The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/netinet/tcp_subr.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  * Copyright (c) 2003, 2004 Jeffrey M. Hsu.  All rights reserved.
    3  * Copyright (c) 2003, 2004 The DragonFly Project.  All rights reserved.
    4  *
    5  * This code is derived from software contributed to The DragonFly Project
    6  * by Jeffrey M. Hsu.
    7  *
    8  * Redistribution and use in source and binary forms, with or without
    9  * modification, are permitted provided that the following conditions
   10  * are met:
   11  * 1. Redistributions of source code must retain the above copyright
   12  *    notice, this list of conditions and the following disclaimer.
   13  * 2. Redistributions in binary form must reproduce the above copyright
   14  *    notice, this list of conditions and the following disclaimer in the
   15  *    documentation and/or other materials provided with the distribution.
   16  * 3. Neither the name of The DragonFly Project nor the names of its
   17  *    contributors may be used to endorse or promote products derived
   18  *    from this software without specific, prior written permission.
   19  *
   20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
   21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
   22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
   23  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
   24  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
   25  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
   26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
   27  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
   28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
   29  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
   30  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   31  * SUCH DAMAGE.
   32  */
   33 
   34 /*
   35  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
   36  *      The Regents of the University of California.  All rights reserved.
   37  *
   38  * Redistribution and use in source and binary forms, with or without
   39  * modification, are permitted provided that the following conditions
   40  * are met:
   41  * 1. Redistributions of source code must retain the above copyright
   42  *    notice, this list of conditions and the following disclaimer.
   43  * 2. Redistributions in binary form must reproduce the above copyright
   44  *    notice, this list of conditions and the following disclaimer in the
   45  *    documentation and/or other materials provided with the distribution.
   46  * 3. Neither the name of the University nor the names of its contributors
   47  *    may be used to endorse or promote products derived from this software
   48  *    without specific prior written permission.
   49  *
   50  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   51  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   52  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   53  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   54  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   55  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   56  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   57  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   58  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   59  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   60  * SUCH DAMAGE.
   61  *
   62  *      @(#)tcp_subr.c  8.2 (Berkeley) 5/24/95
   63  * $FreeBSD: src/sys/netinet/tcp_subr.c,v 1.73.2.31 2003/01/24 05:11:34 sam Exp $
   64  */
   65 
   66 #include "opt_compat.h"
   67 #include "opt_inet.h"
   68 #include "opt_inet6.h"
   69 #include "opt_ipsec.h"
   70 #include "opt_tcpdebug.h"
   71 
   72 #include <sys/param.h>
   73 #include <sys/systm.h>
   74 #include <sys/callout.h>
   75 #include <sys/kernel.h>
   76 #include <sys/sysctl.h>
   77 #include <sys/malloc.h>
   78 #include <sys/mpipe.h>
   79 #include <sys/mbuf.h>
   80 #ifdef INET6
   81 #include <sys/domain.h>
   82 #endif
   83 #include <sys/proc.h>
   84 #include <sys/priv.h>
   85 #include <sys/socket.h>
   86 #include <sys/socketops.h>
   87 #include <sys/socketvar.h>
   88 #include <sys/protosw.h>
   89 #include <sys/random.h>
   90 #include <sys/in_cksum.h>
   91 #include <sys/ktr.h>
   92 
   93 #include <net/route.h>
   94 #include <net/if.h>
   95 #include <net/netisr2.h>
   96 
   97 #define _IP_VHL
   98 #include <netinet/in.h>
   99 #include <netinet/in_systm.h>
  100 #include <netinet/ip.h>
  101 #include <netinet/ip6.h>
  102 #include <netinet/in_pcb.h>
  103 #include <netinet6/in6_pcb.h>
  104 #include <netinet/in_var.h>
  105 #include <netinet/ip_var.h>
  106 #include <netinet6/ip6_var.h>
  107 #include <netinet/ip_icmp.h>
  108 #ifdef INET6
  109 #include <netinet/icmp6.h>
  110 #endif
  111 #include <netinet/tcp.h>
  112 #include <netinet/tcp_fsm.h>
  113 #include <netinet/tcp_seq.h>
  114 #include <netinet/tcp_timer.h>
  115 #include <netinet/tcp_timer2.h>
  116 #include <netinet/tcp_var.h>
  117 #include <netinet6/tcp6_var.h>
  118 #include <netinet/tcpip.h>
  119 #ifdef TCPDEBUG
  120 #include <netinet/tcp_debug.h>
  121 #endif
  122 #include <netinet6/ip6protosw.h>
  123 
  124 #ifdef IPSEC
  125 #include <netinet6/ipsec.h>
  126 #include <netproto/key/key.h>
  127 #ifdef INET6
  128 #include <netinet6/ipsec6.h>
  129 #endif
  130 #endif
  131 
  132 #ifdef FAST_IPSEC
  133 #include <netproto/ipsec/ipsec.h>
  134 #ifdef INET6
  135 #include <netproto/ipsec/ipsec6.h>
  136 #endif
  137 #define IPSEC
  138 #endif
  139 
  140 #include <sys/md5.h>
  141 #include <machine/smp.h>
  142 
  143 #include <sys/msgport2.h>
  144 #include <sys/mplock2.h>
  145 #include <net/netmsg2.h>
  146 
  147 #if !defined(KTR_TCP)
  148 #define KTR_TCP         KTR_ALL
  149 #endif
  150 /*
  151 KTR_INFO_MASTER(tcp);
  152 KTR_INFO(KTR_TCP, tcp, rxmsg, 0, "tcp getmsg", 0);
  153 KTR_INFO(KTR_TCP, tcp, wait, 1, "tcp waitmsg", 0);
  154 KTR_INFO(KTR_TCP, tcp, delayed, 2, "tcp execute delayed ops", 0);
  155 #define logtcp(name)    KTR_LOG(tcp_ ## name)
  156 */
  157 
  158 #define TCP_IW_MAXSEGS_DFLT     4
  159 #define TCP_IW_CAPSEGS_DFLT     3
  160 
  161 struct inpcbinfo tcbinfo[MAXCPU];
  162 struct tcpcbackqhead tcpcbackq[MAXCPU];
  163 
  164 static struct lwkt_token tcp_port_token =
  165                 LWKT_TOKEN_INITIALIZER(tcp_port_token);
  166 
  167 int tcp_mssdflt = TCP_MSS;
  168 SYSCTL_INT(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt, CTLFLAG_RW,
  169     &tcp_mssdflt, 0, "Default TCP Maximum Segment Size");
  170 
  171 #ifdef INET6
  172 int tcp_v6mssdflt = TCP6_MSS;
  173 SYSCTL_INT(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt, CTLFLAG_RW,
  174     &tcp_v6mssdflt, 0, "Default TCP Maximum Segment Size for IPv6");
  175 #endif
  176 
  177 /*
  178  * Minimum MSS we accept and use. This prevents DoS attacks where
  179  * we are forced to a ridiculous low MSS like 20 and send hundreds
  180  * of packets instead of one. The effect scales with the available
  181  * bandwidth and quickly saturates the CPU and network interface
  182  * with packet generation and sending. Set to zero to disable MINMSS
  183  * checking. This setting prevents us from sending too small packets.
  184  */
  185 int tcp_minmss = TCP_MINMSS;
  186 SYSCTL_INT(_net_inet_tcp, OID_AUTO, minmss, CTLFLAG_RW,
  187     &tcp_minmss , 0, "Minmum TCP Maximum Segment Size");
  188 
  189 #if 0
  190 static int tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
  191 SYSCTL_INT(_net_inet_tcp, TCPCTL_RTTDFLT, rttdflt, CTLFLAG_RW,
  192     &tcp_rttdflt, 0, "Default maximum TCP Round Trip Time");
  193 #endif
  194 
  195 int tcp_do_rfc1323 = 1;
  196 SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_RW,
  197     &tcp_do_rfc1323, 0, "Enable rfc1323 (high performance TCP) extensions");
  198 
  199 static int tcp_tcbhashsize = 0;
  200 SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RD,
  201      &tcp_tcbhashsize, 0, "Size of TCP control block hashtable");
  202 
  203 static int do_tcpdrain = 1;
  204 SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0,
  205      "Enable tcp_drain routine for extra help when low on mbufs");
  206 
  207 static int icmp_may_rst = 1;
  208 SYSCTL_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_RW, &icmp_may_rst, 0,
  209     "Certain ICMP unreachable messages may abort connections in SYN_SENT");
  210 
  211 static int tcp_isn_reseed_interval = 0;
  212 SYSCTL_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_RW,
  213     &tcp_isn_reseed_interval, 0, "Seconds between reseeding of ISN secret");
  214 
  215 /*
  216  * TCP bandwidth limiting sysctls.  The inflight limiter is now turned on
  217  * by default, but with generous values which should allow maximal
  218  * bandwidth.  In particular, the slop defaults to 50 (5 packets).
