The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/netinet/tcp_stacks/rack_bbr_common.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2016-2020 Netflix, Inc.
    3  *
    4  * Redistribution and use in source and binary forms, with or without
    5  * modification, are permitted provided that the following conditions
    6  * are met:
    7  * 1. Redistributions of source code must retain the above copyright
    8  *    notice, this list of conditions and the following disclaimer.
    9  * 2. Redistributions in binary form must reproduce the above copyright
   10  *    notice, this list of conditions and the following disclaimer in the
   11  *    documentation and/or other materials provided with the distribution.
   12  *
   13  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   14  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   15  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   16  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   17  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   18  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   19  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   20  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   21  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   22  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   23  * SUCH DAMAGE.
   24  *
   25  */
   26 /*
   27  * Author: Randall Stewart <rrs@netflix.com>
   28  * This work is based on the ACM Queue paper
   29  * BBR - Congestion Based Congestion Control
   30  * and also numerous discussions with Neal, Yuchung and Van.
   31  */
   32 
   33 #include <sys/cdefs.h>
   34 __FBSDID("$FreeBSD$");
   35 
   36 #include "opt_inet.h"
   37 #include "opt_inet6.h"
   38 #include "opt_ipsec.h"
   39 #include "opt_ratelimit.h"
   40 #include "opt_kern_tls.h"
   41 #include <sys/param.h>
   42 #include <sys/arb.h>
   43 #include <sys/module.h>
   44 #include <sys/kernel.h>
   45 #ifdef TCP_HHOOK
   46 #include <sys/hhook.h>
   47 #endif
   48 #include <sys/malloc.h>
   49 #include <sys/mbuf.h>
   50 #include <sys/proc.h>
   51 #include <sys/qmath.h>
   52 #include <sys/socket.h>
   53 #include <sys/socketvar.h>
   54 #ifdef KERN_TLS
   55 #include <sys/ktls.h>
   56 #endif
   57 #include <sys/sysctl.h>
   58 #include <sys/systm.h>
   59 #include <sys/tree.h>
   60 #ifdef NETFLIX_STATS
   61 #include <sys/stats.h> /* Must come after qmath.h and tree.h */
   62 #endif
   63 #include <sys/refcount.h>
   64 #include <sys/queue.h>
   65 #include <sys/smp.h>
   66 #include <sys/kthread.h>
   67 #include <sys/lock.h>
   68 #include <sys/mutex.h>
   69 #include <sys/tim_filter.h>
   70 #include <sys/time.h>
   71 #include <vm/uma.h>
   72 #include <sys/kern_prefetch.h>
   73 
   74 #include <net/route.h>
   75 #include <net/vnet.h>
   76 #include <net/ethernet.h>
   77 #include <net/bpf.h>
   78 
   79 #define TCPSTATES               /* for logging */
   80 
   81 #include <netinet/in.h>
   82 #include <netinet/in_kdtrace.h>
   83 #include <netinet/in_pcb.h>
   84 #include <netinet/ip.h>
   85 #include <netinet/ip_icmp.h>    /* required for icmp_var.h */
   86 #include <netinet/icmp_var.h>   /* for ICMP_BANDLIM */
   87 #include <netinet/ip_var.h>
   88 #include <netinet/ip6.h>
   89 #include <netinet6/in6_pcb.h>
   90 #include <netinet6/ip6_var.h>
   91 #include <netinet/tcp.h>
   92 #include <netinet/tcp_fsm.h>
   93 #include <netinet/tcp_seq.h>
   94 #include <netinet/tcp_timer.h>
   95 #include <netinet/tcp_var.h>
   96 #include <netinet/tcpip.h>
   97 #include <netinet/tcp_ecn.h>
   98 #include <netinet/tcp_hpts.h>
   99 #include <netinet/tcp_lro.h>
  100 #include <netinet/cc/cc.h>
  101 #include <netinet/tcp_log_buf.h>
  102 #ifdef TCP_OFFLOAD
  103 #include <netinet/tcp_offload.h>
  104 #endif
  105 #ifdef INET6
  106 #include <netinet6/tcp6_var.h>
  107 #endif
  108 #include <netinet/tcp_fastopen.h>
  109 
  110 #include <netipsec/ipsec_support.h>
  111 #include <net/if.h>
  112 #include <net/if_var.h>
  113 
  114 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
  115 #include <netipsec/ipsec.h>
  116 #include <netipsec/ipsec6.h>
  117 #endif                          /* IPSEC */
  118 
  119 #include <netinet/udp.h>
  120 #include <netinet/udp_var.h>
  121 #include <machine/in_cksum.h>
  122 
  123 #ifdef MAC
  124 #include <security/mac/mac_framework.h>
  125 #endif
  126 #include "rack_bbr_common.h"
  127 
  128 /*
  129  * Common TCP Functions - These are shared by borth
  130  * rack and BBR.
  131  */
  132 #ifdef KERN_TLS
  133 uint32_t
  134 ctf_get_opt_tls_size(struct socket *so, uint32_t rwnd)
  135 {
  136         struct ktls_session *tls;
  137         uint32_t len;
  138 
  139 again:
  140         tls = so->so_snd.sb_tls_info;
  141         len = tls->params.max_frame_len;         /* max tls payload */
  142         len += tls->params.tls_hlen;      /* tls header len  */
  143         len += tls->params.tls_tlen;      /* tls trailer len */
  144         if ((len * 4) > rwnd) {
  145                 /*
  146                  * Stroke this will suck counter and what
  147                  * else should we do Drew? From the
  148                  * TCP perspective I am not sure
  149                  * what should be done...
