1 /*-
2 * Copyright (c) 2016-2020 Netflix, Inc.
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
7 * 1. Redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer.
9 * 2. Redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution.
12 *
13 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
14 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
16 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
17 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
18 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
19 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
20 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
21 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
22 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23 * SUCH DAMAGE.
24 *
25 */
26 /*
27 * Author: Randall Stewart <rrs@netflix.com>
28 * This work is based on the ACM Queue paper
29 * BBR - Congestion Based Congestion Control
30 * and also numerous discussions with Neal, Yuchung and Van.
31 */
32
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD$");
35
36 #include "opt_inet.h"
37 #include "opt_inet6.h"
38 #include "opt_ipsec.h"
39 #include "opt_ratelimit.h"
40 #include "opt_kern_tls.h"
41 #include <sys/param.h>
42 #include <sys/arb.h>
43 #include <sys/module.h>
44 #include <sys/kernel.h>
45 #ifdef TCP_HHOOK
46 #include <sys/hhook.h>
47 #endif
48 #include <sys/malloc.h>
49 #include <sys/mbuf.h>
50 #include <sys/proc.h>
51 #include <sys/qmath.h>
52 #include <sys/socket.h>
53 #include <sys/socketvar.h>
54 #ifdef KERN_TLS
55 #include <sys/ktls.h>
56 #endif
57 #include <sys/sysctl.h>
58 #include <sys/systm.h>
59 #include <sys/tree.h>
60 #ifdef NETFLIX_STATS
61 #include <sys/stats.h> /* Must come after qmath.h and tree.h */
62 #endif
63 #include <sys/refcount.h>
64 #include <sys/queue.h>
65 #include <sys/smp.h>
66 #include <sys/kthread.h>
67 #include <sys/lock.h>
68 #include <sys/mutex.h>
69 #include <sys/tim_filter.h>
70 #include <sys/time.h>
71 #include <vm/uma.h>
72 #include <sys/kern_prefetch.h>
73
74 #include <net/route.h>
75 #include <net/vnet.h>
76 #include <net/ethernet.h>
77 #include <net/bpf.h>
78
79 #define TCPSTATES /* for logging */
80
81 #include <netinet/in.h>
82 #include <netinet/in_kdtrace.h>
83 #include <netinet/in_pcb.h>
84 #include <netinet/ip.h>
85 #include <netinet/ip_icmp.h> /* required for icmp_var.h */
86 #include <netinet/icmp_var.h> /* for ICMP_BANDLIM */
87 #include <netinet/ip_var.h>
88 #include <netinet/ip6.h>
89 #include <netinet6/in6_pcb.h>
90 #include <netinet6/ip6_var.h>
91 #include <netinet/tcp.h>
92 #include <netinet/tcp_fsm.h>
93 #include <netinet/tcp_seq.h>
94 #include <netinet/tcp_timer.h>
95 #include <netinet/tcp_var.h>
96 #include <netinet/tcpip.h>
97 #include <netinet/tcp_ecn.h>
98 #include <netinet/tcp_hpts.h>
99 #include <netinet/tcp_lro.h>
100 #include <netinet/cc/cc.h>
101 #include <netinet/tcp_log_buf.h>
102 #ifdef TCP_OFFLOAD
103 #include <netinet/tcp_offload.h>
104 #endif
105 #ifdef INET6
106 #include <netinet6/tcp6_var.h>
107 #endif
108 #include <netinet/tcp_fastopen.h>
109
110 #include <netipsec/ipsec_support.h>
111 #include <net/if.h>
112 #include <net/if_var.h>
113
114 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
115 #include <netipsec/ipsec.h>
116 #include <netipsec/ipsec6.h>
117 #endif /* IPSEC */
118
119 #include <netinet/udp.h>
120 #include <netinet/udp_var.h>
121 #include <machine/in_cksum.h>
122
123 #ifdef MAC
124 #include <security/mac/mac_framework.h>
125 #endif
126 #include "rack_bbr_common.h"
127
128 /*
129 * Common TCP Functions - These are shared by borth
130 * rack and BBR.
131 */
132 #ifdef KERN_TLS
133 uint32_t
134 ctf_get_opt_tls_size(struct socket *so, uint32_t rwnd)
135 {
136 struct ktls_session *tls;
137 uint32_t len;
138
139 again:
140 tls = so->so_snd.sb_tls_info;
141 len = tls->params.max_frame_len; /* max tls payload */
142 len += tls->params.tls_hlen; /* tls header len */
143 len += tls->params.tls_tlen; /* tls trailer len */
144 if ((len * 4) > rwnd) {
145 /*
146 * Stroke this will suck counter and what
147 * else should we do Drew? From the
148 * TCP perspective I am not sure
149 * what should be done...