  219  *
  220  * The reason for doing this is that the limiter is the only mechanism we
  221  * have which seems to do a really good job preventing receiver RX rings
  222  * on network interfaces from getting blown out.  Even though GigE/10GigE
  223  * is supposed to flow control it looks like either it doesn't actually
  224  * do it or Open Source drivers do not properly enable it.
  225  *
  226  * People using the limiter to reduce bottlenecks on slower WAN connections
  227  * should set the slop to 20 (2 packets).
  228  */
  229 static int tcp_inflight_enable = 1;
  230 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_enable, CTLFLAG_RW,
  231     &tcp_inflight_enable, 0, "Enable automatic TCP inflight data limiting");
  232 
  233 static int tcp_inflight_debug = 0;
  234 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_debug, CTLFLAG_RW,
  235     &tcp_inflight_debug, 0, "Debug TCP inflight calculations");
  236 
  237 static int tcp_inflight_min = 6144;
  238 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_min, CTLFLAG_RW,
  239     &tcp_inflight_min, 0, "Lower bound for TCP inflight window");
  240 
  241 static int tcp_inflight_max = TCP_MAXWIN << TCP_MAX_WINSHIFT;
  242 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_max, CTLFLAG_RW,
  243     &tcp_inflight_max, 0, "Upper bound for TCP inflight window");
  244 
  245 static int tcp_inflight_stab = 50;
  246 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_stab, CTLFLAG_RW,
  247     &tcp_inflight_stab, 0, "Slop in maximal packets / 10 (20 = 3 packets)");
  248 
  249 static int tcp_do_rfc3390 = 1;
  250 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3390, CTLFLAG_RW,
  251     &tcp_do_rfc3390, 0,
  252     "Enable RFC 3390 (Increasing TCP's Initial Congestion Window)");
  253 
  254 static u_long tcp_iw_maxsegs = TCP_IW_MAXSEGS_DFLT;
  255 SYSCTL_ULONG(_net_inet_tcp, OID_AUTO, iwmaxsegs, CTLFLAG_RW,
  256     &tcp_iw_maxsegs, 0, "TCP IW segments max");
  257 
  258 static u_long tcp_iw_capsegs = TCP_IW_CAPSEGS_DFLT;
  259 SYSCTL_ULONG(_net_inet_tcp, OID_AUTO, iwcapsegs, CTLFLAG_RW,
  260     &tcp_iw_capsegs, 0, "TCP IW segments");
  261 
  262 int tcp_low_rtobase = 1;
  263 SYSCTL_INT(_net_inet_tcp, OID_AUTO, low_rtobase, CTLFLAG_RW,
  264     &tcp_low_rtobase, 0, "Lowering the Initial RTO (RFC 6298)");
  265 
  266 static int tcp_do_ncr = 1;
  267 SYSCTL_INT(_net_inet_tcp, OID_AUTO, ncr, CTLFLAG_RW,
  268     &tcp_do_ncr, 0, "Non-Congestion Robustness (RFC 4653)");
  269 
  270 static MALLOC_DEFINE(M_TCPTEMP, "tcptemp", "TCP Templates for Keepalives");
  271 static struct malloc_pipe tcptemp_mpipe;
  272 
  273 static void tcp_willblock(void);
  274 static void tcp_notify (struct inpcb *, int);
  275 
  276 struct tcp_stats tcpstats_percpu[MAXCPU] __cachealign;
  277 
  278 static int
  279 sysctl_tcpstats(SYSCTL_HANDLER_ARGS)
  280 {
  281         int cpu, error = 0;
  282 
  283         for (cpu = 0; cpu < ncpus; ++cpu) {
  284                 if ((error = SYSCTL_OUT(req, &tcpstats_percpu[cpu],
  285                                         sizeof(struct tcp_stats))))
  286                         break;
  287                 if ((error = SYSCTL_IN(req, &tcpstats_percpu[cpu],
  288                                        sizeof(struct tcp_stats))))
  289                         break;
  290         }
  291 
  292         return (error);
  293 }
  294 SYSCTL_PROC(_net_inet_tcp, TCPCTL_STATS, stats, (CTLTYPE_OPAQUE | CTLFLAG_RW),
  295     0, 0, sysctl_tcpstats, "S,tcp_stats", "TCP statistics");
  296 
  297 /*
  298  * Target size of TCP PCB hash tables. Must be a power of two.
  299  *
  300  * Note that this can be overridden by the kernel environment
  301  * variable net.inet.tcp.tcbhashsize
  302  */
  303 #ifndef TCBHASHSIZE
  304 #define TCBHASHSIZE     512
  305 #endif
  306 
  307 /*
  308  * This is the actual shape of what we allocate using the zone
  309  * allocator.  Doing it this way allows us to protect both structures
  310  * using the same generation count, and also eliminates the overhead
  311  * of allocating tcpcbs separately.  By hiding the structure here,
  312  * we avoid changing most of the rest of the code (although it needs
  313  * to be changed, eventually, for greater efficiency).
  314  */
  315 #define ALIGNMENT       32
  316 #define ALIGNM1         (ALIGNMENT - 1)
  317 struct  inp_tp {
  318         union {
  319                 struct  inpcb inp;
  320                 char    align[(sizeof(struct inpcb) + ALIGNM1) & ~ALIGNM1];
  321         } inp_tp_u;
  322         struct  tcpcb tcb;
  323         struct  tcp_callout inp_tp_rexmt;
  324         struct  tcp_callout inp_tp_persist;
  325         struct  tcp_callout inp_tp_keep;
  326         struct  tcp_callout inp_tp_2msl;
  327         struct  tcp_callout inp_tp_delack;
  328         struct  netmsg_tcp_timer inp_tp_timermsg;
  329         struct  netmsg_base inp_tp_sndmore;
  330 };
  331 #undef ALIGNMENT
  332 #undef ALIGNM1
  333 
  334 /*
  335  * Tcp initialization
  336  */
  337 void
  338 tcp_init(void)
  339 {
  340         struct inpcbporthead *porthashbase;
  341         struct inpcbinfo *ticb;
  342         u_long porthashmask;
  343         int hashsize = TCBHASHSIZE;
  344         int cpu;
  345 
  346         /*
  347          * note: tcptemp is used for keepalives, and it is ok for an
  348          * allocation to fail so do not specify MPF_INT.
  349          */
  350         mpipe_init(&tcptemp_mpipe, M_TCPTEMP, sizeof(struct tcptemp),
  351                     25, -1, 0, NULL, NULL, NULL);
  352 
  353         tcp_delacktime = TCPTV_DELACK;
  354         tcp_keepinit = TCPTV_KEEP_INIT;
  355         tcp_keepidle = TCPTV_KEEP_IDLE;
  356         tcp_keepintvl = TCPTV_KEEPINTVL;
  357         tcp_maxpersistidle = TCPTV_KEEP_IDLE;
  358         tcp_msl = TCPTV_MSL;
  359         tcp_rexmit_min = TCPTV_MIN;
  360         tcp_rexmit_slop = TCPTV_CPU_VAR;
  361 
  362         TUNABLE_INT_FETCH("net.inet.tcp.tcbhashsize", &hashsize);
  363         if (!powerof2(hashsize)) {
  364                 kprintf("WARNING: TCB hash size not a power of 2\n");
  365                 hashsize = 512; /* safe default */
  366         }
  367         tcp_tcbhashsize = hashsize;
  368         porthashbase = hashinit(hashsize, M_PCB, &porthashmask);
  369 
  370         for (cpu = 0; cpu < ncpus2; cpu++) {
  371                 ticb = &tcbinfo[cpu];
  372                 in_pcbinfo_init(ticb);
  373                 ticb->cpu = cpu;
  374                 ticb->hashbase = hashinit(hashsize, M_PCB,
  375                                           &ticb->hashmask);
  376                 ticb->porthashbase = porthashbase;
  377                 ticb->porthashmask = porthashmask;
  378                 ticb->porttoken = &tcp_port_token;
  379 #if 0
  380                 ticb->porthashbase = hashinit(hashsize, M_PCB,
  381                                               &ticb->porthashmask);
  382 #endif
  383                 ticb->wildcardhashbase = hashinit(hashsize, M_PCB,
  384                                                   &ticb->wildcardhashmask);
  385                 ticb->localgrphashbase = hashinit(hashsize, M_PCB,
  386                                                   &ticb->localgrphashmask);
  387                 ticb->ipi_size = sizeof(struct inp_tp);
  388                 TAILQ_INIT(&tcpcbackq[cpu]);
  389         }
  390 
  391         tcp_reass_maxseg = nmbclusters / 16;
  392         TUNABLE_INT_FETCH("net.inet.tcp.reass.maxsegments", &tcp_reass_maxseg);
  393 
  394 #ifdef INET6
  395 #define TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
  396 #else
  397 #define TCP_MINPROTOHDR (sizeof(struct tcpiphdr))
  398 #endif
  399         if (max_protohdr < TCP_MINPROTOHDR)
  400                 max_protohdr = TCP_MINPROTOHDR;
  401         if (max_linkhdr + TCP_MINPROTOHDR > MHLEN)
  402                 panic("tcp_init");
  403 #undef TCP_MINPROTOHDR
  404 
  405         /*
  406          * Initialize TCP statistics counters for each CPU.