  150                  */
  151                 if (tls->params.max_frame_len > 4096) {
  152                         tls->params.max_frame_len -= 4096;
  153                         if (tls->params.max_frame_len < 4096)
  154                                 tls->params.max_frame_len = 4096;
  155                         goto again;
  156                 }
  157         }
  158         return (len);
  159 }
  160 #endif
  161 
  162 static int
  163 ctf_get_enet_type(struct ifnet *ifp, struct mbuf *m)
  164 {
  165         struct ether_header *eh;
  166 #ifdef INET6
  167         struct ip6_hdr *ip6 = NULL;     /* Keep compiler happy. */
  168 #endif
  169 #ifdef INET
  170         struct ip *ip = NULL;           /* Keep compiler happy. */
  171 #endif
  172 #if defined(INET) || defined(INET6)
  173         struct tcphdr *th;
  174         int32_t tlen;
  175         uint16_t drop_hdrlen;
  176 #endif
  177         uint16_t etype;
  178 #ifdef INET
  179         uint8_t iptos;
  180 #endif
  181 
  182         /* Is it the easy way? */
  183         if (m->m_flags & M_LRO_EHDRSTRP)
  184                 return (m->m_pkthdr.lro_etype);
  185         /*
  186          * Ok this is the old style call, the ethernet header is here.
  187          * This also means no checksum or BPF were done. This
  188          * can happen if the race to setup the inp fails and
  189          * LRO sees no INP at packet input, but by the time
  190          * we queue the packets an INP gets there. Its rare
  191          * but it can occur so we will handle it. Note that
  192          * this means duplicated work but with the rarity of it
  193          * its not worth worrying about.
  194          */
  195         /* Let the BPF see the packet */
  196         if (bpf_peers_present(ifp->if_bpf))
  197                 ETHER_BPF_MTAP(ifp, m);
  198         /* Now the csum */
  199         eh = mtod(m, struct ether_header *);
  200         etype = ntohs(eh->ether_type);
  201         m_adj(m,  sizeof(*eh));
  202         switch (etype) {
  203 #ifdef INET6
  204                 case ETHERTYPE_IPV6:
  205                 {
  206                         if (m->m_len < (sizeof(*ip6) + sizeof(*th))) {
  207                                 m = m_pullup(m, sizeof(*ip6) + sizeof(*th));
  208                                 if (m == NULL) {
  209                                         KMOD_TCPSTAT_INC(tcps_rcvshort);
  210                                         return (-1);
  211                                 }
  212                         }
  213                         ip6 = (struct ip6_hdr *)(eh + 1);
  214                         th = (struct tcphdr *)(ip6 + 1);
  215                         drop_hdrlen = sizeof(*ip6);
  216                         tlen = ntohs(ip6->ip6_plen);
  217                         if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID_IPV6) {
  218                                 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
  219                                         th->th_sum = m->m_pkthdr.csum_data;
  220                                 else
  221                                         th->th_sum = in6_cksum_pseudo(ip6, tlen,
  222                                                                       IPPROTO_TCP,
  223                                                                       m->m_pkthdr.csum_data);
  224                                 th->th_sum ^= 0xffff;
  225                         } else
  226                                 th->th_sum = in6_cksum(m, IPPROTO_TCP, drop_hdrlen, tlen);
  227                         if (th->th_sum) {
  228                                 KMOD_TCPSTAT_INC(tcps_rcvbadsum);
  229                                 m_freem(m);
  230                                 return (-1);
  231                         }
  232                         return (etype);
  233                 }
  234 #endif
  235 #ifdef INET
  236                 case ETHERTYPE_IP:
  237                 {
  238                         if (m->m_len < sizeof (struct tcpiphdr)) {
  239                                 m = m_pullup(m, sizeof (struct tcpiphdr));
  240                                 if (m == NULL) {
  241                                         KMOD_TCPSTAT_INC(tcps_rcvshort);
  242                                         return (-1);
  243                                 }
  244                         }
  245                         ip = (struct ip *)(eh + 1);
  246                         th = (struct tcphdr *)(ip + 1);
  247                         drop_hdrlen = sizeof(*ip);
  248                         iptos = ip->ip_tos;
  249                         tlen = ntohs(ip->ip_len) - sizeof(struct ip);
  250                         if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) {
  251                                 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
  252                                         th->th_sum = m->m_pkthdr.csum_data;
  253                                 else
  254                                         th->th_sum = in_pseudo(ip->ip_src.s_addr,
  255                                                                ip->ip_dst.s_addr,
  256                                                                htonl(m->m_pkthdr.csum_data + tlen + IPPROTO_TCP));
  257                                 th->th_sum ^= 0xffff;
  258                         } else {
  259                                 int len;
  260                                 struct ipovly *ipov = (struct ipovly *)ip;
  261                                 /*
  262                                  * Checksum extended TCP header and data.