150 */
151 if (tls->params.max_frame_len > 4096) {
152 tls->params.max_frame_len -= 4096;
153 if (tls->params.max_frame_len < 4096)
154 tls->params.max_frame_len = 4096;
155 goto again;
156 }
157 }
158 return (len);
159 }
160 #endif
161
162 static int
163 ctf_get_enet_type(struct ifnet *ifp, struct mbuf *m)
164 {
165 struct ether_header *eh;
166 #ifdef INET6
167 struct ip6_hdr *ip6 = NULL; /* Keep compiler happy. */
168 #endif
169 #ifdef INET
170 struct ip *ip = NULL; /* Keep compiler happy. */
171 #endif
172 #if defined(INET) || defined(INET6)
173 struct tcphdr *th;
174 int32_t tlen;
175 uint16_t drop_hdrlen;
176 #endif
177 uint16_t etype;
178 #ifdef INET
179 uint8_t iptos;
180 #endif
181
182 /* Is it the easy way? */
183 if (m->m_flags & M_LRO_EHDRSTRP)
184 return (m->m_pkthdr.lro_etype);
185 /*
186 * Ok this is the old style call, the ethernet header is here.
187 * This also means no checksum or BPF were done. This
188 * can happen if the race to setup the inp fails and
189 * LRO sees no INP at packet input, but by the time
190 * we queue the packets an INP gets there. Its rare
191 * but it can occur so we will handle it. Note that
192 * this means duplicated work but with the rarity of it
193 * its not worth worrying about.
194 */
195 /* Let the BPF see the packet */
196 if (bpf_peers_present(ifp->if_bpf))
197 ETHER_BPF_MTAP(ifp, m);
198 /* Now the csum */
199 eh = mtod(m, struct ether_header *);
200 etype = ntohs(eh->ether_type);
201 m_adj(m, sizeof(*eh));
202 switch (etype) {
203 #ifdef INET6
204 case ETHERTYPE_IPV6:
205 {
206 if (m->m_len < (sizeof(*ip6) + sizeof(*th))) {
207 m = m_pullup(m, sizeof(*ip6) + sizeof(*th));
208 if (m == NULL) {
209 KMOD_TCPSTAT_INC(tcps_rcvshort);
210 return (-1);
211 }
212 }
213 ip6 = (struct ip6_hdr *)(eh + 1);
214 th = (struct tcphdr *)(ip6 + 1);
215 drop_hdrlen = sizeof(*ip6);
216 tlen = ntohs(ip6->ip6_plen);
217 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID_IPV6) {
218 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
219 th->th_sum = m->m_pkthdr.csum_data;
220 else
221 th->th_sum = in6_cksum_pseudo(ip6, tlen,
222 IPPROTO_TCP,
223 m->m_pkthdr.csum_data);
224 th->th_sum ^= 0xffff;
225 } else
226 th->th_sum = in6_cksum(m, IPPROTO_TCP, drop_hdrlen, tlen);
227 if (th->th_sum) {
228 KMOD_TCPSTAT_INC(tcps_rcvbadsum);
229 m_freem(m);
230 return (-1);
231 }
232 return (etype);
233 }
234 #endif
235 #ifdef INET
236 case ETHERTYPE_IP:
237 {
238 if (m->m_len < sizeof (struct tcpiphdr)) {
239 m = m_pullup(m, sizeof (struct tcpiphdr));
240 if (m == NULL) {
241 KMOD_TCPSTAT_INC(tcps_rcvshort);
242 return (-1);
243 }
244 }
245 ip = (struct ip *)(eh + 1);
246 th = (struct tcphdr *)(ip + 1);
247 drop_hdrlen = sizeof(*ip);
248 iptos = ip->ip_tos;
249 tlen = ntohs(ip->ip_len) - sizeof(struct ip);
250 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) {
251 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
252 th->th_sum = m->m_pkthdr.csum_data;
253 else
254 th->th_sum = in_pseudo(ip->ip_src.s_addr,
255 ip->ip_dst.s_addr,
256 htonl(m->m_pkthdr.csum_data + tlen + IPPROTO_TCP));
257 th->th_sum ^= 0xffff;
258 } else {
259 int len;
260 struct ipovly *ipov = (struct ipovly *)ip;
261 /*
262 * Checksum extended TCP header and data.
263 */
264 len = drop_hdrlen + tlen;
265 bzero(ipov->ih_x1, sizeof(ipov->ih_x1));
266 ipov->ih_len = htons(tlen);
267 th->th_sum = in_cksum(m, len);
268 /* Reset length for SDT probes. */
269 ip->ip_len = htons(len);
270 /* Reset TOS bits */
271 ip->ip_tos = iptos;
272 /* Re-initialization for later version check */
273 ip->ip_v = IPVERSION;
274 ip->ip_hl = sizeof(*ip) >> 2;
275 }
276 if (th->th_sum) {
277 KMOD_TCPSTAT_INC(tcps_rcvbadsum);
278 m_freem(m);
279 return (-1);
280 }
281 break;
282 }
283 #endif
284 };
285 return (etype);
286 }
287
288 /*
289 * The function ctf_process_inbound_raw() is used by
290 * transport developers to do the steps needed to
291 * support MBUF Queuing i.e. the flags in
292 * inp->inp_flags2:
293 *
294 * - INP_SUPPORTS_MBUFQ
295 * - INP_MBUF_QUEUE_READY
296 * - INP_DONT_SACK_QUEUE
297 * - INP_MBUF_ACKCMP
298 *
299 * These flags help control how LRO will deliver
300 * packets to the transport. You first set in inp_flags2
301 * the INP_SUPPORTS_MBUFQ to tell the LRO code that you
302 * will gladly take a queue of packets instead of a compressed
303 * single packet. You also set in your t_fb pointer the
304 * tfb_do_queued_segments to point to ctf_process_inbound_raw.
