXRXTSHIFT / 4) {
6845 #ifdef INET6
6846 if ((inp->inp_vflag & INP_IPV6) != 0)
6847 in6_losing(inp);
6848 else
6849 #endif
6850 in_losing(inp);
6851 tp->t_rttvar += tp->t_srtt;
6852 tp->t_srtt = 0;
6853 }
6854 sack_filter_clear(&rack->r_ctl.rack_sf, tp->snd_una);
6855 tp->snd_recover = tp->snd_max;
6856 tp->t_flags |= TF_ACKNOW;
6857 tp->t_rtttime = 0;
6858 rack_cong_signal(tp, CC_RTO, tp->snd_una, __LINE__);
6859 out:
6860 return (retval);
6861 }
6862
6863 static int
6864 rack_process_timers(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts, uint8_t hpts_calling, uint8_t *doing_tlp)
6865 {
6866 int32_t ret = 0;
6867 int32_t timers = (rack->r_ctl.rc_hpts_flags & PACE_TMR_MASK);
6868
6869 if ((tp->t_state >= TCPS_FIN_WAIT_1) &&
6870 (tp->t_flags & TF_GPUTINPROG)) {
6871 /*
6872 * We have a goodput in progress
6873 * and we have entered a late state.
6874 * Do we have enough data in the sb
6875 * to handle the GPUT request?
6876 */
6877 uint32_t bytes;
6878
6879 bytes = tp->gput_ack - tp->gput_seq;
6880 if (SEQ_GT(tp->gput_seq, tp->snd_una))
6881 bytes += tp->gput_seq - tp->snd_una;
6882 if (bytes > sbavail(&tptosocket(tp)->so_snd)) {
6883 /*
6884 * There are not enough bytes in the socket
6885 * buffer that have been sent to cover this
6886 * measurement. Cancel it.
6887 */
6888 rack_log_pacing_delay_calc(rack, (tp->gput_ack - tp->gput_seq) /*flex2*/,
6889 rack->r_ctl.rc_gp_srtt /*flex1*/,
6890 tp->gput_seq,
6891 0, 0, 18, __LINE__, NULL, 0);
6892 tp->t_flags &= ~TF_GPUTINPROG;
6893 }
6894 }
6895 if (timers == 0) {
6896 return (0);
6897 }
6898 if (tp->t_state == TCPS_LISTEN) {
6899 /* no timers on listen sockets */
6900 if (rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT)
6901 return (0);
6902 return (1);
6903 }
6904 if ((timers & PACE_TMR_RACK) &&
6905 rack->rc_on_min_to) {
6906 /*
6907 * For the rack timer when we
6908 * are on a min-timeout (which means rrr_conf = 3)
6909 * we don't want to check the timer. It may
6910 * be going off for a pace and thats ok we
6911 * want to send the retransmit (if its ready).
6912 *
6913 * If its on a normal rack timer (non-min) then
6914 * we will check if its expired.
6915 */
6916 goto skip_time_check;
6917 }
6918 if (TSTMP_LT(cts, rack->r_ctl.rc_timer_exp)) {
6919 uint32_t left;
6920
6921 if (rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) {
6922 ret = -1;
6923 rack_log_to_processing(rack, cts, ret, 0);
6924 return (0);
6925 }
6926 if (hpts_calling == 0) {
6927 /*
6928 * A user send or queued mbuf (sack) has called us? We
6929 * return 0 and let the pacing guards
6930 * deal with it if they should or
6931 * should not cause a send.
6932 */
6933 ret = -2;
6934 rack_log_to_processing(rack, cts, ret, 0);
6935 return (0);
6936 }
6937 /*
6938 * Ok our timer went off early and we are not paced false
6939 * alarm, go back to sleep.
6940 */
6941 ret = -3;
6942 left = rack->r_ctl.rc_timer_exp - cts;
6943 tcp_hpts_insert(tptoinpcb(tp), HPTS_MS_TO_SLOTS(left));
6944 rack_log_to_processing(rack, cts, ret, left);
6945 return (1);
6946 }
6947 skip_time_check:
6948 rack->rc_tmr_stopped = 0;
6949 rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_MASK;
6950 if (timers & PACE_TMR_DELACK) {
6951 ret = rack_timeout_delack(tp, rack, cts);
6952 } else if (timers & PACE_TMR_RACK) {
6953 rack->r_ctl.rc_tlp_rxt_last_time = cts;
6954 rack->r_fast_output = 0;
6955 ret = rack_timeout_rack(tp, rack, cts);
6956 } else if (timers & PACE_TMR_TLP) {
6957 rack->r_ctl.rc_tlp_rxt_last_time = cts;
6958 ret = rack_timeout_tlp(tp, rack, cts, doing_tlp);
6959 } else if (timers & PACE_TMR_RXT) {
6960 rack->r_ctl.rc_tlp_rxt_last_time = cts;
6961 rack->r_fast_output = 0;
6962 ret = rack_timeout_rxt(tp, rack, cts);
6963 } else if (timers & PACE_TMR_PERSIT) {
6964 ret = rack_timeout_persist(tp, rack, cts);
6965 } else if (timers & PACE_TMR_KEEP) {
6966 ret = rack_timeout_keepalive(tp, rack, cts);
6967 }
6968 rack_log_to_processing(rack, cts, ret, timers);
6969 return (ret);
6970 }
6971
6972 static void
6973 rack_timer_cancel(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts, int line)
6974 {
6975 struct timeval tv;
6976 uint32_t us_cts, flags_on_entry;
6977 uint8_t hpts_removed = 0;
6978
6979 flags_on_entry = rack->r_ctl.rc_hpts_flags;
6980 us_cts = tcp_get_usecs(&tv);
6981 if ((rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) &&
6982 ((TSTMP_GEQ(us_cts, rack->r_ctl.rc_last_output_to)) ||
6983 ((tp->snd_max - tp->snd_una) == 0))) {
6984 tcp_hpts_remove(rack->rc_inp);
6985 hpts_removed = 1;
6986 /* If we were not delayed cancel out the flag. */
6987 if ((tp->snd_max - tp->snd_una) == 0)
6988 rack->r_ctl.rc_hpts_flags &= ~PACE_PKT_OUTPUT;
6989 rack_log_to_cancel(rack, hpts_removed, line, us_cts, &tv, flags_on_entry);
6990 }
6991 if (rack->r_ctl.rc_hpts_flags & PACE_TMR_MASK) {
6992 rack->rc_tmr_stopped = rack->r_ctl.rc_hpts_flags & PACE_TMR_MASK;
6993 if (tcp_in_hpts(rack->rc_inp) &&
6994 ((rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) == 0)) {
6995 /*
6996 * Canceling timer's when we have no output being
6997 * paced. We also must remove ourselves from the
6998 * hpts.
6999 */
7000 tcp_hpts_remove(rack->rc_inp);
7001 hpts_removed = 1;
7002 }
7003 rack->r_ctl.rc_hpts_flags &= ~(PACE_TMR_MASK);
7004 }
7005 if (hpts_removed == 0)
7006 rack_log_to_cancel(rack, hpts_removed, line, us_cts, &tv, flags_on_entry);
7007 }
7008
7009 static int
7010 rack_stopall(struct tcpcb *tp)
7011 {
7012 struct tcp_rack *rack;
7013 rack = (struct tcp_rack *)tp->t_fb_ptr;
7014 rack->t_timers_stopped = 1;
7015 return (0);
7016 }
7017
7018 static void
7019 rack_stop_all_timers(struct tcpcb *tp)
7020 {
7021 struct tcp_rack *rack;
7022
7023 /*
7024 * Assure no timers are running.
7025 */
7026 if (tcp_timer_active(tp, TT_PERSIST)) {
7027 /* We enter in persists, set the flag appropriately */
7028 rack = (struct tcp_rack *)tp->t_fb_ptr;
7029 rack->rc_in_persist = 1;
7030 }
7031 }
7032
7033 static void
7034 rack_update_rsm(struct tcpcb *tp, struct tcp_rack *rack,
7035 struct rack_sendmap *rsm, uint64_t ts, uint16_t add_flag)
7036 {
7037 int32_t idx;
7038
7039 rsm->r_rtr_cnt++;
7040 rack_log_retran_reason(rack, rsm, __LINE__, 0, 2);
7041 rsm->r_dupack = 0;
7042 if (rsm->r_rtr_cnt > RACK_NUM_OF_RETRANS) {
7043 rsm->r_rtr_cnt = RACK_NUM_OF_RETRANS;
7044 rsm->r_flags |= RACK_OVERMAX;
7045 }
7046 if ((rsm->r_rtr_cnt > 1) && ((rsm->r_flags & RACK_TLP) == 0)) {
7047 rack->r_ctl.rc_holes_rxt += (rsm->r_end - rsm->r_start);
7048 rsm->r_rtr_bytes += (rsm->r_end - rsm->r_start);
7049 }
7050 idx = rsm->r_rtr_cnt - 1;
7051 rsm->r_tim_lastsent[idx] = ts;
7052 /*
7053 * Here we don't add in the len of send, since its already
7054 * in snduna <->snd_max.
7055 */
7056 rsm->r_fas = ctf_flight_size(rack->rc_tp,
7057 rack->r_ctl.rc_sacked);
7058 if (rsm->r_flags & RACK_ACKED) {
7059 /* Problably MTU discovery messing with us */
7060 rsm->r_flags &= ~RACK_ACKED;
7061 rack->r_ctl.rc_sacked -= (rsm->r_end - rsm->r_start);
7062 }
7063 if (rsm->r_in_tmap) {
7064 TAILQ_REMOVE(&rack->r_ctl.rc_tmap, rsm, r_tnext);
7065 rsm->r_in_tmap = 0;
7066 }
7067 TAILQ_INSERT_TAIL(&rack->r_ctl.rc_tmap, rsm, r_tnext);
7068 rsm->r_in_tmap = 1;
7069 /* Take off the must retransmit flag, if its on */
7070 if (rsm->r_flags & RACK_MUST_RXT) {
7071 if (rack->r_must_retran)
7072 rack->r_ctl.rc_out_at_rto -= (rsm->r_end - rsm->r_start);
7073 if (SEQ_GEQ(rsm->r_end, rack->r_ctl.rc_snd_max_at_rto)) {
7074 /*
7075 * We have retransmitted all we need. Clear
7076 * any must retransmit flags.
7077 */
7078 rack->r_must_retran = 0;
7079 rack->r_ctl.rc_out_at_rto = 0;
7080 }
7081 rsm->r_flags &= ~RACK_MUST_RXT;
7082 }
7083 if (rsm->r_flags & RACK_SACK_PASSED) {
7084 /* We have retransmitted due to the SACK pass */
7085 rsm->r_flags &= ~RACK_SACK_PASSED;
7086 rsm->r_flags |= RACK_WAS_SACKPASS;
7087 }
7088 }
7089
7090 static uint32_t
7091 rack_update_entry(struct tcpcb *tp, struct tcp_rack *rack,
7092 struct rack_sendmap *rsm, uint64_t ts, int32_t *lenp, uint16_t add_flag)
7093 {
7094 /*
7095 * We (re-)transmitted starting at rsm->r_start for some length
7096 * (possibly less than r_end.
7097 */
7098 struct rack_sendmap *nrsm;
7099 #ifdef INVARIANTS
7100 struct rack_sendmap *insret;
7101 #endif
7102 uint32_t c_end;
7103 int32_t len;
7104
7105 len = *lenp;
7106 c_end = rsm->r_start + len;
7107 if (SEQ_GEQ(c_end, rsm->r_end)) {
7108 /*
7109 * We retransmitted the whole piece or more than the whole
7110 * slopping into the next rsm.
7111 */
7112 rack_update_rsm(tp, rack, rsm, ts, add_flag);
7113 if (c_end == rsm->r_end) {
7114 *lenp = 0;
7115 return (0);
7116 } else {
7117 int32_t act_len;
7118
7119 /* Hangs over the end return whats left */
7120 act_len = rsm->r_end - rsm->r_start;
7121 *lenp = (len - act_len);
7122 return (rsm->r_end);
7123 }
7124 /* We don't get out of this block. */
7125 }
7126 /*
7127 * Here we retransmitted less than the whole thing which means we
7128 * have to split this into what was transmitted and what was not.
7129 */
7130 nrsm = rack_alloc_full_limit(rack);
7131 if (nrsm == NULL) {
7132 /*
7133 * We can't get memory, so lets not proceed.
7134 */
7135 *lenp = 0;
7136 return (0);
7137 }
7138 /*
7139 * So here we are going to take the original rsm and make it what we
7140 * retransmitted. nrsm will be the tail portion we did not
7141 * retransmit. For example say the chunk was 1, 11 (10 bytes). And
7142 * we retransmitted 5 bytes i.e. 1, 5. The original piece shrinks to
7143 * 1, 6 and the new piece will be 6, 11.
7144 */
7145 rack_clone_rsm(rack, nrsm, rsm, c_end);
7146 nrsm->r_dupack = 0;
7147 rack_log_retran_reason(rack, nrsm, __LINE__, 0, 2);
7148 #ifndef INVARIANTS
7149 (void)RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, nrsm);
7150 #else
7151 insret = RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, nrsm);
7152 if (insret != NULL) {
7153 panic("Insert in rb tree of %p fails ret:%p rack:%p rsm:%p",
7154 nrsm, insret, rack, rsm);
7155 }
7156 #endif
7157 if (rsm->r_in_tmap) {
7158 TAILQ_INSERT_AFTER(&rack->r_ctl.rc_tmap, rsm, nrsm, r_tnext);
7159 nrsm->r_in_tmap = 1;
7160 }
7161 rsm->r_flags &= (~RACK_HAS_FIN);
7162 rack_update_rsm(tp, rack, rsm, ts, add_flag);
7163 /* Log a split of rsm into rsm and nrsm */
7164 rack_log_map_chg(tp, rack, NULL, rsm, nrsm, MAP_SPLIT, 0, __LINE__);
7165 *lenp = 0;
7166 return (0);
7167 }
7168
7169 static void
7170 rack_log_output(struct tcpcb *tp, struct tcpopt *to, int32_t len,
7171 uint32_t seq_out, uint16_t th_flags, int32_t err, uint64_t cts,
7172 struct rack_sendmap *hintrsm, uint16_t add_flag, struct mbuf *s_mb, uint32_t s_moff, int hw_tls)
7173 {
7174 struct tcp_rack *rack;
7175 struct rack_sendmap *rsm, *nrsm, fe;
7176 #ifdef INVARIANTS
7177 struct rack_sendmap *insret;
7178 #endif
7179 register uint32_t snd_max, snd_una;
7180
7181 /*
7182 * Add to the RACK log of packets in flight or retransmitted. If
7183 * there is a TS option we will use the TS echoed, if not we will
7184 * grab a TS.
7185 *
7186 * Retransmissions will increment the count and move the ts to its
7187 * proper place. Note that if options do not include TS's then we
7188 * won't be able to effectively use the ACK for an RTT on a retran.
7189 *
7190 * Notes about r_start and r_end. Lets consider a send starting at
7191 * sequence 1 for 10 bytes. In such an example the r_start would be
7192 * 1 (starting sequence) but the r_end would be r_start+len i.e. 11.
7193 * This means that r_end is actually the first sequence for the next
7194 * slot (11).
7195 *
7196 */
7197 /*
7198 * If err is set what do we do XXXrrs? should we not add the thing?
7199 * -- i.e. return if err != 0 or should we pretend we sent it? --
7200 * i.e. proceed with add ** do this for now.
7201 */
7202 INP_WLOCK_ASSERT(tptoinpcb(tp));
7203 if (err)
7204 /*
7205 * We don't log errors -- we could but snd_max does not
7206 * advance in this case either.
7207 */
7208 return;
7209
7210 if (th_flags & TH_RST) {
7211 /*
7212 * We don't log resets and we return immediately from
7213 * sending
7214 */
7215 return;
7216 }
7217 rack = (struct tcp_rack *)tp->t_fb_ptr;
7218 snd_una = tp->snd_una;
7219 snd_max = tp->snd_max;
7220 if (th_flags & (TH_SYN | TH_FIN)) {
7221 /*
7222 * The call to rack_log_output is made before bumping
7223 * snd_max. This means we can record one extra byte on a SYN
7224 * or FIN if seq_out is adding more on and a FIN is present
7225 * (and we are not resending).
7226 */
7227 if ((th_flags & TH_SYN) && (seq_out == tp->iss))
7228 len++;
7229 if (th_flags & TH_FIN)
7230 len++;
7231 if (SEQ_LT(snd_max, tp->snd_nxt)) {
7232 /*
7233 * The add/update as not been done for the FIN/SYN
7234 * yet.
7235 */
7236 snd_max = tp->snd_nxt;
7237 }
7238 }
7239 if (SEQ_LEQ((seq_out + len), snd_una)) {
7240 /* Are sending an old segment to induce an ack (keep-alive)? */
7241 return;
7242 }
7243 if (SEQ_LT(seq_out, snd_una)) {
7244 /* huh? should we panic? */
7245 uint32_t end;
7246
7247 end = seq_out + len;
7248 seq_out = snd_una;
7249 if (SEQ_GEQ(end, seq_out))
7250 len = end - seq_out;
7251 else
7252 len = 0;
7253 }
7254 if (len == 0) {
7255 /* We don't log zero window probes */
7256 return;
7257 }
7258 if (IN_FASTRECOVERY(tp->t_flags)) {
7259 rack->r_ctl.rc_prr_out += len;
7260 }
7261 /* First question is it a retransmission or new? */
7262 if (seq_out == snd_max) {
7263 /* Its new */
7264 again:
7265 rsm = rack_alloc(rack);
7266 if (rsm == NULL) {
7267 /*
7268 * Hmm out of memory and the tcb got destroyed while
7269 * we tried to wait.
7270 */
7271 return;
7272 }
7273 if (th_flags & TH_FIN) {
7274 rsm->r_flags = RACK_HAS_FIN|add_flag;
7275 } else {
7276 rsm->r_flags = add_flag;
7277 }
7278 if (hw_tls)
7279 rsm->r_hw_tls = 1;
7280 rsm->r_tim_lastsent[0] = cts;
7281 rsm->r_rtr_cnt = 1;
7282 rsm->r_rtr_bytes = 0;
7283 if (th_flags & TH_SYN) {
7284 /* The data space is one beyond snd_una */
7285 rsm->r_flags |= RACK_HAS_SYN;
7286 }
7287 rsm->r_start = seq_out;
7288 rsm->r_end = rsm->r_start + len;
7289 rsm->r_dupack = 0;
7290 /*
7291 * save off the mbuf location that
7292 * sndmbuf_noadv returned (which is
7293 * where we started copying from)..
7294 */
7295 rsm->m = s_mb;
7296 rsm->soff = s_moff;
7297 /*
7298 * Here we do add in the len of send, since its not yet
7299 * reflected in in snduna <->snd_max
7300 */
7301 rsm->r_fas = (ctf_flight_size(rack->rc_tp,
7302 rack->r_ctl.rc_sacked) +
7303 (rsm->r_end - rsm->r_start));
7304 /* rsm->m will be NULL if RACK_HAS_SYN or RACK_HAS_FIN is set */
7305 if (rsm->m) {
7306 if (rsm->m->m_len <= rsm->soff) {
7307 /*
7308 * XXXrrs Question, will this happen?
7309 *
7310 * If sbsndptr is set at the correct place
7311 * then s_moff should always be somewhere
7312 * within rsm->m. But if the sbsndptr was
7313 * off then that won't be true. If it occurs
7314 * we need to walkout to the correct location.
7315 */
7316 struct mbuf *lm;
7317
7318 lm = rsm->m;
7319 while (lm->m_len <= rsm->soff) {
7320 rsm->soff -= lm->m_len;
7321 lm = lm->m_next;
7322 KASSERT(lm != NULL, ("%s rack:%p lm goes null orig_off:%u origmb:%p rsm->soff:%u",
7323 __func__, rack, s_moff, s_mb, rsm->soff));
7324 }
7325 rsm->m = lm;
7326 }
7327 rsm->orig_m_len = rsm->m->m_len;
7328 } else
7329 rsm->orig_m_len = 0;
7330 rack_log_retran_reason(rack, rsm, __LINE__, 0, 2);
7331 /* Log a new rsm */
7332 rack_log_map_chg(tp, rack, NULL, rsm, NULL, MAP_NEW, 0, __LINE__);
7333 #ifndef INVARIANTS
7334 (void)RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
7335 #else
7336 insret = RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
7337 if (insret != NULL) {
7338 panic("Insert in rb tree of %p fails ret:%p rack:%p rsm:%p",
7339 nrsm, insret, rack, rsm);
7340 }
7341 #endif
7342 TAILQ_INSERT_TAIL(&rack->r_ctl.rc_tmap, rsm, r_tnext);
7343 rsm->r_in_tmap = 1;
7344 /*
7345 * Special case detection, is there just a single
7346 * packet outstanding when we are not in recovery?
7347 *
7348 * If this is true mark it so.
7349 */
7350 if ((IN_FASTRECOVERY(tp->t_flags) == 0) &&
7351 (ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked) == ctf_fixed_maxseg(tp))) {
7352 struct rack_sendmap *prsm;
7353
7354 prsm = RB_PREV(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
7355 if (prsm)
7356 prsm->r_one_out_nr = 1;
7357 }
7358 return;
7359 }
7360 /*
7361 * If we reach here its a retransmission and we need to find it.
7362 */
7363 memset(&fe, 0, sizeof(fe));
7364 more:
7365 if (hintrsm && (hintrsm->r_start == seq_out)) {
7366 rsm = hintrsm;
7367 hintrsm = NULL;
7368 } else {
7369 /* No hints sorry */
7370 rsm = NULL;
7371 }
7372 if ((rsm) && (rsm->r_start == seq_out)) {
7373 seq_out = rack_update_entry(tp, rack, rsm, cts, &len, add_flag);
7374 if (len == 0) {
7375 return;
7376 } else {
7377 goto more;
7378 }
7379 }
7380 /* Ok it was not the last pointer go through it the hard way. */
7381 refind:
7382 fe.r_start = seq_out;
7383 rsm = RB_FIND(rack_rb_tree_head, &rack->r_ctl.rc_mtree, &fe);
7384 if (rsm) {
7385 if (rsm->r_start == seq_out) {
7386 seq_out = rack_update_entry(tp, rack, rsm, cts, &len, add_flag);
7387 if (len == 0) {
7388 return;
7389 } else {
7390 goto refind;
7391 }
7392 }
7393 if (SEQ_GEQ(seq_out, rsm->r_start) && SEQ_LT(seq_out, rsm->r_end)) {
7394 /* Transmitted within this piece */
7395 /*
7396 * Ok we must split off the front and then let the
7397 * update do the rest
7398 */
7399 nrsm = rack_alloc_full_limit(rack);
7400 if (nrsm == NULL) {
7401 rack_update_rsm(tp, rack, rsm, cts, add_flag);
7402 return;
7403 }
7404 /*
7405 * copy rsm to nrsm and then trim the front of rsm
7406 * to not include this part.
7407 */
7408 rack_clone_rsm(rack, nrsm, rsm, seq_out);
7409 rack_log_map_chg(tp, rack, NULL, rsm, nrsm, MAP_SPLIT, 0, __LINE__);
7410 #ifndef INVARIANTS
7411 (void)RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, nrsm);
7412 #else
7413 insret = RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, nrsm);
7414 if (insret != NULL) {
7415 panic("Insert in rb tree of %p fails ret:%p rack:%p rsm:%p",
7416 nrsm, insret, rack, rsm);
7417 }
7418 #endif
7419 if (rsm->r_in_tmap) {
7420 TAILQ_INSERT_AFTER(&rack->r_ctl.rc_tmap, rsm, nrsm, r_tnext);
7421 nrsm->r_in_tmap = 1;
7422 }
7423 rsm->r_flags &= (~RACK_HAS_FIN);
7424 seq_out = rack_update_entry(tp, rack, nrsm, cts, &len, add_flag);
7425 if (len == 0) {
7426 return;
7427 } else if (len > 0)
7428 goto refind;
7429 }
7430 }
7431 /*
7432 * Hmm not found in map did they retransmit both old and on into the
7433 * new?
7434 */
7435 if (seq_out == tp->snd_max) {
7436 goto again;
7437 } else if (SEQ_LT(seq_out, tp->snd_max)) {
7438 #ifdef INVARIANTS
7439 printf("seq_out:%u len:%d snd_una:%u snd_max:%u -- but rsm not found?\n",
7440 seq_out, len, tp->snd_una, tp->snd_max);
7441 printf("Starting Dump of all rack entries\n");
7442 RB_FOREACH(rsm, rack_rb_tree_head, &rack->r_ctl.rc_mtree) {
7443 printf("rsm:%p start:%u end:%u\n",
7444 rsm, rsm->r_start, rsm->r_end);
7445 }
7446 printf("Dump complete\n");
7447 panic("seq_out not found rack:%p tp:%p",
7448 rack, tp);
7449 #endif
7450 } else {
7451 #ifdef INVARIANTS
7452 /*
7453 * Hmm beyond sndmax? (only if we are using the new rtt-pack
7454 * flag)
7455 */
7456 panic("seq_out:%u(%d) is beyond snd_max:%u tp:%p",
7457 seq_out, len, tp->snd_max, tp);
7458 #endif
7459 }
7460 }
7461
7462 /*
7463 * Record one of the RTT updates from an ack into
7464 * our sample structure.
7465 */
7466
7467 static void
7468 tcp_rack_xmit_timer(struct tcp_rack *rack, int32_t rtt, uint32_t len, uint32_t us_rtt,
7469 int confidence, struct rack_sendmap *rsm, uint16_t rtrcnt)
7470 {
7471 if ((rack->r_ctl.rack_rs.rs_flags & RACK_RTT_EMPTY) ||
7472 (rack->r_ctl.rack_rs.rs_rtt_lowest > rtt)) {
7473 rack->r_ctl.rack_rs.rs_rtt_lowest = rtt;
7474 }
7475 if ((rack->r_ctl.rack_rs.rs_flags & RACK_RTT_EMPTY) ||
7476 (rack->r_ctl.rack_rs.rs_rtt_highest < rtt)) {
7477 rack->r_ctl.rack_rs.rs_rtt_highest = rtt;
7478 }
7479 if (rack->rc_tp->t_flags & TF_GPUTINPROG) {
7480 if (us_rtt < rack->r_ctl.rc_gp_lowrtt)
7481 rack->r_ctl.rc_gp_lowrtt = us_rtt;
7482 if (rack->rc_tp->snd_wnd > rack->r_ctl.rc_gp_high_rwnd)
7483 rack->r_ctl.rc_gp_high_rwnd = rack->rc_tp->snd_wnd;
7484 }
7485 if ((confidence == 1) &&
7486 ((rsm == NULL) ||
7487 (rsm->r_just_ret) ||
7488 (rsm->r_one_out_nr &&
7489 len < (ctf_fixed_maxseg(rack->rc_tp) * 2)))) {
7490 /*
7491 * If the rsm had a just return
7492 * hit it then we can't trust the
7493 * rtt measurement for buffer deterimination
7494 * Note that a confidence of 2, indicates
7495 * SACK'd which overrides the r_just_ret or
7496 * the r_one_out_nr. If it was a CUM-ACK and
7497 * we had only two outstanding, but get an
7498 * ack for only 1. Then that also lowers our
7499 * confidence.
7500 */
7501 confidence = 0;
7502 }
7503 if ((rack->r_ctl.rack_rs.rs_flags & RACK_RTT_EMPTY) ||
7504 (rack->r_ctl.rack_rs.rs_us_rtt > us_rtt)) {
7505 if (rack->r_ctl.rack_rs.confidence == 0) {
7506 /*
7507 * We take anything with no current confidence
7508 * saved.
7509 */
7510 rack->r_ctl.rack_rs.rs_us_rtt = us_rtt;
7511 rack->r_ctl.rack_rs.confidence = confidence;
7512 rack->r_ctl.rack_rs.rs_us_rtrcnt = rtrcnt;
7513 } else if (confidence || rack->r_ctl.rack_rs.confidence) {
7514 /*
7515 * Once we have a confident number,
7516 * we can update it with a smaller
7517 * value since this confident number
7518 * may include the DSACK time until
7519 * the next segment (the second one) arrived.
7520 */
7521 rack->r_ctl.rack_rs.rs_us_rtt = us_rtt;
7522 rack->r_ctl.rack_rs.confidence = confidence;
7523 rack->r_ctl.rack_rs.rs_us_rtrcnt = rtrcnt;
7524 }
7525 }
7526 rack_log_rtt_upd(rack->rc_tp, rack, us_rtt, len, rsm, confidence);
7527 rack->r_ctl.rack_rs.rs_flags = RACK_RTT_VALID;
7528 rack->r_ctl.rack_rs.rs_rtt_tot += rtt;
7529 rack->r_ctl.rack_rs.rs_rtt_cnt++;
7530 }
7531
7532 /*
7533 * Collect new round-trip time estimate
7534 * and update averages and current timeout.
7535 */
7536 static void
7537 tcp_rack_xmit_timer_commit(struct tcp_rack *rack, struct tcpcb *tp)
7538 {
7539 int32_t delta;
7540 int32_t rtt;
7541
7542 if (rack->r_ctl.rack_rs.rs_flags & RACK_RTT_EMPTY)
7543 /* No valid sample */
7544 return;
7545 if (rack->r_ctl.rc_rate_sample_method == USE_RTT_LOW) {
7546 /* We are to use the lowest RTT seen in a single ack */
7547 rtt = rack->r_ctl.rack_rs.rs_rtt_lowest;
7548 } else if (rack->r_ctl.rc_rate_sample_method == USE_RTT_HIGH) {
7549 /* We are to use the highest RTT seen in a single ack */
7550 rtt = rack->r_ctl.rack_rs.rs_rtt_highest;
7551 } else if (rack->r_ctl.rc_rate_sample_method == USE_RTT_AVG) {
7552 /* We are to use the average RTT seen in a single ack */
7553 rtt = (int32_t)(rack->r_ctl.rack_rs.rs_rtt_tot /
7554 (uint64_t)rack->r_ctl.rack_rs.rs_rtt_cnt);
7555 } else {
7556 #ifdef INVARIANTS
7557 panic("Unknown rtt variant %d", rack->r_ctl.rc_rate_sample_method);
7558 #endif
7559 return;
7560 }
7561 if (rtt == 0)
7562 rtt = 1;
7563 if (rack->rc_gp_rtt_set == 0) {
7564 /*
7565 * With no RTT we have to accept
7566 * even one we are not confident of.
7567 */
7568 rack->r_ctl.rc_gp_srtt = rack->r_ctl.rack_rs.rs_us_rtt;
7569 rack->rc_gp_rtt_set = 1;
7570 } else if (rack->r_ctl.rack_rs.confidence) {
7571 /* update the running gp srtt */
7572 rack->r_ctl.rc_gp_srtt -= (rack->r_ctl.rc_gp_srtt/8);
7573 rack->r_ctl.rc_gp_srtt += rack->r_ctl.rack_rs.rs_us_rtt / 8;
7574 }
7575 if (rack->r_ctl.rack_rs.confidence) {
7576 /*
7577 * record the low and high for highly buffered path computation,
7578 * we only do this if we are confident (not a retransmission).
7579 */
7580 if (rack->r_ctl.rc_highest_us_rtt < rack->r_ctl.rack_rs.rs_us_rtt) {
7581 rack->r_ctl.rc_highest_us_rtt = rack->r_ctl.rack_rs.rs_us_rtt;
7582 }
7583 if (rack->rc_highly_buffered == 0) {
7584 /*
7585 * Currently once we declare a path has
7586 * highly buffered there is no going
7587 * back, which may be a problem...
7588 */
7589 if ((rack->r_ctl.rc_highest_us_rtt / rack->r_ctl.rc_lowest_us_rtt) > rack_hbp_thresh) {
7590 rack_log_rtt_shrinks(rack, rack->r_ctl.rack_rs.rs_us_rtt,
7591 rack->r_ctl.rc_highest_us_rtt,
7592 rack->r_ctl.rc_lowest_us_rtt,
7593 RACK_RTTS_SEEHBP);
7594 rack->rc_highly_buffered = 1;
7595 }
7596 }
7597 }
7598 if ((rack->r_ctl.rack_rs.confidence) ||
7599 (rack->r_ctl.rack_rs.rs_us_rtrcnt == 1)) {
7600 /*
7601 * If we are highly confident of it <or> it was
7602 * never retransmitted we accept it as the last us_rtt.
7603 */
7604 rack->r_ctl.rc_last_us_rtt = rack->r_ctl.rack_rs.rs_us_rtt;
7605 /* The lowest rtt can be set if its was not retransmited */
7606 if (rack->r_ctl.rc_lowest_us_rtt > rack->r_ctl.rack_rs.rs_us_rtt) {
7607 rack->r_ctl.rc_lowest_us_rtt = rack->r_ctl.rack_rs.rs_us_rtt;
7608 if (rack->r_ctl.rc_lowest_us_rtt == 0)
7609 rack->r_ctl.rc_lowest_us_rtt = 1;
7610 }
7611 }
7612 rack = (struct tcp_rack *)tp->t_fb_ptr;
7613 if (tp->t_srtt != 0) {
7614 /*
7615 * We keep a simple srtt in microseconds, like our rtt
7616 * measurement. We don't need to do any tricks with shifting
7617 * etc. Instead we just add in 1/8th of the new measurement
7618 * and subtract out 1/8 of the old srtt. We do the same with
7619 * the variance after finding the absolute value of the
7620 * difference between this sample and the current srtt.
7621 */
7622 delta = tp->t_srtt - rtt;
7623 /* Take off 1/8th of the current sRTT */
7624 tp->t_srtt -= (tp->t_srtt >> 3);
7625 /* Add in 1/8th of the new RTT just measured */
7626 tp->t_srtt += (rtt >> 3);
7627 if (tp->t_srtt <= 0)
7628 tp->t_srtt = 1;
7629 /* Now lets make the absolute value of the variance */
7630 if (delta < 0)
7631 delta = -delta;
7632 /* Subtract out 1/8th */
7633 tp->t_rttvar -= (tp->t_rttvar >> 3);
7634 /* Add in 1/8th of the new variance we just saw */
7635 tp->t_rttvar += (delta >> 3);
7636 if (tp->t_rttvar <= 0)
7637 tp->t_rttvar = 1;
7638 } else {
7639 /*
7640 * No rtt measurement yet - use the unsmoothed rtt. Set the
7641 * variance to half the rtt (so our first retransmit happens
7642 * at 3*rtt).
7643 */
7644 tp->t_srtt = rtt;
7645 tp->t_rttvar = rtt >> 1;
7646 }
7647 rack->rc_srtt_measure_made = 1;
7648 KMOD_TCPSTAT_INC(tcps_rttupdated);
7649 if (tp->t_rttupdated < UCHAR_MAX)
7650 tp->t_rttupdated++;
7651 #ifdef STATS
7652 if (rack_stats_gets_ms_rtt == 0) {
7653 /* Send in the microsecond rtt used for rxt timeout purposes */
7654 stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_RTT, imax(0, rtt));
7655 } else if (rack_stats_gets_ms_rtt == 1) {
7656 /* Send in the millisecond rtt used for rxt timeout purposes */
7657 int32_t ms_rtt;
7658
7659 /* Round up */
7660 ms_rtt = (rtt + HPTS_USEC_IN_MSEC - 1) / HPTS_USEC_IN_MSEC;
7661 stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_RTT, imax(0, ms_rtt));
7662 } else if (rack_stats_gets_ms_rtt == 2) {
7663 /* Send in the millisecond rtt has close to the path RTT as we can get */
7664 int32_t ms_rtt;
7665
7666 /* Round up */
7667 ms_rtt = (rack->r_ctl.rack_rs.rs_us_rtt + HPTS_USEC_IN_MSEC - 1) / HPTS_USEC_IN_MSEC;
7668 stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_RTT, imax(0, ms_rtt));
7669 } else {
7670 /* Send in the microsecond rtt has close to the path RTT as we can get */
7671 stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_RTT, imax(0, rack->r_ctl.rack_rs.rs_us_rtt));
7672 }
7673
7674 #endif
7675 /*
7676 * the retransmit should happen at rtt + 4 * rttvar. Because of the
7677 * way we do the smoothing, srtt and rttvar will each average +1/2
7678 * tick of bias. When we compute the retransmit timer, we want 1/2
7679 * tick of rounding and 1 extra tick because of +-1/2 tick
7680 * uncertainty in the firing of the timer. The bias will give us
7681 * exactly the 1.5 tick we need. But, because the bias is
7682 * statistical, we have to test that we don't drop below the minimum
7683 * feasible timer (which is 2 ticks).
7684 */
7685 tp->t_rxtshift = 0;
7686 RACK_TCPT_RANGESET(tp->t_rxtcur, RACK_REXMTVAL(tp),
7687 max(rack_rto_min, rtt + 2), rack_rto_max, rack->r_ctl.timer_slop);
7688 rack_log_rtt_sample(rack, rtt);
7689 tp->t_softerror = 0;
7690 }
7691
7692
7693 static void
7694 rack_apply_updated_usrtt(struct tcp_rack *rack, uint32_t us_rtt, uint32_t us_cts)
7695 {
7696 /*
7697 * Apply to filter the inbound us-rtt at us_cts.
7698 */
7699 uint32_t old_rtt;
7700
7701 old_rtt = get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt);
7702 apply_filter_min_small(&rack->r_ctl.rc_gp_min_rtt,
7703 us_rtt, us_cts);
7704 if (old_rtt > us_rtt) {
7705 /* We just hit a new lower rtt time */
7706 rack_log_rtt_shrinks(rack, us_cts, old_rtt,
7707 __LINE__, RACK_RTTS_NEWRTT);
7708 /*
7709 * Only count it if its lower than what we saw within our
7710 * calculated range.
7711 */
7712 if ((old_rtt - us_rtt) > rack_min_rtt_movement) {
7713 if (rack_probertt_lower_within &&
7714 rack->rc_gp_dyn_mul &&
7715 (rack->use_fixed_rate == 0) &&
7716 (rack->rc_always_pace)) {
7717 /*
7718 * We are seeing a new lower rtt very close
7719 * to the time that we would have entered probe-rtt.
7720 * This is probably due to the fact that a peer flow
7721 * has entered probe-rtt. Lets go in now too.
7722 */
7723 uint32_t val;
7724
7725 val = rack_probertt_lower_within * rack_time_between_probertt;
7726 val /= 100;
7727 if ((rack->in_probe_rtt == 0) &&
7728 ((us_cts - rack->r_ctl.rc_lower_rtt_us_cts) >= (rack_time_between_probertt - val))) {
7729 rack_enter_probertt(rack, us_cts);
7730 }
7731 }
7732 rack->r_ctl.rc_lower_rtt_us_cts = us_cts;
7733 }
7734 }
7735 }
7736
7737 static int
7738 rack_update_rtt(struct tcpcb *tp, struct tcp_rack *rack,
7739 struct rack_sendmap *rsm, struct tcpopt *to, uint32_t cts, int32_t ack_type, tcp_seq th_ack)
7740 {
7741 uint32_t us_rtt;
7742 int32_t i, all;
7743 uint32_t t, len_acked;
7744
7745 if ((rsm->r_flags & RACK_ACKED) ||
7746 (rsm->r_flags & RACK_WAS_ACKED))
7747 /* Already done */
7748 return (0);
7749 if (rsm->r_no_rtt_allowed) {
7750 /* Not allowed */
7751 return (0);
7752 }
7753 if (ack_type == CUM_ACKED) {
7754 if (SEQ_GT(th_ack, rsm->r_end)) {
7755 len_acked = rsm->r_end - rsm->r_start;
7756 all = 1;
7757 } else {
7758 len_acked = th_ack - rsm->r_start;
7759 all = 0;
7760 }
7761 } else {
7762 len_acked = rsm->r_end - rsm->r_start;
7763 all = 0;
7764 }
7765 if (rsm->r_rtr_cnt == 1) {
7766
7767 t = cts - (uint32_t)rsm->r_tim_lastsent[(rsm->r_rtr_cnt - 1)];
7768 if ((int)t <= 0)
7769 t = 1;
7770 if (!tp->t_rttlow || tp->t_rttlow > t)
7771 tp->t_rttlow = t;
7772 if (!rack->r_ctl.rc_rack_min_rtt ||
7773 SEQ_LT(t, rack->r_ctl.rc_rack_min_rtt)) {
7774 rack->r_ctl.rc_rack_min_rtt = t;
7775 if (rack->r_ctl.rc_rack_min_rtt == 0) {
7776 rack->r_ctl.rc_rack_min_rtt = 1;
7777 }
7778 }
7779 if (TSTMP_GT(tcp_tv_to_usectick(&rack->r_ctl.act_rcv_time), rsm->r_tim_lastsent[(rsm->r_rtr_cnt-1)]))
7780 us_rtt = tcp_tv_to_usectick(&rack->r_ctl.act_rcv_time) - (uint32_t)rsm->r_tim_lastsent[(rsm->r_rtr_cnt-1)];
7781 else
7782 us_rtt = tcp_get_usecs(NULL) - (uint32_t)rsm->r_tim_lastsent[(rsm->r_rtr_cnt-1)];
7783 if (us_rtt == 0)
7784 us_rtt = 1;
7785 if (CC_ALGO(tp)->rttsample != NULL) {
7786 /* Kick the RTT to the CC */
7787 CC_ALGO(tp)->rttsample(&tp->t_ccv, us_rtt, 1, rsm->r_fas);
7788 }
7789 rack_apply_updated_usrtt(rack, us_rtt, tcp_tv_to_usectick(&rack->r_ctl.act_rcv_time));
7790 if (ack_type == SACKED) {
7791 rack_log_rtt_sample_calc(rack, t, (uint32_t)rsm->r_tim_lastsent[(rsm->r_rtr_cnt - 1)], cts, 1);
7792 tcp_rack_xmit_timer(rack, t + 1, len_acked, us_rtt, 2 , rsm, rsm->r_rtr_cnt);
7793 } else {
7794 /*
7795 * We need to setup what our confidence
7796 * is in this ack.
7797 *
7798 * If the rsm was app limited and it is
7799 * less than a mss in length (the end
7800 * of the send) then we have a gap. If we
7801 * were app limited but say we were sending
7802 * multiple MSS's then we are more confident
7803 * int it.
7804 *
7805 * When we are not app-limited then we see if
7806 * the rsm is being included in the current
7807 * measurement, we tell this by the app_limited_needs_set
7808 * flag.
7809 *
7810 * Note that being cwnd blocked is not applimited
7811 * as well as the pacing delay between packets which
7812 * are sending only 1 or 2 MSS's also will show up
7813 * in the RTT. We probably need to examine this algorithm
7814 * a bit more and enhance it to account for the delay
7815 * between rsm's. We could do that by saving off the
7816 * pacing delay of each rsm (in an rsm) and then
7817 * factoring that in somehow though for now I am
7818 * not sure how :)
7819 */
7820 int calc_conf = 0;
7821
7822 if (rsm->r_flags & RACK_APP_LIMITED) {
7823 if (all && (len_acked <= ctf_fixed_maxseg(tp)))
7824 calc_conf = 0;
7825 else
7826 calc_conf = 1;
7827 } else if (rack->app_limited_needs_set == 0) {
7828 calc_conf = 1;
7829 } else {
7830 calc_conf = 0;
7831 }
7832 rack_log_rtt_sample_calc(rack, t, (uint32_t)rsm->r_tim_lastsent[(rsm->r_rtr_cnt - 1)], cts, 2);
7833 tcp_rack_xmit_timer(rack, t + 1, len_acked, us_rtt,
7834 calc_conf, rsm, rsm->r_rtr_cnt);
7835 }
7836 if ((rsm->r_flags & RACK_TLP) &&
7837 (!IN_FASTRECOVERY(tp->t_flags))) {
7838 /* Segment was a TLP and our retrans matched */
7839 if (rack->r_ctl.rc_tlp_cwnd_reduce) {
7840 rack_cong_signal(tp, CC_NDUPACK, tp->snd_una, __LINE__);
7841 }
7842 }
7843 if (SEQ_LT(rack->r_ctl.rc_rack_tmit_time, (uint32_t)rsm->r_tim_lastsent[(rsm->r_rtr_cnt - 1)])) {
7844 /* New more recent rack_tmit_time */
7845 rack->r_ctl.rc_rack_tmit_time = (uint32_t)rsm->r_tim_lastsent[(rsm->r_rtr_cnt - 1)];
7846 rack->rc_rack_rtt = t;
7847 }
7848 return (1);
7849 }
7850 /*
7851 * We clear the soft/rxtshift since we got an ack.
7852 * There is no assurance we will call the commit() function
7853 * so we need to clear these to avoid incorrect handling.
7854 */
7855 tp->t_rxtshift = 0;
7856 RACK_TCPT_RANGESET(tp->t_rxtcur, RACK_REXMTVAL(tp),
7857 rack_rto_min, rack_rto_max, rack->r_ctl.timer_slop);
7858 tp->t_softerror = 0;
7859 if (to && (to->to_flags & TOF_TS) &&
7860 (ack_type == CUM_ACKED) &&
7861 (to->to_tsecr) &&
7862 ((rsm->r_flags & RACK_OVERMAX) == 0)) {
7863 /*
7864 * Now which timestamp does it match? In this block the ACK
7865 * must be coming from a previous transmission.
7866 */
7867 for (i = 0; i < rsm->r_rtr_cnt; i++) {
7868 if (rack_ts_to_msec(rsm->r_tim_lastsent[i]) == to->to_tsecr) {
7869 t = cts - (uint32_t)rsm->r_tim_lastsent[i];
7870 if ((int)t <= 0)
7871 t = 1;
7872 if (CC_ALGO(tp)->rttsample != NULL) {
7873 /*
7874 * Kick the RTT to the CC, here
7875 * we lie a bit in that we know the
7876 * retransmission is correct even though
7877 * we retransmitted. This is because
7878 * we match the timestamps.
7879 */
7880 if (TSTMP_GT(tcp_tv_to_usectick(&rack->r_ctl.act_rcv_time), rsm->r_tim_lastsent[i]))
7881 us_rtt = tcp_tv_to_usectick(&rack->r_ctl.act_rcv_time) - (uint32_t)rsm->r_tim_lastsent[i];
7882 else
7883 us_rtt = tcp_get_usecs(NULL) - (uint32_t)rsm->r_tim_lastsent[i];
7884 CC_ALGO(tp)->rttsample(&tp->t_ccv, us_rtt, 1, rsm->r_fas);
7885 }
7886 if ((i + 1) < rsm->r_rtr_cnt) {
7887 /*
7888 * The peer ack'd from our previous
7889 * transmission. We have a spurious
7890 * retransmission and thus we dont
7891 * want to update our rack_rtt.
7892 *
7893 * Hmm should there be a CC revert here?
7894 *
7895 */
7896 return (0);
7897 }
7898 if (!tp->t_rttlow || tp->t_rttlow > t)
7899 tp->t_rttlow = t;
7900 if (!rack->r_ctl.rc_rack_min_rtt || SEQ_LT(t, rack->r_ctl.rc_rack_min_rtt)) {
7901 rack->r_ctl.rc_rack_min_rtt = t;
7902 if (rack->r_ctl.rc_rack_min_rtt == 0) {
7903 rack->r_ctl.rc_rack_min_rtt = 1;
7904 }
7905 }
7906 if (SEQ_LT(rack->r_ctl.rc_rack_tmit_time,
7907 (uint32_t)rsm->r_tim_lastsent[(rsm->r_rtr_cnt - 1)])) {
7908 /* New more recent rack_tmit_time */
7909 rack->r_ctl.rc_rack_tmit_time = (uint32_t)rsm->r_tim_lastsent[(rsm->r_rtr_cnt - 1)];
7910 rack->rc_rack_rtt = t;
7911 }
7912 rack_log_rtt_sample_calc(rack, t, (uint32_t)rsm->r_tim_lastsent[i], cts, 3);
7913 tcp_rack_xmit_timer(rack, t + 1, len_acked, t, 0, rsm,
7914 rsm->r_rtr_cnt);
7915 return (1);
7916 }
7917 }
7918 goto ts_not_found;
7919 } else {
7920 /*
7921 * Ok its a SACK block that we retransmitted. or a windows
7922 * machine without timestamps. We can tell nothing from the
7923 * time-stamp since its not there or the time the peer last
7924 * recieved a segment that moved forward its cum-ack point.
7925 */
7926 ts_not_found:
7927 i = rsm->r_rtr_cnt - 1;
7928 t = cts - (uint32_t)rsm->r_tim_lastsent[i];
7929 if ((int)t <= 0)
7930 t = 1;
7931 if (rack->r_ctl.rc_rack_min_rtt && SEQ_LT(t, rack->r_ctl.rc_rack_min_rtt)) {
7932 /*
7933 * We retransmitted and the ack came back in less
7934 * than the smallest rtt we have observed. We most
7935 * likely did an improper retransmit as outlined in
7936 * 6.2 Step 2 point 2 in the rack-draft so we
7937 * don't want to update our rack_rtt. We in
7938 * theory (in future) might want to think about reverting our
7939 * cwnd state but we won't for now.
7940 */
7941 return (0);
7942 } else if (rack->r_ctl.rc_rack_min_rtt) {
7943 /*
7944 * We retransmitted it and the retransmit did the
7945 * job.
7946 */
7947 if (!rack->r_ctl.rc_rack_min_rtt ||
7948 SEQ_LT(t, rack->r_ctl.rc_rack_min_rtt)) {
7949 rack->r_ctl.rc_rack_min_rtt = t;
7950 if (rack->r_ctl.rc_rack_min_rtt == 0) {
7951 rack->r_ctl.rc_rack_min_rtt = 1;
7952 }
7953 }
7954 if (SEQ_LT(rack->r_ctl.rc_rack_tmit_time, (uint32_t)rsm->r_tim_lastsent[i])) {
7955 /* New more recent rack_tmit_time */
7956 rack->r_ctl.rc_rack_tmit_time = (uint32_t)rsm->r_tim_lastsent[i];
7957 rack->rc_rack_rtt = t;
7958 }
7959 return (1);
7960 }
7961 }
7962 return (0);
7963 }
7964
7965 /*
7966 * Mark the SACK_PASSED flag on all entries prior to rsm send wise.
7967 */
7968 static void
7969 rack_log_sack_passed(struct tcpcb *tp,
7970 struct tcp_rack *rack, struct rack_sendmap *rsm)
7971 {
7972 struct rack_sendmap *nrsm;
7973
7974 nrsm = rsm;
7975 TAILQ_FOREACH_REVERSE_FROM(nrsm, &rack->r_ctl.rc_tmap,
7976 rack_head, r_tnext) {
7977 if (nrsm == rsm) {
7978 /* Skip original segment he is acked */
7979 continue;
7980 }
7981 if (nrsm->r_flags & RACK_ACKED) {
7982 /*
7983 * Skip ack'd segments, though we
7984 * should not see these, since tmap
7985 * should not have ack'd segments.
7986 */
7987 continue;
7988 }
7989 if (nrsm->r_flags & RACK_RWND_COLLAPSED) {
7990 /*
7991 * If the peer dropped the rwnd on
7992 * these then we don't worry about them.
7993 */
7994 continue;
7995 }
7996 if (nrsm->r_flags & RACK_SACK_PASSED) {
7997 /*
7998 * We found one that is already marked
7999 * passed, we have been here before and
8000 * so all others below this are marked.
8001 */
8002 break;
8003 }
8004 nrsm->r_flags |= RACK_SACK_PASSED;
8005 nrsm->r_flags &= ~RACK_WAS_SACKPASS;
8006 }
8007 }
8008
8009 static void
8010 rack_need_set_test(struct tcpcb *tp,
8011 struct tcp_rack *rack,
8012 struct rack_sendmap *rsm,
8013 tcp_seq th_ack,
8014 int line,
8015 int use_which)
8016 {
8017
8018 if ((tp->t_flags & TF_GPUTINPROG) &&
8019 SEQ_GEQ(rsm->r_end, tp->gput_seq)) {
8020 /*
8021 * We were app limited, and this ack
8022 * butts up or goes beyond the point where we want
8023 * to start our next measurement. We need
8024 * to record the new gput_ts as here and
8025 * possibly update the start sequence.
8026 */
8027 uint32_t seq, ts;
8028
8029 if (rsm->r_rtr_cnt > 1) {
8030 /*
8031 * This is a retransmit, can we
8032 * really make any assessment at this
8033 * point? We are not really sure of
8034 * the timestamp, is it this or the
8035 * previous transmission?
8036 *
8037 * Lets wait for something better that
8038 * is not retransmitted.
8039 */
8040 return;
8041 }
8042 seq = tp->gput_seq;
8043 ts = tp->gput_ts;
8044 rack->app_limited_needs_set = 0;
8045 tp->gput_ts = tcp_tv_to_usectick(&rack->r_ctl.act_rcv_time);
8046 /* Do we start at a new end? */
8047 if ((use_which == RACK_USE_BEG) &&
8048 SEQ_GEQ(rsm->r_start, tp->gput_seq)) {
8049 /*
8050 * When we get an ACK that just eats
8051 * up some of the rsm, we set RACK_USE_BEG
8052 * since whats at r_start (i.e. th_ack)
8053 * is left unacked and thats where the
8054 * measurement not starts.
8055 */
8056 tp->gput_seq = rsm->r_start;
8057 rack->r_ctl.rc_gp_output_ts = rsm->r_tim_lastsent[(rsm->r_rtr_cnt-1)];
8058 }
8059 if ((use_which == RACK_USE_END) &&
8060 SEQ_GEQ(rsm->r_end, tp->gput_seq)) {
8061 /*
8062 * We use the end when the cumack
8063 * is moving forward and completely
8064 * deleting the rsm passed so basically
8065 * r_end holds th_ack.
8066 *
8067 * For SACK's we also want to use the end
8068 * since this piece just got sacked and
8069 * we want to target anything after that
8070 * in our measurement.
8071 */
8072 tp->gput_seq = rsm->r_end;
8073 rack->r_ctl.rc_gp_output_ts = rsm->r_tim_lastsent[(rsm->r_rtr_cnt-1)];
8074 }
8075 if (use_which == RACK_USE_END_OR_THACK) {
8076 /*
8077 * special case for ack moving forward,
8078 * not a sack, we need to move all the
8079 * way up to where this ack cum-ack moves
8080 * to.
8081 */
8082 if (SEQ_GT(th_ack, rsm->r_end))
8083 tp->gput_seq = th_ack;
8084 else
8085 tp->gput_seq = rsm->r_end;
8086 rack->r_ctl.rc_gp_output_ts = rsm->r_tim_lastsent[(rsm->r_rtr_cnt-1)];
8087 }
8088 if (SEQ_GT(tp->gput_seq, tp->gput_ack)) {
8089 /*
8090 * We moved beyond this guy's range, re-calculate
8091 * the new end point.
8092 */
8093 if (rack->rc_gp_filled == 0) {
8094 tp->gput_ack = tp->gput_seq + max(rc_init_window(rack), (MIN_GP_WIN * ctf_fixed_maxseg(tp)));
8095 } else {
8096 tp->gput_ack = tp->gput_seq + rack_get_measure_window(tp, rack);
8097 }
8098 }
8099 /*
8100 * We are moving the goal post, we may be able to clear the
8101 * measure_saw_probe_rtt flag.
8102 */
8103 if ((rack->in_probe_rtt == 0) &&
8104 (rack->measure_saw_probe_rtt) &&
8105 (SEQ_GEQ(tp->gput_seq, rack->r_ctl.rc_probertt_sndmax_atexit)))
8106 rack->measure_saw_probe_rtt = 0;
8107 rack_log_pacing_delay_calc(rack, ts, tp->gput_ts,
8108 seq, tp->gput_seq, 0, 5, line, NULL, 0);
8109 if (rack->rc_gp_filled &&
8110 ((tp->gput_ack - tp->gput_seq) <
8111 max(rc_init_window(rack), (MIN_GP_WIN *
8112 ctf_fixed_maxseg(tp))))) {
8113 uint32_t ideal_amount;
8114
8115 ideal_amount = rack_get_measure_window(tp, rack);
8116 if (ideal_amount > sbavail(&tptosocket(tp)->so_snd)) {
8117 /*
8118 * There is no sense of continuing this measurement
8119 * because its too small to gain us anything we
8120 * trust. Skip it and that way we can start a new
8121 * measurement quicker.
8122 */
8123 tp->t_flags &= ~TF_GPUTINPROG;
8124 rack_log_pacing_delay_calc(rack, tp->gput_ack, tp->gput_seq,
8125 0, 0, 0, 6, __LINE__, NULL, 0);
8126 } else {
8127 /*
8128 * Reset the window further out.
8129 */
8130 tp->gput_ack = tp->gput_seq + ideal_amount;
8131 }
8132 }
8133 }
8134 }
8135
8136 static inline int
8137 is_rsm_inside_declared_tlp_block(struct tcp_rack *rack, struct rack_sendmap *rsm)
8138 {
8139 if (SEQ_LT(rsm->r_end, rack->r_ctl.last_tlp_acked_start)) {
8140 /* Behind our TLP definition or right at */
8141 return (0);
8142 }
8143 if (SEQ_GT(rsm->r_start, rack->r_ctl.last_tlp_acked_end)) {
8144 /* The start is beyond or right at our end of TLP definition */
8145 return (0);
8146 }
8147 /* It has to be a sub-part of the original TLP recorded */
8148 return (1);
8149 }
8150
8151
8152 static uint32_t
8153 rack_proc_sack_blk(struct tcpcb *tp, struct tcp_rack *rack, struct sackblk *sack,
8154 struct tcpopt *to, struct rack_sendmap **prsm, uint32_t cts, int *moved_two)
8155 {
8156 uint32_t start, end, changed = 0;
8157 struct rack_sendmap stack_map;
8158 struct rack_sendmap *rsm, *nrsm, fe, *prev, *next;
8159 #ifdef INVARIANTS
8160 struct rack_sendmap *insret;
8161 #endif
8162 int32_t used_ref = 1;
8163 int moved = 0;
8164
8165 start = sack->start;
8166 end = sack->end;
8167 rsm = *prsm;
8168 memset(&fe, 0, sizeof(fe));
8169 do_rest_ofb:
8170 if ((rsm == NULL) ||
8171 (SEQ_LT(end, rsm->r_start)) ||
8172 (SEQ_GEQ(start, rsm->r_end)) ||
8173 (SEQ_LT(start, rsm->r_start))) {
8174 /*
8175 * We are not in the right spot,
8176 * find the correct spot in the tree.
8177 */
8178 used_ref = 0;
8179 fe.r_start = start;
8180 rsm = RB_FIND(rack_rb_tree_head, &rack->r_ctl.rc_mtree, &fe);
8181 moved++;
8182 }
8183 if (rsm == NULL) {
8184 /* TSNH */
8185 goto out;
8186 }
8187 /* Ok we have an ACK for some piece of this rsm */
8188 if (rsm->r_start != start) {
8189 if ((rsm->r_flags & RACK_ACKED) == 0) {
8190 /*
8191 * Before any splitting or hookery is
8192 * done is it a TLP of interest i.e. rxt?
8193 */
8194 if ((rsm->r_flags & RACK_TLP) &&
8195 (rsm->r_rtr_cnt > 1)) {
8196 /*
8197 * We are splitting a rxt TLP, check
8198 * if we need to save off the start/end
8199 */
8200 if (rack->rc_last_tlp_acked_set &&
8201 (is_rsm_inside_declared_tlp_block(rack, rsm))) {
8202 /*
8203 * We already turned this on since we are inside
8204 * the previous one was a partially sack now we
8205 * are getting another one (maybe all of it).
8206 *
8207 */
8208 rack_log_dsack_event(rack, 10, __LINE__, rsm->r_start, rsm->r_end);
8209 /*
8210 * Lets make sure we have all of it though.
8211 */
8212 if (SEQ_LT(rsm->r_start, rack->r_ctl.last_tlp_acked_start)) {
8213 rack->r_ctl.last_tlp_acked_start = rsm->r_start;
8214 rack_log_dsack_event(rack, 11, __LINE__, rack->r_ctl.last_tlp_acked_start,
8215 rack->r_ctl.last_tlp_acked_end);
8216 }
8217 if (SEQ_GT(rsm->r_end, rack->r_ctl.last_tlp_acked_end)) {
8218 rack->r_ctl.last_tlp_acked_end = rsm->r_end;
8219 rack_log_dsack_event(rack, 11, __LINE__, rack->r_ctl.last_tlp_acked_start,
8220 rack->r_ctl.last_tlp_acked_end);
8221 }
8222 } else {
8223 rack->r_ctl.last_tlp_acked_start = rsm->r_start;
8224 rack->r_ctl.last_tlp_acked_end = rsm->r_end;
8225 rack->rc_last_tlp_past_cumack = 0;
8226 rack->rc_last_tlp_acked_set = 1;
8227 rack_log_dsack_event(rack, 8, __LINE__, rsm->r_start, rsm->r_end);
8228 }
8229 }
8230 /**
8231 * Need to split this in two pieces the before and after,
8232 * the before remains in the map, the after must be
8233 * added. In other words we have:
8234 * rsm |--------------|
8235 * sackblk |------->
8236 * rsm will become
8237 * rsm |---|
8238 * and nrsm will be the sacked piece
8239 * nrsm |----------|
8240 *
8241 * But before we start down that path lets
8242 * see if the sack spans over on top of
8243 * the next guy and it is already sacked.
8244 *
8245 */
8246 next = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
8247 if (next && (next->r_flags & RACK_ACKED) &&
8248 SEQ_GEQ(end, next->r_start)) {
8249 /**
8250 * So the next one is already acked, and
8251 * we can thus by hookery use our stack_map
8252 * to reflect the piece being sacked and
8253 * then adjust the two tree entries moving
8254 * the start and ends around. So we start like:
8255 * rsm |------------| (not-acked)
8256 * next |-----------| (acked)
8257 * sackblk |-------->
8258 * We want to end like so:
8259 * rsm |------| (not-acked)
8260 * next |-----------------| (acked)
8261 * nrsm |-----|
8262 * Where nrsm is a temporary stack piece we
8263 * use to update all the gizmos.
8264 */
8265 /* Copy up our fudge block */
8266 nrsm = &stack_map;
8267 memcpy(nrsm, rsm, sizeof(struct rack_sendmap));
8268 /* Now adjust our tree blocks */
8269 rsm->r_end = start;
8270 next->r_start = start;
8271 /* Now we must adjust back where next->m is */
8272 rack_setup_offset_for_rsm(rsm, next);
8273
8274 /* We don't need to adjust rsm, it did not change */
8275 /* Clear out the dup ack count of the remainder */
8276 rsm->r_dupack = 0;
8277 rsm->r_just_ret = 0;
8278 rack_log_retran_reason(rack, rsm, __LINE__, 0, 2);
8279 /* Now lets make sure our fudge block is right */
8280 nrsm->r_start = start;
8281 /* Now lets update all the stats and such */
8282 rack_update_rtt(tp, rack, nrsm, to, cts, SACKED, 0);
8283 if (rack->app_limited_needs_set)
8284 rack_need_set_test(tp, rack, nrsm, tp->snd_una, __LINE__, RACK_USE_END);
8285 changed += (nrsm->r_end - nrsm->r_start);
8286 rack->r_ctl.rc_sacked += (nrsm->r_end - nrsm->r_start);
8287 if (nrsm->r_flags & RACK_SACK_PASSED) {
8288 rack->r_ctl.rc_reorder_ts = cts;
8289 }
8290 /*
8291 * Now we want to go up from rsm (the
8292 * one left un-acked) to the next one
8293 * in the tmap. We do this so when
8294 * we walk backwards we include marking
8295 * sack-passed on rsm (The one passed in
8296 * is skipped since it is generally called
8297 * on something sacked before removing it
8298 * from the tmap).
8299 */
8300 if (rsm->r_in_tmap) {
8301 nrsm = TAILQ_NEXT(rsm, r_tnext);
8302 /*
8303 * Now that we have the next
8304 * one walk backwards from there.
8305 */
8306 if (nrsm && nrsm->r_in_tmap)
8307 rack_log_sack_passed(tp, rack, nrsm);
8308 }
8309 /* Now are we done? */
8310 if (SEQ_LT(end, next->r_end) ||
8311 (end == next->r_end)) {
8312 /* Done with block */
8313 goto out;
8314 }
8315 rack_log_map_chg(tp, rack, &stack_map, rsm, next, MAP_SACK_M1, end, __LINE__);
8316 counter_u64_add(rack_sack_used_next_merge, 1);
8317 /* Postion for the next block */
8318 start = next->r_end;
8319 rsm = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, next);
8320 if (rsm == NULL)
8321 goto out;
8322 } else {
8323 /**
8324 * We can't use any hookery here, so we
8325 * need to split the map. We enter like
8326 * so:
8327 * rsm |--------|
8328 * sackblk |----->
8329 * We will add the new block nrsm and
8330 * that will be the new portion, and then
8331 * fall through after reseting rsm. So we
8332 * split and look like this:
8333 * rsm |----|
8334 * sackblk |----->
8335 * nrsm |---|
8336 * We then fall through reseting
8337 * rsm to nrsm, so the next block
8338 * picks it up.
8339 */
8340 nrsm = rack_alloc_limit(rack, RACK_LIMIT_TYPE_SPLIT);
8341 if (nrsm == NULL) {
8342 /*
8343 * failed XXXrrs what can we do but loose the sack
8344 * info?
8345 */
8346 goto out;
8347 }
8348 counter_u64_add(rack_sack_splits, 1);
8349 rack_clone_rsm(rack, nrsm, rsm, start);
8350 rsm->r_just_ret = 0;
8351 #ifndef INVARIANTS
8352 (void)RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, nrsm);
8353 #else
8354 insret = RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, nrsm);
8355 if (insret != NULL) {
8356 panic("Insert in rb tree of %p fails ret:%p rack:%p rsm:%p",
8357 nrsm, insret, rack, rsm);
8358 }
8359 #endif
8360 if (rsm->r_in_tmap) {
8361 TAILQ_INSERT_AFTER(&rack->r_ctl.rc_tmap, rsm, nrsm, r_tnext);
8362 nrsm->r_in_tmap = 1;
8363 }
8364 rack_log_map_chg(tp, rack, NULL, rsm, nrsm, MAP_SACK_M2, end, __LINE__);
8365 rsm->r_flags &= (~RACK_HAS_FIN);
8366 /* Position us to point to the new nrsm that starts the sack blk */
8367 rsm = nrsm;
8368 }
8369 } else {
8370 /* Already sacked this piece */
8371 counter_u64_add(rack_sack_skipped_acked, 1);
8372 moved++;
8373 if (end == rsm->r_end) {
8374 /* Done with block */
8375 rsm = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
8376 goto out;
8377 } else if (SEQ_LT(end, rsm->r_end)) {
8378 /* A partial sack to a already sacked block */
8379 moved++;
8380 rsm = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
8381 goto out;
8382 } else {
8383 /*
8384 * The end goes beyond this guy
8385 * reposition the start to the
8386 * next block.
8387 */
8388 start = rsm->r_end;
8389 rsm = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
8390 if (rsm == NULL)
8391 goto out;
8392 }
8393 }
8394 }
8395 if (SEQ_GEQ(end, rsm->r_end)) {
8396 /**
8397 * The end of this block is either beyond this guy or right
8398 * at this guy. I.e.:
8399 * rsm --- |-----|
8400 * end |-----|
8401 * <or>
8402 * end |---------|
8403 */
8404 if ((rsm->r_flags & RACK_ACKED) == 0) {
8405 /*
8406 * Is it a TLP of interest?
8407 */
8408 if ((rsm->r_flags & RACK_TLP) &&
8409 (rsm->r_rtr_cnt > 1)) {
8410 /*
8411 * We are splitting a rxt TLP, check
8412 * if we need to save off the start/end
8413 */
8414 if (rack->rc_last_tlp_acked_set &&
8415 (is_rsm_inside_declared_tlp_block(rack, rsm))) {
8416 /*
8417 * We already turned this on since we are inside
8418 * the previous one was a partially sack now we
8419 * are getting another one (maybe all of it).
8420 */
8421 rack_log_dsack_event(rack, 10, __LINE__, rsm->r_start, rsm->r_end);
8422 /*
8423 * Lets make sure we have all of it though.
8424 */
8425 if (SEQ_LT(rsm->r_start, rack->r_ctl.last_tlp_acked_start)) {
8426 rack->r_ctl.last_tlp_acked_start = rsm->r_start;
8427 rack_log_dsack_event(rack, 11, __LINE__, rack->r_ctl.last_tlp_acked_start,
8428 rack->r_ctl.last_tlp_acked_end);
8429 }
8430 if (SEQ_GT(rsm->r_end, rack->r_ctl.last_tlp_acked_end)) {
8431 rack->r_ctl.last_tlp_acked_end = rsm->r_end;
8432 rack_log_dsack_event(rack, 11, __LINE__, rack->r_ctl.last_tlp_acked_start,
8433 rack->r_ctl.last_tlp_acked_end);
8434 }
8435 } else {
8436 rack->r_ctl.last_tlp_acked_start = rsm->r_start;
8437 rack->r_ctl.last_tlp_acked_end = rsm->r_end;
8438 rack->rc_last_tlp_past_cumack = 0;
8439 rack->rc_last_tlp_acked_set = 1;
8440 rack_log_dsack_event(rack, 8, __LINE__, rsm->r_start, rsm->r_end);
8441 }
8442 }
8443 rack_update_rtt(tp, rack, rsm, to, cts, SACKED, 0);
8444 changed += (rsm->r_end - rsm->r_start);
8445 rack->r_ctl.rc_sacked += (rsm->r_end - rsm->r_start);
8446 if (rsm->r_in_tmap) /* should be true */
8447 rack_log_sack_passed(tp, rack, rsm);
8448 /* Is Reordering occuring? */
8449 if (rsm->r_flags & RACK_SACK_PASSED) {
8450 rsm->r_flags &= ~RACK_SACK_PASSED;
8451 rack->r_ctl.rc_reorder_ts = cts;
8452 }
8453 if (rack->app_limited_needs_set)
8454 rack_need_set_test(tp, rack, rsm, tp->snd_una, __LINE__, RACK_USE_END);
8455 rsm->r_ack_arrival = rack_to_usec_ts(&rack->r_ctl.act_rcv_time);
8456 rsm->r_flags |= RACK_ACKED;
8457 if (rsm->r_in_tmap) {
8458 TAILQ_REMOVE(&rack->r_ctl.rc_tmap, rsm, r_tnext);
8459 rsm->r_in_tmap = 0;
8460 }
8461 rack_log_map_chg(tp, rack, NULL, rsm, NULL, MAP_SACK_M3, end, __LINE__);
8462 } else {
8463 counter_u64_add(rack_sack_skipped_acked, 1);
8464 moved++;
8465 }
8466 if (end == rsm->r_end) {
8467 /* This block only - done, setup for next */
8468 goto out;
8469 }
8470 /*
8471 * There is more not coverend by this rsm move on
8472 * to the next block in the RB tree.
8473 */
8474 nrsm = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
8475 start = rsm->r_end;
8476 rsm = nrsm;
8477 if (rsm == NULL)
8478 goto out;
8479 goto do_rest_ofb;
8480 }
8481 /**
8482 * The end of this sack block is smaller than
8483 * our rsm i.e.:
8484 * rsm --- |-----|
8485 * end |--|
8486 */
8487 if ((rsm->r_flags & RACK_ACKED) == 0) {
8488 /*
8489 * Is it a TLP of interest?
8490 */
8491 if ((rsm->r_flags & RACK_TLP) &&
8492 (rsm->r_rtr_cnt > 1)) {
8493 /*
8494 * We are splitting a rxt TLP, check
8495 * if we need to save off the start/end
8496 */
8497 if (rack->rc_last_tlp_acked_set &&
8498 (is_rsm_inside_declared_tlp_block(rack, rsm))) {
8499 /*
8500 * We already turned this on since we are inside
8501 * the previous one was a partially sack now we
8502 * are getting another one (maybe all of it).
8503 */
8504 rack_log_dsack_event(rack, 10, __LINE__, rsm->r_start, rsm->r_end);
8505 /*
8506 * Lets make sure we have all of it though.
8507 */
8508 if (SEQ_LT(rsm->r_start, rack->r_ctl.last_tlp_acked_start)) {
8509 rack->r_ctl.last_tlp_acked_start = rsm->r_start;
8510 rack_log_dsack_event(rack, 11, __LINE__, rack->r_ctl.last_tlp_acked_start,
8511 rack->r_ctl.last_tlp_acked_end);
8512 }
8513 if (SEQ_GT(rsm->r_end, rack->r_ctl.last_tlp_acked_end)) {
8514 rack->r_ctl.last_tlp_acked_end = rsm->r_end;
8515 rack_log_dsack_event(rack, 11, __LINE__, rack->r_ctl.last_tlp_acked_start,
8516 rack->r_ctl.last_tlp_acked_end);
8517 }
8518 } else {
8519 rack->r_ctl.last_tlp_acked_start = rsm->r_start;
8520 rack->r_ctl.last_tlp_acked_end = rsm->r_end;
8521 rack->rc_last_tlp_past_cumack = 0;
8522 rack->rc_last_tlp_acked_set = 1;
8523 rack_log_dsack_event(rack, 8, __LINE__, rsm->r_start, rsm->r_end);
8524 }
8525 }
8526 prev = RB_PREV(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
8527 if (prev &&
8528 (prev->r_flags & RACK_ACKED)) {
8529 /**
8530 * Goal, we want the right remainder of rsm to shrink
8531 * in place and span from (rsm->r_start = end) to rsm->r_end.
8532 * We want to expand prev to go all the way
8533 * to prev->r_end <- end.
8534 * so in the tree we have before:
8535 * prev |--------| (acked)
8536 * rsm |-------| (non-acked)
8537 * sackblk |-|
8538 * We churn it so we end up with
8539 * prev |----------| (acked)
8540 * rsm |-----| (non-acked)
8541 * nrsm |-| (temporary)
8542 *
8543 * Note if either prev/rsm is a TLP we don't
8544 * do this.
8545 */
8546 nrsm = &stack_map;
8547 memcpy(nrsm, rsm, sizeof(struct rack_sendmap));
8548 prev->r_end = end;
8549 rsm->r_start = end;
8550 /* Now adjust nrsm (stack copy) to be
8551 * the one that is the small
8552 * piece that was "sacked".
8553 */
8554 nrsm->r_end = end;
8555 rsm->r_dupack = 0;
8556 rack_log_retran_reason(rack, rsm, __LINE__, 0, 2);
8557 /*
8558 * Now that the rsm has had its start moved forward
8559 * lets go ahead and get its new place in the world.
8560 */
8561 rack_setup_offset_for_rsm(prev, rsm);
8562 /*
8563 * Now nrsm is our new little piece
8564 * that is acked (which was merged
8565 * to prev). Update the rtt and changed
8566 * based on that. Also check for reordering.
8567 */
8568 rack_update_rtt(tp, rack, nrsm, to, cts, SACKED, 0);
8569 if (rack->app_limited_needs_set)
8570 rack_need_set_test(tp, rack, nrsm, tp->snd_una, __LINE__, RACK_USE_END);
8571 changed += (nrsm->r_end - nrsm->r_start);
8572 rack->r_ctl.rc_sacked += (nrsm->r_end - nrsm->r_start);
8573 if (nrsm->r_flags & RACK_SACK_PASSED) {
8574 rack->r_ctl.rc_reorder_ts = cts;
8575 }
8576 rack_log_map_chg(tp, rack, prev, &stack_map, rsm, MAP_SACK_M4, end, __LINE__);
8577 rsm = prev;
8578 counter_u64_add(rack_sack_used_prev_merge, 1);
8579 } else {
8580 /**
8581 * This is the case where our previous
8582 * block is not acked either, so we must
8583 * split the block in two.
8584 */
8585 nrsm = rack_alloc_limit(rack, RACK_LIMIT_TYPE_SPLIT);
8586 if (nrsm == NULL) {
8587 /* failed rrs what can we do but loose the sack info? */
8588 goto out;
8589 }
8590 if ((rsm->r_flags & RACK_TLP) &&
8591 (rsm->r_rtr_cnt > 1)) {
8592 /*
8593 * We are splitting a rxt TLP, check
8594 * if we need to save off the start/end
8595 */
8596 if (rack->rc_last_tlp_acked_set &&
8597 (is_rsm_inside_declared_tlp_block(rack, rsm))) {
8598 /*
8599 * We already turned this on since this block is inside
8600 * the previous one was a partially sack now we
8601 * are getting another one (maybe all of it).
8602 */
8603 rack_log_dsack_event(rack, 10, __LINE__, rsm->r_start, rsm->r_end);
8604 /*
8605 * Lets make sure we have all of it though.