  263                                  */
  264                                 len = drop_hdrlen + tlen;
  265                                 bzero(ipov->ih_x1, sizeof(ipov->ih_x1));
  266                                 ipov->ih_len = htons(tlen);
  267                                 th->th_sum = in_cksum(m, len);
  268                                 /* Reset length for SDT probes. */
  269                                 ip->ip_len = htons(len);
  270                                 /* Reset TOS bits */
  271                                 ip->ip_tos = iptos;
  272                                 /* Re-initialization for later version check */
  273                                 ip->ip_v = IPVERSION;
  274                                 ip->ip_hl = sizeof(*ip) >> 2;
  275                         }
  276                         if (th->th_sum) {
  277                                 KMOD_TCPSTAT_INC(tcps_rcvbadsum);
  278                                 m_freem(m);
  279                                 return (-1);
  280                         }
  281                         break;
  282                 }
  283 #endif
  284         };
  285         return (etype);
  286 }
  287 
  288 /*
  289  * The function ctf_process_inbound_raw() is used by
  290  * transport developers to do the steps needed to
  291  * support MBUF Queuing i.e. the flags in
  292  * inp->inp_flags2:
  293  *
  294  * - INP_SUPPORTS_MBUFQ
  295  * - INP_MBUF_QUEUE_READY
  296  * - INP_DONT_SACK_QUEUE
  297  * - INP_MBUF_ACKCMP
  298  *
  299  * These flags help control how LRO will deliver
  300  * packets to the transport. You first set in inp_flags2
  301  * the INP_SUPPORTS_MBUFQ to tell the LRO code that you
  302  * will gladly take a queue of packets instead of a compressed
  303  * single packet. You also set in your t_fb pointer the
  304  * tfb_do_queued_segments to point to ctf_process_inbound_raw.
  305  *
  306  * This then gets you lists of inbound ACK's/Data instead
  307  * of a condensed compressed ACK/DATA packet. Why would you
  308  * want that? This will get you access to all the arrival
  309  * times of at least LRO and possibly at the Hardware (if
  310  * the interface card supports that) of the actual ACK/DATA.
  311  * In some transport designs this is important since knowing
  312  * the actual time we got the packet is useful information.
  313  *
  314  * A new special type of mbuf may also be supported by the transport
  315  * if it has set the INP_MBUF_ACKCMP flag. If its set, LRO will
  316  * possibly create a M_ACKCMP type mbuf. This is a mbuf with
  317  * an array of "acks". One thing also to note is that when this
  318  * occurs a subsequent LRO may find at the back of the untouched
  319  * mbuf queue chain a M_ACKCMP and append on to it. This means
  320  * that until the transport pulls in the mbuf chain queued
  321  * for it more ack's may get on the mbufs that were already
  322  * delivered. There currently is a limit of 6 acks condensed
  323  * into 1 mbuf which means often when this is occuring, we
  324  * don't get that effect but it does happen.
  325  *
  326  * Now there are some interesting Caveats that the transport
  327  * designer needs to take into account when using this feature.
  328  *
  329  * 1) It is used with HPTS and pacing, when the pacing timer
  330  *    for output calls it will first call the input.
  331  * 2) When you set INP_MBUF_QUEUE_READY this tells LRO
  332  *    queue normal packets, I am busy pacing out data and
  333  *    will process the queued packets before my tfb_tcp_output
  334  *    call from pacing. If a non-normal packet arrives, (e.g. sack)
  335  *    you will be awoken immediately.
  336  * 3) Finally you can add the INP_DONT_SACK_QUEUE to not even
  337  *    be awoken if a SACK has arrived. You would do this when
  338  *    you were not only running a pacing for output timer
  339  *    but a Rack timer as well i.e. you know you are in recovery
  340  *    and are in the process (via the timers) of dealing with
  341  *    the loss.
  342  *
  343  * Now a critical thing you must be aware of here is that the
  344  * use of the flags has a far greater scope then just your
  345  * typical LRO. Why? Well thats because in the normal compressed
  346  * LRO case at the end of a driver interupt all packets are going
  347  * to get presented to the transport no matter if there is one
  348  * or 100. With the MBUF_QUEUE model, this is not true. You will
  349  * only be awoken to process the queue of packets when:
  350  *     a) The flags discussed above allow it.
  351  *          <or>
  352  *     b) You exceed a ack or data limit (by default the
  353  *        ack limit is infinity (64k acks) and the data
  354  *        limit is 64k of new TCP data)
  355  *         <or>
  356  *     c) The push bit has been set by the peer
  357  */
  358 
  359 int
  360 ctf_process_inbound_raw(struct tcpcb *tp, struct socket *so, struct mbuf *m, int has_pkt)
  361 {
  362         /*
  363          * We are passed a raw change of mbuf packets
  364          * that arrived in LRO. They are linked via
  365          * the m_nextpkt link in the pkt-headers.
  366          *
  367          * We process each one by:
  368          * a) saving off the next
  369          * b) stripping off the ether-header
  370          * c) formulating the arguments for
  371          *    the tfb_tcp_hpts_do_segment
  372          * d) calling each mbuf to tfb_tcp_hpts_do_segment
  373          *    after adjusting the time to match the arrival time.
  374          * Note that the LRO code assures no IP options are present.
  375          *
  376          * The symantics for calling tfb_tcp_hpts_do_segment are the
  377          * following:
  378          * 1) It returns 0 if all went well and you (the caller) need
  379          *    to release the lock.
  380          * 2) If nxt_pkt is set, then the function will surpress calls
  381          *    to tcp_output() since you are promising to call again
  382          *    with another packet.
  383          * 3) If it returns 1, then you must free all the packets being
  384          *    shipped in, the tcb has been destroyed (or about to be destroyed).
  385          */
  386         struct mbuf *m_save;
  387         struct tcphdr *th;
  388 #ifdef INET6
  389         struct ip6_hdr *ip6 = NULL;     /* Keep compiler happy. */
  390 #endif
  391 #ifdef INET
  392         struct ip *ip = NULL;           /* Keep compiler happy. */
  393 #endif
  394         struct ifnet *ifp;
  395         struct timeval tv;
  396         struct inpcb *inp __diagused;
  397         int32_t retval, nxt_pkt, tlen, off;
  398         int etype = 0;
  399         uint16_t drop_hdrlen;
  400         uint8_t iptos, no_vn=0;
  401 
  402         inp = tptoinpcb(tp);
  403         INP_WLOCK_ASSERT(inp);
  404         NET_EPOCH_ASSERT();
  405 
  406         if (m)
  407                 ifp = m_rcvif(m);
  408         else
  409                 ifp = NULL;
  410         if (ifp == NULL) {
  411                 /*
  412                  * We probably should not work around
  413                  * but kassert, since lro alwasy sets rcvif.