305 *
306 * This then gets you lists of inbound ACK's/Data instead
307 * of a condensed compressed ACK/DATA packet. Why would you
308 * want that? This will get you access to all the arrival
309 * times of at least LRO and possibly at the Hardware (if
310 * the interface card supports that) of the actual ACK/DATA.
311 * In some transport designs this is important since knowing
312 * the actual time we got the packet is useful information.
313 *
314 * A new special type of mbuf may also be supported by the transport
315 * if it has set the INP_MBUF_ACKCMP flag. If its set, LRO will
316 * possibly create a M_ACKCMP type mbuf. This is a mbuf with
317 * an array of "acks". One thing also to note is that when this
318 * occurs a subsequent LRO may find at the back of the untouched
319 * mbuf queue chain a M_ACKCMP and append on to it. This means
320 * that until the transport pulls in the mbuf chain queued
321 * for it more ack's may get on the mbufs that were already
322 * delivered. There currently is a limit of 6 acks condensed
323 * into 1 mbuf which means often when this is occuring, we
324 * don't get that effect but it does happen.
325 *
326 * Now there are some interesting Caveats that the transport
327 * designer needs to take into account when using this feature.
328 *
329 * 1) It is used with HPTS and pacing, when the pacing timer
330 * for output calls it will first call the input.
331 * 2) When you set INP_MBUF_QUEUE_READY this tells LRO
332 * queue normal packets, I am busy pacing out data and
333 * will process the queued packets before my tfb_tcp_output
334 * call from pacing. If a non-normal packet arrives, (e.g. sack)
335 * you will be awoken immediately.
336 * 3) Finally you can add the INP_DONT_SACK_QUEUE to not even
337 * be awoken if a SACK has arrived. You would do this when
338 * you were not only running a pacing for output timer
339 * but a Rack timer as well i.e. you know you are in recovery
340 * and are in the process (via the timers) of dealing with
341 * the loss.
342 *
343 * Now a critical thing you must be aware of here is that the
344 * use of the flags has a far greater scope then just your
345 * typical LRO. Why? Well thats because in the normal compressed
346 * LRO case at the end of a driver interupt all packets are going
347 * to get presented to the transport no matter if there is one
348 * or 100. With the MBUF_QUEUE model, this is not true. You will
349 * only be awoken to process the queue of packets when:
350 * a) The flags discussed above allow it.
351 * <or>
352 * b) You exceed a ack or data limit (by default the
353 * ack limit is infinity (64k acks) and the data
354 * limit is 64k of new TCP data)
355 * <or>
356 * c) The push bit has been set by the peer
357 */
358
359 int
360 ctf_process_inbound_raw(struct tcpcb *tp, struct socket *so, struct mbuf *m, int has_pkt)
361 {
362 /*
363 * We are passed a raw change of mbuf packets
364 * that arrived in LRO. They are linked via
365 * the m_nextpkt link in the pkt-headers.
366 *
367 * We process each one by:
368 * a) saving off the next
369 * b) stripping off the ether-header
370 * c) formulating the arguments for
371 * the tfb_tcp_hpts_do_segment
372 * d) calling each mbuf to tfb_tcp_hpts_do_segment
373 * after adjusting the time to match the arrival time.
374 * Note that the LRO code assures no IP options are present.
375 *
376 * The symantics for calling tfb_tcp_hpts_do_segment are the
377 * following:
378 * 1) It returns 0 if all went well and you (the caller) need
379 * to release the lock.
380 * 2) If nxt_pkt is set, then the function will surpress calls
381 * to tcp_output() since you are promising to call again
382 * with another packet.
383 * 3) If it returns 1, then you must free all the packets being
384 * shipped in, the tcb has been destroyed (or about to be destroyed).
385 */
386 struct mbuf *m_save;
387 struct tcphdr *th;
388 #ifdef INET6
389 struct ip6_hdr *ip6 = NULL; /* Keep compiler happy. */
390 #endif
391 #ifdef INET
392 struct ip *ip = NULL; /* Keep compiler happy. */
393 #endif
394 struct ifnet *ifp;
395 struct timeval tv;
396 struct inpcb *inp __diagused;
397 int32_t retval, nxt_pkt, tlen, off;
398 int etype = 0;
399 uint16_t drop_hdrlen;
400 uint8_t iptos, no_vn=0;
401
402 inp = tptoinpcb(tp);
403 INP_WLOCK_ASSERT(inp);
404 NET_EPOCH_ASSERT();
405
406 if (m)
407 ifp = m_rcvif(m);
408 else
409 ifp = NULL;
410 if (ifp == NULL) {
411 /*
412 * We probably should not work around
413 * but kassert, since lro alwasy sets rcvif.