8606 */
8607 if (SEQ_LT(rsm->r_start, rack->r_ctl.last_tlp_acked_start)) {
8608 rack->r_ctl.last_tlp_acked_start = rsm->r_start;
8609 rack_log_dsack_event(rack, 11, __LINE__, rack->r_ctl.last_tlp_acked_start,
8610 rack->r_ctl.last_tlp_acked_end);
8611 }
8612 if (SEQ_GT(rsm->r_end, rack->r_ctl.last_tlp_acked_end)) {
8613 rack->r_ctl.last_tlp_acked_end = rsm->r_end;
8614 rack_log_dsack_event(rack, 11, __LINE__, rack->r_ctl.last_tlp_acked_start,
8615 rack->r_ctl.last_tlp_acked_end);
8616 }
8617 } else {
8618 rack->r_ctl.last_tlp_acked_start = rsm->r_start;
8619 rack->r_ctl.last_tlp_acked_end = rsm->r_end;
8620 rack->rc_last_tlp_acked_set = 1;
8621 rack->rc_last_tlp_past_cumack = 0;
8622 rack_log_dsack_event(rack, 8, __LINE__, rsm->r_start, rsm->r_end);
8623 }
8624 }
8625 /**
8626 * In this case nrsm becomes
8627 * nrsm->r_start = end;
8628 * nrsm->r_end = rsm->r_end;
8629 * which is un-acked.
8630 * <and>
8631 * rsm->r_end = nrsm->r_start;
8632 * i.e. the remaining un-acked
8633 * piece is left on the left
8634 * hand side.
8635 *
8636 * So we start like this
8637 * rsm |----------| (not acked)
8638 * sackblk |---|
8639 * build it so we have
8640 * rsm |---| (acked)
8641 * nrsm |------| (not acked)
8642 */
8643 counter_u64_add(rack_sack_splits, 1);
8644 rack_clone_rsm(rack, nrsm, rsm, end);
8645 rsm->r_flags &= (~RACK_HAS_FIN);
8646 rsm->r_just_ret = 0;
8647 #ifndef INVARIANTS
8648 (void)RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, nrsm);
8649 #else
8650 insret = RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, nrsm);
8651 if (insret != NULL) {
8652 panic("Insert in rb tree of %p fails ret:%p rack:%p rsm:%p",
8653 nrsm, insret, rack, rsm);
8654 }
8655 #endif
8656 if (rsm->r_in_tmap) {
8657 TAILQ_INSERT_AFTER(&rack->r_ctl.rc_tmap, rsm, nrsm, r_tnext);
8658 nrsm->r_in_tmap = 1;
8659 }
8660 nrsm->r_dupack = 0;
8661 rack_log_retran_reason(rack, nrsm, __LINE__, 0, 2);
8662 rack_update_rtt(tp, rack, rsm, to, cts, SACKED, 0);
8663 changed += (rsm->r_end - rsm->r_start);
8664 rack->r_ctl.rc_sacked += (rsm->r_end - rsm->r_start);
8665 if (rsm->r_in_tmap) /* should be true */
8666 rack_log_sack_passed(tp, rack, rsm);
8667 /* Is Reordering occuring? */
8668 if (rsm->r_flags & RACK_SACK_PASSED) {
8669 rsm->r_flags &= ~RACK_SACK_PASSED;
8670 rack->r_ctl.rc_reorder_ts = cts;
8671 }
8672 if (rack->app_limited_needs_set)
8673 rack_need_set_test(tp, rack, rsm, tp->snd_una, __LINE__, RACK_USE_END);
8674 rsm->r_ack_arrival = rack_to_usec_ts(&rack->r_ctl.act_rcv_time);
8675 rsm->r_flags |= RACK_ACKED;
8676 rack_log_map_chg(tp, rack, NULL, rsm, nrsm, MAP_SACK_M5, end, __LINE__);
8677 if (rsm->r_in_tmap) {
8678 TAILQ_REMOVE(&rack->r_ctl.rc_tmap, rsm, r_tnext);
8679 rsm->r_in_tmap = 0;
8680 }
8681 }
8682 } else if (start != end){
8683 /*
8684 * The block was already acked.
8685 */
8686 counter_u64_add(rack_sack_skipped_acked, 1);
8687 moved++;
8688 }
8689 out:
8690 if (rsm &&
8691 ((rsm->r_flags & RACK_TLP) == 0) &&
8692 (rsm->r_flags & RACK_ACKED)) {
8693 /*
8694 * Now can we merge where we worked
8695 * with either the previous or
8696 * next block?
8697 */
8698 next = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
8699 while (next) {
8700 if (next->r_flags & RACK_TLP)
8701 break;
8702 if (next->r_flags & RACK_ACKED) {
8703 /* yep this and next can be merged */
8704 rsm = rack_merge_rsm(rack, rsm, next);
8705 next = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
8706 } else
8707 break;
8708 }
8709 /* Now what about the previous? */
8710 prev = RB_PREV(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
8711 while (prev) {
8712 if (prev->r_flags & RACK_TLP)
8713 break;
8714 if (prev->r_flags & RACK_ACKED) {
8715 /* yep the previous and this can be merged */
8716 rsm = rack_merge_rsm(rack, prev, rsm);
8717 prev = RB_PREV(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
8718 } else
8719 break;
8720 }
8721 }
8722 if (used_ref == 0) {
8723 counter_u64_add(rack_sack_proc_all, 1);
8724 } else {
8725 counter_u64_add(rack_sack_proc_short, 1);
8726 }
8727 /* Save off the next one for quick reference. */
8728 if (rsm)
8729 nrsm = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
8730 else
8731 nrsm = NULL;
8732 *prsm = rack->r_ctl.rc_sacklast = nrsm;
8733 /* Pass back the moved. */
8734 *moved_two = moved;
8735 return (changed);
8736 }
8737
8738 static void inline
8739 rack_peer_reneges(struct tcp_rack *rack, struct rack_sendmap *rsm, tcp_seq th_ack)
8740 {
8741 struct rack_sendmap *tmap;
8742
8743 tmap = NULL;
8744 while (rsm && (rsm->r_flags & RACK_ACKED)) {
8745 /* Its no longer sacked, mark it so */
8746 rack->r_ctl.rc_sacked -= (rsm->r_end - rsm->r_start);
8747 #ifdef INVARIANTS
8748 if (rsm->r_in_tmap) {
8749 panic("rack:%p rsm:%p flags:0x%x in tmap?",
8750 rack, rsm, rsm->r_flags);
8751 }
8752 #endif
8753 rsm->r_flags &= ~(RACK_ACKED|RACK_SACK_PASSED|RACK_WAS_SACKPASS);
8754 /* Rebuild it into our tmap */
8755 if (tmap == NULL) {
8756 TAILQ_INSERT_HEAD(&rack->r_ctl.rc_tmap, rsm, r_tnext);
8757 tmap = rsm;
8758 } else {
8759 TAILQ_INSERT_AFTER(&rack->r_ctl.rc_tmap, tmap, rsm, r_tnext);
8760 tmap = rsm;
8761 }
8762 tmap->r_in_tmap = 1;
8763 rsm = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
8764 }
8765 /*
8766 * Now lets possibly clear the sack filter so we start
8767 * recognizing sacks that cover this area.
8768 */
8769 sack_filter_clear(&rack->r_ctl.rack_sf, th_ack);
8770
8771 }
8772
8773 static void
8774 rack_do_decay(struct tcp_rack *rack)
8775 {
8776 struct timeval res;
8777
8778 #define timersub(tvp, uvp, vvp) \
8779 do { \
8780 (vvp)->tv_sec = (tvp)->tv_sec - (uvp)->tv_sec; \
8781 (vvp)->tv_usec = (tvp)->tv_usec - (uvp)->tv_usec; \
8782 if ((vvp)->tv_usec < 0) { \
8783 (vvp)->tv_sec--; \
8784 (vvp)->tv_usec += 1000000; \
8785 } \
8786 } while (0)
8787
8788 timersub(&rack->r_ctl.act_rcv_time, &rack->r_ctl.rc_last_time_decay, &res);
8789 #undef timersub
8790
8791 rack->r_ctl.input_pkt++;
8792 if ((rack->rc_in_persist) ||
8793 (res.tv_sec >= 1) ||
8794 (rack->rc_tp->snd_max == rack->rc_tp->snd_una)) {
8795 /*
8796 * Check for decay of non-SAD,
8797 * we want all SAD detection metrics to
8798 * decay 1/4 per second (or more) passed.
8799 */
8800 #ifdef NETFLIX_EXP_DETECTION
8801 uint32_t pkt_delta;
8802
8803 pkt_delta = rack->r_ctl.input_pkt - rack->r_ctl.saved_input_pkt;
8804 #endif
8805 /* Update our saved tracking values */
8806 rack->r_ctl.saved_input_pkt = rack->r_ctl.input_pkt;
8807 rack->r_ctl.rc_last_time_decay = rack->r_ctl.act_rcv_time;
8808 /* Now do we escape without decay? */
8809 #ifdef NETFLIX_EXP_DETECTION
8810 if (rack->rc_in_persist ||
8811 (rack->rc_tp->snd_max == rack->rc_tp->snd_una) ||
8812 (pkt_delta < tcp_sad_low_pps)){
8813 /*
8814 * We don't decay idle connections
8815 * or ones that have a low input pps.
8816 */
8817 return;
8818 }
8819 /* Decay the counters */
8820 rack->r_ctl.ack_count = ctf_decay_count(rack->r_ctl.ack_count,
8821 tcp_sad_decay_val);
8822 rack->r_ctl.sack_count = ctf_decay_count(rack->r_ctl.sack_count,
8823 tcp_sad_decay_val);
8824 rack->r_ctl.sack_moved_extra = ctf_decay_count(rack->r_ctl.sack_moved_extra,
8825 tcp_sad_decay_val);
8826 rack->r_ctl.sack_noextra_move = ctf_decay_count(rack->r_ctl.sack_noextra_move,
8827 tcp_sad_decay_val);
8828 #endif
8829 }
8830 }
8831
8832 static void
8833 rack_process_to_cumack(struct tcpcb *tp, struct tcp_rack *rack, register uint32_t th_ack, uint32_t cts, struct tcpopt *to)
8834 {
8835 struct rack_sendmap *rsm;
8836 #ifdef INVARIANTS
8837 struct rack_sendmap *rm;
8838 #endif
8839
8840 /*
8841 * The ACK point is advancing to th_ack, we must drop off
8842 * the packets in the rack log and calculate any eligble
8843 * RTT's.
8844 */
8845 rack->r_wanted_output = 1;
8846
8847 /* Tend any TLP that has been marked for 1/2 the seq space (its old) */
8848 if ((rack->rc_last_tlp_acked_set == 1)&&
8849 (rack->rc_last_tlp_past_cumack == 1) &&
8850 (SEQ_GT(rack->r_ctl.last_tlp_acked_start, th_ack))) {
8851 /*
8852 * We have reached the point where our last rack
8853 * tlp retransmit sequence is ahead of the cum-ack.
8854 * This can only happen when the cum-ack moves all
8855 * the way around (its been a full 2^^31+1 bytes
8856 * or more since we sent a retransmitted TLP). Lets
8857 * turn off the valid flag since its not really valid.
8858 *
8859 * Note since sack's also turn on this event we have
8860 * a complication, we have to wait to age it out until
8861 * the cum-ack is by the TLP before checking which is
8862 * what the next else clause does.
8863 */
8864 rack_log_dsack_event(rack, 9, __LINE__,
8865 rack->r_ctl.last_tlp_acked_start,
8866 rack->r_ctl.last_tlp_acked_end);
8867 rack->rc_last_tlp_acked_set = 0;
8868 rack->rc_last_tlp_past_cumack = 0;
8869 } else if ((rack->rc_last_tlp_acked_set == 1) &&
8870 (rack->rc_last_tlp_past_cumack == 0) &&
8871 (SEQ_GEQ(th_ack, rack->r_ctl.last_tlp_acked_end))) {
8872 /*
8873 * It is safe to start aging TLP's out.
8874 */
8875 rack->rc_last_tlp_past_cumack = 1;
8876 }
8877 /* We do the same for the tlp send seq as well */
8878 if ((rack->rc_last_sent_tlp_seq_valid == 1) &&
8879 (rack->rc_last_sent_tlp_past_cumack == 1) &&
8880 (SEQ_GT(rack->r_ctl.last_sent_tlp_seq, th_ack))) {
8881 rack_log_dsack_event(rack, 9, __LINE__,
8882 rack->r_ctl.last_sent_tlp_seq,
8883 (rack->r_ctl.last_sent_tlp_seq +
8884 rack->r_ctl.last_sent_tlp_len));
8885 rack->rc_last_sent_tlp_seq_valid = 0;
8886 rack->rc_last_sent_tlp_past_cumack = 0;
8887 } else if ((rack->rc_last_sent_tlp_seq_valid == 1) &&
8888 (rack->rc_last_sent_tlp_past_cumack == 0) &&
8889 (SEQ_GEQ(th_ack, rack->r_ctl.last_sent_tlp_seq))) {
8890 /*
8891 * It is safe to start aging TLP's send.
8892 */
8893 rack->rc_last_sent_tlp_past_cumack = 1;
8894 }
8895 more:
8896 rsm = RB_MIN(rack_rb_tree_head, &rack->r_ctl.rc_mtree);
8897 if (rsm == NULL) {
8898 if ((th_ack - 1) == tp->iss) {
8899 /*
8900 * For the SYN incoming case we will not
8901 * have called tcp_output for the sending of
8902 * the SYN, so there will be no map. All
8903 * other cases should probably be a panic.
8904 */
8905 return;
8906 }
8907 if (tp->t_flags & TF_SENTFIN) {
8908 /* if we sent a FIN we often will not have map */
8909 return;
8910 }
8911 #ifdef INVARIANTS
8912 panic("No rack map tp:%p for state:%d ack:%u rack:%p snd_una:%u snd_max:%u snd_nxt:%u\n",
8913 tp,
8914 tp->t_state, th_ack, rack,
8915 tp->snd_una, tp->snd_max, tp->snd_nxt);
8916 #endif
8917 return;
8918 }
8919 if (SEQ_LT(th_ack, rsm->r_start)) {
8920 /* Huh map is missing this */
8921 #ifdef INVARIANTS
8922 printf("Rack map starts at r_start:%u for th_ack:%u huh? ts:%d rs:%d\n",
8923 rsm->r_start,
8924 th_ack, tp->t_state, rack->r_state);
8925 #endif
8926 return;
8927 }
8928 rack_update_rtt(tp, rack, rsm, to, cts, CUM_ACKED, th_ack);
8929
8930 /* Now was it a retransmitted TLP? */
8931 if ((rsm->r_flags & RACK_TLP) &&
8932 (rsm->r_rtr_cnt > 1)) {
8933 /*
8934 * Yes, this rsm was a TLP and retransmitted, remember that
8935 * since if a DSACK comes back on this we don't want
8936 * to think of it as a reordered segment. This may
8937 * get updated again with possibly even other TLPs
8938 * in flight, but thats ok. Only when we don't send
8939 * a retransmitted TLP for 1/2 the sequences space
8940 * will it get turned off (above).
8941 */
8942 if (rack->rc_last_tlp_acked_set &&
8943 (is_rsm_inside_declared_tlp_block(rack, rsm))) {
8944 /*
8945 * We already turned this on since the end matches,
8946 * the previous one was a partially ack now we
8947 * are getting another one (maybe all of it).
8948 */
8949 rack_log_dsack_event(rack, 10, __LINE__, rsm->r_start, rsm->r_end);
8950 /*
8951 * Lets make sure we have all of it though.
8952 */
8953 if (SEQ_LT(rsm->r_start, rack->r_ctl.last_tlp_acked_start)) {
8954 rack->r_ctl.last_tlp_acked_start = rsm->r_start;
8955 rack_log_dsack_event(rack, 11, __LINE__, rack->r_ctl.last_tlp_acked_start,
8956 rack->r_ctl.last_tlp_acked_end);
8957 }
8958 if (SEQ_GT(rsm->r_end, rack->r_ctl.last_tlp_acked_end)) {
8959 rack->r_ctl.last_tlp_acked_end = rsm->r_end;
8960 rack_log_dsack_event(rack, 11, __LINE__, rack->r_ctl.last_tlp_acked_start,
8961 rack->r_ctl.last_tlp_acked_end);
8962 }
8963 } else {
8964 rack->rc_last_tlp_past_cumack = 1;
8965 rack->r_ctl.last_tlp_acked_start = rsm->r_start;
8966 rack->r_ctl.last_tlp_acked_end = rsm->r_end;
8967 rack->rc_last_tlp_acked_set = 1;
8968 rack_log_dsack_event(rack, 8, __LINE__, rsm->r_start, rsm->r_end);
8969 }
8970 }
8971 /* Now do we consume the whole thing? */
8972 if (SEQ_GEQ(th_ack, rsm->r_end)) {
8973 /* Its all consumed. */
8974 uint32_t left;
8975 uint8_t newly_acked;
8976
8977 rack_log_map_chg(tp, rack, NULL, rsm, NULL, MAP_FREE, rsm->r_end, __LINE__);
8978 rack->r_ctl.rc_holes_rxt -= rsm->r_rtr_bytes;
8979 rsm->r_rtr_bytes = 0;
8980 /* Record the time of highest cumack sent */
8981 rack->r_ctl.rc_gp_cumack_ts = rsm->r_tim_lastsent[(rsm->r_rtr_cnt-1)];
8982 #ifndef INVARIANTS
8983 (void)RB_REMOVE(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
8984 #else
8985 rm = RB_REMOVE(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
8986 if (rm != rsm) {
8987 panic("removing head in rack:%p rsm:%p rm:%p",
8988 rack, rsm, rm);
8989 }
8990 #endif
8991 if (rsm->r_in_tmap) {
8992 TAILQ_REMOVE(&rack->r_ctl.rc_tmap, rsm, r_tnext);
8993 rsm->r_in_tmap = 0;
8994 }
8995 newly_acked = 1;
8996 if (rsm->r_flags & RACK_ACKED) {
8997 /*
8998 * It was acked on the scoreboard -- remove
8999 * it from total
9000 */
9001 rack->r_ctl.rc_sacked -= (rsm->r_end - rsm->r_start);
9002 newly_acked = 0;
9003 } else if (rsm->r_flags & RACK_SACK_PASSED) {
9004 /*
9005 * There are segments ACKED on the
9006 * scoreboard further up. We are seeing
9007 * reordering.
9008 */
9009 rsm->r_flags &= ~RACK_SACK_PASSED;
9010 rsm->r_ack_arrival = rack_to_usec_ts(&rack->r_ctl.act_rcv_time);
9011 rsm->r_flags |= RACK_ACKED;
9012 rack->r_ctl.rc_reorder_ts = cts;
9013 if (rack->r_ent_rec_ns) {
9014 /*
9015 * We have sent no more, and we saw an sack
9016 * then ack arrive.
9017 */
9018 rack->r_might_revert = 1;
9019 }
9020 }
9021 if ((rsm->r_flags & RACK_TO_REXT) &&
9022 (tp->t_flags & TF_RCVD_TSTMP) &&
9023 (to->to_flags & TOF_TS) &&
9024 (to->to_tsecr != 0) &&
9025 (tp->t_flags & TF_PREVVALID)) {
9026 /*
9027 * We can use the timestamp to see
9028 * if this retransmission was from the
9029 * first transmit. If so we made a mistake.
9030 */
9031 tp->t_flags &= ~TF_PREVVALID;
9032 if (to->to_tsecr == rack_ts_to_msec(rsm->r_tim_lastsent[0])) {
9033 /* The first transmit is what this ack is for */
9034 rack_cong_signal(tp, CC_RTO_ERR, th_ack, __LINE__);
9035 }
9036 }
9037 left = th_ack - rsm->r_end;
9038 if (rack->app_limited_needs_set && newly_acked)
9039 rack_need_set_test(tp, rack, rsm, th_ack, __LINE__, RACK_USE_END_OR_THACK);
9040 /* Free back to zone */
9041 rack_free(rack, rsm);
9042 if (left) {
9043 goto more;
9044 }
9045 /* Check for reneging */
9046 rsm = RB_MIN(rack_rb_tree_head, &rack->r_ctl.rc_mtree);
9047 if (rsm && (rsm->r_flags & RACK_ACKED) && (th_ack == rsm->r_start)) {
9048 /*
9049 * The peer has moved snd_una up to
9050 * the edge of this send, i.e. one
9051 * that it had previously acked. The only
9052 * way that can be true if the peer threw
9053 * away data (space issues) that it had
9054 * previously sacked (else it would have
9055 * given us snd_una up to (rsm->r_end).
9056 * We need to undo the acked markings here.
9057 *
9058 * Note we have to look to make sure th_ack is
9059 * our rsm->r_start in case we get an old ack
9060 * where th_ack is behind snd_una.
9061 */
9062 rack_peer_reneges(rack, rsm, th_ack);
9063 }
9064 return;
9065 }
9066 if (rsm->r_flags & RACK_ACKED) {
9067 /*
9068 * It was acked on the scoreboard -- remove it from
9069 * total for the part being cum-acked.
9070 */
9071 rack->r_ctl.rc_sacked -= (th_ack - rsm->r_start);
9072 }
9073 /*
9074 * Clear the dup ack count for
9075 * the piece that remains.
9076 */
9077 rsm->r_dupack = 0;
9078 rack_log_retran_reason(rack, rsm, __LINE__, 0, 2);
9079 if (rsm->r_rtr_bytes) {
9080 /*
9081 * It was retransmitted adjust the
9082 * sack holes for what was acked.
9083 */
9084 int ack_am;
9085
9086 ack_am = (th_ack - rsm->r_start);
9087 if (ack_am >= rsm->r_rtr_bytes) {
9088 rack->r_ctl.rc_holes_rxt -= ack_am;
9089 rsm->r_rtr_bytes -= ack_am;
9090 }
9091 }
9092 /*
9093 * Update where the piece starts and record
9094 * the time of send of highest cumack sent.
9095 */
9096 rack->r_ctl.rc_gp_cumack_ts = rsm->r_tim_lastsent[(rsm->r_rtr_cnt-1)];
9097 rack_log_map_chg(tp, rack, NULL, rsm, NULL, MAP_TRIM_HEAD, th_ack, __LINE__);
9098 /* Now we need to move our offset forward too */
9099 if (rsm->m && (rsm->orig_m_len != rsm->m->m_len)) {
9100 /* Fix up the orig_m_len and possibly the mbuf offset */
9101 rack_adjust_orig_mlen(rsm);
9102 }
9103 rsm->soff += (th_ack - rsm->r_start);
9104 rsm->r_start = th_ack;
9105 /* Now do we need to move the mbuf fwd too? */
9106 if (rsm->m) {
9107 while (rsm->soff >= rsm->m->m_len) {
9108 rsm->soff -= rsm->m->m_len;
9109 rsm->m = rsm->m->m_next;
9110 KASSERT((rsm->m != NULL),
9111 (" nrsm:%p hit at soff:%u null m",
9112 rsm, rsm->soff));
9113 }
9114 rsm->orig_m_len = rsm->m->m_len;
9115 }
9116 if (rack->app_limited_needs_set)
9117 rack_need_set_test(tp, rack, rsm, tp->snd_una, __LINE__, RACK_USE_BEG);
9118 }
9119
9120 static void
9121 rack_handle_might_revert(struct tcpcb *tp, struct tcp_rack *rack)
9122 {
9123 struct rack_sendmap *rsm;
9124 int sack_pass_fnd = 0;
9125
9126 if (rack->r_might_revert) {
9127 /*
9128 * Ok we have reordering, have not sent anything, we
9129 * might want to revert the congestion state if nothing
9130 * further has SACK_PASSED on it. Lets check.
9131 *
9132 * We also get here when we have DSACKs come in for
9133 * all the data that we FR'd. Note that a rxt or tlp
9134 * timer clears this from happening.
9135 */
9136
9137 TAILQ_FOREACH(rsm, &rack->r_ctl.rc_tmap, r_tnext) {
9138 if (rsm->r_flags & RACK_SACK_PASSED) {
9139 sack_pass_fnd = 1;
9140 break;
9141 }
9142 }
9143 if (sack_pass_fnd == 0) {
9144 /*
9145 * We went into recovery
9146 * incorrectly due to reordering!
9147 */
9148 int orig_cwnd;
9149
9150 rack->r_ent_rec_ns = 0;
9151 orig_cwnd = tp->snd_cwnd;
9152 tp->snd_ssthresh = rack->r_ctl.rc_ssthresh_at_erec;
9153 tp->snd_recover = tp->snd_una;
9154 rack_log_to_prr(rack, 14, orig_cwnd, __LINE__);
9155 EXIT_RECOVERY(tp->t_flags);
9156 }
9157 rack->r_might_revert = 0;
9158 }
9159 }
9160
9161 #ifdef NETFLIX_EXP_DETECTION
9162 static void
9163 rack_do_detection(struct tcpcb *tp, struct tcp_rack *rack, uint32_t bytes_this_ack, uint32_t segsiz)
9164 {
9165 if ((rack->do_detection || tcp_force_detection) &&
9166 tcp_sack_to_ack_thresh &&
9167 tcp_sack_to_move_thresh &&
9168 ((rack->r_ctl.rc_num_maps_alloced > tcp_map_minimum) || rack->sack_attack_disable)) {
9169 /*
9170 * We have thresholds set to find
9171 * possible attackers and disable sack.
9172 * Check them.
9173 */
9174 uint64_t ackratio, moveratio, movetotal;
9175
9176 /* Log detecting */
9177 rack_log_sad(rack, 1);
9178 ackratio = (uint64_t)(rack->r_ctl.sack_count);
9179 ackratio *= (uint64_t)(1000);
9180 if (rack->r_ctl.ack_count)
9181 ackratio /= (uint64_t)(rack->r_ctl.ack_count);
9182 else {
9183 /* We really should not hit here */
9184 ackratio = 1000;
9185 }
9186 if ((rack->sack_attack_disable == 0) &&
9187 (ackratio > rack_highest_sack_thresh_seen))
9188 rack_highest_sack_thresh_seen = (uint32_t)ackratio;
9189 movetotal = rack->r_ctl.sack_moved_extra;
9190 movetotal += rack->r_ctl.sack_noextra_move;
9191 moveratio = rack->r_ctl.sack_moved_extra;
9192 moveratio *= (uint64_t)1000;
9193 if (movetotal)
9194 moveratio /= movetotal;
9195 else {
9196 /* No moves, thats pretty good */
9197 moveratio = 0;
9198 }
9199 if ((rack->sack_attack_disable == 0) &&
9200 (moveratio > rack_highest_move_thresh_seen))
9201 rack_highest_move_thresh_seen = (uint32_t)moveratio;
9202 if (rack->sack_attack_disable == 0) {
9203 if ((ackratio > tcp_sack_to_ack_thresh) &&
9204 (moveratio > tcp_sack_to_move_thresh)) {
9205 /* Disable sack processing */
9206 rack->sack_attack_disable = 1;
9207 if (rack->r_rep_attack == 0) {
9208 rack->r_rep_attack = 1;
9209 counter_u64_add(rack_sack_attacks_detected, 1);
9210 }
9211 if (tcp_attack_on_turns_on_logging) {
9212 /*
9213 * Turn on logging, used for debugging
9214 * false positives.
9215 */
9216 rack->rc_tp->t_logstate = tcp_attack_on_turns_on_logging;
9217 }
9218 /* Clamp the cwnd at flight size */
9219 rack->r_ctl.rc_saved_cwnd = rack->rc_tp->snd_cwnd;
9220 rack->rc_tp->snd_cwnd = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
9221 rack_log_sad(rack, 2);
9222 }
9223 } else {
9224 /* We are sack-disabled check for false positives */
9225 if ((ackratio <= tcp_restoral_thresh) ||
9226 (rack->r_ctl.rc_num_maps_alloced < tcp_map_minimum)) {
9227 rack->sack_attack_disable = 0;
9228 rack_log_sad(rack, 3);
9229 /* Restart counting */
9230 rack->r_ctl.sack_count = 0;
9231 rack->r_ctl.sack_moved_extra = 0;
9232 rack->r_ctl.sack_noextra_move = 1;
9233 rack->r_ctl.ack_count = max(1,
9234 (bytes_this_ack / segsiz));
9235
9236 if (rack->r_rep_reverse == 0) {
9237 rack->r_rep_reverse = 1;
9238 counter_u64_add(rack_sack_attacks_reversed, 1);
9239 }
9240 /* Restore the cwnd */
9241 if (rack->r_ctl.rc_saved_cwnd > rack->rc_tp->snd_cwnd)
9242 rack->rc_tp->snd_cwnd = rack->r_ctl.rc_saved_cwnd;
9243 }
9244 }
9245 }
9246 }
9247 #endif
9248
9249 static int
9250 rack_note_dsack(struct tcp_rack *rack, tcp_seq start, tcp_seq end)
9251 {
9252
9253 uint32_t am, l_end;
9254 int was_tlp = 0;
9255
9256 if (SEQ_GT(end, start))
9257 am = end - start;
9258 else
9259 am = 0;
9260 if ((rack->rc_last_tlp_acked_set ) &&
9261 (SEQ_GEQ(start, rack->r_ctl.last_tlp_acked_start)) &&
9262 (SEQ_LEQ(end, rack->r_ctl.last_tlp_acked_end))) {
9263 /*
9264 * The DSACK is because of a TLP which we don't
9265 * do anything with the reordering window over since
9266 * it was not reordering that caused the DSACK but
9267 * our previous retransmit TLP.
9268 */
9269 rack_log_dsack_event(rack, 7, __LINE__, start, end);
9270 was_tlp = 1;
9271 goto skip_dsack_round;
9272 }
9273 if (rack->rc_last_sent_tlp_seq_valid) {
9274 l_end = rack->r_ctl.last_sent_tlp_seq + rack->r_ctl.last_sent_tlp_len;
9275 if (SEQ_GEQ(start, rack->r_ctl.last_sent_tlp_seq) &&
9276 (SEQ_LEQ(end, l_end))) {
9277 /*
9278 * This dsack is from the last sent TLP, ignore it
9279 * for reordering purposes.
9280 */
9281 rack_log_dsack_event(rack, 7, __LINE__, start, end);
9282 was_tlp = 1;
9283 goto skip_dsack_round;
9284 }
9285 }
9286 if (rack->rc_dsack_round_seen == 0) {
9287 rack->rc_dsack_round_seen = 1;
9288 rack->r_ctl.dsack_round_end = rack->rc_tp->snd_max;
9289 rack->r_ctl.num_dsack++;
9290 rack->r_ctl.dsack_persist = 16; /* 16 is from the standard */
9291 rack_log_dsack_event(rack, 2, __LINE__, 0, 0);
9292 }
9293 skip_dsack_round:
9294 /*
9295 * We keep track of how many DSACK blocks we get
9296 * after a recovery incident.
9297 */
9298 rack->r_ctl.dsack_byte_cnt += am;
9299 if (!IN_FASTRECOVERY(rack->rc_tp->t_flags) &&
9300 rack->r_ctl.retran_during_recovery &&
9301 (rack->r_ctl.dsack_byte_cnt >= rack->r_ctl.retran_during_recovery)) {
9302 /*
9303 * False recovery most likely culprit is reordering. If
9304 * nothing else is missing we need to revert.
9305 */
9306 rack->r_might_revert = 1;
9307 rack_handle_might_revert(rack->rc_tp, rack);
9308 rack->r_might_revert = 0;
9309 rack->r_ctl.retran_during_recovery = 0;
9310 rack->r_ctl.dsack_byte_cnt = 0;
9311 }
9312 return (was_tlp);
9313 }
9314
9315 static uint32_t
9316 do_rack_compute_pipe(struct tcpcb *tp, struct tcp_rack *rack, uint32_t snd_una)
9317 {
9318 return (((tp->snd_max - snd_una) - rack->r_ctl.rc_sacked) + rack->r_ctl.rc_holes_rxt);
9319 }
9320
9321 static int32_t
9322 rack_compute_pipe(struct tcpcb *tp)
9323 {
9324 return ((int32_t)do_rack_compute_pipe(tp,
9325 (struct tcp_rack *)tp->t_fb_ptr,
9326 tp->snd_una));
9327 }
9328
9329 static void
9330 rack_update_prr(struct tcpcb *tp, struct tcp_rack *rack, uint32_t changed, tcp_seq th_ack)
9331 {
9332 /* Deal with changed and PRR here (in recovery only) */
9333 uint32_t pipe, snd_una;
9334
9335 rack->r_ctl.rc_prr_delivered += changed;
9336
9337 if (sbavail(&rack->rc_inp->inp_socket->so_snd) <= (tp->snd_max - tp->snd_una)) {
9338 /*
9339 * It is all outstanding, we are application limited
9340 * and thus we don't need more room to send anything.
9341 * Note we use tp->snd_una here and not th_ack because
9342 * the data as yet not been cut from the sb.
9343 */
9344 rack->r_ctl.rc_prr_sndcnt = 0;
9345 return;
9346 }
9347 /* Compute prr_sndcnt */
9348 if (SEQ_GT(tp->snd_una, th_ack)) {
9349 snd_una = tp->snd_una;
9350 } else {
9351 snd_una = th_ack;
9352 }
9353 pipe = do_rack_compute_pipe(tp, rack, snd_una);
9354 if (pipe > tp->snd_ssthresh) {
9355 long sndcnt;
9356
9357 sndcnt = rack->r_ctl.rc_prr_delivered * tp->snd_ssthresh;
9358 if (rack->r_ctl.rc_prr_recovery_fs > 0)
9359 sndcnt /= (long)rack->r_ctl.rc_prr_recovery_fs;
9360 else {
9361 rack->r_ctl.rc_prr_sndcnt = 0;
9362 rack_log_to_prr(rack, 9, 0, __LINE__);
9363 sndcnt = 0;
9364 }
9365 sndcnt++;
9366 if (sndcnt > (long)rack->r_ctl.rc_prr_out)
9367 sndcnt -= rack->r_ctl.rc_prr_out;
9368 else
9369 sndcnt = 0;
9370 rack->r_ctl.rc_prr_sndcnt = sndcnt;
9371 rack_log_to_prr(rack, 10, 0, __LINE__);
9372 } else {
9373 uint32_t limit;
9374
9375 if (rack->r_ctl.rc_prr_delivered > rack->r_ctl.rc_prr_out)
9376 limit = (rack->r_ctl.rc_prr_delivered - rack->r_ctl.rc_prr_out);
9377 else
9378 limit = 0;
9379 if (changed > limit)
9380 limit = changed;
9381 limit += ctf_fixed_maxseg(tp);
9382 if (tp->snd_ssthresh > pipe) {
9383 rack->r_ctl.rc_prr_sndcnt = min((tp->snd_ssthresh - pipe), limit);
9384 rack_log_to_prr(rack, 11, 0, __LINE__);
9385 } else {
9386 rack->r_ctl.rc_prr_sndcnt = min(0, limit);
9387 rack_log_to_prr(rack, 12, 0, __LINE__);
9388 }
9389 }
9390 }
9391
9392 static void
9393 rack_log_ack(struct tcpcb *tp, struct tcpopt *to, struct tcphdr *th, int entered_recovery, int dup_ack_struck)
9394 {
9395 uint32_t changed;
9396 struct tcp_rack *rack;
9397 struct rack_sendmap *rsm;
9398 struct sackblk sack, sack_blocks[TCP_MAX_SACK + 1];
9399 register uint32_t th_ack;
9400 int32_t i, j, k, num_sack_blks = 0;
9401 uint32_t cts, acked, ack_point;
9402 int loop_start = 0, moved_two = 0;
9403 uint32_t tsused;
9404
9405
9406 INP_WLOCK_ASSERT(tptoinpcb(tp));
9407 if (tcp_get_flags(th) & TH_RST) {
9408 /* We don't log resets */
9409 return;
9410 }
9411 rack = (struct tcp_rack *)tp->t_fb_ptr;
9412 cts = tcp_get_usecs(NULL);
9413 rsm = RB_MIN(rack_rb_tree_head, &rack->r_ctl.rc_mtree);
9414 changed = 0;
9415 th_ack = th->th_ack;
9416 if (rack->sack_attack_disable == 0)
9417 rack_do_decay(rack);
9418 if (BYTES_THIS_ACK(tp, th) >= ctf_fixed_maxseg(rack->rc_tp)) {
9419 /*
9420 * You only get credit for
9421 * MSS and greater (and you get extra
9422 * credit for larger cum-ack moves).
9423 */
9424 int ac;
9425
9426 ac = BYTES_THIS_ACK(tp, th) / ctf_fixed_maxseg(rack->rc_tp);
9427 rack->r_ctl.ack_count += ac;
9428 counter_u64_add(rack_ack_total, ac);
9429 }
9430 if (rack->r_ctl.ack_count > 0xfff00000) {
9431 /*
9432 * reduce the number to keep us under
9433 * a uint32_t.
9434 */
9435 rack->r_ctl.ack_count /= 2;
9436 rack->r_ctl.sack_count /= 2;
9437 }
9438 if (SEQ_GT(th_ack, tp->snd_una)) {
9439 rack_log_progress_event(rack, tp, ticks, PROGRESS_UPDATE, __LINE__);
9440 tp->t_acktime = ticks;
9441 }
9442 if (rsm && SEQ_GT(th_ack, rsm->r_start))
9443 changed = th_ack - rsm->r_start;
9444 if (changed) {
9445 rack_process_to_cumack(tp, rack, th_ack, cts, to);
9446 }
9447 if ((to->to_flags & TOF_SACK) == 0) {
9448 /* We are done nothing left and no sack. */
9449 rack_handle_might_revert(tp, rack);
9450 /*
9451 * For cases where we struck a dup-ack
9452 * with no SACK, add to the changes so
9453 * PRR will work right.
9454 */
9455 if (dup_ack_struck && (changed == 0)) {
9456 changed += ctf_fixed_maxseg(rack->rc_tp);
9457 }
9458 goto out;
9459 }
9460 /* Sack block processing */
9461 if (SEQ_GT(th_ack, tp->snd_una))
9462 ack_point = th_ack;
9463 else
9464 ack_point = tp->snd_una;
9465 for (i = 0; i < to->to_nsacks; i++) {
9466 bcopy((to->to_sacks + i * TCPOLEN_SACK),
9467 &sack, sizeof(sack));
9468 sack.start = ntohl(sack.start);
9469 sack.end = ntohl(sack.end);
9470 if (SEQ_GT(sack.end, sack.start) &&
9471 SEQ_GT(sack.start, ack_point) &&
9472 SEQ_LT(sack.start, tp->snd_max) &&
9473 SEQ_GT(sack.end, ack_point) &&
9474 SEQ_LEQ(sack.end, tp->snd_max)) {
9475 sack_blocks[num_sack_blks] = sack;
9476 num_sack_blks++;
9477 } else if (SEQ_LEQ(sack.start, th_ack) &&
9478 SEQ_LEQ(sack.end, th_ack)) {
9479 int was_tlp;
9480
9481 was_tlp = rack_note_dsack(rack, sack.start, sack.end);
9482 /*
9483 * Its a D-SACK block.
9484 */
9485 tcp_record_dsack(tp, sack.start, sack.end, was_tlp);
9486 }
9487 }
9488 if (rack->rc_dsack_round_seen) {
9489 /* Is the dsack roound over? */
9490 if (SEQ_GEQ(th_ack, rack->r_ctl.dsack_round_end)) {
9491 /* Yes it is */
9492 rack->rc_dsack_round_seen = 0;
9493 rack_log_dsack_event(rack, 3, __LINE__, 0, 0);
9494 }
9495 }
9496 /*
9497 * Sort the SACK blocks so we can update the rack scoreboard with
9498 * just one pass.
9499 */
9500 num_sack_blks = sack_filter_blks(&rack->r_ctl.rack_sf, sack_blocks,
9501 num_sack_blks, th->th_ack);
9502 ctf_log_sack_filter(rack->rc_tp, num_sack_blks, sack_blocks);
9503 if (num_sack_blks == 0) {
9504 /* Nothing to sack (DSACKs?) */
9505 goto out_with_totals;
9506 }
9507 if (num_sack_blks < 2) {
9508 /* Only one, we don't need to sort */
9509 goto do_sack_work;
9510 }
9511 /* Sort the sacks */
9512 for (i = 0; i < num_sack_blks; i++) {
9513 for (j = i + 1; j < num_sack_blks; j++) {
9514 if (SEQ_GT(sack_blocks[i].end, sack_blocks[j].end)) {
9515 sack = sack_blocks[i];
9516 sack_blocks[i] = sack_blocks[j];
9517 sack_blocks[j] = sack;
9518 }
9519 }
9520 }
9521 /*
9522 * Now are any of the sack block ends the same (yes some
9523 * implementations send these)?
9524 */
9525 again:
9526 if (num_sack_blks == 0)
9527 goto out_with_totals;
9528 if (num_sack_blks > 1) {
9529 for (i = 0; i < num_sack_blks; i++) {
9530 for (j = i + 1; j < num_sack_blks; j++) {
9531 if (sack_blocks[i].end == sack_blocks[j].end) {
9532 /*
9533 * Ok these two have the same end we
9534 * want the smallest end and then
9535 * throw away the larger and start
9536 * again.
9537 */
9538 if (SEQ_LT(sack_blocks[j].start, sack_blocks[i].start)) {
9539 /*
9540 * The second block covers
9541 * more area use that
9542 */
9543 sack_blocks[i].start = sack_blocks[j].start;
9544 }
9545 /*
9546 * Now collapse out the dup-sack and
9547 * lower the count
9548 */
9549 for (k = (j + 1); k < num_sack_blks; k++) {
9550 sack_blocks[j].start = sack_blocks[k].start;
9551 sack_blocks[j].end = sack_blocks[k].end;
9552 j++;
9553 }
9554 num_sack_blks--;
9555 goto again;
9556 }
9557 }
9558 }
9559 }
9560 do_sack_work:
9561 /*
9562 * First lets look to see if
9563 * we have retransmitted and
9564 * can use the transmit next?
9565 */
9566 rsm = TAILQ_FIRST(&rack->r_ctl.rc_tmap);
9567 if (rsm &&
9568 SEQ_GT(sack_blocks[0].end, rsm->r_start) &&
9569 SEQ_LT(sack_blocks[0].start, rsm->r_end)) {
9570 /*
9571 * We probably did the FR and the next
9572 * SACK in continues as we would expect.
9573 */
9574 acked = rack_proc_sack_blk(tp, rack, &sack_blocks[0], to, &rsm, cts, &moved_two);
9575 if (acked) {
9576 rack->r_wanted_output = 1;
9577 changed += acked;
9578 }
9579 if (num_sack_blks == 1) {
9580 /*
9581 * This is what we would expect from
9582 * a normal implementation to happen
9583 * after we have retransmitted the FR,
9584 * i.e the sack-filter pushes down
9585 * to 1 block and the next to be retransmitted
9586 * is the sequence in the sack block (has more
9587 * are acked). Count this as ACK'd data to boost
9588 * up the chances of recovering any false positives.
9589 */
9590 rack->r_ctl.ack_count += (acked / ctf_fixed_maxseg(rack->rc_tp));
9591 counter_u64_add(rack_ack_total, (acked / ctf_fixed_maxseg(rack->rc_tp)));
9592 counter_u64_add(rack_express_sack, 1);
9593 if (rack->r_ctl.ack_count > 0xfff00000) {
9594 /*
9595 * reduce the number to keep us under
9596 * a uint32_t.
9597 */
9598 rack->r_ctl.ack_count /= 2;
9599 rack->r_ctl.sack_count /= 2;
9600 }
9601 goto out_with_totals;
9602 } else {
9603 /*
9604 * Start the loop through the
9605 * rest of blocks, past the first block.
9606 */
9607 moved_two = 0;
9608 loop_start = 1;
9609 }
9610 }
9611 /* Its a sack of some sort */
9612 rack->r_ctl.sack_count++;
9613 if (rack->r_ctl.sack_count > 0xfff00000) {
9614 /*
9615 * reduce the number to keep us under
9616 * a uint32_t.
9617 */
9618 rack->r_ctl.ack_count /= 2;
9619 rack->r_ctl.sack_count /= 2;
9620 }
9621 counter_u64_add(rack_sack_total, 1);
9622 if (rack->sack_attack_disable) {
9623 /* An attacker disablement is in place */
9624 if (num_sack_blks > 1) {
9625 rack->r_ctl.sack_count += (num_sack_blks - 1);
9626 rack->r_ctl.sack_moved_extra++;
9627 counter_u64_add(rack_move_some, 1);
9628 if (rack->r_ctl.sack_moved_extra > 0xfff00000) {
9629 rack->r_ctl.sack_moved_extra /= 2;
9630 rack->r_ctl.sack_noextra_move /= 2;
9631 }
9632 }
9633 goto out;
9634 }
9635 rsm = rack->r_ctl.rc_sacklast;
9636 for (i = loop_start; i < num_sack_blks; i++) {
9637 acked = rack_proc_sack_blk(tp, rack, &sack_blocks[i], to, &rsm, cts, &moved_two);
9638 if (acked) {
9639 rack->r_wanted_output = 1;
9640 changed += acked;
9641 }
9642 if (moved_two) {
9643 /*
9644 * If we did not get a SACK for at least a MSS and
9645 * had to move at all, or if we moved more than our
9646 * threshold, it counts against the "extra" move.
9647 */
9648 rack->r_ctl.sack_moved_extra += moved_two;
9649 counter_u64_add(rack_move_some, 1);
9650 } else {
9651 /*
9652 * else we did not have to move
9653 * any more than we would expect.
9654 */
9655 rack->r_ctl.sack_noextra_move++;
9656 counter_u64_add(rack_move_none, 1);
9657 }
9658 if (moved_two && (acked < ctf_fixed_maxseg(rack->rc_tp))) {
9659 /*
9660 * If the SACK was not a full MSS then
9661 * we add to sack_count the number of
9662 * MSS's (or possibly more than
9663 * a MSS if its a TSO send) we had to skip by.
9664 */
9665 rack->r_ctl.sack_count += moved_two;
9666 counter_u64_add(rack_sack_total, moved_two);
9667 }
9668 /*
9669 * Now we need to setup for the next
9670 * round. First we make sure we won't
9671 * exceed the size of our uint32_t on
9672 * the various counts, and then clear out
9673 * moved_two.
9674 */
9675 if ((rack->r_ctl.sack_moved_extra > 0xfff00000) ||
9676 (rack->r_ctl.sack_noextra_move > 0xfff00000)) {
9677 rack->r_ctl.sack_moved_extra /= 2;
9678 rack->r_ctl.sack_noextra_move /= 2;
9679 }
9680 if (rack->r_ctl.sack_count > 0xfff00000) {
9681 rack->r_ctl.ack_count /= 2;
9682 rack->r_ctl.sack_count /= 2;
9683 }
9684 moved_two = 0;
9685 }
9686 out_with_totals:
9687 if (num_sack_blks > 1) {
9688 /*
9689 * You get an extra stroke if
9690 * you have more than one sack-blk, this
9691 * could be where we are skipping forward
9692 * and the sack-filter is still working, or
9693 * it could be an attacker constantly
9694 * moving us.
9695 */
9696 rack->r_ctl.sack_moved_extra++;
9697 counter_u64_add(rack_move_some, 1);
9698 }
9699 out:
9700 #ifdef NETFLIX_EXP_DETECTION
9701 rack_do_detection(tp, rack, BYTES_THIS_ACK(tp, th), ctf_fixed_maxseg(rack->rc_tp));
9702 #endif
9703 if (changed) {
9704 /* Something changed cancel the rack timer */
9705 rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__);
9706 }
9707 tsused = tcp_get_usecs(NULL);
9708 rsm = tcp_rack_output(tp, rack, tsused);
9709 if ((!IN_FASTRECOVERY(tp->t_flags)) &&
9710 rsm &&
9711 ((rsm->r_flags & RACK_MUST_RXT) == 0)) {
9712 /* Enter recovery */
9713 entered_recovery = 1;
9714 rack_cong_signal(tp, CC_NDUPACK, tp->snd_una, __LINE__);
9715 /*
9716 * When we enter recovery we need to assure we send
9717 * one packet.
9718 */
9719 if (rack->rack_no_prr == 0) {
9720 rack->r_ctl.rc_prr_sndcnt = ctf_fixed_maxseg(tp);
9721 rack_log_to_prr(rack, 8, 0, __LINE__);
9722 }
9723 rack->r_timer_override = 1;
9724 rack->r_early = 0;
9725 rack->r_ctl.rc_agg_early = 0;
9726 } else if (IN_FASTRECOVERY(tp->t_flags) &&
9727 rsm &&
9728 (rack->r_rr_config == 3)) {
9729 /*
9730 * Assure we can output and we get no
9731 * remembered pace time except the retransmit.
9732 */
9733 rack->r_timer_override = 1;
9734 rack->r_ctl.rc_hpts_flags &= ~PACE_PKT_OUTPUT;
9735 rack->r_ctl.rc_resend = rsm;
9736 }
9737 if (IN_FASTRECOVERY(tp->t_flags) &&
9738 (rack->rack_no_prr == 0) &&
9739 (entered_recovery == 0)) {
9740 rack_update_prr(tp, rack, changed, th_ack);
9741 if ((rsm && (rack->r_ctl.rc_prr_sndcnt >= ctf_fixed_maxseg(tp)) &&
9742 ((tcp_in_hpts(rack->rc_inp) == 0) &&
9743 ((rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) == 0)))) {
9744 /*
9745 * If you are pacing output you don't want
9746 * to override.
9747 */
9748 rack->r_early = 0;
9749 rack->r_ctl.rc_agg_early = 0;
9750 rack->r_timer_override = 1;
9751 }
9752 }
9753 }
9754
9755 static void
9756 rack_strike_dupack(struct tcp_rack *rack)
9757 {
9758 struct rack_sendmap *rsm;
9759
9760 rsm = TAILQ_FIRST(&rack->r_ctl.rc_tmap);
9761 while (rsm && (rsm->r_dupack >= DUP_ACK_THRESHOLD)) {
9762 rsm = TAILQ_NEXT(rsm, r_tnext);
9763 if (rsm->r_flags & RACK_MUST_RXT) {
9764 /* Sendmap entries that are marked to
9765 * be retransmitted do not need dupack's
9766 * struck. We get these marks for a number
9767 * of reasons (rxt timeout with no sack,
9768 * mtu change, or rwnd collapses). When
9769 * these events occur, we know we must retransmit
9770 * them and mark the sendmap entries. Dupack counting
9771 * is not needed since we are already set to retransmit
9772 * it as soon as we can.
9773 */
9774 continue;
9775 }
9776 }
9777 if (rsm && (rsm->r_dupack < 0xff)) {
9778 rsm->r_dupack++;
9779 if (rsm->r_dupack >= DUP_ACK_THRESHOLD) {
9780 struct timeval tv;
9781 uint32_t cts;
9782 /*
9783 * Here we see if we need to retransmit. For
9784 * a SACK type connection if enough time has passed
9785 * we will get a return of the rsm. For a non-sack
9786 * connection we will get the rsm returned if the
9787 * dupack value is 3 or more.
9788 */
9789 cts = tcp_get_usecs(&tv);
9790 rack->r_ctl.rc_resend = tcp_rack_output(rack->rc_tp, rack, cts);
9791 if (rack->r_ctl.rc_resend != NULL) {
9792 if (!IN_FASTRECOVERY(rack->rc_tp->t_flags)) {
9793 rack_cong_signal(rack->rc_tp, CC_NDUPACK,
9794 rack->rc_tp->snd_una, __LINE__);
9795 }
9796 rack->r_wanted_output = 1;
9797 rack->r_timer_override = 1;
9798 rack_log_retran_reason(rack, rsm, __LINE__, 1, 3);
9799 }
9800 } else {
9801 rack_log_retran_reason(rack, rsm, __LINE__, 0, 3);
9802 }
9803 }
9804 }
9805
9806 static void
9807 rack_check_bottom_drag(struct tcpcb *tp,
9808 struct tcp_rack *rack,
9809 struct socket *so, int32_t acked)
9810 {
9811 uint32_t segsiz, minseg;
9812
9813 segsiz = ctf_fixed_maxseg(tp);
9814 minseg = segsiz;
9815
9816 if (tp->snd_max == tp->snd_una) {
9817 /*
9818 * We are doing dynamic pacing and we are way
9819 * under. Basically everything got acked while
9820 * we were still waiting on the pacer to expire.
9821 *
9822 * This means we need to boost the b/w in
9823 * addition to any earlier boosting of
9824 * the multiplier.
9825 */
9826 rack->rc_dragged_bottom = 1;
9827 rack_validate_multipliers_at_or_above100(rack);
9828 /*
9829 * Lets use the segment bytes acked plus
9830 * the lowest RTT seen as the basis to
9831 * form a b/w estimate. This will be off
9832 * due to the fact that the true estimate
9833 * should be around 1/2 the time of the RTT
9834 * but we can settle for that.
9835 */
9836 if ((rack->r_ctl.rack_rs.rs_flags & RACK_RTT_VALID) &&
9837 acked) {
9838 uint64_t bw, calc_bw, rtt;
9839
9840 rtt = rack->r_ctl.rack_rs.rs_us_rtt;
9841 if (rtt == 0) {
9842 /* no us sample is there a ms one? */
9843 if (rack->r_ctl.rack_rs.rs_rtt_lowest) {
9844 rtt = rack->r_ctl.rack_rs.rs_rtt_lowest;
9845 } else {
9846 goto no_measurement;
9847 }
9848 }
9849 bw = acked;
9850 calc_bw = bw * 1000000;
9851 calc_bw /= rtt;
9852 if (rack->r_ctl.last_max_bw &&
9853 (rack->r_ctl.last_max_bw < calc_bw)) {
9854 /*
9855 * If we have a last calculated max bw
9856 * enforce it.
9857 */
9858 calc_bw = rack->r_ctl.last_max_bw;
9859 }
9860 /* now plop it in */
9861 if (rack->rc_gp_filled == 0) {
9862 if (calc_bw > ONE_POINT_TWO_MEG) {
9863 /*
9864 * If we have no measurement
9865 * don't let us set in more than
9866 * 1.2Mbps. If we are still too
9867 * low after pacing with this we
9868 * will hopefully have a max b/w
9869 * available to sanity check things.
9870 */
9871 calc_bw = ONE_POINT_TWO_MEG;
9872 }
9873 rack->r_ctl.rc_rtt_diff = 0;
9874 rack->r_ctl.gp_bw = calc_bw;
9875 rack->rc_gp_filled = 1;
9876 if (rack->r_ctl.num_measurements < RACK_REQ_AVG)
9877 rack->r_ctl.num_measurements = RACK_REQ_AVG;
9878 rack_set_pace_segments(rack->rc_tp, rack, __LINE__, NULL);
9879 } else if (calc_bw > rack->r_ctl.gp_bw) {
9880 rack->r_ctl.rc_rtt_diff = 0;
9881 if (rack->r_ctl.num_measurements < RACK_REQ_AVG)
9882 rack->r_ctl.num_measurements = RACK_REQ_AVG;
9883 rack->r_ctl.gp_bw = calc_bw;
9884 rack_set_pace_segments(rack->rc_tp, rack, __LINE__, NULL);
9885 } else
9886 rack_increase_bw_mul(rack, -1, 0, 0, 1);
9887 if ((rack->gp_ready == 0) &&
9888 (rack->r_ctl.num_measurements >= rack->r_ctl.req_measurements)) {
9889 /* We have enough measurements now */
9890 rack->gp_ready = 1;
9891 rack_set_cc_pacing(rack);
9892 if (rack->defer_options)
9893 rack_apply_deferred_options(rack);
9894 }
9895 /*
9896 * For acks over 1mss we do a extra boost to simulate
9897 * where we would get 2 acks (we want 110 for the mul).
9898 */
9899 if (acked > segsiz)
9900 rack_increase_bw_mul(rack, -1, 0, 0, 1);
9901 } else {
9902 /*
9903 * zero rtt possibly?, settle for just an old increase.
9904 */
9905 no_measurement:
9906 rack_increase_bw_mul(rack, -1, 0, 0, 1);
9907 }
9908 } else if ((IN_FASTRECOVERY(tp->t_flags) == 0) &&
9909 (sbavail(&so->so_snd) > max((segsiz * (4 + rack_req_segs)),
9910 minseg)) &&
9911 (rack->r_ctl.cwnd_to_use > max((segsiz * (rack_req_segs + 2)), minseg)) &&
9912 (tp->snd_wnd > max((segsiz * (rack_req_segs + 2)), minseg)) &&
9913 (ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked) <=
9914 (segsiz * rack_req_segs))) {
9915 /*
9916 * We are doing dynamic GP pacing and
9917 * we have everything except 1MSS or less
9918 * bytes left out. We are still pacing away.
9919 * And there is data that could be sent, This
9920 * means we are inserting delayed ack time in
9921 * our measurements because we are pacing too slow.
9922 */
9923 rack_validate_multipliers_at_or_above100(rack);
9924 rack->rc_dragged_bottom = 1;
9925 rack_increase_bw_mul(rack, -1, 0, 0, 1);
9926 }
9927 }
9928
9929
9930
9931 static void
9932 rack_gain_for_fastoutput(struct tcp_rack *rack, struct tcpcb *tp, struct socket *so, uint32_t acked_amount)
9933 {
9934 /*
9935 * The fast output path is enabled and we
9936 * have moved the cumack forward. Lets see if
9937 * we can expand forward the fast path length by
9938 * that amount. What we would ideally like to
9939 * do is increase the number of bytes in the
9940 * fast path block (left_to_send) by the
9941 * acked amount. However we have to gate that
9942 * by two factors:
9943 * 1) The amount outstanding and the rwnd of the peer
9944 * (i.e. we don't want to exceed the rwnd of the peer).
9945 * <and>
9946 * 2) The amount of data left in the socket buffer (i.e.
9947 * we can't send beyond what is in the buffer).
9948 *
9949 * Note that this does not take into account any increase
9950 * in the cwnd. We will only extend the fast path by
9951 * what was acked.
9952 */
9953 uint32_t new_total, gating_val;
9954
9955 new_total = acked_amount + rack->r_ctl.fsb.left_to_send;
9956 gating_val = min((sbavail(&so->so_snd) - (tp->snd_max - tp->snd_una)),
9957 (tp->snd_wnd - (tp->snd_max - tp->snd_una)));
9958 if (new_total <= gating_val) {
9959 /* We can increase left_to_send by the acked amount */
9960 counter_u64_add(rack_extended_rfo, 1);
9961 rack->r_ctl.fsb.left_to_send = new_total;
9962 KASSERT((rack->r_ctl.fsb.left_to_send <= (sbavail(&rack->rc_inp->inp_socket->so_snd) - (tp->snd_max - tp->snd_una))),
9963 ("rack:%p left_to_send:%u sbavail:%u out:%u",
9964 rack, rack->r_ctl.fsb.left_to_send,
9965 sbavail(&rack->rc_inp->inp_socket->so_snd),
9966 (tp->snd_max - tp->snd_una)));
9967
9968 }
9969 }
9970
9971 static void
9972 rack_adjust_sendmap(struct tcp_rack *rack, struct sockbuf *sb, tcp_seq snd_una)
9973 {
9974 /*
9975 * Here any sendmap entry that points to the
9976 * beginning mbuf must be adjusted to the correct
9977 * offset. This must be called with:
9978 * 1) The socket buffer locked
9979 * 2) snd_una adjusted to its new position.
9980 *
9981 * Note that (2) implies rack_ack_received has also
9982 * been called.
9983 *
9984 * We grab the first mbuf in the socket buffer and
9985 * then go through the front of the sendmap, recalculating
9986 * the stored offset for any sendmap entry that has
9987 * that mbuf. We must use the sb functions to do this
9988 * since its possible an add was done has well as
9989 * the subtraction we may have just completed. This should
9990 * not be a penalty though, since we just referenced the sb
9991 * to go in and trim off the mbufs that we freed (of course
9992 * there will be a penalty for the sendmap references though).
9993 */
9994 struct mbuf *m;
9995 struct rack_sendmap *rsm;
9996
9997 SOCKBUF_LOCK_ASSERT(sb);
9998 m = sb->sb_mb;
9999 rsm = RB_MIN(rack_rb_tree_head, &rack->r_ctl.rc_mtree);
10000 if ((rsm == NULL) || (m == NULL)) {
10001 /* Nothing outstanding */
10002 return;
10003 }
10004 while (rsm->m && (rsm->m == m)) {
10005 /* one to adjust */
10006 #ifdef INVARIANTS
10007 struct mbuf *tm;
10008 uint32_t soff;
10009
10010 tm = sbsndmbuf(sb, (rsm->r_start - snd_una), &soff);
10011 if (rsm->orig_m_len != m->m_len) {
10012 rack_adjust_orig_mlen(rsm);
10013 }
10014 if (rsm->soff != soff) {
10015 /*
10016 * This is not a fatal error, we anticipate it
10017 * might happen (the else code), so we count it here
10018 * so that under invariant we can see that it really
10019 * does happen.
10020 */
10021 counter_u64_add(rack_adjust_map_bw, 1);
10022 }
10023 rsm->m = tm;
10024 rsm->soff = soff;
10025 if (tm)
10026 rsm->orig_m_len = rsm->m->m_len;
10027 else
10028 rsm->orig_m_len = 0;
10029 #else
10030 rsm->m = sbsndmbuf(sb, (rsm->r_start - snd_una), &rsm->soff);
10031 if (rsm->m)
10032 rsm->orig_m_len = rsm->m->m_len;
10033 else
10034 rsm->orig_m_len = 0;
10035 #endif
10036 rsm = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree,
10037 rsm);
10038 if (rsm == NULL)
10039 break;
10040 }
10041 }
10042
10043 /*
10044 * Return value of 1, we do not need to call rack_process_data().
10045 * return value of 0, rack_process_data can be called.
10046 * For ret_val if its 0 the TCP is locked, if its non-zero
10047 * its unlocked and probably unsafe to touch the TCB.
10048 */
10049 static int
10050 rack_process_ack(struct mbuf *m, struct tcphdr *th, struct socket *so,
10051 struct tcpcb *tp, struct tcpopt *to,
10052 uint32_t tiwin, int32_t tlen,
10053 int32_t * ofia, int32_t thflags, int32_t *ret_val)
10054 {
10055 int32_t ourfinisacked = 0;
10056 int32_t nsegs, acked_amount;
10057 int32_t acked;
10058 struct mbuf *mfree;
10059 struct tcp_rack *rack;
10060 int32_t under_pacing = 0;
10061 int32_t recovery = 0;
10062
10063 INP_WLOCK_ASSERT(tptoinpcb(tp));
10064
10065 rack = (struct tcp_rack *)tp->t_fb_ptr;
10066 if (SEQ_GT(th->th_ack, tp->snd_max)) {
10067 __ctf_do_dropafterack(m, tp, th, thflags, tlen, ret_val,
10068 &rack->r_ctl.challenge_ack_ts,
10069 &rack->r_ctl.challenge_ack_cnt);
10070 rack->r_wanted_output = 1;
10071 return (1);
10072 }
10073 if (rack->gp_ready &&
10074 (rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT)) {
10075 under_pacing = 1;
10076 }
10077 if (SEQ_GEQ(th->th_ack, tp->snd_una) || to->to_nsacks) {
10078 int in_rec, dup_ack_struck = 0;
10079
10080 in_rec = IN_FASTRECOVERY(tp->t_flags);
10081 if (rack->rc_in_persist) {
10082 tp->t_rxtshift = 0;
10083 RACK_TCPT_RANGESET(tp->t_rxtcur, RACK_REXMTVAL(tp),
10084 rack_rto_min, rack_rto_max, rack->r_ctl.timer_slop);
10085 }
10086 if ((th->th_ack == tp->snd_una) &&
10087 (tiwin == tp->snd_wnd) &&
10088 ((to->to_flags & TOF_SACK) == 0)) {
10089 rack_strike_dupack(rack);
10090 dup_ack_struck = 1;
10091 }
10092 rack_log_ack(tp, to, th, ((in_rec == 0) && IN_FASTRECOVERY(tp->t_flags)), dup_ack_struck);
10093 }
10094 if (__predict_false(SEQ_LEQ(th->th_ack, tp->snd_una))) {
10095 /*
10096 * Old ack, behind (or duplicate to) the last one rcv'd
10097 * Note: We mark reordering is occuring if its
10098 * less than and we have not closed our window.
10099 */
10100 if (SEQ_LT(th->th_ack, tp->snd_una) && (sbspace(&so->so_rcv) > ctf_fixed_maxseg(tp))) {
10101 rack->r_ctl.rc_reorder_ts = tcp_tv_to_usectick(&rack->r_ctl.act_rcv_time);
10102 }
10103 return (0);
10104 }
10105 /*
10106 * If we reach this point, ACK is not a duplicate, i.e., it ACKs
10107 * something we sent.
10108 */
10109 if (tp->t_flags & TF_NEEDSYN) {
10110 /*
10111 * T/TCP: Connection was half-synchronized, and our SYN has
10112 * been ACK'd (so connection is now fully synchronized). Go
10113 * to non-starred state, increment snd_una for ACK of SYN,
10114 * and check if we can do window scaling.
10115 */
10116 tp->t_flags &= ~TF_NEEDSYN;
10117 tp->snd_una++;
10118 /* Do window scaling? */
10119 if ((tp->t_flags & (TF_RCVD_SCALE | TF_REQ_SCALE)) ==
10120 (TF_RCVD_SCALE | TF_REQ_SCALE)) {
10121 tp->rcv_scale = tp->request_r_scale;
10122 /* Send window already scaled. */
10123 }
10124 }
10125 nsegs = max(1, m->m_pkthdr.lro_nsegs);
10126
10127 acked = BYTES_THIS_ACK(tp, th);
10128 if (acked) {
10129 /*
10130 * Any time we move the cum-ack forward clear
10131 * keep-alive tied probe-not-answered. The
10132 * persists clears its own on entry.
10133 */
10134 rack->probe_not_answered = 0;
10135 }
10136 KMOD_TCPSTAT_ADD(tcps_rcvackpack, nsegs);
10137 KMOD_TCPSTAT_ADD(tcps_rcvackbyte, acked);
10138 /*
10139 * If we just performed our first retransmit, and the ACK arrives
10140 * within our recovery window, then it was a mistake to do the
10141 * retransmit in the first place. Recover our original cwnd and
10142 * ssthresh, and proceed to transmit where we left off.
10143 */
10144 if ((tp->t_flags & TF_PREVVALID) &&
10145 ((tp->t_flags & TF_RCVD_TSTMP) == 0)) {
10146 tp->t_flags &= ~TF_PREVVALID;
10147 if (tp->t_rxtshift == 1 &&
10148 (int)(ticks - tp->t_badrxtwin) < 0)
10149 rack_cong_signal(tp, CC_RTO_ERR, th->th_ack, __LINE__);
10150 }
10151 if (acked) {
10152 /* assure we are not backed off */
10153 tp->t_rxtshift = 0;
10154 RACK_TCPT_RANGESET(tp->t_rxtcur, RACK_REXMTVAL(tp),
10155 rack_rto_min, rack_rto_max, rack->r_ctl.timer_slop);
10156 rack->rc_tlp_in_progress = 0;
10157 rack->r_ctl.rc_tlp_cnt_out = 0;
10158 /*
10159 * If it is the RXT timer we want to
10160 * stop it, so we can restart a TLP.
10161 */
10162 if (rack->r_ctl.rc_hpts_flags & PACE_TMR_RXT)
10163 rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__);
10164 #ifdef NETFLIX_HTTP_LOGGING
10165 tcp_http_check_for_comp(rack->rc_tp, th->th_ack);
10166 #endif
10167 }
10168 /*
10169 * If we have a timestamp reply, update smoothed round trip time. If
10170 * no timestamp is present but transmit timer is running and timed
10171 * sequence number was acked, update smoothed round trip time. Since
10172 * we now have an rtt measurement, cancel the timer backoff (cf.,
10173 * Phil Karn's retransmit alg.). Recompute the initial retransmit
10174 * timer.
10175 *
10176 * Some boxes send broken timestamp replies during the SYN+ACK
10177 * phase, ignore timestamps of 0 or we could calculate a huge RTT
10178 * and blow up the retransmit timer.
10179 */
10180 /*
10181 * If all outstanding data is acked, stop retransmit timer and
10182 * remember to restart (more output or persist). If there is more
10183 * data to be acked, restart retransmit timer, using current
10184 * (possibly backed-off) value.
10185 */
10186 if (acked == 0) {
10187 if (ofia)
10188 *ofia = ourfinisacked;
10189 return (0);
10190 }
10191 if (IN_RECOVERY(tp->t_flags)) {
10192 if (SEQ_LT(th->th_ack, tp->snd_recover) &&
10193 (SEQ_LT(th->th_ack, tp->snd_max))) {
10194 tcp_rack_partialack(tp);
10195 } else {
10196 rack_post_recovery(tp, th->th_ack);
10197 recovery = 1;
10198 }
10199 }
10200 /*
10201 * Let the congestion control algorithm update congestion control
10202 * related information. This typically means increasing the
10203 * congestion window.
10204 */
10205 rack_ack_received(tp, rack, th->th_ack, nsegs, CC_ACK, recovery);
10206 SOCKBUF_LOCK(&so->so_snd);
10207 acked_amount = min(acked, (int)sbavail(&so->so_snd));
10208 tp->snd_wnd -= acked_amount;
10209 mfree = sbcut_locked(&so->so_snd, acked_amount);
10210 if ((sbused(&so->so_snd) == 0) &&
10211 (acked > acked_amount) &&
10212 (tp->t_state >= TCPS_FIN_WAIT_1) &&
10213 (tp->t_flags & TF_SENTFIN)) {
10214 /*
10215 * We must be sure our fin
10216 * was sent and acked (we can be
10217 * in FIN_WAIT_1 without having
10218 * sent the fin).
10219 */
10220 ourfinisacked = 1;
10221 }
10222 tp->snd_una = th->th_ack;
10223 if (acked_amount && sbavail(&so->so_snd))
10224 rack_adjust_sendmap(rack, &so->so_snd, tp->snd_una);
10225 rack_log_wakeup(tp,rack, &so->so_snd, acked, 2);
10226 /* NB: sowwakeup_locked() does an implicit unlock. */
10227 sowwakeup_locked(so);
10228 m_freem(mfree);
10229 if (SEQ_GT(tp->snd_una, tp->snd_recover))
10230 tp->snd_recover = tp->snd_una;
10231
10232 if (SEQ_LT(tp->snd_nxt, tp->snd_una)) {
10233 tp->snd_nxt = tp->snd_una;
10234 }
10235 if (under_pacing &&
10236 (rack->use_fixed_rate == 0) &&
10237 (rack->in_probe_rtt == 0) &&
10238 rack->rc_gp_dyn_mul &&
10239 rack->rc_always_pace) {
10240 /* Check if we are dragging bottom */
10241 rack_check_bottom_drag(tp, rack, so, acked);
10242 }
10243 if (tp->snd_una == tp->snd_max) {
10244 /* Nothing left outstanding */
10245 tp->t_flags &= ~TF_PREVVALID;
10246 rack->r_ctl.rc_went_idle_time = tcp_get_usecs(NULL);
10247 rack->r_ctl.retran_during_recovery = 0;
10248 rack->r_ctl.dsack_byte_cnt = 0;
10249 if (rack->r_ctl.rc_went_idle_time == 0)
10250 rack->r_ctl.rc_went_idle_time = 1;
10251 rack_log_progress_event(rack, tp, 0, PROGRESS_CLEAR, __LINE__);
10252 if (sbavail(&tptosocket(tp)->so_snd) == 0)
10253 tp->t_acktime = 0;
10254 rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__);
10255 /* Set need output so persist might get set */
10256 rack->r_wanted_output = 1;
10257 sack_filter_clear(&rack->r_ctl.rack_sf, tp->snd_una);
10258 if ((tp->t_state >= TCPS_FIN_WAIT_1) &&
10259 (sbavail(&so->so_snd) == 0) &&
10260 (tp->t_flags2 & TF2_DROP_AF_DATA)) {
10261 /*
10262 * The socket was gone and the
10263 * peer sent data (now or in the past), time to
10264 * reset him.
10265 */
10266 *ret_val = 1;
10267 /* tcp_close will kill the inp pre-log the Reset */
10268 tcp_log_end_status(tp, TCP_EI_STATUS_SERVER_RST);
10269 tp = tcp_close(tp);
10270 ctf_do_dropwithreset(m, tp, th, BANDLIM_UNLIMITED, tlen);
10271 return (1);
10272 }
10273 }
10274 if (ofia)
10275 *ofia = ourfinisacked;
10276 return (0);
10277 }
10278
10279
10280 static void
10281 rack_log_collapse(struct tcp_rack *rack, uint32_t cnt, uint32_t split, uint32_t out, int line,
10282 int dir, uint32_t flags, struct rack_sendmap *rsm)
10283 {
10284 if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
10285 union tcp_log_stackspecific log;
10286 struct timeval tv;
10287
10288 memset(&log, 0, sizeof(log));
10289 log.u_bbr.flex1 = cnt;
10290 log.u_bbr.flex2 = split;
10291 log.u_bbr.flex3 = out;
10292 log.u_bbr.flex4 = line;
10293 log.u_bbr.flex5 = rack->r_must_retran;
10294 log.u_bbr.flex6 = flags;
10295 log.u_bbr.flex7 = rack->rc_has_collapsed;
10296 log.u_bbr.flex8 = dir; /*
10297 * 1 is collapsed, 0 is uncollapsed,
10298 * 2 is log of a rsm being marked, 3 is a split.
10299 */
10300 if (rsm == NULL)
10301 log.u_bbr.rttProp = 0;
10302 else
10303 log.u_bbr.rttProp = (uint64_t)rsm;
10304 log.u_bbr.timeStamp = tcp_get_usecs(&tv);
10305 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
10306 TCP_LOG_EVENTP(rack->rc_tp, NULL,
10307 &rack->rc_inp->inp_socket->so_rcv,
10308 &rack->rc_inp->inp_socket->so_snd,
10309 TCP_RACK_LOG_COLLAPSE, 0,
10310 0, &log, false, &tv);
10311 }
10312 }
10313
10314 static void
10315 rack_collapsed_window(struct tcp_rack *rack, uint32_t out, int line)
10316 {
10317 /*
10318 * Here all we do is mark the collapsed point and set the flag.
10319 * This may happen again and again, but there is no
10320 * sense splitting our map until we know where the
10321 * peer finally lands in the collapse.
10322 */
10323 rack_trace_point(rack, RACK_TP_COLLAPSED_WND);
10324 if ((rack->rc_has_collapsed == 0) ||
10325 (rack->r_ctl.last_collapse_point != (rack->rc_tp->snd_una + rack->rc_tp->snd_wnd)))
10326 counter_u64_add(rack_collapsed_win_seen, 1);
10327 rack->r_ctl.last_collapse_point = rack->rc_tp->snd_una + rack->rc_tp->snd_wnd;
10328 rack->r_ctl.high_collapse_point = rack->rc_tp->snd_max;
10329 rack->rc_has_collapsed = 1;
10330 rack->r_collapse_point_valid = 1;
10331 rack_log_collapse(rack, 0, 0, rack->r_ctl.last_collapse_point, line, 1, 0, NULL);
10332 }
10333
10334 static void
10335 rack_un_collapse_window(struct tcp_rack *rack, int line)
10336 {
10337 struct rack_sendmap *nrsm, *rsm, fe;
10338 int cnt = 0, split = 0;
10339 #ifdef INVARIANTS
10340 struct rack_sendmap *insret;
10341 #endif
10342
10343 memset(&fe, 0, sizeof(fe));
10344 rack->rc_has_collapsed = 0;
10345 fe.r_start = rack->r_ctl.last_collapse_point;
10346 rsm = RB_FIND(rack_rb_tree_head, &rack->r_ctl.rc_mtree, &fe);
10347 if (rsm == NULL) {
10348 /* Nothing to do maybe the peer ack'ed it all */
10349 rack_log_collapse(rack, 0, 0, ctf_outstanding(rack->rc_tp), line, 0, 0, NULL);
10350 return;
10351 }
10352 /* Now do we need to split this one? */
10353 if (SEQ_GT(rack->r_ctl.last_collapse_point, rsm->r_start)) {
10354 rack_log_collapse(rack, rsm->r_start, rsm->r_end,
10355 rack->r_ctl.last_collapse_point, line, 3, rsm->r_flags, rsm);
10356 nrsm = rack_alloc_limit(rack, RACK_LIMIT_TYPE_SPLIT);
10357 if (nrsm == NULL) {
10358 /* We can't get a rsm, mark all? */
10359 nrsm = rsm;
10360 goto no_split;
10361 }
10362 /* Clone it */
10363 split = 1;
10364 rack_clone_rsm(rack, nrsm, rsm, rack->r_ctl.last_collapse_point);
10365 #ifndef INVARIANTS
10366 (void)RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, nrsm);
10367 #else
10368 insret = RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, nrsm);
10369 if (insret != NULL) {
10370 panic("Insert in rb tree of %p fails ret:%p rack:%p rsm:%p",
10371 nrsm, insret, rack, rsm);
10372 }
10373 #endif
10374 rack_log_map_chg(rack->rc_tp, rack, NULL, rsm, nrsm, MAP_SPLIT,
10375 rack->r_ctl.last_collapse_point, __LINE__);
10376 if (rsm->r_in_tmap) {
10377 TAILQ_INSERT_AFTER(&rack->r_ctl.rc_tmap, rsm, nrsm, r_tnext);
10378 nrsm->r_in_tmap = 1;
10379 }
10380 /*
10381 * Set in the new RSM as the
10382 * collapsed starting point
10383 */
10384 rsm = nrsm;
10385 }
10386 no_split:
10387 RB_FOREACH_FROM(nrsm, rack_rb_tree_head, rsm) {
10388 nrsm->r_flags |= RACK_RWND_COLLAPSED;
10389 rack_log_collapse(rack, nrsm->r_start, nrsm->r_end, 0, line, 4, nrsm->r_flags, nrsm);
10390 cnt++;
10391 }
10392 if (cnt) {
10393 counter_u64_add(rack_collapsed_win, 1);
10394 }
10395 rack_log_collapse(rack, cnt, split, ctf_outstanding(rack->rc_tp), line, 0, 0, NULL);
10396 }
10397
10398 static void
10399 rack_handle_delayed_ack(struct tcpcb *tp, struct tcp_rack *rack,
10400 int32_t tlen, int32_t tfo_syn)
10401 {
10402 if (DELAY_ACK(tp, tlen) || tfo_syn) {
10403 if (rack->rc_dack_mode &&
10404 (tlen > 500) &&
10405 (rack->rc_dack_toggle == 1)) {
10406 goto no_delayed_ack;
10407 }
10408 rack_timer_cancel(tp, rack,
10409 rack->r_ctl.rc_rcvtime, __LINE__);
10410 tp->t_flags |= TF_DELACK;
10411 } else {
10412 no_delayed_ack:
10413 rack->r_wanted_output = 1;
10414 tp->t_flags |= TF_ACKNOW;
10415 if (rack->rc_dack_mode) {
10416 if (tp->t_flags & TF_DELACK)
10417 rack->rc_dack_toggle = 1;
10418 else
10419 rack->rc_dack_toggle = 0;
10420 }
10421 }
10422 }
10423
10424 static void
10425 rack_validate_fo_sendwin_up(struct tcpcb *tp, struct tcp_rack *rack)
10426 {
10427 /*
10428 * If fast output is in progress, lets validate that
10429 * the new window did not shrink on us and make it
10430 * so fast output should end.