  407          */
  408         for (cpu = 0; cpu < ncpus; ++cpu) {
  409                 bzero(&tcpstats_percpu[cpu], sizeof(struct tcp_stats));
  410         }
  411 
  412         syncache_init();
  413         netisr_register_rollup(tcp_willblock, NETISR_ROLLUP_PRIO_TCP);
  414 }
  415 
  416 static void
  417 tcp_willblock(void)
  418 {
  419         struct tcpcb *tp;
  420         int cpu = mycpu->gd_cpuid;
  421 
  422         while ((tp = TAILQ_FIRST(&tcpcbackq[cpu])) != NULL) {
  423                 KKASSERT(tp->t_flags & TF_ONOUTPUTQ);
  424                 tp->t_flags &= ~TF_ONOUTPUTQ;
  425                 TAILQ_REMOVE(&tcpcbackq[cpu], tp, t_outputq);
  426                 tcp_output(tp);
  427         }
  428 }
  429 
  430 /*
  431  * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
  432  * tcp_template used to store this data in mbufs, but we now recopy it out
  433  * of the tcpcb each time to conserve mbufs.
  434  */
  435 void
  436 tcp_fillheaders(struct tcpcb *tp, void *ip_ptr, void *tcp_ptr, boolean_t tso)
  437 {
  438         struct inpcb *inp = tp->t_inpcb;
  439         struct tcphdr *tcp_hdr = (struct tcphdr *)tcp_ptr;
  440 
  441 #ifdef INET6
  442         if (inp->inp_vflag & INP_IPV6) {
  443                 struct ip6_hdr *ip6;
  444 
  445                 ip6 = (struct ip6_hdr *)ip_ptr;
  446                 ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
  447                         (inp->in6p_flowinfo & IPV6_FLOWINFO_MASK);
  448                 ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) |
  449                         (IPV6_VERSION & IPV6_VERSION_MASK);
  450                 ip6->ip6_nxt = IPPROTO_TCP;
  451                 ip6->ip6_plen = sizeof(struct tcphdr);
  452                 ip6->ip6_src = inp->in6p_laddr;
  453                 ip6->ip6_dst = inp->in6p_faddr;
  454                 tcp_hdr->th_sum = 0;
  455         } else
  456 #endif
  457         {
  458                 struct ip *ip = (struct ip *) ip_ptr;
  459                 u_int plen;
  460 
  461                 ip->ip_vhl = IP_VHL_BORING;
  462                 ip->ip_tos = 0;
  463                 ip->ip_len = 0;
  464                 ip->ip_id = 0;
  465                 ip->ip_off = 0;
  466                 ip->ip_ttl = 0;
  467                 ip->ip_sum = 0;
  468                 ip->ip_p = IPPROTO_TCP;
  469                 ip->ip_src = inp->inp_laddr;
  470                 ip->ip_dst = inp->inp_faddr;
  471 
  472                 if (tso)
  473                         plen = htons(IPPROTO_TCP);
  474                 else
  475                         plen = htons(sizeof(struct tcphdr) + IPPROTO_TCP);
  476                 tcp_hdr->th_sum = in_pseudo(ip->ip_src.s_addr,
  477                     ip->ip_dst.s_addr, plen);
  478         }
  479 
  480         tcp_hdr->th_sport = inp->inp_lport;
  481         tcp_hdr->th_dport = inp->inp_fport;
  482         tcp_hdr->th_seq = 0;
  483         tcp_hdr->th_ack = 0;
  484         tcp_hdr->th_x2 = 0;
  485         tcp_hdr->th_off = 5;
  486         tcp_hdr->th_flags = 0;
  487         tcp_hdr->th_win = 0;
  488         tcp_hdr->th_urp = 0;
  489 }
  490 
  491 /*
  492  * Create template to be used to send tcp packets on a connection.
  493  * Allocates an mbuf and fills in a skeletal tcp/ip header.  The only
  494  * use for this function is in keepalives, which use tcp_respond.
  495  */
  496 struct tcptemp *
  497 tcp_maketemplate(struct tcpcb *tp)
  498 {
  499         struct tcptemp *tmp;
  500 
  501         if ((tmp = mpipe_alloc_nowait(&tcptemp_mpipe)) == NULL)
  502                 return (NULL);
  503         tcp_fillheaders(tp, &tmp->tt_ipgen, &tmp->tt_t, FALSE);
  504         return (tmp);
  505 }
  506 
  507 void
  508 tcp_freetemplate(struct tcptemp *tmp)
  509 {
  510         mpipe_free(&tcptemp_mpipe, tmp);
  511 }
  512 
  513 /*
  514  * Send a single message to the TCP at address specified by
  515  * the given TCP/IP header.  If m == NULL, then we make a copy
  516  * of the tcpiphdr at ti and send directly to the addressed host.
  517  * This is used to force keep alive messages out using the TCP
  518  * template for a connection.  If flags are given then we send
  519  * a message back to the TCP which originated the * segment ti,
  520  * and discard the mbuf containing it and any other attached mbufs.
  521  *
  522  * In any case the ack and sequence number of the transmitted
  523  * segment are as specified by the parameters.
  524  *
  525  * NOTE: If m != NULL, then ti must point to *inside* the mbuf.
  526  */
  527 void
  528 tcp_respond(struct tcpcb *tp, void *ipgen, struct tcphdr *th, struct mbuf *m,
  529             tcp_seq ack, tcp_seq seq, int flags)
  530 {
  531         int tlen;
  532         int win = 0;
  533         struct route *ro = NULL;
  534         struct route sro;
  535         struct ip *ip = ipgen;
  536         struct tcphdr *nth;
  537         int ipflags = 0;
  538         struct route_in6 *ro6 = NULL;
  539         struct route_in6 sro6;
  540         struct ip6_hdr *ip6 = ipgen;
  541         boolean_t use_tmpro = TRUE;
  542 #ifdef INET6
  543         boolean_t isipv6 = (IP_VHL_V(ip->ip_vhl) == 6);
  544 #else
  545         const boolean_t isipv6 = FALSE;
  546 #endif
  547 
  548         if (tp != NULL) {
  549                 if (!(flags & TH_RST)) {
  550                         win = ssb_space(&tp->t_inpcb->inp_socket->so_rcv);
  551                         if (win < 0)
  552                                 win = 0;
  553                         if (win > (long)TCP_MAXWIN << tp->rcv_scale)
  554                                 win = (long)TCP_MAXWIN << tp->rcv_scale;
  555                 }
  556                 /*
  557                  * Don't use the route cache of a listen socket,
  558                  * it is not MPSAFE; use temporary route cache.