414 */
415 no_vn = 1;
416 goto skip_vnet;
417 }
418 CURVNET_SET(ifp->if_vnet);
419 skip_vnet:
420 tcp_get_usecs(&tv);
421 while (m) {
422 m_save = m->m_nextpkt;
423 m->m_nextpkt = NULL;
424 if ((m->m_flags & M_ACKCMP) == 0) {
425 /* Now lets get the ether header */
426 etype = ctf_get_enet_type(ifp, m);
427 if (etype == -1) {
428 /* Skip this packet it was freed by checksum */
429 goto skipped_pkt;
430 }
431 KASSERT(((etype == ETHERTYPE_IPV6) || (etype == ETHERTYPE_IP)),
432 ("tp:%p m:%p etype:0x%x -- not IP or IPv6", tp, m, etype));
433 /* Trim off the ethernet header */
434 switch (etype) {
435 #ifdef INET6
436 case ETHERTYPE_IPV6:
437 ip6 = mtod(m, struct ip6_hdr *);
438 th = (struct tcphdr *)(ip6 + 1);
439 tlen = ntohs(ip6->ip6_plen);
440 drop_hdrlen = sizeof(*ip6);
441 iptos = (ntohl(ip6->ip6_flow) >> 20) & 0xff;
442 break;
443 #endif
444 #ifdef INET
445 case ETHERTYPE_IP:
446 ip = mtod(m, struct ip *);
447 th = (struct tcphdr *)(ip + 1);
448 drop_hdrlen = sizeof(*ip);
449 iptos = ip->ip_tos;
450 tlen = ntohs(ip->ip_len) - sizeof(struct ip);
451 break;
452 #endif
453 } /* end switch */
454 /*
455 * Convert TCP protocol specific fields to host format.
456 */
457 tcp_fields_to_host(th);
458 off = th->th_off << 2;
459 if (off < sizeof (struct tcphdr) || off > tlen) {
460 printf("off:%d < hdrlen:%zu || > tlen:%u -- dump\n",
461 off,
462 sizeof(struct tcphdr),
463 tlen);
464 KMOD_TCPSTAT_INC(tcps_rcvbadoff);
465 m_freem(m);
466 goto skipped_pkt;
467 }
468 tlen -= off;
469 drop_hdrlen += off;
470 /*
471 * Now lets setup the timeval to be when we should
472 * have been called (if we can).
473 */
474 m->m_pkthdr.lro_nsegs = 1;
475 /* Now what about next packet? */
476 } else {
477 /*
478 * This mbuf is an array of acks that have
479 * been compressed. We assert the inp has
480 * the flag set to enable this!
481 */
482 KASSERT((inp->inp_flags2 & INP_MBUF_ACKCMP),
483 ("tp:%p inp:%p no INP_MBUF_ACKCMP flags?", tp, inp));
484 tlen = 0;
485 drop_hdrlen = 0;
486 th = NULL;
487 iptos = 0;
488 }
489 tcp_get_usecs(&tv);
490 if (m_save || has_pkt)
491 nxt_pkt = 1;
492 else
493 nxt_pkt = 0;
494 if ((m->m_flags & M_ACKCMP) == 0)
495 KMOD_TCPSTAT_INC(tcps_rcvtotal);
496 else
497 KMOD_TCPSTAT_ADD(tcps_rcvtotal, (m->m_len / sizeof(struct tcp_ackent)));
498 retval = (*tp->t_fb->tfb_do_segment_nounlock)(m, th, so, tp, drop_hdrlen, tlen,
499 iptos, nxt_pkt, &tv);
500 if (retval) {
501 /* We lost the lock and tcb probably */
502 m = m_save;
503 while(m) {
504 m_save = m->m_nextpkt;
505 m->m_nextpkt = NULL;
506 m_freem(m);
507 m = m_save;
508 }
509 if (no_vn == 0) {
510 CURVNET_RESTORE();
511 }
512 INP_UNLOCK_ASSERT(inp);
513 return(retval);
514 }
515 skipped_pkt:
516 m = m_save;
517 }
518 if (no_vn == 0) {
519 CURVNET_RESTORE();
520 }
521 return(retval);
522 }
523
524 int
525 ctf_do_queued_segments(struct socket *so, struct tcpcb *tp, int have_pkt)
526 {
527 struct mbuf *m;
528
529 /* First lets see if we have old packets */
530 if (tp->t_in_pkt) {
531 m = tp->t_in_pkt;
532 tp->t_in_pkt = NULL;
533 tp->t_tail_pkt = NULL;
534 if (ctf_process_inbound_raw(tp, so, m, have_pkt)) {
535 /* We lost the tcpcb (maybe a RST came in)? */
536 return(1);
537 }
538 }
539 return (0);
540 }
541
542 uint32_t
543 ctf_outstanding(struct tcpcb *tp)
544 {
545 uint32_t bytes_out;
546
547 bytes_out = tp->snd_max - tp->snd_una;
548 if (tp->t_state < TCPS_ESTABLISHED)
549 bytes_out++;
550 if (tp->t_flags & TF_SENTFIN)
551 bytes_out++;
552 return (bytes_out);
553 }
554
555 uint32_t