10431 */
10432 if (rack->r_fast_output) {
10433 uint32_t out;
10434
10435 /*
10436 * Calculate what we will send if left as is
10437 * and compare that to our send window.
10438 */
10439 out = ctf_outstanding(tp);
10440 if ((out + rack->r_ctl.fsb.left_to_send) > tp->snd_wnd) {
10441 /* ok we have an issue */
10442 if (out >= tp->snd_wnd) {
10443 /* Turn off fast output the window is met or collapsed */
10444 rack->r_fast_output = 0;
10445 } else {
10446 /* we have some room left */
10447 rack->r_ctl.fsb.left_to_send = tp->snd_wnd - out;
10448 if (rack->r_ctl.fsb.left_to_send < ctf_fixed_maxseg(tp)) {
10449 /* If not at least 1 full segment never mind */
10450 rack->r_fast_output = 0;
10451 }
10452 }
10453 }
10454 }
10455 }
10456
10457
10458 /*
10459 * Return value of 1, the TCB is unlocked and most
10460 * likely gone, return value of 0, the TCP is still
10461 * locked.
10462 */
10463 static int
10464 rack_process_data(struct mbuf *m, struct tcphdr *th, struct socket *so,
10465 struct tcpcb *tp, int32_t drop_hdrlen, int32_t tlen,
10466 uint32_t tiwin, int32_t thflags, int32_t nxt_pkt)
10467 {
10468 /*
10469 * Update window information. Don't look at window if no ACK: TAC's
10470 * send garbage on first SYN.
10471 */
10472 int32_t nsegs;
10473 int32_t tfo_syn;
10474 struct tcp_rack *rack;
10475
10476 INP_WLOCK_ASSERT(tptoinpcb(tp));
10477
10478 rack = (struct tcp_rack *)tp->t_fb_ptr;
10479 nsegs = max(1, m->m_pkthdr.lro_nsegs);
10480 if ((thflags & TH_ACK) &&
10481 (SEQ_LT(tp->snd_wl1, th->th_seq) ||
10482 (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) ||
10483 (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) {
10484 /* keep track of pure window updates */
10485 if (tlen == 0 &&
10486 tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
10487 KMOD_TCPSTAT_INC(tcps_rcvwinupd);
10488 tp->snd_wnd = tiwin;
10489 rack_validate_fo_sendwin_up(tp, rack);
10490 tp->snd_wl1 = th->th_seq;
10491 tp->snd_wl2 = th->th_ack;
10492 if (tp->snd_wnd > tp->max_sndwnd)
10493 tp->max_sndwnd = tp->snd_wnd;
10494 rack->r_wanted_output = 1;
10495 } else if (thflags & TH_ACK) {
10496 if ((tp->snd_wl2 == th->th_ack) && (tiwin < tp->snd_wnd)) {
10497 tp->snd_wnd = tiwin;
10498 rack_validate_fo_sendwin_up(tp, rack);
10499 tp->snd_wl1 = th->th_seq;
10500 tp->snd_wl2 = th->th_ack;
10501 }
10502 }
10503 if (tp->snd_wnd < ctf_outstanding(tp))
10504 /* The peer collapsed the window */
10505 rack_collapsed_window(rack, ctf_outstanding(tp), __LINE__);
10506 else if (rack->rc_has_collapsed)
10507 rack_un_collapse_window(rack, __LINE__);
10508 if ((rack->r_collapse_point_valid) &&
10509 (SEQ_GT(th->th_ack, rack->r_ctl.high_collapse_point)))
10510 rack->r_collapse_point_valid = 0;
10511 /* Was persist timer active and now we have window space? */
10512 if ((rack->rc_in_persist != 0) &&
10513 (tp->snd_wnd >= min((rack->r_ctl.rc_high_rwnd/2),
10514 rack->r_ctl.rc_pace_min_segs))) {
10515 rack_exit_persist(tp, rack, rack->r_ctl.rc_rcvtime);
10516 tp->snd_nxt = tp->snd_max;
10517 /* Make sure we output to start the timer */
10518 rack->r_wanted_output = 1;
10519 }
10520 /* Do we enter persists? */
10521 if ((rack->rc_in_persist == 0) &&
10522 (tp->snd_wnd < min((rack->r_ctl.rc_high_rwnd/2), rack->r_ctl.rc_pace_min_segs)) &&
10523 TCPS_HAVEESTABLISHED(tp->t_state) &&
10524 ((tp->snd_max == tp->snd_una) || rack->rc_has_collapsed) &&
10525 sbavail(&tptosocket(tp)->so_snd) &&
10526 (sbavail(&tptosocket(tp)->so_snd) > tp->snd_wnd)) {
10527 /*
10528 * Here the rwnd is less than
10529 * the pacing size, we are established,
10530 * nothing is outstanding, and there is
10531 * data to send. Enter persists.
10532 */
10533 rack_enter_persist(tp, rack, rack->r_ctl.rc_rcvtime);
10534 }
10535 if (tp->t_flags2 & TF2_DROP_AF_DATA) {
10536 m_freem(m);
10537 return (0);
10538 }
10539 /*
10540 * don't process the URG bit, ignore them drag
10541 * along the up.
10542 */
10543 tp->rcv_up = tp->rcv_nxt;
10544
10545 /*
10546 * Process the segment text, merging it into the TCP sequencing
10547 * queue, and arranging for acknowledgment of receipt if necessary.
10548 * This process logically involves adjusting tp->rcv_wnd as data is
10549 * presented to the user (this happens in tcp_usrreq.c, case
10550 * PRU_RCVD). If a FIN has already been received on this connection
10551 * then we just ignore the text.
10552 */
10553 tfo_syn = ((tp->t_state == TCPS_SYN_RECEIVED) &&
10554 IS_FASTOPEN(tp->t_flags));
10555 if ((tlen || (thflags & TH_FIN) || (tfo_syn && tlen > 0)) &&
10556 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
10557 tcp_seq save_start = th->th_seq;
10558 tcp_seq save_rnxt = tp->rcv_nxt;
10559 int save_tlen = tlen;
10560
10561 m_adj(m, drop_hdrlen); /* delayed header drop */
10562 /*
10563 * Insert segment which includes th into TCP reassembly
10564 * queue with control block tp. Set thflags to whether
10565 * reassembly now includes a segment with FIN. This handles
10566 * the common case inline (segment is the next to be
10567 * received on an established connection, and the queue is
10568 * empty), avoiding linkage into and removal from the queue
10569 * and repetition of various conversions. Set DELACK for
10570 * segments received in order, but ack immediately when
10571 * segments are out of order (so fast retransmit can work).
10572 */
10573 if (th->th_seq == tp->rcv_nxt &&
10574 SEGQ_EMPTY(tp) &&
10575 (TCPS_HAVEESTABLISHED(tp->t_state) ||
10576 tfo_syn)) {
10577 #ifdef NETFLIX_SB_LIMITS
10578 u_int mcnt, appended;
10579
10580 if (so->so_rcv.sb_shlim) {
10581 mcnt = m_memcnt(m);
10582 appended = 0;
10583 if (counter_fo_get(so->so_rcv.sb_shlim, mcnt,
10584 CFO_NOSLEEP, NULL) == false) {
10585 counter_u64_add(tcp_sb_shlim_fails, 1);
10586 m_freem(m);
10587 return (0);
10588 }
10589 }
10590 #endif
10591 rack_handle_delayed_ack(tp, rack, tlen, tfo_syn);
10592 tp->rcv_nxt += tlen;
10593 if (tlen &&
10594 ((tp->t_flags2 & TF2_FBYTES_COMPLETE) == 0) &&
10595 (tp->t_fbyte_in == 0)) {
10596 tp->t_fbyte_in = ticks;
10597 if (tp->t_fbyte_in == 0)
10598 tp->t_fbyte_in = 1;
10599 if (tp->t_fbyte_out && tp->t_fbyte_in)
10600 tp->t_flags2 |= TF2_FBYTES_COMPLETE;
10601 }
10602 thflags = tcp_get_flags(th) & TH_FIN;
10603 KMOD_TCPSTAT_ADD(tcps_rcvpack, nsegs);
10604 KMOD_TCPSTAT_ADD(tcps_rcvbyte, tlen);
10605 SOCKBUF_LOCK(&so->so_rcv);
10606 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
10607 m_freem(m);
10608 } else
10609 #ifdef NETFLIX_SB_LIMITS
10610 appended =
10611 #endif
10612 sbappendstream_locked(&so->so_rcv, m, 0);
10613
10614 rack_log_wakeup(tp,rack, &so->so_rcv, tlen, 1);
10615 /* NB: sorwakeup_locked() does an implicit unlock. */
10616 sorwakeup_locked(so);
10617 #ifdef NETFLIX_SB_LIMITS
10618 if (so->so_rcv.sb_shlim && appended != mcnt)
10619 counter_fo_release(so->so_rcv.sb_shlim,
10620 mcnt - appended);
10621 #endif
10622 } else {
10623 /*
10624 * XXX: Due to the header drop above "th" is
10625 * theoretically invalid by now. Fortunately
10626 * m_adj() doesn't actually frees any mbufs when
10627 * trimming from the head.
10628 */
10629 tcp_seq temp = save_start;
10630
10631 thflags = tcp_reass(tp, th, &temp, &tlen, m);
10632 tp->t_flags |= TF_ACKNOW;
10633 if (tp->t_flags & TF_WAKESOR) {
10634 tp->t_flags &= ~TF_WAKESOR;
10635 /* NB: sorwakeup_locked() does an implicit unlock. */
10636 sorwakeup_locked(so);
10637 }
10638 }
10639 if ((tp->t_flags & TF_SACK_PERMIT) &&
10640 (save_tlen > 0) &&
10641 TCPS_HAVEESTABLISHED(tp->t_state)) {
10642 if ((tlen == 0) && (SEQ_LT(save_start, save_rnxt))) {
10643 /*
10644 * DSACK actually handled in the fastpath
10645 * above.
10646 */
10647 RACK_OPTS_INC(tcp_sack_path_1);
10648 tcp_update_sack_list(tp, save_start,
10649 save_start + save_tlen);
10650 } else if ((tlen > 0) && SEQ_GT(tp->rcv_nxt, save_rnxt)) {
10651 if ((tp->rcv_numsacks >= 1) &&
10652 (tp->sackblks[0].end == save_start)) {
10653 /*
10654 * Partial overlap, recorded at todrop
10655 * above.
10656 */
10657 RACK_OPTS_INC(tcp_sack_path_2a);
10658 tcp_update_sack_list(tp,
10659 tp->sackblks[0].start,
10660 tp->sackblks[0].end);
10661 } else {
10662 RACK_OPTS_INC(tcp_sack_path_2b);
10663 tcp_update_dsack_list(tp, save_start,
10664 save_start + save_tlen);
10665 }
10666 } else if (tlen >= save_tlen) {
10667 /* Update of sackblks. */
10668 RACK_OPTS_INC(tcp_sack_path_3);
10669 tcp_update_dsack_list(tp, save_start,
10670 save_start + save_tlen);
10671 } else if (tlen > 0) {
10672 RACK_OPTS_INC(tcp_sack_path_4);
10673 tcp_update_dsack_list(tp, save_start,
10674 save_start + tlen);
10675 }
10676 }
10677 } else {
10678 m_freem(m);
10679 thflags &= ~TH_FIN;
10680 }
10681
10682 /*
10683 * If FIN is received ACK the FIN and let the user know that the
10684 * connection is closing.
10685 */
10686 if (thflags & TH_FIN) {
10687 if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
10688 /* The socket upcall is handled by socantrcvmore. */
10689 socantrcvmore(so);
10690 /*
10691 * If connection is half-synchronized (ie NEEDSYN
10692 * flag on) then delay ACK, so it may be piggybacked
10693 * when SYN is sent. Otherwise, since we received a
10694 * FIN then no more input can be expected, send ACK
10695 * now.
10696 */
10697 if (tp->t_flags & TF_NEEDSYN) {
10698 rack_timer_cancel(tp, rack,
10699 rack->r_ctl.rc_rcvtime, __LINE__);
10700 tp->t_flags |= TF_DELACK;
10701 } else {
10702 tp->t_flags |= TF_ACKNOW;
10703 }
10704 tp->rcv_nxt++;
10705 }
10706 switch (tp->t_state) {
10707 /*
10708 * In SYN_RECEIVED and ESTABLISHED STATES enter the
10709 * CLOSE_WAIT state.
10710 */
10711 case TCPS_SYN_RECEIVED:
10712 tp->t_starttime = ticks;
10713 /* FALLTHROUGH */
10714 case TCPS_ESTABLISHED:
10715 rack_timer_cancel(tp, rack,
10716 rack->r_ctl.rc_rcvtime, __LINE__);
10717 tcp_state_change(tp, TCPS_CLOSE_WAIT);
10718 break;
10719
10720 /*
10721 * If still in FIN_WAIT_1 STATE FIN has not been
10722 * acked so enter the CLOSING state.
10723 */
10724 case TCPS_FIN_WAIT_1:
10725 rack_timer_cancel(tp, rack,
10726 rack->r_ctl.rc_rcvtime, __LINE__);
10727 tcp_state_change(tp, TCPS_CLOSING);
10728 break;
10729
10730 /*
10731 * In FIN_WAIT_2 state enter the TIME_WAIT state,
10732 * starting the time-wait timer, turning off the
10733 * other standard timers.
10734 */
10735 case TCPS_FIN_WAIT_2:
10736 rack_timer_cancel(tp, rack,
10737 rack->r_ctl.rc_rcvtime, __LINE__);
10738 tcp_twstart(tp);
10739 return (1);
10740 }
10741 }
10742 /*
10743 * Return any desired output.
10744 */
10745 if ((tp->t_flags & TF_ACKNOW) ||
10746 (sbavail(&so->so_snd) > (tp->snd_max - tp->snd_una))) {
10747 rack->r_wanted_output = 1;
10748 }
10749 return (0);
10750 }
10751
10752 /*
10753 * Here nothing is really faster, its just that we
10754 * have broken out the fast-data path also just like
10755 * the fast-ack.
10756 */
10757 static int
10758 rack_do_fastnewdata(struct mbuf *m, struct tcphdr *th, struct socket *so,
10759 struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen,
10760 uint32_t tiwin, int32_t nxt_pkt, uint8_t iptos)
10761 {
10762 int32_t nsegs;
10763 int32_t newsize = 0; /* automatic sockbuf scaling */
10764 struct tcp_rack *rack;
10765 #ifdef NETFLIX_SB_LIMITS
10766 u_int mcnt, appended;
10767 #endif
10768
10769 /*
10770 * If last ACK falls within this segment's sequence numbers, record
10771 * the timestamp. NOTE that the test is modified according to the
10772 * latest proposal of the tcplw@cray.com list (Braden 1993/04/26).
10773 */
10774 if (__predict_false(th->th_seq != tp->rcv_nxt)) {
10775 return (0);
10776 }
10777 if (__predict_false(tp->snd_nxt != tp->snd_max)) {
10778 return (0);
10779 }
10780 if (tiwin && tiwin != tp->snd_wnd) {
10781 return (0);
10782 }
10783 if (__predict_false((tp->t_flags & (TF_NEEDSYN | TF_NEEDFIN)))) {
10784 return (0);
10785 }
10786 if (__predict_false((to->to_flags & TOF_TS) &&
10787 (TSTMP_LT(to->to_tsval, tp->ts_recent)))) {
10788 return (0);
10789 }
10790 if (__predict_false((th->th_ack != tp->snd_una))) {
10791 return (0);
10792 }
10793 if (__predict_false(tlen > sbspace(&so->so_rcv))) {
10794 return (0);
10795 }
10796 if ((to->to_flags & TOF_TS) != 0 &&
10797 SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
10798 tp->ts_recent_age = tcp_ts_getticks();
10799 tp->ts_recent = to->to_tsval;
10800 }
10801 rack = (struct tcp_rack *)tp->t_fb_ptr;
10802 /*
10803 * This is a pure, in-sequence data packet with nothing on the
10804 * reassembly queue and we have enough buffer space to take it.
10805 */
10806 nsegs = max(1, m->m_pkthdr.lro_nsegs);
10807
10808 #ifdef NETFLIX_SB_LIMITS
10809 if (so->so_rcv.sb_shlim) {
10810 mcnt = m_memcnt(m);
10811 appended = 0;
10812 if (counter_fo_get(so->so_rcv.sb_shlim, mcnt,
10813 CFO_NOSLEEP, NULL) == false) {
10814 counter_u64_add(tcp_sb_shlim_fails, 1);
10815 m_freem(m);
10816 return (1);
10817 }
10818 }
10819 #endif
10820 /* Clean receiver SACK report if present */
10821 if (tp->rcv_numsacks)
10822 tcp_clean_sackreport(tp);
10823 KMOD_TCPSTAT_INC(tcps_preddat);
10824 tp->rcv_nxt += tlen;
10825 if (tlen &&
10826 ((tp->t_flags2 & TF2_FBYTES_COMPLETE) == 0) &&
10827 (tp->t_fbyte_in == 0)) {
10828 tp->t_fbyte_in = ticks;
10829 if (tp->t_fbyte_in == 0)
10830 tp->t_fbyte_in = 1;
10831 if (tp->t_fbyte_out && tp->t_fbyte_in)
10832 tp->t_flags2 |= TF2_FBYTES_COMPLETE;
10833 }
10834 /*
10835 * Pull snd_wl1 up to prevent seq wrap relative to th_seq.
10836 */
10837 tp->snd_wl1 = th->th_seq;
10838 /*
10839 * Pull rcv_up up to prevent seq wrap relative to rcv_nxt.
10840 */
10841 tp->rcv_up = tp->rcv_nxt;
10842 KMOD_TCPSTAT_ADD(tcps_rcvpack, nsegs);
10843 KMOD_TCPSTAT_ADD(tcps_rcvbyte, tlen);
10844 newsize = tcp_autorcvbuf(m, th, so, tp, tlen);
10845
10846 /* Add data to socket buffer. */
10847 SOCKBUF_LOCK(&so->so_rcv);
10848 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
10849 m_freem(m);
10850 } else {
10851 /*
10852 * Set new socket buffer size. Give up when limit is
10853 * reached.
10854 */
10855 if (newsize)
10856 if (!sbreserve_locked(so, SO_RCV, newsize, NULL))
10857 so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
10858 m_adj(m, drop_hdrlen); /* delayed header drop */
10859 #ifdef NETFLIX_SB_LIMITS
10860 appended =
10861 #endif
10862 sbappendstream_locked(&so->so_rcv, m, 0);
10863 ctf_calc_rwin(so, tp);
10864 }
10865 rack_log_wakeup(tp,rack, &so->so_rcv, tlen, 1);
10866 /* NB: sorwakeup_locked() does an implicit unlock. */
10867 sorwakeup_locked(so);
10868 #ifdef NETFLIX_SB_LIMITS
10869 if (so->so_rcv.sb_shlim && mcnt != appended)
10870 counter_fo_release(so->so_rcv.sb_shlim, mcnt - appended);
10871 #endif
10872 rack_handle_delayed_ack(tp, rack, tlen, 0);
10873 if (tp->snd_una == tp->snd_max)
10874 sack_filter_clear(&rack->r_ctl.rack_sf, tp->snd_una);
10875 return (1);
10876 }
10877
10878 /*
10879 * This subfunction is used to try to highly optimize the
10880 * fast path. We again allow window updates that are
10881 * in sequence to remain in the fast-path. We also add
10882 * in the __predict's to attempt to help the compiler.
10883 * Note that if we return a 0, then we can *not* process
10884 * it and the caller should push the packet into the
10885 * slow-path.
10886 */
10887 static int
10888 rack_fastack(struct mbuf *m, struct tcphdr *th, struct socket *so,
10889 struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen,
10890 uint32_t tiwin, int32_t nxt_pkt, uint32_t cts)
10891 {
10892 int32_t acked;
10893 int32_t nsegs;
10894 int32_t under_pacing = 0;
10895 struct tcp_rack *rack;
10896
10897 if (__predict_false(SEQ_LEQ(th->th_ack, tp->snd_una))) {
10898 /* Old ack, behind (or duplicate to) the last one rcv'd */
10899 return (0);
10900 }
10901 if (__predict_false(SEQ_GT(th->th_ack, tp->snd_max))) {
10902 /* Above what we have sent? */
10903 return (0);
10904 }
10905 if (__predict_false(tp->snd_nxt != tp->snd_max)) {
10906 /* We are retransmitting */
10907 return (0);
10908 }
10909 if (__predict_false(tiwin == 0)) {
10910 /* zero window */
10911 return (0);
10912 }
10913 if (__predict_false(tp->t_flags & (TF_NEEDSYN | TF_NEEDFIN))) {
10914 /* We need a SYN or a FIN, unlikely.. */
10915 return (0);
10916 }
10917 if ((to->to_flags & TOF_TS) && __predict_false(TSTMP_LT(to->to_tsval, tp->ts_recent))) {
10918 /* Timestamp is behind .. old ack with seq wrap? */
10919 return (0);
10920 }
10921 if (__predict_false(IN_RECOVERY(tp->t_flags))) {
10922 /* Still recovering */
10923 return (0);
10924 }
10925 rack = (struct tcp_rack *)tp->t_fb_ptr;
10926 if (rack->r_ctl.rc_sacked) {
10927 /* We have sack holes on our scoreboard */
10928 return (0);
10929 }
10930 /* Ok if we reach here, we can process a fast-ack */
10931 if (rack->gp_ready &&
10932 (rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT)) {
10933 under_pacing = 1;
10934 }
10935 nsegs = max(1, m->m_pkthdr.lro_nsegs);
10936 rack_log_ack(tp, to, th, 0, 0);
10937 /* Did the window get updated? */
10938 if (tiwin != tp->snd_wnd) {
10939 tp->snd_wnd = tiwin;
10940 rack_validate_fo_sendwin_up(tp, rack);
10941 tp->snd_wl1 = th->th_seq;
10942 if (tp->snd_wnd > tp->max_sndwnd)
10943 tp->max_sndwnd = tp->snd_wnd;
10944 }
10945 /* Do we exit persists? */
10946 if ((rack->rc_in_persist != 0) &&
10947 (tp->snd_wnd >= min((rack->r_ctl.rc_high_rwnd/2),
10948 rack->r_ctl.rc_pace_min_segs))) {
10949 rack_exit_persist(tp, rack, cts);
10950 }
10951 /* Do we enter persists? */
10952 if ((rack->rc_in_persist == 0) &&
10953 (tp->snd_wnd < min((rack->r_ctl.rc_high_rwnd/2), rack->r_ctl.rc_pace_min_segs)) &&
10954 TCPS_HAVEESTABLISHED(tp->t_state) &&
10955 ((tp->snd_max == tp->snd_una) || rack->rc_has_collapsed) &&
10956 sbavail(&tptosocket(tp)->so_snd) &&
10957 (sbavail(&tptosocket(tp)->so_snd) > tp->snd_wnd)) {
10958 /*
10959 * Here the rwnd is less than
10960 * the pacing size, we are established,
10961 * nothing is outstanding, and there is
10962 * data to send. Enter persists.
10963 */
10964 rack_enter_persist(tp, rack, rack->r_ctl.rc_rcvtime);
10965 }
10966 /*
10967 * If last ACK falls within this segment's sequence numbers, record
10968 * the timestamp. NOTE that the test is modified according to the
10969 * latest proposal of the tcplw@cray.com list (Braden 1993/04/26).
10970 */
10971 if ((to->to_flags & TOF_TS) != 0 &&
10972 SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
10973 tp->ts_recent_age = tcp_ts_getticks();
10974 tp->ts_recent = to->to_tsval;
10975 }
10976 /*
10977 * This is a pure ack for outstanding data.
10978 */
10979 KMOD_TCPSTAT_INC(tcps_predack);
10980
10981 /*
10982 * "bad retransmit" recovery.
10983 */
10984 if ((tp->t_flags & TF_PREVVALID) &&
10985 ((tp->t_flags & TF_RCVD_TSTMP) == 0)) {
10986 tp->t_flags &= ~TF_PREVVALID;
10987 if (tp->t_rxtshift == 1 &&
10988 (int)(ticks - tp->t_badrxtwin) < 0)
10989 rack_cong_signal(tp, CC_RTO_ERR, th->th_ack, __LINE__);
10990 }
10991 /*
10992 * Recalculate the transmit timer / rtt.
10993 *
10994 * Some boxes send broken timestamp replies during the SYN+ACK
10995 * phase, ignore timestamps of 0 or we could calculate a huge RTT
10996 * and blow up the retransmit timer.
10997 */
10998 acked = BYTES_THIS_ACK(tp, th);
10999
11000 #ifdef TCP_HHOOK
11001 /* Run HHOOK_TCP_ESTABLISHED_IN helper hooks. */
11002 hhook_run_tcp_est_in(tp, th, to);
11003 #endif
11004 KMOD_TCPSTAT_ADD(tcps_rcvackpack, nsegs);
11005 KMOD_TCPSTAT_ADD(tcps_rcvackbyte, acked);
11006 if (acked) {
11007 struct mbuf *mfree;
11008
11009 rack_ack_received(tp, rack, th->th_ack, nsegs, CC_ACK, 0);
11010 SOCKBUF_LOCK(&so->so_snd);
11011 mfree = sbcut_locked(&so->so_snd, acked);
11012 tp->snd_una = th->th_ack;
11013 /* Note we want to hold the sb lock through the sendmap adjust */
11014 rack_adjust_sendmap(rack, &so->so_snd, tp->snd_una);
11015 /* Wake up the socket if we have room to write more */
11016 rack_log_wakeup(tp,rack, &so->so_snd, acked, 2);
11017 sowwakeup_locked(so);
11018 m_freem(mfree);
11019 tp->t_rxtshift = 0;
11020 RACK_TCPT_RANGESET(tp->t_rxtcur, RACK_REXMTVAL(tp),
11021 rack_rto_min, rack_rto_max, rack->r_ctl.timer_slop);
11022 rack->rc_tlp_in_progress = 0;
11023 rack->r_ctl.rc_tlp_cnt_out = 0;
11024 /*
11025 * If it is the RXT timer we want to
11026 * stop it, so we can restart a TLP.
11027 */
11028 if (rack->r_ctl.rc_hpts_flags & PACE_TMR_RXT)
11029 rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__);
11030 #ifdef NETFLIX_HTTP_LOGGING
11031 tcp_http_check_for_comp(rack->rc_tp, th->th_ack);
11032 #endif
11033 }
11034 /*
11035 * Let the congestion control algorithm update congestion control
11036 * related information. This typically means increasing the
11037 * congestion window.
11038 */
11039 if (tp->snd_wnd < ctf_outstanding(tp)) {
11040 /* The peer collapsed the window */
11041 rack_collapsed_window(rack, ctf_outstanding(tp), __LINE__);
11042 } else if (rack->rc_has_collapsed)
11043 rack_un_collapse_window(rack, __LINE__);
11044 if ((rack->r_collapse_point_valid) &&
11045 (SEQ_GT(tp->snd_una, rack->r_ctl.high_collapse_point)))
11046 rack->r_collapse_point_valid = 0;
11047 /*
11048 * Pull snd_wl2 up to prevent seq wrap relative to th_ack.
11049 */
11050 tp->snd_wl2 = th->th_ack;
11051 tp->t_dupacks = 0;
11052 m_freem(m);
11053 /* ND6_HINT(tp); *//* Some progress has been made. */
11054
11055 /*
11056 * If all outstanding data are acked, stop retransmit timer,
11057 * otherwise restart timer using current (possibly backed-off)
11058 * value. If process is waiting for space, wakeup/selwakeup/signal.
11059 * If data are ready to send, let tcp_output decide between more
11060 * output or persist.
11061 */
11062 if (under_pacing &&
11063 (rack->use_fixed_rate == 0) &&
11064 (rack->in_probe_rtt == 0) &&
11065 rack->rc_gp_dyn_mul &&
11066 rack->rc_always_pace) {
11067 /* Check if we are dragging bottom */
11068 rack_check_bottom_drag(tp, rack, so, acked);
11069 }
11070 if (tp->snd_una == tp->snd_max) {
11071 tp->t_flags &= ~TF_PREVVALID;
11072 rack->r_ctl.retran_during_recovery = 0;
11073 rack->r_ctl.dsack_byte_cnt = 0;
11074 rack->r_ctl.rc_went_idle_time = tcp_get_usecs(NULL);
11075 if (rack->r_ctl.rc_went_idle_time == 0)
11076 rack->r_ctl.rc_went_idle_time = 1;
11077 rack_log_progress_event(rack, tp, 0, PROGRESS_CLEAR, __LINE__);
11078 if (sbavail(&tptosocket(tp)->so_snd) == 0)
11079 tp->t_acktime = 0;
11080 rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__);
11081 }
11082 if (acked && rack->r_fast_output)
11083 rack_gain_for_fastoutput(rack, tp, so, (uint32_t)acked);
11084 if (sbavail(&so->so_snd)) {
11085 rack->r_wanted_output = 1;
11086 }
11087 return (1);
11088 }
11089
11090 /*
11091 * Return value of 1, the TCB is unlocked and most
11092 * likely gone, return value of 0, the TCP is still
11093 * locked.
11094 */
11095 static int
11096 rack_do_syn_sent(struct mbuf *m, struct tcphdr *th, struct socket *so,
11097 struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen,
11098 uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos)
11099 {
11100 int32_t ret_val = 0;
11101 int32_t todrop;
11102 int32_t ourfinisacked = 0;
11103 struct tcp_rack *rack;
11104
11105 INP_WLOCK_ASSERT(tptoinpcb(tp));
11106
11107 ctf_calc_rwin(so, tp);
11108 /*
11109 * If the state is SYN_SENT: if seg contains an ACK, but not for our
11110 * SYN, drop the input. if seg contains a RST, then drop the
11111 * connection. if seg does not contain SYN, then drop it. Otherwise
11112 * this is an acceptable SYN segment initialize tp->rcv_nxt and
11113 * tp->irs if seg contains ack then advance tp->snd_una if seg
11114 * contains an ECE and ECN support is enabled, the stream is ECN
11115 * capable. if SYN has been acked change to ESTABLISHED else
11116 * SYN_RCVD state arrange for segment to be acked (eventually)
11117 * continue processing rest of data/controls.
11118 */
11119 if ((thflags & TH_ACK) &&
11120 (SEQ_LEQ(th->th_ack, tp->iss) ||
11121 SEQ_GT(th->th_ack, tp->snd_max))) {
11122 tcp_log_end_status(tp, TCP_EI_STATUS_RST_IN_FRONT);
11123 ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen);
11124 return (1);
11125 }
11126 if ((thflags & (TH_ACK | TH_RST)) == (TH_ACK | TH_RST)) {
11127 TCP_PROBE5(connect__refused, NULL, tp,
11128 mtod(m, const char *), tp, th);
11129 tp = tcp_drop(tp, ECONNREFUSED);
11130 ctf_do_drop(m, tp);
11131 return (1);
11132 }
11133 if (thflags & TH_RST) {
11134 ctf_do_drop(m, tp);
11135 return (1);
11136 }
11137 if (!(thflags & TH_SYN)) {
11138 ctf_do_drop(m, tp);
11139 return (1);
11140 }
11141 tp->irs = th->th_seq;
11142 tcp_rcvseqinit(tp);
11143 rack = (struct tcp_rack *)tp->t_fb_ptr;
11144 if (thflags & TH_ACK) {
11145 int tfo_partial = 0;
11146
11147 KMOD_TCPSTAT_INC(tcps_connects);
11148 soisconnected(so);
11149 #ifdef MAC
11150 mac_socketpeer_set_from_mbuf(m, so);
11151 #endif
11152 /* Do window scaling on this connection? */
11153 if ((tp->t_flags & (TF_RCVD_SCALE | TF_REQ_SCALE)) ==
11154 (TF_RCVD_SCALE | TF_REQ_SCALE)) {
11155 tp->rcv_scale = tp->request_r_scale;
11156 }
11157 tp->rcv_adv += min(tp->rcv_wnd,
11158 TCP_MAXWIN << tp->rcv_scale);
11159 /*
11160 * If not all the data that was sent in the TFO SYN
11161 * has been acked, resend the remainder right away.
11162 */
11163 if (IS_FASTOPEN(tp->t_flags) &&
11164 (tp->snd_una != tp->snd_max)) {
11165 tp->snd_nxt = th->th_ack;
11166 tfo_partial = 1;
11167 }
11168 /*
11169 * If there's data, delay ACK; if there's also a FIN ACKNOW
11170 * will be turned on later.
11171 */
11172 if (DELAY_ACK(tp, tlen) && tlen != 0 && !tfo_partial) {
11173 rack_timer_cancel(tp, rack,
11174 rack->r_ctl.rc_rcvtime, __LINE__);
11175 tp->t_flags |= TF_DELACK;
11176 } else {
11177 rack->r_wanted_output = 1;
11178 tp->t_flags |= TF_ACKNOW;
11179 rack->rc_dack_toggle = 0;
11180 }
11181
11182 tcp_ecn_input_syn_sent(tp, thflags, iptos);
11183
11184 if (SEQ_GT(th->th_ack, tp->snd_una)) {
11185 /*
11186 * We advance snd_una for the
11187 * fast open case. If th_ack is
11188 * acknowledging data beyond
11189 * snd_una we can't just call
11190 * ack-processing since the
11191 * data stream in our send-map
11192 * will start at snd_una + 1 (one
11193 * beyond the SYN). If its just
11194 * equal we don't need to do that
11195 * and there is no send_map.
11196 */
11197 tp->snd_una++;
11198 }
11199 /*
11200 * Received <SYN,ACK> in SYN_SENT[*] state. Transitions:
11201 * SYN_SENT --> ESTABLISHED SYN_SENT* --> FIN_WAIT_1
11202 */
11203 tp->t_starttime = ticks;
11204 if (tp->t_flags & TF_NEEDFIN) {
11205 tcp_state_change(tp, TCPS_FIN_WAIT_1);
11206 tp->t_flags &= ~TF_NEEDFIN;
11207 thflags &= ~TH_SYN;
11208 } else {
11209 tcp_state_change(tp, TCPS_ESTABLISHED);
11210 TCP_PROBE5(connect__established, NULL, tp,
11211 mtod(m, const char *), tp, th);
11212 rack_cc_conn_init(tp);
11213 }
11214 } else {
11215 /*
11216 * Received initial SYN in SYN-SENT[*] state => simultaneous
11217 * open. If segment contains CC option and there is a
11218 * cached CC, apply TAO test. If it succeeds, connection is *
11219 * half-synchronized. Otherwise, do 3-way handshake:
11220 * SYN-SENT -> SYN-RECEIVED SYN-SENT* -> SYN-RECEIVED* If
11221 * there was no CC option, clear cached CC value.
11222 */
11223 tp->t_flags |= (TF_ACKNOW | TF_NEEDSYN | TF_SONOTCONN);
11224 tcp_state_change(tp, TCPS_SYN_RECEIVED);
11225 }
11226 /*
11227 * Advance th->th_seq to correspond to first data byte. If data,
11228 * trim to stay within window, dropping FIN if necessary.
11229 */
11230 th->th_seq++;
11231 if (tlen > tp->rcv_wnd) {
11232 todrop = tlen - tp->rcv_wnd;
11233 m_adj(m, -todrop);
11234 tlen = tp->rcv_wnd;
11235 thflags &= ~TH_FIN;
11236 KMOD_TCPSTAT_INC(tcps_rcvpackafterwin);
11237 KMOD_TCPSTAT_ADD(tcps_rcvbyteafterwin, todrop);
11238 }
11239 tp->snd_wl1 = th->th_seq - 1;
11240 tp->rcv_up = th->th_seq;
11241 /*
11242 * Client side of transaction: already sent SYN and data. If the
11243 * remote host used T/TCP to validate the SYN, our data will be
11244 * ACK'd; if so, enter normal data segment processing in the middle
11245 * of step 5, ack processing. Otherwise, goto step 6.
11246 */
11247 if (thflags & TH_ACK) {
11248 /* For syn-sent we need to possibly update the rtt */
11249 if ((to->to_flags & TOF_TS) != 0 && to->to_tsecr) {
11250 uint32_t t, mcts;
11251
11252 mcts = tcp_ts_getticks();
11253 t = (mcts - to->to_tsecr) * HPTS_USEC_IN_MSEC;
11254 if (!tp->t_rttlow || tp->t_rttlow > t)
11255 tp->t_rttlow = t;
11256 rack_log_rtt_sample_calc(rack, t, (to->to_tsecr * 1000), (mcts * 1000), 4);
11257 tcp_rack_xmit_timer(rack, t + 1, 1, t, 0, NULL, 2);
11258 tcp_rack_xmit_timer_commit(rack, tp);
11259 }
11260 if (rack_process_ack(m, th, so, tp, to, tiwin, tlen, &ourfinisacked, thflags, &ret_val))
11261 return (ret_val);
11262 /* We may have changed to FIN_WAIT_1 above */
11263 if (tp->t_state == TCPS_FIN_WAIT_1) {
11264 /*
11265 * In FIN_WAIT_1 STATE in addition to the processing
11266 * for the ESTABLISHED state if our FIN is now
11267 * acknowledged then enter FIN_WAIT_2.
11268 */
11269 if (ourfinisacked) {
11270 /*
11271 * If we can't receive any more data, then
11272 * closing user can proceed. Starting the
11273 * timer is contrary to the specification,
11274 * but if we don't get a FIN we'll hang
11275 * forever.
11276 *
11277 * XXXjl: we should release the tp also, and
11278 * use a compressed state.
11279 */
11280 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
11281 soisdisconnected(so);
11282 tcp_timer_activate(tp, TT_2MSL,
11283 (tcp_fast_finwait2_recycle ?
11284 tcp_finwait2_timeout :
11285 TP_MAXIDLE(tp)));
11286 }
11287 tcp_state_change(tp, TCPS_FIN_WAIT_2);
11288 }
11289 }
11290 }
11291 return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
11292 tiwin, thflags, nxt_pkt));
11293 }
11294
11295 /*
11296 * Return value of 1, the TCB is unlocked and most
11297 * likely gone, return value of 0, the TCP is still
11298 * locked.
11299 */
11300 static int
11301 rack_do_syn_recv(struct mbuf *m, struct tcphdr *th, struct socket *so,
11302 struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen,
11303 uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos)
11304 {
11305 struct tcp_rack *rack;
11306 int32_t ret_val = 0;
11307 int32_t ourfinisacked = 0;
11308
11309 ctf_calc_rwin(so, tp);
11310 if ((thflags & TH_ACK) &&
11311 (SEQ_LEQ(th->th_ack, tp->snd_una) ||
11312 SEQ_GT(th->th_ack, tp->snd_max))) {
11313 tcp_log_end_status(tp, TCP_EI_STATUS_RST_IN_FRONT);
11314 ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen);
11315 return (1);
11316 }
11317 rack = (struct tcp_rack *)tp->t_fb_ptr;
11318 if (IS_FASTOPEN(tp->t_flags)) {
11319 /*
11320 * When a TFO connection is in SYN_RECEIVED, the
11321 * only valid packets are the initial SYN, a
11322 * retransmit/copy of the initial SYN (possibly with
11323 * a subset of the original data), a valid ACK, a
11324 * FIN, or a RST.
11325 */
11326 if ((thflags & (TH_SYN | TH_ACK)) == (TH_SYN | TH_ACK)) {
11327 tcp_log_end_status(tp, TCP_EI_STATUS_RST_IN_FRONT);
11328 ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen);
11329 return (1);
11330 } else if (thflags & TH_SYN) {
11331 /* non-initial SYN is ignored */
11332 if ((rack->r_ctl.rc_hpts_flags & PACE_TMR_RXT) ||
11333 (rack->r_ctl.rc_hpts_flags & PACE_TMR_TLP) ||
11334 (rack->r_ctl.rc_hpts_flags & PACE_TMR_RACK)) {
11335 ctf_do_drop(m, NULL);
11336 return (0);
11337 }
11338 } else if (!(thflags & (TH_ACK | TH_FIN | TH_RST))) {
11339 ctf_do_drop(m, NULL);
11340 return (0);
11341 }
11342 }
11343
11344 if ((thflags & TH_RST) ||
11345 (tp->t_fin_is_rst && (thflags & TH_FIN)))
11346 return (__ctf_process_rst(m, th, so, tp,
11347 &rack->r_ctl.challenge_ack_ts,
11348 &rack->r_ctl.challenge_ack_cnt));
11349 /*
11350 * RFC 1323 PAWS: If we have a timestamp reply on this segment and
11351 * it's less than ts_recent, drop it.
11352 */
11353 if ((to->to_flags & TOF_TS) != 0 && tp->ts_recent &&
11354 TSTMP_LT(to->to_tsval, tp->ts_recent)) {
11355 if (ctf_ts_check(m, th, tp, tlen, thflags, &ret_val))
11356 return (ret_val);
11357 }
11358 /*
11359 * In the SYN-RECEIVED state, validate that the packet belongs to
11360 * this connection before trimming the data to fit the receive
11361 * window. Check the sequence number versus IRS since we know the
11362 * sequence numbers haven't wrapped. This is a partial fix for the
11363 * "LAND" DoS attack.
11364 */
11365 if (SEQ_LT(th->th_seq, tp->irs)) {
11366 tcp_log_end_status(tp, TCP_EI_STATUS_RST_IN_FRONT);
11367 ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen);
11368 return (1);
11369 }
11370 if (_ctf_drop_checks(to, m, th, tp, &tlen, &thflags, &drop_hdrlen, &ret_val,
11371 &rack->r_ctl.challenge_ack_ts,
11372 &rack->r_ctl.challenge_ack_cnt)) {
11373 return (ret_val);
11374 }
11375 /*
11376 * If last ACK falls within this segment's sequence numbers, record
11377 * its timestamp. NOTE: 1) That the test incorporates suggestions
11378 * from the latest proposal of the tcplw@cray.com list (Braden
11379 * 1993/04/26). 2) That updating only on newer timestamps interferes
11380 * with our earlier PAWS tests, so this check should be solely
11381 * predicated on the sequence space of this segment. 3) That we
11382 * modify the segment boundary check to be Last.ACK.Sent <= SEG.SEQ
11383 * + SEG.Len instead of RFC1323's Last.ACK.Sent < SEG.SEQ +
11384 * SEG.Len, This modified check allows us to overcome RFC1323's
11385 * limitations as described in Stevens TCP/IP Illustrated Vol. 2
11386 * p.869. In such cases, we can still calculate the RTT correctly
11387 * when RCV.NXT == Last.ACK.Sent.
11388 */
11389 if ((to->to_flags & TOF_TS) != 0 &&
11390 SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
11391 SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
11392 ((thflags & (TH_SYN | TH_FIN)) != 0))) {
11393 tp->ts_recent_age = tcp_ts_getticks();
11394 tp->ts_recent = to->to_tsval;
11395 }
11396 tp->snd_wnd = tiwin;
11397 rack_validate_fo_sendwin_up(tp, rack);
11398 /*
11399 * If the ACK bit is off: if in SYN-RECEIVED state or SENDSYN flag
11400 * is on (half-synchronized state), then queue data for later
11401 * processing; else drop segment and return.
11402 */
11403 if ((thflags & TH_ACK) == 0) {
11404 if (IS_FASTOPEN(tp->t_flags)) {
11405 rack_cc_conn_init(tp);
11406 }
11407 return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
11408 tiwin, thflags, nxt_pkt));
11409 }
11410 KMOD_TCPSTAT_INC(tcps_connects);
11411 if (tp->t_flags & TF_SONOTCONN) {
11412 tp->t_flags &= ~TF_SONOTCONN;
11413 soisconnected(so);
11414 }
11415 /* Do window scaling? */
11416 if ((tp->t_flags & (TF_RCVD_SCALE | TF_REQ_SCALE)) ==
11417 (TF_RCVD_SCALE | TF_REQ_SCALE)) {
11418 tp->rcv_scale = tp->request_r_scale;
11419 }
11420 /*
11421 * Make transitions: SYN-RECEIVED -> ESTABLISHED SYN-RECEIVED* ->
11422 * FIN-WAIT-1
11423 */
11424 tp->t_starttime = ticks;
11425 if (IS_FASTOPEN(tp->t_flags) && tp->t_tfo_pending) {
11426 tcp_fastopen_decrement_counter(tp->t_tfo_pending);
11427 tp->t_tfo_pending = NULL;
11428 }
11429 if (tp->t_flags & TF_NEEDFIN) {
11430 tcp_state_change(tp, TCPS_FIN_WAIT_1);
11431 tp->t_flags &= ~TF_NEEDFIN;
11432 } else {
11433 tcp_state_change(tp, TCPS_ESTABLISHED);
11434 TCP_PROBE5(accept__established, NULL, tp,
11435 mtod(m, const char *), tp, th);
11436 /*
11437 * TFO connections call cc_conn_init() during SYN
11438 * processing. Calling it again here for such connections
11439 * is not harmless as it would undo the snd_cwnd reduction
11440 * that occurs when a TFO SYN|ACK is retransmitted.
11441 */
11442 if (!IS_FASTOPEN(tp->t_flags))
11443 rack_cc_conn_init(tp);
11444 }
11445 /*
11446 * Account for the ACK of our SYN prior to
11447 * regular ACK processing below, except for
11448 * simultaneous SYN, which is handled later.
11449 */
11450 if (SEQ_GT(th->th_ack, tp->snd_una) && !(tp->t_flags & TF_NEEDSYN))
11451 tp->snd_una++;
11452 /*
11453 * If segment contains data or ACK, will call tcp_reass() later; if
11454 * not, do so now to pass queued data to user.
11455 */
11456 if (tlen == 0 && (thflags & TH_FIN) == 0) {
11457 (void) tcp_reass(tp, (struct tcphdr *)0, NULL, 0,
11458 (struct mbuf *)0);
11459 if (tp->t_flags & TF_WAKESOR) {
11460 tp->t_flags &= ~TF_WAKESOR;
11461 /* NB: sorwakeup_locked() does an implicit unlock. */
11462 sorwakeup_locked(so);
11463 }
11464 }
11465 tp->snd_wl1 = th->th_seq - 1;
11466 /* For syn-recv we need to possibly update the rtt */
11467 if ((to->to_flags & TOF_TS) != 0 && to->to_tsecr) {
11468 uint32_t t, mcts;
11469
11470 mcts = tcp_ts_getticks();
11471 t = (mcts - to->to_tsecr) * HPTS_USEC_IN_MSEC;
11472 if (!tp->t_rttlow || tp->t_rttlow > t)
11473 tp->t_rttlow = t;
11474 rack_log_rtt_sample_calc(rack, t, (to->to_tsecr * 1000), (mcts * 1000), 5);
11475 tcp_rack_xmit_timer(rack, t + 1, 1, t, 0, NULL, 2);
11476 tcp_rack_xmit_timer_commit(rack, tp);
11477 }
11478 if (rack_process_ack(m, th, so, tp, to, tiwin, tlen, &ourfinisacked, thflags, &ret_val)) {
11479 return (ret_val);
11480 }
11481 if (tp->t_state == TCPS_FIN_WAIT_1) {
11482 /* We could have went to FIN_WAIT_1 (or EST) above */
11483 /*
11484 * In FIN_WAIT_1 STATE in addition to the processing for the
11485 * ESTABLISHED state if our FIN is now acknowledged then
11486 * enter FIN_WAIT_2.
11487 */
11488 if (ourfinisacked) {
11489 /*
11490 * If we can't receive any more data, then closing
11491 * user can proceed. Starting the timer is contrary
11492 * to the specification, but if we don't get a FIN
11493 * we'll hang forever.
11494 *
11495 * XXXjl: we should release the tp also, and use a
11496 * compressed state.
11497 */
11498 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
11499 soisdisconnected(so);
11500 tcp_timer_activate(tp, TT_2MSL,
11501 (tcp_fast_finwait2_recycle ?
11502 tcp_finwait2_timeout :
11503 TP_MAXIDLE(tp)));
11504 }
11505 tcp_state_change(tp, TCPS_FIN_WAIT_2);
11506 }
11507 }
11508 return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
11509 tiwin, thflags, nxt_pkt));
11510 }
11511
11512 /*
11513 * Return value of 1, the TCB is unlocked and most
11514 * likely gone, return value of 0, the TCP is still
11515 * locked.
11516 */
11517 static int
11518 rack_do_established(struct mbuf *m, struct tcphdr *th, struct socket *so,
11519 struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen,
11520 uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos)
11521 {
11522 int32_t ret_val = 0;
11523 struct tcp_rack *rack;
11524
11525 /*
11526 * Header prediction: check for the two common cases of a
11527 * uni-directional data xfer. If the packet has no control flags,
11528 * is in-sequence, the window didn't change and we're not
11529 * retransmitting, it's a candidate. If the length is zero and the
11530 * ack moved forward, we're the sender side of the xfer. Just free
11531 * the data acked & wake any higher level process that was blocked
11532 * waiting for space. If the length is non-zero and the ack didn't
11533 * move, we're the receiver side. If we're getting packets in-order
11534 * (the reassembly queue is empty), add the data toc The socket
11535 * buffer and note that we need a delayed ack. Make sure that the
11536 * hidden state-flags are also off. Since we check for
11537 * TCPS_ESTABLISHED first, it can only be TH_NEEDSYN.
11538 */
11539 rack = (struct tcp_rack *)tp->t_fb_ptr;
11540 if (__predict_true(((to->to_flags & TOF_SACK) == 0)) &&
11541 __predict_true((thflags & (TH_SYN | TH_FIN | TH_RST | TH_ACK)) == TH_ACK) &&
11542 __predict_true(SEGQ_EMPTY(tp)) &&
11543 __predict_true(th->th_seq == tp->rcv_nxt)) {
11544 if (tlen == 0) {
11545 if (rack_fastack(m, th, so, tp, to, drop_hdrlen, tlen,
11546 tiwin, nxt_pkt, rack->r_ctl.rc_rcvtime)) {
11547 return (0);
11548 }
11549 } else {
11550 if (rack_do_fastnewdata(m, th, so, tp, to, drop_hdrlen, tlen,
11551 tiwin, nxt_pkt, iptos)) {
11552 return (0);
11553 }
11554 }
11555 }
11556 ctf_calc_rwin(so, tp);
11557
11558 if ((thflags & TH_RST) ||
11559 (tp->t_fin_is_rst && (thflags & TH_FIN)))
11560 return (__ctf_process_rst(m, th, so, tp,
11561 &rack->r_ctl.challenge_ack_ts,
11562 &rack->r_ctl.challenge_ack_cnt));
11563
11564 /*
11565 * RFC5961 Section 4.2 Send challenge ACK for any SYN in
11566 * synchronized state.
11567 */
11568 if (thflags & TH_SYN) {
11569 ctf_challenge_ack(m, th, tp, iptos, &ret_val);
11570 return (ret_val);
11571 }
11572 /*
11573 * RFC 1323 PAWS: If we have a timestamp reply on this segment and
11574 * it's less than ts_recent, drop it.
11575 */
11576 if ((to->to_flags & TOF_TS) != 0 && tp->ts_recent &&
11577 TSTMP_LT(to->to_tsval, tp->ts_recent)) {
11578 if (ctf_ts_check(m, th, tp, tlen, thflags, &ret_val))
11579 return (ret_val);
11580 }
11581 if (_ctf_drop_checks(to, m, th, tp, &tlen, &thflags, &drop_hdrlen, &ret_val,
11582 &rack->r_ctl.challenge_ack_ts,
11583 &rack->r_ctl.challenge_ack_cnt)) {
11584 return (ret_val);
11585 }
11586 /*
11587 * If last ACK falls within this segment's sequence numbers, record
11588 * its timestamp. NOTE: 1) That the test incorporates suggestions
11589 * from the latest proposal of the tcplw@cray.com list (Braden
11590 * 1993/04/26). 2) That updating only on newer timestamps interferes
11591 * with our earlier PAWS tests, so this check should be solely
11592 * predicated on the sequence space of this segment. 3) That we
11593 * modify the segment boundary check to be Last.ACK.Sent <= SEG.SEQ
11594 * + SEG.Len instead of RFC1323's Last.ACK.Sent < SEG.SEQ +
11595 * SEG.Len, This modified check allows us to overcome RFC1323's
11596 * limitations as described in Stevens TCP/IP Illustrated Vol. 2
11597 * p.869. In such cases, we can still calculate the RTT correctly
11598 * when RCV.NXT == Last.ACK.Sent.
11599 */
11600 if ((to->to_flags & TOF_TS) != 0 &&
11601 SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
11602 SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
11603 ((thflags & (TH_SYN | TH_FIN)) != 0))) {
11604 tp->ts_recent_age = tcp_ts_getticks();
11605 tp->ts_recent = to->to_tsval;
11606 }
11607 /*
11608 * If the ACK bit is off: if in SYN-RECEIVED state or SENDSYN flag
11609 * is on (half-synchronized state), then queue data for later
11610 * processing; else drop segment and return.
11611 */
11612 if ((thflags & TH_ACK) == 0) {
11613 if (tp->t_flags & TF_NEEDSYN) {
11614 return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
11615 tiwin, thflags, nxt_pkt));
11616
11617 } else if (tp->t_flags & TF_ACKNOW) {
11618 ctf_do_dropafterack(m, tp, th, thflags, tlen, &ret_val);
11619 ((struct tcp_rack *)tp->t_fb_ptr)->r_wanted_output = 1;
11620 return (ret_val);
11621 } else {
11622 ctf_do_drop(m, NULL);
11623 return (0);
11624 }
11625 }
11626 /*
11627 * Ack processing.
11628 */
11629 if (rack_process_ack(m, th, so, tp, to, tiwin, tlen, NULL, thflags, &ret_val)) {
11630 return (ret_val);
11631 }
11632 if (sbavail(&so->so_snd)) {
11633 if (ctf_progress_timeout_check(tp, true)) {
11634 rack_log_progress_event(rack, tp, tick, PROGRESS_DROP, __LINE__);
11635 ctf_do_dropwithreset_conn(m, tp, th, BANDLIM_RST_OPENPORT, tlen);
11636 return (1);
11637 }
11638 }
11639 /* State changes only happen in rack_process_data() */
11640 return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
11641 tiwin, thflags, nxt_pkt));
11642 }
11643
11644 /*
11645 * Return value of 1, the TCB is unlocked and most
11646 * likely gone, return value of 0, the TCP is still
11647 * locked.
11648 */
11649 static int
11650 rack_do_close_wait(struct mbuf *m, struct tcphdr *th, struct socket *so,
11651 struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen,
11652 uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos)
11653 {
11654 int32_t ret_val = 0;
11655 struct tcp_rack *rack;
11656
11657 rack = (struct tcp_rack *)tp->t_fb_ptr;
11658 ctf_calc_rwin(so, tp);
11659 if ((thflags & TH_RST) ||
11660 (tp->t_fin_is_rst && (thflags & TH_FIN)))
11661 return (__ctf_process_rst(m, th, so, tp,
11662 &rack->r_ctl.challenge_ack_ts,
11663 &rack->r_ctl.challenge_ack_cnt));
11664 /*
11665 * RFC5961 Section 4.2 Send challenge ACK for any SYN in
11666 * synchronized state.
11667 */
11668 if (thflags & TH_SYN) {
11669 ctf_challenge_ack(m, th, tp, iptos, &ret_val);
11670 return (ret_val);
11671 }
11672 /*
11673 * RFC 1323 PAWS: If we have a timestamp reply on this segment and
11674 * it's less than ts_recent, drop it.
11675 */
11676 if ((to->to_flags & TOF_TS) != 0 && tp->ts_recent &&
11677 TSTMP_LT(to->to_tsval, tp->ts_recent)) {
11678 if (ctf_ts_check(m, th, tp, tlen, thflags, &ret_val))
11679 return (ret_val);
11680 }
11681 if (_ctf_drop_checks(to, m, th, tp, &tlen, &thflags, &drop_hdrlen, &ret_val,
11682 &rack->r_ctl.challenge_ack_ts,
11683 &rack->r_ctl.challenge_ack_cnt)) {
11684 return (ret_val);
11685 }
11686 /*
11687 * If last ACK falls within this segment's sequence numbers, record
11688 * its timestamp. NOTE: 1) That the test incorporates suggestions
11689 * from the latest proposal of the tcplw@cray.com list (Braden
11690 * 1993/04/26). 2) That updating only on newer timestamps interferes
11691 * with our earlier PAWS tests, so this check should be solely
11692 * predicated on the sequence space of this segment. 3) That we
11693 * modify the segment boundary check to be Last.ACK.Sent <= SEG.SEQ
11694 * + SEG.Len instead of RFC1323's Last.ACK.Sent < SEG.SEQ +
11695 * SEG.Len, This modified check allows us to overcome RFC1323's
11696 * limitations as described in Stevens TCP/IP Illustrated Vol. 2
11697 * p.869. In such cases, we can still calculate the RTT correctly
11698 * when RCV.NXT == Last.ACK.Sent.
11699 */
11700 if ((to->to_flags & TOF_TS) != 0 &&
11701 SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
11702 SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
11703 ((thflags & (TH_SYN | TH_FIN)) != 0))) {
11704 tp->ts_recent_age = tcp_ts_getticks();
11705 tp->ts_recent = to->to_tsval;
11706 }
11707 /*
11708 * If the ACK bit is off: if in SYN-RECEIVED state or SENDSYN flag
11709 * is on (half-synchronized state), then queue data for later
11710 * processing; else drop segment and return.
11711 */
11712 if ((thflags & TH_ACK) == 0) {
11713 if (tp->t_flags & TF_NEEDSYN) {
11714 return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
11715 tiwin, thflags, nxt_pkt));
11716
11717 } else if (tp->t_flags & TF_ACKNOW) {
11718 ctf_do_dropafterack(m, tp, th, thflags, tlen, &ret_val);
11719 ((struct tcp_rack *)tp->t_fb_ptr)->r_wanted_output = 1;
11720 return (ret_val);
11721 } else {
11722 ctf_do_drop(m, NULL);
11723 return (0);
11724 }
11725 }
11726 /*
11727 * Ack processing.
11728 */
11729 if (rack_process_ack(m, th, so, tp, to, tiwin, tlen, NULL, thflags, &ret_val)) {
11730 return (ret_val);
11731 }
11732 if (sbavail(&so->so_snd)) {
11733 if (ctf_progress_timeout_check(tp, true)) {
11734 rack_log_progress_event((struct tcp_rack *)tp->t_fb_ptr,
11735 tp, tick, PROGRESS_DROP, __LINE__);
11736 ctf_do_dropwithreset_conn(m, tp, th, BANDLIM_RST_OPENPORT, tlen);
11737 return (1);
11738 }
11739 }
11740 return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
11741 tiwin, thflags, nxt_pkt));
11742 }
11743
11744 static int
11745 rack_check_data_after_close(struct mbuf *m,
11746 struct tcpcb *tp, int32_t *tlen, struct tcphdr *th, struct socket *so)
11747 {
11748 struct tcp_rack *rack;
11749
11750 rack = (struct tcp_rack *)tp->t_fb_ptr;
11751 if (rack->rc_allow_data_af_clo == 0) {
11752 close_now:
11753 tcp_log_end_status(tp, TCP_EI_STATUS_DATA_A_CLOSE);
11754 /* tcp_close will kill the inp pre-log the Reset */
11755 tcp_log_end_status(tp, TCP_EI_STATUS_SERVER_RST);
11756 tp = tcp_close(tp);
11757 KMOD_TCPSTAT_INC(tcps_rcvafterclose);
11758 ctf_do_dropwithreset(m, tp, th, BANDLIM_UNLIMITED, (*tlen));
11759 return (1);
11760 }
11761 if (sbavail(&so->so_snd) == 0)
11762 goto close_now;
11763 /* Ok we allow data that is ignored and a followup reset */
11764 tcp_log_end_status(tp, TCP_EI_STATUS_DATA_A_CLOSE);
11765 tp->rcv_nxt = th->th_seq + *tlen;
11766 tp->t_flags2 |= TF2_DROP_AF_DATA;
11767 rack->r_wanted_output = 1;
11768 *tlen = 0;
11769 return (0);
11770 }
11771
11772 /*
11773 * Return value of 1, the TCB is unlocked and most
11774 * likely gone, return value of 0, the TCP is still
11775 * locked.
11776 */
11777 static int
11778 rack_do_fin_wait_1(struct mbuf *m, struct tcphdr *th, struct socket *so,
11779 struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen,
11780 uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos)
11781 {
11782 int32_t ret_val = 0;
11783 int32_t ourfinisacked = 0;
11784 struct tcp_rack *rack;
11785
11786 rack = (struct tcp_rack *)tp->t_fb_ptr;
11787 ctf_calc_rwin(so, tp);
11788
11789 if ((thflags & TH_RST) ||
11790 (tp->t_fin_is_rst && (thflags & TH_FIN)))
11791 return (__ctf_process_rst(m, th, so, tp,
11792 &rack->r_ctl.challenge_ack_ts,
11793 &rack->r_ctl.challenge_ack_cnt));
11794 /*
11795 * RFC5961 Section 4.2 Send challenge ACK for any SYN in
11796 * synchronized state.
11797 */
11798 if (thflags & TH_SYN) {
11799 ctf_challenge_ack(m, th, tp, iptos, &ret_val);
11800 return (ret_val);
11801 }
11802 /*
11803 * RFC 1323 PAWS: If we have a timestamp reply on this segment and
11804 * it's less than ts_recent, drop it.
11805 */
11806 if ((to->to_flags & TOF_TS) != 0 && tp->ts_recent &&
11807 TSTMP_LT(to->to_tsval, tp->ts_recent)) {
11808 if (ctf_ts_check(m, th, tp, tlen, thflags, &ret_val))
11809 return (ret_val);
11810 }
11811 if (_ctf_drop_checks(to, m, th, tp, &tlen, &thflags, &drop_hdrlen, &ret_val,
11812 &rack->r_ctl.challenge_ack_ts,
11813 &rack->r_ctl.challenge_ack_cnt)) {
11814 return (ret_val);
11815 }
11816 /*
11817 * If new data are received on a connection after the user processes
11818 * are gone, then RST the other end.
11819 */
11820 if ((tp->t_flags & TF_CLOSED) && tlen &&
11821 rack_check_data_after_close(m, tp, &tlen, th, so))
11822 return (1);
11823 /*
11824 * If last ACK falls within this segment's sequence numbers, record
11825 * its timestamp. NOTE: 1) That the test incorporates suggestions
11826 * from the latest proposal of the tcplw@cray.com list (Braden
11827 * 1993/04/26). 2) That updating only on newer timestamps interferes
11828 * with our earlier PAWS tests, so this check should be solely
11829 * predicated on the sequence space of this segment. 3) That we
11830 * modify the segment boundary check to be Last.ACK.Sent <= SEG.SEQ
11831 * + SEG.Len instead of RFC1323's Last.ACK.Sent < SEG.SEQ +
11832 * SEG.Len, This modified check allows us to overcome RFC1323's
11833 * limitations as described in Stevens TCP/IP Illustrated Vol. 2
11834 * p.869. In such cases, we can still calculate the RTT correctly
11835 * when RCV.NXT == Last.ACK.Sent.
11836 */
11837 if ((to->to_flags & TOF_TS) != 0 &&
11838 SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
11839 SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
11840 ((thflags & (TH_SYN | TH_FIN)) != 0))) {
11841 tp->ts_recent_age = tcp_ts_getticks();
11842 tp->ts_recent = to->to_tsval;
11843 }
11844 /*
11845 * If the ACK bit is off: if in SYN-RECEIVED state or SENDSYN flag
11846 * is on (half-synchronized state), then queue data for later
11847 * processing; else drop segment and return.
11848 */
11849 if ((thflags & TH_ACK) == 0) {
11850 if (tp->t_flags & TF_NEEDSYN) {
11851 return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
11852 tiwin, thflags, nxt_pkt));
11853 } else if (tp->t_flags & TF_ACKNOW) {
11854 ctf_do_dropafterack(m, tp, th, thflags, tlen, &ret_val);
11855 ((struct tcp_rack *)tp->t_fb_ptr)->r_wanted_output = 1;
11856 return (ret_val);
11857 } else {
11858 ctf_do_drop(m, NULL);
11859 return (0);
11860 }
11861 }
11862 /*
11863 * Ack processing.
11864 */
11865 if (rack_process_ack(m, th, so, tp, to, tiwin, tlen, &ourfinisacked, thflags, &ret_val)) {
11866 return (ret_val);
11867 }
11868 if (ourfinisacked) {
11869 /*
11870 * If we can't receive any more data, then closing user can
11871 * proceed. Starting the timer is contrary to the
11872 * specification, but if we don't get a FIN we'll hang
11873 * forever.
11874 *
11875 * XXXjl: we should release the tp also, and use a
11876 * compressed state.
11877 */
11878 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
11879 soisdisconnected(so);
11880 tcp_timer_activate(tp, TT_2MSL,
11881 (tcp_fast_finwait2_recycle ?
11882 tcp_finwait2_timeout :
11883 TP_MAXIDLE(tp)));
11884 }
11885 tcp_state_change(tp, TCPS_FIN_WAIT_2);
11886 }
11887 if (sbavail(&so->so_snd)) {
11888 if (ctf_progress_timeout_check(tp, true)) {
11889 rack_log_progress_event((struct tcp_rack *)tp->t_fb_ptr,
11890 tp, tick, PROGRESS_DROP, __LINE__);
11891 ctf_do_dropwithreset_conn(m, tp, th, BANDLIM_RST_OPENPORT, tlen);
11892 return (1);
11893 }
11894 }
11895 return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
11896 tiwin, thflags, nxt_pkt));
11897 }
11898
11899 /*
11900 * Return value of 1, the TCB is unlocked and most
11901 * likely gone, return value of 0, the TCP is still
11902 * locked.
11903 */
11904 static int
11905 rack_do_closing(struct mbuf *m, struct tcphdr *th, struct socket *so,
11906 struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen,
11907 uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos)
11908 {
11909 int32_t ret_val = 0;
11910 int32_t ourfinisacked = 0;
11911 struct tcp_rack *rack;
11912
11913 rack = (struct tcp_rack *)tp->t_fb_ptr;
11914 ctf_calc_rwin(so, tp);
11915
11916 if ((thflags & TH_RST) ||
11917 (tp->t_fin_is_rst && (thflags & TH_FIN)))
11918 return (__ctf_process_rst(m, th, so, tp,
11919 &rack->r_ctl.challenge_ack_ts,
11920 &rack->r_ctl.challenge_ack_cnt));
11921 /*
11922 * RFC5961 Section 4.2 Send challenge ACK for any SYN in
11923 * synchronized state.
11924 */
11925 if (thflags & TH_SYN) {
11926 ctf_challenge_ack(m, th, tp, iptos, &ret_val);
11927 return (ret_val);
11928 }
11929 /*
11930 * RFC 1323 PAWS: If we have a timestamp reply on this segment and
11931 * it's less than ts_recent, drop it.
11932 */
11933 if ((to->to_flags & TOF_TS) != 0 && tp->ts_recent &&
11934 TSTMP_LT(to->to_tsval, tp->ts_recent)) {
11935 if (ctf_ts_check(m, th, tp, tlen, thflags, &ret_val))
11936 return (ret_val);
11937 }
11938 if (_ctf_drop_checks(to, m, th, tp, &tlen, &thflags, &drop_hdrlen, &ret_val,
11939 &rack->r_ctl.challenge_ack_ts,
11940 &rack->r_ctl.challenge_ack_cnt)) {
11941 return (ret_val);
11942 }
11943 /*
11944 * If new data are received on a connection after the user processes
11945 * are gone, then RST the other end.
11946 */
11947 if ((tp->t_flags & TF_CLOSED) && tlen &&
11948 rack_check_data_after_close(m, tp, &tlen, th, so))
11949 return (1);
11950 /*
11951 * If last ACK falls within this segment's sequence numbers, record
11952 * its timestamp. NOTE: 1) That the test incorporates suggestions
11953 * from the latest proposal of the tcplw@cray.com list (Braden
11954 * 1993/04/26). 2) That updating only on newer timestamps interferes
11955 * with our earlier PAWS tests, so this check should be solely
11956 * predicated on the sequence space of this segment. 3) That we
11957 * modify the segment boundary check to be Last.ACK.Sent <= SEG.SEQ
11958 * + SEG.Len instead of RFC1323's Last.ACK.Sent < SEG.SEQ +
11959 * SEG.Len, This modified check allows us to overcome RFC1323's
11960 * limitations as described in Stevens TCP/IP Illustrated Vol. 2
11961 * p.869. In such cases, we can still calculate the RTT correctly
11962 * when RCV.NXT == Last.ACK.Sent.
11963 */
11964 if ((to->to_flags & TOF_TS) != 0 &&
11965 SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
11966 SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
11967 ((thflags & (TH_SYN | TH_FIN)) != 0))) {
11968 tp->ts_recent_age = tcp_ts_getticks();
11969 tp->ts_recent = to->to_tsval;
11970 }
11971 /*
11972 * If the ACK bit is off: if in SYN-RECEIVED state or SENDSYN flag
11973 * is on (half-synchronized state), then queue data for later
11974 * processing; else drop segment and return.
11975 */
11976 if ((thflags & TH_ACK) == 0) {
11977 if (tp->t_flags & TF_NEEDSYN) {
11978 return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
11979 tiwin, thflags, nxt_pkt));
11980 } else if (tp->t_flags & TF_ACKNOW) {
11981 ctf_do_dropafterack(m, tp, th, thflags, tlen, &ret_val);
11982 ((struct tcp_rack *)tp->t_fb_ptr)->r_wanted_output = 1;
11983 return (ret_val);
11984 } else {
11985 ctf_do_drop(m, NULL);
11986 return (0);
11987 }
11988 }
11989 /*
11990 * Ack processing.
11991 */
11992 if (rack_process_ack(m, th, so, tp, to, tiwin, tlen, &ourfinisacked, thflags, &ret_val)) {
11993 return (ret_val);
11994 }
11995 if (ourfinisacked) {
11996 tcp_twstart(tp);
11997 m_freem(m);
11998 return (1);
11999 }
12000 if (sbavail(&so->so_snd)) {
12001 if (ctf_progress_timeout_check(tp, true)) {
12002 rack_log_progress_event((struct tcp_rack *)tp->t_fb_ptr,
12003 tp, tick, PROGRESS_DROP, __LINE__);
12004 ctf_do_dropwithreset_conn(m, tp, th, BANDLIM_RST_OPENPORT, tlen);
12005 return (1);
12006 }
12007 }
12008 return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
12009 tiwin, thflags, nxt_pkt));
12010 }
12011
12012 /*
12013 * Return value of 1, the TCB is unlocked and most
12014 * likely gone, return value of 0, the TCP is still
12015 * locked.
12016 */
12017 static int
12018 rack_do_lastack(struct mbuf *m, struct tcphdr *th, struct socket *so,
12019 struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen,
12020 uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos)
12021 {
12022 int32_t ret_val = 0;
12023 int32_t ourfinisacked = 0;
12024 struct tcp_rack *rack;
12025
12026 rack = (struct tcp_rack *)tp->t_fb_ptr;
12027 ctf_calc_rwin(so, tp);
12028
12029 if ((thflags & TH_RST) ||
12030 (tp->t_fin_is_rst && (thflags & TH_FIN)))
12031 return (__ctf_process_rst(m, th, so, tp,
12032 &rack->r_ctl.challenge_ack_ts,
12033 &rack->r_ctl.challenge_ack_cnt));
12034 /*
12035 * RFC5961 Section 4.2 Send challenge ACK for any SYN in
12036 * synchronized state.
12037 */
12038 if (thflags & TH_SYN) {
12039 ctf_challenge_ack(m, th, tp, iptos, &ret_val);
12040 return (ret_val);
12041 }
12042 /*
12043 * RFC 1323 PAWS: If we have a timestamp reply on this segment and
12044 * it's less than ts_recent, drop it.
12045 */
12046 if ((to->to_flags & TOF_TS) != 0 && tp->ts_recent &&
12047 TSTMP_LT(to->to_tsval, tp->ts_recent)) {
12048 if (ctf_ts_check(m, th, tp, tlen, thflags, &ret_val))
12049 return (ret_val);
12050 }
12051 if (_ctf_drop_checks(to, m, th, tp, &tlen, &thflags, &drop_hdrlen, &ret_val,
12052 &rack->r_ctl.challenge_ack_ts,
12053 &rack->r_ctl.challenge_ack_cnt)) {
12054 return (ret_val);
12055 }
12056 /*
12057 * If new data are received on a connection after the user processes
12058 * are gone, then RST the other end.
12059 */
12060 if ((tp->t_flags & TF_CLOSED) && tlen &&
12061 rack_check_data_after_close(m, tp, &tlen, th, so))
12062 return (1);
12063 /*
12064 * If last ACK falls within this segment's sequence numbers, record
12065 * its timestamp. NOTE: 1) That the test incorporates suggestions
12066 * from the latest proposal of the tcplw@cray.com list (Braden
12067 * 1993/04/26). 2) That updating only on newer timestamps interferes
12068 * with our earlier PAWS tests, so this check should be solely
12069 * predicated on the sequence space of this segment. 3) That we
12070 * modify the segment boundary check to be Last.ACK.Sent <= SEG.SEQ
12071 * + SEG.Len instead of RFC1323's Last.ACK.Sent < SEG.SEQ +
12072 * SEG.Len, This modified check allows us to overcome RFC1323's
12073 * limitations as described in Stevens TCP/IP Illustrated Vol. 2
12074 * p.869. In such cases, we can still calculate the RTT correctly
12075 * when RCV.NXT == Last.ACK.Sent.
12076 */
12077 if ((to->to_flags & TOF_TS) != 0 &&
12078 SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
12079 SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
12080 ((thflags & (TH_SYN | TH_FIN)) != 0))) {
12081 tp->ts_recent_age = tcp_ts_getticks();
12082 tp->ts_recent = to->to_tsval;
12083 }
12084 /*
12085 * If the ACK bit is off: if in SYN-RECEIVED state or SENDSYN flag
12086 * is on (half-synchronized state), then queue data for later
12087 * processing; else drop segment and return.
12088 */
12089 if ((thflags & TH_ACK) == 0) {
12090 if (tp->t_flags & TF_NEEDSYN) {
12091 return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
12092 tiwin, thflags, nxt_pkt));
12093 } else if (tp->t_flags & TF_ACKNOW) {
12094 ctf_do_dropafterack(m, tp, th, thflags, tlen, &ret_val);
12095 ((struct tcp_rack *)tp->t_fb_ptr)->r_wanted_output = 1;
12096 return (ret_val);
12097 } else {
12098 ctf_do_drop(m, NULL);
12099 return (0);
12100 }
12101 }
12102 /*
12103 * case TCPS_LAST_ACK: Ack processing.
12104 */
12105 if (rack_process_ack(m, th, so, tp, to, tiwin, tlen, &ourfinisacked, thflags, &ret_val)) {
12106 return (ret_val);
12107 }
12108 if (ourfinisacked) {
12109 tp = tcp_close(tp);
12110 ctf_do_drop(m, tp);
12111 return (1);
12112 }
12113 if (sbavail(&so->so_snd)) {
12114 if (ctf_progress_timeout_check(tp, true)) {
12115 rack_log_progress_event((struct tcp_rack *)tp->t_fb_ptr,
12116 tp, tick, PROGRESS_DROP, __LINE__);
12117 ctf_do_dropwithreset_conn(m, tp, th, BANDLIM_RST_OPENPORT, tlen);
12118 return (1);
12119 }
12120 }
12121 return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
12122 tiwin, thflags, nxt_pkt));
12123 }
12124
12125 /*
12126 * Return value of 1, the TCB is unlocked and most
12127 * likely gone, return value of 0, the TCP is still
12128 * locked.