  414                  */
  415                 no_vn = 1;
  416                 goto skip_vnet;
  417         }
  418         CURVNET_SET(ifp->if_vnet);
  419 skip_vnet:
  420         tcp_get_usecs(&tv);
  421         while (m) {
  422                 m_save = m->m_nextpkt;
  423                 m->m_nextpkt = NULL;
  424                 if ((m->m_flags & M_ACKCMP) == 0) {
  425                         /* Now lets get the ether header */
  426                         etype = ctf_get_enet_type(ifp, m);
  427                         if (etype == -1) {
  428                                 /* Skip this packet it was freed by checksum */
  429                                 goto skipped_pkt;
  430                         }
  431                         KASSERT(((etype == ETHERTYPE_IPV6) || (etype == ETHERTYPE_IP)),
  432                                 ("tp:%p m:%p etype:0x%x -- not IP or IPv6", tp, m, etype));
  433                         /* Trim off the ethernet header */
  434                         switch (etype) {
  435 #ifdef INET6
  436                         case ETHERTYPE_IPV6:
  437                                 ip6 = mtod(m, struct ip6_hdr *);
  438                                 th = (struct tcphdr *)(ip6 + 1);
  439                                 tlen = ntohs(ip6->ip6_plen);
  440                                 drop_hdrlen = sizeof(*ip6);
  441                                 iptos = (ntohl(ip6->ip6_flow) >> 20) & 0xff;
  442                                 break;
  443 #endif
  444 #ifdef INET
  445                         case ETHERTYPE_IP:
  446                                 ip = mtod(m, struct ip *);
  447                                 th = (struct tcphdr *)(ip + 1);
  448                                 drop_hdrlen = sizeof(*ip);
  449                                 iptos = ip->ip_tos;
  450                                 tlen = ntohs(ip->ip_len) - sizeof(struct ip);
  451                                 break;
  452 #endif
  453                         } /* end switch */
  454                         /*
  455                          * Convert TCP protocol specific fields to host format.
  456                          */
  457                         tcp_fields_to_host(th);
  458                         off = th->th_off << 2;
  459                         if (off < sizeof (struct tcphdr) || off > tlen) {
  460                                 printf("off:%d < hdrlen:%zu || > tlen:%u -- dump\n",
  461                                        off,
  462                                        sizeof(struct tcphdr),
  463                                        tlen);
  464                                 KMOD_TCPSTAT_INC(tcps_rcvbadoff);
  465                                 m_freem(m);
  466                                 goto skipped_pkt;
  467                         }
  468                         tlen -= off;
  469                         drop_hdrlen += off;
  470                         /*
  471                          * Now lets setup the timeval to be when we should
  472                          * have been called (if we can).
  473                          */
  474                         m->m_pkthdr.lro_nsegs = 1;
  475                         /* Now what about next packet? */
  476                 } else {
  477                         /*
  478                          * This mbuf is an array of acks that have
  479                          * been compressed. We assert the inp has
  480                          * the flag set to enable this!
  481                          */
  482                         KASSERT((inp->inp_flags2 & INP_MBUF_ACKCMP),
  483                             ("tp:%p inp:%p no INP_MBUF_ACKCMP flags?", tp, inp));
  484                         tlen = 0;
  485                         drop_hdrlen = 0;
  486                         th = NULL;
  487                         iptos = 0;
  488                 }
  489                 tcp_get_usecs(&tv);
  490                 if (m_save || has_pkt)
  491                         nxt_pkt = 1;
  492                 else
  493                         nxt_pkt = 0;
  494                 if ((m->m_flags & M_ACKCMP) == 0)
  495                         KMOD_TCPSTAT_INC(tcps_rcvtotal);
  496                 else
  497                         KMOD_TCPSTAT_ADD(tcps_rcvtotal, (m->m_len / sizeof(struct tcp_ackent)));
  498                 retval = (*tp->t_fb->tfb_do_segment_nounlock)(m, th, so, tp, drop_hdrlen, tlen,
  499                                                               iptos, nxt_pkt, &tv);
  500                 if (retval) {
  501                         /* We lost the lock and tcb probably */
  502                         m = m_save;
  503                         while(m) {
  504                                 m_save = m->m_nextpkt;
  505                                 m->m_nextpkt = NULL;
  506                                 m_freem(m);
  507                                 m = m_save;
  508                         }
  509                         if (no_vn == 0) {
  510                                 CURVNET_RESTORE();
  511                         }
  512                         INP_UNLOCK_ASSERT(inp);
  513                         return(retval);
  514                 }
  515 skipped_pkt:
  516                 m = m_save;
  517         }
  518         if (no_vn == 0) {
  519                 CURVNET_RESTORE();
  520         }
  521         return(retval);
  522 }
  523 
  524 int
  525 ctf_do_queued_segments(struct socket *so, struct tcpcb *tp, int have_pkt)
  526 {
  527         struct mbuf *m;
  528 
  529         /* First lets see if we have old packets */
  530         if (tp->t_in_pkt) {
  531                 m = tp->t_in_pkt;
  532                 tp->t_in_pkt = NULL;
  533                 tp->t_tail_pkt = NULL;
  534                 if (ctf_process_inbound_raw(tp, so, m, have_pkt)) {
  535                         /* We lost the tcpcb (maybe a RST came in)? */
  536                         return(1);
  537                 }
  538         }