556 ctf_flight_size(struct tcpcb *tp, uint32_t rc_sacked)
557 {
558 if (rc_sacked <= ctf_outstanding(tp))
559 return(ctf_outstanding(tp) - rc_sacked);
560 else {
561 return (0);
562 }
563 }
564
565 void
566 ctf_do_dropwithreset(struct mbuf *m, struct tcpcb *tp, struct tcphdr *th,
567 int32_t rstreason, int32_t tlen)
568 {
569 if (tp != NULL) {
570 tcp_dropwithreset(m, th, tp, tlen, rstreason);
571 INP_WUNLOCK(tptoinpcb(tp));
572 } else
573 tcp_dropwithreset(m, th, NULL, tlen, rstreason);
574 }
575
576 void
577 ctf_ack_war_checks(struct tcpcb *tp, uint32_t *ts, uint32_t *cnt)
578 {
579 if ((ts != NULL) && (cnt != NULL) &&
580 (tcp_ack_war_time_window > 0) &&
581 (tcp_ack_war_cnt > 0)) {
582 /* We are possibly doing ack war prevention */
583 uint32_t cts;
584
585 /*
586 * We use a msec tick here which gives us
587 * roughly 49 days. We don't need the
588 * precision of a microsecond timestamp which
589 * would only give us hours.
590 */
591 cts = tcp_ts_getticks();
592 if (TSTMP_LT((*ts), cts)) {
593 /* Timestamp is in the past */
594 *cnt = 0;
595 *ts = (cts + tcp_ack_war_time_window);
596 }
597 if (*cnt < tcp_ack_war_cnt) {
598 *cnt = (*cnt + 1);
599 tp->t_flags |= TF_ACKNOW;
600 } else
601 tp->t_flags &= ~TF_ACKNOW;
602 } else
603 tp->t_flags |= TF_ACKNOW;
604 }
605
606 /*
607 * ctf_drop_checks returns 1 for you should not proceed. It places
608 * in ret_val what should be returned 1/0 by the caller. The 1 indicates
609 * that the TCB is unlocked and probably dropped. The 0 indicates the
610 * TCB is still valid and locked.
611 */
612 int
613 _ctf_drop_checks(struct tcpopt *to, struct mbuf *m, struct tcphdr *th,
614 struct tcpcb *tp, int32_t *tlenp,
615 int32_t *thf, int32_t *drop_hdrlen, int32_t *ret_val,
616 uint32_t *ts, uint32_t *cnt)
617 {
618 int32_t todrop;
619 int32_t thflags;
620 int32_t tlen;
621
622 thflags = *thf;
623 tlen = *tlenp;
624 todrop = tp->rcv_nxt - th->th_seq;
625 if (todrop > 0) {
626 if (thflags & TH_SYN) {
627 thflags &= ~TH_SYN;
628 th->th_seq++;
629 if (th->th_urp > 1)
630 th->th_urp--;
631 else
632 thflags &= ~TH_URG;
633 todrop--;
634 }
635 /*
636 * Following if statement from Stevens, vol. 2, p. 960.
637 */
638 if (todrop > tlen
639 || (todrop == tlen && (thflags & TH_FIN) == 0)) {
640 /*
641 * Any valid FIN must be to the left of the window.
642 * At this point the FIN must be a duplicate or out
643 * of sequence; drop it.
644 */
645 thflags &= ~TH_FIN;
646 /*
647 * Send an ACK to resynchronize and drop any data.
648 * But keep on processing for RST or ACK.
649 */
650 ctf_ack_war_checks(tp, ts, cnt);
651 todrop = tlen;
652 KMOD_TCPSTAT_INC(tcps_rcvduppack);
653 KMOD_TCPSTAT_ADD(tcps_rcvdupbyte, todrop);
654 } else {
655 KMOD_TCPSTAT_INC(tcps_rcvpartduppack);
656 KMOD_TCPSTAT_ADD(tcps_rcvpartdupbyte, todrop);
657 }
658 /*
659 * DSACK - add SACK block for dropped range
660 */
661 if ((todrop > 0) && (tp->t_flags & TF_SACK_PERMIT)) {
662 /*
663 * ACK now, as the next in-sequence segment
664 * will clear the DSACK block again
665 */
666 ctf_ack_war_checks(tp, ts, cnt);
667 if (tp->t_flags & TF_ACKNOW)
668 tcp_update_sack_list(tp, th->th_seq,
669 th->th_seq + todrop);
670 }
671 *drop_hdrlen += todrop; /* drop from the top afterwards */
672 th->th_seq += todrop;
673 tlen -= todrop;
674 if (th->th_urp > todrop)
675 th->th_urp -= todrop;
676 else {
677 thflags &= ~TH_URG;
678 th->th_urp = 0;
679 }
680 }
681 /*
682 * If segment ends after window, drop trailing data (and PUSH and
683 * FIN); if nothing left, just ACK.