12129 */
12130 static int
12131 rack_do_fin_wait_2(struct mbuf *m, struct tcphdr *th, struct socket *so,
12132 struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen,
12133 uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos)
12134 {
12135 int32_t ret_val = 0;
12136 int32_t ourfinisacked = 0;
12137 struct tcp_rack *rack;
12138
12139 rack = (struct tcp_rack *)tp->t_fb_ptr;
12140 ctf_calc_rwin(so, tp);
12141
12142 /* Reset receive buffer auto scaling when not in bulk receive mode. */
12143 if ((thflags & TH_RST) ||
12144 (tp->t_fin_is_rst && (thflags & TH_FIN)))
12145 return (__ctf_process_rst(m, th, so, tp,
12146 &rack->r_ctl.challenge_ack_ts,
12147 &rack->r_ctl.challenge_ack_cnt));
12148 /*
12149 * RFC5961 Section 4.2 Send challenge ACK for any SYN in
12150 * synchronized state.
12151 */
12152 if (thflags & TH_SYN) {
12153 ctf_challenge_ack(m, th, tp, iptos, &ret_val);
12154 return (ret_val);
12155 }
12156 /*
12157 * RFC 1323 PAWS: If we have a timestamp reply on this segment and
12158 * it's less than ts_recent, drop it.
12159 */
12160 if ((to->to_flags & TOF_TS) != 0 && tp->ts_recent &&
12161 TSTMP_LT(to->to_tsval, tp->ts_recent)) {
12162 if (ctf_ts_check(m, th, tp, tlen, thflags, &ret_val))
12163 return (ret_val);
12164 }
12165 if (_ctf_drop_checks(to, m, th, tp, &tlen, &thflags, &drop_hdrlen, &ret_val,
12166 &rack->r_ctl.challenge_ack_ts,
12167 &rack->r_ctl.challenge_ack_cnt)) {
12168 return (ret_val);
12169 }
12170 /*
12171 * If new data are received on a connection after the user processes
12172 * are gone, then RST the other end.
12173 */
12174 if ((tp->t_flags & TF_CLOSED) && tlen &&
12175 rack_check_data_after_close(m, tp, &tlen, th, so))
12176 return (1);
12177 /*
12178 * If last ACK falls within this segment's sequence numbers, record
12179 * its timestamp. NOTE: 1) That the test incorporates suggestions
12180 * from the latest proposal of the tcplw@cray.com list (Braden
12181 * 1993/04/26). 2) That updating only on newer timestamps interferes
12182 * with our earlier PAWS tests, so this check should be solely
12183 * predicated on the sequence space of this segment. 3) That we
12184 * modify the segment boundary check to be Last.ACK.Sent <= SEG.SEQ
12185 * + SEG.Len instead of RFC1323's Last.ACK.Sent < SEG.SEQ +
12186 * SEG.Len, This modified check allows us to overcome RFC1323's
12187 * limitations as described in Stevens TCP/IP Illustrated Vol. 2
12188 * p.869. In such cases, we can still calculate the RTT correctly
12189 * when RCV.NXT == Last.ACK.Sent.
12190 */
12191 if ((to->to_flags & TOF_TS) != 0 &&
12192 SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
12193 SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
12194 ((thflags & (TH_SYN | TH_FIN)) != 0))) {
12195 tp->ts_recent_age = tcp_ts_getticks();
12196 tp->ts_recent = to->to_tsval;
12197 }
12198 /*
12199 * If the ACK bit is off: if in SYN-RECEIVED state or SENDSYN flag
12200 * is on (half-synchronized state), then queue data for later
12201 * processing; else drop segment and return.
12202 */
12203 if ((thflags & TH_ACK) == 0) {
12204 if (tp->t_flags & TF_NEEDSYN) {
12205 return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
12206 tiwin, thflags, nxt_pkt));
12207 } else if (tp->t_flags & TF_ACKNOW) {
12208 ctf_do_dropafterack(m, tp, th, thflags, tlen, &ret_val);
12209 ((struct tcp_rack *)tp->t_fb_ptr)->r_wanted_output = 1;
12210 return (ret_val);
12211 } else {
12212 ctf_do_drop(m, NULL);
12213 return (0);
12214 }
12215 }
12216 /*
12217 * Ack processing.
12218 */
12219 if (rack_process_ack(m, th, so, tp, to, tiwin, tlen, &ourfinisacked, thflags, &ret_val)) {
12220 return (ret_val);
12221 }
12222 if (sbavail(&so->so_snd)) {
12223 if (ctf_progress_timeout_check(tp, true)) {
12224 rack_log_progress_event((struct tcp_rack *)tp->t_fb_ptr,
12225 tp, tick, PROGRESS_DROP, __LINE__);
12226 ctf_do_dropwithreset_conn(m, tp, th, BANDLIM_RST_OPENPORT, tlen);
12227 return (1);
12228 }
12229 }
12230 return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
12231 tiwin, thflags, nxt_pkt));
12232 }
12233
12234 static void inline
12235 rack_clear_rate_sample(struct tcp_rack *rack)
12236 {
12237 rack->r_ctl.rack_rs.rs_flags = RACK_RTT_EMPTY;
12238 rack->r_ctl.rack_rs.rs_rtt_cnt = 0;
12239 rack->r_ctl.rack_rs.rs_rtt_tot = 0;
12240 }
12241
12242 static void
12243 rack_set_pace_segments(struct tcpcb *tp, struct tcp_rack *rack, uint32_t line, uint64_t *fill_override)
12244 {
12245 uint64_t bw_est, rate_wanted;
12246 int chged = 0;
12247 uint32_t user_max, orig_min, orig_max;
12248
12249 orig_min = rack->r_ctl.rc_pace_min_segs;
12250 orig_max = rack->r_ctl.rc_pace_max_segs;
12251 user_max = ctf_fixed_maxseg(tp) * rack->rc_user_set_max_segs;
12252 if (ctf_fixed_maxseg(tp) != rack->r_ctl.rc_pace_min_segs)
12253 chged = 1;
12254 rack->r_ctl.rc_pace_min_segs = ctf_fixed_maxseg(tp);
12255 if (rack->use_fixed_rate || rack->rc_force_max_seg) {
12256 if (user_max != rack->r_ctl.rc_pace_max_segs)
12257 chged = 1;
12258 }
12259 if (rack->rc_force_max_seg) {
12260 rack->r_ctl.rc_pace_max_segs = user_max;
12261 } else if (rack->use_fixed_rate) {
12262 bw_est = rack_get_bw(rack);
12263 if ((rack->r_ctl.crte == NULL) ||
12264 (bw_est != rack->r_ctl.crte->rate)) {
12265 rack->r_ctl.rc_pace_max_segs = user_max;
12266 } else {
12267 /* We are pacing right at the hardware rate */
12268 uint32_t segsiz;
12269
12270 segsiz = min(ctf_fixed_maxseg(tp),
12271 rack->r_ctl.rc_pace_min_segs);
12272 rack->r_ctl.rc_pace_max_segs = tcp_get_pacing_burst_size(
12273 tp, bw_est, segsiz, 0,
12274 rack->r_ctl.crte, NULL);
12275 }
12276 } else if (rack->rc_always_pace) {
12277 if (rack->r_ctl.gp_bw ||
12278 #ifdef NETFLIX_PEAKRATE
12279 rack->rc_tp->t_maxpeakrate ||
12280 #endif
12281 rack->r_ctl.init_rate) {
12282 /* We have a rate of some sort set */
12283 uint32_t orig;
12284
12285 bw_est = rack_get_bw(rack);
12286 orig = rack->r_ctl.rc_pace_max_segs;
12287 if (fill_override)
12288 rate_wanted = *fill_override;
12289 else
12290 rate_wanted = rack_get_output_bw(rack, bw_est, NULL, NULL);
12291 if (rate_wanted) {
12292 /* We have something */
12293 rack->r_ctl.rc_pace_max_segs = rack_get_pacing_len(rack,
12294 rate_wanted,
12295 ctf_fixed_maxseg(rack->rc_tp));
12296 } else
12297 rack->r_ctl.rc_pace_max_segs = rack->r_ctl.rc_pace_min_segs;
12298 if (orig != rack->r_ctl.rc_pace_max_segs)
12299 chged = 1;
12300 } else if ((rack->r_ctl.gp_bw == 0) &&
12301 (rack->r_ctl.rc_pace_max_segs == 0)) {
12302 /*
12303 * If we have nothing limit us to bursting
12304 * out IW sized pieces.
12305 */
12306 chged = 1;
12307 rack->r_ctl.rc_pace_max_segs = rc_init_window(rack);
12308 }
12309 }
12310 if (rack->r_ctl.rc_pace_max_segs > PACE_MAX_IP_BYTES) {
12311 chged = 1;
12312 rack->r_ctl.rc_pace_max_segs = PACE_MAX_IP_BYTES;
12313 }
12314 if (chged)
12315 rack_log_type_pacing_sizes(tp, rack, orig_min, orig_max, line, 2);
12316 }
12317
12318
12319 static void
12320 rack_init_fsb_block(struct tcpcb *tp, struct tcp_rack *rack)
12321 {
12322 #ifdef INET6
12323 struct ip6_hdr *ip6 = NULL;
12324 #endif
12325 #ifdef INET
12326 struct ip *ip = NULL;
12327 #endif
12328 struct udphdr *udp = NULL;
12329
12330 /* Ok lets fill in the fast block, it can only be used with no IP options! */
12331 #ifdef INET6
12332 if (rack->r_is_v6) {
12333 rack->r_ctl.fsb.tcp_ip_hdr_len = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
12334 ip6 = (struct ip6_hdr *)rack->r_ctl.fsb.tcp_ip_hdr;
12335 if (tp->t_port) {
12336 rack->r_ctl.fsb.tcp_ip_hdr_len += sizeof(struct udphdr);
12337 udp = (struct udphdr *)((caddr_t)ip6 + sizeof(struct ip6_hdr));
12338 udp->uh_sport = htons(V_tcp_udp_tunneling_port);
12339 udp->uh_dport = tp->t_port;
12340 rack->r_ctl.fsb.udp = udp;
12341 rack->r_ctl.fsb.th = (struct tcphdr *)(udp + 1);
12342 } else
12343 {
12344 rack->r_ctl.fsb.th = (struct tcphdr *)(ip6 + 1);
12345 rack->r_ctl.fsb.udp = NULL;
12346 }
12347 tcpip_fillheaders(rack->rc_inp,
12348 tp->t_port,
12349 ip6, rack->r_ctl.fsb.th);
12350 } else
12351 #endif /* INET6 */
12352 #ifdef INET
12353 {
12354 rack->r_ctl.fsb.tcp_ip_hdr_len = sizeof(struct tcpiphdr);
12355 ip = (struct ip *)rack->r_ctl.fsb.tcp_ip_hdr;
12356 if (tp->t_port) {
12357 rack->r_ctl.fsb.tcp_ip_hdr_len += sizeof(struct udphdr);
12358 udp = (struct udphdr *)((caddr_t)ip + sizeof(struct ip));
12359 udp->uh_sport = htons(V_tcp_udp_tunneling_port);
12360 udp->uh_dport = tp->t_port;
12361 rack->r_ctl.fsb.udp = udp;
12362 rack->r_ctl.fsb.th = (struct tcphdr *)(udp + 1);
12363 } else
12364 {
12365 rack->r_ctl.fsb.udp = NULL;
12366 rack->r_ctl.fsb.th = (struct tcphdr *)(ip + 1);
12367 }
12368 tcpip_fillheaders(rack->rc_inp,
12369 tp->t_port,
12370 ip, rack->r_ctl.fsb.th);
12371 }
12372 #endif
12373 rack->r_fsb_inited = 1;
12374 }
12375
12376 static int
12377 rack_init_fsb(struct tcpcb *tp, struct tcp_rack *rack)
12378 {
12379 /*
12380 * Allocate the larger of spaces V6 if available else just
12381 * V4 and include udphdr (overbook)
12382 */
12383 #ifdef INET6
12384 rack->r_ctl.fsb.tcp_ip_hdr_len = sizeof(struct ip6_hdr) + sizeof(struct tcphdr) + sizeof(struct udphdr);
12385 #else
12386 rack->r_ctl.fsb.tcp_ip_hdr_len = sizeof(struct tcpiphdr) + sizeof(struct udphdr);
12387 #endif
12388 rack->r_ctl.fsb.tcp_ip_hdr = malloc(rack->r_ctl.fsb.tcp_ip_hdr_len,
12389 M_TCPFSB, M_NOWAIT|M_ZERO);
12390 if (rack->r_ctl.fsb.tcp_ip_hdr == NULL) {
12391 return (ENOMEM);
12392 }
12393 rack->r_fsb_inited = 0;
12394 return (0);
12395 }
12396
12397 static int
12398 rack_init(struct tcpcb *tp)
12399 {
12400 struct inpcb *inp = tptoinpcb(tp);
12401 struct tcp_rack *rack = NULL;
12402 #ifdef INVARIANTS
12403 struct rack_sendmap *insret;
12404 #endif
12405 uint32_t iwin, snt, us_cts;
12406 int err;
12407
12408 tp->t_fb_ptr = uma_zalloc(rack_pcb_zone, M_NOWAIT);
12409 if (tp->t_fb_ptr == NULL) {
12410 /*
12411 * We need to allocate memory but cant. The INP and INP_INFO
12412 * locks and they are recursive (happens during setup. So a
12413 * scheme to drop the locks fails :(
12414 *
12415 */
12416 return (ENOMEM);
12417 }
12418 memset(tp->t_fb_ptr, 0, sizeof(struct tcp_rack));
12419
12420 rack = (struct tcp_rack *)tp->t_fb_ptr;
12421 RB_INIT(&rack->r_ctl.rc_mtree);
12422 TAILQ_INIT(&rack->r_ctl.rc_free);
12423 TAILQ_INIT(&rack->r_ctl.rc_tmap);
12424 rack->rc_tp = tp;
12425 rack->rc_inp = inp;
12426 /* Set the flag */
12427 rack->r_is_v6 = (inp->inp_vflag & INP_IPV6) != 0;
12428 /* Probably not needed but lets be sure */
12429 rack_clear_rate_sample(rack);
12430 /*
12431 * Save off the default values, socket options will poke
12432 * at these if pacing is not on or we have not yet
12433 * reached where pacing is on (gp_ready/fixed enabled).
12434 * When they get set into the CC module (when gp_ready
12435 * is enabled or we enable fixed) then we will set these
12436 * values into the CC and place in here the old values
12437 * so we have a restoral. Then we will set the flag
12438 * rc_pacing_cc_set. That way whenever we turn off pacing
12439 * or switch off this stack, we will know to go restore
12440 * the saved values.
12441 */
12442 rack->r_ctl.rc_saved_beta.beta = V_newreno_beta_ecn;
12443 rack->r_ctl.rc_saved_beta.beta_ecn = V_newreno_beta_ecn;
12444 /* We want abe like behavior as well */
12445 rack->r_ctl.rc_saved_beta.newreno_flags |= CC_NEWRENO_BETA_ECN_ENABLED;
12446 rack->r_ctl.rc_reorder_fade = rack_reorder_fade;
12447 rack->rc_allow_data_af_clo = rack_ignore_data_after_close;
12448 rack->r_ctl.rc_tlp_threshold = rack_tlp_thresh;
12449 rack->r_ctl.roundends = tp->snd_max;
12450 if (use_rack_rr)
12451 rack->use_rack_rr = 1;
12452 if (V_tcp_delack_enabled)
12453 tp->t_delayed_ack = 1;
12454 else
12455 tp->t_delayed_ack = 0;
12456 #ifdef TCP_ACCOUNTING
12457 if (rack_tcp_accounting) {
12458 tp->t_flags2 |= TF2_TCP_ACCOUNTING;
12459 }
12460 #endif
12461 if (rack_enable_shared_cwnd)
12462 rack->rack_enable_scwnd = 1;
12463 rack->rc_user_set_max_segs = rack_hptsi_segments;
12464 rack->rc_force_max_seg = 0;
12465 if (rack_use_imac_dack)
12466 rack->rc_dack_mode = 1;
12467 TAILQ_INIT(&rack->r_ctl.opt_list);
12468 rack->r_ctl.rc_reorder_shift = rack_reorder_thresh;
12469 rack->r_ctl.rc_pkt_delay = rack_pkt_delay;
12470 rack->r_ctl.rc_tlp_cwnd_reduce = rack_lower_cwnd_at_tlp;
12471 rack->r_ctl.rc_lowest_us_rtt = 0xffffffff;
12472 rack->r_ctl.rc_highest_us_rtt = 0;
12473 rack->r_ctl.bw_rate_cap = rack_bw_rate_cap;
12474 rack->r_ctl.timer_slop = TICKS_2_USEC(tcp_rexmit_slop);
12475 if (rack_use_cmp_acks)
12476 rack->r_use_cmp_ack = 1;
12477 if (rack_disable_prr)
12478 rack->rack_no_prr = 1;
12479 if (rack_gp_no_rec_chg)
12480 rack->rc_gp_no_rec_chg = 1;
12481 if (rack_pace_every_seg && tcp_can_enable_pacing()) {
12482 rack->rc_always_pace = 1;
12483 if (rack->use_fixed_rate || rack->gp_ready)
12484 rack_set_cc_pacing(rack);
12485 } else
12486 rack->rc_always_pace = 0;
12487 if (rack_enable_mqueue_for_nonpaced || rack->r_use_cmp_ack)
12488 rack->r_mbuf_queue = 1;
12489 else
12490 rack->r_mbuf_queue = 0;
12491 if (rack->r_mbuf_queue || rack->rc_always_pace || rack->r_use_cmp_ack)
12492 inp->inp_flags2 |= INP_SUPPORTS_MBUFQ;
12493 else
12494 inp->inp_flags2 &= ~INP_SUPPORTS_MBUFQ;
12495 rack_set_pace_segments(tp, rack, __LINE__, NULL);
12496 if (rack_limits_scwnd)
12497 rack->r_limit_scw = 1;
12498 else
12499 rack->r_limit_scw = 0;
12500 rack->rc_labc = V_tcp_abc_l_var;
12501 rack->r_ctl.rc_high_rwnd = tp->snd_wnd;
12502 rack->r_ctl.cwnd_to_use = tp->snd_cwnd;
12503 rack->r_ctl.rc_rate_sample_method = rack_rate_sample_method;
12504 rack->rack_tlp_threshold_use = rack_tlp_threshold_use;
12505 rack->r_ctl.rc_prr_sendalot = rack_send_a_lot_in_prr;
12506 rack->r_ctl.rc_min_to = rack_min_to;
12507 microuptime(&rack->r_ctl.act_rcv_time);
12508 rack->r_ctl.rc_last_time_decay = rack->r_ctl.act_rcv_time;
12509 rack->rc_init_win = rack_default_init_window;
12510 rack->r_ctl.rack_per_of_gp_ss = rack_per_of_gp_ss;
12511 if (rack_hw_up_only)
12512 rack->r_up_only = 1;
12513 if (rack_do_dyn_mul) {
12514 /* When dynamic adjustment is on CA needs to start at 100% */
12515 rack->rc_gp_dyn_mul = 1;
12516 if (rack_do_dyn_mul >= 100)
12517 rack->r_ctl.rack_per_of_gp_ca = rack_do_dyn_mul;
12518 } else
12519 rack->r_ctl.rack_per_of_gp_ca = rack_per_of_gp_ca;
12520 rack->r_ctl.rack_per_of_gp_rec = rack_per_of_gp_rec;
12521 rack->r_ctl.rack_per_of_gp_probertt = rack_per_of_gp_probertt;
12522 rack->r_ctl.rc_tlp_rxt_last_time = tcp_tv_to_mssectick(&rack->r_ctl.act_rcv_time);
12523 setup_time_filter_small(&rack->r_ctl.rc_gp_min_rtt, FILTER_TYPE_MIN,
12524 rack_probertt_filter_life);
12525 us_cts = tcp_tv_to_usectick(&rack->r_ctl.act_rcv_time);
12526 rack->r_ctl.rc_lower_rtt_us_cts = us_cts;
12527 rack->r_ctl.rc_time_of_last_probertt = us_cts;
12528 rack->r_ctl.challenge_ack_ts = tcp_ts_getticks();
12529 rack->r_ctl.rc_time_probertt_starts = 0;
12530 if (rack_dsack_std_based & 0x1) {
12531 /* Basically this means all rack timers are at least (srtt + 1/4 srtt) */
12532 rack->rc_rack_tmr_std_based = 1;
12533 }
12534 if (rack_dsack_std_based & 0x2) {
12535 /* Basically this means rack timers are extended based on dsack by up to (2 * srtt) */
12536 rack->rc_rack_use_dsack = 1;
12537 }
12538 /* We require at least one measurement, even if the sysctl is 0 */
12539 if (rack_req_measurements)
12540 rack->r_ctl.req_measurements = rack_req_measurements;
12541 else
12542 rack->r_ctl.req_measurements = 1;
12543 if (rack_enable_hw_pacing)
12544 rack->rack_hdw_pace_ena = 1;
12545 if (rack_hw_rate_caps)
12546 rack->r_rack_hw_rate_caps = 1;
12547 /* Do we force on detection? */
12548 #ifdef NETFLIX_EXP_DETECTION
12549 if (tcp_force_detection)
12550 rack->do_detection = 1;
12551 else
12552 #endif
12553 rack->do_detection = 0;
12554 if (rack_non_rxt_use_cr)
12555 rack->rack_rec_nonrxt_use_cr = 1;
12556 err = rack_init_fsb(tp, rack);
12557 if (err) {
12558 uma_zfree(rack_pcb_zone, tp->t_fb_ptr);
12559 tp->t_fb_ptr = NULL;
12560 return (err);
12561 }
12562 if (tp->snd_una != tp->snd_max) {
12563 /* Create a send map for the current outstanding data */
12564 struct rack_sendmap *rsm;
12565
12566 rsm = rack_alloc(rack);
12567 if (rsm == NULL) {
12568 uma_zfree(rack_pcb_zone, tp->t_fb_ptr);
12569 tp->t_fb_ptr = NULL;
12570 return (ENOMEM);
12571 }
12572 rsm->r_no_rtt_allowed = 1;
12573 rsm->r_tim_lastsent[0] = rack_to_usec_ts(&rack->r_ctl.act_rcv_time);
12574 rsm->r_rtr_cnt = 1;
12575 rsm->r_rtr_bytes = 0;
12576 if (tp->t_flags & TF_SENTFIN)
12577 rsm->r_flags |= RACK_HAS_FIN;
12578 if ((tp->snd_una == tp->iss) &&
12579 !TCPS_HAVEESTABLISHED(tp->t_state))
12580 rsm->r_flags |= RACK_HAS_SYN;
12581 rsm->r_start = tp->snd_una;
12582 rsm->r_end = tp->snd_max;
12583 rsm->r_dupack = 0;
12584 if (rack->rc_inp->inp_socket->so_snd.sb_mb != NULL) {
12585 rsm->m = sbsndmbuf(&rack->rc_inp->inp_socket->so_snd, 0, &rsm->soff);
12586 if (rsm->m)
12587 rsm->orig_m_len = rsm->m->m_len;
12588 else
12589 rsm->orig_m_len = 0;
12590 } else {
12591 /*
12592 * This can happen if we have a stand-alone FIN or
12593 * SYN.
12594 */
12595 rsm->m = NULL;
12596 rsm->orig_m_len = 0;
12597 rsm->soff = 0;
12598 }
12599 #ifndef INVARIANTS
12600 (void)RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
12601 #else
12602 insret = RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
12603 if (insret != NULL) {
12604 panic("Insert in rb tree fails ret:%p rack:%p rsm:%p",
12605 insret, rack, rsm);
12606 }
12607 #endif
12608 TAILQ_INSERT_TAIL(&rack->r_ctl.rc_tmap, rsm, r_tnext);
12609 rsm->r_in_tmap = 1;
12610 }
12611 /*
12612 * Timers in Rack are kept in microseconds so lets
12613 * convert any initial incoming variables
12614 * from ticks into usecs. Note that we
12615 * also change the values of t_srtt and t_rttvar, if
12616 * they are non-zero. They are kept with a 5
12617 * bit decimal so we have to carefully convert
12618 * these to get the full precision.
12619 */
12620 rack_convert_rtts(tp);
12621 tp->t_rttlow = TICKS_2_USEC(tp->t_rttlow);
12622 if (rack_do_hystart) {
12623 tp->t_ccv.flags |= CCF_HYSTART_ALLOWED;
12624 if (rack_do_hystart > 1)
12625 tp->t_ccv.flags |= CCF_HYSTART_CAN_SH_CWND;
12626 if (rack_do_hystart > 2)
12627 tp->t_ccv.flags |= CCF_HYSTART_CONS_SSTH;
12628 }
12629 if (rack_def_profile)
12630 rack_set_profile(rack, rack_def_profile);
12631 /* Cancel the GP measurement in progress */
12632 tp->t_flags &= ~TF_GPUTINPROG;
12633 if (SEQ_GT(tp->snd_max, tp->iss))
12634 snt = tp->snd_max - tp->iss;
12635 else
12636 snt = 0;
12637 iwin = rc_init_window(rack);
12638 if (snt < iwin) {
12639 /* We are not past the initial window
12640 * so we need to make sure cwnd is
12641 * correct.
12642 */
12643 if (tp->snd_cwnd < iwin)
12644 tp->snd_cwnd = iwin;
12645 /*
12646 * If we are within the initial window
12647 * we want ssthresh to be unlimited. Setting
12648 * it to the rwnd (which the default stack does
12649 * and older racks) is not really a good idea
12650 * since we want to be in SS and grow both the
12651 * cwnd and the rwnd (via dynamic rwnd growth). If
12652 * we set it to the rwnd then as the peer grows its
12653 * rwnd we will be stuck in CA and never hit SS.
12654 *
12655 * Its far better to raise it up high (this takes the
12656 * risk that there as been a loss already, probably
12657 * we should have an indicator in all stacks of loss
12658 * but we don't), but considering the normal use this
12659 * is a risk worth taking. The consequences of not
12660 * hitting SS are far worse than going one more time
12661 * into it early on (before we have sent even a IW).
12662 * It is highly unlikely that we will have had a loss
12663 * before getting the IW out.
12664 */
12665 tp->snd_ssthresh = 0xffffffff;
12666 }
12667 rack_stop_all_timers(tp);
12668 /* Lets setup the fsb block */
12669 rack_start_hpts_timer(rack, tp, tcp_get_usecs(NULL), 0, 0, 0);
12670 rack_log_rtt_shrinks(rack, us_cts, tp->t_rxtcur,
12671 __LINE__, RACK_RTTS_INIT);
12672 return (0);
12673 }
12674
12675 static int
12676 rack_handoff_ok(struct tcpcb *tp)
12677 {
12678 if ((tp->t_state == TCPS_CLOSED) ||
12679 (tp->t_state == TCPS_LISTEN)) {
12680 /* Sure no problem though it may not stick */
12681 return (0);
12682 }
12683 if ((tp->t_state == TCPS_SYN_SENT) ||
12684 (tp->t_state == TCPS_SYN_RECEIVED)) {
12685 /*
12686 * We really don't know if you support sack,
12687 * you have to get to ESTAB or beyond to tell.
12688 */
12689 return (EAGAIN);
12690 }
12691 if ((tp->t_flags & TF_SENTFIN) && ((tp->snd_max - tp->snd_una) > 1)) {
12692 /*
12693 * Rack will only send a FIN after all data is acknowledged.
12694 * So in this case we have more data outstanding. We can't
12695 * switch stacks until either all data and only the FIN
12696 * is left (in which case rack_init() now knows how
12697 * to deal with that) <or> all is acknowledged and we
12698 * are only left with incoming data, though why you
12699 * would want to switch to rack after all data is acknowledged
12700 * I have no idea (rrs)!
12701 */
12702 return (EAGAIN);
12703 }
12704 if ((tp->t_flags & TF_SACK_PERMIT) || rack_sack_not_required){
12705 return (0);
12706 }
12707 /*
12708 * If we reach here we don't do SACK on this connection so we can
12709 * never do rack.
12710 */
12711 return (EINVAL);
12712 }
12713
12714
12715 static void
12716 rack_fini(struct tcpcb *tp, int32_t tcb_is_purged)
12717 {
12718 struct inpcb *inp = tptoinpcb(tp);
12719
12720 if (tp->t_fb_ptr) {
12721 struct tcp_rack *rack;
12722 struct rack_sendmap *rsm, *nrsm;
12723 #ifdef INVARIANTS
12724 struct rack_sendmap *rm;
12725 #endif
12726
12727 rack = (struct tcp_rack *)tp->t_fb_ptr;
12728 if (tp->t_in_pkt) {
12729 /*
12730 * It is unsafe to process the packets since a
12731 * reset may be lurking in them (its rare but it
12732 * can occur). If we were to find a RST, then we
12733 * would end up dropping the connection and the
12734 * INP lock, so when we return the caller (tcp_usrreq)
12735 * will blow up when it trys to unlock the inp.
12736 */
12737 struct mbuf *save, *m;
12738
12739 m = tp->t_in_pkt;
12740 tp->t_in_pkt = NULL;
12741 tp->t_tail_pkt = NULL;
12742 while (m) {
12743 save = m->m_nextpkt;
12744 m->m_nextpkt = NULL;
12745 m_freem(m);
12746 m = save;
12747 }
12748 }
12749 tp->t_flags &= ~TF_FORCEDATA;
12750 #ifdef NETFLIX_SHARED_CWND
12751 if (rack->r_ctl.rc_scw) {
12752 uint32_t limit;
12753
12754 if (rack->r_limit_scw)
12755 limit = max(1, rack->r_ctl.rc_lowest_us_rtt);
12756 else
12757 limit = 0;
12758 tcp_shared_cwnd_free_full(tp, rack->r_ctl.rc_scw,
12759 rack->r_ctl.rc_scw_index,
12760 limit);
12761 rack->r_ctl.rc_scw = NULL;
12762 }
12763 #endif
12764 if (rack->r_ctl.fsb.tcp_ip_hdr) {
12765 free(rack->r_ctl.fsb.tcp_ip_hdr, M_TCPFSB);
12766 rack->r_ctl.fsb.tcp_ip_hdr = NULL;
12767 rack->r_ctl.fsb.th = NULL;
12768 }
12769 /* Convert back to ticks, with */
12770 if (tp->t_srtt > 1) {
12771 uint32_t val, frac;
12772
12773 val = USEC_2_TICKS(tp->t_srtt);
12774 frac = tp->t_srtt % (HPTS_USEC_IN_SEC / hz);
12775 tp->t_srtt = val << TCP_RTT_SHIFT;
12776 /*
12777 * frac is the fractional part here is left
12778 * over from converting to hz and shifting.
12779 * We need to convert this to the 5 bit
12780 * remainder.
12781 */
12782 if (frac) {
12783 if (hz == 1000) {
12784 frac = (((uint64_t)frac * (uint64_t)TCP_RTT_SCALE) / (uint64_t)HPTS_USEC_IN_MSEC);
12785 } else {
12786 frac = (((uint64_t)frac * (uint64_t)(hz) * (uint64_t)TCP_RTT_SCALE) /(uint64_t)HPTS_USEC_IN_SEC);
12787 }
12788 tp->t_srtt += frac;
12789 }
12790 }
12791 if (tp->t_rttvar) {
12792 uint32_t val, frac;
12793
12794 val = USEC_2_TICKS(tp->t_rttvar);
12795 frac = tp->t_srtt % (HPTS_USEC_IN_SEC / hz);
12796 tp->t_rttvar = val << TCP_RTTVAR_SHIFT;
12797 /*
12798 * frac is the fractional part here is left
12799 * over from converting to hz and shifting.
12800 * We need to convert this to the 5 bit
12801 * remainder.
12802 */
12803 if (frac) {
12804 if (hz == 1000) {
12805 frac = (((uint64_t)frac * (uint64_t)TCP_RTT_SCALE) / (uint64_t)HPTS_USEC_IN_MSEC);
12806 } else {
12807 frac = (((uint64_t)frac * (uint64_t)(hz) * (uint64_t)TCP_RTT_SCALE) /(uint64_t)HPTS_USEC_IN_SEC);
12808 }
12809 tp->t_rttvar += frac;
12810 }
12811 }
12812 tp->t_rxtcur = USEC_2_TICKS(tp->t_rxtcur);
12813 tp->t_rttlow = USEC_2_TICKS(tp->t_rttlow);
12814 if (rack->rc_always_pace) {
12815 tcp_decrement_paced_conn();
12816 rack_undo_cc_pacing(rack);
12817 rack->rc_always_pace = 0;
12818 }
12819 /* Clean up any options if they were not applied */
12820 while (!TAILQ_EMPTY(&rack->r_ctl.opt_list)) {
12821 struct deferred_opt_list *dol;
12822
12823 dol = TAILQ_FIRST(&rack->r_ctl.opt_list);
12824 TAILQ_REMOVE(&rack->r_ctl.opt_list, dol, next);
12825 free(dol, M_TCPDO);
12826 }
12827 /* rack does not use force data but other stacks may clear it */
12828 if (rack->r_ctl.crte != NULL) {
12829 tcp_rel_pacing_rate(rack->r_ctl.crte, tp);
12830 rack->rack_hdrw_pacing = 0;
12831 rack->r_ctl.crte = NULL;
12832 }
12833 #ifdef TCP_BLACKBOX
12834 tcp_log_flowend(tp);
12835 #endif
12836 RB_FOREACH_SAFE(rsm, rack_rb_tree_head, &rack->r_ctl.rc_mtree, nrsm) {
12837 #ifndef INVARIANTS
12838 (void)RB_REMOVE(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
12839 #else
12840 rm = RB_REMOVE(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
12841 if (rm != rsm) {
12842 panic("At fini, rack:%p rsm:%p rm:%p",
12843 rack, rsm, rm);
12844 }
12845 #endif
12846 uma_zfree(rack_zone, rsm);
12847 }
12848 rsm = TAILQ_FIRST(&rack->r_ctl.rc_free);
12849 while (rsm) {
12850 TAILQ_REMOVE(&rack->r_ctl.rc_free, rsm, r_tnext);
12851 uma_zfree(rack_zone, rsm);
12852 rsm = TAILQ_FIRST(&rack->r_ctl.rc_free);
12853 }
12854 rack->rc_free_cnt = 0;
12855 uma_zfree(rack_pcb_zone, tp->t_fb_ptr);
12856 tp->t_fb_ptr = NULL;
12857 }
12858 inp->inp_flags2 &= ~INP_SUPPORTS_MBUFQ;
12859 inp->inp_flags2 &= ~INP_MBUF_QUEUE_READY;
12860 inp->inp_flags2 &= ~INP_DONT_SACK_QUEUE;
12861 inp->inp_flags2 &= ~INP_MBUF_ACKCMP;
12862 /* Cancel the GP measurement in progress */
12863 tp->t_flags &= ~TF_GPUTINPROG;
12864 inp->inp_flags2 &= ~INP_MBUF_L_ACKS;
12865 /* Make sure snd_nxt is correctly set */
12866 tp->snd_nxt = tp->snd_max;
12867 }
12868
12869 static void
12870 rack_set_state(struct tcpcb *tp, struct tcp_rack *rack)
12871 {
12872 if ((rack->r_state == TCPS_CLOSED) && (tp->t_state != TCPS_CLOSED)) {
12873 rack->r_is_v6 = (tptoinpcb(tp)->inp_vflag & INP_IPV6) != 0;
12874 }
12875 switch (tp->t_state) {
12876 case TCPS_SYN_SENT:
12877 rack->r_state = TCPS_SYN_SENT;
12878 rack->r_substate = rack_do_syn_sent;
12879 break;
12880 case TCPS_SYN_RECEIVED:
12881 rack->r_state = TCPS_SYN_RECEIVED;
12882 rack->r_substate = rack_do_syn_recv;
12883 break;
12884 case TCPS_ESTABLISHED:
12885 rack_set_pace_segments(tp, rack, __LINE__, NULL);
12886 rack->r_state = TCPS_ESTABLISHED;
12887 rack->r_substate = rack_do_established;
12888 break;
12889 case TCPS_CLOSE_WAIT:
12890 rack_set_pace_segments(tp, rack, __LINE__, NULL);
12891 rack->r_state = TCPS_CLOSE_WAIT;
12892 rack->r_substate = rack_do_close_wait;
12893 break;
12894 case TCPS_FIN_WAIT_1:
12895 rack_set_pace_segments(tp, rack, __LINE__, NULL);
12896 rack->r_state = TCPS_FIN_WAIT_1;
12897 rack->r_substate = rack_do_fin_wait_1;
12898 break;
12899 case TCPS_CLOSING:
12900 rack_set_pace_segments(tp, rack, __LINE__, NULL);
12901 rack->r_state = TCPS_CLOSING;
12902 rack->r_substate = rack_do_closing;
12903 break;
12904 case TCPS_LAST_ACK:
12905 rack_set_pace_segments(tp, rack, __LINE__, NULL);
12906 rack->r_state = TCPS_LAST_ACK;
12907 rack->r_substate = rack_do_lastack;
12908 break;
12909 case TCPS_FIN_WAIT_2:
12910 rack_set_pace_segments(tp, rack, __LINE__, NULL);
12911 rack->r_state = TCPS_FIN_WAIT_2;
12912 rack->r_substate = rack_do_fin_wait_2;
12913 break;
12914 case TCPS_LISTEN:
12915 case TCPS_CLOSED:
12916 case TCPS_TIME_WAIT:
12917 default:
12918 break;
12919 };
12920 if (rack->r_use_cmp_ack && TCPS_HAVEESTABLISHED(tp->t_state))
12921 rack->rc_inp->inp_flags2 |= INP_MBUF_ACKCMP;
12922
12923 }
12924
12925 static void
12926 rack_timer_audit(struct tcpcb *tp, struct tcp_rack *rack, struct sockbuf *sb)
12927 {
12928 /*
12929 * We received an ack, and then did not
12930 * call send or were bounced out due to the
12931 * hpts was running. Now a timer is up as well, is
12932 * it the right timer?
12933 */
12934 struct rack_sendmap *rsm;
12935 int tmr_up;
12936
12937 tmr_up = rack->r_ctl.rc_hpts_flags & PACE_TMR_MASK;
12938 if (rack->rc_in_persist && (tmr_up == PACE_TMR_PERSIT))
12939 return;
12940 rsm = TAILQ_FIRST(&rack->r_ctl.rc_tmap);
12941 if (((rsm == NULL) || (tp->t_state < TCPS_ESTABLISHED)) &&
12942 (tmr_up == PACE_TMR_RXT)) {
12943 /* Should be an RXT */
12944 return;
12945 }
12946 if (rsm == NULL) {
12947 /* Nothing outstanding? */
12948 if (tp->t_flags & TF_DELACK) {
12949 if (tmr_up == PACE_TMR_DELACK)
12950 /* We are supposed to have delayed ack up and we do */
12951 return;
12952 } else if (sbavail(&tptosocket(tp)->so_snd) && (tmr_up == PACE_TMR_RXT)) {
12953 /*
12954 * if we hit enobufs then we would expect the possibility
12955 * of nothing outstanding and the RXT up (and the hptsi timer).
12956 */
12957 return;
12958 } else if (((V_tcp_always_keepalive ||
12959 rack->rc_inp->inp_socket->so_options & SO_KEEPALIVE) &&
12960 (tp->t_state <= TCPS_CLOSING)) &&
12961 (tmr_up == PACE_TMR_KEEP) &&
12962 (tp->snd_max == tp->snd_una)) {
12963 /* We should have keep alive up and we do */
12964 return;
12965 }
12966 }
12967 if (SEQ_GT(tp->snd_max, tp->snd_una) &&
12968 ((tmr_up == PACE_TMR_TLP) ||
12969 (tmr_up == PACE_TMR_RACK) ||
12970 (tmr_up == PACE_TMR_RXT))) {
12971 /*
12972 * Either a Rack, TLP or RXT is fine if we
12973 * have outstanding data.
12974 */
12975 return;
12976 } else if (tmr_up == PACE_TMR_DELACK) {
12977 /*
12978 * If the delayed ack was going to go off
12979 * before the rtx/tlp/rack timer were going to
12980 * expire, then that would be the timer in control.
12981 * Note we don't check the time here trusting the
12982 * code is correct.
12983 */
12984 return;
12985 }
12986 /*
12987 * Ok the timer originally started is not what we want now.
12988 * We will force the hpts to be stopped if any, and restart
12989 * with the slot set to what was in the saved slot.
12990 */
12991 if (tcp_in_hpts(rack->rc_inp)) {
12992 if (rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) {
12993 uint32_t us_cts;
12994
12995 us_cts = tcp_get_usecs(NULL);
12996 if (TSTMP_GT(rack->r_ctl.rc_last_output_to, us_cts)) {
12997 rack->r_early = 1;
12998 rack->r_ctl.rc_agg_early += (rack->r_ctl.rc_last_output_to - us_cts);
12999 }
13000 rack->r_ctl.rc_hpts_flags &= ~PACE_PKT_OUTPUT;
13001 }
13002 tcp_hpts_remove(rack->rc_inp);
13003 }
13004 rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__);
13005 rack_start_hpts_timer(rack, tp, tcp_get_usecs(NULL), 0, 0, 0);
13006 }
13007
13008
13009 static void
13010 rack_do_win_updates(struct tcpcb *tp, struct tcp_rack *rack, uint32_t tiwin, uint32_t seq, uint32_t ack, uint32_t cts, uint32_t high_seq)
13011 {
13012 if ((SEQ_LT(tp->snd_wl1, seq) ||
13013 (tp->snd_wl1 == seq && (SEQ_LT(tp->snd_wl2, ack) ||
13014 (tp->snd_wl2 == ack && tiwin > tp->snd_wnd))))) {
13015 /* keep track of pure window updates */
13016 if ((tp->snd_wl2 == ack) && (tiwin > tp->snd_wnd))
13017 KMOD_TCPSTAT_INC(tcps_rcvwinupd);
13018 tp->snd_wnd = tiwin;
13019 rack_validate_fo_sendwin_up(tp, rack);
13020 tp->snd_wl1 = seq;
13021 tp->snd_wl2 = ack;
13022 if (tp->snd_wnd > tp->max_sndwnd)
13023 tp->max_sndwnd = tp->snd_wnd;
13024 rack->r_wanted_output = 1;
13025 } else if ((tp->snd_wl2 == ack) && (tiwin < tp->snd_wnd)) {
13026 tp->snd_wnd = tiwin;
13027 rack_validate_fo_sendwin_up(tp, rack);
13028 tp->snd_wl1 = seq;
13029 tp->snd_wl2 = ack;
13030 } else {
13031 /* Not a valid win update */
13032 return;
13033 }
13034 /* Do we exit persists? */
13035 if ((rack->rc_in_persist != 0) &&
13036 (tp->snd_wnd >= min((rack->r_ctl.rc_high_rwnd/2),
13037 rack->r_ctl.rc_pace_min_segs))) {
13038 rack_exit_persist(tp, rack, cts);
13039 }
13040 /* Do we enter persists? */
13041 if ((rack->rc_in_persist == 0) &&
13042 (tp->snd_wnd < min((rack->r_ctl.rc_high_rwnd/2), rack->r_ctl.rc_pace_min_segs)) &&
13043 TCPS_HAVEESTABLISHED(tp->t_state) &&
13044 ((tp->snd_max == tp->snd_una) || rack->rc_has_collapsed) &&
13045 sbavail(&tptosocket(tp)->so_snd) &&
13046 (sbavail(&tptosocket(tp)->so_snd) > tp->snd_wnd)) {
13047 /*
13048 * Here the rwnd is less than
13049 * the pacing size, we are established,
13050 * nothing is outstanding, and there is
13051 * data to send. Enter persists.
13052 */
13053 rack_enter_persist(tp, rack, rack->r_ctl.rc_rcvtime);
13054 }
13055 }
13056
13057 static void
13058 rack_log_input_packet(struct tcpcb *tp, struct tcp_rack *rack, struct tcp_ackent *ae, int ackval, uint32_t high_seq)
13059 {
13060
13061 if (tp->t_logstate != TCP_LOG_STATE_OFF) {
13062 struct inpcb *inp = tptoinpcb(tp);
13063 union tcp_log_stackspecific log;
13064 struct timeval ltv;
13065 char tcp_hdr_buf[60];
13066 struct tcphdr *th;
13067 struct timespec ts;
13068 uint32_t orig_snd_una;
13069 uint8_t xx = 0;
13070
13071 #ifdef NETFLIX_HTTP_LOGGING
13072 struct http_sendfile_track *http_req;
13073
13074 if (SEQ_GT(ae->ack, tp->snd_una)) {
13075 http_req = tcp_http_find_req_for_seq(tp, (ae->ack-1));
13076 } else {
13077 http_req = tcp_http_find_req_for_seq(tp, ae->ack);
13078 }
13079 #endif
13080 memset(&log.u_bbr, 0, sizeof(log.u_bbr));
13081 log.u_bbr.inhpts = tcp_in_hpts(rack->rc_inp);
13082 if (rack->rack_no_prr == 0)
13083 log.u_bbr.flex1 = rack->r_ctl.rc_prr_sndcnt;
13084 else
13085 log.u_bbr.flex1 = 0;
13086 log.u_bbr.use_lt_bw = rack->r_ent_rec_ns;
13087 log.u_bbr.use_lt_bw <<= 1;
13088 log.u_bbr.use_lt_bw |= rack->r_might_revert;
13089 log.u_bbr.flex2 = rack->r_ctl.rc_num_maps_alloced;
13090 log.u_bbr.inflight = ctf_flight_size(tp, rack->r_ctl.rc_sacked);
13091 log.u_bbr.pkts_out = tp->t_maxseg;
13092 log.u_bbr.flex4 = rack->r_ctl.rc_hpts_flags;
13093 log.u_bbr.flex7 = 1;
13094 log.u_bbr.lost = ae->flags;
13095 log.u_bbr.cwnd_gain = ackval;
13096 log.u_bbr.pacing_gain = 0x2;
13097 if (ae->flags & TSTMP_HDWR) {
13098 /* Record the hardware timestamp if present */
13099 log.u_bbr.flex3 = M_TSTMP;
13100 ts.tv_sec = ae->timestamp / 1000000000;
13101 ts.tv_nsec = ae->timestamp % 1000000000;
13102 ltv.tv_sec = ts.tv_sec;
13103 ltv.tv_usec = ts.tv_nsec / 1000;
13104 log.u_bbr.lt_epoch = tcp_tv_to_usectick(<v);
13105 } else if (ae->flags & TSTMP_LRO) {
13106 /* Record the LRO the arrival timestamp */
13107 log.u_bbr.flex3 = M_TSTMP_LRO;
13108 ts.tv_sec = ae->timestamp / 1000000000;
13109 ts.tv_nsec = ae->timestamp % 1000000000;
13110 ltv.tv_sec = ts.tv_sec;
13111 ltv.tv_usec = ts.tv_nsec / 1000;
13112 log.u_bbr.flex5 = tcp_tv_to_usectick(<v);
13113 }
13114 log.u_bbr.timeStamp = tcp_get_usecs(<v);
13115 /* Log the rcv time */
13116 log.u_bbr.delRate = ae->timestamp;
13117 #ifdef NETFLIX_HTTP_LOGGING
13118 log.u_bbr.applimited = tp->t_http_closed;
13119 log.u_bbr.applimited <<= 8;
13120 log.u_bbr.applimited |= tp->t_http_open;
13121 log.u_bbr.applimited <<= 8;
13122 log.u_bbr.applimited |= tp->t_http_req;
13123 if (http_req) {
13124 /* Copy out any client req info */
13125 /* seconds */
13126 log.u_bbr.pkt_epoch = (http_req->localtime / HPTS_USEC_IN_SEC);
13127 /* useconds */
13128 log.u_bbr.delivered = (http_req->localtime % HPTS_USEC_IN_SEC);
13129 log.u_bbr.rttProp = http_req->timestamp;
13130 log.u_bbr.cur_del_rate = http_req->start;
13131 if (http_req->flags & TCP_HTTP_TRACK_FLG_OPEN) {
13132 log.u_bbr.flex8 |= 1;
13133 } else {
13134 log.u_bbr.flex8 |= 2;
13135 log.u_bbr.bw_inuse = http_req->end;
13136 }
13137 log.u_bbr.flex6 = http_req->start_seq;
13138 if (http_req->flags & TCP_HTTP_TRACK_FLG_COMP) {
13139 log.u_bbr.flex8 |= 4;
13140 log.u_bbr.epoch = http_req->end_seq;
13141 }
13142 }
13143 #endif
13144 memset(tcp_hdr_buf, 0, sizeof(tcp_hdr_buf));
13145 th = (struct tcphdr *)tcp_hdr_buf;
13146 th->th_seq = ae->seq;
13147 th->th_ack = ae->ack;
13148 th->th_win = ae->win;
13149 /* Now fill in the ports */
13150 th->th_sport = inp->inp_fport;
13151 th->th_dport = inp->inp_lport;
13152 tcp_set_flags(th, ae->flags);
13153 /* Now do we have a timestamp option? */
13154 if (ae->flags & HAS_TSTMP) {
13155 u_char *cp;
13156 uint32_t val;
13157
13158 th->th_off = ((sizeof(struct tcphdr) + TCPOLEN_TSTAMP_APPA) >> 2);
13159 cp = (u_char *)(th + 1);
13160 *cp = TCPOPT_NOP;
13161 cp++;
13162 *cp = TCPOPT_NOP;
13163 cp++;
13164 *cp = TCPOPT_TIMESTAMP;
13165 cp++;
13166 *cp = TCPOLEN_TIMESTAMP;
13167 cp++;
13168 val = htonl(ae->ts_value);
13169 bcopy((char *)&val,
13170 (char *)cp, sizeof(uint32_t));
13171 val = htonl(ae->ts_echo);
13172 bcopy((char *)&val,
13173 (char *)(cp + 4), sizeof(uint32_t));
13174 } else
13175 th->th_off = (sizeof(struct tcphdr) >> 2);
13176
13177 /*
13178 * For sane logging we need to play a little trick.
13179 * If the ack were fully processed we would have moved
13180 * snd_una to high_seq, but since compressed acks are
13181 * processed in two phases, at this point (logging) snd_una
13182 * won't be advanced. So we would see multiple acks showing
13183 * the advancement. We can prevent that by "pretending" that
13184 * snd_una was advanced and then un-advancing it so that the
13185 * logging code has the right value for tlb_snd_una.
13186 */
13187 if (tp->snd_una != high_seq) {
13188 orig_snd_una = tp->snd_una;
13189 tp->snd_una = high_seq;
13190 xx = 1;
13191 } else
13192 xx = 0;
13193 TCP_LOG_EVENTP(tp, th,
13194 &tptosocket(tp)->so_rcv,
13195 &tptosocket(tp)->so_snd, TCP_LOG_IN, 0,
13196 0, &log, true, <v);
13197 if (xx) {
13198 tp->snd_una = orig_snd_una;
13199 }
13200 }
13201
13202 }
13203
13204 static void
13205 rack_handle_probe_response(struct tcp_rack *rack, uint32_t tiwin, uint32_t us_cts)
13206 {
13207 uint32_t us_rtt;
13208 /*
13209 * A persist or keep-alive was forced out, update our
13210 * min rtt time. Note now worry about lost responses.
13211 * When a subsequent keep-alive or persist times out
13212 * and forced_ack is still on, then the last probe
13213 * was not responded to. In such cases we have a
13214 * sysctl that controls the behavior. Either we apply
13215 * the rtt but with reduced confidence (0). Or we just
13216 * plain don't apply the rtt estimate. Having data flow
13217 * will clear the probe_not_answered flag i.e. cum-ack
13218 * move forward <or> exiting and reentering persists.
13219 */
13220
13221 rack->forced_ack = 0;
13222 rack->rc_tp->t_rxtshift = 0;
13223 if ((rack->rc_in_persist &&
13224 (tiwin == rack->rc_tp->snd_wnd)) ||
13225 (rack->rc_in_persist == 0)) {
13226 /*
13227 * In persists only apply the RTT update if this is
13228 * a response to our window probe. And that
13229 * means the rwnd sent must match the current
13230 * snd_wnd. If it does not, then we got a
13231 * window update ack instead. For keepalive
13232 * we allow the answer no matter what the window.
13233 *
13234 * Note that if the probe_not_answered is set then
13235 * the forced_ack_ts is the oldest one i.e. the first
13236 * probe sent that might have been lost. This assures
13237 * us that if we do calculate an RTT it is longer not
13238 * some short thing.
13239 */
13240 if (rack->rc_in_persist)
13241 counter_u64_add(rack_persists_acks, 1);
13242 us_rtt = us_cts - rack->r_ctl.forced_ack_ts;
13243 if (us_rtt == 0)
13244 us_rtt = 1;
13245 if (rack->probe_not_answered == 0) {
13246 rack_apply_updated_usrtt(rack, us_rtt, us_cts);
13247 tcp_rack_xmit_timer(rack, us_rtt, 0, us_rtt, 3, NULL, 1);
13248 } else {
13249 /* We have a retransmitted probe here too */
13250 if (rack_apply_rtt_with_reduced_conf) {
13251 rack_apply_updated_usrtt(rack, us_rtt, us_cts);
13252 tcp_rack_xmit_timer(rack, us_rtt, 0, us_rtt, 0, NULL, 1);
13253 }
13254 }
13255 }
13256 }
13257
13258 static int
13259 rack_do_compressed_ack_processing(struct tcpcb *tp, struct socket *so, struct mbuf *m, int nxt_pkt, struct timeval *tv)
13260 {
13261 /*
13262 * Handle a "special" compressed ack mbuf. Each incoming
13263 * ack has only four possible dispositions:
13264 *
13265 * A) It moves the cum-ack forward
13266 * B) It is behind the cum-ack.
13267 * C) It is a window-update ack.
13268 * D) It is a dup-ack.
13269 *
13270 * Note that we can have between 1 -> TCP_COMP_ACK_ENTRIES
13271 * in the incoming mbuf. We also need to still pay attention
13272 * to nxt_pkt since there may be another packet after this
13273 * one.
13274 */
13275 #ifdef TCP_ACCOUNTING
13276 uint64_t ts_val;
13277 uint64_t rdstc;
13278 #endif
13279 int segsiz;
13280 struct timespec ts;
13281 struct tcp_rack *rack;
13282 struct tcp_ackent *ae;
13283 uint32_t tiwin, ms_cts, cts, acked, acked_amount, high_seq, win_seq, the_win, win_upd_ack;
13284 int cnt, i, did_out, ourfinisacked = 0;
13285 struct tcpopt to_holder, *to = NULL;
13286 #ifdef TCP_ACCOUNTING
13287 int win_up_req = 0;
13288 #endif
13289 int nsegs = 0;
13290 int under_pacing = 1;
13291 int recovery = 0;
13292 #ifdef TCP_ACCOUNTING
13293 sched_pin();
13294 #endif
13295 rack = (struct tcp_rack *)tp->t_fb_ptr;
13296 if (rack->gp_ready &&
13297 (rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT))
13298 under_pacing = 0;
13299 else
13300 under_pacing = 1;
13301
13302 if (rack->r_state != tp->t_state)
13303 rack_set_state(tp, rack);
13304 if ((tp->t_state >= TCPS_FIN_WAIT_1) &&
13305 (tp->t_flags & TF_GPUTINPROG)) {
13306 /*
13307 * We have a goodput in progress
13308 * and we have entered a late state.
13309 * Do we have enough data in the sb
13310 * to handle the GPUT request?
13311 */
13312 uint32_t bytes;
13313
13314 bytes = tp->gput_ack - tp->gput_seq;
13315 if (SEQ_GT(tp->gput_seq, tp->snd_una))
13316 bytes += tp->gput_seq - tp->snd_una;
13317 if (bytes > sbavail(&tptosocket(tp)->so_snd)) {
13318 /*
13319 * There are not enough bytes in the socket
13320 * buffer that have been sent to cover this
13321 * measurement. Cancel it.
13322 */
13323 rack_log_pacing_delay_calc(rack, (tp->gput_ack - tp->gput_seq) /*flex2*/,
13324 rack->r_ctl.rc_gp_srtt /*flex1*/,
13325 tp->gput_seq,
13326 0, 0, 18, __LINE__, NULL, 0);
13327 tp->t_flags &= ~TF_GPUTINPROG;
13328 }
13329 }
13330 to = &to_holder;
13331 to->to_flags = 0;
13332 KASSERT((m->m_len >= sizeof(struct tcp_ackent)),
13333 ("tp:%p m_cmpack:%p with invalid len:%u", tp, m, m->m_len));
13334 cnt = m->m_len / sizeof(struct tcp_ackent);
13335 counter_u64_add(rack_multi_single_eq, cnt);
13336 high_seq = tp->snd_una;
13337 the_win = tp->snd_wnd;
13338 win_seq = tp->snd_wl1;
13339 win_upd_ack = tp->snd_wl2;
13340 cts = tcp_tv_to_usectick(tv);
13341 ms_cts = tcp_tv_to_mssectick(tv);
13342 rack->r_ctl.rc_rcvtime = cts;
13343 segsiz = ctf_fixed_maxseg(tp);
13344 if ((rack->rc_gp_dyn_mul) &&
13345 (rack->use_fixed_rate == 0) &&
13346 (rack->rc_always_pace)) {
13347 /* Check in on probertt */
13348 rack_check_probe_rtt(rack, cts);
13349 }
13350 for (i = 0; i < cnt; i++) {
13351 #ifdef TCP_ACCOUNTING
13352 ts_val = get_cyclecount();
13353 #endif
13354 rack_clear_rate_sample(rack);
13355 ae = ((mtod(m, struct tcp_ackent *)) + i);
13356 /* Setup the window */
13357 tiwin = ae->win << tp->snd_scale;
13358 if (tiwin > rack->r_ctl.rc_high_rwnd)
13359 rack->r_ctl.rc_high_rwnd = tiwin;
13360 /* figure out the type of ack */
13361 if (SEQ_LT(ae->ack, high_seq)) {
13362 /* Case B*/
13363 ae->ack_val_set = ACK_BEHIND;
13364 } else if (SEQ_GT(ae->ack, high_seq)) {
13365 /* Case A */
13366 ae->ack_val_set = ACK_CUMACK;
13367 } else if ((tiwin == the_win) && (rack->rc_in_persist == 0)){
13368 /* Case D */
13369 ae->ack_val_set = ACK_DUPACK;
13370 } else {
13371 /* Case C */
13372 ae->ack_val_set = ACK_RWND;
13373 }
13374 rack_log_input_packet(tp, rack, ae, ae->ack_val_set, high_seq);
13375 /* Validate timestamp */
13376 if (ae->flags & HAS_TSTMP) {
13377 /* Setup for a timestamp */
13378 to->to_flags = TOF_TS;
13379 ae->ts_echo -= tp->ts_offset;
13380 to->to_tsecr = ae->ts_echo;
13381 to->to_tsval = ae->ts_value;
13382 /*
13383 * If echoed timestamp is later than the current time, fall back to
13384 * non RFC1323 RTT calculation. Normalize timestamp if syncookies
13385 * were used when this connection was established.
13386 */
13387 if (TSTMP_GT(ae->ts_echo, ms_cts))
13388 to->to_tsecr = 0;
13389 if (tp->ts_recent &&
13390 TSTMP_LT(ae->ts_value, tp->ts_recent)) {
13391 if (ctf_ts_check_ac(tp, (ae->flags & 0xff))) {
13392 #ifdef TCP_ACCOUNTING
13393 rdstc = get_cyclecount();
13394 if (rdstc > ts_val) {
13395 counter_u64_add(tcp_proc_time[ae->ack_val_set] ,
13396 (rdstc - ts_val));
13397 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
13398 tp->tcp_proc_time[ae->ack_val_set] += (rdstc - ts_val);
13399 }
13400 }
13401 #endif
13402 continue;
13403 }
13404 }
13405 if (SEQ_LEQ(ae->seq, tp->last_ack_sent) &&
13406 SEQ_LEQ(tp->last_ack_sent, ae->seq)) {
13407 tp->ts_recent_age = tcp_ts_getticks();
13408 tp->ts_recent = ae->ts_value;
13409 }
13410 } else {
13411 /* Setup for a no options */
13412 to->to_flags = 0;
13413 }
13414 /* Update the rcv time and perform idle reduction possibly */
13415 if (tp->t_idle_reduce &&
13416 (tp->snd_max == tp->snd_una) &&
13417 (TICKS_2_USEC(ticks - tp->t_rcvtime) >= tp->t_rxtcur)) {
13418 counter_u64_add(rack_input_idle_reduces, 1);
13419 rack_cc_after_idle(rack, tp);
13420 }
13421 tp->t_rcvtime = ticks;
13422 /* Now what about ECN of a chain of pure ACKs? */
13423 if (tcp_ecn_input_segment(tp, ae->flags, 0,
13424 tcp_packets_this_ack(tp, ae->ack),
13425 ae->codepoint))
13426 rack_cong_signal(tp, CC_ECN, ae->ack, __LINE__);
13427 #ifdef TCP_ACCOUNTING
13428 /* Count for the specific type of ack in */
13429 counter_u64_add(tcp_cnt_counters[ae->ack_val_set], 1);
13430 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
13431 tp->tcp_cnt_counters[ae->ack_val_set]++;
13432 }
13433 #endif
13434 /*
13435 * Note how we could move up these in the determination
13436 * above, but we don't so that way the timestamp checks (and ECN)
13437 * is done first before we do any processing on the ACK.
13438 * The non-compressed path through the code has this
13439 * weakness (noted by @jtl) that it actually does some
13440 * processing before verifying the timestamp information.
13441 * We don't take that path here which is why we set
13442 * the ack_val_set first, do the timestamp and ecn
13443 * processing, and then look at what we have setup.
13444 */
13445 if (ae->ack_val_set == ACK_BEHIND) {
13446 /*
13447 * Case B flag reordering, if window is not closed
13448 * or it could be a keep-alive or persists
13449 */
13450 if (SEQ_LT(ae->ack, tp->snd_una) && (sbspace(&so->so_rcv) > segsiz)) {
13451 rack->r_ctl.rc_reorder_ts = tcp_tv_to_usectick(&rack->r_ctl.act_rcv_time);
13452 }
13453 } else if (ae->ack_val_set == ACK_DUPACK) {
13454 /* Case D */
13455 rack_strike_dupack(rack);
13456 } else if (ae->ack_val_set == ACK_RWND) {
13457 /* Case C */
13458 if ((ae->flags & TSTMP_LRO) || (ae->flags & TSTMP_HDWR)) {
13459 ts.tv_sec = ae->timestamp / 1000000000;
13460 ts.tv_nsec = ae->timestamp % 1000000000;
13461 rack->r_ctl.act_rcv_time.tv_sec = ts.tv_sec;
13462 rack->r_ctl.act_rcv_time.tv_usec = ts.tv_nsec/1000;
13463 } else {
13464 rack->r_ctl.act_rcv_time = *tv;
13465 }
13466 if (rack->forced_ack) {
13467 rack_handle_probe_response(rack, tiwin,
13468 tcp_tv_to_usectick(&rack->r_ctl.act_rcv_time));
13469 }
13470 #ifdef TCP_ACCOUNTING
13471 win_up_req = 1;
13472 #endif
13473 win_upd_ack = ae->ack;
13474 win_seq = ae->seq;
13475 the_win = tiwin;
13476 rack_do_win_updates(tp, rack, the_win, win_seq, win_upd_ack, cts, high_seq);
13477 } else {
13478 /* Case A */
13479 if (SEQ_GT(ae->ack, tp->snd_max)) {
13480 /*
13481 * We just send an ack since the incoming
13482 * ack is beyond the largest seq we sent.
13483 */
13484 if ((tp->t_flags & TF_ACKNOW) == 0) {
13485 ctf_ack_war_checks(tp, &rack->r_ctl.challenge_ack_ts, &rack->r_ctl.challenge_ack_cnt);
13486 if (tp->t_flags && TF_ACKNOW)
13487 rack->r_wanted_output = 1;
13488 }
13489 } else {
13490 nsegs++;
13491 /* If the window changed setup to update */
13492 if (tiwin != tp->snd_wnd) {
13493 win_upd_ack = ae->ack;
13494 win_seq = ae->seq;
13495 the_win = tiwin;
13496 rack_do_win_updates(tp, rack, the_win, win_seq, win_upd_ack, cts, high_seq);
13497 }
13498 #ifdef TCP_ACCOUNTING
13499 /* Account for the acks */
13500 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
13501 tp->tcp_cnt_counters[CNT_OF_ACKS_IN] += (((ae->ack - high_seq) + segsiz - 1) / segsiz);
13502 }
13503 counter_u64_add(tcp_cnt_counters[CNT_OF_ACKS_IN],
13504 (((ae->ack - high_seq) + segsiz - 1) / segsiz));
13505 #endif
13506 high_seq = ae->ack;
13507 if (rack_verbose_logging && (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF)) {
13508 union tcp_log_stackspecific log;
13509 struct timeval tv;
13510
13511 memset(&log.u_bbr, 0, sizeof(log.u_bbr));
13512 log.u_bbr.timeStamp = tcp_get_usecs(&tv);
13513 log.u_bbr.flex1 = high_seq;
13514 log.u_bbr.flex2 = rack->r_ctl.roundends;
13515 log.u_bbr.flex3 = rack->r_ctl.current_round;
13516 log.u_bbr.rttProp = (uint64_t)CC_ALGO(tp)->newround;
13517 log.u_bbr.flex8 = 8;
13518 tcp_log_event_(tp, NULL, NULL, NULL, BBR_LOG_CWND, 0,
13519 0, &log, false, NULL, NULL, 0, &tv);
13520 }
13521 /*
13522 * The draft (v3) calls for us to use SEQ_GEQ, but that
13523 * causes issues when we are just going app limited. Lets
13524 * instead use SEQ_GT <or> where its equal but more data
13525 * is outstanding.
13526 */
13527 if ((SEQ_GT(high_seq, rack->r_ctl.roundends)) ||
13528 ((high_seq == rack->r_ctl.roundends) &&
13529 SEQ_GT(tp->snd_max, tp->snd_una))) {
13530 rack->r_ctl.current_round++;
13531 rack->r_ctl.roundends = tp->snd_max;
13532 if (CC_ALGO(tp)->newround != NULL) {
13533 CC_ALGO(tp)->newround(&tp->t_ccv, rack->r_ctl.current_round);
13534 }
13535 }
13536 /* Setup our act_rcv_time */
13537 if ((ae->flags & TSTMP_LRO) || (ae->flags & TSTMP_HDWR)) {
13538 ts.tv_sec = ae->timestamp / 1000000000;
13539 ts.tv_nsec = ae->timestamp % 1000000000;
13540 rack->r_ctl.act_rcv_time.tv_sec = ts.tv_sec;
13541 rack->r_ctl.act_rcv_time.tv_usec = ts.tv_nsec/1000;
13542 } else {
13543 rack->r_ctl.act_rcv_time = *tv;
13544 }
13545 rack_process_to_cumack(tp, rack, ae->ack, cts, to);
13546 if (rack->rc_dsack_round_seen) {
13547 /* Is the dsack round over? */
13548 if (SEQ_GEQ(ae->ack, rack->r_ctl.dsack_round_end)) {
13549 /* Yes it is */
13550 rack->rc_dsack_round_seen = 0;
13551 rack_log_dsack_event(rack, 3, __LINE__, 0, 0);
13552 }
13553 }
13554 }
13555 }
13556 /* And lets be sure to commit the rtt measurements for this ack */
13557 tcp_rack_xmit_timer_commit(rack, tp);
13558 #ifdef TCP_ACCOUNTING
13559 rdstc = get_cyclecount();
13560 if (rdstc > ts_val) {
13561 counter_u64_add(tcp_proc_time[ae->ack_val_set] , (rdstc - ts_val));
13562 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
13563 tp->tcp_proc_time[ae->ack_val_set] += (rdstc - ts_val);
13564 if (ae->ack_val_set == ACK_CUMACK)
13565 tp->tcp_proc_time[CYC_HANDLE_MAP] += (rdstc - ts_val);
13566 }
13567 }
13568 #endif
13569 }
13570 #ifdef TCP_ACCOUNTING
13571 ts_val = get_cyclecount();
13572 #endif
13573 /* Tend to any collapsed window */
13574 if (SEQ_GT(tp->snd_max, high_seq) && (tp->snd_wnd < (tp->snd_max - high_seq))) {
13575 /* The peer collapsed the window */
13576 rack_collapsed_window(rack, (tp->snd_max - high_seq), __LINE__);
13577 } else if (rack->rc_has_collapsed)
13578 rack_un_collapse_window(rack, __LINE__);
13579 if ((rack->r_collapse_point_valid) &&
13580 (SEQ_GT(high_seq, rack->r_ctl.high_collapse_point)))
13581 rack->r_collapse_point_valid = 0;
13582 acked_amount = acked = (high_seq - tp->snd_una);
13583 if (acked) {
13584 /*
13585 * Clear the probe not answered flag
13586 * since cum-ack moved forward.
13587 */
13588 rack->probe_not_answered = 0;
13589 if (rack->sack_attack_disable == 0)
13590 rack_do_decay(rack);
13591 if (acked >= segsiz) {
13592 /*
13593 * You only get credit for
13594 * MSS and greater (and you get extra
13595 * credit for larger cum-ack moves).
13596 */
13597 int ac;
13598
13599 ac = acked / segsiz;
13600 rack->r_ctl.ack_count += ac;
13601 counter_u64_add(rack_ack_total, ac);
13602 }
13603 if (rack->r_ctl.ack_count > 0xfff00000) {
13604 /*
13605 * reduce the number to keep us under
13606 * a uint32_t.
13607 */
13608 rack->r_ctl.ack_count /= 2;
13609 rack->r_ctl.sack_count /= 2;
13610 }
13611 if (tp->t_flags & TF_NEEDSYN) {
13612 /*
13613 * T/TCP: Connection was half-synchronized, and our SYN has
13614 * been ACK'd (so connection is now fully synchronized). Go
13615 * to non-starred state, increment snd_una for ACK of SYN,
13616 * and check if we can do window scaling.
13617 */
13618 tp->t_flags &= ~TF_NEEDSYN;
13619 tp->snd_una++;
13620 acked_amount = acked = (high_seq - tp->snd_una);
13621 }
13622 if (acked > sbavail(&so->so_snd))
13623 acked_amount = sbavail(&so->so_snd);
13624 #ifdef NETFLIX_EXP_DETECTION
13625 /*
13626 * We only care on a cum-ack move if we are in a sack-disabled
13627 * state. We have already added in to the ack_count, and we never
13628 * would disable on a cum-ack move, so we only care to do the
13629 * detection if it may "undo" it, i.e. we were in disabled already.
13630 */
13631 if (rack->sack_attack_disable)
13632 rack_do_detection(tp, rack, acked_amount, segsiz);
13633 #endif
13634 if (IN_FASTRECOVERY(tp->t_flags) &&
13635 (rack->rack_no_prr == 0))
13636 rack_update_prr(tp, rack, acked_amount, high_seq);
13637 if (IN_RECOVERY(tp->t_flags)) {
13638 if (SEQ_LT(high_seq, tp->snd_recover) &&
13639 (SEQ_LT(high_seq, tp->snd_max))) {
13640 tcp_rack_partialack(tp);
13641 } else {
13642 rack_post_recovery(tp, high_seq);
13643 recovery = 1;
13644 }
13645 }
13646 /* Handle the rack-log-ack part (sendmap) */
13647 if ((sbused(&so->so_snd) == 0) &&
13648 (acked > acked_amount) &&
13649 (tp->t_state >= TCPS_FIN_WAIT_1) &&
13650 (tp->t_flags & TF_SENTFIN)) {
13651 /*
13652 * We must be sure our fin
13653 * was sent and acked (we can be
13654 * in FIN_WAIT_1 without having
13655 * sent the fin).
13656 */
13657 ourfinisacked = 1;
13658 /*
13659 * Lets make sure snd_una is updated
13660 * since most likely acked_amount = 0 (it
13661 * should be).
13662 */
13663 tp->snd_una = high_seq;
13664 }
13665 /* Did we make a RTO error? */
13666 if ((tp->t_flags & TF_PREVVALID) &&
13667 ((tp->t_flags & TF_RCVD_TSTMP) == 0)) {
13668 tp->t_flags &= ~TF_PREVVALID;
13669 if (tp->t_rxtshift == 1 &&
13670 (int)(ticks - tp->t_badrxtwin) < 0)
13671 rack_cong_signal(tp, CC_RTO_ERR, high_seq, __LINE__);
13672 }
13673 /* Handle the data in the socket buffer */
13674 KMOD_TCPSTAT_ADD(tcps_rcvackpack, 1);
13675 KMOD_TCPSTAT_ADD(tcps_rcvackbyte, acked);
13676 if (acked_amount > 0) {
13677 struct mbuf *mfree;
13678
13679 rack_ack_received(tp, rack, high_seq, nsegs, CC_ACK, recovery);
13680 SOCKBUF_LOCK(&so->so_snd);
13681 mfree = sbcut_locked(&so->so_snd, acked_amount);
13682 tp->snd_una = high_seq;
13683 /* Note we want to hold the sb lock through the sendmap adjust */
13684 rack_adjust_sendmap(rack, &so->so_snd, tp->snd_una);
13685 /* Wake up the socket if we have room to write more */
13686 rack_log_wakeup(tp,rack, &so->so_snd, acked, 2);
13687 sowwakeup_locked(so);
13688 m_freem(mfree);
13689 }
13690 /* update progress */
13691 tp->t_acktime = ticks;
13692 rack_log_progress_event(rack, tp, tp->t_acktime,
13693 PROGRESS_UPDATE, __LINE__);
13694 /* Clear out shifts and such */
13695 tp->t_rxtshift = 0;
13696 RACK_TCPT_RANGESET(tp->t_rxtcur, RACK_REXMTVAL(tp),
13697 rack_rto_min, rack_rto_max, rack->r_ctl.timer_slop);
13698 rack->rc_tlp_in_progress = 0;
13699 rack->r_ctl.rc_tlp_cnt_out = 0;
13700 /* Send recover and snd_nxt must be dragged along */
13701 if (SEQ_GT(tp->snd_una, tp->snd_recover))
13702 tp->snd_recover = tp->snd_una;
13703 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
13704 tp->snd_nxt = tp->snd_una;
13705 /*
13706 * If the RXT timer is running we want to
13707 * stop it, so we can restart a TLP (or new RXT).
13708 */
13709 if (rack->r_ctl.rc_hpts_flags & PACE_TMR_RXT)
13710 rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__);
13711 #ifdef NETFLIX_HTTP_LOGGING
13712 tcp_http_check_for_comp(rack->rc_tp, high_seq);
13713 #endif
13714 tp->snd_wl2 = high_seq;
13715 tp->t_dupacks = 0;
13716 if (under_pacing &&
13717 (rack->use_fixed_rate == 0) &&
13718 (rack->in_probe_rtt == 0) &&
13719 rack->rc_gp_dyn_mul &&
13720 rack->rc_always_pace) {
13721 /* Check if we are dragging bottom */
13722 rack_check_bottom_drag(tp, rack, so, acked);
13723 }
13724 if (tp->snd_una == tp->snd_max) {
13725 tp->t_flags &= ~TF_PREVVALID;
13726 rack->r_ctl.retran_during_recovery = 0;
13727 rack->r_ctl.dsack_byte_cnt = 0;
13728 rack->r_ctl.rc_went_idle_time = tcp_get_usecs(NULL);
13729 if (rack->r_ctl.rc_went_idle_time == 0)
13730 rack->r_ctl.rc_went_idle_time = 1;
13731 rack_log_progress_event(rack, tp, 0, PROGRESS_CLEAR, __LINE__);
13732 if (sbavail(&tptosocket(tp)->so_snd) == 0)
13733 tp->t_acktime = 0;
13734 /* Set so we might enter persists... */
13735 rack->r_wanted_output = 1;
13736 rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__);
13737 sack_filter_clear(&rack->r_ctl.rack_sf, tp->snd_una);
13738 if ((tp->t_state >= TCPS_FIN_WAIT_1) &&
13739 (sbavail(&so->so_snd) == 0) &&
13740 (tp->t_flags2 & TF2_DROP_AF_DATA)) {
13741 /*
13742 * The socket was gone and the
13743 * peer sent data (not now in the past), time to
13744 * reset him.
13745 */
13746 rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__);
13747 /* tcp_close will kill the inp pre-log the Reset */
13748 tcp_log_end_status(tp, TCP_EI_STATUS_SERVER_RST);
13749 #ifdef TCP_ACCOUNTING
13750 rdstc = get_cyclecount();
13751 if (rdstc > ts_val) {
13752 counter_u64_add(tcp_proc_time[ACK_CUMACK] , (rdstc - ts_val));
13753 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
13754 tp->tcp_proc_time[ACK_CUMACK] += (rdstc - ts_val);
13755 tp->tcp_proc_time[CYC_HANDLE_ACK] += (rdstc - ts_val);
13756 }
13757 }
13758 #endif
13759 m_freem(m);
13760 tp = tcp_close(tp);
13761 if (tp == NULL) {
13762 #ifdef TCP_ACCOUNTING
13763 sched_unpin();
13764 #endif
13765 return (1);
13766 }
13767 /*
13768 * We would normally do drop-with-reset which would
13769 * send back a reset. We can't since we don't have
13770 * all the needed bits. Instead lets arrange for
13771 * a call to tcp_output(). That way since we
13772 * are in the closed state we will generate a reset.