  559                  */
  560                 if (tp->t_state != TCPS_LISTEN) {
  561                         if (isipv6)
  562                                 ro6 = &tp->t_inpcb->in6p_route;
  563                         else
  564                                 ro = &tp->t_inpcb->inp_route;
  565                         use_tmpro = FALSE;
  566                 }
  567         }
  568         if (use_tmpro) {
  569                 if (isipv6) {
  570                         ro6 = &sro6;
  571                         bzero(ro6, sizeof *ro6);
  572                 } else {
  573                         ro = &sro;
  574                         bzero(ro, sizeof *ro);
  575                 }
  576         }
  577         if (m == NULL) {
  578                 m = m_gethdr(MB_DONTWAIT, MT_HEADER);
  579                 if (m == NULL)
  580                         return;
  581                 tlen = 0;
  582                 m->m_data += max_linkhdr;
  583                 if (isipv6) {
  584                         bcopy(ip6, mtod(m, caddr_t), sizeof(struct ip6_hdr));
  585                         ip6 = mtod(m, struct ip6_hdr *);
  586                         nth = (struct tcphdr *)(ip6 + 1);
  587                 } else {
  588                         bcopy(ip, mtod(m, caddr_t), sizeof(struct ip));
  589                         ip = mtod(m, struct ip *);
  590                         nth = (struct tcphdr *)(ip + 1);
  591                 }
  592                 bcopy(th, nth, sizeof(struct tcphdr));
  593                 flags = TH_ACK;
  594         } else {
  595                 m_freem(m->m_next);
  596                 m->m_next = NULL;
  597                 m->m_data = (caddr_t)ipgen;
  598                 /* m_len is set later */
  599                 tlen = 0;
  600 #define xchg(a, b, type) { type t; t = a; a = b; b = t; }
  601                 if (isipv6) {
  602                         xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
  603                         nth = (struct tcphdr *)(ip6 + 1);
  604                 } else {
  605                         xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, n_long);
  606                         nth = (struct tcphdr *)(ip + 1);
  607                 }
  608                 if (th != nth) {
  609                         /*
  610                          * this is usually a case when an extension header
  611                          * exists between the IPv6 header and the
  612                          * TCP header.
  613                          */
  614                         nth->th_sport = th->th_sport;
  615                         nth->th_dport = th->th_dport;
  616                 }
  617                 xchg(nth->th_dport, nth->th_sport, n_short);
  618 #undef xchg
  619         }
  620         if (isipv6) {
  621                 ip6->ip6_flow = 0;
  622                 ip6->ip6_vfc = IPV6_VERSION;
  623                 ip6->ip6_nxt = IPPROTO_TCP;
  624                 ip6->ip6_plen = htons((u_short)(sizeof(struct tcphdr) + tlen));
  625                 tlen += sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
  626         } else {
  627                 tlen += sizeof(struct tcpiphdr);
  628                 ip->ip_len = tlen;
  629                 ip->ip_ttl = ip_defttl;
  630         }
  631         m->m_len = tlen;
  632         m->m_pkthdr.len = tlen;
  633         m->m_pkthdr.rcvif = NULL;
  634         nth->th_seq = htonl(seq);
  635         nth->th_ack = htonl(ack);
  636         nth->th_x2 = 0;
  637         nth->th_off = sizeof(struct tcphdr) >> 2;
  638         nth->th_flags = flags;
  639         if (tp != NULL)
  640                 nth->th_win = htons((u_short) (win >> tp->rcv_scale));
  641         else
  642                 nth->th_win = htons((u_short)win);
  643         nth->th_urp = 0;
  644         if (isipv6) {
  645                 nth->th_sum = 0;
  646                 nth->th_sum = in6_cksum(m, IPPROTO_TCP,
  647                                         sizeof(struct ip6_hdr),
  648                                         tlen - sizeof(struct ip6_hdr));
  649                 ip6->ip6_hlim = in6_selecthlim(tp ? tp->t_inpcb : NULL,
  650                                                (ro6 && ro6->ro_rt) ?
  651                                                 ro6->ro_rt->rt_ifp : NULL);
  652         } else {
  653                 nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
  654                     htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p)));
  655                 m->m_pkthdr.csum_flags = CSUM_TCP;
  656                 m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
  657                 m->m_pkthdr.csum_thlen = sizeof(struct tcphdr);
  658         }
  659 #ifdef TCPDEBUG
  660         if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
  661                 tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0);
  662 #endif
  663         if (isipv6) {
  664                 ip6_output(m, NULL, ro6, ipflags, NULL, NULL,
  665                            tp ? tp->t_inpcb : NULL);
  666                 if ((ro6 == &sro6) && (ro6->ro_rt != NULL)) {
  667                         RTFREE(ro6->ro_rt);
  668                         ro6->ro_rt = NULL;
  669                 }
  670         } else {
  671                 ipflags |= IP_DEBUGROUTE;
  672                 ip_output(m, NULL, ro, ipflags, NULL, tp ? tp->t_inpcb : NULL);
  673                 if ((ro == &sro) && (ro->ro_rt != NULL)) {
  674                         RTFREE(ro->ro_rt);
  675                         ro->ro_rt = NULL;
  676                 }
  677         }
  678 }
  679 
  680 /*
  681  * Create a new TCP control block, making an
  682  * empty reassembly queue and hooking it to the argument
  683  * protocol control block.  The `inp' parameter must have
  684  * come from the zone allocator set up in tcp_init().
  685  */
  686 struct tcpcb *
  687 tcp_newtcpcb(struct inpcb *inp)
  688 {
  689         struct inp_tp *it;
  690         struct tcpcb *tp;
  691 #ifdef INET6
  692         boolean_t isipv6 = ((inp->inp_vflag & INP_IPV6) != 0);
  693 #else
  694         const boolean_t isipv6 = FALSE;
  695 #endif
  696 
  697         it = (struct inp_tp *)inp;
  698         tp = &it->tcb;
  699         bzero(tp, sizeof(struct tcpcb));
  700         TAILQ_INIT(&tp->t_segq);
  701         tp->t_maxseg = tp->t_maxopd = isipv6 ? tcp_v6mssdflt : tcp_mssdflt;
  702         tp->t_rxtthresh = tcprexmtthresh;
  703 
  704         /* Set up our timeouts. */
  705         tp->tt_rexmt = &it->inp_tp_rexmt;
  706         tp->tt_persist = &it->inp_tp_persist;
  707         tp->tt_keep = &it->inp_tp_keep;
  708         tp->tt_2msl = &it->inp_tp_2msl;
  709         tp->tt_delack = &it->inp_tp_delack;
  710         tcp_inittimers(tp);
  711 
  712         /*
  713          * Zero out timer message.  We don't create it here,
  714          * since the current CPU may not be the owner of this
  715          * inpcb.
  716          */
  717         tp->tt_msg = &it->inp_tp_timermsg;
  718         bzero(tp->tt_msg, sizeof(*tp->tt_msg));
  719 
  720         tp->t_keepinit = tcp_keepinit;
  721         tp->t_keepidle = tcp_keepidle;
  722         tp->t_keepintvl = tcp_keepintvl;
  723         tp->t_keepcnt = tcp_keepcnt;
  724         tp->t_maxidle = tp->t_keepintvl * tp->t_keepcnt;
  725 
  726         if (tcp_do_ncr)
  727                 tp->t_flags |= TF_NCR;
  728         if (tcp_do_rfc1323)
  729                 tp->t_flags |= (TF_REQ_SCALE | TF_REQ_TSTMP);
  730 
  731         tp->t_inpcb = inp;      /* XXX */
  732         tp->t_state = TCPS_CLOSED;
  733         /*
  734          * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
  735          * rtt estimate.  Set rttvar so that srtt + 4 * rttvar gives
  736          * reasonable initial retransmit time.
  737          */
  738         tp->t_srtt = TCPTV_SRTTBASE;
  739         tp->t_rttvar =
  740             ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
  741         tp->t_rttmin = tcp_rexmit_min;
  742         tp->t_rxtcur = TCPTV_RTOBASE;
  743         tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
  744         tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
  745         tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
  746         tp->snd_last = ticks;
  747         tp->t_rcvtime = ticks;
  748         /*
  749          * IPv4 TTL initialization is necessary for an IPv6 socket as well,
  750          * because the socket may be bound to an IPv6 wildcard address,
  751          * which may match an IPv4-mapped IPv6 address.
  752          */
  753         inp->inp_ip_ttl = ip_defttl;
  754         inp->inp_ppcb = tp;
  755         tcp_sack_tcpcb_init(tp);
  756 
  757         tp->tt_sndmore = &it->inp_tp_sndmore;
  758         tcp_output_init(tp);
  759 
  760         return (tp);            /* XXX */
  761 }
  762 
  763 /*
  764  * Drop a TCP connection, reporting the specified error.
  765  * If connection is synchronized, then send a RST to peer.