684 */
685 todrop = (th->th_seq + tlen) - (tp->rcv_nxt + tp->rcv_wnd);
686 if (todrop > 0) {
687 KMOD_TCPSTAT_INC(tcps_rcvpackafterwin);
688 if (todrop >= tlen) {
689 KMOD_TCPSTAT_ADD(tcps_rcvbyteafterwin, tlen);
690 /*
691 * If window is closed can only take segments at
692 * window edge, and have to drop data and PUSH from
693 * incoming segments. Continue processing, but
694 * remember to ack. Otherwise, drop segment and
695 * ack.
696 */
697 if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
698 ctf_ack_war_checks(tp, ts, cnt);
699 KMOD_TCPSTAT_INC(tcps_rcvwinprobe);
700 } else {
701 __ctf_do_dropafterack(m, tp, th, thflags, tlen, ret_val, ts, cnt);
702 return (1);
703 }
704 } else
705 KMOD_TCPSTAT_ADD(tcps_rcvbyteafterwin, todrop);
706 m_adj(m, -todrop);
707 tlen -= todrop;
708 thflags &= ~(TH_PUSH | TH_FIN);
709 }
710 *thf = thflags;
711 *tlenp = tlen;
712 return (0);
713 }
714
715 /*
716 * The value in ret_val informs the caller
717 * if we dropped the tcb (and lock) or not.
718 * 1 = we dropped it, 0 = the TCB is still locked
719 * and valid.
720 */
721 void
722 __ctf_do_dropafterack(struct mbuf *m, struct tcpcb *tp, struct tcphdr *th, int32_t thflags, int32_t tlen, int32_t *ret_val, uint32_t *ts, uint32_t *cnt)
723 {
724 /*
725 * Generate an ACK dropping incoming segment if it occupies sequence
726 * space, where the ACK reflects our state.
727 *
728 * We can now skip the test for the RST flag since all paths to this
729 * code happen after packets containing RST have been dropped.
730 *
731 * In the SYN-RECEIVED state, don't send an ACK unless the segment
732 * we received passes the SYN-RECEIVED ACK test. If it fails send a
733 * RST. This breaks the loop in the "LAND" DoS attack, and also
734 * prevents an ACK storm between two listening ports that have been
735 * sent forged SYN segments, each with the source address of the
736 * other.
737 */
738 if (tp->t_state == TCPS_SYN_RECEIVED && (thflags & TH_ACK) &&
739 (SEQ_GT(tp->snd_una, th->th_ack) ||
740 SEQ_GT(th->th_ack, tp->snd_max))) {
741 *ret_val = 1;
742 ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen);
743 return;
744 } else
745 *ret_val = 0;
746 ctf_ack_war_checks(tp, ts, cnt);
747 if (m)
748 m_freem(m);
749 }
750
751 void
752 ctf_do_drop(struct mbuf *m, struct tcpcb *tp)
753 {
754
755 /*
756 * Drop space held by incoming segment and return.
757 */
758 if (tp != NULL)
759 INP_WUNLOCK(tptoinpcb(tp));
760 if (m)
761 m_freem(m);
762 }
763
764 int
765 __ctf_process_rst(struct mbuf *m, struct tcphdr *th, struct socket *so,
766 struct tcpcb *tp, uint32_t *ts, uint32_t *cnt)
767 {
768 /*
769 * RFC5961 Section 3.2
770 *
771 * - RST drops connection only if SEG.SEQ == RCV.NXT. - If RST is in
772 * window, we send challenge ACK.
773 *
774 * Note: to take into account delayed ACKs, we should test against
775 * last_ack_sent instead of rcv_nxt. Note 2: we handle special case
776 * of closed window, not covered by the RFC.