13773 *
13774 * Note if tcp_accounting is on we don't unpin since
13775 * we do that after the goto label.
13776 */
13777 goto send_out_a_rst;
13778 }
13779 if ((sbused(&so->so_snd) == 0) &&
13780 (tp->t_state >= TCPS_FIN_WAIT_1) &&
13781 (tp->t_flags & TF_SENTFIN)) {
13782 /*
13783 * If we can't receive any more data, then closing user can
13784 * proceed. Starting the timer is contrary to the
13785 * specification, but if we don't get a FIN we'll hang
13786 * forever.
13787 *
13788 */
13789 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
13790 soisdisconnected(so);
13791 tcp_timer_activate(tp, TT_2MSL,
13792 (tcp_fast_finwait2_recycle ?
13793 tcp_finwait2_timeout :
13794 TP_MAXIDLE(tp)));
13795 }
13796 if (ourfinisacked == 0) {
13797 /*
13798 * We don't change to fin-wait-2 if we have our fin acked
13799 * which means we are probably in TCPS_CLOSING.
13800 */
13801 tcp_state_change(tp, TCPS_FIN_WAIT_2);
13802 }
13803 }
13804 }
13805 /* Wake up the socket if we have room to write more */
13806 if (sbavail(&so->so_snd)) {
13807 rack->r_wanted_output = 1;
13808 if (ctf_progress_timeout_check(tp, true)) {
13809 rack_log_progress_event((struct tcp_rack *)tp->t_fb_ptr,
13810 tp, tick, PROGRESS_DROP, __LINE__);
13811 /*
13812 * We cheat here and don't send a RST, we should send one
13813 * when the pacer drops the connection.
13814 */
13815 #ifdef TCP_ACCOUNTING
13816 rdstc = get_cyclecount();
13817 if (rdstc > ts_val) {
13818 counter_u64_add(tcp_proc_time[ACK_CUMACK] , (rdstc - ts_val));
13819 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
13820 tp->tcp_proc_time[ACK_CUMACK] += (rdstc - ts_val);
13821 tp->tcp_proc_time[CYC_HANDLE_ACK] += (rdstc - ts_val);
13822 }
13823 }
13824 sched_unpin();
13825 #endif
13826 (void)tcp_drop(tp, ETIMEDOUT);
13827 m_freem(m);
13828 return (1);
13829 }
13830 }
13831 if (ourfinisacked) {
13832 switch(tp->t_state) {
13833 case TCPS_CLOSING:
13834 #ifdef TCP_ACCOUNTING
13835 rdstc = get_cyclecount();
13836 if (rdstc > ts_val) {
13837 counter_u64_add(tcp_proc_time[ACK_CUMACK] ,
13838 (rdstc - ts_val));
13839 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
13840 tp->tcp_proc_time[ACK_CUMACK] += (rdstc - ts_val);
13841 tp->tcp_proc_time[CYC_HANDLE_ACK] += (rdstc - ts_val);
13842 }
13843 }
13844 sched_unpin();
13845 #endif
13846 tcp_twstart(tp);
13847 m_freem(m);
13848 return (1);
13849 break;
13850 case TCPS_LAST_ACK:
13851 #ifdef TCP_ACCOUNTING
13852 rdstc = get_cyclecount();
13853 if (rdstc > ts_val) {
13854 counter_u64_add(tcp_proc_time[ACK_CUMACK] ,
13855 (rdstc - ts_val));
13856 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
13857 tp->tcp_proc_time[ACK_CUMACK] += (rdstc - ts_val);
13858 tp->tcp_proc_time[CYC_HANDLE_ACK] += (rdstc - ts_val);
13859 }
13860 }
13861 sched_unpin();
13862 #endif
13863 tp = tcp_close(tp);
13864 ctf_do_drop(m, tp);
13865 return (1);
13866 break;
13867 case TCPS_FIN_WAIT_1:
13868 #ifdef TCP_ACCOUNTING
13869 rdstc = get_cyclecount();
13870 if (rdstc > ts_val) {
13871 counter_u64_add(tcp_proc_time[ACK_CUMACK] ,
13872 (rdstc - ts_val));
13873 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
13874 tp->tcp_proc_time[ACK_CUMACK] += (rdstc - ts_val);
13875 tp->tcp_proc_time[CYC_HANDLE_ACK] += (rdstc - ts_val);
13876 }
13877 }
13878 #endif
13879 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
13880 soisdisconnected(so);
13881 tcp_timer_activate(tp, TT_2MSL,
13882 (tcp_fast_finwait2_recycle ?
13883 tcp_finwait2_timeout :
13884 TP_MAXIDLE(tp)));
13885 }
13886 tcp_state_change(tp, TCPS_FIN_WAIT_2);
13887 break;
13888 default:
13889 break;
13890 }
13891 }
13892 if (rack->r_fast_output) {
13893 /*
13894 * We re doing fast output.. can we expand that?
13895 */
13896 rack_gain_for_fastoutput(rack, tp, so, acked_amount);
13897 }
13898 #ifdef TCP_ACCOUNTING
13899 rdstc = get_cyclecount();
13900 if (rdstc > ts_val) {
13901 counter_u64_add(tcp_proc_time[ACK_CUMACK] , (rdstc - ts_val));
13902 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
13903 tp->tcp_proc_time[ACK_CUMACK] += (rdstc - ts_val);
13904 tp->tcp_proc_time[CYC_HANDLE_ACK] += (rdstc - ts_val);
13905 }
13906 }
13907
13908 } else if (win_up_req) {
13909 rdstc = get_cyclecount();
13910 if (rdstc > ts_val) {
13911 counter_u64_add(tcp_proc_time[ACK_RWND] , (rdstc - ts_val));
13912 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
13913 tp->tcp_proc_time[ACK_RWND] += (rdstc - ts_val);
13914 }
13915 }
13916 #endif
13917 }
13918 /* Now is there a next packet, if so we are done */
13919 m_freem(m);
13920 did_out = 0;
13921 if (nxt_pkt) {
13922 #ifdef TCP_ACCOUNTING
13923 sched_unpin();
13924 #endif
13925 rack_log_doseg_done(rack, cts, nxt_pkt, did_out, 5, nsegs);
13926 return (0);
13927 }
13928 rack_handle_might_revert(tp, rack);
13929 ctf_calc_rwin(so, tp);
13930 if ((rack->r_wanted_output != 0) || (rack->r_fast_output != 0)) {
13931 send_out_a_rst:
13932 if (tcp_output(tp) < 0) {
13933 #ifdef TCP_ACCOUNTING
13934 sched_unpin();
13935 #endif
13936 return (1);
13937 }
13938 did_out = 1;
13939 }
13940 rack_free_trim(rack);
13941 #ifdef TCP_ACCOUNTING
13942 sched_unpin();
13943 #endif
13944 rack_timer_audit(tp, rack, &so->so_snd);
13945 rack_log_doseg_done(rack, cts, nxt_pkt, did_out, 6, nsegs);
13946 return (0);
13947 }
13948
13949
13950 static int
13951 rack_do_segment_nounlock(struct mbuf *m, struct tcphdr *th, struct socket *so,
13952 struct tcpcb *tp, int32_t drop_hdrlen, int32_t tlen, uint8_t iptos,
13953 int32_t nxt_pkt, struct timeval *tv)
13954 {
13955 struct inpcb *inp = tptoinpcb(tp);
13956 #ifdef TCP_ACCOUNTING
13957 uint64_t ts_val;
13958 #endif
13959 int32_t thflags, retval, did_out = 0;
13960 int32_t way_out = 0;
13961 /*
13962 * cts - is the current time from tv (caller gets ts) in microseconds.
13963 * ms_cts - is the current time from tv in milliseconds.
13964 * us_cts - is the time that LRO or hardware actually got the packet in microseconds.
13965 */
13966 uint32_t cts, us_cts, ms_cts;
13967 uint32_t tiwin, high_seq;
13968 struct timespec ts;
13969 struct tcpopt to;
13970 struct tcp_rack *rack;
13971 struct rack_sendmap *rsm;
13972 int32_t prev_state = 0;
13973 #ifdef TCP_ACCOUNTING
13974 int ack_val_set = 0xf;
13975 #endif
13976 int nsegs;
13977
13978 NET_EPOCH_ASSERT();
13979 INP_WLOCK_ASSERT(inp);
13980
13981 /*
13982 * tv passed from common code is from either M_TSTMP_LRO or
13983 * tcp_get_usecs() if no LRO m_pkthdr timestamp is present.
13984 */
13985 rack = (struct tcp_rack *)tp->t_fb_ptr;
13986 if (m->m_flags & M_ACKCMP) {
13987 /*
13988 * All compressed ack's are ack's by definition so
13989 * remove any ack required flag and then do the processing.
13990 */
13991 rack->rc_ack_required = 0;
13992 return (rack_do_compressed_ack_processing(tp, so, m, nxt_pkt, tv));
13993 }
13994 if (m->m_flags & M_ACKCMP) {
13995 panic("Impossible reach m has ackcmp? m:%p tp:%p", m, tp);
13996 }
13997 cts = tcp_tv_to_usectick(tv);
13998 ms_cts = tcp_tv_to_mssectick(tv);
13999 nsegs = m->m_pkthdr.lro_nsegs;
14000 counter_u64_add(rack_proc_non_comp_ack, 1);
14001 thflags = tcp_get_flags(th);
14002 #ifdef TCP_ACCOUNTING
14003 sched_pin();
14004 if (thflags & TH_ACK)
14005 ts_val = get_cyclecount();
14006 #endif
14007 if ((m->m_flags & M_TSTMP) ||
14008 (m->m_flags & M_TSTMP_LRO)) {
14009 mbuf_tstmp2timespec(m, &ts);
14010 rack->r_ctl.act_rcv_time.tv_sec = ts.tv_sec;
14011 rack->r_ctl.act_rcv_time.tv_usec = ts.tv_nsec/1000;
14012 } else
14013 rack->r_ctl.act_rcv_time = *tv;
14014 kern_prefetch(rack, &prev_state);
14015 prev_state = 0;
14016 /*
14017 * Unscale the window into a 32-bit value. For the SYN_SENT state
14018 * the scale is zero.
14019 */
14020 tiwin = th->th_win << tp->snd_scale;
14021 #ifdef TCP_ACCOUNTING
14022 if (thflags & TH_ACK) {
14023 /*
14024 * We have a tradeoff here. We can either do what we are
14025 * doing i.e. pinning to this CPU and then doing the accounting
14026 * <or> we could do a critical enter, setup the rdtsc and cpu
14027 * as in below, and then validate we are on the same CPU on
14028 * exit. I have choosen to not do the critical enter since
14029 * that often will gain you a context switch, and instead lock
14030 * us (line above this if) to the same CPU with sched_pin(). This
14031 * means we may be context switched out for a higher priority
14032 * interupt but we won't be moved to another CPU.
14033 *
14034 * If this occurs (which it won't very often since we most likely
14035 * are running this code in interupt context and only a higher
14036 * priority will bump us ... clock?) we will falsely add in
14037 * to the time the interupt processing time plus the ack processing
14038 * time. This is ok since its a rare event.
14039 */
14040 ack_val_set = tcp_do_ack_accounting(tp, th, &to, tiwin,
14041 ctf_fixed_maxseg(tp));
14042 }
14043 #endif
14044 /*
14045 * Parse options on any incoming segment.
14046 */
14047 memset(&to, 0, sizeof(to));
14048 tcp_dooptions(&to, (u_char *)(th + 1),
14049 (th->th_off << 2) - sizeof(struct tcphdr),
14050 (thflags & TH_SYN) ? TO_SYN : 0);
14051 KASSERT(tp->t_state > TCPS_LISTEN, ("%s: TCPS_LISTEN",
14052 __func__));
14053 KASSERT(tp->t_state != TCPS_TIME_WAIT, ("%s: TCPS_TIME_WAIT",
14054 __func__));
14055
14056 if ((tp->t_state >= TCPS_FIN_WAIT_1) &&
14057 (tp->t_flags & TF_GPUTINPROG)) {
14058 /*
14059 * We have a goodput in progress
14060 * and we have entered a late state.
14061 * Do we have enough data in the sb
14062 * to handle the GPUT request?
14063 */
14064 uint32_t bytes;
14065
14066 bytes = tp->gput_ack - tp->gput_seq;
14067 if (SEQ_GT(tp->gput_seq, tp->snd_una))
14068 bytes += tp->gput_seq - tp->snd_una;
14069 if (bytes > sbavail(&tptosocket(tp)->so_snd)) {
14070 /*
14071 * There are not enough bytes in the socket
14072 * buffer that have been sent to cover this
14073 * measurement. Cancel it.
14074 */
14075 rack_log_pacing_delay_calc(rack, (tp->gput_ack - tp->gput_seq) /*flex2*/,
14076 rack->r_ctl.rc_gp_srtt /*flex1*/,
14077 tp->gput_seq,
14078 0, 0, 18, __LINE__, NULL, 0);
14079 tp->t_flags &= ~TF_GPUTINPROG;
14080 }
14081 }
14082 high_seq = th->th_ack;
14083 if (tp->t_logstate != TCP_LOG_STATE_OFF) {
14084 union tcp_log_stackspecific log;
14085 struct timeval ltv;
14086 #ifdef NETFLIX_HTTP_LOGGING
14087 struct http_sendfile_track *http_req;
14088
14089 if (SEQ_GT(th->th_ack, tp->snd_una)) {
14090 http_req = tcp_http_find_req_for_seq(tp, (th->th_ack-1));
14091 } else {
14092 http_req = tcp_http_find_req_for_seq(tp, th->th_ack);
14093 }
14094 #endif
14095 memset(&log.u_bbr, 0, sizeof(log.u_bbr));
14096 log.u_bbr.inhpts = tcp_in_hpts(rack->rc_inp);
14097 if (rack->rack_no_prr == 0)
14098 log.u_bbr.flex1 = rack->r_ctl.rc_prr_sndcnt;
14099 else
14100 log.u_bbr.flex1 = 0;
14101 log.u_bbr.use_lt_bw = rack->r_ent_rec_ns;
14102 log.u_bbr.use_lt_bw <<= 1;
14103 log.u_bbr.use_lt_bw |= rack->r_might_revert;
14104 log.u_bbr.flex2 = rack->r_ctl.rc_num_maps_alloced;
14105 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
14106 log.u_bbr.pkts_out = rack->rc_tp->t_maxseg;
14107 log.u_bbr.flex3 = m->m_flags;
14108 log.u_bbr.flex4 = rack->r_ctl.rc_hpts_flags;
14109 log.u_bbr.lost = thflags;
14110 log.u_bbr.pacing_gain = 0x1;
14111 #ifdef TCP_ACCOUNTING
14112 log.u_bbr.cwnd_gain = ack_val_set;
14113 #endif
14114 log.u_bbr.flex7 = 2;
14115 if (m->m_flags & M_TSTMP) {
14116 /* Record the hardware timestamp if present */
14117 mbuf_tstmp2timespec(m, &ts);
14118 ltv.tv_sec = ts.tv_sec;
14119 ltv.tv_usec = ts.tv_nsec / 1000;
14120 log.u_bbr.lt_epoch = tcp_tv_to_usectick(<v);
14121 } else if (m->m_flags & M_TSTMP_LRO) {
14122 /* Record the LRO the arrival timestamp */
14123 mbuf_tstmp2timespec(m, &ts);
14124 ltv.tv_sec = ts.tv_sec;
14125 ltv.tv_usec = ts.tv_nsec / 1000;
14126 log.u_bbr.flex5 = tcp_tv_to_usectick(<v);
14127 }
14128 log.u_bbr.timeStamp = tcp_get_usecs(<v);
14129 /* Log the rcv time */
14130 log.u_bbr.delRate = m->m_pkthdr.rcv_tstmp;
14131 #ifdef NETFLIX_HTTP_LOGGING
14132 log.u_bbr.applimited = tp->t_http_closed;
14133 log.u_bbr.applimited <<= 8;
14134 log.u_bbr.applimited |= tp->t_http_open;
14135 log.u_bbr.applimited <<= 8;
14136 log.u_bbr.applimited |= tp->t_http_req;
14137 if (http_req) {
14138 /* Copy out any client req info */
14139 /* seconds */
14140 log.u_bbr.pkt_epoch = (http_req->localtime / HPTS_USEC_IN_SEC);
14141 /* useconds */
14142 log.u_bbr.delivered = (http_req->localtime % HPTS_USEC_IN_SEC);
14143 log.u_bbr.rttProp = http_req->timestamp;
14144 log.u_bbr.cur_del_rate = http_req->start;
14145 if (http_req->flags & TCP_HTTP_TRACK_FLG_OPEN) {
14146 log.u_bbr.flex8 |= 1;
14147 } else {
14148 log.u_bbr.flex8 |= 2;
14149 log.u_bbr.bw_inuse = http_req->end;
14150 }
14151 log.u_bbr.flex6 = http_req->start_seq;
14152 if (http_req->flags & TCP_HTTP_TRACK_FLG_COMP) {
14153 log.u_bbr.flex8 |= 4;
14154 log.u_bbr.epoch = http_req->end_seq;
14155 }
14156 }
14157 #endif
14158 TCP_LOG_EVENTP(tp, th, &so->so_rcv, &so->so_snd, TCP_LOG_IN, 0,
14159 tlen, &log, true, <v);
14160 }
14161 /* Remove ack required flag if set, we have one */
14162 if (thflags & TH_ACK)
14163 rack->rc_ack_required = 0;
14164 if ((thflags & TH_SYN) && (thflags & TH_FIN) && V_drop_synfin) {
14165 way_out = 4;
14166 retval = 0;
14167 m_freem(m);
14168 goto done_with_input;
14169 }
14170 /*
14171 * If a segment with the ACK-bit set arrives in the SYN-SENT state
14172 * check SEQ.ACK first as described on page 66 of RFC 793, section 3.9.
14173 */
14174 if ((tp->t_state == TCPS_SYN_SENT) && (thflags & TH_ACK) &&
14175 (SEQ_LEQ(th->th_ack, tp->iss) || SEQ_GT(th->th_ack, tp->snd_max))) {
14176 tcp_log_end_status(tp, TCP_EI_STATUS_RST_IN_FRONT);
14177 ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen);
14178 #ifdef TCP_ACCOUNTING
14179 sched_unpin();
14180 #endif
14181 return (1);
14182 }
14183 /*
14184 * If timestamps were negotiated during SYN/ACK and a
14185 * segment without a timestamp is received, silently drop
14186 * the segment, unless it is a RST segment or missing timestamps are
14187 * tolerated.
14188 * See section 3.2 of RFC 7323.
14189 */
14190 if ((tp->t_flags & TF_RCVD_TSTMP) && !(to.to_flags & TOF_TS) &&
14191 ((thflags & TH_RST) == 0) && (V_tcp_tolerate_missing_ts == 0)) {
14192 way_out = 5;
14193 retval = 0;
14194 m_freem(m);
14195 goto done_with_input;
14196 }
14197
14198 /*
14199 * Segment received on connection. Reset idle time and keep-alive
14200 * timer. XXX: This should be done after segment validation to
14201 * ignore broken/spoofed segs.
14202 */
14203 if (tp->t_idle_reduce &&
14204 (tp->snd_max == tp->snd_una) &&
14205 (TICKS_2_USEC(ticks - tp->t_rcvtime) >= tp->t_rxtcur)) {
14206 counter_u64_add(rack_input_idle_reduces, 1);
14207 rack_cc_after_idle(rack, tp);
14208 }
14209 tp->t_rcvtime = ticks;
14210 #ifdef STATS
14211 stats_voi_update_abs_ulong(tp->t_stats, VOI_TCP_FRWIN, tiwin);
14212 #endif
14213 if (tiwin > rack->r_ctl.rc_high_rwnd)
14214 rack->r_ctl.rc_high_rwnd = tiwin;
14215 /*
14216 * TCP ECN processing. XXXJTL: If we ever use ECN, we need to move
14217 * this to occur after we've validated the segment.
14218 */
14219 if (tcp_ecn_input_segment(tp, thflags, tlen,
14220 tcp_packets_this_ack(tp, th->th_ack),
14221 iptos))
14222 rack_cong_signal(tp, CC_ECN, th->th_ack, __LINE__);
14223
14224 /*
14225 * If echoed timestamp is later than the current time, fall back to
14226 * non RFC1323 RTT calculation. Normalize timestamp if syncookies
14227 * were used when this connection was established.
14228 */
14229 if ((to.to_flags & TOF_TS) && (to.to_tsecr != 0)) {
14230 to.to_tsecr -= tp->ts_offset;
14231 if (TSTMP_GT(to.to_tsecr, ms_cts))
14232 to.to_tsecr = 0;
14233 }
14234
14235 /*
14236 * If its the first time in we need to take care of options and
14237 * verify we can do SACK for rack!
14238 */
14239 if (rack->r_state == 0) {
14240 /* Should be init'd by rack_init() */
14241 KASSERT(rack->rc_inp != NULL,
14242 ("%s: rack->rc_inp unexpectedly NULL", __func__));
14243 if (rack->rc_inp == NULL) {
14244 rack->rc_inp = inp;
14245 }
14246
14247 /*
14248 * Process options only when we get SYN/ACK back. The SYN
14249 * case for incoming connections is handled in tcp_syncache.
14250 * According to RFC1323 the window field in a SYN (i.e., a
14251 * <SYN> or <SYN,ACK>) segment itself is never scaled. XXX
14252 * this is traditional behavior, may need to be cleaned up.
14253 */
14254 if (tp->t_state == TCPS_SYN_SENT && (thflags & TH_SYN)) {
14255 /* Handle parallel SYN for ECN */
14256 tcp_ecn_input_parallel_syn(tp, thflags, iptos);
14257 if ((to.to_flags & TOF_SCALE) &&
14258 (tp->t_flags & TF_REQ_SCALE)) {
14259 tp->t_flags |= TF_RCVD_SCALE;
14260 tp->snd_scale = to.to_wscale;
14261 } else
14262 tp->t_flags &= ~TF_REQ_SCALE;
14263 /*
14264 * Initial send window. It will be updated with the
14265 * next incoming segment to the scaled value.
14266 */
14267 tp->snd_wnd = th->th_win;
14268 rack_validate_fo_sendwin_up(tp, rack);
14269 if ((to.to_flags & TOF_TS) &&
14270 (tp->t_flags & TF_REQ_TSTMP)) {
14271 tp->t_flags |= TF_RCVD_TSTMP;
14272 tp->ts_recent = to.to_tsval;
14273 tp->ts_recent_age = cts;
14274 } else
14275 tp->t_flags &= ~TF_REQ_TSTMP;
14276 if (to.to_flags & TOF_MSS) {
14277 tcp_mss(tp, to.to_mss);
14278 }
14279 if ((tp->t_flags & TF_SACK_PERMIT) &&
14280 (to.to_flags & TOF_SACKPERM) == 0)
14281 tp->t_flags &= ~TF_SACK_PERMIT;
14282 if (IS_FASTOPEN(tp->t_flags)) {
14283 if (to.to_flags & TOF_FASTOPEN) {
14284 uint16_t mss;
14285
14286 if (to.to_flags & TOF_MSS)
14287 mss = to.to_mss;
14288 else
14289 if ((inp->inp_vflag & INP_IPV6) != 0)
14290 mss = TCP6_MSS;
14291 else
14292 mss = TCP_MSS;
14293 tcp_fastopen_update_cache(tp, mss,
14294 to.to_tfo_len, to.to_tfo_cookie);
14295 } else
14296 tcp_fastopen_disable_path(tp);
14297 }
14298 }
14299 /*
14300 * At this point we are at the initial call. Here we decide
14301 * if we are doing RACK or not. We do this by seeing if
14302 * TF_SACK_PERMIT is set and the sack-not-required is clear.
14303 * The code now does do dup-ack counting so if you don't
14304 * switch back you won't get rack & TLP, but you will still
14305 * get this stack.
14306 */
14307
14308 if ((rack_sack_not_required == 0) &&
14309 ((tp->t_flags & TF_SACK_PERMIT) == 0)) {
14310 tcp_switch_back_to_default(tp);
14311 (*tp->t_fb->tfb_tcp_do_segment) (m, th, so, tp, drop_hdrlen,
14312 tlen, iptos);
14313 #ifdef TCP_ACCOUNTING
14314 sched_unpin();
14315 #endif
14316 return (1);
14317 }
14318 tcp_set_hpts(inp);
14319 sack_filter_clear(&rack->r_ctl.rack_sf, th->th_ack);
14320 }
14321 if (thflags & TH_FIN)
14322 tcp_log_end_status(tp, TCP_EI_STATUS_CLIENT_FIN);
14323 us_cts = tcp_tv_to_usectick(&rack->r_ctl.act_rcv_time);
14324 if ((rack->rc_gp_dyn_mul) &&
14325 (rack->use_fixed_rate == 0) &&
14326 (rack->rc_always_pace)) {
14327 /* Check in on probertt */
14328 rack_check_probe_rtt(rack, us_cts);
14329 }
14330 rack_clear_rate_sample(rack);
14331 if ((rack->forced_ack) &&
14332 ((tcp_get_flags(th) & TH_RST) == 0)) {
14333 rack_handle_probe_response(rack, tiwin, us_cts);
14334 }
14335 /*
14336 * This is the one exception case where we set the rack state
14337 * always. All other times (timers etc) we must have a rack-state
14338 * set (so we assure we have done the checks above for SACK).
14339 */
14340 rack->r_ctl.rc_rcvtime = cts;
14341 if (rack->r_state != tp->t_state)
14342 rack_set_state(tp, rack);
14343 if (SEQ_GT(th->th_ack, tp->snd_una) &&
14344 (rsm = RB_MIN(rack_rb_tree_head, &rack->r_ctl.rc_mtree)) != NULL)
14345 kern_prefetch(rsm, &prev_state);
14346 prev_state = rack->r_state;
14347 retval = (*rack->r_substate) (m, th, so,
14348 tp, &to, drop_hdrlen,
14349 tlen, tiwin, thflags, nxt_pkt, iptos);
14350 if (retval == 0) {
14351 /*
14352 * If retval is 1 the tcb is unlocked and most likely the tp
14353 * is gone.
14354 */
14355 INP_WLOCK_ASSERT(inp);
14356 if ((rack->rc_gp_dyn_mul) &&
14357 (rack->rc_always_pace) &&
14358 (rack->use_fixed_rate == 0) &&
14359 rack->in_probe_rtt &&
14360 (rack->r_ctl.rc_time_probertt_starts == 0)) {
14361 /*
14362 * If we are going for target, lets recheck before
14363 * we output.
14364 */
14365 rack_check_probe_rtt(rack, us_cts);
14366 }
14367 if (rack->set_pacing_done_a_iw == 0) {
14368 /* How much has been acked? */
14369 if ((tp->snd_una - tp->iss) > (ctf_fixed_maxseg(tp) * 10)) {
14370 /* We have enough to set in the pacing segment size */
14371 rack->set_pacing_done_a_iw = 1;
14372 rack_set_pace_segments(tp, rack, __LINE__, NULL);
14373 }
14374 }
14375 tcp_rack_xmit_timer_commit(rack, tp);
14376 #ifdef TCP_ACCOUNTING
14377 /*
14378 * If we set the ack_val_se to what ack processing we are doing
14379 * we also want to track how many cycles we burned. Note
14380 * the bits after tcp_output we let be "free". This is because
14381 * we are also tracking the tcp_output times as well. Note the
14382 * use of 0xf here since we only have 11 counter (0 - 0xa) and
14383 * 0xf cannot be returned and is what we initialize it too to
14384 * indicate we are not doing the tabulations.
14385 */
14386 if (ack_val_set != 0xf) {
14387 uint64_t crtsc;
14388
14389 crtsc = get_cyclecount();
14390 counter_u64_add(tcp_proc_time[ack_val_set] , (crtsc - ts_val));
14391 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
14392 tp->tcp_proc_time[ack_val_set] += (crtsc - ts_val);
14393 }
14394 }
14395 #endif
14396 if (nxt_pkt == 0) {
14397 if ((rack->r_wanted_output != 0) || (rack->r_fast_output != 0)) {
14398 do_output_now:
14399 if (tcp_output(tp) < 0)
14400 return (1);
14401 did_out = 1;
14402 }
14403 rack_start_hpts_timer(rack, tp, cts, 0, 0, 0);
14404 rack_free_trim(rack);
14405 }
14406 /* Update any rounds needed */
14407 if (rack_verbose_logging && (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF)) {
14408 union tcp_log_stackspecific log;
14409 struct timeval tv;
14410
14411 memset(&log.u_bbr, 0, sizeof(log.u_bbr));
14412 log.u_bbr.timeStamp = tcp_get_usecs(&tv);
14413 log.u_bbr.flex1 = high_seq;
14414 log.u_bbr.flex2 = rack->r_ctl.roundends;
14415 log.u_bbr.flex3 = rack->r_ctl.current_round;
14416 log.u_bbr.rttProp = (uint64_t)CC_ALGO(tp)->newround;
14417 log.u_bbr.flex8 = 9;
14418 tcp_log_event_(tp, NULL, NULL, NULL, BBR_LOG_CWND, 0,
14419 0, &log, false, NULL, NULL, 0, &tv);
14420 }
14421 /*
14422 * The draft (v3) calls for us to use SEQ_GEQ, but that
14423 * causes issues when we are just going app limited. Lets
14424 * instead use SEQ_GT <or> where its equal but more data
14425 * is outstanding.
14426 */
14427 if ((SEQ_GT(tp->snd_una, rack->r_ctl.roundends)) ||
14428 ((tp->snd_una == rack->r_ctl.roundends) && SEQ_GT(tp->snd_max, tp->snd_una))) {
14429 rack->r_ctl.current_round++;
14430 rack->r_ctl.roundends = tp->snd_max;
14431 if (CC_ALGO(tp)->newround != NULL) {
14432 CC_ALGO(tp)->newround(&tp->t_ccv, rack->r_ctl.current_round);
14433 }
14434 }
14435 if ((nxt_pkt == 0) &&
14436 ((rack->r_ctl.rc_hpts_flags & PACE_TMR_MASK) == 0) &&
14437 (SEQ_GT(tp->snd_max, tp->snd_una) ||
14438 (tp->t_flags & TF_DELACK) ||
14439 ((V_tcp_always_keepalive || rack->rc_inp->inp_socket->so_options & SO_KEEPALIVE) &&
14440 (tp->t_state <= TCPS_CLOSING)))) {
14441 /* We could not send (probably in the hpts but stopped the timer earlier)? */
14442 if ((tp->snd_max == tp->snd_una) &&
14443 ((tp->t_flags & TF_DELACK) == 0) &&
14444 (tcp_in_hpts(rack->rc_inp)) &&
14445 (rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT)) {
14446 /* keep alive not needed if we are hptsi output yet */
14447 ;
14448 } else {
14449 int late = 0;
14450 if (tcp_in_hpts(inp)) {
14451 if (rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) {
14452 us_cts = tcp_get_usecs(NULL);
14453 if (TSTMP_GT(rack->r_ctl.rc_last_output_to, us_cts)) {
14454 rack->r_early = 1;
14455 rack->r_ctl.rc_agg_early += (rack->r_ctl.rc_last_output_to - us_cts);
14456 } else
14457 late = 1;
14458 rack->r_ctl.rc_hpts_flags &= ~PACE_PKT_OUTPUT;
14459 }
14460 tcp_hpts_remove(inp);
14461 }
14462 if (late && (did_out == 0)) {
14463 /*
14464 * We are late in the sending
14465 * and we did not call the output
14466 * (this probably should not happen).
14467 */
14468 goto do_output_now;
14469 }
14470 rack_start_hpts_timer(rack, tp, tcp_get_usecs(NULL), 0, 0, 0);
14471 }
14472 way_out = 1;
14473 } else if (nxt_pkt == 0) {
14474 /* Do we have the correct timer running? */
14475 rack_timer_audit(tp, rack, &so->so_snd);
14476 way_out = 2;
14477 }
14478 done_with_input:
14479 rack_log_doseg_done(rack, cts, nxt_pkt, did_out, way_out, max(1, nsegs));
14480 if (did_out)
14481 rack->r_wanted_output = 0;
14482 #ifdef TCP_ACCOUNTING
14483 } else {
14484 /*
14485 * Track the time (see above).
14486 */
14487 if (ack_val_set != 0xf) {
14488 uint64_t crtsc;
14489
14490 crtsc = get_cyclecount();
14491 counter_u64_add(tcp_proc_time[ack_val_set] , (crtsc - ts_val));
14492 /*
14493 * Note we *DO NOT* increment the per-tcb counters since
14494 * in the else the TP may be gone!!
14495 */
14496 }
14497 #endif
14498 }
14499 #ifdef TCP_ACCOUNTING
14500 sched_unpin();
14501 #endif
14502 return (retval);
14503 }
14504
14505 void
14506 rack_do_segment(struct mbuf *m, struct tcphdr *th, struct socket *so,
14507 struct tcpcb *tp, int32_t drop_hdrlen, int32_t tlen, uint8_t iptos)
14508 {
14509 struct timeval tv;
14510
14511 /* First lets see if we have old packets */
14512 if (tp->t_in_pkt) {
14513 if (ctf_do_queued_segments(so, tp, 1)) {
14514 m_freem(m);
14515 return;
14516 }
14517 }
14518 if (m->m_flags & M_TSTMP_LRO) {
14519 mbuf_tstmp2timeval(m, &tv);
14520 } else {
14521 /* Should not be should we kassert instead? */
14522 tcp_get_usecs(&tv);
14523 }
14524 if (rack_do_segment_nounlock(m, th, so, tp,
14525 drop_hdrlen, tlen, iptos, 0, &tv) == 0) {
14526 INP_WUNLOCK(tptoinpcb(tp));
14527 }
14528 }
14529
14530 struct rack_sendmap *
14531 tcp_rack_output(struct tcpcb *tp, struct tcp_rack *rack, uint32_t tsused)
14532 {
14533 struct rack_sendmap *rsm = NULL;
14534 int32_t idx;
14535 uint32_t srtt = 0, thresh = 0, ts_low = 0;
14536
14537 /* Return the next guy to be re-transmitted */
14538 if (RB_EMPTY(&rack->r_ctl.rc_mtree)) {
14539 return (NULL);
14540 }
14541 if (tp->t_flags & TF_SENTFIN) {
14542 /* retran the end FIN? */
14543 return (NULL);
14544 }
14545 /* ok lets look at this one */
14546 rsm = TAILQ_FIRST(&rack->r_ctl.rc_tmap);
14547 if (rack->r_must_retran && rsm && (rsm->r_flags & RACK_MUST_RXT)) {
14548 return (rsm);
14549 }
14550 if (rsm && ((rsm->r_flags & RACK_ACKED) == 0)) {
14551 goto check_it;
14552 }
14553 rsm = rack_find_lowest_rsm(rack);
14554 if (rsm == NULL) {
14555 return (NULL);
14556 }
14557 check_it:
14558 if (((rack->rc_tp->t_flags & TF_SACK_PERMIT) == 0) &&
14559 (rsm->r_dupack >= DUP_ACK_THRESHOLD)) {
14560 /*
14561 * No sack so we automatically do the 3 strikes and
14562 * retransmit (no rack timer would be started).
14563 */
14564
14565 return (rsm);
14566 }
14567 if (rsm->r_flags & RACK_ACKED) {
14568 return (NULL);
14569 }
14570 if (((rsm->r_flags & RACK_SACK_PASSED) == 0) &&
14571 (rsm->r_dupack < DUP_ACK_THRESHOLD)) {
14572 /* Its not yet ready */
14573 return (NULL);
14574 }
14575 srtt = rack_grab_rtt(tp, rack);
14576 idx = rsm->r_rtr_cnt - 1;
14577 ts_low = (uint32_t)rsm->r_tim_lastsent[idx];
14578 thresh = rack_calc_thresh_rack(rack, srtt, tsused);
14579 if ((tsused == ts_low) ||
14580 (TSTMP_LT(tsused, ts_low))) {
14581 /* No time since sending */
14582 return (NULL);
14583 }
14584 if ((tsused - ts_low) < thresh) {
14585 /* It has not been long enough yet */
14586 return (NULL);
14587 }
14588 if ((rsm->r_dupack >= DUP_ACK_THRESHOLD) ||
14589 ((rsm->r_flags & RACK_SACK_PASSED) &&
14590 (rack->sack_attack_disable == 0))) {
14591 /*
14592 * We have passed the dup-ack threshold <or>
14593 * a SACK has indicated this is missing.
14594 * Note that if you are a declared attacker
14595 * it is only the dup-ack threshold that
14596 * will cause retransmits.
14597 */
14598 /* log retransmit reason */
14599 rack_log_retran_reason(rack, rsm, (tsused - ts_low), thresh, 1);
14600 rack->r_fast_output = 0;
14601 return (rsm);
14602 }
14603 return (NULL);
14604 }
14605
14606 static void
14607 rack_log_pacing_delay_calc(struct tcp_rack *rack, uint32_t len, uint32_t slot,
14608 uint64_t bw_est, uint64_t bw, uint64_t len_time, int method,
14609 int line, struct rack_sendmap *rsm, uint8_t quality)
14610 {
14611 if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
14612 union tcp_log_stackspecific log;
14613 struct timeval tv;
14614
14615 memset(&log, 0, sizeof(log));
14616 log.u_bbr.flex1 = slot;
14617 log.u_bbr.flex2 = len;
14618 log.u_bbr.flex3 = rack->r_ctl.rc_pace_min_segs;
14619 log.u_bbr.flex4 = rack->r_ctl.rc_pace_max_segs;
14620 log.u_bbr.flex5 = rack->r_ctl.rack_per_of_gp_ss;
14621 log.u_bbr.flex6 = rack->r_ctl.rack_per_of_gp_ca;
14622 log.u_bbr.use_lt_bw = rack->rc_ack_can_sendout_data;
14623 log.u_bbr.use_lt_bw <<= 1;
14624 log.u_bbr.use_lt_bw |= rack->r_late;
14625 log.u_bbr.use_lt_bw <<= 1;
14626 log.u_bbr.use_lt_bw |= rack->r_early;
14627 log.u_bbr.use_lt_bw <<= 1;
14628 log.u_bbr.use_lt_bw |= rack->app_limited_needs_set;
14629 log.u_bbr.use_lt_bw <<= 1;
14630 log.u_bbr.use_lt_bw |= rack->rc_gp_filled;
14631 log.u_bbr.use_lt_bw <<= 1;
14632 log.u_bbr.use_lt_bw |= rack->measure_saw_probe_rtt;
14633 log.u_bbr.use_lt_bw <<= 1;
14634 log.u_bbr.use_lt_bw |= rack->in_probe_rtt;
14635 log.u_bbr.use_lt_bw <<= 1;
14636 log.u_bbr.use_lt_bw |= rack->gp_ready;
14637 log.u_bbr.pkt_epoch = line;
14638 log.u_bbr.epoch = rack->r_ctl.rc_agg_delayed;
14639 log.u_bbr.lt_epoch = rack->r_ctl.rc_agg_early;
14640 log.u_bbr.applimited = rack->r_ctl.rack_per_of_gp_rec;
14641 log.u_bbr.bw_inuse = bw_est;
14642 log.u_bbr.delRate = bw;
14643 if (rack->r_ctl.gp_bw == 0)
14644 log.u_bbr.cur_del_rate = 0;
14645 else
14646 log.u_bbr.cur_del_rate = rack_get_bw(rack);
14647 log.u_bbr.rttProp = len_time;
14648 log.u_bbr.pkts_out = rack->r_ctl.rc_rack_min_rtt;
14649 log.u_bbr.lost = rack->r_ctl.rc_probertt_sndmax_atexit;
14650 log.u_bbr.pacing_gain = rack_get_output_gain(rack, rsm);
14651 if (rack->r_ctl.cwnd_to_use < rack->rc_tp->snd_ssthresh) {
14652 /* We are in slow start */
14653 log.u_bbr.flex7 = 1;
14654 } else {
14655 /* we are on congestion avoidance */
14656 log.u_bbr.flex7 = 0;
14657 }
14658 log.u_bbr.flex8 = method;
14659 log.u_bbr.timeStamp = tcp_get_usecs(&tv);
14660 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
14661 log.u_bbr.cwnd_gain = rack->rc_gp_saw_rec;
14662 log.u_bbr.cwnd_gain <<= 1;
14663 log.u_bbr.cwnd_gain |= rack->rc_gp_saw_ss;
14664 log.u_bbr.cwnd_gain <<= 1;
14665 log.u_bbr.cwnd_gain |= rack->rc_gp_saw_ca;
14666 log.u_bbr.bbr_substate = quality;
14667 TCP_LOG_EVENTP(rack->rc_tp, NULL,
14668 &rack->rc_inp->inp_socket->so_rcv,
14669 &rack->rc_inp->inp_socket->so_snd,
14670 BBR_LOG_HPTSI_CALC, 0,
14671 0, &log, false, &tv);
14672 }
14673 }
14674
14675 static uint32_t
14676 rack_get_pacing_len(struct tcp_rack *rack, uint64_t bw, uint32_t mss)
14677 {
14678 uint32_t new_tso, user_max;
14679
14680 user_max = rack->rc_user_set_max_segs * mss;
14681 if (rack->rc_force_max_seg) {
14682 return (user_max);
14683 }
14684 if (rack->use_fixed_rate &&
14685 ((rack->r_ctl.crte == NULL) ||
14686 (bw != rack->r_ctl.crte->rate))) {
14687 /* Use the user mss since we are not exactly matched */
14688 return (user_max);
14689 }
14690 new_tso = tcp_get_pacing_burst_size(rack->rc_tp, bw, mss, rack_pace_one_seg, rack->r_ctl.crte, NULL);
14691 if (new_tso > user_max)
14692 new_tso = user_max;
14693 return (new_tso);
14694 }
14695
14696 static int32_t
14697 pace_to_fill_cwnd(struct tcp_rack *rack, int32_t slot, uint32_t len, uint32_t segsiz, int *capped, uint64_t *rate_wanted, uint8_t non_paced)
14698 {
14699 uint64_t lentim, fill_bw;
14700
14701 /* Lets first see if we are full, if so continue with normal rate */
14702 rack->r_via_fill_cw = 0;
14703 if (ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked) > rack->r_ctl.cwnd_to_use)
14704 return (slot);
14705 if ((ctf_outstanding(rack->rc_tp) + (segsiz-1)) > rack->rc_tp->snd_wnd)
14706 return (slot);
14707 if (rack->r_ctl.rc_last_us_rtt == 0)
14708 return (slot);
14709 if (rack->rc_pace_fill_if_rttin_range &&
14710 (rack->r_ctl.rc_last_us_rtt >=
14711 (get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt) * rack->rtt_limit_mul))) {
14712 /* The rtt is huge, N * smallest, lets not fill */
14713 return (slot);
14714 }
14715 /*
14716 * first lets calculate the b/w based on the last us-rtt
14717 * and the sndwnd.
14718 */
14719 fill_bw = rack->r_ctl.cwnd_to_use;
14720 /* Take the rwnd if its smaller */
14721 if (fill_bw > rack->rc_tp->snd_wnd)
14722 fill_bw = rack->rc_tp->snd_wnd;
14723 if (rack->r_fill_less_agg) {
14724 /*
14725 * Now take away the inflight (this will reduce our
14726 * aggressiveness and yeah, if we get that much out in 1RTT
14727 * we will have had acks come back and still be behind).
14728 */
14729 fill_bw -= ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
14730 }
14731 /* Now lets make it into a b/w */
14732 fill_bw *= (uint64_t)HPTS_USEC_IN_SEC;
14733 fill_bw /= (uint64_t)rack->r_ctl.rc_last_us_rtt;
14734 /* We are below the min b/w */
14735 if (non_paced)
14736 *rate_wanted = fill_bw;
14737 if ((fill_bw < RACK_MIN_BW) || (fill_bw < *rate_wanted))
14738 return (slot);
14739 if (rack->r_ctl.bw_rate_cap && (fill_bw > rack->r_ctl.bw_rate_cap))
14740 fill_bw = rack->r_ctl.bw_rate_cap;
14741 rack->r_via_fill_cw = 1;
14742 if (rack->r_rack_hw_rate_caps &&
14743 (rack->r_ctl.crte != NULL)) {
14744 uint64_t high_rate;
14745
14746 high_rate = tcp_hw_highest_rate(rack->r_ctl.crte);
14747 if (fill_bw > high_rate) {
14748 /* We are capping bw at the highest rate table entry */
14749 if (*rate_wanted > high_rate) {
14750 /* The original rate was also capped */
14751 rack->r_via_fill_cw = 0;
14752 }
14753 rack_log_hdwr_pacing(rack,
14754 fill_bw, high_rate, __LINE__,
14755 0, 3);
14756 fill_bw = high_rate;
14757 if (capped)
14758 *capped = 1;
14759 }
14760 } else if ((rack->r_ctl.crte == NULL) &&
14761 (rack->rack_hdrw_pacing == 0) &&
14762 (rack->rack_hdw_pace_ena) &&
14763 rack->r_rack_hw_rate_caps &&
14764 (rack->rack_attempt_hdwr_pace == 0) &&
14765 (rack->rc_inp->inp_route.ro_nh != NULL) &&
14766 (rack->rc_inp->inp_route.ro_nh->nh_ifp != NULL)) {
14767 /*
14768 * Ok we may have a first attempt that is greater than our top rate
14769 * lets check.
14770 */
14771 uint64_t high_rate;
14772
14773 high_rate = tcp_hw_highest_rate_ifp(rack->rc_inp->inp_route.ro_nh->nh_ifp, rack->rc_inp);
14774 if (high_rate) {
14775 if (fill_bw > high_rate) {
14776 fill_bw = high_rate;
14777 if (capped)
14778 *capped = 1;
14779 }
14780 }
14781 }
14782 /*
14783 * Ok fill_bw holds our mythical b/w to fill the cwnd
14784 * in a rtt, what does that time wise equate too?
14785 */
14786 lentim = (uint64_t)(len) * (uint64_t)HPTS_USEC_IN_SEC;
14787 lentim /= fill_bw;
14788 *rate_wanted = fill_bw;
14789 if (non_paced || (lentim < slot)) {
14790 rack_log_pacing_delay_calc(rack, len, slot, fill_bw,
14791 0, lentim, 12, __LINE__, NULL, 0);
14792 return ((int32_t)lentim);
14793 } else
14794 return (slot);
14795 }
14796
14797 static int32_t
14798 rack_get_pacing_delay(struct tcp_rack *rack, struct tcpcb *tp, uint32_t len, struct rack_sendmap *rsm, uint32_t segsiz)
14799 {
14800 uint64_t srtt;
14801 int32_t slot = 0;
14802 int can_start_hw_pacing = 1;
14803 int err;
14804
14805 if (rack->rc_always_pace == 0) {
14806 /*
14807 * We use the most optimistic possible cwnd/srtt for
14808 * sending calculations. This will make our
14809 * calculation anticipate getting more through
14810 * quicker then possible. But thats ok we don't want
14811 * the peer to have a gap in data sending.
14812 */
14813 uint64_t cwnd, tr_perms = 0;
14814 int32_t reduce = 0;
14815
14816 old_method:
14817 /*
14818 * We keep no precise pacing with the old method
14819 * instead we use the pacer to mitigate bursts.
14820 */
14821 if (rack->r_ctl.rc_rack_min_rtt)
14822 srtt = rack->r_ctl.rc_rack_min_rtt;
14823 else
14824 srtt = max(tp->t_srtt, 1);
14825 if (rack->r_ctl.rc_rack_largest_cwnd)
14826 cwnd = rack->r_ctl.rc_rack_largest_cwnd;
14827 else
14828 cwnd = rack->r_ctl.cwnd_to_use;
14829 /* Inflate cwnd by 1000 so srtt of usecs is in ms */
14830 tr_perms = (cwnd * 1000) / srtt;
14831 if (tr_perms == 0) {
14832 tr_perms = ctf_fixed_maxseg(tp);
14833 }
14834 /*
14835 * Calculate how long this will take to drain, if
14836 * the calculation comes out to zero, thats ok we
14837 * will use send_a_lot to possibly spin around for
14838 * more increasing tot_len_this_send to the point
14839 * that its going to require a pace, or we hit the
14840 * cwnd. Which in that case we are just waiting for
14841 * a ACK.
14842 */
14843 slot = len / tr_perms;
14844 /* Now do we reduce the time so we don't run dry? */
14845 if (slot && rack_slot_reduction) {
14846 reduce = (slot / rack_slot_reduction);
14847 if (reduce < slot) {
14848 slot -= reduce;
14849 } else
14850 slot = 0;
14851 }
14852 slot *= HPTS_USEC_IN_MSEC;
14853 if (rack->rc_pace_to_cwnd) {
14854 uint64_t rate_wanted = 0;
14855
14856 slot = pace_to_fill_cwnd(rack, slot, len, segsiz, NULL, &rate_wanted, 1);
14857 rack->rc_ack_can_sendout_data = 1;
14858 rack_log_pacing_delay_calc(rack, len, slot, rate_wanted, 0, 0, 14, __LINE__, NULL, 0);
14859 } else
14860 rack_log_pacing_delay_calc(rack, len, slot, tr_perms, reduce, 0, 7, __LINE__, NULL, 0);
14861 } else {
14862 uint64_t bw_est, res, lentim, rate_wanted;
14863 uint32_t orig_val, segs, oh;
14864 int capped = 0;
14865 int prev_fill;
14866
14867 if ((rack->r_rr_config == 1) && rsm) {
14868 return (rack->r_ctl.rc_min_to);
14869 }
14870 if (rack->use_fixed_rate) {
14871 rate_wanted = bw_est = rack_get_fixed_pacing_bw(rack);
14872 } else if ((rack->r_ctl.init_rate == 0) &&
14873 #ifdef NETFLIX_PEAKRATE
14874 (rack->rc_tp->t_maxpeakrate == 0) &&
14875 #endif
14876 (rack->r_ctl.gp_bw == 0)) {
14877 /* no way to yet do an estimate */
14878 bw_est = rate_wanted = 0;
14879 } else {
14880 bw_est = rack_get_bw(rack);
14881 rate_wanted = rack_get_output_bw(rack, bw_est, rsm, &capped);
14882 }
14883 if ((bw_est == 0) || (rate_wanted == 0) ||
14884 ((rack->gp_ready == 0) && (rack->use_fixed_rate == 0))) {
14885 /*
14886 * No way yet to make a b/w estimate or
14887 * our raise is set incorrectly.
14888 */
14889 goto old_method;
14890 }
14891 /* We need to account for all the overheads */
14892 segs = (len + segsiz - 1) / segsiz;
14893 /*
14894 * We need the diff between 1514 bytes (e-mtu with e-hdr)
14895 * and how much data we put in each packet. Yes this
14896 * means we may be off if we are larger than 1500 bytes
14897 * or smaller. But this just makes us more conservative.
14898 */
14899 if (rack_hw_rate_min &&
14900 (bw_est < rack_hw_rate_min))
14901 can_start_hw_pacing = 0;
14902 if (ETHERNET_SEGMENT_SIZE > segsiz)
14903 oh = ETHERNET_SEGMENT_SIZE - segsiz;
14904 else
14905 oh = 0;
14906 segs *= oh;
14907 lentim = (uint64_t)(len + segs) * (uint64_t)HPTS_USEC_IN_SEC;
14908 res = lentim / rate_wanted;
14909 slot = (uint32_t)res;
14910 orig_val = rack->r_ctl.rc_pace_max_segs;
14911 if (rack->r_ctl.crte == NULL) {
14912 /*
14913 * Only do this if we are not hardware pacing
14914 * since if we are doing hw-pacing below we will
14915 * set make a call after setting up or changing
14916 * the rate.
14917 */
14918 rack_set_pace_segments(rack->rc_tp, rack, __LINE__, NULL);
14919 } else if (rack->rc_inp->inp_snd_tag == NULL) {
14920 /*
14921 * We lost our rate somehow, this can happen
14922 * if the interface changed underneath us.
14923 */
14924 tcp_rel_pacing_rate(rack->r_ctl.crte, rack->rc_tp);
14925 rack->r_ctl.crte = NULL;
14926 /* Lets re-allow attempting to setup pacing */
14927 rack->rack_hdrw_pacing = 0;
14928 rack->rack_attempt_hdwr_pace = 0;
14929 rack_log_hdwr_pacing(rack,
14930 rate_wanted, bw_est, __LINE__,
14931 0, 6);
14932 }
14933 /* Did we change the TSO size, if so log it */
14934 if (rack->r_ctl.rc_pace_max_segs != orig_val)
14935 rack_log_pacing_delay_calc(rack, len, slot, orig_val, 0, 0, 15, __LINE__, NULL, 0);
14936 prev_fill = rack->r_via_fill_cw;
14937 if ((rack->rc_pace_to_cwnd) &&
14938 (capped == 0) &&
14939 (rack->use_fixed_rate == 0) &&
14940 (rack->in_probe_rtt == 0) &&
14941 (IN_FASTRECOVERY(rack->rc_tp->t_flags) == 0)) {
14942 /*
14943 * We want to pace at our rate *or* faster to
14944 * fill the cwnd to the max if its not full.
14945 */
14946 slot = pace_to_fill_cwnd(rack, slot, (len+segs), segsiz, &capped, &rate_wanted, 0);
14947 }
14948 if ((rack->rc_inp->inp_route.ro_nh != NULL) &&
14949 (rack->rc_inp->inp_route.ro_nh->nh_ifp != NULL)) {
14950 if ((rack->rack_hdw_pace_ena) &&
14951 (can_start_hw_pacing > 0) &&
14952 (rack->rack_hdrw_pacing == 0) &&
14953 (rack->rack_attempt_hdwr_pace == 0)) {
14954 /*
14955 * Lets attempt to turn on hardware pacing
14956 * if we can.
14957 */
14958 rack->rack_attempt_hdwr_pace = 1;
14959 rack->r_ctl.crte = tcp_set_pacing_rate(rack->rc_tp,
14960 rack->rc_inp->inp_route.ro_nh->nh_ifp,
14961 rate_wanted,
14962 RS_PACING_GEQ,
14963 &err, &rack->r_ctl.crte_prev_rate);
14964 if (rack->r_ctl.crte) {
14965 rack->rack_hdrw_pacing = 1;
14966 rack->r_ctl.rc_pace_max_segs = tcp_get_pacing_burst_size(tp, rate_wanted, segsiz,
14967 0, rack->r_ctl.crte,
14968 NULL);
14969 rack_log_hdwr_pacing(rack,
14970 rate_wanted, rack->r_ctl.crte->rate, __LINE__,
14971 err, 0);
14972 rack->r_ctl.last_hw_bw_req = rate_wanted;
14973 } else {
14974 counter_u64_add(rack_hw_pace_init_fail, 1);
14975 }
14976 } else if (rack->rack_hdrw_pacing &&
14977 (rack->r_ctl.last_hw_bw_req != rate_wanted)) {
14978 /* Do we need to adjust our rate? */
14979 const struct tcp_hwrate_limit_table *nrte;
14980
14981 if (rack->r_up_only &&
14982 (rate_wanted < rack->r_ctl.crte->rate)) {
14983 /**
14984 * We have four possible states here
14985 * having to do with the previous time
14986 * and this time.
14987 * previous | this-time
14988 * A) 0 | 0 -- fill_cw not in the picture
14989 * B) 1 | 0 -- we were doing a fill-cw but now are not
14990 * C) 1 | 1 -- all rates from fill_cw
14991 * D) 0 | 1 -- we were doing non-fill and now we are filling
14992 *
14993 * For case A, C and D we don't allow a drop. But for
14994 * case B where we now our on our steady rate we do
14995 * allow a drop.
14996 *
14997 */
14998 if (!((prev_fill == 1) && (rack->r_via_fill_cw == 0)))
14999 goto done_w_hdwr;
15000 }
15001 if ((rate_wanted > rack->r_ctl.crte->rate) ||
15002 (rate_wanted <= rack->r_ctl.crte_prev_rate)) {
15003 if (rack_hw_rate_to_low &&
15004 (bw_est < rack_hw_rate_to_low)) {
15005 /*
15006 * The pacing rate is too low for hardware, but
15007 * do allow hardware pacing to be restarted.
15008 */
15009 rack_log_hdwr_pacing(rack,
15010 bw_est, rack->r_ctl.crte->rate, __LINE__,
15011 0, 5);
15012 tcp_rel_pacing_rate(rack->r_ctl.crte, rack->rc_tp);
15013 rack->r_ctl.crte = NULL;
15014 rack->rack_attempt_hdwr_pace = 0;
15015 rack->rack_hdrw_pacing = 0;
15016 rack_set_pace_segments(rack->rc_tp, rack, __LINE__, &rate_wanted);
15017 goto done_w_hdwr;
15018 }
15019 nrte = tcp_chg_pacing_rate(rack->r_ctl.crte,
15020 rack->rc_tp,
15021 rack->rc_inp->inp_route.ro_nh->nh_ifp,
15022 rate_wanted,
15023 RS_PACING_GEQ,
15024 &err, &rack->r_ctl.crte_prev_rate);
15025 if (nrte == NULL) {
15026 /* Lost the rate */
15027 rack->rack_hdrw_pacing = 0;
15028 rack->r_ctl.crte = NULL;
15029 rack_log_hdwr_pacing(rack,
15030 rate_wanted, 0, __LINE__,
15031 err, 1);
15032 rack_set_pace_segments(rack->rc_tp, rack, __LINE__, &rate_wanted);
15033 counter_u64_add(rack_hw_pace_lost, 1);
15034 } else if (nrte != rack->r_ctl.crte) {
15035 rack->r_ctl.crte = nrte;
15036 rack->r_ctl.rc_pace_max_segs = tcp_get_pacing_burst_size(tp, rate_wanted,
15037 segsiz, 0,
15038 rack->r_ctl.crte,
15039 NULL);
15040 rack_log_hdwr_pacing(rack,
15041 rate_wanted, rack->r_ctl.crte->rate, __LINE__,
15042 err, 2);
15043 rack->r_ctl.last_hw_bw_req = rate_wanted;
15044 }
15045 } else {
15046 /* We just need to adjust the segment size */
15047 rack_set_pace_segments(rack->rc_tp, rack, __LINE__, &rate_wanted);
15048 rack_log_hdwr_pacing(rack,
15049 rate_wanted, rack->r_ctl.crte->rate, __LINE__,
15050 0, 4);
15051 rack->r_ctl.last_hw_bw_req = rate_wanted;
15052 }
15053 }
15054 }
15055 if ((rack->r_ctl.crte != NULL) &&
15056 (rack->r_ctl.crte->rate == rate_wanted)) {
15057 /*
15058 * We need to add a extra if the rates
15059 * are exactly matched. The idea is
15060 * we want the software to make sure the
15061 * queue is empty before adding more, this
15062 * gives us N MSS extra pace times where
15063 * N is our sysctl
15064 */
15065 slot += (rack->r_ctl.crte->time_between * rack_hw_pace_extra_slots);
15066 }
15067 done_w_hdwr:
15068 if (rack_limit_time_with_srtt &&
15069 (rack->use_fixed_rate == 0) &&
15070 #ifdef NETFLIX_PEAKRATE
15071 (rack->rc_tp->t_maxpeakrate == 0) &&
15072 #endif
15073 (rack->rack_hdrw_pacing == 0)) {
15074 /*
15075 * Sanity check, we do not allow the pacing delay
15076 * to be longer than the SRTT of the path. If it is
15077 * a slow path, then adding a packet should increase
15078 * the RTT and compensate for this i.e. the srtt will
15079 * be greater so the allowed pacing time will be greater.
15080 *
15081 * Note this restriction is not for where a peak rate
15082 * is set, we are doing fixed pacing or hardware pacing.
15083 */
15084 if (rack->rc_tp->t_srtt)
15085 srtt = rack->rc_tp->t_srtt;
15086 else
15087 srtt = RACK_INITIAL_RTO * HPTS_USEC_IN_MSEC; /* its in ms convert */
15088 if (srtt < (uint64_t)slot) {
15089 rack_log_pacing_delay_calc(rack, srtt, slot, rate_wanted, bw_est, lentim, 99, __LINE__, NULL, 0);
15090 slot = srtt;
15091 }
15092 }
15093 rack_log_pacing_delay_calc(rack, len, slot, rate_wanted, bw_est, lentim, 2, __LINE__, rsm, 0);
15094 }
15095 if (rack->r_ctl.crte && (rack->r_ctl.crte->rs_num_enobufs > 0)) {
15096 /*
15097 * If this rate is seeing enobufs when it
15098 * goes to send then either the nic is out
15099 * of gas or we are mis-estimating the time
15100 * somehow and not letting the queue empty
15101 * completely. Lets add to the pacing time.
15102 */
15103 int hw_boost_delay;
15104
15105 hw_boost_delay = rack->r_ctl.crte->time_between * rack_enobuf_hw_boost_mult;
15106 if (hw_boost_delay > rack_enobuf_hw_max)
15107 hw_boost_delay = rack_enobuf_hw_max;
15108 else if (hw_boost_delay < rack_enobuf_hw_min)
15109 hw_boost_delay = rack_enobuf_hw_min;
15110 slot += hw_boost_delay;
15111 }
15112 return (slot);
15113 }
15114
15115 static void
15116 rack_start_gp_measurement(struct tcpcb *tp, struct tcp_rack *rack,
15117 tcp_seq startseq, uint32_t sb_offset)
15118 {
15119 struct rack_sendmap *my_rsm = NULL;
15120 struct rack_sendmap fe;
15121
15122 if (tp->t_state < TCPS_ESTABLISHED) {
15123 /*
15124 * We don't start any measurements if we are
15125 * not at least established.
15126 */
15127 return;
15128 }
15129 if (tp->t_state >= TCPS_FIN_WAIT_1) {
15130 /*
15131 * We will get no more data into the SB
15132 * this means we need to have the data available
15133 * before we start a measurement.
15134 */
15135
15136 if (sbavail(&tptosocket(tp)->so_snd) <
15137 max(rc_init_window(rack),
15138 (MIN_GP_WIN * ctf_fixed_maxseg(tp)))) {
15139 /* Nope not enough data */
15140 return;
15141 }
15142 }
15143 tp->t_flags |= TF_GPUTINPROG;
15144 rack->r_ctl.rc_gp_lowrtt = 0xffffffff;
15145 rack->r_ctl.rc_gp_high_rwnd = rack->rc_tp->snd_wnd;
15146 tp->gput_seq = startseq;
15147 rack->app_limited_needs_set = 0;
15148 if (rack->in_probe_rtt)
15149 rack->measure_saw_probe_rtt = 1;
15150 else if ((rack->measure_saw_probe_rtt) &&
15151 (SEQ_GEQ(tp->gput_seq, rack->r_ctl.rc_probertt_sndmax_atexit)))
15152 rack->measure_saw_probe_rtt = 0;
15153 if (rack->rc_gp_filled)
15154 tp->gput_ts = tcp_tv_to_usectick(&rack->r_ctl.act_rcv_time);
15155 else {
15156 /* Special case initial measurement */
15157 struct timeval tv;
15158
15159 tp->gput_ts = tcp_get_usecs(&tv);
15160 rack->r_ctl.rc_gp_output_ts = rack_to_usec_ts(&tv);
15161 }
15162 /*
15163 * We take a guess out into the future,
15164 * if we have no measurement and no
15165 * initial rate, we measure the first
15166 * initial-windows worth of data to
15167 * speed up getting some GP measurement and
15168 * thus start pacing.
15169 */
15170 if ((rack->rc_gp_filled == 0) && (rack->r_ctl.init_rate == 0)) {
15171 rack->app_limited_needs_set = 1;
15172 tp->gput_ack = startseq + max(rc_init_window(rack),
15173 (MIN_GP_WIN * ctf_fixed_maxseg(tp)));
15174 rack_log_pacing_delay_calc(rack,
15175 tp->gput_seq,
15176 tp->gput_ack,
15177 0,
15178 tp->gput_ts,
15179 rack->r_ctl.rc_app_limited_cnt,
15180 9,
15181 __LINE__, NULL, 0);
15182 return;
15183 }
15184 if (sb_offset) {
15185 /*
15186 * We are out somewhere in the sb
15187 * can we use the already outstanding data?
15188 */
15189 if (rack->r_ctl.rc_app_limited_cnt == 0) {
15190 /*
15191 * Yes first one is good and in this case
15192 * the tp->gput_ts is correctly set based on
15193 * the last ack that arrived (no need to
15194 * set things up when an ack comes in).
15195 */
15196 my_rsm = RB_MIN(rack_rb_tree_head, &rack->r_ctl.rc_mtree);
15197 if ((my_rsm == NULL) ||
15198 (my_rsm->r_rtr_cnt != 1)) {
15199 /* retransmission? */
15200 goto use_latest;
15201 }
15202 } else {
15203 if (rack->r_ctl.rc_first_appl == NULL) {
15204 /*
15205 * If rc_first_appl is NULL
15206 * then the cnt should be 0.
15207 * This is probably an error, maybe
15208 * a KASSERT would be approprate.
15209 */
15210 goto use_latest;
15211 }
15212 /*
15213 * If we have a marker pointer to the last one that is
15214 * app limited we can use that, but we need to set
15215 * things up so that when it gets ack'ed we record
15216 * the ack time (if its not already acked).
15217 */
15218 rack->app_limited_needs_set = 1;
15219 /*
15220 * We want to get to the rsm that is either
15221 * next with space i.e. over 1 MSS or the one
15222 * after that (after the app-limited).
15223 */
15224 my_rsm = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree,
15225 rack->r_ctl.rc_first_appl);
15226 if (my_rsm) {
15227 if ((my_rsm->r_end - my_rsm->r_start) <= ctf_fixed_maxseg(tp))
15228 /* Have to use the next one */
15229 my_rsm = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree,
15230 my_rsm);
15231 else {
15232 /* Use after the first MSS of it is acked */
15233 tp->gput_seq = my_rsm->r_start + ctf_fixed_maxseg(tp);
15234 goto start_set;
15235 }
15236 }
15237 if ((my_rsm == NULL) ||
15238 (my_rsm->r_rtr_cnt != 1)) {
15239 /*
15240 * Either its a retransmit or
15241 * the last is the app-limited one.
15242 */
15243 goto use_latest;
15244 }
15245 }
15246 tp->gput_seq = my_rsm->r_start;
15247 start_set:
15248 if (my_rsm->r_flags & RACK_ACKED) {
15249 /*
15250 * This one has been acked use the arrival ack time
15251 */
15252 tp->gput_ts = (uint32_t)my_rsm->r_ack_arrival;
15253 rack->app_limited_needs_set = 0;
15254 }
15255 rack->r_ctl.rc_gp_output_ts = my_rsm->r_tim_lastsent[(my_rsm->r_rtr_cnt-1)];
15256 tp->gput_ack = tp->gput_seq + rack_get_measure_window(tp, rack);
15257 rack_log_pacing_delay_calc(rack,
15258 tp->gput_seq,
15259 tp->gput_ack,
15260 (uint64_t)my_rsm,
15261 tp->gput_ts,
15262 rack->r_ctl.rc_app_limited_cnt,
15263 9,
15264 __LINE__, NULL, 0);
15265 return;
15266 }
15267
15268 use_latest:
15269 /*
15270 * We don't know how long we may have been
15271 * idle or if this is the first-send. Lets
15272 * setup the flag so we will trim off
15273 * the first ack'd data so we get a true
15274 * measurement.
15275 */
15276 rack->app_limited_needs_set = 1;
15277 tp->gput_ack = startseq + rack_get_measure_window(tp, rack);
15278 /* Find this guy so we can pull the send time */
15279 fe.r_start = startseq;
15280 my_rsm = RB_FIND(rack_rb_tree_head, &rack->r_ctl.rc_mtree, &fe);
15281 if (my_rsm) {
15282 rack->r_ctl.rc_gp_output_ts = my_rsm->r_tim_lastsent[(my_rsm->r_rtr_cnt-1)];
15283 if (my_rsm->r_flags & RACK_ACKED) {
15284 /*
15285 * Unlikely since its probably what was
15286 * just transmitted (but I am paranoid).
15287 */
15288 tp->gput_ts = (uint32_t)my_rsm->r_ack_arrival;
15289 rack->app_limited_needs_set = 0;
15290 }
15291 if (SEQ_LT(my_rsm->r_start, tp->gput_seq)) {
15292 /* This also is unlikely */
15293 tp->gput_seq = my_rsm->r_start;
15294 }
15295 } else {
15296 /*
15297 * TSNH unless we have some send-map limit,
15298 * and even at that it should not be hitting
15299 * that limit (we should have stopped sending).
15300 */
15301 struct timeval tv;
15302
15303 microuptime(&tv);
15304 rack->r_ctl.rc_gp_output_ts = rack_to_usec_ts(&tv);
15305 }
15306 rack_log_pacing_delay_calc(rack,
15307 tp->gput_seq,
15308 tp->gput_ack,
15309 (uint64_t)my_rsm,
15310 tp->gput_ts,
15311 rack->r_ctl.rc_app_limited_cnt,
15312 9, __LINE__, NULL, 0);
15313 }
15314
15315 static inline uint32_t
15316 rack_what_can_we_send(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cwnd_to_use,
15317 uint32_t avail, int32_t sb_offset)
15318 {
15319 uint32_t len;
15320 uint32_t sendwin;
15321
15322 if (tp->snd_wnd > cwnd_to_use)
15323 sendwin = cwnd_to_use;
15324 else
15325 sendwin = tp->snd_wnd;
15326 if (ctf_outstanding(tp) >= tp->snd_wnd) {
15327 /* We never want to go over our peers rcv-window */
15328 len = 0;
15329 } else {
15330 uint32_t flight;
15331
15332 flight = ctf_flight_size(tp, rack->r_ctl.rc_sacked);
15333 if (flight >= sendwin) {
15334 /*
15335 * We have in flight what we are allowed by cwnd (if
15336 * it was rwnd blocking it would have hit above out
15337 * >= tp->snd_wnd).
15338 */
15339 return (0);
15340 }
15341 len = sendwin - flight;
15342 if ((len + ctf_outstanding(tp)) > tp->snd_wnd) {
15343 /* We would send too much (beyond the rwnd) */
15344 len = tp->snd_wnd - ctf_outstanding(tp);
15345 }
15346 if ((len + sb_offset) > avail) {
15347 /*
15348 * We don't have that much in the SB, how much is
15349 * there?
15350 */
15351 len = avail - sb_offset;
15352 }
15353 }
15354 return (len);
15355 }
15356
15357 static void
15358 rack_log_fsb(struct tcp_rack *rack, struct tcpcb *tp, struct socket *so, uint32_t flags,
15359 unsigned ipoptlen, int32_t orig_len, int32_t len, int error,
15360 int rsm_is_null, int optlen, int line, uint16_t mode)
15361 {
15362 if (tp->t_logstate != TCP_LOG_STATE_OFF) {
15363 union tcp_log_stackspecific log;
15364 struct timeval tv;
15365
15366 memset(&log.u_bbr, 0, sizeof(log.u_bbr));
15367 log.u_bbr.inhpts = tcp_in_hpts(rack->rc_inp);
15368 log.u_bbr.flex1 = error;
15369 log.u_bbr.flex2 = flags;
15370 log.u_bbr.flex3 = rsm_is_null;
15371 log.u_bbr.flex4 = ipoptlen;
15372 log.u_bbr.flex5 = tp->rcv_numsacks;
15373 log.u_bbr.flex6 = rack->r_ctl.rc_agg_early;
15374 log.u_bbr.flex7 = optlen;
15375 log.u_bbr.flex8 = rack->r_fsb_inited;
15376 log.u_bbr.applimited = rack->r_fast_output;
15377 log.u_bbr.bw_inuse = rack_get_bw(rack);
15378 log.u_bbr.pacing_gain = rack_get_output_gain(rack, NULL);
15379 log.u_bbr.cwnd_gain = mode;
15380 log.u_bbr.pkts_out = orig_len;
15381 log.u_bbr.lt_epoch = len;
15382 log.u_bbr.delivered = line;
15383 log.u_bbr.timeStamp = tcp_get_usecs(&tv);
15384 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
15385 tcp_log_event_(tp, NULL, &so->so_rcv, &so->so_snd, TCP_LOG_FSB, 0,
15386 len, &log, false, NULL, NULL, 0, &tv);
15387 }
15388 }
15389
15390
15391 static struct mbuf *
15392 rack_fo_base_copym(struct mbuf *the_m, uint32_t the_off, int32_t *plen,
15393 struct rack_fast_send_blk *fsb,
15394 int32_t seglimit, int32_t segsize, int hw_tls)
15395 {
15396 #ifdef KERN_TLS
15397 struct ktls_session *tls, *ntls;
15398 #ifdef INVARIANTS
15399 struct mbuf *start;
15400 #endif
15401 #endif
15402 struct mbuf *m, *n, **np, *smb;
15403 struct mbuf *top;
15404 int32_t off, soff;
15405 int32_t len = *plen;
15406 int32_t fragsize;
15407 int32_t len_cp = 0;
15408 uint32_t mlen, frags;
15409
15410 soff = off = the_off;
15411 smb = m = the_m;
15412 np = ⊤
15413 top = NULL;
15414 #ifdef KERN_TLS
15415 if (hw_tls && (m->m_flags & M_EXTPG))
15416 tls = m->m_epg_tls;
15417 else
15418 tls = NULL;
15419 #ifdef INVARIANTS
15420 start = m;
15421 #endif
15422 #endif
15423 while (len > 0) {
15424 if (m == NULL) {
15425 *plen = len_cp;
15426 break;
15427 }
15428 #ifdef KERN_TLS
15429 if (hw_tls) {
15430 if (m->m_flags & M_EXTPG)
15431 ntls = m->m_epg_tls;
15432 else
15433 ntls = NULL;
15434
15435 /*
15436 * Avoid mixing TLS records with handshake
15437 * data or TLS records from different
15438 * sessions.
15439 */
15440 if (tls != ntls) {
15441 MPASS(m != start);
15442 *plen = len_cp;
15443 break;
15444 }
15445 }
15446 #endif
15447 mlen = min(len, m->m_len - off);
15448 if (seglimit) {
15449 /*
15450 * For M_EXTPG mbufs, add 3 segments
15451 * + 1 in case we are crossing page boundaries
15452 * + 2 in case the TLS hdr/trailer are used
15453 * It is cheaper to just add the segments
15454 * than it is to take the cache miss to look
15455 * at the mbuf ext_pgs state in detail.
15456 */
15457 if (m->m_flags & M_EXTPG) {
15458 fragsize = min(segsize, PAGE_SIZE);
15459 frags = 3;
15460 } else {
15461 fragsize = segsize;
15462 frags = 0;
15463 }
15464
15465 /* Break if we really can't fit anymore. */
15466 if ((frags + 1) >= seglimit) {
15467 *plen = len_cp;
15468 break;
15469 }
15470
15471 /*
15472 * Reduce size if you can't copy the whole
15473 * mbuf. If we can't copy the whole mbuf, also
15474 * adjust len so the loop will end after this
15475 * mbuf.
15476 */
15477 if ((frags + howmany(mlen, fragsize)) >= seglimit) {
15478 mlen = (seglimit - frags - 1) * fragsize;
15479 len = mlen;
15480 *plen = len_cp + len;
15481 }
15482 frags += howmany(mlen, fragsize);
15483 if (frags == 0)
15484 frags++;
15485 seglimit -= frags;
15486 KASSERT(seglimit > 0,
15487 ("%s: seglimit went too low", __func__));
15488 }
15489 n = m_get(M_NOWAIT, m->m_type);
15490 *np = n;
15491 if (n == NULL)
15492 goto nospace;
15493 n->m_len = mlen;
15494 soff += mlen;
15495 len_cp += n->m_len;
15496 if (m->m_flags & (M_EXT|M_EXTPG)) {
15497 n->m_data = m->m_data + off;
15498 mb_dupcl(n, m);
15499 } else {
15500 bcopy(mtod(m, caddr_t)+off, mtod(n, caddr_t),
15501 (u_int)n->m_len);
15502 }
15503 len -= n->m_len;
15504 off = 0;
15505 m = m->m_next;
15506 np = &n->m_next;
15507 if (len || (soff == smb->m_len)) {
15508 /*
15509 * We have more so we move forward or
15510 * we have consumed the entire mbuf and
15511 * len has fell to 0.
15512 */
15513 soff = 0;
15514 smb = m;
15515 }
15516
15517 }
15518 if (fsb != NULL) {
15519 fsb->m = smb;
15520 fsb->off = soff;
15521 if (smb) {
15522 /*
15523 * Save off the size of the mbuf. We do
15524 * this so that we can recognize when it
15525 * has been trimmed by sbcut() as acks
15526 * come in.
15527 */
15528 fsb->o_m_len = smb->m_len;
15529 } else {
15530 /*
15531 * This is the case where the next mbuf went to NULL. This
15532 * means with this copy we have sent everything in the sb.
15533 * In theory we could clear the fast_output flag, but lets
15534 * not since its possible that we could get more added
15535 * and acks that call the extend function which would let
15536 * us send more.
15537 */
15538 fsb->o_m_len = 0;
15539 }
15540 }
15541 return (top);
15542 nospace:
15543 if (top)
15544 m_freem(top);
15545 return (NULL);
15546
15547 }
15548
15549 /*
15550 * This is a copy of m_copym(), taking the TSO segment size/limit
15551 * constraints into account, and advancing the sndptr as it goes.