  766  */
  767 struct tcpcb *
  768 tcp_drop(struct tcpcb *tp, int error)
  769 {
  770         struct socket *so = tp->t_inpcb->inp_socket;
  771 
  772         if (TCPS_HAVERCVDSYN(tp->t_state)) {
  773                 tp->t_state = TCPS_CLOSED;
  774                 tcp_output(tp);
  775                 tcpstat.tcps_drops++;
  776         } else
  777                 tcpstat.tcps_conndrops++;
  778         if (error == ETIMEDOUT && tp->t_softerror)
  779                 error = tp->t_softerror;
  780         so->so_error = error;
  781         return (tcp_close(tp));
  782 }
  783 
  784 struct netmsg_listen_detach {
  785         struct netmsg_base      base;
  786         struct tcpcb            *nm_tp;
  787         struct tcpcb            *nm_tp_inh;
  788 };
  789 
  790 static void
  791 tcp_listen_detach_handler(netmsg_t msg)
  792 {
  793         struct netmsg_listen_detach *nmsg = (struct netmsg_listen_detach *)msg;
  794         struct tcpcb *tp = nmsg->nm_tp;
  795         int cpu = mycpuid, nextcpu;
  796 
  797         if (tp->t_flags & TF_LISTEN)
  798                 syncache_destroy(tp, nmsg->nm_tp_inh);
  799 
  800         in_pcbremwildcardhash_oncpu(tp->t_inpcb, &tcbinfo[cpu]);
  801 
  802         nextcpu = cpu + 1;
  803         if (nextcpu < ncpus2)
  804                 lwkt_forwardmsg(netisr_cpuport(nextcpu), &nmsg->base.lmsg);
  805         else
  806                 lwkt_replymsg(&nmsg->base.lmsg, 0);
  807 }
  808 
  809 /*
  810  * Close a TCP control block:
  811  *      discard all space held by the tcp
  812  *      discard internet protocol block
  813  *      wake up any sleepers
  814  */
  815 struct tcpcb *
  816 tcp_close(struct tcpcb *tp)
  817 {
  818         struct tseg_qent *q;
  819         struct inpcb *inp = tp->t_inpcb;
  820         struct inpcb *inp_inh = NULL;
  821         struct tcpcb *tp_inh = NULL;
  822         struct socket *so = inp->inp_socket;
  823         struct rtentry *rt;
  824         boolean_t dosavessthresh;
  825 #ifdef INET6
  826         boolean_t isipv6 = ((inp->inp_vflag & INP_IPV6) != 0);
  827         boolean_t isafinet6 = (INP_CHECK_SOCKAF(so, AF_INET6) != 0);
  828 #else
  829         const boolean_t isipv6 = FALSE;
  830 #endif
  831 
  832         if (tp->t_flags & TF_LISTEN) {
  833                 /*
  834                  * Pending socket/syncache inheritance
  835                  *
  836                  * If this is a listen(2) socket, find another listen(2)
  837                  * socket in the same local group, which could inherit
  838                  * the syncache and sockets pending on the completion
  839                  * and incompletion queues.
  840                  *
  841                  * NOTE:
  842                  * Currently the inheritance could only happen on the
  843                  * listen(2) sockets w/ SO_REUSEPORT set.
  844                  */
  845                 KASSERT(&curthread->td_msgport == netisr_cpuport(0),
  846                     ("listen socket close not in netisr0"));
  847                 inp_inh = in_pcblocalgroup_last(&tcbinfo[0], inp);
  848                 if (inp_inh != NULL)
  849                         tp_inh = intotcpcb(inp_inh);
  850         }
  851 
  852         /*
  853          * INP_WILDCARD_MP indicates that listen(2) has been called on
  854          * this socket.  This implies:
  855          * - A wildcard inp's hash is replicated for each protocol thread.
  856          * - Syncache for this inp grows independently in each protocol
  857          *   thread.
  858          * - There is more than one cpu
  859          *
  860          * We have to chain a message to the rest of the protocol threads
  861          * to cleanup the wildcard hash and the syncache.  The cleanup
  862          * in the current protocol thread is defered till the end of this
  863          * function.
  864          *
  865          * NOTE:
  866          * After cleanup the inp's hash and syncache entries, this inp will
  867          * no longer be available to the rest of the protocol threads, so we
  868          * are safe to whack the inp in the following code.
  869          */
  870         if (inp->inp_flags & INP_WILDCARD_MP) {
  871                 struct netmsg_listen_detach nmsg;
  872 
  873                 KKASSERT(so->so_port == netisr_cpuport(0));
  874                 KKASSERT(&curthread->td_msgport == netisr_cpuport(0));
  875                 KKASSERT(inp->inp_pcbinfo == &tcbinfo[0]);
  876 
  877                 netmsg_init(&nmsg.base, NULL, &curthread->td_msgport,
  878                             MSGF_PRIORITY, tcp_listen_detach_handler);
  879                 nmsg.nm_tp = tp;
  880                 nmsg.nm_tp_inh = tp_inh;
  881                 lwkt_domsg(netisr_cpuport(1), &nmsg.base.lmsg, 0);
  882 
  883                 inp->inp_flags &= ~INP_WILDCARD_MP;
  884         }
  885 
  886         KKASSERT(tp->t_state != TCPS_TERMINATING);
  887         tp->t_state = TCPS_TERMINATING;
  888 
  889         /*
  890          * Make sure that all of our timers are stopped before we
  891          * delete the PCB.  For listen TCP socket (tp->tt_msg == NULL),
  892          * timers are never used.  If timer message is never created
  893          * (tp->tt_msg->tt_tcb == NULL), timers are never used too.
  894          */
  895         if (tp->tt_msg != NULL && tp->tt_msg->tt_tcb != NULL) {
  896                 tcp_callout_stop(tp, tp->tt_rexmt);
  897                 tcp_callout_stop(tp, tp->tt_persist);
  898                 tcp_callout_stop(tp, tp->tt_keep);
  899                 tcp_callout_stop(tp, tp->tt_2msl);
  900                 tcp_callout_stop(tp, tp->tt_delack);
  901         }
  902 
  903         if (tp->t_flags & TF_ONOUTPUTQ) {
  904                 KKASSERT(tp->tt_cpu == mycpu->gd_cpuid);
  905                 TAILQ_REMOVE(&tcpcbackq[tp->tt_cpu], tp, t_outputq);
  906                 tp->t_flags &= ~TF_ONOUTPUTQ;
  907         }
  908 
  909         /*
  910          * If we got enough samples through the srtt filter,
  911          * save the rtt and rttvar in the routing entry.
  912          * 'Enough' is arbitrarily defined as the 16 samples.
  913          * 16 samples is enough for the srtt filter to converge
  914          * to within 5% of the correct value; fewer samples and
  915          * we could save a very bogus rtt.
  916          *
  917          * Don't update the default route's characteristics and don't
  918          * update anything that the user "locked".
  919          */
  920         if (tp->t_rttupdated >= 16) {
  921                 u_long i = 0;
  922 
  923                 if (isipv6) {
  924                         struct sockaddr_in6 *sin6;
  925 
  926                         if ((rt = inp->in6p_route.ro_rt) == NULL)
  927                                 goto no_valid_rt;
  928                         sin6 = (struct sockaddr_in6 *)rt_key(rt);
  929                         if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr))
  930                                 goto no_valid_rt;
  931                 } else
  932                         if ((rt = inp->inp_route.ro_rt) == NULL ||
  933                             ((struct sockaddr_in *)rt_key(rt))->
  934                              sin_addr.s_addr == INADDR_ANY)
  935                                 goto no_valid_rt;
  936 
  937                 if (!(rt->rt_rmx.rmx_locks & RTV_RTT)) {
  938                         i = tp->t_srtt * (RTM_RTTUNIT / (hz * TCP_RTT_SCALE));
  939                         if (rt->rt_rmx.rmx_rtt && i)
  940                                 /*
  941                                  * filter this update to half the old & half
  942                                  * the new values, converting scale.
  943                                  * See route.h and tcp_var.h for a
  944                                  * description of the scaling constants.
  945                                  */
  946                                 rt->rt_rmx.rmx_rtt =
  947                                     (rt->rt_rmx.rmx_rtt + i) / 2;
  948                         else
  949                                 rt->rt_rmx.rmx_rtt = i;
  950                         tcpstat.tcps_cachedrtt++;
  951                 }
  952                 if (!(rt->rt_rmx.rmx_locks & RTV_RTTVAR)) {
  953                         i = tp->t_rttvar *
  954                             (RTM_RTTUNIT / (hz * TCP_RTTVAR_SCALE));
  955                         if (rt->rt_rmx.rmx_rttvar && i)
  956                                 rt->rt_rmx.rmx_rttvar =
  957                                     (rt->rt_rmx.rmx_rttvar + i) / 2;
  958                         else
  959                                 rt->rt_rmx.rmx_rttvar = i;
  960                         tcpstat.tcps_cachedrttvar++;
  961                 }
  962                 /*
  963                  * The old comment here said:
  964                  * update the pipelimit (ssthresh) if it has been updated
  965                  * already or if a pipesize was specified & the threshhold
  966                  * got below half the pipesize.  I.e., wait for bad news
  967                  * before we start updating, then update on both good
  968                  * and bad news.