777 */
778 int dropped = 0;
779
780 if ((SEQ_GEQ(th->th_seq, tp->last_ack_sent) &&
781 SEQ_LT(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) ||
782 (tp->rcv_wnd == 0 && tp->last_ack_sent == th->th_seq)) {
783 KASSERT(tp->t_state != TCPS_SYN_SENT,
784 ("%s: TH_RST for TCPS_SYN_SENT th %p tp %p",
785 __func__, th, tp));
786
787 if (V_tcp_insecure_rst ||
788 (tp->last_ack_sent == th->th_seq) ||
789 (tp->rcv_nxt == th->th_seq)) {
790 KMOD_TCPSTAT_INC(tcps_drops);
791 /* Drop the connection. */
792 switch (tp->t_state) {
793 case TCPS_SYN_RECEIVED:
794 so->so_error = ECONNREFUSED;
795 goto close;
796 case TCPS_ESTABLISHED:
797 case TCPS_FIN_WAIT_1:
798 case TCPS_FIN_WAIT_2:
799 case TCPS_CLOSE_WAIT:
800 case TCPS_CLOSING:
801 case TCPS_LAST_ACK:
802 so->so_error = ECONNRESET;
803 close:
804 tcp_state_change(tp, TCPS_CLOSED);
805 /* FALLTHROUGH */
806 default:
807 tcp_log_end_status(tp, TCP_EI_STATUS_CLIENT_RST);
808 tp = tcp_close(tp);
809 }
810 dropped = 1;
811 ctf_do_drop(m, tp);
812 } else {
813 int send_challenge;
814
815 KMOD_TCPSTAT_INC(tcps_badrst);
816 if ((ts != NULL) && (cnt != NULL) &&
817 (tcp_ack_war_time_window > 0) &&
818 (tcp_ack_war_cnt > 0)) {
819 /* We are possibly preventing an ack-rst war prevention */
820 uint32_t cts;
821
822 /*
823 * We use a msec tick here which gives us
824 * roughly 49 days. We don't need the
825 * precision of a microsecond timestamp which
826 * would only give us hours.
827 */
828 cts = tcp_ts_getticks();
829 if (TSTMP_LT((*ts), cts)) {
830 /* Timestamp is in the past */
831 *cnt = 0;
832 *ts = (cts + tcp_ack_war_time_window);
833 }
834 if (*cnt < tcp_ack_war_cnt) {
835 *cnt = (*cnt + 1);
836 send_challenge = 1;
837 } else
838 send_challenge = 0;
839 } else
840 send_challenge = 1;
841 if (send_challenge) {
842 /* Send challenge ACK. */
843 tcp_respond(tp, mtod(m, void *), th, m,
844 tp->rcv_nxt, tp->snd_nxt, TH_ACK);
845 tp->last_ack_sent = tp->rcv_nxt;
846 }
847 }
848 } else {
849 m_freem(m);
850 }
851 return (dropped);
852 }
853
854 /*
855 * The value in ret_val informs the caller
856 * if we dropped the tcb (and lock) or not.
857 * 1 = we dropped it, 0 = the TCB is still locked
858 * and valid.
859 */
860 void
861 ctf_challenge_ack(struct mbuf *m, struct tcphdr *th, struct tcpcb *tp, uint8_t iptos, int32_t * ret_val)
862 {
863
864 NET_EPOCH_ASSERT();
865
866 KMOD_TCPSTAT_INC(tcps_badsyn);
867 if (V_tcp_insecure_syn &&
868 SEQ_GEQ(th->th_seq, tp->last_ack_sent) &&
869 SEQ_LT(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) {
870 tp = tcp_drop(tp, ECONNRESET);
871 *ret_val = 1;
872 ctf_do_drop(m, tp);
873 } else {
874 tcp_ecn_input_syn_sent(tp, tcp_get_flags(th), iptos);
875 /* Send challenge ACK. */
876 tcp_respond(tp, mtod(m, void *), th, m, tp->rcv_nxt,
877 tp->snd_nxt, TH_ACK);
878 tp->last_ack_sent = tp->rcv_nxt;
879 m = NULL;
880 *ret_val = 0;
881 ctf_do_drop(m, NULL);
882 }
883 }
884
885 /*
886 * ctf_ts_check returns 1 for you should not proceed, the state
887 * machine should return. It places in ret_val what should
888 * be returned 1/0 by the caller (hpts_do_segment). The 1 indicates
889 * that the TCB is unlocked and probably dropped. The 0 indicates the
890 * TCB is still valid and locked.
891 */
892 int
893 ctf_ts_check(struct mbuf *m, struct tcphdr *th, struct tcpcb *tp,
894 int32_t tlen, int32_t thflags, int32_t * ret_val)
895 {
896
897 if (tcp_ts_getticks() - tp->ts_recent_age > TCP_PAWS_IDLE) {
898 /*
899 * Invalidate ts_recent. If this segment updates ts_recent,
900 * the age will be reset later and ts_recent will get a
901 * valid value. If it does not, setting ts_recent to zero
902 * will at least satisfy the requirement that zero be placed
903 * in the timestamp echo reply when ts_recent isn't valid.
904 * The age isn't reset until we get a valid ts_recent
905 * because we don't want out-of-order segments to be dropped
906 * when ts_recent is old.
907 */
908 tp->ts_recent = 0;
909 } else {
910 KMOD_TCPSTAT_INC(tcps_rcvduppack);
911 KMOD_TCPSTAT_ADD(tcps_rcvdupbyte, tlen);
912 KMOD_TCPSTAT_INC(tcps_pawsdrop);
913 *ret_val = 0;
914 if (tlen) {
915 ctf_do_dropafterack(m, tp, th, thflags, tlen, ret_val);
916 } else {
917 ctf_do_drop(m, NULL);
918 }
919 return (1);
920 }
921 return (0);
922 }
923
924 int
925 ctf_ts_check_ac(struct tcpcb *tp, int32_t thflags)
926 {
927
928 if (tcp_ts_getticks() - tp->ts_recent_age > TCP_PAWS_IDLE) {
929 /*
930 * Invalidate ts_recent. If this segment updates ts_recent,
931 * the age will be reset later and ts_recent will get a
932 * valid value. If it does not, setting ts_recent to zero
933 * will at least satisfy the requirement that zero be placed
934 * in the timestamp echo reply when ts_recent isn't valid.