15552 */
15553 static struct mbuf *
15554 rack_fo_m_copym(struct tcp_rack *rack, int32_t *plen,
15555 int32_t seglimit, int32_t segsize, struct mbuf **s_mb, int *s_soff)
15556 {
15557 struct mbuf *m, *n;
15558 int32_t soff;
15559
15560 soff = rack->r_ctl.fsb.off;
15561 m = rack->r_ctl.fsb.m;
15562 if (rack->r_ctl.fsb.o_m_len > m->m_len) {
15563 /*
15564 * The mbuf had the front of it chopped off by an ack
15565 * we need to adjust the soff/off by that difference.
15566 */
15567 uint32_t delta;
15568
15569 delta = rack->r_ctl.fsb.o_m_len - m->m_len;
15570 soff -= delta;
15571 } else if (rack->r_ctl.fsb.o_m_len < m->m_len) {
15572 /*
15573 * The mbuf was expanded probably by
15574 * a m_compress. Just update o_m_len.
15575 */
15576 rack->r_ctl.fsb.o_m_len = m->m_len;
15577 }
15578 KASSERT(soff >= 0, ("%s, negative off %d", __FUNCTION__, soff));
15579 KASSERT(*plen >= 0, ("%s, negative len %d", __FUNCTION__, *plen));
15580 KASSERT(soff < m->m_len, ("%s rack:%p len:%u m:%p m->m_len:%u < off?",
15581 __FUNCTION__,
15582 rack, *plen, m, m->m_len));
15583 /* Save off the right location before we copy and advance */
15584 *s_soff = soff;
15585 *s_mb = rack->r_ctl.fsb.m;
15586 n = rack_fo_base_copym(m, soff, plen,
15587 &rack->r_ctl.fsb,
15588 seglimit, segsize, rack->r_ctl.fsb.hw_tls);
15589 return (n);
15590 }
15591
15592 static int
15593 rack_fast_rsm_output(struct tcpcb *tp, struct tcp_rack *rack, struct rack_sendmap *rsm,
15594 uint64_t ts_val, uint32_t cts, uint32_t ms_cts, struct timeval *tv, int len, uint8_t doing_tlp)
15595 {
15596 /*
15597 * Enter the fast retransmit path. We are given that a sched_pin is
15598 * in place (if accounting is compliled in) and the cycle count taken
15599 * at the entry is in the ts_val. The concept her is that the rsm
15600 * now holds the mbuf offsets and such so we can directly transmit
15601 * without a lot of overhead, the len field is already set for
15602 * us to prohibit us from sending too much (usually its 1MSS).
15603 */
15604 struct ip *ip = NULL;
15605 struct udphdr *udp = NULL;
15606 struct tcphdr *th = NULL;
15607 struct mbuf *m = NULL;
15608 struct inpcb *inp;
15609 uint8_t *cpto;
15610 struct tcp_log_buffer *lgb;
15611 #ifdef TCP_ACCOUNTING
15612 uint64_t crtsc;
15613 int cnt_thru = 1;
15614 #endif
15615 struct tcpopt to;
15616 u_char opt[TCP_MAXOLEN];
15617 uint32_t hdrlen, optlen;
15618 int32_t slot, segsiz, max_val, tso = 0, error = 0, ulen = 0;
15619 uint16_t flags;
15620 uint32_t if_hw_tsomaxsegcount = 0, startseq;
15621 uint32_t if_hw_tsomaxsegsize;
15622
15623 #ifdef INET6
15624 struct ip6_hdr *ip6 = NULL;
15625
15626 if (rack->r_is_v6) {
15627 ip6 = (struct ip6_hdr *)rack->r_ctl.fsb.tcp_ip_hdr;
15628 hdrlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
15629 } else
15630 #endif /* INET6 */
15631 {
15632 ip = (struct ip *)rack->r_ctl.fsb.tcp_ip_hdr;
15633 hdrlen = sizeof(struct tcpiphdr);
15634 }
15635 if (tp->t_port && (V_tcp_udp_tunneling_port == 0)) {
15636 goto failed;
15637 }
15638 if (doing_tlp) {
15639 /* Its a TLP add the flag, it may already be there but be sure */
15640 rsm->r_flags |= RACK_TLP;
15641 } else {
15642 /* If it was a TLP it is not not on this retransmit */
15643 rsm->r_flags &= ~RACK_TLP;
15644 }
15645 startseq = rsm->r_start;
15646 segsiz = min(ctf_fixed_maxseg(tp), rack->r_ctl.rc_pace_min_segs);
15647 inp = rack->rc_inp;
15648 to.to_flags = 0;
15649 flags = tcp_outflags[tp->t_state];
15650 if (flags & (TH_SYN|TH_RST)) {
15651 goto failed;
15652 }
15653 if (rsm->r_flags & RACK_HAS_FIN) {
15654 /* We can't send a FIN here */
15655 goto failed;
15656 }
15657 if (flags & TH_FIN) {
15658 /* We never send a FIN */
15659 flags &= ~TH_FIN;
15660 }
15661 if (tp->t_flags & TF_RCVD_TSTMP) {
15662 to.to_tsval = ms_cts + tp->ts_offset;
15663 to.to_tsecr = tp->ts_recent;
15664 to.to_flags = TOF_TS;
15665 }
15666 optlen = tcp_addoptions(&to, opt);
15667 hdrlen += optlen;
15668 udp = rack->r_ctl.fsb.udp;
15669 if (udp)
15670 hdrlen += sizeof(struct udphdr);
15671 if (rack->r_ctl.rc_pace_max_segs)
15672 max_val = rack->r_ctl.rc_pace_max_segs;
15673 else if (rack->rc_user_set_max_segs)
15674 max_val = rack->rc_user_set_max_segs * segsiz;
15675 else
15676 max_val = len;
15677 if ((tp->t_flags & TF_TSO) &&
15678 V_tcp_do_tso &&
15679 (len > segsiz) &&
15680 (tp->t_port == 0))
15681 tso = 1;
15682 #ifdef INET6
15683 if (MHLEN < hdrlen + max_linkhdr)
15684 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
15685 else
15686 #endif
15687 m = m_gethdr(M_NOWAIT, MT_DATA);
15688 if (m == NULL)
15689 goto failed;
15690 m->m_data += max_linkhdr;
15691 m->m_len = hdrlen;
15692 th = rack->r_ctl.fsb.th;
15693 /* Establish the len to send */
15694 if (len > max_val)
15695 len = max_val;
15696 if ((tso) && (len + optlen > tp->t_maxseg)) {
15697 uint32_t if_hw_tsomax;
15698 int32_t max_len;
15699
15700 /* extract TSO information */
15701 if_hw_tsomax = tp->t_tsomax;
15702 if_hw_tsomaxsegcount = tp->t_tsomaxsegcount;
15703 if_hw_tsomaxsegsize = tp->t_tsomaxsegsize;
15704 /*
15705 * Check if we should limit by maximum payload
15706 * length:
15707 */
15708 if (if_hw_tsomax != 0) {
15709 /* compute maximum TSO length */
15710 max_len = (if_hw_tsomax - hdrlen -
15711 max_linkhdr);
15712 if (max_len <= 0) {
15713 goto failed;
15714 } else if (len > max_len) {
15715 len = max_len;
15716 }
15717 }
15718 if (len <= segsiz) {
15719 /*
15720 * In case there are too many small fragments don't
15721 * use TSO:
15722 */
15723 tso = 0;
15724 }
15725 } else {
15726 tso = 0;
15727 }
15728 if ((tso == 0) && (len > segsiz))
15729 len = segsiz;
15730 if ((len == 0) ||
15731 (len <= MHLEN - hdrlen - max_linkhdr)) {
15732 goto failed;
15733 }
15734 th->th_seq = htonl(rsm->r_start);
15735 th->th_ack = htonl(tp->rcv_nxt);
15736 /*
15737 * The PUSH bit should only be applied
15738 * if the full retransmission is made. If
15739 * we are sending less than this is the
15740 * left hand edge and should not have
15741 * the PUSH bit.
15742 */
15743 if ((rsm->r_flags & RACK_HAD_PUSH) &&
15744 (len == (rsm->r_end - rsm->r_start)))
15745 flags |= TH_PUSH;
15746 th->th_win = htons((u_short)(rack->r_ctl.fsb.recwin >> tp->rcv_scale));
15747 if (th->th_win == 0) {
15748 tp->t_sndzerowin++;
15749 tp->t_flags |= TF_RXWIN0SENT;
15750 } else
15751 tp->t_flags &= ~TF_RXWIN0SENT;
15752 if (rsm->r_flags & RACK_TLP) {
15753 /*
15754 * TLP should not count in retran count, but
15755 * in its own bin
15756 */
15757 counter_u64_add(rack_tlp_retran, 1);
15758 counter_u64_add(rack_tlp_retran_bytes, len);
15759 } else {
15760 tp->t_sndrexmitpack++;
15761 KMOD_TCPSTAT_INC(tcps_sndrexmitpack);
15762 KMOD_TCPSTAT_ADD(tcps_sndrexmitbyte, len);
15763 }
15764 #ifdef STATS
15765 stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_RETXPB,
15766 len);
15767 #endif
15768 if (rsm->m == NULL)
15769 goto failed;
15770 if (rsm->orig_m_len != rsm->m->m_len) {
15771 /* Fix up the orig_m_len and possibly the mbuf offset */
15772 rack_adjust_orig_mlen(rsm);
15773 }
15774 m->m_next = rack_fo_base_copym(rsm->m, rsm->soff, &len, NULL, if_hw_tsomaxsegcount, if_hw_tsomaxsegsize, rsm->r_hw_tls);
15775 if (len <= segsiz) {
15776 /*
15777 * Must have ran out of mbufs for the copy
15778 * shorten it to no longer need tso. Lets
15779 * not put on sendalot since we are low on
15780 * mbufs.
15781 */
15782 tso = 0;
15783 }
15784 if ((m->m_next == NULL) || (len <= 0)){
15785 goto failed;
15786 }
15787 if (udp) {
15788 if (rack->r_is_v6)
15789 ulen = hdrlen + len - sizeof(struct ip6_hdr);
15790 else
15791 ulen = hdrlen + len - sizeof(struct ip);
15792 udp->uh_ulen = htons(ulen);
15793 }
15794 m->m_pkthdr.rcvif = (struct ifnet *)0;
15795 if (TCPS_HAVERCVDSYN(tp->t_state) &&
15796 (tp->t_flags2 & (TF2_ECN_PERMIT | TF2_ACE_PERMIT))) {
15797 int ect = tcp_ecn_output_established(tp, &flags, len, true);
15798 if ((tp->t_state == TCPS_SYN_RECEIVED) &&
15799 (tp->t_flags2 & TF2_ECN_SND_ECE))
15800 tp->t_flags2 &= ~TF2_ECN_SND_ECE;
15801 #ifdef INET6
15802 if (rack->r_is_v6) {
15803 ip6->ip6_flow &= ~htonl(IPTOS_ECN_MASK << 20);
15804 ip6->ip6_flow |= htonl(ect << 20);
15805 }
15806 else
15807 #endif
15808 {
15809 ip->ip_tos &= ~IPTOS_ECN_MASK;
15810 ip->ip_tos |= ect;
15811 }
15812 }
15813 tcp_set_flags(th, flags);
15814 m->m_pkthdr.len = hdrlen + len; /* in6_cksum() need this */
15815 #ifdef INET6
15816 if (rack->r_is_v6) {
15817 if (tp->t_port) {
15818 m->m_pkthdr.csum_flags = CSUM_UDP_IPV6;
15819 m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum);
15820 udp->uh_sum = in6_cksum_pseudo(ip6, ulen, IPPROTO_UDP, 0);
15821 th->th_sum = htons(0);
15822 UDPSTAT_INC(udps_opackets);
15823 } else {
15824 m->m_pkthdr.csum_flags = CSUM_TCP_IPV6;
15825 m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
15826 th->th_sum = in6_cksum_pseudo(ip6,
15827 sizeof(struct tcphdr) + optlen + len, IPPROTO_TCP,
15828 0);
15829 }
15830 }
15831 #endif
15832 #if defined(INET6) && defined(INET)
15833 else
15834 #endif
15835 #ifdef INET
15836 {
15837 if (tp->t_port) {
15838 m->m_pkthdr.csum_flags = CSUM_UDP;
15839 m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum);
15840 udp->uh_sum = in_pseudo(ip->ip_src.s_addr,
15841 ip->ip_dst.s_addr, htons(ulen + IPPROTO_UDP));
15842 th->th_sum = htons(0);
15843 UDPSTAT_INC(udps_opackets);
15844 } else {
15845 m->m_pkthdr.csum_flags = CSUM_TCP;
15846 m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
15847 th->th_sum = in_pseudo(ip->ip_src.s_addr,
15848 ip->ip_dst.s_addr, htons(sizeof(struct tcphdr) +
15849 IPPROTO_TCP + len + optlen));
15850 }
15851 /* IP version must be set here for ipv4/ipv6 checking later */
15852 KASSERT(ip->ip_v == IPVERSION,
15853 ("%s: IP version incorrect: %d", __func__, ip->ip_v));
15854 }
15855 #endif
15856 if (tso) {
15857 KASSERT(len > tp->t_maxseg - optlen,
15858 ("%s: len <= tso_segsz tp:%p", __func__, tp));
15859 m->m_pkthdr.csum_flags |= CSUM_TSO;
15860 m->m_pkthdr.tso_segsz = tp->t_maxseg - optlen;
15861 }
15862 #ifdef INET6
15863 if (rack->r_is_v6) {
15864 ip6->ip6_hlim = rack->r_ctl.fsb.hoplimit;
15865 ip6->ip6_plen = htons(m->m_pkthdr.len - sizeof(*ip6));
15866 if (V_path_mtu_discovery && tp->t_maxseg > V_tcp_minmss)
15867 tp->t_flags2 |= TF2_PLPMTU_PMTUD;
15868 else
15869 tp->t_flags2 &= ~TF2_PLPMTU_PMTUD;
15870 }
15871 #endif
15872 #if defined(INET) && defined(INET6)
15873 else
15874 #endif
15875 #ifdef INET
15876 {
15877 ip->ip_len = htons(m->m_pkthdr.len);
15878 ip->ip_ttl = rack->r_ctl.fsb.hoplimit;
15879 if (V_path_mtu_discovery && tp->t_maxseg > V_tcp_minmss) {
15880 tp->t_flags2 |= TF2_PLPMTU_PMTUD;
15881 if (tp->t_port == 0 || len < V_tcp_minmss) {
15882 ip->ip_off |= htons(IP_DF);
15883 }
15884 } else {
15885 tp->t_flags2 &= ~TF2_PLPMTU_PMTUD;
15886 }
15887 }
15888 #endif
15889 /* Time to copy in our header */
15890 cpto = mtod(m, uint8_t *);
15891 memcpy(cpto, rack->r_ctl.fsb.tcp_ip_hdr, rack->r_ctl.fsb.tcp_ip_hdr_len);
15892 th = (struct tcphdr *)(cpto + ((uint8_t *)rack->r_ctl.fsb.th - rack->r_ctl.fsb.tcp_ip_hdr));
15893 if (optlen) {
15894 bcopy(opt, th + 1, optlen);
15895 th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
15896 } else {
15897 th->th_off = sizeof(struct tcphdr) >> 2;
15898 }
15899 if (tp->t_logstate != TCP_LOG_STATE_OFF) {
15900 union tcp_log_stackspecific log;
15901
15902 if (rsm->r_flags & RACK_RWND_COLLAPSED) {
15903 rack_log_collapse(rack, rsm->r_start, rsm->r_end, 0, __LINE__, 5, rsm->r_flags, rsm);
15904 counter_u64_add(rack_collapsed_win_rxt, 1);
15905 counter_u64_add(rack_collapsed_win_rxt_bytes, (rsm->r_end - rsm->r_start));
15906 }
15907 memset(&log.u_bbr, 0, sizeof(log.u_bbr));
15908 log.u_bbr.inhpts = tcp_in_hpts(rack->rc_inp);
15909 if (rack->rack_no_prr)
15910 log.u_bbr.flex1 = 0;
15911 else
15912 log.u_bbr.flex1 = rack->r_ctl.rc_prr_sndcnt;
15913 log.u_bbr.flex2 = rack->r_ctl.rc_pace_min_segs;
15914 log.u_bbr.flex3 = rack->r_ctl.rc_pace_max_segs;
15915 log.u_bbr.flex4 = max_val;
15916 log.u_bbr.flex5 = 0;
15917 /* Save off the early/late values */
15918 log.u_bbr.flex6 = rack->r_ctl.rc_agg_early;
15919 log.u_bbr.applimited = rack->r_ctl.rc_agg_delayed;
15920 log.u_bbr.bw_inuse = rack_get_bw(rack);
15921 if (doing_tlp == 0)
15922 log.u_bbr.flex8 = 1;
15923 else
15924 log.u_bbr.flex8 = 2;
15925 log.u_bbr.pacing_gain = rack_get_output_gain(rack, NULL);
15926 log.u_bbr.flex7 = 55;
15927 log.u_bbr.pkts_out = tp->t_maxseg;
15928 log.u_bbr.timeStamp = cts;
15929 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
15930 log.u_bbr.lt_epoch = rack->r_ctl.cwnd_to_use;
15931 log.u_bbr.delivered = 0;
15932 lgb = tcp_log_event_(tp, th, NULL, NULL, TCP_LOG_OUT, ERRNO_UNK,
15933 len, &log, false, NULL, NULL, 0, tv);
15934 } else
15935 lgb = NULL;
15936 #ifdef INET6
15937 if (rack->r_is_v6) {
15938 error = ip6_output(m, NULL,
15939 &inp->inp_route6,
15940 0, NULL, NULL, inp);
15941 }
15942 else
15943 #endif
15944 #ifdef INET
15945 {
15946 error = ip_output(m, NULL,
15947 &inp->inp_route,
15948 0, 0, inp);
15949 }
15950 #endif
15951 m = NULL;
15952 if (lgb) {
15953 lgb->tlb_errno = error;
15954 lgb = NULL;
15955 }
15956 if (error) {
15957 goto failed;
15958 }
15959 rack_log_output(tp, &to, len, rsm->r_start, flags, error, rack_to_usec_ts(tv),
15960 rsm, RACK_SENT_FP, rsm->m, rsm->soff, rsm->r_hw_tls);
15961 if (doing_tlp && (rack->fast_rsm_hack == 0)) {
15962 rack->rc_tlp_in_progress = 1;
15963 rack->r_ctl.rc_tlp_cnt_out++;
15964 }
15965 if (error == 0) {
15966 tcp_account_for_send(tp, len, 1, doing_tlp, rsm->r_hw_tls);
15967 if (doing_tlp) {
15968 rack->rc_last_sent_tlp_past_cumack = 0;
15969 rack->rc_last_sent_tlp_seq_valid = 1;
15970 rack->r_ctl.last_sent_tlp_seq = rsm->r_start;
15971 rack->r_ctl.last_sent_tlp_len = rsm->r_end - rsm->r_start;
15972 }
15973 }
15974 tp->t_flags &= ~(TF_ACKNOW | TF_DELACK);
15975 rack->forced_ack = 0; /* If we send something zap the FA flag */
15976 if (IN_FASTRECOVERY(tp->t_flags) && rsm)
15977 rack->r_ctl.retran_during_recovery += len;
15978 {
15979 int idx;
15980
15981 idx = (len / segsiz) + 3;
15982 if (idx >= TCP_MSS_ACCT_ATIMER)
15983 counter_u64_add(rack_out_size[(TCP_MSS_ACCT_ATIMER-1)], 1);
15984 else
15985 counter_u64_add(rack_out_size[idx], 1);
15986 }
15987 if (tp->t_rtttime == 0) {
15988 tp->t_rtttime = ticks;
15989 tp->t_rtseq = startseq;
15990 KMOD_TCPSTAT_INC(tcps_segstimed);
15991 }
15992 counter_u64_add(rack_fto_rsm_send, 1);
15993 if (error && (error == ENOBUFS)) {
15994 if (rack->r_ctl.crte != NULL) {
15995 rack_trace_point(rack, RACK_TP_HWENOBUF);
15996 } else
15997 rack_trace_point(rack, RACK_TP_ENOBUF);
15998 slot = ((1 + rack->rc_enobuf) * HPTS_USEC_IN_MSEC);
15999 if (rack->rc_enobuf < 0x7f)
16000 rack->rc_enobuf++;
16001 if (slot < (10 * HPTS_USEC_IN_MSEC))
16002 slot = 10 * HPTS_USEC_IN_MSEC;
16003 } else
16004 slot = rack_get_pacing_delay(rack, tp, len, NULL, segsiz);
16005 if ((slot == 0) ||
16006 (rack->rc_always_pace == 0) ||
16007 (rack->r_rr_config == 1)) {
16008 /*
16009 * We have no pacing set or we
16010 * are using old-style rack or
16011 * we are overridden to use the old 1ms pacing.
16012 */
16013 slot = rack->r_ctl.rc_min_to;
16014 }
16015 rack_start_hpts_timer(rack, tp, cts, slot, len, 0);
16016 #ifdef TCP_ACCOUNTING
16017 crtsc = get_cyclecount();
16018 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
16019 tp->tcp_cnt_counters[SND_OUT_DATA] += cnt_thru;
16020 }
16021 counter_u64_add(tcp_cnt_counters[SND_OUT_DATA], cnt_thru);
16022 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
16023 tp->tcp_proc_time[SND_OUT_DATA] += (crtsc - ts_val);
16024 }
16025 counter_u64_add(tcp_proc_time[SND_OUT_DATA], (crtsc - ts_val));
16026 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
16027 tp->tcp_cnt_counters[CNT_OF_MSS_OUT] += ((len + segsiz - 1) / segsiz);
16028 }
16029 counter_u64_add(tcp_cnt_counters[CNT_OF_MSS_OUT], ((len + segsiz - 1) / segsiz));
16030 sched_unpin();
16031 #endif
16032 return (0);
16033 failed:
16034 if (m)
16035 m_free(m);
16036 return (-1);
16037 }
16038
16039 static void
16040 rack_sndbuf_autoscale(struct tcp_rack *rack)
16041 {
16042 /*
16043 * Automatic sizing of send socket buffer. Often the send buffer
16044 * size is not optimally adjusted to the actual network conditions
16045 * at hand (delay bandwidth product). Setting the buffer size too
16046 * small limits throughput on links with high bandwidth and high
16047 * delay (eg. trans-continental/oceanic links). Setting the
16048 * buffer size too big consumes too much real kernel memory,
16049 * especially with many connections on busy servers.
16050 *
16051 * The criteria to step up the send buffer one notch are:
16052 * 1. receive window of remote host is larger than send buffer
16053 * (with a fudge factor of 5/4th);
16054 * 2. send buffer is filled to 7/8th with data (so we actually
16055 * have data to make use of it);
16056 * 3. send buffer fill has not hit maximal automatic size;
16057 * 4. our send window (slow start and cogestion controlled) is
16058 * larger than sent but unacknowledged data in send buffer.
16059 *
16060 * Note that the rack version moves things much faster since
16061 * we want to avoid hitting cache lines in the rack_fast_output()
16062 * path so this is called much less often and thus moves
16063 * the SB forward by a percentage.
16064 */
16065 struct socket *so;
16066 struct tcpcb *tp;
16067 uint32_t sendwin, scaleup;
16068
16069 tp = rack->rc_tp;
16070 so = rack->rc_inp->inp_socket;
16071 sendwin = min(rack->r_ctl.cwnd_to_use, tp->snd_wnd);
16072 if (V_tcp_do_autosndbuf && so->so_snd.sb_flags & SB_AUTOSIZE) {
16073 if ((tp->snd_wnd / 4 * 5) >= so->so_snd.sb_hiwat &&
16074 sbused(&so->so_snd) >=
16075 (so->so_snd.sb_hiwat / 8 * 7) &&
16076 sbused(&so->so_snd) < V_tcp_autosndbuf_max &&
16077 sendwin >= (sbused(&so->so_snd) -
16078 (tp->snd_nxt - tp->snd_una))) {
16079 if (rack_autosndbuf_inc)
16080 scaleup = (rack_autosndbuf_inc * so->so_snd.sb_hiwat) / 100;
16081 else
16082 scaleup = V_tcp_autosndbuf_inc;
16083 if (scaleup < V_tcp_autosndbuf_inc)
16084 scaleup = V_tcp_autosndbuf_inc;
16085 scaleup += so->so_snd.sb_hiwat;
16086 if (scaleup > V_tcp_autosndbuf_max)
16087 scaleup = V_tcp_autosndbuf_max;
16088 if (!sbreserve_locked(so, SO_SND, scaleup, curthread))
16089 so->so_snd.sb_flags &= ~SB_AUTOSIZE;
16090 }
16091 }
16092 }
16093
16094 static int
16095 rack_fast_output(struct tcpcb *tp, struct tcp_rack *rack, uint64_t ts_val,
16096 uint32_t cts, uint32_t ms_cts, struct timeval *tv, long tot_len, int *send_err)
16097 {
16098 /*
16099 * Enter to do fast output. We are given that the sched_pin is
16100 * in place (if accounting is compiled in) and the cycle count taken
16101 * at entry is in place in ts_val. The idea here is that
16102 * we know how many more bytes needs to be sent (presumably either
16103 * during pacing or to fill the cwnd and that was greater than
16104 * the max-burst). We have how much to send and all the info we
16105 * need to just send.
16106 */
16107 #ifdef INET
16108 struct ip *ip = NULL;
16109 #endif
16110 struct udphdr *udp = NULL;
16111 struct tcphdr *th = NULL;
16112 struct mbuf *m, *s_mb;
16113 struct inpcb *inp;
16114 uint8_t *cpto;
16115 struct tcp_log_buffer *lgb;
16116 #ifdef TCP_ACCOUNTING
16117 uint64_t crtsc;
16118 #endif
16119 struct tcpopt to;
16120 u_char opt[TCP_MAXOLEN];
16121 uint32_t hdrlen, optlen;
16122 #ifdef TCP_ACCOUNTING
16123 int cnt_thru = 1;
16124 #endif
16125 int32_t slot, segsiz, len, max_val, tso = 0, sb_offset, error, ulen = 0;
16126 uint16_t flags;
16127 uint32_t s_soff;
16128 uint32_t if_hw_tsomaxsegcount = 0, startseq;
16129 uint32_t if_hw_tsomaxsegsize;
16130 uint16_t add_flag = RACK_SENT_FP;
16131 #ifdef INET6
16132 struct ip6_hdr *ip6 = NULL;
16133
16134 if (rack->r_is_v6) {
16135 ip6 = (struct ip6_hdr *)rack->r_ctl.fsb.tcp_ip_hdr;
16136 hdrlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
16137 } else
16138 #endif /* INET6 */
16139 {
16140 #ifdef INET
16141 ip = (struct ip *)rack->r_ctl.fsb.tcp_ip_hdr;
16142 hdrlen = sizeof(struct tcpiphdr);
16143 #endif
16144 }
16145 if (tp->t_port && (V_tcp_udp_tunneling_port == 0)) {
16146 m = NULL;
16147 goto failed;
16148 }
16149 startseq = tp->snd_max;
16150 segsiz = min(ctf_fixed_maxseg(tp), rack->r_ctl.rc_pace_min_segs);
16151 inp = rack->rc_inp;
16152 len = rack->r_ctl.fsb.left_to_send;
16153 to.to_flags = 0;
16154 flags = rack->r_ctl.fsb.tcp_flags;
16155 if (tp->t_flags & TF_RCVD_TSTMP) {
16156 to.to_tsval = ms_cts + tp->ts_offset;
16157 to.to_tsecr = tp->ts_recent;
16158 to.to_flags = TOF_TS;
16159 }
16160 optlen = tcp_addoptions(&to, opt);
16161 hdrlen += optlen;
16162 udp = rack->r_ctl.fsb.udp;
16163 if (udp)
16164 hdrlen += sizeof(struct udphdr);
16165 if (rack->r_ctl.rc_pace_max_segs)
16166 max_val = rack->r_ctl.rc_pace_max_segs;
16167 else if (rack->rc_user_set_max_segs)
16168 max_val = rack->rc_user_set_max_segs * segsiz;
16169 else
16170 max_val = len;
16171 if ((tp->t_flags & TF_TSO) &&
16172 V_tcp_do_tso &&
16173 (len > segsiz) &&
16174 (tp->t_port == 0))
16175 tso = 1;
16176 again:
16177 #ifdef INET6
16178 if (MHLEN < hdrlen + max_linkhdr)
16179 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
16180 else
16181 #endif
16182 m = m_gethdr(M_NOWAIT, MT_DATA);
16183 if (m == NULL)
16184 goto failed;
16185 m->m_data += max_linkhdr;
16186 m->m_len = hdrlen;
16187 th = rack->r_ctl.fsb.th;
16188 /* Establish the len to send */
16189 if (len > max_val)
16190 len = max_val;
16191 if ((tso) && (len + optlen > tp->t_maxseg)) {
16192 uint32_t if_hw_tsomax;
16193 int32_t max_len;
16194
16195 /* extract TSO information */
16196 if_hw_tsomax = tp->t_tsomax;
16197 if_hw_tsomaxsegcount = tp->t_tsomaxsegcount;
16198 if_hw_tsomaxsegsize = tp->t_tsomaxsegsize;
16199 /*
16200 * Check if we should limit by maximum payload
16201 * length:
16202 */
16203 if (if_hw_tsomax != 0) {
16204 /* compute maximum TSO length */
16205 max_len = (if_hw_tsomax - hdrlen -
16206 max_linkhdr);
16207 if (max_len <= 0) {
16208 goto failed;
16209 } else if (len > max_len) {
16210 len = max_len;
16211 }
16212 }
16213 if (len <= segsiz) {
16214 /*
16215 * In case there are too many small fragments don't
16216 * use TSO:
16217 */
16218 tso = 0;
16219 }
16220 } else {
16221 tso = 0;
16222 }
16223 if ((tso == 0) && (len > segsiz))
16224 len = segsiz;
16225 if ((len == 0) ||
16226 (len <= MHLEN - hdrlen - max_linkhdr)) {
16227 goto failed;
16228 }
16229 sb_offset = tp->snd_max - tp->snd_una;
16230 th->th_seq = htonl(tp->snd_max);
16231 th->th_ack = htonl(tp->rcv_nxt);
16232 th->th_win = htons((u_short)(rack->r_ctl.fsb.recwin >> tp->rcv_scale));
16233 if (th->th_win == 0) {
16234 tp->t_sndzerowin++;
16235 tp->t_flags |= TF_RXWIN0SENT;
16236 } else
16237 tp->t_flags &= ~TF_RXWIN0SENT;
16238 tp->snd_up = tp->snd_una; /* drag it along, its deprecated */
16239 KMOD_TCPSTAT_INC(tcps_sndpack);
16240 KMOD_TCPSTAT_ADD(tcps_sndbyte, len);
16241 #ifdef STATS
16242 stats_voi_update_abs_u64(tp->t_stats, VOI_TCP_TXPB,
16243 len);
16244 #endif
16245 if (rack->r_ctl.fsb.m == NULL)
16246 goto failed;
16247
16248 /* s_mb and s_soff are saved for rack_log_output */
16249 m->m_next = rack_fo_m_copym(rack, &len, if_hw_tsomaxsegcount, if_hw_tsomaxsegsize,
16250 &s_mb, &s_soff);
16251 if (len <= segsiz) {
16252 /*
16253 * Must have ran out of mbufs for the copy
16254 * shorten it to no longer need tso. Lets
16255 * not put on sendalot since we are low on
16256 * mbufs.
16257 */
16258 tso = 0;
16259 }
16260 if (rack->r_ctl.fsb.rfo_apply_push &&
16261 (len == rack->r_ctl.fsb.left_to_send)) {
16262 flags |= TH_PUSH;
16263 add_flag |= RACK_HAD_PUSH;
16264 }
16265 if ((m->m_next == NULL) || (len <= 0)){
16266 goto failed;
16267 }
16268 if (udp) {
16269 if (rack->r_is_v6)
16270 ulen = hdrlen + len - sizeof(struct ip6_hdr);
16271 else
16272 ulen = hdrlen + len - sizeof(struct ip);
16273 udp->uh_ulen = htons(ulen);
16274 }
16275 m->m_pkthdr.rcvif = (struct ifnet *)0;
16276 if (TCPS_HAVERCVDSYN(tp->t_state) &&
16277 (tp->t_flags2 & (TF2_ECN_PERMIT | TF2_ACE_PERMIT))) {
16278 int ect = tcp_ecn_output_established(tp, &flags, len, false);
16279 if ((tp->t_state == TCPS_SYN_RECEIVED) &&
16280 (tp->t_flags2 & TF2_ECN_SND_ECE))
16281 tp->t_flags2 &= ~TF2_ECN_SND_ECE;
16282 #ifdef INET6
16283 if (rack->r_is_v6) {
16284 ip6->ip6_flow &= ~htonl(IPTOS_ECN_MASK << 20);
16285 ip6->ip6_flow |= htonl(ect << 20);
16286 }
16287 else
16288 #endif
16289 {
16290 #ifdef INET
16291 ip->ip_tos &= ~IPTOS_ECN_MASK;
16292 ip->ip_tos |= ect;
16293 #endif
16294 }
16295 }
16296 tcp_set_flags(th, flags);
16297 m->m_pkthdr.len = hdrlen + len; /* in6_cksum() need this */
16298 #ifdef INET6
16299 if (rack->r_is_v6) {
16300 if (tp->t_port) {
16301 m->m_pkthdr.csum_flags = CSUM_UDP_IPV6;
16302 m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum);
16303 udp->uh_sum = in6_cksum_pseudo(ip6, ulen, IPPROTO_UDP, 0);
16304 th->th_sum = htons(0);
16305 UDPSTAT_INC(udps_opackets);
16306 } else {
16307 m->m_pkthdr.csum_flags = CSUM_TCP_IPV6;
16308 m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
16309 th->th_sum = in6_cksum_pseudo(ip6,
16310 sizeof(struct tcphdr) + optlen + len, IPPROTO_TCP,
16311 0);
16312 }
16313 }
16314 #endif
16315 #if defined(INET6) && defined(INET)
16316 else
16317 #endif
16318 #ifdef INET
16319 {
16320 if (tp->t_port) {
16321 m->m_pkthdr.csum_flags = CSUM_UDP;
16322 m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum);
16323 udp->uh_sum = in_pseudo(ip->ip_src.s_addr,
16324 ip->ip_dst.s_addr, htons(ulen + IPPROTO_UDP));
16325 th->th_sum = htons(0);
16326 UDPSTAT_INC(udps_opackets);
16327 } else {
16328 m->m_pkthdr.csum_flags = CSUM_TCP;
16329 m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
16330 th->th_sum = in_pseudo(ip->ip_src.s_addr,
16331 ip->ip_dst.s_addr, htons(sizeof(struct tcphdr) +
16332 IPPROTO_TCP + len + optlen));
16333 }
16334 /* IP version must be set here for ipv4/ipv6 checking later */
16335 KASSERT(ip->ip_v == IPVERSION,
16336 ("%s: IP version incorrect: %d", __func__, ip->ip_v));
16337 }
16338 #endif
16339 if (tso) {
16340 KASSERT(len > tp->t_maxseg - optlen,
16341 ("%s: len <= tso_segsz tp:%p", __func__, tp));
16342 m->m_pkthdr.csum_flags |= CSUM_TSO;
16343 m->m_pkthdr.tso_segsz = tp->t_maxseg - optlen;
16344 }
16345 #ifdef INET6
16346 if (rack->r_is_v6) {
16347 ip6->ip6_hlim = rack->r_ctl.fsb.hoplimit;
16348 ip6->ip6_plen = htons(m->m_pkthdr.len - sizeof(*ip6));
16349 if (V_path_mtu_discovery && tp->t_maxseg > V_tcp_minmss)
16350 tp->t_flags2 |= TF2_PLPMTU_PMTUD;
16351 else
16352 tp->t_flags2 &= ~TF2_PLPMTU_PMTUD;
16353 }
16354 #endif
16355 #if defined(INET) && defined(INET6)
16356 else
16357 #endif
16358 #ifdef INET
16359 {
16360 ip->ip_len = htons(m->m_pkthdr.len);
16361 ip->ip_ttl = rack->r_ctl.fsb.hoplimit;
16362 if (V_path_mtu_discovery && tp->t_maxseg > V_tcp_minmss) {
16363 tp->t_flags2 |= TF2_PLPMTU_PMTUD;
16364 if (tp->t_port == 0 || len < V_tcp_minmss) {
16365 ip->ip_off |= htons(IP_DF);
16366 }
16367 } else {
16368 tp->t_flags2 &= ~TF2_PLPMTU_PMTUD;
16369 }
16370 }
16371 #endif
16372 /* Time to copy in our header */
16373 cpto = mtod(m, uint8_t *);
16374 memcpy(cpto, rack->r_ctl.fsb.tcp_ip_hdr, rack->r_ctl.fsb.tcp_ip_hdr_len);
16375 th = (struct tcphdr *)(cpto + ((uint8_t *)rack->r_ctl.fsb.th - rack->r_ctl.fsb.tcp_ip_hdr));
16376 if (optlen) {
16377 bcopy(opt, th + 1, optlen);
16378 th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
16379 } else {
16380 th->th_off = sizeof(struct tcphdr) >> 2;
16381 }
16382 if (tp->t_logstate != TCP_LOG_STATE_OFF) {
16383 union tcp_log_stackspecific log;
16384
16385 memset(&log.u_bbr, 0, sizeof(log.u_bbr));
16386 log.u_bbr.inhpts = tcp_in_hpts(rack->rc_inp);
16387 if (rack->rack_no_prr)
16388 log.u_bbr.flex1 = 0;
16389 else
16390 log.u_bbr.flex1 = rack->r_ctl.rc_prr_sndcnt;
16391 log.u_bbr.flex2 = rack->r_ctl.rc_pace_min_segs;
16392 log.u_bbr.flex3 = rack->r_ctl.rc_pace_max_segs;
16393 log.u_bbr.flex4 = max_val;
16394 log.u_bbr.flex5 = 0;
16395 /* Save off the early/late values */
16396 log.u_bbr.flex6 = rack->r_ctl.rc_agg_early;
16397 log.u_bbr.applimited = rack->r_ctl.rc_agg_delayed;
16398 log.u_bbr.bw_inuse = rack_get_bw(rack);
16399 log.u_bbr.flex8 = 0;
16400 log.u_bbr.pacing_gain = rack_get_output_gain(rack, NULL);
16401 log.u_bbr.flex7 = 44;
16402 log.u_bbr.pkts_out = tp->t_maxseg;
16403 log.u_bbr.timeStamp = cts;
16404 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
16405 log.u_bbr.lt_epoch = rack->r_ctl.cwnd_to_use;
16406 log.u_bbr.delivered = 0;
16407 lgb = tcp_log_event_(tp, th, NULL, NULL, TCP_LOG_OUT, ERRNO_UNK,
16408 len, &log, false, NULL, NULL, 0, tv);
16409 } else
16410 lgb = NULL;
16411 #ifdef INET6
16412 if (rack->r_is_v6) {
16413 error = ip6_output(m, NULL,
16414 &inp->inp_route6,
16415 0, NULL, NULL, inp);
16416 }
16417 #endif
16418 #if defined(INET) && defined(INET6)
16419 else
16420 #endif
16421 #ifdef INET
16422 {
16423 error = ip_output(m, NULL,
16424 &inp->inp_route,
16425 0, 0, inp);
16426 }
16427 #endif
16428 if (lgb) {
16429 lgb->tlb_errno = error;
16430 lgb = NULL;
16431 }
16432 if (error) {
16433 *send_err = error;
16434 m = NULL;
16435 goto failed;
16436 }
16437 rack_log_output(tp, &to, len, tp->snd_max, flags, error, rack_to_usec_ts(tv),
16438 NULL, add_flag, s_mb, s_soff, rack->r_ctl.fsb.hw_tls);
16439 m = NULL;
16440 if (tp->snd_una == tp->snd_max) {
16441 rack->r_ctl.rc_tlp_rxt_last_time = cts;
16442 rack_log_progress_event(rack, tp, ticks, PROGRESS_START, __LINE__);
16443 tp->t_acktime = ticks;
16444 }
16445 if (error == 0)
16446 tcp_account_for_send(tp, len, 0, 0, rack->r_ctl.fsb.hw_tls);
16447
16448 rack->forced_ack = 0; /* If we send something zap the FA flag */
16449 tot_len += len;
16450 if ((tp->t_flags & TF_GPUTINPROG) == 0)
16451 rack_start_gp_measurement(tp, rack, tp->snd_max, sb_offset);
16452 tp->snd_max += len;
16453 tp->snd_nxt = tp->snd_max;
16454 {
16455 int idx;
16456
16457 idx = (len / segsiz) + 3;
16458 if (idx >= TCP_MSS_ACCT_ATIMER)
16459 counter_u64_add(rack_out_size[(TCP_MSS_ACCT_ATIMER-1)], 1);
16460 else
16461 counter_u64_add(rack_out_size[idx], 1);
16462 }
16463 if (len <= rack->r_ctl.fsb.left_to_send)
16464 rack->r_ctl.fsb.left_to_send -= len;
16465 else
16466 rack->r_ctl.fsb.left_to_send = 0;
16467 if (rack->r_ctl.fsb.left_to_send < segsiz) {
16468 rack->r_fast_output = 0;
16469 rack->r_ctl.fsb.left_to_send = 0;
16470 /* At the end of fast_output scale up the sb */
16471 SOCKBUF_LOCK(&rack->rc_inp->inp_socket->so_snd);
16472 rack_sndbuf_autoscale(rack);
16473 SOCKBUF_UNLOCK(&rack->rc_inp->inp_socket->so_snd);
16474 }
16475 if (tp->t_rtttime == 0) {
16476 tp->t_rtttime = ticks;
16477 tp->t_rtseq = startseq;
16478 KMOD_TCPSTAT_INC(tcps_segstimed);
16479 }
16480 if ((rack->r_ctl.fsb.left_to_send >= segsiz) &&
16481 (max_val > len) &&
16482 (tso == 0)) {
16483 max_val -= len;
16484 len = segsiz;
16485 th = rack->r_ctl.fsb.th;
16486 #ifdef TCP_ACCOUNTING
16487 cnt_thru++;
16488 #endif
16489 goto again;
16490 }
16491 tp->t_flags &= ~(TF_ACKNOW | TF_DELACK);
16492 counter_u64_add(rack_fto_send, 1);
16493 slot = rack_get_pacing_delay(rack, tp, tot_len, NULL, segsiz);
16494 rack_start_hpts_timer(rack, tp, cts, slot, tot_len, 0);
16495 #ifdef TCP_ACCOUNTING
16496 crtsc = get_cyclecount();
16497 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
16498 tp->tcp_cnt_counters[SND_OUT_DATA] += cnt_thru;
16499 }
16500 counter_u64_add(tcp_cnt_counters[SND_OUT_DATA], cnt_thru);
16501 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
16502 tp->tcp_proc_time[SND_OUT_DATA] += (crtsc - ts_val);
16503 }
16504 counter_u64_add(tcp_proc_time[SND_OUT_DATA], (crtsc - ts_val));
16505 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
16506 tp->tcp_cnt_counters[CNT_OF_MSS_OUT] += ((tot_len + segsiz - 1) / segsiz);
16507 }
16508 counter_u64_add(tcp_cnt_counters[CNT_OF_MSS_OUT], ((tot_len + segsiz - 1) / segsiz));
16509 sched_unpin();
16510 #endif
16511 return (0);
16512 failed:
16513 if (m)
16514 m_free(m);
16515 rack->r_fast_output = 0;
16516 return (-1);
16517 }
16518
16519 static struct rack_sendmap *
16520 rack_check_collapsed(struct tcp_rack *rack, uint32_t cts)
16521 {
16522 struct rack_sendmap *rsm = NULL;
16523 struct rack_sendmap fe;
16524 int thresh;
16525
16526 restart:
16527 fe.r_start = rack->r_ctl.last_collapse_point;
16528 rsm = RB_FIND(rack_rb_tree_head, &rack->r_ctl.rc_mtree, &fe);
16529 if ((rsm == NULL) || ((rsm->r_flags & RACK_RWND_COLLAPSED) == 0)) {
16530 /* Nothing, strange turn off validity */
16531 rack->r_collapse_point_valid = 0;
16532 return (NULL);
16533 }
16534 /* Can we send it yet? */
16535 if (rsm->r_end > (rack->rc_tp->snd_una + rack->rc_tp->snd_wnd)) {
16536 /*
16537 * Receiver window has not grown enough for
16538 * the segment to be put on the wire.
16539 */
16540 return (NULL);
16541 }
16542 if (rsm->r_flags & RACK_ACKED) {
16543 /*
16544 * It has been sacked, lets move to the
16545 * next one if possible.
16546 */
16547 rack->r_ctl.last_collapse_point = rsm->r_end;
16548 /* Are we done? */
16549 if (SEQ_GEQ(rack->r_ctl.last_collapse_point,
16550 rack->r_ctl.high_collapse_point)) {
16551 rack->r_collapse_point_valid = 0;
16552 return (NULL);
16553 }
16554 goto restart;
16555 }
16556 /* Now has it been long enough ? */
16557 thresh = rack_calc_thresh_rack(rack, rack_grab_rtt(rack->rc_tp, rack), cts);
16558 if ((cts - ((uint32_t)rsm->r_tim_lastsent[(rsm->r_rtr_cnt-1)])) > thresh) {
16559 rack_log_collapse(rack, rsm->r_start,
16560 (cts - ((uint32_t)rsm->r_tim_lastsent[(rsm->r_rtr_cnt-1)])),
16561 thresh, __LINE__, 6, rsm->r_flags, rsm);
16562 return (rsm);
16563 }
16564 /* Not enough time */
16565 rack_log_collapse(rack, rsm->r_start,
16566 (cts - ((uint32_t)rsm->r_tim_lastsent[(rsm->r_rtr_cnt-1)])),
16567 thresh, __LINE__, 7, rsm->r_flags, rsm);
16568 return (NULL);
16569 }
16570
16571 static int
16572 rack_output(struct tcpcb *tp)
16573 {
16574 struct socket *so;
16575 uint32_t recwin;
16576 uint32_t sb_offset, s_moff = 0;
16577 int32_t len, error = 0;
16578 uint16_t flags;
16579 struct mbuf *m, *s_mb = NULL;
16580 struct mbuf *mb;
16581 uint32_t if_hw_tsomaxsegcount = 0;
16582 uint32_t if_hw_tsomaxsegsize;
16583 int32_t segsiz, minseg;
16584 long tot_len_this_send = 0;
16585 #ifdef INET
16586 struct ip *ip = NULL;
16587 #endif
16588 struct udphdr *udp = NULL;
16589 struct tcp_rack *rack;
16590 struct tcphdr *th;
16591 uint8_t pass = 0;
16592 uint8_t mark = 0;
16593 uint8_t wanted_cookie = 0;
16594 u_char opt[TCP_MAXOLEN];
16595 unsigned ipoptlen, optlen, hdrlen, ulen=0;
16596 uint32_t rack_seq;
16597
16598 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
16599 unsigned ipsec_optlen = 0;
16600
16601 #endif
16602 int32_t idle, sendalot;
16603 int32_t sub_from_prr = 0;
16604 volatile int32_t sack_rxmit;
16605 struct rack_sendmap *rsm = NULL;
16606 int32_t tso, mtu;
16607 struct tcpopt to;
16608 int32_t slot = 0;
16609 int32_t sup_rack = 0;
16610 uint32_t cts, ms_cts, delayed, early;
16611 uint16_t add_flag = RACK_SENT_SP;
16612 /* The doing_tlp flag will be set by the actual rack_timeout_tlp() */
16613 uint8_t hpts_calling, doing_tlp = 0;
16614 uint32_t cwnd_to_use, pace_max_seg;
16615 int32_t do_a_prefetch = 0;
16616 int32_t prefetch_rsm = 0;
16617 int32_t orig_len = 0;
16618 struct timeval tv;
16619 int32_t prefetch_so_done = 0;
16620 struct tcp_log_buffer *lgb;
16621 struct inpcb *inp = tptoinpcb(tp);
16622 struct sockbuf *sb;
16623 uint64_t ts_val = 0;
16624 #ifdef TCP_ACCOUNTING
16625 uint64_t crtsc;
16626 #endif
16627 #ifdef INET6
16628 struct ip6_hdr *ip6 = NULL;
16629 int32_t isipv6;
16630 #endif
16631 bool hw_tls = false;
16632
16633 NET_EPOCH_ASSERT();
16634 INP_WLOCK_ASSERT(inp);
16635
16636 /* setup and take the cache hits here */
16637 rack = (struct tcp_rack *)tp->t_fb_ptr;
16638 #ifdef TCP_ACCOUNTING
16639 sched_pin();
16640 ts_val = get_cyclecount();
16641 #endif
16642 hpts_calling = inp->inp_hpts_calls;
16643 #ifdef TCP_OFFLOAD
16644 if (tp->t_flags & TF_TOE) {
16645 #ifdef TCP_ACCOUNTING
16646 sched_unpin();
16647 #endif
16648 return (tcp_offload_output(tp));
16649 }
16650 #endif
16651 /*
16652 * For TFO connections in SYN_RECEIVED, only allow the initial
16653 * SYN|ACK and those sent by the retransmit timer.
16654 */
16655 if (IS_FASTOPEN(tp->t_flags) &&
16656 (tp->t_state == TCPS_SYN_RECEIVED) &&
16657 SEQ_GT(tp->snd_max, tp->snd_una) && /* initial SYN|ACK sent */
16658 (rack->r_ctl.rc_resend == NULL)) { /* not a retransmit */
16659 #ifdef TCP_ACCOUNTING
16660 sched_unpin();
16661 #endif
16662 return (0);
16663 }
16664 #ifdef INET6
16665 if (rack->r_state) {
16666 /* Use the cache line loaded if possible */
16667 isipv6 = rack->r_is_v6;
16668 } else {
16669 isipv6 = (rack->rc_inp->inp_vflag & INP_IPV6) != 0;
16670 }
16671 #endif
16672 early = 0;
16673 cts = tcp_get_usecs(&tv);
16674 ms_cts = tcp_tv_to_mssectick(&tv);
16675 if (((rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) == 0) &&
16676 tcp_in_hpts(rack->rc_inp)) {
16677 /*
16678 * We are on the hpts for some timer but not hptsi output.
16679 * Remove from the hpts unconditionally.
16680 */
16681 rack_timer_cancel(tp, rack, cts, __LINE__);
16682 }
16683 /* Are we pacing and late? */
16684 if ((rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) &&
16685 TSTMP_GEQ(cts, rack->r_ctl.rc_last_output_to)) {
16686 /* We are delayed */
16687 delayed = cts - rack->r_ctl.rc_last_output_to;
16688 } else {
16689 delayed = 0;
16690 }
16691 /* Do the timers, which may override the pacer */
16692 if (rack->r_ctl.rc_hpts_flags & PACE_TMR_MASK) {
16693 int retval;
16694
16695 retval = rack_process_timers(tp, rack, cts, hpts_calling,
16696 &doing_tlp);
16697 if (retval != 0) {
16698 counter_u64_add(rack_out_size[TCP_MSS_ACCT_ATIMER], 1);
16699 #ifdef TCP_ACCOUNTING
16700 sched_unpin();
16701 #endif
16702 /*
16703 * If timers want tcp_drop(), then pass error out,
16704 * otherwise suppress it.
16705 */
16706 return (retval < 0 ? retval : 0);
16707 }
16708 }
16709 if (rack->rc_in_persist) {
16710 if (tcp_in_hpts(rack->rc_inp) == 0) {
16711 /* Timer is not running */
16712 rack_start_hpts_timer(rack, tp, cts, 0, 0, 0);
16713 }
16714 #ifdef TCP_ACCOUNTING
16715 sched_unpin();
16716 #endif
16717 return (0);
16718 }
16719 if ((rack->rc_ack_required == 1) &&
16720 (rack->r_timer_override == 0)){
16721 /* A timeout occurred and no ack has arrived */
16722 if (tcp_in_hpts(rack->rc_inp) == 0) {
16723 /* Timer is not running */
16724 rack_start_hpts_timer(rack, tp, cts, 0, 0, 0);
16725 }
16726 #ifdef TCP_ACCOUNTING
16727 sched_unpin();
16728 #endif
16729 return (0);
16730 }
16731 if ((rack->r_timer_override) ||
16732 (rack->rc_ack_can_sendout_data) ||
16733 (delayed) ||
16734 (tp->t_state < TCPS_ESTABLISHED)) {
16735 rack->rc_ack_can_sendout_data = 0;
16736 if (tcp_in_hpts(rack->rc_inp))
16737 tcp_hpts_remove(rack->rc_inp);
16738 } else if (tcp_in_hpts(rack->rc_inp)) {
16739 /*
16740 * On the hpts you can't pass even if ACKNOW is on, we will
16741 * when the hpts fires.
16742 */
16743 #ifdef TCP_ACCOUNTING
16744 crtsc = get_cyclecount();
16745 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
16746 tp->tcp_proc_time[SND_BLOCKED] += (crtsc - ts_val);
16747 }
16748 counter_u64_add(tcp_proc_time[SND_BLOCKED], (crtsc - ts_val));
16749 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
16750 tp->tcp_cnt_counters[SND_BLOCKED]++;
16751 }
16752 counter_u64_add(tcp_cnt_counters[SND_BLOCKED], 1);
16753 sched_unpin();
16754 #endif
16755 counter_u64_add(rack_out_size[TCP_MSS_ACCT_INPACE], 1);
16756 return (0);
16757 }
16758 rack->rc_inp->inp_hpts_calls = 0;
16759 /* Finish out both pacing early and late accounting */
16760 if ((rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) &&
16761 TSTMP_GT(rack->r_ctl.rc_last_output_to, cts)) {
16762 early = rack->r_ctl.rc_last_output_to - cts;
16763 } else
16764 early = 0;
16765 if (delayed) {
16766 rack->r_ctl.rc_agg_delayed += delayed;
16767 rack->r_late = 1;
16768 } else if (early) {
16769 rack->r_ctl.rc_agg_early += early;
16770 rack->r_early = 1;
16771 }
16772 /* Now that early/late accounting is done turn off the flag */
16773 rack->r_ctl.rc_hpts_flags &= ~PACE_PKT_OUTPUT;
16774 rack->r_wanted_output = 0;
16775 rack->r_timer_override = 0;
16776 if ((tp->t_state != rack->r_state) &&
16777 TCPS_HAVEESTABLISHED(tp->t_state)) {
16778 rack_set_state(tp, rack);
16779 }
16780 if ((rack->r_fast_output) &&
16781 (doing_tlp == 0) &&
16782 (tp->rcv_numsacks == 0)) {
16783 int ret;
16784
16785 error = 0;
16786 ret = rack_fast_output(tp, rack, ts_val, cts, ms_cts, &tv, tot_len_this_send, &error);
16787 if (ret >= 0)
16788 return(ret);
16789 else if (error) {
16790 inp = rack->rc_inp;
16791 so = inp->inp_socket;
16792 sb = &so->so_snd;
16793 goto nomore;
16794 }
16795 }
16796 inp = rack->rc_inp;
16797 /*
16798 * For TFO connections in SYN_SENT or SYN_RECEIVED,
16799 * only allow the initial SYN or SYN|ACK and those sent
16800 * by the retransmit timer.
16801 */
16802 if (IS_FASTOPEN(tp->t_flags) &&
16803 ((tp->t_state == TCPS_SYN_RECEIVED) ||
16804 (tp->t_state == TCPS_SYN_SENT)) &&
16805 SEQ_GT(tp->snd_max, tp->snd_una) && /* initial SYN or SYN|ACK sent */
16806 (tp->t_rxtshift == 0)) { /* not a retransmit */
16807 cwnd_to_use = rack->r_ctl.cwnd_to_use = tp->snd_cwnd;
16808 so = inp->inp_socket;
16809 sb = &so->so_snd;
16810 goto just_return_nolock;
16811 }
16812 /*
16813 * Determine length of data that should be transmitted, and flags
16814 * that will be used. If there is some data or critical controls
16815 * (SYN, RST) to send, then transmit; otherwise, investigate
16816 * further.
16817 */
16818 idle = (tp->t_flags & TF_LASTIDLE) || (tp->snd_max == tp->snd_una);
16819 if (tp->t_idle_reduce) {
16820 if (idle && (TICKS_2_USEC(ticks - tp->t_rcvtime) >= tp->t_rxtcur))
16821 rack_cc_after_idle(rack, tp);
16822 }
16823 tp->t_flags &= ~TF_LASTIDLE;
16824 if (idle) {
16825 if (tp->t_flags & TF_MORETOCOME) {
16826 tp->t_flags |= TF_LASTIDLE;
16827 idle = 0;
16828 }
16829 }
16830 if ((tp->snd_una == tp->snd_max) &&
16831 rack->r_ctl.rc_went_idle_time &&
16832 TSTMP_GT(cts, rack->r_ctl.rc_went_idle_time)) {
16833 idle = cts - rack->r_ctl.rc_went_idle_time;
16834 if (idle > rack_min_probertt_hold) {
16835 /* Count as a probe rtt */
16836 if (rack->in_probe_rtt == 0) {
16837 rack->r_ctl.rc_lower_rtt_us_cts = cts;
16838 rack->r_ctl.rc_time_probertt_entered = rack->r_ctl.rc_lower_rtt_us_cts;
16839 rack->r_ctl.rc_time_probertt_starts = rack->r_ctl.rc_lower_rtt_us_cts;
16840 rack->r_ctl.rc_time_of_last_probertt = rack->r_ctl.rc_lower_rtt_us_cts;
16841 } else {
16842 rack_exit_probertt(rack, cts);
16843 }
16844 }
16845 idle = 0;
16846 }
16847 if (rack_use_fsb && (rack->r_fsb_inited == 0) && (rack->r_state != TCPS_CLOSED))
16848 rack_init_fsb_block(tp, rack);
16849 again:
16850 /*
16851 * If we've recently taken a timeout, snd_max will be greater than
16852 * snd_nxt. There may be SACK information that allows us to avoid
16853 * resending already delivered data. Adjust snd_nxt accordingly.
16854 */
16855 sendalot = 0;
16856 cts = tcp_get_usecs(&tv);
16857 ms_cts = tcp_tv_to_mssectick(&tv);
16858 tso = 0;
16859 mtu = 0;
16860 segsiz = min(ctf_fixed_maxseg(tp), rack->r_ctl.rc_pace_min_segs);
16861 minseg = segsiz;
16862 if (rack->r_ctl.rc_pace_max_segs == 0)
16863 pace_max_seg = rack->rc_user_set_max_segs * segsiz;
16864 else
16865 pace_max_seg = rack->r_ctl.rc_pace_max_segs;
16866 sb_offset = tp->snd_max - tp->snd_una;
16867 cwnd_to_use = rack->r_ctl.cwnd_to_use = tp->snd_cwnd;
16868 flags = tcp_outflags[tp->t_state];
16869 while (rack->rc_free_cnt < rack_free_cache) {
16870 rsm = rack_alloc(rack);
16871 if (rsm == NULL) {
16872 if (inp->inp_hpts_calls)
16873 /* Retry in a ms */
16874 slot = (1 * HPTS_USEC_IN_MSEC);
16875 so = inp->inp_socket;
16876 sb = &so->so_snd;
16877 goto just_return_nolock;
16878 }
16879 TAILQ_INSERT_TAIL(&rack->r_ctl.rc_free, rsm, r_tnext);
16880 rack->rc_free_cnt++;
16881 rsm = NULL;
16882 }
16883 if (inp->inp_hpts_calls)
16884 inp->inp_hpts_calls = 0;
16885 sack_rxmit = 0;
16886 len = 0;
16887 rsm = NULL;
16888 if (flags & TH_RST) {
16889 SOCKBUF_LOCK(&inp->inp_socket->so_snd);
16890 so = inp->inp_socket;
16891 sb = &so->so_snd;
16892 goto send;
16893 }
16894 if (rack->r_ctl.rc_resend) {
16895 /* Retransmit timer */
16896 rsm = rack->r_ctl.rc_resend;
16897 rack->r_ctl.rc_resend = NULL;
16898 len = rsm->r_end - rsm->r_start;
16899 sack_rxmit = 1;
16900 sendalot = 0;
16901 KASSERT(SEQ_LEQ(tp->snd_una, rsm->r_start),
16902 ("%s:%d: r.start:%u < SND.UNA:%u; tp:%p, rack:%p, rsm:%p",
16903 __func__, __LINE__,
16904 rsm->r_start, tp->snd_una, tp, rack, rsm));
16905 sb_offset = rsm->r_start - tp->snd_una;
16906 if (len >= segsiz)
16907 len = segsiz;
16908 } else if (rack->r_collapse_point_valid &&
16909 ((rsm = rack_check_collapsed(rack, cts)) != NULL)) {
16910 /*
16911 * If an RSM is returned then enough time has passed
16912 * for us to retransmit it. Move up the collapse point,
16913 * since this rsm has its chance to retransmit now.
16914 */
16915 rack_trace_point(rack, RACK_TP_COLLAPSED_RXT);
16916 rack->r_ctl.last_collapse_point = rsm->r_end;
16917 /* Are we done? */
16918 if (SEQ_GEQ(rack->r_ctl.last_collapse_point,
16919 rack->r_ctl.high_collapse_point))
16920 rack->r_collapse_point_valid = 0;
16921 sack_rxmit = 1;
16922 /* We are not doing a TLP */
16923 doing_tlp = 0;
16924 len = rsm->r_end - rsm->r_start;
16925 sb_offset = rsm->r_start - tp->snd_una;
16926 sendalot = 0;
16927 if ((rack->full_size_rxt == 0) &&
16928 (rack->shape_rxt_to_pacing_min == 0) &&
16929 (len >= segsiz))
16930 len = segsiz;
16931 } else if ((rsm = tcp_rack_output(tp, rack, cts)) != NULL) {
16932 /* We have a retransmit that takes precedence */
16933 if ((!IN_FASTRECOVERY(tp->t_flags)) &&
16934 ((rsm->r_flags & RACK_MUST_RXT) == 0) &&
16935 ((tp->t_flags & TF_WASFRECOVERY) == 0)) {
16936 /* Enter recovery if not induced by a time-out */
16937 rack_cong_signal(tp, CC_NDUPACK, tp->snd_una, __LINE__);
16938 }
16939 #ifdef INVARIANTS
16940 if (SEQ_LT(rsm->r_start, tp->snd_una)) {
16941 panic("Huh, tp:%p rack:%p rsm:%p start:%u < snd_una:%u\n",
16942 tp, rack, rsm, rsm->r_start, tp->snd_una);
16943 }
16944 #endif
16945 len = rsm->r_end - rsm->r_start;
16946 KASSERT(SEQ_LEQ(tp->snd_una, rsm->r_start),
16947 ("%s:%d: r.start:%u < SND.UNA:%u; tp:%p, rack:%p, rsm:%p",
16948 __func__, __LINE__,
16949 rsm->r_start, tp->snd_una, tp, rack, rsm));
16950 sb_offset = rsm->r_start - tp->snd_una;
16951 sendalot = 0;
16952 if (len >= segsiz)
16953 len = segsiz;
16954 if (len > 0) {
16955 sack_rxmit = 1;
16956 KMOD_TCPSTAT_INC(tcps_sack_rexmits);
16957 KMOD_TCPSTAT_ADD(tcps_sack_rexmit_bytes,
16958 min(len, segsiz));
16959 }
16960 } else if (rack->r_ctl.rc_tlpsend) {
16961 /* Tail loss probe */
16962 long cwin;
16963 long tlen;
16964
16965 /*
16966 * Check if we can do a TLP with a RACK'd packet
16967 * this can happen if we are not doing the rack
16968 * cheat and we skipped to a TLP and it
16969 * went off.
16970 */
16971 rsm = rack->r_ctl.rc_tlpsend;
16972 /* We are doing a TLP make sure the flag is preent */
16973 rsm->r_flags |= RACK_TLP;
16974 rack->r_ctl.rc_tlpsend = NULL;
16975 sack_rxmit = 1;
16976 tlen = rsm->r_end - rsm->r_start;
16977 if (tlen > segsiz)
16978 tlen = segsiz;
16979 KASSERT(SEQ_LEQ(tp->snd_una, rsm->r_start),
16980 ("%s:%d: r.start:%u < SND.UNA:%u; tp:%p, rack:%p, rsm:%p",
16981 __func__, __LINE__,
16982 rsm->r_start, tp->snd_una, tp, rack, rsm));
16983 sb_offset = rsm->r_start - tp->snd_una;
16984 cwin = min(tp->snd_wnd, tlen);
16985 len = cwin;
16986 }
16987 if (rack->r_must_retran &&
16988 (doing_tlp == 0) &&
16989 (SEQ_GT(tp->snd_max, tp->snd_una)) &&
16990 (rsm == NULL)) {
16991 /*
16992 * There are two different ways that we
16993 * can get into this block:
16994 * a) This is a non-sack connection, we had a time-out
16995 * and thus r_must_retran was set and everything
16996 * left outstanding as been marked for retransmit.
16997 * b) The MTU of the path shrank, so that everything
16998 * was marked to be retransmitted with the smaller
16999 * mtu and r_must_retran was set.
17000 *
17001 * This means that we expect the sendmap (outstanding)
17002 * to all be marked must. We can use the tmap to
17003 * look at them.
17004 *
17005 */
17006 int sendwin, flight;
17007
17008 sendwin = min(tp->snd_wnd, tp->snd_cwnd);
17009 flight = ctf_flight_size(tp, rack->r_ctl.rc_out_at_rto);
17010 if (flight >= sendwin) {
17011 /*
17012 * We can't send yet.
17013 */
17014 so = inp->inp_socket;
17015 sb = &so->so_snd;
17016 goto just_return_nolock;
17017 }
17018 /*
17019 * This is the case a/b mentioned above. All
17020 * outstanding/not-acked should be marked.
17021 * We can use the tmap to find them.
17022 */
17023 rsm = TAILQ_FIRST(&rack->r_ctl.rc_tmap);
17024 if (rsm == NULL) {
17025 /* TSNH */
17026 rack->r_must_retran = 0;
17027 rack->r_ctl.rc_out_at_rto = 0;
17028 so = inp->inp_socket;
17029 sb = &so->so_snd;
17030 goto just_return_nolock;
17031 }
17032 if ((rsm->r_flags & RACK_MUST_RXT) == 0) {
17033 /*
17034 * The first one does not have the flag, did we collapse
17035 * further up in our list?
17036 */
17037 rack->r_must_retran = 0;
17038 rack->r_ctl.rc_out_at_rto = 0;
17039 rsm = NULL;
17040 sack_rxmit = 0;
17041 } else {
17042 sack_rxmit = 1;
17043 len = rsm->r_end - rsm->r_start;
17044 sb_offset = rsm->r_start - tp->snd_una;
17045 sendalot = 0;
17046 if ((rack->full_size_rxt == 0) &&
17047 (rack->shape_rxt_to_pacing_min == 0) &&
17048 (len >= segsiz))
17049 len = segsiz;
17050 /*
17051 * Delay removing the flag RACK_MUST_RXT so
17052 * that the fastpath for retransmit will
17053 * work with this rsm.
17054 */
17055 }
17056 }
17057 /*
17058 * Enforce a connection sendmap count limit if set
17059 * as long as we are not retransmiting.
17060 */
17061 if ((rsm == NULL) &&
17062 (rack->do_detection == 0) &&
17063 (V_tcp_map_entries_limit > 0) &&
17064 (rack->r_ctl.rc_num_maps_alloced >= V_tcp_map_entries_limit)) {
17065 counter_u64_add(rack_to_alloc_limited, 1);
17066 if (!rack->alloc_limit_reported) {
17067 rack->alloc_limit_reported = 1;
17068 counter_u64_add(rack_alloc_limited_conns, 1);
17069 }
17070 so = inp->inp_socket;
17071 sb = &so->so_snd;
17072 goto just_return_nolock;
17073 }
17074 if (rsm && (rsm->r_flags & RACK_HAS_FIN)) {
17075 /* we are retransmitting the fin */
17076 len--;
17077 if (len) {
17078 /*
17079 * When retransmitting data do *not* include the
17080 * FIN. This could happen from a TLP probe.
17081 */
17082 flags &= ~TH_FIN;
17083 }
17084 }
17085 if (rsm && rack->r_fsb_inited && rack_use_rsm_rfo &&
17086 ((rsm->r_flags & RACK_HAS_FIN) == 0)) {
17087 int ret;
17088
17089 ret = rack_fast_rsm_output(tp, rack, rsm, ts_val, cts, ms_cts, &tv, len, doing_tlp);
17090 if (ret == 0)
17091 return (0);
17092 }
17093 so = inp->inp_socket;
17094 sb = &so->so_snd;
17095 if (do_a_prefetch == 0) {
17096 kern_prefetch(sb, &do_a_prefetch);
17097 do_a_prefetch = 1;
17098 }
17099 #ifdef NETFLIX_SHARED_CWND
17100 if ((tp->t_flags2 & TF2_TCP_SCWND_ALLOWED) &&
17101 rack->rack_enable_scwnd) {
17102 /* We are doing cwnd sharing */
17103 if (rack->gp_ready &&
17104 (rack->rack_attempted_scwnd == 0) &&
17105 (rack->r_ctl.rc_scw == NULL) &&
17106 tp->t_lib) {
17107 /* The pcbid is in, lets make an attempt */
17108 counter_u64_add(rack_try_scwnd, 1);
17109 rack->rack_attempted_scwnd = 1;
17110 rack->r_ctl.rc_scw = tcp_shared_cwnd_alloc(tp,
17111 &rack->r_ctl.rc_scw_index,
17112 segsiz);
17113 }
17114 if (rack->r_ctl.rc_scw &&
17115 (rack->rack_scwnd_is_idle == 1) &&
17116 sbavail(&so->so_snd)) {
17117 /* we are no longer out of data */
17118 tcp_shared_cwnd_active(rack->r_ctl.rc_scw, rack->r_ctl.rc_scw_index);
17119 rack->rack_scwnd_is_idle = 0;
17120 }
17121 if (rack->r_ctl.rc_scw) {
17122 /* First lets update and get the cwnd */
17123 rack->r_ctl.cwnd_to_use = cwnd_to_use = tcp_shared_cwnd_update(rack->r_ctl.rc_scw,
17124 rack->r_ctl.rc_scw_index,
17125 tp->snd_cwnd, tp->snd_wnd, segsiz);
17126 }
17127 }
17128 #endif
17129 /*
17130 * Get standard flags, and add SYN or FIN if requested by 'hidden'
17131 * state flags.
17132 */
17133 if (tp->t_flags & TF_NEEDFIN)
17134 flags |= TH_FIN;
17135 if (tp->t_flags & TF_NEEDSYN)
17136 flags |= TH_SYN;
17137 if ((sack_rxmit == 0) && (prefetch_rsm == 0)) {
17138 void *end_rsm;
17139 end_rsm = TAILQ_LAST_FAST(&rack->r_ctl.rc_tmap, rack_sendmap, r_tnext);
17140 if (end_rsm)
17141 kern_prefetch(end_rsm, &prefetch_rsm);
17142 prefetch_rsm = 1;
17143 }
17144 SOCKBUF_LOCK(sb);
17145 /*
17146 * If snd_nxt == snd_max and we have transmitted a FIN, the
17147 * sb_offset will be > 0 even if so_snd.sb_cc is 0, resulting in a
17148 * negative length. This can also occur when TCP opens up its
17149 * congestion window while receiving additional duplicate acks after
17150 * fast-retransmit because TCP will reset snd_nxt to snd_max after
17151 * the fast-retransmit.
17152 *
17153 * In the normal retransmit-FIN-only case, however, snd_nxt will be
17154 * set to snd_una, the sb_offset will be 0, and the length may wind
17155 * up 0.
17156 *
17157 * If sack_rxmit is true we are retransmitting from the scoreboard
17158 * in which case len is already set.
17159 */
17160 if ((sack_rxmit == 0) &&
17161 (TCPS_HAVEESTABLISHED(tp->t_state) || IS_FASTOPEN(tp->t_flags))) {
17162 uint32_t avail;
17163
17164 avail = sbavail(sb);
17165 if (SEQ_GT(tp->snd_nxt, tp->snd_una) && avail)
17166 sb_offset = tp->snd_nxt - tp->snd_una;
17167 else
17168 sb_offset = 0;
17169 if ((IN_FASTRECOVERY(tp->t_flags) == 0) || rack->rack_no_prr) {
17170 if (rack->r_ctl.rc_tlp_new_data) {
17171 /* TLP is forcing out new data */
17172 if (rack->r_ctl.rc_tlp_new_data > (uint32_t) (avail - sb_offset)) {
17173 rack->r_ctl.rc_tlp_new_data = (uint32_t) (avail - sb_offset);
17174 }
17175 if ((rack->r_ctl.rc_tlp_new_data + sb_offset) > tp->snd_wnd) {
17176 if (tp->snd_wnd > sb_offset)
17177 len = tp->snd_wnd - sb_offset;
17178 else
17179 len = 0;
17180 } else {
17181 len = rack->r_ctl.rc_tlp_new_data;
17182 }
17183 rack->r_ctl.rc_tlp_new_data = 0;
17184 } else {
17185 len = rack_what_can_we_send(tp, rack, cwnd_to_use, avail, sb_offset);
17186 }
17187 if ((rack->r_ctl.crte == NULL) && IN_FASTRECOVERY(tp->t_flags) && (len > segsiz)) {
17188 /*
17189 * For prr=off, we need to send only 1 MSS
17190 * at a time. We do this because another sack could
17191 * be arriving that causes us to send retransmits and
17192 * we don't want to be on a long pace due to a larger send
17193 * that keeps us from sending out the retransmit.
17194 */
17195 len = segsiz;
17196 }
17197 } else {
17198 uint32_t outstanding;
17199 /*
17200 * We are inside of a Fast recovery episode, this
17201 * is caused by a SACK or 3 dup acks. At this point
17202 * we have sent all the retransmissions and we rely
17203 * on PRR to dictate what we will send in the form of
17204 * new data.
17205 */
17206
17207 outstanding = tp->snd_max - tp->snd_una;
17208 if ((rack->r_ctl.rc_prr_sndcnt + outstanding) > tp->snd_wnd) {
17209 if (tp->snd_wnd > outstanding) {
17210 len = tp->snd_wnd - outstanding;
17211 /* Check to see if we have the data */
17212 if ((sb_offset + len) > avail) {
17213 /* It does not all fit */
17214 if (avail > sb_offset)
17215 len = avail - sb_offset;
17216 else
17217 len = 0;
17218 }
17219 } else {
17220 len = 0;
17221 }
17222 } else if (avail > sb_offset) {
17223 len = avail - sb_offset;
17224 } else {
17225 len = 0;
17226 }
17227 if (len > 0) {
17228 if (len > rack->r_ctl.rc_prr_sndcnt) {
17229 len = rack->r_ctl.rc_prr_sndcnt;
17230 }
17231 if (len > 0) {
17232 sub_from_prr = 1;
17233 }
17234 }
17235 if (len > segsiz) {
17236 /*
17237 * We should never send more than a MSS when
17238 * retransmitting or sending new data in prr
17239 * mode unless the override flag is on. Most
17240 * likely the PRR algorithm is not going to
17241 * let us send a lot as well :-)
17242 */
17243 if (rack->r_ctl.rc_prr_sendalot == 0) {
17244 len = segsiz;
17245 }
17246 } else if (len < segsiz) {
17247 /*
17248 * Do we send any? The idea here is if the
17249 * send empty's the socket buffer we want to
17250 * do it. However if not then lets just wait
17251 * for our prr_sndcnt to get bigger.
17252 */
17253 long leftinsb;
17254
17255 leftinsb = sbavail(sb) - sb_offset;
17256 if (leftinsb > len) {
17257 /* This send does not empty the sb */
17258 len = 0;
17259 }
17260 }
17261 }
17262 } else if (!TCPS_HAVEESTABLISHED(tp->t_state)) {
17263 /*
17264 * If you have not established
17265 * and are not doing FAST OPEN
17266 * no data please.
17267 */
17268 if ((sack_rxmit == 0) &&
17269 (!IS_FASTOPEN(tp->t_flags))){
17270 len = 0;
17271 sb_offset = 0;
17272 }
17273 }
17274 if (prefetch_so_done == 0) {
17275 kern_prefetch(so, &prefetch_so_done);
17276 prefetch_so_done = 1;
17277 }
17278 /*
17279 * Lop off SYN bit if it has already been sent. However, if this is
17280 * SYN-SENT state and if segment contains data and if we don't know
17281 * that foreign host supports TAO, suppress sending segment.
17282 */
17283 if ((flags & TH_SYN) && SEQ_GT(tp->snd_nxt, tp->snd_una) &&
17284 ((sack_rxmit == 0) && (tp->t_rxtshift == 0))) {
17285 /*
17286 * When sending additional segments following a TFO SYN|ACK,
17287 * do not include the SYN bit.
17288 */
17289 if (IS_FASTOPEN(tp->t_flags) &&
17290 (tp->t_state == TCPS_SYN_RECEIVED))
17291 flags &= ~TH_SYN;
17292 }
17293 /*
17294 * Be careful not to send data and/or FIN on SYN segments. This
17295 * measure is needed to prevent interoperability problems with not
17296 * fully conformant TCP implementations.