  969                  *
  970                  * But we want to save the ssthresh even if no pipesize is
  971                  * specified explicitly in the route, because such
  972                  * connections still have an implicit pipesize specified
  973                  * by the global tcp_sendspace.  In the absence of a reliable
  974                  * way to calculate the pipesize, it will have to do.
  975                  */
  976                 i = tp->snd_ssthresh;
  977                 if (rt->rt_rmx.rmx_sendpipe != 0)
  978                         dosavessthresh = (i < rt->rt_rmx.rmx_sendpipe/2);
  979                 else
  980                         dosavessthresh = (i < so->so_snd.ssb_hiwat/2);
  981                 if (dosavessthresh ||
  982                     (!(rt->rt_rmx.rmx_locks & RTV_SSTHRESH) && (i != 0) &&
  983                      (rt->rt_rmx.rmx_ssthresh != 0))) {
  984                         /*
  985                          * convert the limit from user data bytes to
  986                          * packets then to packet data bytes.
  987                          */
  988                         i = (i + tp->t_maxseg / 2) / tp->t_maxseg;
  989                         if (i < 2)
  990                                 i = 2;
  991                         i *= tp->t_maxseg +
  992                              (isipv6 ?
  993                               sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
  994                               sizeof(struct tcpiphdr));
  995                         if (rt->rt_rmx.rmx_ssthresh)
  996                                 rt->rt_rmx.rmx_ssthresh =
  997                                     (rt->rt_rmx.rmx_ssthresh + i) / 2;
  998                         else
  999                                 rt->rt_rmx.rmx_ssthresh = i;
 1000                         tcpstat.tcps_cachedssthresh++;
 1001                 }
 1002         }
 1003 
 1004 no_valid_rt:
 1005         /* free the reassembly queue, if any */
 1006         while((q = TAILQ_FIRST(&tp->t_segq)) != NULL) {
 1007                 TAILQ_REMOVE(&tp->t_segq, q, tqe_q);
 1008                 m_freem(q->tqe_m);
 1009                 kfree(q, M_TSEGQ);
 1010                 atomic_add_int(&tcp_reass_qsize, -1);
 1011         }
 1012         /* throw away SACK blocks in scoreboard*/
 1013         if (TCP_DO_SACK(tp))
 1014                 tcp_sack_destroy(&tp->scb);
 1015 
 1016         inp->inp_ppcb = NULL;
 1017         soisdisconnected(so);
 1018         /* note: pcb detached later on */
 1019 
 1020         tcp_destroy_timermsg(tp);
 1021         tcp_output_cancel(tp);
 1022 
 1023         if (tp->t_flags & TF_LISTEN) {
 1024                 syncache_destroy(tp, tp_inh);
 1025                 if (inp_inh != NULL && inp_inh->inp_socket != NULL) {
 1026                         /*
 1027                          * Pending sockets inheritance only needs
 1028                          * to be done once in the current thread,
 1029                          * i.e. netisr0.
 1030                          */
 1031                         soinherit(so, inp_inh->inp_socket);
 1032                 }
 1033         }
 1034 
 1035         so_async_rcvd_drop(so);
 1036         /* Drop the reference for the asynchronized pru_rcvd */
 1037         sofree(so);
 1038 
 1039         /*
 1040          * NOTE:
 1041          * pcbdetach removes any wildcard hash entry on the current CPU.
 1042          */
 1043 #ifdef INET6
 1044         if (isafinet6)
 1045                 in6_pcbdetach(inp);
 1046         else
 1047 #endif
 1048                 in_pcbdetach(inp);
 1049 
 1050         tcpstat.tcps_closed++;
 1051         return (NULL);
 1052 }
 1053 
 1054 static __inline void
 1055 tcp_drain_oncpu(struct inpcbhead *head)
 1056 {
 1057         struct inpcb *marker;
 1058         struct inpcb *inpb;
 1059         struct tcpcb *tcpb;
 1060         struct tseg_qent *te;
 1061 
 1062         /*
 1063          * Allows us to block while running the list
 1064          */
 1065         marker = kmalloc(sizeof(struct inpcb), M_TEMP, M_WAITOK|M_ZERO);
 1066         marker->inp_flags |= INP_PLACEMARKER;
 1067         LIST_INSERT_HEAD(head, marker, inp_list);
 1068 
 1069         while ((inpb = LIST_NEXT(marker, inp_list)) != NULL) {
 1070                 if ((inpb->inp_flags & INP_PLACEMARKER) == 0 &&
 1071                     (tcpb = intotcpcb(inpb)) != NULL &&
 1072                     (te = TAILQ_FIRST(&tcpb->t_segq)) != NULL) {
 1073                         TAILQ_REMOVE(&tcpb->t_segq, te, tqe_q);
 1074                         if (te->tqe_th->th_flags & TH_FIN)
 1075                                 tcpb->t_flags &= ~TF_QUEDFIN;
 1076                         m_freem(te->tqe_m);
 1077                         kfree(te, M_TSEGQ);
 1078                         atomic_add_int(&tcp_reass_qsize, -1);
 1079                         /* retry */
 1080                 } else {
 1081                         LIST_REMOVE(marker, inp_list);
 1082                         LIST_INSERT_AFTER(inpb, marker, inp_list);
 1083                 }
 1084         }
 1085         LIST_REMOVE(marker, inp_list);
 1086         kfree(marker, M_TEMP);
 1087 }
 1088 
 1089 struct netmsg_tcp_drain {
 1090         struct netmsg_base      base;
 1091         struct inpcbhead        *nm_head;
 1092 };
 1093 
 1094 static void
 1095 tcp_drain_handler(netmsg_t msg)
 1096 {
 1097         struct netmsg_tcp_drain *nm = (void *)msg;
 1098 
 1099         tcp_drain_oncpu(nm->nm_head);
 1100         lwkt_replymsg(&nm->base.lmsg, 0);
 1101 }
 1102 
 1103 void
 1104 tcp_drain(void)
 1105 {
 1106         int cpu;
 1107 
 1108         if (!do_tcpdrain)
 1109                 return;
 1110 
 1111         /*
 1112          * Walk the tcpbs, if existing, and flush the reassembly queue,
 1113          * if there is one...
 1114          * XXX: The "Net/3" implementation doesn't imply that the TCP
 1115          *      reassembly queue should be flushed, but in a situation
 1116          *      where we're really low on mbufs, this is potentially
 1117          *      useful.
 1118          */
 1119         for (cpu = 0; cpu < ncpus2; cpu++) {
 1120                 struct netmsg_tcp_drain *nm;
 1121 
 1122                 if (cpu == mycpu->gd_cpuid) {
 1123                         tcp_drain_oncpu(&tcbinfo[cpu].pcblisthead);
 1124                 } else {
 1125                         nm = kmalloc(sizeof(struct netmsg_tcp_drain),
 1126                                      M_LWKTMSG, M_NOWAIT);
 1127                         if (nm == NULL)
 1128                                 continue;
 1129                         netmsg_init(&nm->base, NULL, &netisr_afree_rport,
 1130                                     0, tcp_drain_handler);
 1131                         nm->nm_head = &tcbinfo[cpu].pcblisthead;
 1132                         lwkt_sendmsg(netisr_cpuport(cpu), &nm->base.lmsg);
 1133                 }
 1134         }
 1135 }
 1136 
 1137 /*
 1138  * Notify a tcp user of an asynchronous error;
 1139  * store error as soft error, but wake up user
 1140  * (for now, won't do anything until can select for soft error).
 1141  *
 1142  * Do not wake up user since there currently is no mechanism for
 1143  * reporting soft errors (yet - a kqueue filter may be added).
 1144  */
 1145 static void
 1146 tcp_notify(struct inpcb *inp, int error)
 1147 {
 1148         struct tcpcb *tp = intotcpcb(inp);
 1149 
 1150         /*
 1151          * Ignore some errors if we are hooked up.