  539         return (0);
  540 }
  541 
  542 uint32_t
  543 ctf_outstanding(struct tcpcb *tp)
  544 {
  545         uint32_t bytes_out;
  546 
  547         bytes_out = tp->snd_max - tp->snd_una;
  548         if (tp->t_state < TCPS_ESTABLISHED)
  549                 bytes_out++;
  550         if (tp->t_flags & TF_SENTFIN)
  551                 bytes_out++;
  552         return (bytes_out);
  553 }
  554 
  555 uint32_t
  556 ctf_flight_size(struct tcpcb *tp, uint32_t rc_sacked)
  557 {
  558         if (rc_sacked <= ctf_outstanding(tp))
  559                 return(ctf_outstanding(tp) - rc_sacked);
  560         else {
  561                 return (0);
  562         }
  563 }
  564 
  565 void
  566 ctf_do_dropwithreset(struct mbuf *m, struct tcpcb *tp, struct tcphdr *th,
  567     int32_t rstreason, int32_t tlen)
  568 {
  569         if (tp != NULL) {
  570                 tcp_dropwithreset(m, th, tp, tlen, rstreason);
  571                 INP_WUNLOCK(tptoinpcb(tp));
  572         } else
  573                 tcp_dropwithreset(m, th, NULL, tlen, rstreason);
  574 }
  575 
  576 void
  577 ctf_ack_war_checks(struct tcpcb *tp, uint32_t *ts, uint32_t *cnt)
  578 {
  579         if ((ts != NULL) && (cnt != NULL) &&
  580             (tcp_ack_war_time_window > 0) &&
  581             (tcp_ack_war_cnt > 0)) {
  582                 /* We are possibly doing ack war prevention */
  583                 uint32_t cts;
  584 
  585                 /*
  586                  * We use a msec tick here which gives us
  587                  * roughly 49 days. We don't need the
  588                  * precision of a microsecond timestamp which
  589                  * would only give us hours.
  590                  */
  591                 cts = tcp_ts_getticks();
  592                 if (TSTMP_LT((*ts), cts)) {
  593                         /* Timestamp is in the past */
  594                         *cnt = 0;
  595                         *ts = (cts + tcp_ack_war_time_window);
  596                 }
  597                 if (*cnt < tcp_ack_war_cnt) {
  598                         *cnt = (*cnt + 1);
  599                         tp->t_flags |= TF_ACKNOW;
  600                 } else
  601                         tp->t_flags &= ~TF_ACKNOW;
  602         } else
  603                 tp->t_flags |= TF_ACKNOW;
  604 }
  605 
  606 /*
  607  * ctf_drop_checks returns 1 for you should not proceed. It places
  608  * in ret_val what should be returned 1/0 by the caller. The 1 indicates
  609  * that the TCB is unlocked and probably dropped. The 0 indicates the
  610  * TCB is still valid and locked.
  611  */
  612 int
  613 _ctf_drop_checks(struct tcpopt *to, struct mbuf *m, struct tcphdr *th,
  614                  struct tcpcb *tp, int32_t *tlenp,
  615                  int32_t *thf, int32_t *drop_hdrlen, int32_t *ret_val,
  616                  uint32_t *ts, uint32_t *cnt)
  617 {
  618         int32_t todrop;
  619         int32_t thflags;
  620         int32_t tlen;
  621 
  622         thflags = *thf;
  623         tlen = *tlenp;
  624         todrop = tp->rcv_nxt - th->th_seq;
  625         if (todrop > 0) {
  626                 if (thflags & TH_SYN) {
  627                         thflags &= ~TH_SYN;
  628                         th->th_seq++;
  629                         if (th->th_urp > 1)
  630                                 th->th_urp--;
  631                         else
  632                                 thflags &= ~TH_URG;
  633                         todrop--;
  634                 }
  635                 /*
  636                  * Following if statement from Stevens, vol. 2, p. 960.
  637                  */
  638                 if (todrop > tlen
  639                     || (todrop == tlen && (thflags & TH_FIN) == 0)) {
  640                         /*
  641                          * Any valid FIN must be to the left of the window.
  642                          * At this point the FIN must be a duplicate or out
  643                          * of sequence; drop it.
  644                          */
  645                         thflags &= ~TH_FIN;
  646                         /*
  647                          * Send an ACK to resynchronize and drop any data.
  648                          * But keep on processing for RST or ACK.
  649                          */
  650                         ctf_ack_war_checks(tp, ts, cnt);
  651                         todrop = tlen;
  652                         KMOD_TCPSTAT_INC(tcps_rcvduppack);
  653                         KMOD_TCPSTAT_ADD(tcps_rcvdupbyte, todrop);
  654                 } else {
  655                         KMOD_TCPSTAT_INC(tcps_rcvpartduppack);
  656                         KMOD_TCPSTAT_ADD(tcps_rcvpartdupbyte, todrop);
  657                 }
  658                 /*
  659                  * DSACK - add SACK block for dropped range
  660                  */
  661                 if ((todrop > 0) && (tp->t_flags & TF_SACK_PERMIT)) {
  662                         /*
  663                          * ACK now, as the next in-sequence segment
  664                          * will clear the DSACK block again
  665                          */
  666                         ctf_ack_war_checks(tp, ts, cnt);
  667                         if (tp->t_flags & TF_ACKNOW)
  668                                 tcp_update_sack_list(tp, th->th_seq,
  669                                                      th->th_seq + todrop);
  670                 }
  671                 *drop_hdrlen += todrop; /* drop from the top afterwards */
  672                 th->th_seq += todrop;
  673                 tlen -= todrop;
  674                 if (th->th_urp > todrop)
  675                         th->th_urp -= todrop;
  676                 else {
  677                         thflags &= ~TH_URG;
  678                         th->th_urp = 0;
  679                 }
  680         }
  681         /*
  682          * If segment ends after window, drop trailing data (and PUSH and
  683          * FIN); if nothing left, just ACK.