935 * The age isn't reset until we get a valid ts_recent
936 * because we don't want out-of-order segments to be dropped
937 * when ts_recent is old.
938 */
939 tp->ts_recent = 0;
940 } else {
941 KMOD_TCPSTAT_INC(tcps_rcvduppack);
942 KMOD_TCPSTAT_INC(tcps_pawsdrop);
943 return (1);
944 }
945 return (0);
946 }
947
948
949
950 void
951 ctf_calc_rwin(struct socket *so, struct tcpcb *tp)
952 {
953 int32_t win;
954
955 /*
956 * Calculate amount of space in receive window, and then do TCP
957 * input processing. Receive window is amount of space in rcv queue,
958 * but not less than advertised window.
959 */
960 win = sbspace(&so->so_rcv);
961 if (win < 0)
962 win = 0;
963 tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
964 }
965
966 void
967 ctf_do_dropwithreset_conn(struct mbuf *m, struct tcpcb *tp, struct tcphdr *th,
968 int32_t rstreason, int32_t tlen)
969 {
970
971 tcp_dropwithreset(m, th, tp, tlen, rstreason);
972 tp = tcp_drop(tp, ETIMEDOUT);
973 if (tp)
974 INP_WUNLOCK(tptoinpcb(tp));
975 }
976
977 uint32_t
978 ctf_fixed_maxseg(struct tcpcb *tp)
979 {
980 return (tcp_fixed_maxseg(tp));
981 }
982
983 void
984 ctf_log_sack_filter(struct tcpcb *tp, int num_sack_blks, struct sackblk *sack_blocks)
985 {
986 if (tp->t_logstate != TCP_LOG_STATE_OFF) {
987 union tcp_log_stackspecific log;
988 struct timeval tv;
989
990 memset(&log, 0, sizeof(log));
991 log.u_bbr.timeStamp = tcp_get_usecs(&tv);
992 log.u_bbr.flex8 = num_sack_blks;
993 if (num_sack_blks > 0) {
994 log.u_bbr.flex1 = sack_blocks[0].start;
995 log.u_bbr.flex2 = sack_blocks[0].end;
996 }
997 if (num_sack_blks > 1) {
998 log.u_bbr.flex3 = sack_blocks[1].start;
999 log.u_bbr.flex4 = sack_blocks[1].end;
1000 }
1001 if (num_sack_blks > 2) {
1002 log.u_bbr.flex5 = sack_blocks[2].start;
1003 log.u_bbr.flex6 = sack_blocks[2].end;
1004 }
1005 if (num_sack_blks > 3) {
1006 log.u_bbr.applimited = sack_blocks[3].start;
1007 log.u_bbr.pkts_out = sack_blocks[3].end;
1008 }
1009 TCP_LOG_EVENTP(tp, NULL,
1010 &tptosocket(tp)->so_rcv,
1011 &tptosocket(tp)->so_snd,
1012 TCP_SACK_FILTER_RES, 0,
1013 0, &log, false, &tv);
1014 }
1015 }
1016
1017 uint32_t
1018 ctf_decay_count(uint32_t count, uint32_t decay)
1019 {
1020 /*
1021 * Given a count, decay it by a set percentage. The
1022 * percentage is in thousands i.e. 100% = 1000,
1023 * 19.3% = 193.
1024 */
1025 uint64_t perc_count, decay_per;
1026 uint32_t decayed_count;
1027 if (decay > 1000) {
1028 /* We don't raise it */
1029 return (count);
1030 }
1031 perc_count = count;
1032 decay_per = decay;
1033 perc_count *= decay_per;
1034 perc_count /= 1000;
1035 /*
1036 * So now perc_count holds the
1037 * count decay value.
1038 */
1039 decayed_count = count - (uint32_t)perc_count;
1040 return(decayed_count);
1041 }
1042
1043 int32_t
1044 ctf_progress_timeout_check(struct tcpcb *tp, bool log)
1045 {
1046 if (tp->t_maxunacktime && tp->t_acktime && TSTMP_GT(ticks, tp->t_acktime)) {
1047 if ((ticks - tp->t_acktime) >= tp->t_maxunacktime) {
1048 /*
1049 * There is an assumption that the caller
1050 * will drop the connection so we will
1051 * increment the counters here.
1052 */
1053 if (log)
1054 tcp_log_end_status(tp, TCP_EI_STATUS_PROGRESS);
1055 #ifdef NETFLIX_STATS
1056 KMOD_TCPSTAT_INC(tcps_progdrops);
1057 #endif
1058 return (1);
1059 }
1060 }
1061 return (0);
1062 }
Cache object: d921346a1b076497a83294a9d8296150
|