 1152          * If connection hasn't completed, has retransmitted several times,
 1153          * and receives a second error, give up now.  This is better
 1154          * than waiting a long time to establish a connection that
 1155          * can never complete.
 1156          */
 1157         if (tp->t_state == TCPS_ESTABLISHED &&
 1158              (error == EHOSTUNREACH || error == ENETUNREACH ||
 1159               error == EHOSTDOWN)) {
 1160                 return;
 1161         } else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
 1162             tp->t_softerror)
 1163                 tcp_drop(tp, error);
 1164         else
 1165                 tp->t_softerror = error;
 1166 #if 0
 1167         wakeup(&so->so_timeo);
 1168         sorwakeup(so);
 1169         sowwakeup(so);
 1170 #endif
 1171 }
 1172 
 1173 static int
 1174 tcp_pcblist(SYSCTL_HANDLER_ARGS)
 1175 {
 1176         int error, i, n;
 1177         struct inpcb *marker;
 1178         struct inpcb *inp;
 1179         globaldata_t gd;
 1180         int origcpu, ccpu;
 1181 
 1182         error = 0;
 1183         n = 0;
 1184 
 1185         /*
 1186          * The process of preparing the TCB list is too time-consuming and
 1187          * resource-intensive to repeat twice on every request.
 1188          */
 1189         if (req->oldptr == NULL) {
 1190                 for (ccpu = 0; ccpu < ncpus; ++ccpu) {
 1191                         gd = globaldata_find(ccpu);
 1192                         n += tcbinfo[gd->gd_cpuid].ipi_count;
 1193                 }
 1194                 req->oldidx = (n + n/8 + 10) * sizeof(struct xtcpcb);
 1195                 return (0);
 1196         }
 1197 
 1198         if (req->newptr != NULL)
 1199                 return (EPERM);
 1200 
 1201         marker = kmalloc(sizeof(struct inpcb), M_TEMP, M_WAITOK|M_ZERO);
 1202         marker->inp_flags |= INP_PLACEMARKER;
 1203 
 1204         /*
 1205          * OK, now we're committed to doing something.  Run the inpcb list
 1206          * for each cpu in the system and construct the output.  Use a
 1207          * list placemarker to deal with list changes occuring during
 1208          * copyout blockages (but otherwise depend on being on the correct
 1209          * cpu to avoid races).
 1210          */
 1211         origcpu = mycpu->gd_cpuid;
 1212         for (ccpu = 1; ccpu <= ncpus && error == 0; ++ccpu) {
 1213                 globaldata_t rgd;
 1214                 caddr_t inp_ppcb;
 1215                 struct xtcpcb xt;
 1216                 int cpu_id;
 1217 
 1218                 cpu_id = (origcpu + ccpu) % ncpus;
 1219                 if ((smp_active_mask & CPUMASK(cpu_id)) == 0)
 1220                         continue;
 1221                 rgd = globaldata_find(cpu_id);
 1222                 lwkt_setcpu_self(rgd);
 1223 
 1224                 n = tcbinfo[cpu_id].ipi_count;
 1225 
 1226                 LIST_INSERT_HEAD(&tcbinfo[cpu_id].pcblisthead, marker, inp_list);
 1227                 i = 0;
 1228                 while ((inp = LIST_NEXT(marker, inp_list)) != NULL && i < n) {
 1229                         /*
 1230                          * process a snapshot of pcbs, ignoring placemarkers
 1231                          * and using our own to allow SYSCTL_OUT to block.
 1232                          */
 1233                         LIST_REMOVE(marker, inp_list);
 1234                         LIST_INSERT_AFTER(inp, marker, inp_list);
 1235 
 1236                         if (inp->inp_flags & INP_PLACEMARKER)
 1237                                 continue;
 1238                         if (prison_xinpcb(req->td, inp))
 1239                                 continue;
 1240 
 1241                         xt.xt_len = sizeof xt;
 1242                         bcopy(inp, &xt.xt_inp, sizeof *inp);
 1243                         inp_ppcb = inp->inp_ppcb;
 1244                         if (inp_ppcb != NULL)
 1245                                 bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp);
 1246                         else
 1247                                 bzero(&xt.xt_tp, sizeof xt.xt_tp);
 1248                         if (inp->inp_socket)
 1249                                 sotoxsocket(inp->inp_socket, &xt.xt_socket);
 1250                         if ((error = SYSCTL_OUT(req, &xt, sizeof xt)) != 0)
 1251                                 break;
 1252                         ++i;
 1253                 }
 1254                 LIST_REMOVE(marker, inp_list);
 1255                 if (error == 0 && i < n) {
 1256                         bzero(&xt, sizeof xt);
 1257                         xt.xt_len = sizeof xt;
 1258                         while (i < n) {
 1259                                 error = SYSCTL_OUT(req, &xt, sizeof xt);
 1260                                 if (error)
 1261                                         break;
 1262                                 ++i;
 1263                         }
 1264                 }
 1265         }
 1266 
 1267         /*
 1268          * Make sure we are on the same cpu we were on originally, since
 1269          * higher level callers expect this.  Also don't pollute caches with
 1270          * migrated userland data by (eventually) returning to userland
 1271          * on a different cpu.
 1272          */
 1273         lwkt_setcpu_self(globaldata_find(origcpu));
 1274         kfree(marker, M_TEMP);
 1275         return (error);
 1276 }
 1277 
 1278 SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist, CTLFLAG_RD, 0, 0,
 1279             tcp_pcblist, "S,xtcpcb", "List of active TCP connections");
 1280 
 1281 static int
 1282 tcp_getcred(SYSCTL_HANDLER_ARGS)
 1283 {
 1284         struct sockaddr_in addrs[2];
 1285         struct inpcb *inp;
 1286         int cpu;
 1287         int error;
 1288 
 1289         error = priv_check(req->td, PRIV_ROOT);
 1290         if (error != 0)
 1291                 return (error);
 1292         error = SYSCTL_IN(req, addrs, sizeof addrs);
 1293         if (error != 0)
 1294                 return (error);
 1295         crit_enter();
 1296         cpu = tcp_addrcpu(addrs[1].sin_addr.s_addr, addrs[1].sin_port,
 1297             addrs[0].sin_addr.s_addr, addrs[0].sin_port);
 1298         inp = in_pcblookup_hash(&tcbinfo[cpu], addrs[1].sin_addr,
 1299             addrs[1].sin_port, addrs[0].sin_addr, addrs[0].sin_port, 0, NULL);
 1300         if (inp == NULL || inp->inp_socket == NULL) {
 1301                 error = ENOENT;
 1302                 goto out;
 1303         }
 1304         error = SYSCTL_OUT(req, inp->inp_socket->so_cred, sizeof(struct ucred));
 1305 out:
 1306         crit_exit();
 1307         return (error);
 1308 }
 1309 
 1310 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred, (CTLTYPE_OPAQUE | CTLFLAG_RW),
 1311     0, 0, tcp_getcred, "S,ucred", "Get the ucred of a TCP connection");
 1312 
 1313 #ifdef INET6
 1314 static int
 1315 tcp6_getcred(SYSCTL_HANDLER_ARGS)
 1316 {
 1317         struct sockaddr_in6 addrs[2];
 1318         struct inpcb *inp;
 1319         int error;
 1320         boolean_t mapped = FALSE;
 1321 
 1322         error = priv_check(req->td, PRIV_ROOT);
 1323         if (error != 0)
 1324                 return (error);
 1325         error = SYSCTL_IN(req, addrs, sizeof addrs);
 1326         if (error != 0)
 1327                 return (error);
 1328         if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) {
 1329                 if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr))
 1330                         mapped = TRUE;
 1331                 else
 1332                         return (EINVAL);
 1333         }
 1334         crit_enter();
 1335         if (mapped) {
 1336                 inp = in_pcblookup_hash(&tcbinfo[0],
 1337                     *(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12],
 1338                     addrs[1].sin6_port,
 1339                     *(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12],