17297 */
17298 if ((flags & TH_SYN) && (tp->t_flags & TF_NOOPT)) {
17299 len = 0;
17300 flags &= ~TH_FIN;
17301 }
17302 /*
17303 * On TFO sockets, ensure no data is sent in the following cases:
17304 *
17305 * - When retransmitting SYN|ACK on a passively-created socket
17306 *
17307 * - When retransmitting SYN on an actively created socket
17308 *
17309 * - When sending a zero-length cookie (cookie request) on an
17310 * actively created socket
17311 *
17312 * - When the socket is in the CLOSED state (RST is being sent)
17313 */
17314 if (IS_FASTOPEN(tp->t_flags) &&
17315 (((flags & TH_SYN) && (tp->t_rxtshift > 0)) ||
17316 ((tp->t_state == TCPS_SYN_SENT) &&
17317 (tp->t_tfo_client_cookie_len == 0)) ||
17318 (flags & TH_RST))) {
17319 sack_rxmit = 0;
17320 len = 0;
17321 }
17322 /* Without fast-open there should never be data sent on a SYN */
17323 if ((flags & TH_SYN) && (!IS_FASTOPEN(tp->t_flags))) {
17324 tp->snd_nxt = tp->iss;
17325 len = 0;
17326 }
17327 if ((len > segsiz) && (tcp_dsack_block_exists(tp))) {
17328 /* We only send 1 MSS if we have a DSACK block */
17329 add_flag |= RACK_SENT_W_DSACK;
17330 len = segsiz;
17331 }
17332 orig_len = len;
17333 if (len <= 0) {
17334 /*
17335 * If FIN has been sent but not acked, but we haven't been
17336 * called to retransmit, len will be < 0. Otherwise, window
17337 * shrank after we sent into it. If window shrank to 0,
17338 * cancel pending retransmit, pull snd_nxt back to (closed)
17339 * window, and set the persist timer if it isn't already
17340 * going. If the window didn't close completely, just wait
17341 * for an ACK.
17342 *
17343 * We also do a general check here to ensure that we will
17344 * set the persist timer when we have data to send, but a
17345 * 0-byte window. This makes sure the persist timer is set
17346 * even if the packet hits one of the "goto send" lines
17347 * below.
17348 */
17349 len = 0;
17350 if ((tp->snd_wnd == 0) &&
17351 (TCPS_HAVEESTABLISHED(tp->t_state)) &&
17352 (tp->snd_una == tp->snd_max) &&
17353 (sb_offset < (int)sbavail(sb))) {
17354 rack_enter_persist(tp, rack, cts);
17355 }
17356 } else if ((rsm == NULL) &&
17357 (doing_tlp == 0) &&
17358 (len < pace_max_seg)) {
17359 /*
17360 * We are not sending a maximum sized segment for
17361 * some reason. Should we not send anything (think
17362 * sws or persists)?
17363 */
17364 if ((tp->snd_wnd < min((rack->r_ctl.rc_high_rwnd/2), minseg)) &&
17365 (TCPS_HAVEESTABLISHED(tp->t_state)) &&
17366 (len < minseg) &&
17367 (len < (int)(sbavail(sb) - sb_offset))) {
17368 /*
17369 * Here the rwnd is less than
17370 * the minimum pacing size, this is not a retransmit,
17371 * we are established and
17372 * the send is not the last in the socket buffer
17373 * we send nothing, and we may enter persists
17374 * if nothing is outstanding.
17375 */
17376 len = 0;
17377 if (tp->snd_max == tp->snd_una) {
17378 /*
17379 * Nothing out we can
17380 * go into persists.
17381 */
17382 rack_enter_persist(tp, rack, cts);
17383 }
17384 } else if ((cwnd_to_use >= max(minseg, (segsiz * 4))) &&
17385 (ctf_flight_size(tp, rack->r_ctl.rc_sacked) > (2 * segsiz)) &&
17386 (len < (int)(sbavail(sb) - sb_offset)) &&
17387 (len < minseg)) {
17388 /*
17389 * Here we are not retransmitting, and
17390 * the cwnd is not so small that we could
17391 * not send at least a min size (rxt timer
17392 * not having gone off), We have 2 segments or
17393 * more already in flight, its not the tail end
17394 * of the socket buffer and the cwnd is blocking
17395 * us from sending out a minimum pacing segment size.
17396 * Lets not send anything.
17397 */
17398 len = 0;
17399 } else if (((tp->snd_wnd - ctf_outstanding(tp)) <
17400 min((rack->r_ctl.rc_high_rwnd/2), minseg)) &&
17401 (ctf_flight_size(tp, rack->r_ctl.rc_sacked) > (2 * segsiz)) &&
17402 (len < (int)(sbavail(sb) - sb_offset)) &&
17403 (TCPS_HAVEESTABLISHED(tp->t_state))) {
17404 /*
17405 * Here we have a send window but we have
17406 * filled it up and we can't send another pacing segment.
17407 * We also have in flight more than 2 segments
17408 * and we are not completing the sb i.e. we allow
17409 * the last bytes of the sb to go out even if
17410 * its not a full pacing segment.
17411 */
17412 len = 0;
17413 } else if ((rack->r_ctl.crte != NULL) &&
17414 (tp->snd_wnd >= (pace_max_seg * max(1, rack_hw_rwnd_factor))) &&
17415 (cwnd_to_use >= (pace_max_seg + (4 * segsiz))) &&
17416 (ctf_flight_size(tp, rack->r_ctl.rc_sacked) >= (2 * segsiz)) &&
17417 (len < (int)(sbavail(sb) - sb_offset))) {
17418 /*
17419 * Here we are doing hardware pacing, this is not a TLP,
17420 * we are not sending a pace max segment size, there is rwnd
17421 * room to send at least N pace_max_seg, the cwnd is greater
17422 * than or equal to a full pacing segments plus 4 mss and we have 2 or
17423 * more segments in flight and its not the tail of the socket buffer.
17424 *
17425 * We don't want to send instead we need to get more ack's in to
17426 * allow us to send a full pacing segment. Normally, if we are pacing
17427 * about the right speed, we should have finished our pacing
17428 * send as most of the acks have come back if we are at the
17429 * right rate. This is a bit fuzzy since return path delay
17430 * can delay the acks, which is why we want to make sure we
17431 * have cwnd space to have a bit more than a max pace segments in flight.
17432 *
17433 * If we have not gotten our acks back we are pacing at too high a
17434 * rate delaying will not hurt and will bring our GP estimate down by
17435 * injecting the delay. If we don't do this we will send
17436 * 2 MSS out in response to the acks being clocked in which
17437 * defeats the point of hw-pacing (i.e. to help us get
17438 * larger TSO's out).
17439 */
17440 len = 0;
17441
17442 }
17443
17444 }
17445 /* len will be >= 0 after this point. */
17446 KASSERT(len >= 0, ("[%s:%d]: len < 0", __func__, __LINE__));
17447 rack_sndbuf_autoscale(rack);
17448 /*
17449 * Decide if we can use TCP Segmentation Offloading (if supported by
17450 * hardware).
17451 *
17452 * TSO may only be used if we are in a pure bulk sending state. The
17453 * presence of TCP-MD5, SACK retransmits, SACK advertizements and IP
17454 * options prevent using TSO. With TSO the TCP header is the same
17455 * (except for the sequence number) for all generated packets. This
17456 * makes it impossible to transmit any options which vary per
17457 * generated segment or packet.
17458 *
17459 * IPv4 handling has a clear separation of ip options and ip header
17460 * flags while IPv6 combines both in in6p_outputopts. ip6_optlen() does
17461 * the right thing below to provide length of just ip options and thus
17462 * checking for ipoptlen is enough to decide if ip options are present.
17463 */
17464 ipoptlen = 0;
17465 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
17466 /*
17467 * Pre-calculate here as we save another lookup into the darknesses
17468 * of IPsec that way and can actually decide if TSO is ok.
17469 */
17470 #ifdef INET6
17471 if (isipv6 && IPSEC_ENABLED(ipv6))
17472 ipsec_optlen = IPSEC_HDRSIZE(ipv6, inp);
17473 #ifdef INET
17474 else
17475 #endif
17476 #endif /* INET6 */
17477 #ifdef INET
17478 if (IPSEC_ENABLED(ipv4))
17479 ipsec_optlen = IPSEC_HDRSIZE(ipv4, inp);
17480 #endif /* INET */
17481 #endif
17482
17483 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
17484 ipoptlen += ipsec_optlen;
17485 #endif
17486 if ((tp->t_flags & TF_TSO) && V_tcp_do_tso && len > segsiz &&
17487 (tp->t_port == 0) &&
17488 ((tp->t_flags & TF_SIGNATURE) == 0) &&
17489 tp->rcv_numsacks == 0 && sack_rxmit == 0 &&
17490 ipoptlen == 0)
17491 tso = 1;
17492 {
17493 uint32_t outstanding __unused;
17494
17495 outstanding = tp->snd_max - tp->snd_una;
17496 if (tp->t_flags & TF_SENTFIN) {
17497 /*
17498 * If we sent a fin, snd_max is 1 higher than
17499 * snd_una
17500 */
17501 outstanding--;
17502 }
17503 if (sack_rxmit) {
17504 if ((rsm->r_flags & RACK_HAS_FIN) == 0)
17505 flags &= ~TH_FIN;
17506 } else {
17507 if (SEQ_LT(tp->snd_nxt + len, tp->snd_una +
17508 sbused(sb)))
17509 flags &= ~TH_FIN;
17510 }
17511 }
17512 recwin = lmin(lmax(sbspace(&so->so_rcv), 0),
17513 (long)TCP_MAXWIN << tp->rcv_scale);
17514
17515 /*
17516 * Sender silly window avoidance. We transmit under the following
17517 * conditions when len is non-zero:
17518 *
17519 * - We have a full segment (or more with TSO) - This is the last
17520 * buffer in a write()/send() and we are either idle or running
17521 * NODELAY - we've timed out (e.g. persist timer) - we have more
17522 * then 1/2 the maximum send window's worth of data (receiver may be
17523 * limited the window size) - we need to retransmit
17524 */
17525 if (len) {
17526 if (len >= segsiz) {
17527 goto send;
17528 }
17529 /*
17530 * NOTE! on localhost connections an 'ack' from the remote
17531 * end may occur synchronously with the output and cause us
17532 * to flush a buffer queued with moretocome. XXX
17533 *
17534 */
17535 if (!(tp->t_flags & TF_MORETOCOME) && /* normal case */
17536 (idle || (tp->t_flags & TF_NODELAY)) &&
17537 ((uint32_t)len + (uint32_t)sb_offset >= sbavail(sb)) &&
17538 (tp->t_flags & TF_NOPUSH) == 0) {
17539 pass = 2;
17540 goto send;
17541 }
17542 if ((tp->snd_una == tp->snd_max) && len) { /* Nothing outstanding */
17543 pass = 22;
17544 goto send;
17545 }
17546 if (len >= tp->max_sndwnd / 2 && tp->max_sndwnd > 0) {
17547 pass = 4;
17548 goto send;
17549 }
17550 if (SEQ_LT(tp->snd_nxt, tp->snd_max)) { /* retransmit case */
17551 pass = 5;
17552 goto send;
17553 }
17554 if (sack_rxmit) {
17555 pass = 6;
17556 goto send;
17557 }
17558 if (((tp->snd_wnd - ctf_outstanding(tp)) < segsiz) &&
17559 (ctf_outstanding(tp) < (segsiz * 2))) {
17560 /*
17561 * We have less than two MSS outstanding (delayed ack)
17562 * and our rwnd will not let us send a full sized
17563 * MSS. Lets go ahead and let this small segment
17564 * out because we want to try to have at least two
17565 * packets inflight to not be caught by delayed ack.
17566 */
17567 pass = 12;
17568 goto send;
17569 }
17570 }
17571 /*
17572 * Sending of standalone window updates.
17573 *
17574 * Window updates are important when we close our window due to a
17575 * full socket buffer and are opening it again after the application
17576 * reads data from it. Once the window has opened again and the
17577 * remote end starts to send again the ACK clock takes over and
17578 * provides the most current window information.
17579 *
17580 * We must avoid the silly window syndrome whereas every read from
17581 * the receive buffer, no matter how small, causes a window update
17582 * to be sent. We also should avoid sending a flurry of window
17583 * updates when the socket buffer had queued a lot of data and the
17584 * application is doing small reads.
17585 *
17586 * Prevent a flurry of pointless window updates by only sending an
17587 * update when we can increase the advertized window by more than
17588 * 1/4th of the socket buffer capacity. When the buffer is getting
17589 * full or is very small be more aggressive and send an update
17590 * whenever we can increase by two mss sized segments. In all other
17591 * situations the ACK's to new incoming data will carry further
17592 * window increases.
17593 *
17594 * Don't send an independent window update if a delayed ACK is
17595 * pending (it will get piggy-backed on it) or the remote side
17596 * already has done a half-close and won't send more data. Skip
17597 * this if the connection is in T/TCP half-open state.
17598 */
17599 if (recwin > 0 && !(tp->t_flags & TF_NEEDSYN) &&
17600 !(tp->t_flags & TF_DELACK) &&
17601 !TCPS_HAVERCVDFIN(tp->t_state)) {
17602 /*
17603 * "adv" is the amount we could increase the window, taking
17604 * into account that we are limited by TCP_MAXWIN <<
17605 * tp->rcv_scale.
17606 */
17607 int32_t adv;
17608 int oldwin;
17609
17610 adv = recwin;
17611 if (SEQ_GT(tp->rcv_adv, tp->rcv_nxt)) {
17612 oldwin = (tp->rcv_adv - tp->rcv_nxt);
17613 if (adv > oldwin)
17614 adv -= oldwin;
17615 else {
17616 /* We can't increase the window */
17617 adv = 0;
17618 }
17619 } else
17620 oldwin = 0;
17621
17622 /*
17623 * If the new window size ends up being the same as or less
17624 * than the old size when it is scaled, then don't force
17625 * a window update.
17626 */
17627 if (oldwin >> tp->rcv_scale >= (adv + oldwin) >> tp->rcv_scale)
17628 goto dontupdate;
17629
17630 if (adv >= (int32_t)(2 * segsiz) &&
17631 (adv >= (int32_t)(so->so_rcv.sb_hiwat / 4) ||
17632 recwin <= (int32_t)(so->so_rcv.sb_hiwat / 8) ||
17633 so->so_rcv.sb_hiwat <= 8 * segsiz)) {
17634 pass = 7;
17635 goto send;
17636 }
17637 if (2 * adv >= (int32_t) so->so_rcv.sb_hiwat) {
17638 pass = 23;
17639 goto send;
17640 }
17641 }
17642 dontupdate:
17643
17644 /*
17645 * Send if we owe the peer an ACK, RST, SYN, or urgent data. ACKNOW
17646 * is also a catch-all for the retransmit timer timeout case.
17647 */
17648 if (tp->t_flags & TF_ACKNOW) {
17649 pass = 8;
17650 goto send;
17651 }
17652 if (((flags & TH_SYN) && (tp->t_flags & TF_NEEDSYN) == 0)) {
17653 pass = 9;
17654 goto send;
17655 }
17656 /*
17657 * If our state indicates that FIN should be sent and we have not
17658 * yet done so, then we need to send.
17659 */
17660 if ((flags & TH_FIN) &&
17661 (tp->snd_nxt == tp->snd_una)) {
17662 pass = 11;
17663 goto send;
17664 }
17665 /*
17666 * No reason to send a segment, just return.
17667 */
17668 just_return:
17669 SOCKBUF_UNLOCK(sb);
17670 just_return_nolock:
17671 {
17672 int app_limited = CTF_JR_SENT_DATA;
17673
17674 if (tot_len_this_send > 0) {
17675 /* Make sure snd_nxt is up to max */
17676 rack->r_ctl.fsb.recwin = recwin;
17677 slot = rack_get_pacing_delay(rack, tp, tot_len_this_send, NULL, segsiz);
17678 if ((error == 0) &&
17679 rack_use_rfo &&
17680 ((flags & (TH_SYN|TH_FIN)) == 0) &&
17681 (ipoptlen == 0) &&
17682 (tp->snd_nxt == tp->snd_max) &&
17683 (tp->rcv_numsacks == 0) &&
17684 rack->r_fsb_inited &&
17685 TCPS_HAVEESTABLISHED(tp->t_state) &&
17686 (rack->r_must_retran == 0) &&
17687 ((tp->t_flags & TF_NEEDFIN) == 0) &&
17688 (len > 0) && (orig_len > 0) &&
17689 (orig_len > len) &&
17690 ((orig_len - len) >= segsiz) &&
17691 ((optlen == 0) ||
17692 ((optlen == TCPOLEN_TSTAMP_APPA) && (to.to_flags & TOF_TS)))) {
17693 /* We can send at least one more MSS using our fsb */
17694
17695 rack->r_fast_output = 1;
17696 rack->r_ctl.fsb.m = sbsndmbuf(sb, (tp->snd_max - tp->snd_una), &rack->r_ctl.fsb.off);
17697 rack->r_ctl.fsb.o_m_len = rack->r_ctl.fsb.m->m_len;
17698 rack->r_ctl.fsb.tcp_flags = flags;
17699 rack->r_ctl.fsb.left_to_send = orig_len - len;
17700 if (hw_tls)
17701 rack->r_ctl.fsb.hw_tls = 1;
17702 else
17703 rack->r_ctl.fsb.hw_tls = 0;
17704 KASSERT((rack->r_ctl.fsb.left_to_send <= (sbavail(sb) - (tp->snd_max - tp->snd_una))),
17705 ("rack:%p left_to_send:%u sbavail:%u out:%u",
17706 rack, rack->r_ctl.fsb.left_to_send, sbavail(sb),
17707 (tp->snd_max - tp->snd_una)));
17708 if (rack->r_ctl.fsb.left_to_send < segsiz)
17709 rack->r_fast_output = 0;
17710 else {
17711 if (rack->r_ctl.fsb.left_to_send == (sbavail(sb) - (tp->snd_max - tp->snd_una)))
17712 rack->r_ctl.fsb.rfo_apply_push = 1;
17713 else
17714 rack->r_ctl.fsb.rfo_apply_push = 0;
17715 }
17716 } else
17717 rack->r_fast_output = 0;
17718
17719
17720 rack_log_fsb(rack, tp, so, flags,
17721 ipoptlen, orig_len, len, 0,
17722 1, optlen, __LINE__, 1);
17723 if (SEQ_GT(tp->snd_max, tp->snd_nxt))
17724 tp->snd_nxt = tp->snd_max;
17725 } else {
17726 int end_window = 0;
17727 uint32_t seq = tp->gput_ack;
17728
17729 rsm = RB_MAX(rack_rb_tree_head, &rack->r_ctl.rc_mtree);
17730 if (rsm) {
17731 /*
17732 * Mark the last sent that we just-returned (hinting
17733 * that delayed ack may play a role in any rtt measurement).
17734 */
17735 rsm->r_just_ret = 1;
17736 }
17737 counter_u64_add(rack_out_size[TCP_MSS_ACCT_JUSTRET], 1);
17738 rack->r_ctl.rc_agg_delayed = 0;
17739 rack->r_early = 0;
17740 rack->r_late = 0;
17741 rack->r_ctl.rc_agg_early = 0;
17742 if ((ctf_outstanding(tp) +
17743 min(max(segsiz, (rack->r_ctl.rc_high_rwnd/2)),
17744 minseg)) >= tp->snd_wnd) {
17745 /* We are limited by the rwnd */
17746 app_limited = CTF_JR_RWND_LIMITED;
17747 if (IN_FASTRECOVERY(tp->t_flags))
17748 rack->r_ctl.rc_prr_sndcnt = 0;
17749 } else if (ctf_outstanding(tp) >= sbavail(sb)) {
17750 /* We are limited by whats available -- app limited */
17751 app_limited = CTF_JR_APP_LIMITED;
17752 if (IN_FASTRECOVERY(tp->t_flags))
17753 rack->r_ctl.rc_prr_sndcnt = 0;
17754 } else if ((idle == 0) &&
17755 ((tp->t_flags & TF_NODELAY) == 0) &&
17756 ((uint32_t)len + (uint32_t)sb_offset >= sbavail(sb)) &&
17757 (len < segsiz)) {
17758 /*
17759 * No delay is not on and the
17760 * user is sending less than 1MSS. This
17761 * brings out SWS avoidance so we
17762 * don't send. Another app-limited case.
17763 */
17764 app_limited = CTF_JR_APP_LIMITED;
17765 } else if (tp->t_flags & TF_NOPUSH) {
17766 /*
17767 * The user has requested no push of
17768 * the last segment and we are
17769 * at the last segment. Another app
17770 * limited case.
17771 */
17772 app_limited = CTF_JR_APP_LIMITED;
17773 } else if ((ctf_outstanding(tp) + minseg) > cwnd_to_use) {
17774 /* Its the cwnd */
17775 app_limited = CTF_JR_CWND_LIMITED;
17776 } else if (IN_FASTRECOVERY(tp->t_flags) &&
17777 (rack->rack_no_prr == 0) &&
17778 (rack->r_ctl.rc_prr_sndcnt < segsiz)) {
17779 app_limited = CTF_JR_PRR;
17780 } else {
17781 /* Now why here are we not sending? */
17782 #ifdef NOW
17783 #ifdef INVARIANTS
17784 panic("rack:%p hit JR_ASSESSING case cwnd_to_use:%u?", rack, cwnd_to_use);
17785 #endif
17786 #endif
17787 app_limited = CTF_JR_ASSESSING;
17788 }
17789 /*
17790 * App limited in some fashion, for our pacing GP
17791 * measurements we don't want any gap (even cwnd).
17792 * Close down the measurement window.
17793 */
17794 if (rack_cwnd_block_ends_measure &&
17795 ((app_limited == CTF_JR_CWND_LIMITED) ||
17796 (app_limited == CTF_JR_PRR))) {
17797 /*
17798 * The reason we are not sending is
17799 * the cwnd (or prr). We have been configured
17800 * to end the measurement window in
17801 * this case.
17802 */
17803 end_window = 1;
17804 } else if (rack_rwnd_block_ends_measure &&
17805 (app_limited == CTF_JR_RWND_LIMITED)) {
17806 /*
17807 * We are rwnd limited and have been
17808 * configured to end the measurement
17809 * window in this case.
17810 */
17811 end_window = 1;
17812 } else if (app_limited == CTF_JR_APP_LIMITED) {
17813 /*
17814 * A true application limited period, we have
17815 * ran out of data.
17816 */
17817 end_window = 1;
17818 } else if (app_limited == CTF_JR_ASSESSING) {
17819 /*
17820 * In the assessing case we hit the end of
17821 * the if/else and had no known reason
17822 * This will panic us under invariants..
17823 *
17824 * If we get this out in logs we need to
17825 * investagate which reason we missed.
17826 */
17827 end_window = 1;
17828 }
17829 if (end_window) {
17830 uint8_t log = 0;
17831
17832 /* Adjust the Gput measurement */
17833 if ((tp->t_flags & TF_GPUTINPROG) &&
17834 SEQ_GT(tp->gput_ack, tp->snd_max)) {
17835 tp->gput_ack = tp->snd_max;
17836 if ((tp->gput_ack - tp->gput_seq) < (MIN_GP_WIN * segsiz)) {
17837 /*
17838 * There is not enough to measure.
17839 */
17840 tp->t_flags &= ~TF_GPUTINPROG;
17841 rack_log_pacing_delay_calc(rack, (tp->gput_ack - tp->gput_seq) /*flex2*/,
17842 rack->r_ctl.rc_gp_srtt /*flex1*/,
17843 tp->gput_seq,
17844 0, 0, 18, __LINE__, NULL, 0);
17845 } else
17846 log = 1;
17847 }
17848 /* Mark the last packet has app limited */
17849 rsm = RB_MAX(rack_rb_tree_head, &rack->r_ctl.rc_mtree);
17850 if (rsm && ((rsm->r_flags & RACK_APP_LIMITED) == 0)) {
17851 if (rack->r_ctl.rc_app_limited_cnt == 0)
17852 rack->r_ctl.rc_end_appl = rack->r_ctl.rc_first_appl = rsm;
17853 else {
17854 /*
17855 * Go out to the end app limited and mark
17856 * this new one as next and move the end_appl up
17857 * to this guy.
17858 */
17859 if (rack->r_ctl.rc_end_appl)
17860 rack->r_ctl.rc_end_appl->r_nseq_appl = rsm->r_start;
17861 rack->r_ctl.rc_end_appl = rsm;
17862 }
17863 rsm->r_flags |= RACK_APP_LIMITED;
17864 rack->r_ctl.rc_app_limited_cnt++;
17865 }
17866 if (log)
17867 rack_log_pacing_delay_calc(rack,
17868 rack->r_ctl.rc_app_limited_cnt, seq,
17869 tp->gput_ack, 0, 0, 4, __LINE__, NULL, 0);
17870 }
17871 }
17872 /* Check if we need to go into persists or not */
17873 if ((tp->snd_max == tp->snd_una) &&
17874 TCPS_HAVEESTABLISHED(tp->t_state) &&
17875 sbavail(sb) &&
17876 (sbavail(sb) > tp->snd_wnd) &&
17877 (tp->snd_wnd < min((rack->r_ctl.rc_high_rwnd/2), minseg))) {
17878 /* Yes lets make sure to move to persist before timer-start */
17879 rack_enter_persist(tp, rack, rack->r_ctl.rc_rcvtime);
17880 }
17881 rack_start_hpts_timer(rack, tp, cts, slot, tot_len_this_send, sup_rack);
17882 rack_log_type_just_return(rack, cts, tot_len_this_send, slot, hpts_calling, app_limited, cwnd_to_use);
17883 }
17884 #ifdef NETFLIX_SHARED_CWND
17885 if ((sbavail(sb) == 0) &&
17886 rack->r_ctl.rc_scw) {
17887 tcp_shared_cwnd_idle(rack->r_ctl.rc_scw, rack->r_ctl.rc_scw_index);
17888 rack->rack_scwnd_is_idle = 1;
17889 }
17890 #endif
17891 #ifdef TCP_ACCOUNTING
17892 if (tot_len_this_send > 0) {
17893 crtsc = get_cyclecount();
17894 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
17895 tp->tcp_cnt_counters[SND_OUT_DATA]++;
17896 }
17897 counter_u64_add(tcp_cnt_counters[SND_OUT_DATA], 1);
17898 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
17899 tp->tcp_proc_time[SND_OUT_DATA] += (crtsc - ts_val);
17900 }
17901 counter_u64_add(tcp_proc_time[SND_OUT_DATA], (crtsc - ts_val));
17902 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
17903 tp->tcp_cnt_counters[CNT_OF_MSS_OUT] += ((tot_len_this_send + segsiz - 1) / segsiz);
17904 }
17905 counter_u64_add(tcp_cnt_counters[CNT_OF_MSS_OUT], ((tot_len_this_send + segsiz - 1) / segsiz));
17906 } else {
17907 crtsc = get_cyclecount();
17908 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
17909 tp->tcp_cnt_counters[SND_LIMITED]++;
17910 }
17911 counter_u64_add(tcp_cnt_counters[SND_LIMITED], 1);
17912 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
17913 tp->tcp_proc_time[SND_LIMITED] += (crtsc - ts_val);
17914 }
17915 counter_u64_add(tcp_proc_time[SND_LIMITED], (crtsc - ts_val));
17916 }
17917 sched_unpin();
17918 #endif
17919 return (0);
17920
17921 send:
17922 if (rsm || sack_rxmit)
17923 counter_u64_add(rack_nfto_resend, 1);
17924 else
17925 counter_u64_add(rack_non_fto_send, 1);
17926 if ((flags & TH_FIN) &&
17927 sbavail(sb)) {
17928 /*
17929 * We do not transmit a FIN
17930 * with data outstanding. We
17931 * need to make it so all data
17932 * is acked first.
17933 */
17934 flags &= ~TH_FIN;
17935 }
17936 /* Enforce stack imposed max seg size if we have one */
17937 if (rack->r_ctl.rc_pace_max_segs &&
17938 (len > rack->r_ctl.rc_pace_max_segs)) {
17939 mark = 1;
17940 len = rack->r_ctl.rc_pace_max_segs;
17941 }
17942 SOCKBUF_LOCK_ASSERT(sb);
17943 if (len > 0) {
17944 if (len >= segsiz)
17945 tp->t_flags2 |= TF2_PLPMTU_MAXSEGSNT;
17946 else
17947 tp->t_flags2 &= ~TF2_PLPMTU_MAXSEGSNT;
17948 }
17949 /*
17950 * Before ESTABLISHED, force sending of initial options unless TCP
17951 * set not to do any options. NOTE: we assume that the IP/TCP header
17952 * plus TCP options always fit in a single mbuf, leaving room for a
17953 * maximum link header, i.e. max_linkhdr + sizeof (struct tcpiphdr)
17954 * + optlen <= MCLBYTES
17955 */
17956 optlen = 0;
17957 #ifdef INET6
17958 if (isipv6)
17959 hdrlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
17960 else
17961 #endif
17962 hdrlen = sizeof(struct tcpiphdr);
17963
17964 /*
17965 * Compute options for segment. We only have to care about SYN and
17966 * established connection segments. Options for SYN-ACK segments
17967 * are handled in TCP syncache.
17968 */
17969 to.to_flags = 0;
17970 if ((tp->t_flags & TF_NOOPT) == 0) {
17971 /* Maximum segment size. */
17972 if (flags & TH_SYN) {
17973 tp->snd_nxt = tp->iss;
17974 to.to_mss = tcp_mssopt(&inp->inp_inc);
17975 if (tp->t_port)
17976 to.to_mss -= V_tcp_udp_tunneling_overhead;
17977 to.to_flags |= TOF_MSS;
17978
17979 /*
17980 * On SYN or SYN|ACK transmits on TFO connections,
17981 * only include the TFO option if it is not a
17982 * retransmit, as the presence of the TFO option may
17983 * have caused the original SYN or SYN|ACK to have
17984 * been dropped by a middlebox.
17985 */
17986 if (IS_FASTOPEN(tp->t_flags) &&
17987 (tp->t_rxtshift == 0)) {
17988 if (tp->t_state == TCPS_SYN_RECEIVED) {
17989 to.to_tfo_len = TCP_FASTOPEN_COOKIE_LEN;
17990 to.to_tfo_cookie =
17991 (u_int8_t *)&tp->t_tfo_cookie.server;
17992 to.to_flags |= TOF_FASTOPEN;
17993 wanted_cookie = 1;
17994 } else if (tp->t_state == TCPS_SYN_SENT) {
17995 to.to_tfo_len =
17996 tp->t_tfo_client_cookie_len;
17997 to.to_tfo_cookie =
17998 tp->t_tfo_cookie.client;
17999 to.to_flags |= TOF_FASTOPEN;
18000 wanted_cookie = 1;
18001 /*
18002 * If we wind up having more data to
18003 * send with the SYN than can fit in
18004 * one segment, don't send any more
18005 * until the SYN|ACK comes back from
18006 * the other end.
18007 */
18008 sendalot = 0;
18009 }
18010 }
18011 }
18012 /* Window scaling. */
18013 if ((flags & TH_SYN) && (tp->t_flags & TF_REQ_SCALE)) {
18014 to.to_wscale = tp->request_r_scale;
18015 to.to_flags |= TOF_SCALE;
18016 }
18017 /* Timestamps. */
18018 if ((tp->t_flags & TF_RCVD_TSTMP) ||
18019 ((flags & TH_SYN) && (tp->t_flags & TF_REQ_TSTMP))) {
18020 to.to_tsval = ms_cts + tp->ts_offset;
18021 to.to_tsecr = tp->ts_recent;
18022 to.to_flags |= TOF_TS;
18023 }
18024 /* Set receive buffer autosizing timestamp. */
18025 if (tp->rfbuf_ts == 0 &&
18026 (so->so_rcv.sb_flags & SB_AUTOSIZE))
18027 tp->rfbuf_ts = tcp_ts_getticks();
18028 /* Selective ACK's. */
18029 if (tp->t_flags & TF_SACK_PERMIT) {
18030 if (flags & TH_SYN)
18031 to.to_flags |= TOF_SACKPERM;
18032 else if (TCPS_HAVEESTABLISHED(tp->t_state) &&
18033 tp->rcv_numsacks > 0) {
18034 to.to_flags |= TOF_SACK;
18035 to.to_nsacks = tp->rcv_numsacks;
18036 to.to_sacks = (u_char *)tp->sackblks;
18037 }
18038 }
18039 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
18040 /* TCP-MD5 (RFC2385). */
18041 if (tp->t_flags & TF_SIGNATURE)
18042 to.to_flags |= TOF_SIGNATURE;
18043 #endif /* TCP_SIGNATURE */
18044
18045 /* Processing the options. */
18046 hdrlen += optlen = tcp_addoptions(&to, opt);
18047 /*
18048 * If we wanted a TFO option to be added, but it was unable
18049 * to fit, ensure no data is sent.
18050 */
18051 if (IS_FASTOPEN(tp->t_flags) && wanted_cookie &&
18052 !(to.to_flags & TOF_FASTOPEN))
18053 len = 0;
18054 }
18055 if (tp->t_port) {
18056 if (V_tcp_udp_tunneling_port == 0) {
18057 /* The port was removed?? */
18058 SOCKBUF_UNLOCK(&so->so_snd);
18059 #ifdef TCP_ACCOUNTING
18060 crtsc = get_cyclecount();
18061 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
18062 tp->tcp_cnt_counters[SND_OUT_FAIL]++;
18063 }
18064 counter_u64_add(tcp_cnt_counters[SND_OUT_FAIL], 1);
18065 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
18066 tp->tcp_proc_time[SND_OUT_FAIL] += (crtsc - ts_val);
18067 }
18068 counter_u64_add(tcp_proc_time[SND_OUT_FAIL], (crtsc - ts_val));
18069 sched_unpin();
18070 #endif
18071 return (EHOSTUNREACH);
18072 }
18073 hdrlen += sizeof(struct udphdr);
18074 }
18075 #ifdef INET6
18076 if (isipv6)
18077 ipoptlen = ip6_optlen(inp);
18078 else
18079 #endif
18080 if (inp->inp_options)
18081 ipoptlen = inp->inp_options->m_len -
18082 offsetof(struct ipoption, ipopt_list);
18083 else
18084 ipoptlen = 0;
18085 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
18086 ipoptlen += ipsec_optlen;
18087 #endif
18088
18089 /*
18090 * Adjust data length if insertion of options will bump the packet
18091 * length beyond the t_maxseg length. Clear the FIN bit because we
18092 * cut off the tail of the segment.
18093 */
18094 if (len + optlen + ipoptlen > tp->t_maxseg) {
18095 if (tso) {
18096 uint32_t if_hw_tsomax;
18097 uint32_t moff;
18098 int32_t max_len;
18099
18100 /* extract TSO information */
18101 if_hw_tsomax = tp->t_tsomax;
18102 if_hw_tsomaxsegcount = tp->t_tsomaxsegcount;
18103 if_hw_tsomaxsegsize = tp->t_tsomaxsegsize;
18104 KASSERT(ipoptlen == 0,
18105 ("%s: TSO can't do IP options", __func__));
18106
18107 /*
18108 * Check if we should limit by maximum payload
18109 * length:
18110 */
18111 if (if_hw_tsomax != 0) {
18112 /* compute maximum TSO length */
18113 max_len = (if_hw_tsomax - hdrlen -
18114 max_linkhdr);
18115 if (max_len <= 0) {
18116 len = 0;
18117 } else if (len > max_len) {
18118 sendalot = 1;
18119 len = max_len;
18120 mark = 2;
18121 }
18122 }
18123 /*
18124 * Prevent the last segment from being fractional
18125 * unless the send sockbuf can be emptied:
18126 */
18127 max_len = (tp->t_maxseg - optlen);
18128 if ((sb_offset + len) < sbavail(sb)) {
18129 moff = len % (u_int)max_len;
18130 if (moff != 0) {
18131 mark = 3;
18132 len -= moff;
18133 }
18134 }
18135 /*
18136 * In case there are too many small fragments don't
18137 * use TSO:
18138 */
18139 if (len <= segsiz) {
18140 mark = 4;
18141 tso = 0;
18142 }
18143 /*
18144 * Send the FIN in a separate segment after the bulk
18145 * sending is done. We don't trust the TSO
18146 * implementations to clear the FIN flag on all but
18147 * the last segment.
18148 */
18149 if (tp->t_flags & TF_NEEDFIN) {
18150 sendalot = 4;
18151 }
18152 } else {
18153 mark = 5;
18154 if (optlen + ipoptlen >= tp->t_maxseg) {
18155 /*
18156 * Since we don't have enough space to put
18157 * the IP header chain and the TCP header in
18158 * one packet as required by RFC 7112, don't
18159 * send it. Also ensure that at least one
18160 * byte of the payload can be put into the
18161 * TCP segment.
18162 */
18163 SOCKBUF_UNLOCK(&so->so_snd);
18164 error = EMSGSIZE;
18165 sack_rxmit = 0;
18166 goto out;
18167 }
18168 len = tp->t_maxseg - optlen - ipoptlen;
18169 sendalot = 5;
18170 }
18171 } else {
18172 tso = 0;
18173 mark = 6;
18174 }
18175 KASSERT(len + hdrlen + ipoptlen <= IP_MAXPACKET,
18176 ("%s: len > IP_MAXPACKET", __func__));
18177 #ifdef DIAGNOSTIC
18178 #ifdef INET6
18179 if (max_linkhdr + hdrlen > MCLBYTES)
18180 #else
18181 if (max_linkhdr + hdrlen > MHLEN)
18182 #endif
18183 panic("tcphdr too big");
18184 #endif
18185
18186 /*
18187 * This KASSERT is here to catch edge cases at a well defined place.
18188 * Before, those had triggered (random) panic conditions further
18189 * down.
18190 */
18191 KASSERT(len >= 0, ("[%s:%d]: len < 0", __func__, __LINE__));
18192 if ((len == 0) &&
18193 (flags & TH_FIN) &&
18194 (sbused(sb))) {
18195 /*
18196 * We have outstanding data, don't send a fin by itself!.
18197 */
18198 goto just_return;
18199 }
18200 /*
18201 * Grab a header mbuf, attaching a copy of data to be transmitted,
18202 * and initialize the header from the template for sends on this
18203 * connection.
18204 */
18205 hw_tls = (sb->sb_flags & SB_TLS_IFNET) != 0;
18206 if (len) {
18207 uint32_t max_val;
18208 uint32_t moff;
18209
18210 if (rack->r_ctl.rc_pace_max_segs)
18211 max_val = rack->r_ctl.rc_pace_max_segs;
18212 else if (rack->rc_user_set_max_segs)
18213 max_val = rack->rc_user_set_max_segs * segsiz;
18214 else
18215 max_val = len;
18216 /*
18217 * We allow a limit on sending with hptsi.
18218 */
18219 if (len > max_val) {
18220 mark = 7;
18221 len = max_val;
18222 }
18223 #ifdef INET6
18224 if (MHLEN < hdrlen + max_linkhdr)
18225 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
18226 else
18227 #endif
18228 m = m_gethdr(M_NOWAIT, MT_DATA);
18229
18230 if (m == NULL) {
18231 SOCKBUF_UNLOCK(sb);
18232 error = ENOBUFS;
18233 sack_rxmit = 0;
18234 goto out;
18235 }
18236 m->m_data += max_linkhdr;
18237 m->m_len = hdrlen;
18238
18239 /*
18240 * Start the m_copy functions from the closest mbuf to the
18241 * sb_offset in the socket buffer chain.
18242 */
18243 mb = sbsndptr_noadv(sb, sb_offset, &moff);
18244 s_mb = mb;
18245 s_moff = moff;
18246 if (len <= MHLEN - hdrlen - max_linkhdr && !hw_tls) {
18247 m_copydata(mb, moff, (int)len,
18248 mtod(m, caddr_t)+hdrlen);
18249 if (SEQ_LT(tp->snd_nxt, tp->snd_max))
18250 sbsndptr_adv(sb, mb, len);
18251 m->m_len += len;
18252 } else {
18253 struct sockbuf *msb;
18254
18255 if (SEQ_LT(tp->snd_nxt, tp->snd_max))
18256 msb = NULL;
18257 else
18258 msb = sb;
18259 m->m_next = tcp_m_copym(
18260 mb, moff, &len,
18261 if_hw_tsomaxsegcount, if_hw_tsomaxsegsize, msb,
18262 ((rsm == NULL) ? hw_tls : 0)
18263 #ifdef NETFLIX_COPY_ARGS
18264 , &s_mb, &s_moff
18265 #endif
18266 );
18267 if (len <= (tp->t_maxseg - optlen)) {
18268 /*
18269 * Must have ran out of mbufs for the copy
18270 * shorten it to no longer need tso. Lets
18271 * not put on sendalot since we are low on
18272 * mbufs.
18273 */
18274 tso = 0;
18275 }
18276 if (m->m_next == NULL) {
18277 SOCKBUF_UNLOCK(sb);
18278 (void)m_free(m);
18279 error = ENOBUFS;
18280 sack_rxmit = 0;
18281 goto out;
18282 }
18283 }
18284 if (SEQ_LT(tp->snd_nxt, tp->snd_max) || sack_rxmit) {
18285 if (rsm && (rsm->r_flags & RACK_TLP)) {
18286 /*
18287 * TLP should not count in retran count, but
18288 * in its own bin
18289 */
18290 counter_u64_add(rack_tlp_retran, 1);
18291 counter_u64_add(rack_tlp_retran_bytes, len);
18292 } else {
18293 tp->t_sndrexmitpack++;
18294 KMOD_TCPSTAT_INC(tcps_sndrexmitpack);
18295 KMOD_TCPSTAT_ADD(tcps_sndrexmitbyte, len);
18296 }
18297 #ifdef STATS
18298 stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_RETXPB,
18299 len);
18300 #endif
18301 } else {
18302 KMOD_TCPSTAT_INC(tcps_sndpack);
18303 KMOD_TCPSTAT_ADD(tcps_sndbyte, len);
18304 #ifdef STATS
18305 stats_voi_update_abs_u64(tp->t_stats, VOI_TCP_TXPB,
18306 len);
18307 #endif
18308 }
18309 /*
18310 * If we're sending everything we've got, set PUSH. (This
18311 * will keep happy those implementations which only give
18312 * data to the user when a buffer fills or a PUSH comes in.)
18313 */
18314 if (sb_offset + len == sbused(sb) &&
18315 sbused(sb) &&
18316 !(flags & TH_SYN)) {
18317 flags |= TH_PUSH;
18318 add_flag |= RACK_HAD_PUSH;
18319 }
18320
18321 SOCKBUF_UNLOCK(sb);
18322 } else {
18323 SOCKBUF_UNLOCK(sb);
18324 if (tp->t_flags & TF_ACKNOW)
18325 KMOD_TCPSTAT_INC(tcps_sndacks);
18326 else if (flags & (TH_SYN | TH_FIN | TH_RST))
18327 KMOD_TCPSTAT_INC(tcps_sndctrl);
18328 else
18329 KMOD_TCPSTAT_INC(tcps_sndwinup);
18330
18331 m = m_gethdr(M_NOWAIT, MT_DATA);
18332 if (m == NULL) {
18333 error = ENOBUFS;
18334 sack_rxmit = 0;
18335 goto out;
18336 }
18337 #ifdef INET6
18338 if (isipv6 && (MHLEN < hdrlen + max_linkhdr) &&
18339 MHLEN >= hdrlen) {
18340 M_ALIGN(m, hdrlen);
18341 } else
18342 #endif
18343 m->m_data += max_linkhdr;
18344 m->m_len = hdrlen;
18345 }
18346 SOCKBUF_UNLOCK_ASSERT(sb);
18347 m->m_pkthdr.rcvif = (struct ifnet *)0;
18348 #ifdef MAC
18349 mac_inpcb_create_mbuf(inp, m);
18350 #endif
18351 if ((ipoptlen == 0) && (rack->r_ctl.fsb.tcp_ip_hdr) && rack->r_fsb_inited) {
18352 #ifdef INET6
18353 if (isipv6)
18354 ip6 = (struct ip6_hdr *)rack->r_ctl.fsb.tcp_ip_hdr;
18355 else
18356 #endif /* INET6 */
18357 #ifdef INET
18358 ip = (struct ip *)rack->r_ctl.fsb.tcp_ip_hdr;
18359 #endif
18360 th = rack->r_ctl.fsb.th;
18361 udp = rack->r_ctl.fsb.udp;
18362 if (udp) {
18363 #ifdef INET6
18364 if (isipv6)
18365 ulen = hdrlen + len - sizeof(struct ip6_hdr);
18366 else
18367 #endif /* INET6 */
18368 ulen = hdrlen + len - sizeof(struct ip);
18369 udp->uh_ulen = htons(ulen);
18370 }
18371 } else {
18372 #ifdef INET6
18373 if (isipv6) {
18374 ip6 = mtod(m, struct ip6_hdr *);
18375 if (tp->t_port) {
18376 udp = (struct udphdr *)((caddr_t)ip6 + sizeof(struct ip6_hdr));
18377 udp->uh_sport = htons(V_tcp_udp_tunneling_port);
18378 udp->uh_dport = tp->t_port;
18379 ulen = hdrlen + len - sizeof(struct ip6_hdr);
18380 udp->uh_ulen = htons(ulen);
18381 th = (struct tcphdr *)(udp + 1);
18382 } else
18383 th = (struct tcphdr *)(ip6 + 1);
18384 tcpip_fillheaders(inp, tp->t_port, ip6, th);
18385 } else
18386 #endif /* INET6 */
18387 {
18388 #ifdef INET
18389 ip = mtod(m, struct ip *);
18390 if (tp->t_port) {
18391 udp = (struct udphdr *)((caddr_t)ip + sizeof(struct ip));
18392 udp->uh_sport = htons(V_tcp_udp_tunneling_port);
18393 udp->uh_dport = tp->t_port;
18394 ulen = hdrlen + len - sizeof(struct ip);
18395 udp->uh_ulen = htons(ulen);
18396 th = (struct tcphdr *)(udp + 1);
18397 } else
18398 th = (struct tcphdr *)(ip + 1);
18399 tcpip_fillheaders(inp, tp->t_port, ip, th);
18400 #endif
18401 }
18402 }
18403 /*
18404 * Fill in fields, remembering maximum advertised window for use in
18405 * delaying messages about window sizes. If resending a FIN, be sure
18406 * not to use a new sequence number.
18407 */
18408 if (flags & TH_FIN && tp->t_flags & TF_SENTFIN &&
18409 tp->snd_nxt == tp->snd_max)
18410 tp->snd_nxt--;
18411 /*
18412 * If we are starting a connection, send ECN setup SYN packet. If we
18413 * are on a retransmit, we may resend those bits a number of times
18414 * as per RFC 3168.
18415 */
18416 if (tp->t_state == TCPS_SYN_SENT && V_tcp_do_ecn) {
18417 flags |= tcp_ecn_output_syn_sent(tp);
18418 }
18419 /* Also handle parallel SYN for ECN */
18420 if (TCPS_HAVERCVDSYN(tp->t_state) &&
18421 (tp->t_flags2 & (TF2_ECN_PERMIT | TF2_ACE_PERMIT))) {
18422 int ect = tcp_ecn_output_established(tp, &flags, len, sack_rxmit);
18423 if ((tp->t_state == TCPS_SYN_RECEIVED) &&
18424 (tp->t_flags2 & TF2_ECN_SND_ECE))
18425 tp->t_flags2 &= ~TF2_ECN_SND_ECE;
18426 #ifdef INET6
18427 if (isipv6) {
18428 ip6->ip6_flow &= ~htonl(IPTOS_ECN_MASK << 20);
18429 ip6->ip6_flow |= htonl(ect << 20);
18430 }
18431 else
18432 #endif
18433 {
18434 #ifdef INET
18435 ip->ip_tos &= ~IPTOS_ECN_MASK;
18436 ip->ip_tos |= ect;
18437 #endif
18438 }
18439 }
18440 /*
18441 * If we are doing retransmissions, then snd_nxt will not reflect
18442 * the first unsent octet. For ACK only packets, we do not want the
18443 * sequence number of the retransmitted packet, we want the sequence
18444 * number of the next unsent octet. So, if there is no data (and no
18445 * SYN or FIN), use snd_max instead of snd_nxt when filling in
18446 * ti_seq. But if we are in persist state, snd_max might reflect
18447 * one byte beyond the right edge of the window, so use snd_nxt in
18448 * that case, since we know we aren't doing a retransmission.
18449 * (retransmit and persist are mutually exclusive...)
18450 */
18451 if (sack_rxmit == 0) {
18452 if (len || (flags & (TH_SYN | TH_FIN))) {
18453 th->th_seq = htonl(tp->snd_nxt);
18454 rack_seq = tp->snd_nxt;
18455 } else {
18456 th->th_seq = htonl(tp->snd_max);
18457 rack_seq = tp->snd_max;
18458 }
18459 } else {
18460 th->th_seq = htonl(rsm->r_start);
18461 rack_seq = rsm->r_start;
18462 }
18463 th->th_ack = htonl(tp->rcv_nxt);
18464 tcp_set_flags(th, flags);
18465 /*
18466 * Calculate receive window. Don't shrink window, but avoid silly
18467 * window syndrome.
18468 * If a RST segment is sent, advertise a window of zero.
18469 */
18470 if (flags & TH_RST) {
18471 recwin = 0;
18472 } else {
18473 if (recwin < (long)(so->so_rcv.sb_hiwat / 4) &&
18474 recwin < (long)segsiz) {
18475 recwin = 0;
18476 }
18477 if (SEQ_GT(tp->rcv_adv, tp->rcv_nxt) &&
18478 recwin < (long)(tp->rcv_adv - tp->rcv_nxt))
18479 recwin = (long)(tp->rcv_adv - tp->rcv_nxt);
18480 }
18481
18482 /*
18483 * According to RFC1323 the window field in a SYN (i.e., a <SYN> or
18484 * <SYN,ACK>) segment itself is never scaled. The <SYN,ACK> case is
18485 * handled in syncache.
18486 */
18487 if (flags & TH_SYN)
18488 th->th_win = htons((u_short)
18489 (min(sbspace(&so->so_rcv), TCP_MAXWIN)));
18490 else {
18491 /* Avoid shrinking window with window scaling. */
18492 recwin = roundup2(recwin, 1 << tp->rcv_scale);
18493 th->th_win = htons((u_short)(recwin >> tp->rcv_scale));
18494 }
18495 /*
18496 * Adjust the RXWIN0SENT flag - indicate that we have advertised a 0
18497 * window. This may cause the remote transmitter to stall. This
18498 * flag tells soreceive() to disable delayed acknowledgements when
18499 * draining the buffer. This can occur if the receiver is
18500 * attempting to read more data than can be buffered prior to
18501 * transmitting on the connection.
18502 */
18503 if (th->th_win == 0) {
18504 tp->t_sndzerowin++;
18505 tp->t_flags |= TF_RXWIN0SENT;
18506 } else
18507 tp->t_flags &= ~TF_RXWIN0SENT;
18508 tp->snd_up = tp->snd_una; /* drag it along, its deprecated */
18509 /* Now are we using fsb?, if so copy the template data to the mbuf */
18510 if ((ipoptlen == 0) && (rack->r_ctl.fsb.tcp_ip_hdr) && rack->r_fsb_inited) {
18511 uint8_t *cpto;
18512
18513 cpto = mtod(m, uint8_t *);
18514 memcpy(cpto, rack->r_ctl.fsb.tcp_ip_hdr, rack->r_ctl.fsb.tcp_ip_hdr_len);
18515 /*
18516 * We have just copied in:
18517 * IP/IP6
18518 * <optional udphdr>
18519 * tcphdr (no options)
18520 *
18521 * We need to grab the correct pointers into the mbuf
18522 * for both the tcp header, and possibly the udp header (if tunneling).
18523 * We do this by using the offset in the copy buffer and adding it
18524 * to the mbuf base pointer (cpto).
18525 */
18526 #ifdef INET6
18527 if (isipv6)
18528 ip6 = mtod(m, struct ip6_hdr *);
18529 else
18530 #endif /* INET6 */
18531 #ifdef INET
18532 ip = mtod(m, struct ip *);
18533 #endif
18534 th = (struct tcphdr *)(cpto + ((uint8_t *)rack->r_ctl.fsb.th - rack->r_ctl.fsb.tcp_ip_hdr));
18535 /* If we have a udp header lets set it into the mbuf as well */
18536 if (udp)
18537 udp = (struct udphdr *)(cpto + ((uint8_t *)rack->r_ctl.fsb.udp - rack->r_ctl.fsb.tcp_ip_hdr));
18538 }
18539 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
18540 if (to.to_flags & TOF_SIGNATURE) {
18541 /*
18542 * Calculate MD5 signature and put it into the place
18543 * determined before.
18544 * NOTE: since TCP options buffer doesn't point into
18545 * mbuf's data, calculate offset and use it.
18546 */
18547 if (!TCPMD5_ENABLED() || TCPMD5_OUTPUT(m, th,
18548 (u_char *)(th + 1) + (to.to_signature - opt)) != 0) {
18549 /*
18550 * Do not send segment if the calculation of MD5
18551 * digest has failed.
18552 */
18553 goto out;
18554 }
18555 }
18556 #endif
18557 if (optlen) {
18558 bcopy(opt, th + 1, optlen);
18559 th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
18560 }
18561 /*
18562 * Put TCP length in extended header, and then checksum extended
18563 * header and data.
18564 */
18565 m->m_pkthdr.len = hdrlen + len; /* in6_cksum() need this */
18566 #ifdef INET6
18567 if (isipv6) {
18568 /*
18569 * ip6_plen is not need to be filled now, and will be filled
18570 * in ip6_output.
18571 */
18572 if (tp->t_port) {
18573 m->m_pkthdr.csum_flags = CSUM_UDP_IPV6;
18574 m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum);
18575 udp->uh_sum = in6_cksum_pseudo(ip6, ulen, IPPROTO_UDP, 0);
18576 th->th_sum = htons(0);
18577 UDPSTAT_INC(udps_opackets);
18578 } else {
18579 m->m_pkthdr.csum_flags = CSUM_TCP_IPV6;
18580 m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
18581 th->th_sum = in6_cksum_pseudo(ip6,
18582 sizeof(struct tcphdr) + optlen + len, IPPROTO_TCP,
18583 0);
18584 }
18585 }
18586 #endif
18587 #if defined(INET6) && defined(INET)
18588 else
18589 #endif
18590 #ifdef INET
18591 {
18592 if (tp->t_port) {
18593 m->m_pkthdr.csum_flags = CSUM_UDP;
18594 m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum);
18595 udp->uh_sum = in_pseudo(ip->ip_src.s_addr,
18596 ip->ip_dst.s_addr, htons(ulen + IPPROTO_UDP));
18597 th->th_sum = htons(0);
18598 UDPSTAT_INC(udps_opackets);
18599 } else {
18600 m->m_pkthdr.csum_flags = CSUM_TCP;
18601 m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
18602 th->th_sum = in_pseudo(ip->ip_src.s_addr,
18603 ip->ip_dst.s_addr, htons(sizeof(struct tcphdr) +
18604 IPPROTO_TCP + len + optlen));
18605 }
18606 /* IP version must be set here for ipv4/ipv6 checking later */
18607 KASSERT(ip->ip_v == IPVERSION,
18608 ("%s: IP version incorrect: %d", __func__, ip->ip_v));
18609 }
18610 #endif
18611 /*
18612 * Enable TSO and specify the size of the segments. The TCP pseudo
18613 * header checksum is always provided. XXX: Fixme: This is currently
18614 * not the case for IPv6.
18615 */
18616 if (tso) {
18617 KASSERT(len > tp->t_maxseg - optlen,
18618 ("%s: len <= tso_segsz", __func__));
18619 m->m_pkthdr.csum_flags |= CSUM_TSO;
18620 m->m_pkthdr.tso_segsz = tp->t_maxseg - optlen;
18621 }
18622 KASSERT(len + hdrlen == m_length(m, NULL),
18623 ("%s: mbuf chain different than expected: %d + %u != %u",
18624 __func__, len, hdrlen, m_length(m, NULL)));
18625
18626 #ifdef TCP_HHOOK
18627 /* Run HHOOK_TCP_ESTABLISHED_OUT helper hooks. */
18628 hhook_run_tcp_est_out(tp, th, &to, len, tso);
18629 #endif
18630 /* We're getting ready to send; log now. */
18631 if (tp->t_logstate != TCP_LOG_STATE_OFF) {
18632 union tcp_log_stackspecific log;
18633
18634 memset(&log.u_bbr, 0, sizeof(log.u_bbr));
18635 log.u_bbr.inhpts = tcp_in_hpts(rack->rc_inp);
18636 if (rack->rack_no_prr)
18637 log.u_bbr.flex1 = 0;
18638 else
18639 log.u_bbr.flex1 = rack->r_ctl.rc_prr_sndcnt;
18640 log.u_bbr.flex2 = rack->r_ctl.rc_pace_min_segs;
18641 log.u_bbr.flex3 = rack->r_ctl.rc_pace_max_segs;
18642 log.u_bbr.flex4 = orig_len;
18643 /* Save off the early/late values */
18644 log.u_bbr.flex6 = rack->r_ctl.rc_agg_early;
18645 log.u_bbr.applimited = rack->r_ctl.rc_agg_delayed;
18646 log.u_bbr.bw_inuse = rack_get_bw(rack);
18647 log.u_bbr.flex8 = 0;
18648 if (rsm) {
18649 if (rsm->r_flags & RACK_RWND_COLLAPSED) {
18650 rack_log_collapse(rack, rsm->r_start, rsm->r_end, 0, __LINE__, 5, rsm->r_flags, rsm);
18651 counter_u64_add(rack_collapsed_win_rxt, 1);
18652 counter_u64_add(rack_collapsed_win_rxt_bytes, (rsm->r_end - rsm->r_start));
18653 }
18654 if (doing_tlp)
18655 log.u_bbr.flex8 = 2;
18656 else
18657 log.u_bbr.flex8 = 1;
18658 } else {
18659 if (doing_tlp)
18660 log.u_bbr.flex8 = 3;
18661 else
18662 log.u_bbr.flex8 = 0;
18663 }
18664 log.u_bbr.pacing_gain = rack_get_output_gain(rack, rsm);
18665 log.u_bbr.flex7 = mark;
18666 log.u_bbr.flex7 <<= 8;
18667 log.u_bbr.flex7 |= pass;
18668 log.u_bbr.pkts_out = tp->t_maxseg;
18669 log.u_bbr.timeStamp = cts;
18670 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
18671 log.u_bbr.lt_epoch = cwnd_to_use;
18672 log.u_bbr.delivered = sendalot;
18673 lgb = tcp_log_event_(tp, th, &so->so_rcv, &so->so_snd, TCP_LOG_OUT, ERRNO_UNK,
18674 len, &log, false, NULL, NULL, 0, &tv);
18675 } else
18676 lgb = NULL;
18677
18678 /*
18679 * Fill in IP length and desired time to live and send to IP level.
18680 * There should be a better way to handle ttl and tos; we could keep
18681 * them in the template, but need a way to checksum without them.
18682 */
18683 /*
18684 * m->m_pkthdr.len should have been set before cksum calcuration,
18685 * because in6_cksum() need it.
18686 */
18687 #ifdef INET6
18688 if (isipv6) {
18689 /*
18690 * we separately set hoplimit for every segment, since the
18691 * user might want to change the value via setsockopt. Also,
18692 * desired default hop limit might be changed via Neighbor
18693 * Discovery.
18694 */
18695 rack->r_ctl.fsb.hoplimit = ip6->ip6_hlim = in6_selecthlim(inp, NULL);
18696
18697 /*
18698 * Set the packet size here for the benefit of DTrace
18699 * probes. ip6_output() will set it properly; it's supposed
18700 * to include the option header lengths as well.
18701 */
18702 ip6->ip6_plen = htons(m->m_pkthdr.len - sizeof(*ip6));
18703
18704 if (V_path_mtu_discovery && tp->t_maxseg > V_tcp_minmss)
18705 tp->t_flags2 |= TF2_PLPMTU_PMTUD;
18706 else
18707 tp->t_flags2 &= ~TF2_PLPMTU_PMTUD;
18708
18709 if (tp->t_state == TCPS_SYN_SENT)
18710 TCP_PROBE5(connect__request, NULL, tp, ip6, tp, th);
18711
18712 TCP_PROBE5(send, NULL, tp, ip6, tp, th);
18713 /* TODO: IPv6 IP6TOS_ECT bit on */
18714 error = ip6_output(m,
18715 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
18716 inp->in6p_outputopts,
18717 #else
18718 NULL,
18719 #endif
18720 &inp->inp_route6,
18721 ((rsm || sack_rxmit) ? IP_NO_SND_TAG_RL : 0),
18722 NULL, NULL, inp);
18723
18724 if (error == EMSGSIZE && inp->inp_route6.ro_nh != NULL)
18725 mtu = inp->inp_route6.ro_nh->nh_mtu;
18726 }
18727 #endif /* INET6 */
18728 #if defined(INET) && defined(INET6)
18729 else
18730 #endif
18731 #ifdef INET
18732 {
18733 ip->ip_len = htons(m->m_pkthdr.len);
18734 #ifdef INET6
18735 if (inp->inp_vflag & INP_IPV6PROTO)
18736 ip->ip_ttl = in6_selecthlim(inp, NULL);
18737 #endif /* INET6 */
18738 rack->r_ctl.fsb.hoplimit = ip->ip_ttl;
18739 /*
18740 * If we do path MTU discovery, then we set DF on every
18741 * packet. This might not be the best thing to do according
18742 * to RFC3390 Section 2. However the tcp hostcache migitates
18743 * the problem so it affects only the first tcp connection
18744 * with a host.
18745 *
18746 * NB: Don't set DF on small MTU/MSS to have a safe
18747 * fallback.
18748 */
18749 if (V_path_mtu_discovery && tp->t_maxseg > V_tcp_minmss) {
18750 tp->t_flags2 |= TF2_PLPMTU_PMTUD;
18751 if (tp->t_port == 0 || len < V_tcp_minmss) {
18752 ip->ip_off |= htons(IP_DF);
18753 }
18754 } else {
18755 tp->t_flags2 &= ~TF2_PLPMTU_PMTUD;
18756 }
18757
18758 if (tp->t_state == TCPS_SYN_SENT)
18759 TCP_PROBE5(connect__request, NULL, tp, ip, tp, th);
18760
18761 TCP_PROBE5(send, NULL, tp, ip, tp, th);
18762
18763 error = ip_output(m,
18764 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
18765 inp->inp_options,
18766 #else
18767 NULL,
18768 #endif
18769 &inp->inp_route,
18770 ((rsm || sack_rxmit) ? IP_NO_SND_TAG_RL : 0), 0,
18771 inp);
18772 if (error == EMSGSIZE && inp->inp_route.ro_nh != NULL)
18773 mtu = inp->inp_route.ro_nh->nh_mtu;
18774 }
18775 #endif /* INET */
18776
18777 out:
18778 if (lgb) {
18779 lgb->tlb_errno = error;
18780 lgb = NULL;
18781 }
18782 /*
18783 * In transmit state, time the transmission and arrange for the
18784 * retransmit. In persist state, just set snd_max.
18785 */
18786 if (error == 0) {
18787 tcp_account_for_send(tp, len, (rsm != NULL), doing_tlp, hw_tls);
18788 if (rsm && doing_tlp) {
18789 rack->rc_last_sent_tlp_past_cumack = 0;
18790 rack->rc_last_sent_tlp_seq_valid = 1;
18791 rack->r_ctl.last_sent_tlp_seq = rsm->r_start;
18792 rack->r_ctl.last_sent_tlp_len = rsm->r_end - rsm->r_start;
18793 }
18794 rack->forced_ack = 0; /* If we send something zap the FA flag */
18795 if (rsm && (doing_tlp == 0)) {
18796 /* Set we retransmitted */
18797 rack->rc_gp_saw_rec = 1;
18798 } else {
18799 if (cwnd_to_use > tp->snd_ssthresh) {
18800 /* Set we sent in CA */
18801 rack->rc_gp_saw_ca = 1;
18802 } else {
18803 /* Set we sent in SS */
18804 rack->rc_gp_saw_ss = 1;
18805 }
18806 }
18807 if (TCPS_HAVEESTABLISHED(tp->t_state) &&
18808 (tp->t_flags & TF_SACK_PERMIT) &&
18809 tp->rcv_numsacks > 0)
18810 tcp_clean_dsack_blocks(tp);
18811 tot_len_this_send += len;
18812 if (len == 0)
18813 counter_u64_add(rack_out_size[TCP_MSS_ACCT_SNDACK], 1);
18814 else if (len == 1) {
18815 counter_u64_add(rack_out_size[TCP_MSS_ACCT_PERSIST], 1);
18816 } else if (len > 1) {
18817 int idx;
18818
18819 idx = (len / segsiz) + 3;
18820 if (idx >= TCP_MSS_ACCT_ATIMER)
18821 counter_u64_add(rack_out_size[(TCP_MSS_ACCT_ATIMER-1)], 1);
18822 else
18823 counter_u64_add(rack_out_size[idx], 1);
18824 }
18825 }
18826 if ((rack->rack_no_prr == 0) &&
18827 sub_from_prr &&
18828 (error == 0)) {
18829 if (rack->r_ctl.rc_prr_sndcnt >= len)
18830 rack->r_ctl.rc_prr_sndcnt -= len;
18831 else
18832 rack->r_ctl.rc_prr_sndcnt = 0;
18833 }
18834 sub_from_prr = 0;
18835 if (doing_tlp) {
18836 /* Make sure the TLP is added */
18837 add_flag |= RACK_TLP;
18838 } else if (rsm) {
18839 /* If its a resend without TLP then it must not have the flag */
18840 rsm->r_flags &= ~RACK_TLP;
18841 }
18842 rack_log_output(tp, &to, len, rack_seq, (uint8_t) flags, error,
18843 rack_to_usec_ts(&tv),
18844 rsm, add_flag, s_mb, s_moff, hw_tls);
18845
18846
18847 if ((error == 0) &&
18848 (len > 0) &&
18849 (tp->snd_una == tp->snd_max))
18850 rack->r_ctl.rc_tlp_rxt_last_time = cts;
18851 {
18852 tcp_seq startseq = tp->snd_nxt;
18853
18854 /* Track our lost count */
18855 if (rsm && (doing_tlp == 0))
18856 rack->r_ctl.rc_loss_count += rsm->r_end - rsm->r_start;
18857 /*
18858 * Advance snd_nxt over sequence space of this segment.
18859 */
18860 if (error)
18861 /* We don't log or do anything with errors */
18862 goto nomore;
18863 if (doing_tlp == 0) {
18864 if (rsm == NULL) {
18865 /*
18866 * Not a retransmission of some
18867 * sort, new data is going out so
18868 * clear our TLP count and flag.
18869 */
18870 rack->rc_tlp_in_progress = 0;
18871 rack->r_ctl.rc_tlp_cnt_out = 0;
18872 }
18873 } else {
18874 /*
18875 * We have just sent a TLP, mark that it is true
18876 * and make sure our in progress is set so we
18877 * continue to check the count.
18878 */
18879 rack->rc_tlp_in_progress = 1;
18880 rack->r_ctl.rc_tlp_cnt_out++;
18881 }
18882 if (flags & (TH_SYN | TH_FIN)) {
18883 if (flags & TH_SYN)
18884 tp->snd_nxt++;
18885 if (flags & TH_FIN) {
18886 tp->snd_nxt++;
18887 tp->t_flags |= TF_SENTFIN;
18888 }
18889 }
18890 /* In the ENOBUFS case we do *not* update snd_max */
18891 if (sack_rxmit)
18892 goto nomore;
18893
18894 tp->snd_nxt += len;
18895 if (SEQ_GT(tp->snd_nxt, tp->snd_max)) {
18896 if (tp->snd_una == tp->snd_max) {
18897 /*
18898 * Update the time we just added data since
18899 * none was outstanding.
18900 */
18901 rack_log_progress_event(rack, tp, ticks, PROGRESS_START, __LINE__);
18902 tp->t_acktime = ticks;
18903 }
18904 tp->snd_max = tp->snd_nxt;
18905 /*
18906 * Time this transmission if not a retransmission and
18907 * not currently timing anything.
18908 * This is only relevant in case of switching back to
18909 * the base stack.
18910 */
18911 if (tp->t_rtttime == 0) {
18912 tp->t_rtttime = ticks;
18913 tp->t_rtseq = startseq;
18914 KMOD_TCPSTAT_INC(tcps_segstimed);
18915 }
18916 if (len &&
18917 ((tp->t_flags & TF_GPUTINPROG) == 0))
18918 rack_start_gp_measurement(tp, rack, startseq, sb_offset);
18919 }
18920 /*
18921 * If we are doing FO we need to update the mbuf position and subtract
18922 * this happens when the peer sends us duplicate information and
18923 * we thus want to send a DSACK.
18924 *
18925 * XXXRRS: This brings to mind a ?, when we send a DSACK block is TSO
18926 * turned off? If not then we are going to echo multiple DSACK blocks
18927 * out (with the TSO), which we should not be doing.
18928 */
18929 if (rack->r_fast_output && len) {
18930 if (rack->r_ctl.fsb.left_to_send > len)
18931 rack->r_ctl.fsb.left_to_send -= len;
18932 else
18933 rack->r_ctl.fsb.left_to_send = 0;
18934 if (rack->r_ctl.fsb.left_to_send < segsiz)
18935 rack->r_fast_output = 0;
18936 if (rack->r_fast_output) {
18937 rack->r_ctl.fsb.m = sbsndmbuf(sb, (tp->snd_max - tp->snd_una), &rack->r_ctl.fsb.off);
18938 rack->r_ctl.fsb.o_m_len = rack->r_ctl.fsb.m->m_len;
18939 }
18940 }
18941 }
18942 nomore:
18943 if (error) {
18944 rack->r_ctl.rc_agg_delayed = 0;
18945 rack->r_early = 0;
18946 rack->r_late = 0;
18947 rack->r_ctl.rc_agg_early = 0;
18948 SOCKBUF_UNLOCK_ASSERT(sb); /* Check gotos. */
18949 /*
18950 * Failures do not advance the seq counter above. For the
18951 * case of ENOBUFS we will fall out and retry in 1ms with
18952 * the hpts. Everything else will just have to retransmit
18953 * with the timer.
18954 *
18955 * In any case, we do not want to loop around for another
18956 * send without a good reason.
18957 */
18958 sendalot = 0;
18959 switch (error) {
18960 case EPERM:
18961 tp->t_softerror = error;
18962 #ifdef TCP_ACCOUNTING
18963 crtsc = get_cyclecount();
18964 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
18965 tp->tcp_cnt_counters[SND_OUT_FAIL]++;
18966 }
18967 counter_u64_add(tcp_cnt_counters[SND_OUT_FAIL], 1);
18968 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
18969 tp->tcp_proc_time[SND_OUT_FAIL] += (crtsc - ts_val);
18970 }
18971 counter_u64_add(tcp_proc_time[SND_OUT_FAIL], (crtsc - ts_val));
18972 sched_unpin();
18973 #endif
18974 return (error);
18975 case ENOBUFS:
18976 /*
18977 * Pace us right away to retry in a some
18978 * time
18979 */
18980 if (rack->r_ctl.crte != NULL) {
18981 rack_trace_point(rack, RACK_TP_HWENOBUF);
18982 } else
18983 rack_trace_point(rack, RACK_TP_ENOBUF);
18984 slot = ((1 + rack->rc_enobuf) * HPTS_USEC_IN_MSEC);
18985 if (rack->rc_enobuf < 0x7f)
18986 rack->rc_enobuf++;
18987 if (slot < (10 * HPTS_USEC_IN_MSEC))
18988 slot = 10 * HPTS_USEC_IN_MSEC;
18989 if (rack->r_ctl.crte != NULL) {
18990 counter_u64_add(rack_saw_enobuf_hw, 1);
18991 tcp_rl_log_enobuf(rack->r_ctl.crte);
18992 }
18993 counter_u64_add(rack_saw_enobuf, 1);
18994 goto enobufs;
18995 case EMSGSIZE:
18996 /*
18997 * For some reason the interface we used initially
18998 * to send segments changed to another or lowered
18999 * its MTU. If TSO was active we either got an
19000 * interface without TSO capabilits or TSO was
19001 * turned off. If we obtained mtu from ip_output()
19002 * then update it and try again.
19003 */
19004 if (tso)
19005 tp->t_flags &= ~TF_TSO;
19006 if (mtu != 0) {
19007 tcp_mss_update(tp, -1, mtu, NULL, NULL);
19008 goto again;
19009 }
19010 slot = 10 * HPTS_USEC_IN_MSEC;
19011 rack_start_hpts_timer(rack, tp, cts, slot, 0, 0);
19012 #ifdef TCP_ACCOUNTING
19013 crtsc = get_cyclecount();
19014 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
19015 tp->tcp_cnt_counters[SND_OUT_FAIL]++;
19016 }
19017 counter_u64_add(tcp_cnt_counters[SND_OUT_FAIL], 1);
19018 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
19019 tp->tcp_proc_time[SND_OUT_FAIL] += (crtsc - ts_val);
19020 }
19021 counter_u64_add(tcp_proc_time[SND_OUT_FAIL], (crtsc - ts_val));
19022 sched_unpin();
19023 #endif
19024 return (error);
19025 case ENETUNREACH:
19026 counter_u64_add(rack_saw_enetunreach, 1);
19027 case EHOSTDOWN:
19028 case EHOSTUNREACH:
19029 case ENETDOWN:
19030 if (TCPS_HAVERCVDSYN(tp->t_state)) {
19031 tp->t_softerror = error;
19032 }
19033 /* FALLTHROUGH */
19034 default:
19035 slot = 10 * HPTS_USEC_IN_MSEC;
19036 rack_start_hpts_timer(rack, tp, cts, slot, 0, 0);
19037 #ifdef TCP_ACCOUNTING
19038 crtsc = get_cyclecount();
19039 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
19040 tp->tcp_cnt_counters[SND_OUT_FAIL]++;
19041 }
19042 counter_u64_add(tcp_cnt_counters[SND_OUT_FAIL], 1);
19043 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
19044 tp->tcp_proc_time[SND_OUT_FAIL] += (crtsc - ts_val);
19045 }
19046 counter_u64_add(tcp_proc_time[SND_OUT_FAIL], (crtsc - ts_val));
19047 sched_unpin();
19048 #endif
19049 return (error);
19050 }
19051 } else {
19052 rack->rc_enobuf = 0;
19053 if (IN_FASTRECOVERY(tp->t_flags) && rsm)
19054 rack->r_ctl.retran_during_recovery += len;
19055 }
19056 KMOD_TCPSTAT_INC(tcps_sndtotal);
19057
19058 /*
19059 * Data sent (as far as we can tell). If this advertises a larger
19060 * window than any other segment, then remember the size of the
19061 * advertised window. Any pending ACK has now been sent.
19062 */
19063 if (recwin > 0 && SEQ_GT(tp->rcv_nxt + recwin, tp->rcv_adv))
19064 tp->rcv_adv = tp->rcv_nxt + recwin;
19065
19066 tp->last_ack_sent = tp->rcv_nxt;
19067 tp->t_flags &= ~(TF_ACKNOW | TF_DELACK);
19068 enobufs:
19069 if (sendalot) {
19070 /* Do we need to turn off sendalot? */
19071 if (rack->r_ctl.rc_pace_max_segs &&
19072 (tot_len_this_send >= rack->r_ctl.rc_pace_max_segs)) {
19073 /* We hit our max. */
19074 sendalot = 0;
19075 } else if ((rack->rc_user_set_max_segs) &&
19076 (tot_len_this_send >= (rack->rc_user_set_max_segs * segsiz))) {
19077 /* We hit the user defined max */
19078 sendalot = 0;
19079 }
19080 }
19081 if ((error == 0) && (flags & TH_FIN))
19082 tcp_log_end_status(tp, TCP_EI_STATUS_SERVER_FIN);
19083 if (flags & TH_RST) {
19084 /*
19085 * We don't send again after sending a RST.
19086 */
19087 slot = 0;
19088 sendalot = 0;
19089 if (error == 0)
19090 tcp_log_end_status(tp, TCP_EI_STATUS_SERVER_RST);
19091 } else if ((slot == 0) && (sendalot == 0) && tot_len_this_send) {
19092 /*
19093 * Get our pacing rate, if an error
19094 * occurred in sending (ENOBUF) we would
19095 * hit the else if with slot preset. Other
19096 * errors return.
19097 */
19098 slot = rack_get_pacing_delay(rack, tp, tot_len_this_send, rsm, segsiz);
19099 }
19100 if (rsm &&
19101 (rsm->r_flags & RACK_HAS_SYN) == 0 &&
19102 rack->use_rack_rr) {
19103 /* Its a retransmit and we use the rack cheat? */
19104 if ((slot == 0) ||
19105 (rack->rc_always_pace == 0) ||
19106 (rack->r_rr_config == 1)) {
19107 /*
19108 * We have no pacing set or we
19109 * are using old-style rack or
19110 * we are overridden to use the old 1ms pacing.