  684          */
  685         todrop = (th->th_seq + tlen) - (tp->rcv_nxt + tp->rcv_wnd);
  686         if (todrop > 0) {
  687                 KMOD_TCPSTAT_INC(tcps_rcvpackafterwin);
  688                 if (todrop >= tlen) {
  689                         KMOD_TCPSTAT_ADD(tcps_rcvbyteafterwin, tlen);
  690                         /*
  691                          * If window is closed can only take segments at
  692                          * window edge, and have to drop data and PUSH from
  693                          * incoming segments.  Continue processing, but
  694                          * remember to ack.  Otherwise, drop segment and
  695                          * ack.
  696                          */
  697                         if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
  698                                 ctf_ack_war_checks(tp, ts, cnt);
  699                                 KMOD_TCPSTAT_INC(tcps_rcvwinprobe);
  700                         } else {
  701                                 __ctf_do_dropafterack(m, tp, th, thflags, tlen, ret_val, ts, cnt);
  702                                 return (1);
  703                         }
  704                 } else
  705                         KMOD_TCPSTAT_ADD(tcps_rcvbyteafterwin, todrop);
  706                 m_adj(m, -todrop);
  707                 tlen -= todrop;
  708                 thflags &= ~(TH_PUSH | TH_FIN);
  709         }
  710         *thf = thflags;
  711         *tlenp = tlen;
  712         return (0);
  713 }
  714 
  715 /*
  716  * The value in ret_val informs the caller
  717  * if we dropped the tcb (and lock) or not.
  718  * 1 = we dropped it, 0 = the TCB is still locked
  719  * and valid.
  720  */
  721 void
  722 __ctf_do_dropafterack(struct mbuf *m, struct tcpcb *tp, struct tcphdr *th, int32_t thflags, int32_t tlen, int32_t *ret_val, uint32_t *ts, uint32_t *cnt)
  723 {
  724         /*
  725          * Generate an ACK dropping incoming segment if it occupies sequence
  726          * space, where the ACK reflects our state.
  727          *
  728          * We can now skip the test for the RST flag since all paths to this
  729          * code happen after packets containing RST have been dropped.
  730          *
  731          * In the SYN-RECEIVED state, don't send an ACK unless the segment
  732          * we received passes the SYN-RECEIVED ACK test. If it fails send a
  733          * RST.  This breaks the loop in the "LAND" DoS attack, and also
  734          * prevents an ACK storm between two listening ports that have been
  735          * sent forged SYN segments, each with the source address of the
  736          * other.
  737          */
  738         if (tp->t_state == TCPS_SYN_RECEIVED && (thflags & TH_ACK) &&
  739             (SEQ_GT(tp->snd_una, th->th_ack) ||
  740             SEQ_GT(th->th_ack, tp->snd_max))) {
  741                 *ret_val = 1;
  742                 ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen);
  743                 return;
  744         } else
  745                 *ret_val = 0;
  746         ctf_ack_war_checks(tp, ts, cnt);
  747         if (m)
  748                 m_freem(m);
  749 }
  750 
  751 void
  752 ctf_do_drop(struct mbuf *m, struct tcpcb *tp)
  753 {
  754 
  755         /*
  756          * Drop space held by incoming segment and return.
  757          */
  758         if (tp != NULL)
  759                 INP_WUNLOCK(tptoinpcb(tp));
  760         if (m)
  761                 m_freem(m);
  762 }
  763 
  764 int
  765 __ctf_process_rst(struct mbuf *m, struct tcphdr *th, struct socket *so,
  766                 struct tcpcb *tp, uint32_t *ts, uint32_t *cnt)
  767 {
  768         /*
  769          * RFC5961 Section 3.2
  770          *
  771          * - RST drops connection only if SEG.SEQ == RCV.NXT. - If RST is in
  772          * window, we send challenge ACK.
  773          *
  774          * Note: to take into account delayed ACKs, we should test against
  775          * last_ack_sent instead of rcv_nxt. Note 2: we handle special case
  776          * of closed window, not covered by the RFC.