19111 */
19112 slot = rack->r_ctl.rc_min_to;
19113 }
19114 }
19115 /* We have sent clear the flag */
19116 rack->r_ent_rec_ns = 0;
19117 if (rack->r_must_retran) {
19118 if (rsm) {
19119 rack->r_ctl.rc_out_at_rto -= (rsm->r_end - rsm->r_start);
19120 if (SEQ_GEQ(rsm->r_end, rack->r_ctl.rc_snd_max_at_rto)) {
19121 /*
19122 * We have retransmitted all.
19123 */
19124 rack->r_must_retran = 0;
19125 rack->r_ctl.rc_out_at_rto = 0;
19126 }
19127 } else if (SEQ_GEQ(tp->snd_max, rack->r_ctl.rc_snd_max_at_rto)) {
19128 /*
19129 * Sending new data will also kill
19130 * the loop.
19131 */
19132 rack->r_must_retran = 0;
19133 rack->r_ctl.rc_out_at_rto = 0;
19134 }
19135 }
19136 rack->r_ctl.fsb.recwin = recwin;
19137 if ((tp->t_flags & (TF_WASCRECOVERY|TF_WASFRECOVERY)) &&
19138 SEQ_GT(tp->snd_max, rack->r_ctl.rc_snd_max_at_rto)) {
19139 /*
19140 * We hit an RTO and now have past snd_max at the RTO
19141 * clear all the WAS flags.
19142 */
19143 tp->t_flags &= ~(TF_WASCRECOVERY|TF_WASFRECOVERY);
19144 }
19145 if (slot) {
19146 /* set the rack tcb into the slot N */
19147 if ((error == 0) &&
19148 rack_use_rfo &&
19149 ((flags & (TH_SYN|TH_FIN)) == 0) &&
19150 (rsm == NULL) &&
19151 (tp->snd_nxt == tp->snd_max) &&
19152 (ipoptlen == 0) &&
19153 (tp->rcv_numsacks == 0) &&
19154 rack->r_fsb_inited &&
19155 TCPS_HAVEESTABLISHED(tp->t_state) &&
19156 (rack->r_must_retran == 0) &&
19157 ((tp->t_flags & TF_NEEDFIN) == 0) &&
19158 (len > 0) && (orig_len > 0) &&
19159 (orig_len > len) &&
19160 ((orig_len - len) >= segsiz) &&
19161 ((optlen == 0) ||
19162 ((optlen == TCPOLEN_TSTAMP_APPA) && (to.to_flags & TOF_TS)))) {
19163 /* We can send at least one more MSS using our fsb */
19164
19165 rack->r_fast_output = 1;
19166 rack->r_ctl.fsb.m = sbsndmbuf(sb, (tp->snd_max - tp->snd_una), &rack->r_ctl.fsb.off);
19167 rack->r_ctl.fsb.o_m_len = rack->r_ctl.fsb.m->m_len;
19168 rack->r_ctl.fsb.tcp_flags = flags;
19169 rack->r_ctl.fsb.left_to_send = orig_len - len;
19170 if (hw_tls)
19171 rack->r_ctl.fsb.hw_tls = 1;
19172 else
19173 rack->r_ctl.fsb.hw_tls = 0;
19174 KASSERT((rack->r_ctl.fsb.left_to_send <= (sbavail(sb) - (tp->snd_max - tp->snd_una))),
19175 ("rack:%p left_to_send:%u sbavail:%u out:%u",
19176 rack, rack->r_ctl.fsb.left_to_send, sbavail(sb),
19177 (tp->snd_max - tp->snd_una)));
19178 if (rack->r_ctl.fsb.left_to_send < segsiz)
19179 rack->r_fast_output = 0;
19180 else {
19181 if (rack->r_ctl.fsb.left_to_send == (sbavail(sb) - (tp->snd_max - tp->snd_una)))
19182 rack->r_ctl.fsb.rfo_apply_push = 1;
19183 else
19184 rack->r_ctl.fsb.rfo_apply_push = 0;
19185 }
19186 } else
19187 rack->r_fast_output = 0;
19188 rack_log_fsb(rack, tp, so, flags,
19189 ipoptlen, orig_len, len, error,
19190 (rsm == NULL), optlen, __LINE__, 2);
19191 } else if (sendalot) {
19192 int ret;
19193
19194 sack_rxmit = 0;
19195 if ((error == 0) &&
19196 rack_use_rfo &&
19197 ((flags & (TH_SYN|TH_FIN)) == 0) &&
19198 (rsm == NULL) &&
19199 (ipoptlen == 0) &&
19200 (tp->rcv_numsacks == 0) &&
19201 (tp->snd_nxt == tp->snd_max) &&
19202 (rack->r_must_retran == 0) &&
19203 rack->r_fsb_inited &&
19204 TCPS_HAVEESTABLISHED(tp->t_state) &&
19205 ((tp->t_flags & TF_NEEDFIN) == 0) &&
19206 (len > 0) && (orig_len > 0) &&
19207 (orig_len > len) &&
19208 ((orig_len - len) >= segsiz) &&
19209 ((optlen == 0) ||
19210 ((optlen == TCPOLEN_TSTAMP_APPA) && (to.to_flags & TOF_TS)))) {
19211 /* we can use fast_output for more */
19212
19213 rack->r_fast_output = 1;
19214 rack->r_ctl.fsb.m = sbsndmbuf(sb, (tp->snd_max - tp->snd_una), &rack->r_ctl.fsb.off);
19215 rack->r_ctl.fsb.o_m_len = rack->r_ctl.fsb.m->m_len;
19216 rack->r_ctl.fsb.tcp_flags = flags;
19217 rack->r_ctl.fsb.left_to_send = orig_len - len;
19218 if (hw_tls)
19219 rack->r_ctl.fsb.hw_tls = 1;
19220 else
19221 rack->r_ctl.fsb.hw_tls = 0;
19222 KASSERT((rack->r_ctl.fsb.left_to_send <= (sbavail(sb) - (tp->snd_max - tp->snd_una))),
19223 ("rack:%p left_to_send:%u sbavail:%u out:%u",
19224 rack, rack->r_ctl.fsb.left_to_send, sbavail(sb),
19225 (tp->snd_max - tp->snd_una)));
19226 if (rack->r_ctl.fsb.left_to_send < segsiz) {
19227 rack->r_fast_output = 0;
19228 }
19229 if (rack->r_fast_output) {
19230 if (rack->r_ctl.fsb.left_to_send == (sbavail(sb) - (tp->snd_max - tp->snd_una)))
19231 rack->r_ctl.fsb.rfo_apply_push = 1;
19232 else
19233 rack->r_ctl.fsb.rfo_apply_push = 0;
19234 rack_log_fsb(rack, tp, so, flags,
19235 ipoptlen, orig_len, len, error,
19236 (rsm == NULL), optlen, __LINE__, 3);
19237 error = 0;
19238 ret = rack_fast_output(tp, rack, ts_val, cts, ms_cts, &tv, tot_len_this_send, &error);
19239 if (ret >= 0)
19240 return (ret);
19241 else if (error)
19242 goto nomore;
19243
19244 }
19245 }
19246 goto again;
19247 }
19248 /* Assure when we leave that snd_nxt will point to top */
19249 if (SEQ_GT(tp->snd_max, tp->snd_nxt))
19250 tp->snd_nxt = tp->snd_max;
19251 rack_start_hpts_timer(rack, tp, cts, slot, tot_len_this_send, 0);
19252 #ifdef TCP_ACCOUNTING
19253 crtsc = get_cyclecount() - ts_val;
19254 if (tot_len_this_send) {
19255 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
19256 tp->tcp_cnt_counters[SND_OUT_DATA]++;
19257 }
19258 counter_u64_add(tcp_cnt_counters[SND_OUT_DATA], 1);
19259 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
19260 tp->tcp_proc_time[SND_OUT_DATA] += crtsc;
19261 }
19262 counter_u64_add(tcp_proc_time[SND_OUT_DATA], crtsc);
19263 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
19264 tp->tcp_cnt_counters[CNT_OF_MSS_OUT] += ((tot_len_this_send + segsiz - 1) /segsiz);
19265 }
19266 counter_u64_add(tcp_cnt_counters[CNT_OF_MSS_OUT], ((tot_len_this_send + segsiz - 1) /segsiz));
19267 } else {
19268 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
19269 tp->tcp_cnt_counters[SND_OUT_ACK]++;
19270 }
19271 counter_u64_add(tcp_cnt_counters[SND_OUT_ACK], 1);
19272 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
19273 tp->tcp_proc_time[SND_OUT_ACK] += crtsc;
19274 }
19275 counter_u64_add(tcp_proc_time[SND_OUT_ACK], crtsc);
19276 }
19277 sched_unpin();
19278 #endif
19279 if (error == ENOBUFS)
19280 error = 0;
19281 return (error);
19282 }
19283
19284 static void
19285 rack_update_seg(struct tcp_rack *rack)
19286 {
19287 uint32_t orig_val;
19288
19289 orig_val = rack->r_ctl.rc_pace_max_segs;
19290 rack_set_pace_segments(rack->rc_tp, rack, __LINE__, NULL);
19291 if (orig_val != rack->r_ctl.rc_pace_max_segs)
19292 rack_log_pacing_delay_calc(rack, 0, 0, orig_val, 0, 0, 15, __LINE__, NULL, 0);
19293 }
19294
19295 static void
19296 rack_mtu_change(struct tcpcb *tp)
19297 {
19298 /*
19299 * The MSS may have changed
19300 */
19301 struct tcp_rack *rack;
19302 struct rack_sendmap *rsm;
19303
19304 rack = (struct tcp_rack *)tp->t_fb_ptr;
19305 if (rack->r_ctl.rc_pace_min_segs != ctf_fixed_maxseg(tp)) {
19306 /*
19307 * The MTU has changed we need to resend everything
19308 * since all we have sent is lost. We first fix
19309 * up the mtu though.
19310 */
19311 rack_set_pace_segments(tp, rack, __LINE__, NULL);
19312 /* We treat this like a full retransmit timeout without the cwnd adjustment */
19313 rack_remxt_tmr(tp);
19314 rack->r_fast_output = 0;
19315 rack->r_ctl.rc_out_at_rto = ctf_flight_size(tp,
19316 rack->r_ctl.rc_sacked);
19317 rack->r_ctl.rc_snd_max_at_rto = tp->snd_max;
19318 rack->r_must_retran = 1;
19319 /* Mark all inflight to needing to be rxt'd */
19320 TAILQ_FOREACH(rsm, &rack->r_ctl.rc_tmap, r_tnext) {
19321 rsm->r_flags |= RACK_MUST_RXT;
19322 }
19323 }
19324 sack_filter_clear(&rack->r_ctl.rack_sf, tp->snd_una);
19325 /* We don't use snd_nxt to retransmit */
19326 tp->snd_nxt = tp->snd_max;
19327 }
19328
19329 static int
19330 rack_set_profile(struct tcp_rack *rack, int prof)
19331 {
19332 int err = EINVAL;
19333 if (prof == 1) {
19334 /* pace_always=1 */
19335 if (rack->rc_always_pace == 0) {
19336 if (tcp_can_enable_pacing() == 0)
19337 return (EBUSY);
19338 }
19339 rack->rc_always_pace = 1;
19340 if (rack->use_fixed_rate || rack->gp_ready)
19341 rack_set_cc_pacing(rack);
19342 rack->rc_inp->inp_flags2 |= INP_SUPPORTS_MBUFQ;
19343 rack->rack_attempt_hdwr_pace = 0;
19344 /* cmpack=1 */
19345 if (rack_use_cmp_acks)
19346 rack->r_use_cmp_ack = 1;
19347 if (TCPS_HAVEESTABLISHED(rack->rc_tp->t_state) &&
19348 rack->r_use_cmp_ack)
19349 rack->rc_inp->inp_flags2 |= INP_MBUF_ACKCMP;
19350 /* scwnd=1 */
19351 rack->rack_enable_scwnd = 1;
19352 /* dynamic=100 */
19353 rack->rc_gp_dyn_mul = 1;
19354 /* gp_inc_ca */
19355 rack->r_ctl.rack_per_of_gp_ca = 100;
19356 /* rrr_conf=3 */
19357 rack->r_rr_config = 3;
19358 /* npush=2 */
19359 rack->r_ctl.rc_no_push_at_mrtt = 2;
19360 /* fillcw=1 */
19361 rack->rc_pace_to_cwnd = 1;
19362 rack->rc_pace_fill_if_rttin_range = 0;
19363 rack->rtt_limit_mul = 0;
19364 /* noprr=1 */
19365 rack->rack_no_prr = 1;
19366 /* lscwnd=1 */
19367 rack->r_limit_scw = 1;
19368 /* gp_inc_rec */
19369 rack->r_ctl.rack_per_of_gp_rec = 90;
19370 err = 0;
19371
19372 } else if (prof == 3) {
19373 /* Same as profile one execept fill_cw becomes 2 (less aggressive set) */
19374 /* pace_always=1 */
19375 if (rack->rc_always_pace == 0) {
19376 if (tcp_can_enable_pacing() == 0)
19377 return (EBUSY);
19378 }
19379 rack->rc_always_pace = 1;
19380 if (rack->use_fixed_rate || rack->gp_ready)
19381 rack_set_cc_pacing(rack);
19382 rack->rc_inp->inp_flags2 |= INP_SUPPORTS_MBUFQ;
19383 rack->rack_attempt_hdwr_pace = 0;
19384 /* cmpack=1 */
19385 if (rack_use_cmp_acks)
19386 rack->r_use_cmp_ack = 1;
19387 if (TCPS_HAVEESTABLISHED(rack->rc_tp->t_state) &&
19388 rack->r_use_cmp_ack)
19389 rack->rc_inp->inp_flags2 |= INP_MBUF_ACKCMP;
19390 /* scwnd=1 */
19391 rack->rack_enable_scwnd = 1;
19392 /* dynamic=100 */
19393 rack->rc_gp_dyn_mul = 1;
19394 /* gp_inc_ca */
19395 rack->r_ctl.rack_per_of_gp_ca = 100;
19396 /* rrr_conf=3 */
19397 rack->r_rr_config = 3;
19398 /* npush=2 */
19399 rack->r_ctl.rc_no_push_at_mrtt = 2;
19400 /* fillcw=2 */
19401 rack->rc_pace_to_cwnd = 1;
19402 rack->r_fill_less_agg = 1;
19403 rack->rc_pace_fill_if_rttin_range = 0;
19404 rack->rtt_limit_mul = 0;
19405 /* noprr=1 */
19406 rack->rack_no_prr = 1;
19407 /* lscwnd=1 */
19408 rack->r_limit_scw = 1;
19409 /* gp_inc_rec */
19410 rack->r_ctl.rack_per_of_gp_rec = 90;
19411 err = 0;
19412
19413
19414 } else if (prof == 2) {
19415 /* cmpack=1 */
19416 if (rack->rc_always_pace == 0) {
19417 if (tcp_can_enable_pacing() == 0)
19418 return (EBUSY);
19419 }
19420 rack->rc_always_pace = 1;
19421 if (rack->use_fixed_rate || rack->gp_ready)
19422 rack_set_cc_pacing(rack);
19423 rack->r_use_cmp_ack = 1;
19424 if (TCPS_HAVEESTABLISHED(rack->rc_tp->t_state))
19425 rack->rc_inp->inp_flags2 |= INP_MBUF_ACKCMP;
19426 /* pace_always=1 */
19427 rack->rc_inp->inp_flags2 |= INP_SUPPORTS_MBUFQ;
19428 /* scwnd=1 */
19429 rack->rack_enable_scwnd = 1;
19430 /* dynamic=100 */
19431 rack->rc_gp_dyn_mul = 1;
19432 rack->r_ctl.rack_per_of_gp_ca = 100;
19433 /* rrr_conf=3 */
19434 rack->r_rr_config = 3;
19435 /* npush=2 */
19436 rack->r_ctl.rc_no_push_at_mrtt = 2;
19437 /* fillcw=1 */
19438 rack->rc_pace_to_cwnd = 1;
19439 rack->rc_pace_fill_if_rttin_range = 0;
19440 rack->rtt_limit_mul = 0;
19441 /* noprr=1 */
19442 rack->rack_no_prr = 1;
19443 /* lscwnd=0 */
19444 rack->r_limit_scw = 0;
19445 err = 0;
19446 } else if (prof == 0) {
19447 /* This changes things back to the default settings */
19448 err = 0;
19449 if (rack->rc_always_pace) {
19450 tcp_decrement_paced_conn();
19451 rack_undo_cc_pacing(rack);
19452 rack->rc_always_pace = 0;
19453 }
19454 if (rack_pace_every_seg && tcp_can_enable_pacing()) {
19455 rack->rc_always_pace = 1;
19456 if (rack->use_fixed_rate || rack->gp_ready)
19457 rack_set_cc_pacing(rack);
19458 } else
19459 rack->rc_always_pace = 0;
19460 if (rack_dsack_std_based & 0x1) {
19461 /* Basically this means all rack timers are at least (srtt + 1/4 srtt) */
19462 rack->rc_rack_tmr_std_based = 1;
19463 }
19464 if (rack_dsack_std_based & 0x2) {
19465 /* Basically this means rack timers are extended based on dsack by up to (2 * srtt) */
19466 rack->rc_rack_use_dsack = 1;
19467 }
19468 if (rack_use_cmp_acks)
19469 rack->r_use_cmp_ack = 1;
19470 else
19471 rack->r_use_cmp_ack = 0;
19472 if (rack_disable_prr)
19473 rack->rack_no_prr = 1;
19474 else
19475 rack->rack_no_prr = 0;
19476 if (rack_gp_no_rec_chg)
19477 rack->rc_gp_no_rec_chg = 1;
19478 else
19479 rack->rc_gp_no_rec_chg = 0;
19480 if (rack_enable_mqueue_for_nonpaced || rack->r_use_cmp_ack) {
19481 rack->r_mbuf_queue = 1;
19482 if (TCPS_HAVEESTABLISHED(rack->rc_tp->t_state))
19483 rack->rc_inp->inp_flags2 |= INP_MBUF_ACKCMP;
19484 rack->rc_inp->inp_flags2 |= INP_SUPPORTS_MBUFQ;
19485 } else {
19486 rack->r_mbuf_queue = 0;
19487 rack->rc_inp->inp_flags2 &= ~INP_SUPPORTS_MBUFQ;
19488 }
19489 if (rack_enable_shared_cwnd)
19490 rack->rack_enable_scwnd = 1;
19491 else
19492 rack->rack_enable_scwnd = 0;
19493 if (rack_do_dyn_mul) {
19494 /* When dynamic adjustment is on CA needs to start at 100% */
19495 rack->rc_gp_dyn_mul = 1;
19496 if (rack_do_dyn_mul >= 100)
19497 rack->r_ctl.rack_per_of_gp_ca = rack_do_dyn_mul;
19498 } else {
19499 rack->r_ctl.rack_per_of_gp_ca = rack_per_of_gp_ca;
19500 rack->rc_gp_dyn_mul = 0;
19501 }
19502 rack->r_rr_config = 0;
19503 rack->r_ctl.rc_no_push_at_mrtt = 0;
19504 rack->rc_pace_to_cwnd = 0;
19505 rack->rc_pace_fill_if_rttin_range = 0;
19506 rack->rtt_limit_mul = 0;
19507
19508 if (rack_enable_hw_pacing)
19509 rack->rack_hdw_pace_ena = 1;
19510 else
19511 rack->rack_hdw_pace_ena = 0;
19512 if (rack_disable_prr)
19513 rack->rack_no_prr = 1;
19514 else
19515 rack->rack_no_prr = 0;
19516 if (rack_limits_scwnd)
19517 rack->r_limit_scw = 1;
19518 else
19519 rack->r_limit_scw = 0;
19520 err = 0;
19521 }
19522 return (err);
19523 }
19524
19525 static int
19526 rack_add_deferred_option(struct tcp_rack *rack, int sopt_name, uint64_t loptval)
19527 {
19528 struct deferred_opt_list *dol;
19529
19530 dol = malloc(sizeof(struct deferred_opt_list),
19531 M_TCPFSB, M_NOWAIT|M_ZERO);
19532 if (dol == NULL) {
19533 /*
19534 * No space yikes -- fail out..
19535 */
19536 return (0);
19537 }
19538 dol->optname = sopt_name;
19539 dol->optval = loptval;
19540 TAILQ_INSERT_TAIL(&rack->r_ctl.opt_list, dol, next);
19541 return (1);
19542 }
19543
19544 static int
19545 rack_process_option(struct tcpcb *tp, struct tcp_rack *rack, int sopt_name,
19546 uint32_t optval, uint64_t loptval)
19547 {
19548 struct epoch_tracker et;
19549 struct sockopt sopt;
19550 struct cc_newreno_opts opt;
19551 struct inpcb *inp = tptoinpcb(tp);
19552 uint64_t val;
19553 int error = 0;
19554 uint16_t ca, ss;
19555
19556 switch (sopt_name) {
19557
19558 case TCP_RACK_DSACK_OPT:
19559 RACK_OPTS_INC(tcp_rack_dsack_opt);
19560 if (optval & 0x1) {
19561 rack->rc_rack_tmr_std_based = 1;
19562 } else {
19563 rack->rc_rack_tmr_std_based = 0;
19564 }
19565 if (optval & 0x2) {
19566 rack->rc_rack_use_dsack = 1;
19567 } else {
19568 rack->rc_rack_use_dsack = 0;
19569 }
19570 rack_log_dsack_event(rack, 5, __LINE__, 0, 0);
19571 break;
19572 case TCP_RACK_PACING_BETA:
19573 RACK_OPTS_INC(tcp_rack_beta);
19574 if (strcmp(tp->t_cc->name, CCALGONAME_NEWRENO) != 0) {
19575 /* This only works for newreno. */
19576 error = EINVAL;
19577 break;
19578 }
19579 if (rack->rc_pacing_cc_set) {
19580 /*
19581 * Set them into the real CC module
19582 * whats in the rack pcb is the old values
19583 * to be used on restoral/
19584 */
19585 sopt.sopt_dir = SOPT_SET;
19586 opt.name = CC_NEWRENO_BETA;
19587 opt.val = optval;
19588 if (CC_ALGO(tp)->ctl_output != NULL)
19589 error = CC_ALGO(tp)->ctl_output(&tp->t_ccv, &sopt, &opt);
19590 else {
19591 error = ENOENT;
19592 break;
19593 }
19594 } else {
19595 /*
19596 * Not pacing yet so set it into our local
19597 * rack pcb storage.
19598 */
19599 rack->r_ctl.rc_saved_beta.beta = optval;
19600 }
19601 break;
19602 case TCP_RACK_TIMER_SLOP:
19603 RACK_OPTS_INC(tcp_rack_timer_slop);
19604 rack->r_ctl.timer_slop = optval;
19605 if (rack->rc_tp->t_srtt) {
19606 /*
19607 * If we have an SRTT lets update t_rxtcur
19608 * to have the new slop.
19609 */
19610 RACK_TCPT_RANGESET(tp->t_rxtcur, RACK_REXMTVAL(tp),
19611 rack_rto_min, rack_rto_max,
19612 rack->r_ctl.timer_slop);
19613 }
19614 break;
19615 case TCP_RACK_PACING_BETA_ECN:
19616 RACK_OPTS_INC(tcp_rack_beta_ecn);
19617 if (strcmp(tp->t_cc->name, CCALGONAME_NEWRENO) != 0) {
19618 /* This only works for newreno. */
19619 error = EINVAL;
19620 break;
19621 }
19622 if (rack->rc_pacing_cc_set) {
19623 /*
19624 * Set them into the real CC module
19625 * whats in the rack pcb is the old values
19626 * to be used on restoral/
19627 */
19628 sopt.sopt_dir = SOPT_SET;
19629 opt.name = CC_NEWRENO_BETA_ECN;
19630 opt.val = optval;
19631 if (CC_ALGO(tp)->ctl_output != NULL)
19632 error = CC_ALGO(tp)->ctl_output(&tp->t_ccv, &sopt, &opt);
19633 else
19634 error = ENOENT;
19635 } else {
19636 /*
19637 * Not pacing yet so set it into our local
19638 * rack pcb storage.
19639 */
19640 rack->r_ctl.rc_saved_beta.beta_ecn = optval;
19641 rack->r_ctl.rc_saved_beta.newreno_flags = CC_NEWRENO_BETA_ECN_ENABLED;
19642 }
19643 break;
19644 case TCP_DEFER_OPTIONS:
19645 RACK_OPTS_INC(tcp_defer_opt);
19646 if (optval) {
19647 if (rack->gp_ready) {
19648 /* Too late */
19649 error = EINVAL;
19650 break;
19651 }
19652 rack->defer_options = 1;
19653 } else
19654 rack->defer_options = 0;
19655 break;
19656 case TCP_RACK_MEASURE_CNT:
19657 RACK_OPTS_INC(tcp_rack_measure_cnt);
19658 if (optval && (optval <= 0xff)) {
19659 rack->r_ctl.req_measurements = optval;
19660 } else
19661 error = EINVAL;
19662 break;
19663 case TCP_REC_ABC_VAL:
19664 RACK_OPTS_INC(tcp_rec_abc_val);
19665 if (optval > 0)
19666 rack->r_use_labc_for_rec = 1;
19667 else
19668 rack->r_use_labc_for_rec = 0;
19669 break;
19670 case TCP_RACK_ABC_VAL:
19671 RACK_OPTS_INC(tcp_rack_abc_val);
19672 if ((optval > 0) && (optval < 255))
19673 rack->rc_labc = optval;
19674 else
19675 error = EINVAL;
19676 break;
19677 case TCP_HDWR_UP_ONLY:
19678 RACK_OPTS_INC(tcp_pacing_up_only);
19679 if (optval)
19680 rack->r_up_only = 1;
19681 else
19682 rack->r_up_only = 0;
19683 break;
19684 case TCP_PACING_RATE_CAP:
19685 RACK_OPTS_INC(tcp_pacing_rate_cap);
19686 rack->r_ctl.bw_rate_cap = loptval;
19687 break;
19688 case TCP_RACK_PROFILE:
19689 RACK_OPTS_INC(tcp_profile);
19690 error = rack_set_profile(rack, optval);
19691 break;
19692 case TCP_USE_CMP_ACKS:
19693 RACK_OPTS_INC(tcp_use_cmp_acks);
19694 if ((optval == 0) && (rack->rc_inp->inp_flags2 & INP_MBUF_ACKCMP)) {
19695 /* You can't turn it off once its on! */
19696 error = EINVAL;
19697 } else if ((optval == 1) && (rack->r_use_cmp_ack == 0)) {
19698 rack->r_use_cmp_ack = 1;
19699 rack->r_mbuf_queue = 1;
19700 inp->inp_flags2 |= INP_SUPPORTS_MBUFQ;
19701 }
19702 if (rack->r_use_cmp_ack && TCPS_HAVEESTABLISHED(tp->t_state))
19703 inp->inp_flags2 |= INP_MBUF_ACKCMP;
19704 break;
19705 case TCP_SHARED_CWND_TIME_LIMIT:
19706 RACK_OPTS_INC(tcp_lscwnd);
19707 if (optval)
19708 rack->r_limit_scw = 1;
19709 else
19710 rack->r_limit_scw = 0;
19711 break;
19712 case TCP_RACK_PACE_TO_FILL:
19713 RACK_OPTS_INC(tcp_fillcw);
19714 if (optval == 0)
19715 rack->rc_pace_to_cwnd = 0;
19716 else {
19717 rack->rc_pace_to_cwnd = 1;
19718 if (optval > 1)
19719 rack->r_fill_less_agg = 1;
19720 }
19721 if ((optval >= rack_gp_rtt_maxmul) &&
19722 rack_gp_rtt_maxmul &&
19723 (optval < 0xf)) {
19724 rack->rc_pace_fill_if_rttin_range = 1;
19725 rack->rtt_limit_mul = optval;
19726 } else {
19727 rack->rc_pace_fill_if_rttin_range = 0;
19728 rack->rtt_limit_mul = 0;
19729 }
19730 break;
19731 case TCP_RACK_NO_PUSH_AT_MAX:
19732 RACK_OPTS_INC(tcp_npush);
19733 if (optval == 0)
19734 rack->r_ctl.rc_no_push_at_mrtt = 0;
19735 else if (optval < 0xff)
19736 rack->r_ctl.rc_no_push_at_mrtt = optval;
19737 else
19738 error = EINVAL;
19739 break;
19740 case TCP_SHARED_CWND_ENABLE:
19741 RACK_OPTS_INC(tcp_rack_scwnd);
19742 if (optval == 0)
19743 rack->rack_enable_scwnd = 0;
19744 else
19745 rack->rack_enable_scwnd = 1;
19746 break;
19747 case TCP_RACK_MBUF_QUEUE:
19748 /* Now do we use the LRO mbuf-queue feature */
19749 RACK_OPTS_INC(tcp_rack_mbufq);
19750 if (optval || rack->r_use_cmp_ack)
19751 rack->r_mbuf_queue = 1;
19752 else
19753 rack->r_mbuf_queue = 0;
19754 if (rack->r_mbuf_queue || rack->rc_always_pace || rack->r_use_cmp_ack)
19755 inp->inp_flags2 |= INP_SUPPORTS_MBUFQ;
19756 else
19757 inp->inp_flags2 &= ~INP_SUPPORTS_MBUFQ;
19758 break;
19759 case TCP_RACK_NONRXT_CFG_RATE:
19760 RACK_OPTS_INC(tcp_rack_cfg_rate);
19761 if (optval == 0)
19762 rack->rack_rec_nonrxt_use_cr = 0;
19763 else
19764 rack->rack_rec_nonrxt_use_cr = 1;
19765 break;
19766 case TCP_NO_PRR:
19767 RACK_OPTS_INC(tcp_rack_noprr);
19768 if (optval == 0)
19769 rack->rack_no_prr = 0;
19770 else if (optval == 1)
19771 rack->rack_no_prr = 1;
19772 else if (optval == 2)
19773 rack->no_prr_addback = 1;
19774 else
19775 error = EINVAL;
19776 break;
19777 case TCP_TIMELY_DYN_ADJ:
19778 RACK_OPTS_INC(tcp_timely_dyn);
19779 if (optval == 0)
19780 rack->rc_gp_dyn_mul = 0;
19781 else {
19782 rack->rc_gp_dyn_mul = 1;
19783 if (optval >= 100) {
19784 /*
19785 * If the user sets something 100 or more
19786 * its the gp_ca value.
19787 */
19788 rack->r_ctl.rack_per_of_gp_ca = optval;
19789 }
19790 }
19791 break;
19792 case TCP_RACK_DO_DETECTION:
19793 RACK_OPTS_INC(tcp_rack_do_detection);
19794 if (optval == 0)
19795 rack->do_detection = 0;
19796 else
19797 rack->do_detection = 1;
19798 break;
19799 case TCP_RACK_TLP_USE:
19800 if ((optval < TLP_USE_ID) || (optval > TLP_USE_TWO_TWO)) {
19801 error = EINVAL;
19802 break;
19803 }
19804 RACK_OPTS_INC(tcp_tlp_use);
19805 rack->rack_tlp_threshold_use = optval;
19806 break;
19807 case TCP_RACK_TLP_REDUCE:
19808 /* RACK TLP cwnd reduction (bool) */
19809 RACK_OPTS_INC(tcp_rack_tlp_reduce);
19810 rack->r_ctl.rc_tlp_cwnd_reduce = optval;
19811 break;
19812 /* Pacing related ones */
19813 case TCP_RACK_PACE_ALWAYS:
19814 /*
19815 * zero is old rack method, 1 is new
19816 * method using a pacing rate.
19817 */
19818 RACK_OPTS_INC(tcp_rack_pace_always);
19819 if (optval > 0) {
19820 if (rack->rc_always_pace) {
19821 error = EALREADY;
19822 break;
19823 } else if (tcp_can_enable_pacing()) {
19824 rack->rc_always_pace = 1;
19825 if (rack->use_fixed_rate || rack->gp_ready)
19826 rack_set_cc_pacing(rack);
19827 }
19828 else {
19829 error = ENOSPC;
19830 break;
19831 }
19832 } else {
19833 if (rack->rc_always_pace) {
19834 tcp_decrement_paced_conn();
19835 rack->rc_always_pace = 0;
19836 rack_undo_cc_pacing(rack);
19837 }
19838 }
19839 if (rack->r_mbuf_queue || rack->rc_always_pace || rack->r_use_cmp_ack)
19840 inp->inp_flags2 |= INP_SUPPORTS_MBUFQ;
19841 else
19842 inp->inp_flags2 &= ~INP_SUPPORTS_MBUFQ;
19843 /* A rate may be set irate or other, if so set seg size */
19844 rack_update_seg(rack);
19845 break;
19846 case TCP_BBR_RACK_INIT_RATE:
19847 RACK_OPTS_INC(tcp_initial_rate);
19848 val = optval;
19849 /* Change from kbits per second to bytes per second */
19850 val *= 1000;
19851 val /= 8;
19852 rack->r_ctl.init_rate = val;
19853 if (rack->rc_init_win != rack_default_init_window) {
19854 uint32_t win, snt;
19855
19856 /*
19857 * Options don't always get applied
19858 * in the order you think. So in order
19859 * to assure we update a cwnd we need
19860 * to check and see if we are still
19861 * where we should raise the cwnd.
19862 */
19863 win = rc_init_window(rack);
19864 if (SEQ_GT(tp->snd_max, tp->iss))
19865 snt = tp->snd_max - tp->iss;
19866 else
19867 snt = 0;
19868 if ((snt < win) &&
19869 (tp->snd_cwnd < win))
19870 tp->snd_cwnd = win;
19871 }
19872 if (rack->rc_always_pace)
19873 rack_update_seg(rack);
19874 break;
19875 case TCP_BBR_IWINTSO:
19876 RACK_OPTS_INC(tcp_initial_win);
19877 if (optval && (optval <= 0xff)) {
19878 uint32_t win, snt;
19879
19880 rack->rc_init_win = optval;
19881 win = rc_init_window(rack);
19882 if (SEQ_GT(tp->snd_max, tp->iss))
19883 snt = tp->snd_max - tp->iss;
19884 else
19885 snt = 0;
19886 if ((snt < win) &&
19887 (tp->t_srtt |
19888 #ifdef NETFLIX_PEAKRATE
19889 tp->t_maxpeakrate |
19890 #endif
19891 rack->r_ctl.init_rate)) {
19892 /*
19893 * We are not past the initial window
19894 * and we have some bases for pacing,
19895 * so we need to possibly adjust up
19896 * the cwnd. Note even if we don't set
19897 * the cwnd, its still ok to raise the rc_init_win
19898 * which can be used coming out of idle when we
19899 * would have a rate.
19900 */
19901 if (tp->snd_cwnd < win)
19902 tp->snd_cwnd = win;
19903 }
19904 if (rack->rc_always_pace)
19905 rack_update_seg(rack);
19906 } else
19907 error = EINVAL;
19908 break;
19909 case TCP_RACK_FORCE_MSEG:
19910 RACK_OPTS_INC(tcp_rack_force_max_seg);
19911 if (optval)
19912 rack->rc_force_max_seg = 1;
19913 else
19914 rack->rc_force_max_seg = 0;
19915 break;
19916 case TCP_RACK_PACE_MAX_SEG:
19917 /* Max segments size in a pace in bytes */
19918 RACK_OPTS_INC(tcp_rack_max_seg);
19919 rack->rc_user_set_max_segs = optval;
19920 rack_set_pace_segments(tp, rack, __LINE__, NULL);
19921 break;
19922 case TCP_RACK_PACE_RATE_REC:
19923 /* Set the fixed pacing rate in Bytes per second ca */
19924 RACK_OPTS_INC(tcp_rack_pace_rate_rec);
19925 rack->r_ctl.rc_fixed_pacing_rate_rec = optval;
19926 if (rack->r_ctl.rc_fixed_pacing_rate_ca == 0)
19927 rack->r_ctl.rc_fixed_pacing_rate_ca = optval;
19928 if (rack->r_ctl.rc_fixed_pacing_rate_ss == 0)
19929 rack->r_ctl.rc_fixed_pacing_rate_ss = optval;
19930 rack->use_fixed_rate = 1;
19931 if (rack->rc_always_pace)
19932 rack_set_cc_pacing(rack);
19933 rack_log_pacing_delay_calc(rack,
19934 rack->r_ctl.rc_fixed_pacing_rate_ss,
19935 rack->r_ctl.rc_fixed_pacing_rate_ca,
19936 rack->r_ctl.rc_fixed_pacing_rate_rec, 0, 0, 8,
19937 __LINE__, NULL,0);
19938 break;
19939
19940 case TCP_RACK_PACE_RATE_SS:
19941 /* Set the fixed pacing rate in Bytes per second ca */
19942 RACK_OPTS_INC(tcp_rack_pace_rate_ss);
19943 rack->r_ctl.rc_fixed_pacing_rate_ss = optval;
19944 if (rack->r_ctl.rc_fixed_pacing_rate_ca == 0)
19945 rack->r_ctl.rc_fixed_pacing_rate_ca = optval;
19946 if (rack->r_ctl.rc_fixed_pacing_rate_rec == 0)
19947 rack->r_ctl.rc_fixed_pacing_rate_rec = optval;
19948 rack->use_fixed_rate = 1;
19949 if (rack->rc_always_pace)
19950 rack_set_cc_pacing(rack);
19951 rack_log_pacing_delay_calc(rack,
19952 rack->r_ctl.rc_fixed_pacing_rate_ss,
19953 rack->r_ctl.rc_fixed_pacing_rate_ca,
19954 rack->r_ctl.rc_fixed_pacing_rate_rec, 0, 0, 8,
19955 __LINE__, NULL, 0);
19956 break;
19957
19958 case TCP_RACK_PACE_RATE_CA:
19959 /* Set the fixed pacing rate in Bytes per second ca */
19960 RACK_OPTS_INC(tcp_rack_pace_rate_ca);
19961 rack->r_ctl.rc_fixed_pacing_rate_ca = optval;
19962 if (rack->r_ctl.rc_fixed_pacing_rate_ss == 0)
19963 rack->r_ctl.rc_fixed_pacing_rate_ss = optval;
19964 if (rack->r_ctl.rc_fixed_pacing_rate_rec == 0)
19965 rack->r_ctl.rc_fixed_pacing_rate_rec = optval;
19966 rack->use_fixed_rate = 1;
19967 if (rack->rc_always_pace)
19968 rack_set_cc_pacing(rack);
19969 rack_log_pacing_delay_calc(rack,
19970 rack->r_ctl.rc_fixed_pacing_rate_ss,
19971 rack->r_ctl.rc_fixed_pacing_rate_ca,
19972 rack->r_ctl.rc_fixed_pacing_rate_rec, 0, 0, 8,
19973 __LINE__, NULL, 0);
19974 break;
19975 case TCP_RACK_GP_INCREASE_REC:
19976 RACK_OPTS_INC(tcp_gp_inc_rec);
19977 rack->r_ctl.rack_per_of_gp_rec = optval;
19978 rack_log_pacing_delay_calc(rack,
19979 rack->r_ctl.rack_per_of_gp_ss,
19980 rack->r_ctl.rack_per_of_gp_ca,
19981 rack->r_ctl.rack_per_of_gp_rec, 0, 0, 1,
19982 __LINE__, NULL, 0);
19983 break;
19984 case TCP_RACK_GP_INCREASE_CA:
19985 RACK_OPTS_INC(tcp_gp_inc_ca);
19986 ca = optval;
19987 if (ca < 100) {
19988 /*
19989 * We don't allow any reduction
19990 * over the GP b/w.
19991 */
19992 error = EINVAL;
19993 break;
19994 }
19995 rack->r_ctl.rack_per_of_gp_ca = ca;
19996 rack_log_pacing_delay_calc(rack,
19997 rack->r_ctl.rack_per_of_gp_ss,
19998 rack->r_ctl.rack_per_of_gp_ca,
19999 rack->r_ctl.rack_per_of_gp_rec, 0, 0, 1,
20000 __LINE__, NULL, 0);
20001 break;
20002 case TCP_RACK_GP_INCREASE_SS:
20003 RACK_OPTS_INC(tcp_gp_inc_ss);
20004 ss = optval;
20005 if (ss < 100) {
20006 /*
20007 * We don't allow any reduction
20008 * over the GP b/w.
20009 */
20010 error = EINVAL;
20011 break;
20012 }
20013 rack->r_ctl.rack_per_of_gp_ss = ss;
20014 rack_log_pacing_delay_calc(rack,
20015 rack->r_ctl.rack_per_of_gp_ss,
20016 rack->r_ctl.rack_per_of_gp_ca,
20017 rack->r_ctl.rack_per_of_gp_rec, 0, 0, 1,
20018 __LINE__, NULL, 0);
20019 break;
20020 case TCP_RACK_RR_CONF:
20021 RACK_OPTS_INC(tcp_rack_rrr_no_conf_rate);
20022 if (optval && optval <= 3)
20023 rack->r_rr_config = optval;
20024 else
20025 rack->r_rr_config = 0;
20026 break;
20027 case TCP_HDWR_RATE_CAP:
20028 RACK_OPTS_INC(tcp_hdwr_rate_cap);
20029 if (optval) {
20030 if (rack->r_rack_hw_rate_caps == 0)
20031 rack->r_rack_hw_rate_caps = 1;
20032 else
20033 error = EALREADY;
20034 } else {
20035 rack->r_rack_hw_rate_caps = 0;
20036 }
20037 break;
20038 case TCP_BBR_HDWR_PACE:
20039 RACK_OPTS_INC(tcp_hdwr_pacing);
20040 if (optval){
20041 if (rack->rack_hdrw_pacing == 0) {
20042 rack->rack_hdw_pace_ena = 1;
20043 rack->rack_attempt_hdwr_pace = 0;
20044 } else
20045 error = EALREADY;
20046 } else {
20047 rack->rack_hdw_pace_ena = 0;
20048 #ifdef RATELIMIT
20049 if (rack->r_ctl.crte != NULL) {
20050 rack->rack_hdrw_pacing = 0;
20051 rack->rack_attempt_hdwr_pace = 0;
20052 tcp_rel_pacing_rate(rack->r_ctl.crte, tp);
20053 rack->r_ctl.crte = NULL;
20054 }
20055 #endif
20056 }
20057 break;
20058 /* End Pacing related ones */
20059 case TCP_RACK_PRR_SENDALOT:
20060 /* Allow PRR to send more than one seg */
20061 RACK_OPTS_INC(tcp_rack_prr_sendalot);
20062 rack->r_ctl.rc_prr_sendalot = optval;
20063 break;
20064 case TCP_RACK_MIN_TO:
20065 /* Minimum time between rack t-o's in ms */
20066 RACK_OPTS_INC(tcp_rack_min_to);
20067 rack->r_ctl.rc_min_to = optval;
20068 break;
20069 case TCP_RACK_EARLY_SEG:
20070 /* If early recovery max segments */
20071 RACK_OPTS_INC(tcp_rack_early_seg);
20072 rack->r_ctl.rc_early_recovery_segs = optval;
20073 break;
20074 case TCP_RACK_ENABLE_HYSTART:
20075 {
20076 if (optval) {
20077 tp->t_ccv.flags |= CCF_HYSTART_ALLOWED;
20078 if (rack_do_hystart > RACK_HYSTART_ON)
20079 tp->t_ccv.flags |= CCF_HYSTART_CAN_SH_CWND;
20080 if (rack_do_hystart > RACK_HYSTART_ON_W_SC)
20081 tp->t_ccv.flags |= CCF_HYSTART_CONS_SSTH;
20082 } else {
20083 tp->t_ccv.flags &= ~(CCF_HYSTART_ALLOWED|CCF_HYSTART_CAN_SH_CWND|CCF_HYSTART_CONS_SSTH);
20084 }
20085 }
20086 break;
20087 case TCP_RACK_REORD_THRESH:
20088 /* RACK reorder threshold (shift amount) */
20089 RACK_OPTS_INC(tcp_rack_reord_thresh);
20090 if ((optval > 0) && (optval < 31))
20091 rack->r_ctl.rc_reorder_shift = optval;
20092 else
20093 error = EINVAL;
20094 break;
20095 case TCP_RACK_REORD_FADE:
20096 /* Does reordering fade after ms time */
20097 RACK_OPTS_INC(tcp_rack_reord_fade);
20098 rack->r_ctl.rc_reorder_fade = optval;
20099 break;
20100 case TCP_RACK_TLP_THRESH:
20101 /* RACK TLP theshold i.e. srtt+(srtt/N) */
20102 RACK_OPTS_INC(tcp_rack_tlp_thresh);
20103 if (optval)
20104 rack->r_ctl.rc_tlp_threshold = optval;
20105 else
20106 error = EINVAL;
20107 break;
20108 case TCP_BBR_USE_RACK_RR:
20109 RACK_OPTS_INC(tcp_rack_rr);
20110 if (optval)
20111 rack->use_rack_rr = 1;
20112 else
20113 rack->use_rack_rr = 0;
20114 break;
20115 case TCP_FAST_RSM_HACK:
20116 RACK_OPTS_INC(tcp_rack_fastrsm_hack);
20117 if (optval)
20118 rack->fast_rsm_hack = 1;
20119 else
20120 rack->fast_rsm_hack = 0;
20121 break;
20122 case TCP_RACK_PKT_DELAY:
20123 /* RACK added ms i.e. rack-rtt + reord + N */
20124 RACK_OPTS_INC(tcp_rack_pkt_delay);
20125 rack->r_ctl.rc_pkt_delay = optval;
20126 break;
20127 case TCP_DELACK:
20128 RACK_OPTS_INC(tcp_rack_delayed_ack);
20129 if (optval == 0)
20130 tp->t_delayed_ack = 0;
20131 else
20132 tp->t_delayed_ack = 1;
20133 if (tp->t_flags & TF_DELACK) {
20134 tp->t_flags &= ~TF_DELACK;
20135 tp->t_flags |= TF_ACKNOW;
20136 NET_EPOCH_ENTER(et);
20137 rack_output(tp);
20138 NET_EPOCH_EXIT(et);
20139 }
20140 break;
20141
20142 case TCP_BBR_RACK_RTT_USE:
20143 RACK_OPTS_INC(tcp_rack_rtt_use);
20144 if ((optval != USE_RTT_HIGH) &&
20145 (optval != USE_RTT_LOW) &&
20146 (optval != USE_RTT_AVG))
20147 error = EINVAL;
20148 else
20149 rack->r_ctl.rc_rate_sample_method = optval;
20150 break;
20151 case TCP_DATA_AFTER_CLOSE:
20152 RACK_OPTS_INC(tcp_data_after_close);
20153 if (optval)
20154 rack->rc_allow_data_af_clo = 1;
20155 else
20156 rack->rc_allow_data_af_clo = 0;
20157 break;
20158 default:
20159 break;
20160 }
20161 #ifdef NETFLIX_STATS
20162 tcp_log_socket_option(tp, sopt_name, optval, error);
20163 #endif
20164 return (error);
20165 }
20166
20167
20168 static void
20169 rack_apply_deferred_options(struct tcp_rack *rack)
20170 {
20171 struct deferred_opt_list *dol, *sdol;
20172 uint32_t s_optval;
20173
20174 TAILQ_FOREACH_SAFE(dol, &rack->r_ctl.opt_list, next, sdol) {
20175 TAILQ_REMOVE(&rack->r_ctl.opt_list, dol, next);
20176 /* Disadvantage of deferal is you loose the error return */
20177 s_optval = (uint32_t)dol->optval;
20178 (void)rack_process_option(rack->rc_tp, rack, dol->optname, s_optval, dol->optval);
20179 free(dol, M_TCPDO);
20180 }
20181 }
20182
20183 static void
20184 rack_hw_tls_change(struct tcpcb *tp, int chg)
20185 {
20186 /*
20187 * HW tls state has changed.. fix all
20188 * rsm's in flight.
20189 */
20190 struct tcp_rack *rack;
20191 struct rack_sendmap *rsm;
20192
20193 rack = (struct tcp_rack *)tp->t_fb_ptr;
20194 RB_FOREACH(rsm, rack_rb_tree_head, &rack->r_ctl.rc_mtree) {
20195 if (chg)
20196 rsm->r_hw_tls = 1;
20197 else
20198 rsm->r_hw_tls = 0;
20199 }
20200 if (chg)
20201 rack->r_ctl.fsb.hw_tls = 1;
20202 else
20203 rack->r_ctl.fsb.hw_tls = 0;
20204 }
20205
20206 static int
20207 rack_pru_options(struct tcpcb *tp, int flags)
20208 {
20209 if (flags & PRUS_OOB)
20210 return (EOPNOTSUPP);
20211 return (0);
20212 }
20213
20214 static struct tcp_function_block __tcp_rack = {
20215 .tfb_tcp_block_name = __XSTRING(STACKNAME),
20216 .tfb_tcp_output = rack_output,
20217 .tfb_do_queued_segments = ctf_do_queued_segments,
20218 .tfb_do_segment_nounlock = rack_do_segment_nounlock,
20219 .tfb_tcp_do_segment = rack_do_segment,
20220 .tfb_tcp_ctloutput = rack_ctloutput,
20221 .tfb_tcp_fb_init = rack_init,
20222 .tfb_tcp_fb_fini = rack_fini,
20223 .tfb_tcp_timer_stop_all = rack_stopall,
20224 .tfb_tcp_rexmit_tmr = rack_remxt_tmr,
20225 .tfb_tcp_handoff_ok = rack_handoff_ok,
20226 .tfb_tcp_mtu_chg = rack_mtu_change,
20227 .tfb_pru_options = rack_pru_options,
20228 .tfb_hwtls_change = rack_hw_tls_change,
20229 .tfb_compute_pipe = rack_compute_pipe,
20230 .tfb_flags = TCP_FUNC_OUTPUT_CANDROP,
20231 };
20232
20233 /*
20234 * rack_ctloutput() must drop the inpcb lock before performing copyin on
20235 * socket option arguments. When it re-acquires the lock after the copy, it
20236 * has to revalidate that the connection is still valid for the socket
20237 * option.
20238 */
20239 static int
20240 rack_set_sockopt(struct inpcb *inp, struct sockopt *sopt)
20241 {
20242 #ifdef INET6
20243 struct ip6_hdr *ip6;
20244 #endif
20245 #ifdef INET
20246 struct ip *ip;
20247 #endif
20248 struct tcpcb *tp;
20249 struct tcp_rack *rack;
20250 uint64_t loptval;
20251 int32_t error = 0, optval;
20252
20253 tp = intotcpcb(inp);
20254 rack = (struct tcp_rack *)tp->t_fb_ptr;
20255 if (rack == NULL) {
20256 INP_WUNLOCK(inp);
20257 return (EINVAL);
20258 }
20259 #ifdef INET6
20260 ip6 = (struct ip6_hdr *)rack->r_ctl.fsb.tcp_ip_hdr;
20261 #endif
20262 #ifdef INET
20263 ip = (struct ip *)rack->r_ctl.fsb.tcp_ip_hdr;
20264 #endif
20265
20266 switch (sopt->sopt_level) {
20267 #ifdef INET6
20268 case IPPROTO_IPV6:
20269 MPASS(inp->inp_vflag & INP_IPV6PROTO);
20270 switch (sopt->sopt_name) {
20271 case IPV6_USE_MIN_MTU:
20272 tcp6_use_min_mtu(tp);
20273 break;
20274 case IPV6_TCLASS:
20275 /*
20276 * The DSCP codepoint has changed, update the fsb.
20277 */
20278 ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
20279 (rack->rc_inp->inp_flow & IPV6_FLOWINFO_MASK);
20280 break;
20281 }
20282 INP_WUNLOCK(inp);
20283 return (0);
20284 #endif
20285 #ifdef INET
20286 case IPPROTO_IP:
20287 switch (sopt->sopt_name) {
20288 case IP_TOS:
20289 /*
20290 * The DSCP codepoint has changed, update the fsb.
20291 */
20292 ip->ip_tos = rack->rc_inp->inp_ip_tos;
20293 break;
20294 case IP_TTL:
20295 /*
20296 * The TTL has changed, update the fsb.
20297 */
20298 ip->ip_ttl = rack->rc_inp->inp_ip_ttl;
20299 break;
20300 }
20301 INP_WUNLOCK(inp);
20302 return (0);
20303 #endif
20304 }
20305
20306 switch (sopt->sopt_name) {
20307 case TCP_RACK_TLP_REDUCE: /* URL:tlp_reduce */
20308 /* Pacing related ones */
20309 case TCP_RACK_PACE_ALWAYS: /* URL:pace_always */
20310 case TCP_BBR_RACK_INIT_RATE: /* URL:irate */
20311 case TCP_BBR_IWINTSO: /* URL:tso_iwin */
20312 case TCP_RACK_PACE_MAX_SEG: /* URL:pace_max_seg */
20313 case TCP_RACK_FORCE_MSEG: /* URL:force_max_seg */
20314 case TCP_RACK_PACE_RATE_CA: /* URL:pr_ca */
20315 case TCP_RACK_PACE_RATE_SS: /* URL:pr_ss*/
20316 case TCP_RACK_PACE_RATE_REC: /* URL:pr_rec */
20317 case TCP_RACK_GP_INCREASE_CA: /* URL:gp_inc_ca */
20318 case TCP_RACK_GP_INCREASE_SS: /* URL:gp_inc_ss */
20319 case TCP_RACK_GP_INCREASE_REC: /* URL:gp_inc_rec */
20320 case TCP_RACK_RR_CONF: /* URL:rrr_conf */
20321 case TCP_BBR_HDWR_PACE: /* URL:hdwrpace */
20322 case TCP_HDWR_RATE_CAP: /* URL:hdwrcap boolean */
20323 case TCP_PACING_RATE_CAP: /* URL:cap -- used by side-channel */
20324 case TCP_HDWR_UP_ONLY: /* URL:uponly -- hardware pacing boolean */
20325 /* End pacing related */
20326 case TCP_FAST_RSM_HACK: /* URL:frsm_hack */
20327 case TCP_DELACK: /* URL:delack (in base TCP i.e. tcp_hints along with cc etc ) */
20328 case TCP_RACK_PRR_SENDALOT: /* URL:prr_sendalot */
20329 case TCP_RACK_MIN_TO: /* URL:min_to */
20330 case TCP_RACK_EARLY_SEG: /* URL:early_seg */
20331 case TCP_RACK_REORD_THRESH: /* URL:reord_thresh */
20332 case TCP_RACK_REORD_FADE: /* URL:reord_fade */
20333 case TCP_RACK_TLP_THRESH: /* URL:tlp_thresh */
20334 case TCP_RACK_PKT_DELAY: /* URL:pkt_delay */
20335 case TCP_RACK_TLP_USE: /* URL:tlp_use */
20336 case TCP_BBR_RACK_RTT_USE: /* URL:rttuse */
20337 case TCP_BBR_USE_RACK_RR: /* URL:rackrr */
20338 case TCP_RACK_DO_DETECTION: /* URL:detect */
20339 case TCP_NO_PRR: /* URL:noprr */
20340 case TCP_TIMELY_DYN_ADJ: /* URL:dynamic */
20341 case TCP_DATA_AFTER_CLOSE: /* no URL */
20342 case TCP_RACK_NONRXT_CFG_RATE: /* URL:nonrxtcr */
20343 case TCP_SHARED_CWND_ENABLE: /* URL:scwnd */
20344 case TCP_RACK_MBUF_QUEUE: /* URL:mqueue */
20345 case TCP_RACK_NO_PUSH_AT_MAX: /* URL:npush */
20346 case TCP_RACK_PACE_TO_FILL: /* URL:fillcw */
20347 case TCP_SHARED_CWND_TIME_LIMIT: /* URL:lscwnd */
20348 case TCP_RACK_PROFILE: /* URL:profile */
20349 case TCP_USE_CMP_ACKS: /* URL:cmpack */
20350 case TCP_RACK_ABC_VAL: /* URL:labc */
20351 case TCP_REC_ABC_VAL: /* URL:reclabc */
20352 case TCP_RACK_MEASURE_CNT: /* URL:measurecnt */
20353 case TCP_DEFER_OPTIONS: /* URL:defer */
20354 case TCP_RACK_DSACK_OPT: /* URL:dsack */
20355 case TCP_RACK_PACING_BETA: /* URL:pacing_beta */
20356 case TCP_RACK_PACING_BETA_ECN: /* URL:pacing_beta_ecn */
20357 case TCP_RACK_TIMER_SLOP: /* URL:timer_slop */
20358 case TCP_RACK_ENABLE_HYSTART: /* URL:hystart */
20359 break;
20360 default:
20361 /* Filter off all unknown options to the base stack */
20362 return (tcp_default_ctloutput(inp, sopt));
20363 break;
20364 }
20365 INP_WUNLOCK(inp);
20366 if (sopt->sopt_name == TCP_PACING_RATE_CAP) {
20367 error = sooptcopyin(sopt, &loptval, sizeof(loptval), sizeof(loptval));
20368 /*
20369 * We truncate it down to 32 bits for the socket-option trace this
20370 * means rates > 34Gbps won't show right, but thats probably ok.
20371 */
20372 optval = (uint32_t)loptval;
20373 } else {
20374 error = sooptcopyin(sopt, &optval, sizeof(optval), sizeof(optval));
20375 /* Save it in 64 bit form too */
20376 loptval = optval;
20377 }
20378 if (error)
20379 return (error);
20380 INP_WLOCK(inp);
20381 if (inp->inp_flags & INP_DROPPED) {
20382 INP_WUNLOCK(inp);
20383 return (ECONNRESET);
20384 }
20385 if (tp->t_fb != &__tcp_rack) {
20386 INP_WUNLOCK(inp);
20387 return (ENOPROTOOPT);
20388 }
20389 if (rack->defer_options && (rack->gp_ready == 0) &&
20390 (sopt->sopt_name != TCP_DEFER_OPTIONS) &&
20391 (sopt->sopt_name != TCP_RACK_PACING_BETA) &&
20392 (sopt->sopt_name != TCP_RACK_PACING_BETA_ECN) &&
20393 (sopt->sopt_name != TCP_RACK_MEASURE_CNT)) {
20394 /* Options are beind deferred */
20395 if (rack_add_deferred_option(rack, sopt->sopt_name, loptval)) {
20396 INP_WUNLOCK(inp);
20397 return (0);
20398 } else {
20399 /* No memory to defer, fail */
20400 INP_WUNLOCK(inp);
20401 return (ENOMEM);
20402 }
20403 }
20404 error = rack_process_option(tp, rack, sopt->sopt_name, optval, loptval);
20405 INP_WUNLOCK(inp);
20406 return (error);
20407 }
20408
20409 static void
20410 rack_fill_info(struct tcpcb *tp, struct tcp_info *ti)
20411 {
20412
20413 INP_WLOCK_ASSERT(tptoinpcb(tp));
20414 bzero(ti, sizeof(*ti));
20415
20416 ti->tcpi_state = tp->t_state;
20417 if ((tp->t_flags & TF_REQ_TSTMP) && (tp->t_flags & TF_RCVD_TSTMP))
20418 ti->tcpi_options |= TCPI_OPT_TIMESTAMPS;
20419 if (tp->t_flags & TF_SACK_PERMIT)
20420 ti->tcpi_options |= TCPI_OPT_SACK;
20421 if ((tp->t_flags & TF_REQ_SCALE) && (tp->t_flags & TF_RCVD_SCALE)) {
20422 ti->tcpi_options |= TCPI_OPT_WSCALE;
20423 ti->tcpi_snd_wscale = tp->snd_scale;
20424 ti->tcpi_rcv_wscale = tp->rcv_scale;
20425 }
20426 if (tp->t_flags2 & (TF2_ECN_PERMIT | TF2_ACE_PERMIT))
20427 ti->tcpi_options |= TCPI_OPT_ECN;
20428 if (tp->t_flags & TF_FASTOPEN)
20429 ti->tcpi_options |= TCPI_OPT_TFO;
20430 /* still kept in ticks is t_rcvtime */
20431 ti->tcpi_last_data_recv = ((uint32_t)ticks - tp->t_rcvtime) * tick;
20432 /* Since we hold everything in precise useconds this is easy */
20433 ti->tcpi_rtt = tp->t_srtt;
20434 ti->tcpi_rttvar = tp->t_rttvar;
20435 ti->tcpi_rto = tp->t_rxtcur;
20436 ti->tcpi_snd_ssthresh = tp->snd_ssthresh;
20437 ti->tcpi_snd_cwnd = tp->snd_cwnd;
20438 /*
20439 * FreeBSD-specific extension fields for tcp_info.
20440 */
20441 ti->tcpi_rcv_space = tp->rcv_wnd;
20442 ti->tcpi_rcv_nxt = tp->rcv_nxt;
20443 ti->tcpi_snd_wnd = tp->snd_wnd;
20444 ti->tcpi_snd_bwnd = 0; /* Unused, kept for compat. */
20445 ti->tcpi_snd_nxt = tp->snd_nxt;
20446 ti->tcpi_snd_mss = tp->t_maxseg;
20447 ti->tcpi_rcv_mss = tp->t_maxseg;
20448 ti->tcpi_snd_rexmitpack = tp->t_sndrexmitpack;
20449 ti->tcpi_rcv_ooopack = tp->t_rcvoopack;
20450 ti->tcpi_snd_zerowin = tp->t_sndzerowin;
20451 #ifdef NETFLIX_STATS
20452 ti->tcpi_total_tlp = tp->t_sndtlppack;
20453 ti->tcpi_total_tlp_bytes = tp->t_sndtlpbyte;
20454 memcpy(&ti->tcpi_rxsyninfo, &tp->t_rxsyninfo, sizeof(struct tcpsyninfo));
20455 #endif
20456 #ifdef TCP_OFFLOAD
20457 if (tp->t_flags & TF_TOE) {
20458 ti->tcpi_options |= TCPI_OPT_TOE;
20459 tcp_offload_tcp_info(tp, ti);
20460 }
20461 #endif
20462 }
20463
20464 static int
20465 rack_get_sockopt(struct inpcb *inp, struct sockopt *sopt)
20466 {
20467 struct tcpcb *tp;
20468 struct tcp_rack *rack;
20469 int32_t error, optval;
20470 uint64_t val, loptval;
20471 struct tcp_info ti;
20472 /*
20473 * Because all our options are either boolean or an int, we can just
20474 * pull everything into optval and then unlock and copy. If we ever
20475 * add a option that is not a int, then this will have quite an
20476 * impact to this routine.
20477 */
20478 error = 0;
20479 tp = intotcpcb(inp);
20480 rack = (struct tcp_rack *)tp->t_fb_ptr;
20481 if (rack == NULL) {
20482 INP_WUNLOCK(inp);
20483 return (EINVAL);
20484 }
20485 switch (sopt->sopt_name) {
20486 case TCP_INFO:
20487 /* First get the info filled */
20488 rack_fill_info(tp, &ti);
20489 /* Fix up the rtt related fields if needed */
20490 INP_WUNLOCK(inp);
20491 error = sooptcopyout(sopt, &ti, sizeof ti);
20492 return (error);
20493 /*
20494 * Beta is the congestion control value for NewReno that influences how
20495 * much of a backoff happens when loss is detected. It is normally set
20496 * to 50 for 50% i.e. the cwnd is reduced to 50% of its previous value
20497 * when you exit recovery.
20498 */
20499 case TCP_RACK_PACING_BETA:
20500 if (strcmp(tp->t_cc->name, CCALGONAME_NEWRENO) != 0)
20501 error = EINVAL;
20502 else if (rack->rc_pacing_cc_set == 0)
20503 optval = rack->r_ctl.rc_saved_beta.beta;
20504 else {
20505 /*
20506 * Reach out into the CC data and report back what
20507 * I have previously set. Yeah it looks hackish but
20508 * we don't want to report the saved values.
20509 */
20510 if (tp->t_ccv.cc_data)
20511 optval = ((struct newreno *)tp->t_ccv.cc_data)->beta;
20512 else
20513 error = EINVAL;
20514 }
20515 break;
20516 /*
20517 * Beta_ecn is the congestion control value for NewReno that influences how
20518 * much of a backoff happens when a ECN mark is detected. It is normally set
20519 * to 80 for 80% i.e. the cwnd is reduced by 20% of its previous value when
20520 * you exit recovery. Note that classic ECN has a beta of 50, it is only
20521 * ABE Ecn that uses this "less" value, but we do too with pacing :)
20522 */
20523
20524 case TCP_RACK_PACING_BETA_ECN:
20525 if (strcmp(tp->t_cc->name, CCALGONAME_NEWRENO) != 0)
20526 error = EINVAL;
20527 else if (rack->rc_pacing_cc_set == 0)
20528 optval = rack->r_ctl.rc_saved_beta.beta_ecn;
20529 else {
20530 /*
20531 * Reach out into the CC data and report back what
20532 * I have previously set. Yeah it looks hackish but
20533 * we don't want to report the saved values.
20534 */
20535 if (tp->t_ccv.cc_data)
20536 optval = ((struct newreno *)tp->t_ccv.cc_data)->beta_ecn;
20537 else
20538 error = EINVAL;
20539 }
20540 break;
20541 case TCP_RACK_DSACK_OPT:
20542 optval = 0;
20543 if (rack->rc_rack_tmr_std_based) {
20544 optval |= 1;
20545 }
20546 if (rack->rc_rack_use_dsack) {
20547 optval |= 2;
20548 }
20549 break;
20550 case TCP_RACK_ENABLE_HYSTART:
20551 {
20552 if (tp->t_ccv.flags & CCF_HYSTART_ALLOWED) {
20553 optval = RACK_HYSTART_ON;
20554 if (tp->t_ccv.flags & CCF_HYSTART_CAN_SH_CWND)
20555 optval = RACK_HYSTART_ON_W_SC;
20556 if (tp->t_ccv.flags & CCF_HYSTART_CONS_SSTH)
20557 optval = RACK_HYSTART_ON_W_SC_C;
20558 } else {
20559 optval = RACK_HYSTART_OFF;
20560 }
20561 }
20562 break;
20563 case TCP_FAST_RSM_HACK:
20564 optval = rack->fast_rsm_hack;
20565 break;
20566 case TCP_DEFER_OPTIONS:
20567 optval = rack->defer_options;
20568 break;
20569 case TCP_RACK_MEASURE_CNT:
20570 optval = rack->r_ctl.req_measurements;
20571 break;
20572 case TCP_REC_ABC_VAL:
20573 optval = rack->r_use_labc_for_rec;
20574 break;
20575 case TCP_RACK_ABC_VAL:
20576 optval = rack->rc_labc;
20577 break;
20578 case TCP_HDWR_UP_ONLY:
20579 optval= rack->r_up_only;
20580 break;
20581 case TCP_PACING_RATE_CAP:
20582 loptval = rack->r_ctl.bw_rate_cap;
20583 break;
20584 case TCP_RACK_PROFILE:
20585 /* You cannot retrieve a profile, its write only */
20586 error = EINVAL;
20587 break;
20588 case TCP_USE_CMP_ACKS:
20589 optval = rack->r_use_cmp_ack;
20590 break;
20591 case TCP_RACK_PACE_TO_FILL:
20592 optval = rack->rc_pace_to_cwnd;
20593 if (optval && rack->r_fill_less_agg)
20594 optval++;
20595 break;
20596 case TCP_RACK_NO_PUSH_AT_MAX:
20597 optval = rack->r_ctl.rc_no_push_at_mrtt;
20598 break;
20599 case TCP_SHARED_CWND_ENABLE:
20600 optval = rack->rack_enable_scwnd;
20601 break;
20602 case TCP_RACK_NONRXT_CFG_RATE:
20603 optval = rack->rack_rec_nonrxt_use_cr;
20604 break;
20605 case TCP_NO_PRR:
20606 if (rack->rack_no_prr == 1)
20607 optval = 1;
20608 else if (rack->no_prr_addback == 1)
20609 optval = 2;
20610 else
20611 optval = 0;
20612 break;
20613 case TCP_RACK_DO_DETECTION:
20614 optval = rack->do_detection;
20615 break;
20616 case TCP_RACK_MBUF_QUEUE:
20617 /* Now do we use the LRO mbuf-queue feature */
20618 optval = rack->r_mbuf_queue;
20619 break;
20620 case TCP_TIMELY_DYN_ADJ:
20621 optval = rack->rc_gp_dyn_mul;
20622 break;
20623 case TCP_BBR_IWINTSO:
20624 optval = rack->rc_init_win;
20625 break;
20626 case TCP_RACK_TLP_REDUCE:
20627 /* RACK TLP cwnd reduction (bool) */
20628 optval = rack->r_ctl.rc_tlp_cwnd_reduce;
20629 break;
20630 case TCP_BBR_RACK_INIT_RATE:
20631 val = rack->r_ctl.init_rate;
20632 /* convert to kbits per sec */
20633 val *= 8;
20634 val /= 1000;
20635 optval = (uint32_t)val;
20636 break;
20637 case TCP_RACK_FORCE_MSEG:
20638 optval = rack->rc_force_max_seg;
20639 break;
20640 case TCP_RACK_PACE_MAX_SEG:
20641 /* Max segments in a pace */
20642 optval = rack->rc_user_set_max_segs;
20643 break;
20644 case TCP_RACK_PACE_ALWAYS:
20645 /* Use the always pace method */
20646 optval = rack->rc_always_pace;
20647 break;
20648 case TCP_RACK_PRR_SENDALOT:
20649 /* Allow PRR to send more than one seg */
20650 optval = rack->r_ctl.rc_prr_sendalot;
20651 break;
20652 case TCP_RACK_MIN_TO:
20653 /* Minimum time between rack t-o's in ms */
20654 optval = rack->r_ctl.rc_min_to;
20655 break;
20656 case TCP_RACK_EARLY_SEG:
20657 /* If early recovery max segments */
20658 optval = rack->r_ctl.rc_early_recovery_segs;
20659 break;
20660 case TCP_RACK_REORD_THRESH:
20661 /* RACK reorder threshold (shift amount) */
20662 optval = rack->r_ctl.rc_reorder_shift;
20663 break;
20664 case TCP_RACK_REORD_FADE:
20665 /* Does reordering fade after ms time */
20666 optval = rack->r_ctl.rc_reorder_fade;
20667 break;
20668 case TCP_BBR_USE_RACK_RR:
20669 /* Do we use the rack cheat for rxt */
20670 optval = rack->use_rack_rr;
20671 break;
20672 case TCP_RACK_RR_CONF:
20673 optval = rack->r_rr_config;
20674 break;
20675 case TCP_HDWR_RATE_CAP:
20676 optval = rack->r_rack_hw_rate_caps;
20677 break;
20678 case TCP_BBR_HDWR_PACE:
20679 optval = rack->rack_hdw_pace_ena;
20680 break;
20681 case TCP_RACK_TLP_THRESH:
20682 /* RACK TLP theshold i.e. srtt+(srtt/N) */
20683 optval = rack->r_ctl.rc_tlp_threshold;
20684 break;
20685 case TCP_RACK_PKT_DELAY:
20686 /* RACK added ms i.e. rack-rtt + reord + N */
20687 optval = rack->r_ctl.rc_pkt_delay;
20688 break;
20689 case TCP_RACK_TLP_USE:
20690 optval = rack->rack_tlp_threshold_use;
20691 break;
20692 case TCP_RACK_PACE_RATE_CA:
20693 optval = rack->r_ctl.rc_fixed_pacing_rate_ca;
20694 break;
20695 case TCP_RACK_PACE_RATE_SS:
20696 optval = rack->r_ctl.rc_fixed_pacing_rate_ss;
20697 break;
20698 case TCP_RACK_PACE_RATE_REC:
20699 optval = rack->r_ctl.rc_fixed_pacing_rate_rec;
20700 break;
20701 case TCP_RACK_GP_INCREASE_SS:
20702 optval = rack->r_ctl.rack_per_of_gp_ca;
20703 break;
20704 case TCP_RACK_GP_INCREASE_CA:
20705 optval = rack->r_ctl.rack_per_of_gp_ss;
20706 break;
20707 case TCP_BBR_RACK_RTT_USE:
20708 optval = rack->r_ctl.rc_rate_sample_method;
20709 break;
20710 case TCP_DELACK:
20711 optval = tp->t_delayed_ack;
20712 break;
20713 case TCP_DATA_AFTER_CLOSE:
20714 optval = rack->rc_allow_data_af_clo;
20715 break;
20716 case TCP_SHARED_CWND_TIME_LIMIT:
20717 optval = rack->r_limit_scw;
20718 break;
20719 case TCP_RACK_TIMER_SLOP:
20720 optval = rack->r_ctl.timer_slop;
20721 break;
20722 default:
20723 return (tcp_default_ctloutput(inp, sopt));
20724 break;
20725 }
20726 INP_WUNLOCK(inp);
20727 if (error == 0) {
20728 if (TCP_PACING_RATE_CAP)
20729 error = sooptcopyout(sopt, &loptval, sizeof loptval);
20730 else
20731 error = sooptcopyout(sopt, &optval, sizeof optval);
20732 }
20733 return (error);
20734 }
20735
20736 static int
20737 rack_ctloutput(struct inpcb *inp, struct sockopt *sopt)
20738 {
20739 if (sopt->sopt_dir == SOPT_SET) {
20740 return (rack_set_sockopt(inp, sopt));
20741 } else if (sopt->sopt_dir == SOPT_GET) {
20742 return (rack_get_sockopt(inp, sopt));
20743 } else {
20744 panic("%s: sopt_dir $%d", __func__, sopt->sopt_dir);
20745 }
20746 }
20747
20748 static const char *rack_stack_names[] = {
20749 __XSTRING(STACKNAME),
20750 #ifdef STACKALIAS
20751 __XSTRING(STACKALIAS),
20752 #endif
20753 };
20754
20755 static int
20756 rack_ctor(void *mem, int32_t size, void *arg, int32_t how)
20757 {
20758 memset(mem, 0, size);
20759 return (0);
20760 }
20761
20762 static void
20763 rack_dtor(void *mem, int32_t size, void *arg)
20764 {
20765
20766 }
20767
20768 static bool rack_mod_inited = false;
20769
20770 static int
20771 tcp_addrack(module_t mod, int32_t type, void *data)
20772 {
20773 int32_t err = 0;
20774 int num_stacks;
20775
20776 switch (type) {
20777 case MOD_LOAD:
20778 rack_zone = uma_zcreate(__XSTRING(MODNAME) "_map",
20779 sizeof(struct rack_sendmap),
20780 rack_ctor, rack_dtor, NULL, NULL, UMA_ALIGN_PTR, 0);
20781
20782 rack_pcb_zone = uma_zcreate(__XSTRING(MODNAME) "_pcb",
20783 sizeof(struct tcp_rack),
20784 rack_ctor, NULL, NULL, NULL, UMA_ALIGN_CACHE, 0);
20785
20786 sysctl_ctx_init(&rack_sysctl_ctx);
20787 rack_sysctl_root = SYSCTL_ADD_NODE(&rack_sysctl_ctx,
20788 SYSCTL_STATIC_CHILDREN(_net_inet_tcp),
20789 OID_AUTO,
20790 #ifdef STACKALIAS
20791 __XSTRING(STACKALIAS),
20792 #else
20793 __XSTRING(STACKNAME),
20794 #endif
20795 CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
20796 "");
20797 if (rack_sysctl_root == NULL) {
20798 printf("Failed to add sysctl node\n");
20799 err = EFAULT;
20800 goto free_uma;
20801 }
20802 rack_init_sysctls();
20803 num_stacks = nitems(rack_stack_names);
20804 err = register_tcp_functions_as_names(&__tcp_rack, M_WAITOK,
20805 rack_stack_names, &num_stacks);
20806 if (err) {
20807 printf("Failed to register %s stack name for "
20808 "%s module\n", rack_stack_names[num_stacks],
20809 __XSTRING(MODNAME));
20810 sysctl_ctx_free(&rack_sysctl_ctx);
20811 free_uma:
20812 uma_zdestroy(rack_zone);
20813 uma_zdestroy(rack_pcb_zone);
20814 rack_counter_destroy();
20815 printf("Failed to register rack module -- err:%d\n", err);
20816 return (err);
20817 }
20818 tcp_lro_reg_mbufq();
20819 rack_mod_inited = true;
20820 break;
20821 case MOD_QUIESCE:
20822 err = deregister_tcp_functions(&__tcp_rack, true, false);
20823 break;
20824 case MOD_UNLOAD:
20825 err = deregister_tcp_functions(&__tcp_rack, false, true);
20826 if (err == EBUSY)
20827 break;
20828 if (rack_mod_inited) {
20829 uma_zdestroy(rack_zone);
20830 uma_zdestroy(rack_pcb_zone);
20831 sysctl_ctx_free(&rack_sysctl_ctx);
20832 rack_counter_destroy();
20833 rack_mod_inited = false;
20834 }
20835 tcp_lro_dereg_mbufq();
20836 err = 0;
20837 break;
20838 default:
20839 return (EOPNOTSUPP);
20840 }
20841 return (err);
20842 }
20843
20844 static moduledata_t tcp_rack = {
20845 .name = __XSTRING(MODNAME),
20846 .evhand = tcp_addrack,
20847 .priv = 0
20848 };
20849
20850 MODULE_VERSION(MODNAME, 1);
20851 DECLARE_MODULE(MODNAME, tcp_rack, SI_SUB_PROTO_DOMAIN, SI_ORDER_ANY);
20852 MODULE_DEPEND(MODNAME, tcphpts, 1, 1, 1);
20853
20854 #endif /* #if !defined(INET) && !defined(INET6) */
Cache object: b433e4103cbbefa79408ba965756b804
|