  777          */
  778         int dropped = 0;
  779 
  780         if ((SEQ_GEQ(th->th_seq, tp->last_ack_sent) &&
  781             SEQ_LT(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) ||
  782             (tp->rcv_wnd == 0 && tp->last_ack_sent == th->th_seq)) {
  783                 KASSERT(tp->t_state != TCPS_SYN_SENT,
  784                     ("%s: TH_RST for TCPS_SYN_SENT th %p tp %p",
  785                     __func__, th, tp));
  786 
  787                 if (V_tcp_insecure_rst ||
  788                     (tp->last_ack_sent == th->th_seq) ||
  789                     (tp->rcv_nxt == th->th_seq)) {
  790                         KMOD_TCPSTAT_INC(tcps_drops);
  791                         /* Drop the connection. */
  792                         switch (tp->t_state) {
  793                         case TCPS_SYN_RECEIVED:
  794                                 so->so_error = ECONNREFUSED;
  795                                 goto close;
  796                         case TCPS_ESTABLISHED:
  797                         case TCPS_FIN_WAIT_1:
  798                         case TCPS_FIN_WAIT_2:
  799                         case TCPS_CLOSE_WAIT:
  800                         case TCPS_CLOSING:
  801                         case TCPS_LAST_ACK:
  802                                 so->so_error = ECONNRESET;
  803                 close:
  804                                 tcp_state_change(tp, TCPS_CLOSED);
  805                                 /* FALLTHROUGH */
  806                         default:
  807                                 tcp_log_end_status(tp, TCP_EI_STATUS_CLIENT_RST);
  808                                 tp = tcp_close(tp);
  809                         }
  810                         dropped = 1;
  811                         ctf_do_drop(m, tp);
  812                 } else {
  813                         int send_challenge;
  814 
  815                         KMOD_TCPSTAT_INC(tcps_badrst);
  816                         if ((ts != NULL) && (cnt != NULL) &&
  817                             (tcp_ack_war_time_window > 0) &&
  818                             (tcp_ack_war_cnt > 0)) {
  819                                 /* We are possibly preventing an  ack-rst  war prevention */
  820                                 uint32_t cts;
  821 
  822                                 /*
  823                                  * We use a msec tick here which gives us
  824                                  * roughly 49 days. We don't need the
  825                                  * precision of a microsecond timestamp which
  826                                  * would only give us hours.
  827                                  */
  828                                 cts = tcp_ts_getticks();
  829                                 if (TSTMP_LT((*ts), cts)) {
  830                                         /* Timestamp is in the past */
  831                                         *cnt = 0;
  832                                         *ts = (cts + tcp_ack_war_time_window);
  833                                 }
  834                                 if (*cnt < tcp_ack_war_cnt) {
  835                                         *cnt = (*cnt + 1);
  836                                         send_challenge = 1;
  837                                 } else
  838                                         send_challenge = 0;
  839                         } else
  840                                 send_challenge = 1;
  841                         if (send_challenge) {
  842                                 /* Send challenge ACK. */
  843                                 tcp_respond(tp, mtod(m, void *), th, m,
  844                                             tp->rcv_nxt, tp->snd_nxt, TH_ACK);
  845                                 tp->last_ack_sent = tp->rcv_nxt;
  846                         }
  847                 }
  848         } else {
  849                 m_freem(m);
  850         }
  851         return (dropped);
  852 }
  853 
  854 /*
  855  * The value in ret_val informs the caller
  856  * if we dropped the tcb (and lock) or not.
  857  * 1 = we dropped it, 0 = the TCB is still locked
  858  * and valid.
  859  */
  860 void
  861 ctf_challenge_ack(struct mbuf *m, struct tcphdr *th, struct tcpcb *tp, uint8_t iptos, int32_t * ret_val)
  862 {
  863 
  864         NET_EPOCH_ASSERT();
  865 
  866         KMOD_TCPSTAT_INC(tcps_badsyn);
  867         if (V_tcp_insecure_syn &&
  868             SEQ_GEQ(th->th_seq, tp->last_ack_sent) &&
  869             SEQ_LT(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) {
  870                 tp = tcp_drop(tp, ECONNRESET);
  871                 *ret_val = 1;
  872                 ctf_do_drop(m, tp);
  873         } else {
  874                 tcp_ecn_input_syn_sent(tp, tcp_get_flags(th), iptos);
  875                 /* Send challenge ACK. */
  876                 tcp_respond(tp, mtod(m, void *), th, m, tp->rcv_nxt,
  877                     tp->snd_nxt, TH_ACK);
  878                 tp->last_ack_sent = tp->rcv_nxt;
  879                 m = NULL;
  880                 *ret_val = 0;
  881                 ctf_do_drop(m, NULL);
  882         }
  883 }
  884 
  885 /*
  886  * ctf_ts_check returns 1 for you should not proceed, the state
  887  * machine should return. It places in ret_val what should
  888  * be returned 1/0 by the caller (hpts_do_segment). The 1 indicates
  889  * that the TCB is unlocked and probably dropped. The 0 indicates the
  890  * TCB is still valid and locked.
  891  */
  892 int
  893 ctf_ts_check(struct mbuf *m, struct tcphdr *th, struct tcpcb *tp,
  894     int32_t tlen, int32_t thflags, int32_t * ret_val)
  895 {
  896 
  897         if (tcp_ts_getticks() - tp->ts_recent_age > TCP_PAWS_IDLE) {
  898                 /*
  899                  * Invalidate ts_recent.  If this segment updates ts_recent,
  900                  * the age will be reset later and ts_recent will get a
  901                  * valid value.  If it does not, setting ts_recent to zero
  902                  * will at least satisfy the requirement that zero be placed
  903                  * in the timestamp echo reply when ts_recent isn't valid.
  904                  * The age isn't reset until we get a valid ts_recent
  905                  * because we don't want out-of-order segments to be dropped
  906                  * when ts_recent is old.
  907                  */
  908                 tp->ts_recent = 0;
  909         } else {
  910                 KMOD_TCPSTAT_INC(tcps_rcvduppack);
  911                 KMOD_TCPSTAT_ADD(tcps_rcvdupbyte, tlen);
  912                 KMOD_TCPSTAT_INC(tcps_pawsdrop);
  913                 *ret_val = 0;
  914                 if (tlen) {
  915                         ctf_do_dropafterack(m, tp, th, thflags, tlen, ret_val);
  916                 } else {
  917                         ctf_do_drop(m, NULL);
  918                 }
  919                 return (1);
  920         }
  921         return (0);
  922 }
  923 
  924 int
  925 ctf_ts_check_ac(struct tcpcb *tp, int32_t thflags)
  926 {
  927 
  928         if (tcp_ts_getticks() - tp->ts_recent_age > TCP_PAWS_IDLE) {
  929                 /*
  930                  * Invalidate ts_recent.  If this segment updates ts_recent,
  931                  * the age will be reset later and ts_recent will get a
  932                  * valid value.  If it does not, setting ts_recent to zero
  933                  * will at least satisfy the requirement that zero be placed
  934                  * in the timestamp echo reply when ts_recent isn't valid.
  935                  * The age isn't reset until we get a valid ts_recent
  936                  * because we don't want out-of-order segments to be dropped
  937                  * when ts_recent is old.
  938                  */
  939                 tp->ts_recent = 0;
  940         } else {
  941                 KMOD_TCPSTAT_INC(tcps_rcvduppack);
  942                 KMOD_TCPSTAT_INC(tcps_pawsdrop);
  943                 return (1);
  944         }
  945         return (0);
  946 }
  947 
  948 
  949 
  950 void
  951 ctf_calc_rwin(struct socket *so, struct tcpcb *tp)
  952 {
  953         int32_t win;
  954 
  955         /*
  956          * Calculate amount of space in receive window, and then do TCP
  957          * input processing. Receive window is amount of space in rcv queue,
  958          * but not less than advertised window.
  959          */
  960         win = sbspace(&so->so_rcv);
  961         if (win < 0)
  962                 win = 0;
  963         tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
  964 }
  965 
  966 void
  967 ctf_do_dropwithreset_conn(struct mbuf *m, struct tcpcb *tp, struct tcphdr *th,
  968     int32_t rstreason, int32_t tlen)
  969 {
  970 
  971         tcp_dropwithreset(m, th, tp, tlen, rstreason);
  972         tp = tcp_drop(tp, ETIMEDOUT);
  973         if (tp)
  974                 INP_WUNLOCK(tptoinpcb(tp));
  975 }
  976 
  977 uint32_t
  978 ctf_fixed_maxseg(struct tcpcb *tp)
  979 {
  980         return (tcp_fixed_maxseg(tp));
  981 }
  982 
  983 void
  984 ctf_log_sack_filter(struct tcpcb *tp, int num_sack_blks, struct sackblk *sack_blocks)
  985 {
  986         if (tp->t_logstate != TCP_LOG_STATE_OFF) {
  987                 union tcp_log_stackspecific log;
  988                 struct timeval tv;
  989 
  990                 memset(&log, 0, sizeof(log));
  991                 log.u_bbr.timeStamp = tcp_get_usecs(&tv);
  992                 log.u_bbr.flex8 = num_sack_blks;
  993                 if (num_sack_blks > 0) {
  994                         log.u_bbr.flex1 = sack_blocks[0].start;
  995                         log.u_bbr.flex2 = sack_blocks[0].end;
  996                 }
  997                 if (num_sack_blks > 1) {
  998                         log.u_bbr.flex3 = sack_blocks[1].start;
  999                         log.u_bbr.flex4 = sack_blocks[1].end;
 1000                 }
 1001                 if (num_sack_blks > 2) {
 1002                         log.u_bbr.flex5 = sack_blocks[2].start;
 1003                         log.u_bbr.flex6 = sack_blocks[2].end;
 1004                 }
 1005                 if (num_sack_blks > 3) {
 1006                         log.u_bbr.applimited = sack_blocks[3].start;
 1007                         log.u_bbr.pkts_out = sack_blocks[3].end;
 1008                 }
 1009                 TCP_LOG_EVENTP(tp, NULL,
 1010                     &tptosocket(tp)->so_rcv,
 1011                     &tptosocket(tp)->so_snd,
 1012                     TCP_SACK_FILTER_RES, 0,
 1013                     0, &log, false, &tv);
 1014         }
 1015 }
 1016 
 1017 uint32_t
 1018 ctf_decay_count(uint32_t count, uint32_t decay)
 1019 {
 1020         /*
 1021          * Given a count, decay it by a set percentage. The
 1022          * percentage is in thousands i.e. 100% = 1000,
 1023          * 19.3% = 193.
 1024          */
 1025         uint64_t perc_count, decay_per;
 1026         uint32_t decayed_count;
 1027         if (decay > 1000) {
 1028                 /* We don't raise it */
 1029                 return (count);
 1030         }
 1031         perc_count = count;
 1032         decay_per = decay;
 1033         perc_count *= decay_per;
 1034         perc_count /= 1000;
 1035         /*
 1036          * So now perc_count holds the
 1037          * count decay value.
 1038          */
 1039         decayed_count = count - (uint32_t)perc_count;
 1040         return(decayed_count);
 1041 }
 1042 
 1043 int32_t
 1044 ctf_progress_timeout_check(struct tcpcb *tp, bool log)
 1045 {
 1046         if (tp->t_maxunacktime && tp->t_acktime && TSTMP_GT(ticks, tp->t_acktime)) {
 1047                 if ((ticks - tp->t_acktime) >= tp->t_maxunacktime) {
 1048                         /*
 1049                          * There is an assumption that the caller
 1050                          * will drop the connection so we will
 1051                          * increment the counters here.
 1052                          */
 1053                         if (log)
 1054                                 tcp_log_end_status(tp, TCP_EI_STATUS_PROGRESS);
 1055 #ifdef NETFLIX_STATS
 1056                         KMOD_TCPSTAT_INC(tcps_progdrops);
 1057 #endif
 1058                         return (1);
 1059                 }
 1060         }
 1061         return (0);
 1062 }

Cache object: d921346a1b076497a83294a9d8296150


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.