 1340                     addrs[0].sin6_port,
 1341                     0, NULL);
 1342         } else {
 1343                 inp = in6_pcblookup_hash(&tcbinfo[0],
 1344                     &addrs[1].sin6_addr, addrs[1].sin6_port,
 1345                     &addrs[0].sin6_addr, addrs[0].sin6_port,
 1346                     0, NULL);
 1347         }
 1348         if (inp == NULL || inp->inp_socket == NULL) {
 1349                 error = ENOENT;
 1350                 goto out;
 1351         }
 1352         error = SYSCTL_OUT(req, inp->inp_socket->so_cred, sizeof(struct ucred));
 1353 out:
 1354         crit_exit();
 1355         return (error);
 1356 }
 1357 
 1358 SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred, (CTLTYPE_OPAQUE | CTLFLAG_RW),
 1359             0, 0,
 1360             tcp6_getcred, "S,ucred", "Get the ucred of a TCP6 connection");
 1361 #endif
 1362 
 1363 struct netmsg_tcp_notify {
 1364         struct netmsg_base base;
 1365         void            (*nm_notify)(struct inpcb *, int);
 1366         struct in_addr  nm_faddr;
 1367         int             nm_arg;
 1368 };
 1369 
 1370 static void
 1371 tcp_notifyall_oncpu(netmsg_t msg)
 1372 {
 1373         struct netmsg_tcp_notify *nm = (struct netmsg_tcp_notify *)msg;
 1374         int nextcpu;
 1375 
 1376         in_pcbnotifyall(&tcbinfo[mycpuid].pcblisthead, nm->nm_faddr,
 1377                         nm->nm_arg, nm->nm_notify);
 1378 
 1379         nextcpu = mycpuid + 1;
 1380         if (nextcpu < ncpus2)
 1381                 lwkt_forwardmsg(netisr_cpuport(nextcpu), &nm->base.lmsg);
 1382         else
 1383                 lwkt_replymsg(&nm->base.lmsg, 0);
 1384 }
 1385 
 1386 void
 1387 tcp_ctlinput(netmsg_t msg)
 1388 {
 1389         int cmd = msg->ctlinput.nm_cmd;
 1390         struct sockaddr *sa = msg->ctlinput.nm_arg;
 1391         struct ip *ip = msg->ctlinput.nm_extra;
 1392         struct tcphdr *th;
 1393         struct in_addr faddr;
 1394         struct inpcb *inp;
 1395         struct tcpcb *tp;
 1396         void (*notify)(struct inpcb *, int) = tcp_notify;
 1397         tcp_seq icmpseq;
 1398         int arg, cpu;
 1399 
 1400         if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0) {
 1401                 goto done;
 1402         }
 1403 
 1404         faddr = ((struct sockaddr_in *)sa)->sin_addr;
 1405         if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
 1406                 goto done;
 1407 
 1408         arg = inetctlerrmap[cmd];
 1409         if (cmd == PRC_QUENCH) {
 1410                 notify = tcp_quench;
 1411         } else if (icmp_may_rst &&
 1412                    (cmd == PRC_UNREACH_ADMIN_PROHIB ||
 1413                     cmd == PRC_UNREACH_PORT ||
 1414                     cmd == PRC_TIMXCEED_INTRANS) &&
 1415                    ip != NULL) {
 1416                 notify = tcp_drop_syn_sent;
 1417         } else if (cmd == PRC_MSGSIZE) {
 1418                 struct icmp *icmp = (struct icmp *)
 1419                     ((caddr_t)ip - offsetof(struct icmp, icmp_ip));
 1420 
 1421                 arg = ntohs(icmp->icmp_nextmtu);
 1422                 notify = tcp_mtudisc;
 1423         } else if (PRC_IS_REDIRECT(cmd)) {
 1424                 ip = NULL;
 1425                 notify = in_rtchange;
 1426         } else if (cmd == PRC_HOSTDEAD) {
 1427                 ip = NULL;
 1428         }
 1429 
 1430         if (ip != NULL) {
 1431                 crit_enter();
 1432                 th = (struct tcphdr *)((caddr_t)ip +
 1433                                        (IP_VHL_HL(ip->ip_vhl) << 2));
 1434                 cpu = tcp_addrcpu(faddr.s_addr, th->th_dport,
 1435                                   ip->ip_src.s_addr, th->th_sport);
 1436                 inp = in_pcblookup_hash(&tcbinfo[cpu], faddr, th->th_dport,
 1437                                         ip->ip_src, th->th_sport, 0, NULL);
 1438                 if ((inp != NULL) && (inp->inp_socket != NULL)) {
 1439                         icmpseq = htonl(th->th_seq);
 1440                         tp = intotcpcb(inp);
 1441                         if (SEQ_GEQ(icmpseq, tp->snd_una) &&
 1442                             SEQ_LT(icmpseq, tp->snd_max))
 1443                                 (*notify)(inp, arg);
 1444                 } else {
 1445                         struct in_conninfo inc;
 1446 
 1447                         inc.inc_fport = th->th_dport;
 1448                         inc.inc_lport = th->th_sport;
 1449                         inc.inc_faddr = faddr;
 1450                         inc.inc_laddr = ip->ip_src;
 1451 #ifdef INET6
 1452                         inc.inc_isipv6 = 0;
 1453 #endif
 1454                         syncache_unreach(&inc, th);
 1455                 }
 1456                 crit_exit();
 1457         } else {
 1458                 struct netmsg_tcp_notify *nm;
 1459 
 1460                 KKASSERT(&curthread->td_msgport == netisr_cpuport(0));
 1461                 nm = kmalloc(sizeof(*nm), M_LWKTMSG, M_INTWAIT);
 1462                 netmsg_init(&nm->base, NULL, &netisr_afree_rport,
 1463                             0, tcp_notifyall_oncpu);
 1464                 nm->nm_faddr = faddr;
 1465                 nm->nm_arg = arg;
 1466                 nm->nm_notify = notify;
 1467 
 1468                 lwkt_sendmsg(netisr_cpuport(0), &nm->base.lmsg);
 1469         }
 1470 done:
 1471         lwkt_replymsg(&msg->lmsg, 0);
 1472 }
 1473 
 1474 #ifdef INET6
 1475 
 1476 void
 1477 tcp6_ctlinput(netmsg_t msg)
 1478 {
 1479         int cmd = msg->ctlinput.nm_cmd;
 1480         struct sockaddr *sa = msg->ctlinput.nm_arg;
 1481         void *d = msg->ctlinput.nm_extra;
 1482         struct tcphdr th;
 1483         void (*notify) (struct inpcb *, int) = tcp_notify;
 1484         struct ip6_hdr *ip6;
 1485         struct mbuf *m;
 1486         struct ip6ctlparam *ip6cp = NULL;
 1487         const struct sockaddr_in6 *sa6_src = NULL;
 1488         int off;
 1489         struct tcp_portonly {
 1490                 u_int16_t th_sport;
 1491                 u_int16_t th_dport;
 1492         } *thp;
 1493         int arg;
 1494 
 1495         if (sa->sa_family != AF_INET6 ||
 1496             sa->sa_len != sizeof(struct sockaddr_in6)) {
 1497                 goto out;
 1498         }
 1499 
 1500         arg = 0;
 1501         if (cmd == PRC_QUENCH)
 1502                 notify = tcp_quench;
 1503         else if (cmd == PRC_MSGSIZE) {
 1504                 struct ip6ctlparam *ip6cp = d;
 1505                 struct icmp6_hdr *icmp6 = ip6cp->ip6c_icmp6;
 1506 
 1507                 arg = ntohl(icmp6->icmp6_mtu);
 1508                 notify = tcp_mtudisc;
 1509         } else if (!PRC_IS_REDIRECT(cmd) &&
 1510                  ((unsigned)cmd > PRC_NCMDS || inet6ctlerrmap[cmd] == 0)) {
 1511                 goto out;
 1512         }
 1513 
 1514         /* if the parameter is from icmp6, decode it. */
 1515         if (d != NULL) {
 1516                 ip6cp = (struct ip6ctlparam *)d;
 1517                 m = ip6cp->ip6c_m;
 1518                 ip6 = ip6cp->ip6c_ip6;
 1519                 off = ip6cp->ip6c_off;
 1520                 sa6_src = ip6cp->ip6c_src;
 1521         } else {
 1522                 m = NULL;
 1523                 ip6 = NULL;
 1524                 off = 0;        /* fool gcc */
 1525                 sa6_src = &sa6_any;
 1526         }
 1527 
 1528         if (ip6 != NULL) {
 1529                 struct in_conninfo inc;
 1530                 /*
 1531                  * XXX: We assume that when IPV6 is non NULL,
 1532                  * M and OFF are valid.
 1533                  */
 1534 
 1535                 /* check if we can safely examine src and dst ports */
 1536                 if (m->m_pkthdr.len < off + sizeof *thp)
 1537                         goto out;
 1538 
 1539                 bzero(&th, sizeof th);
 1540                 m_copydata(m, off, sizeof *thp, (caddr_t)&th);
 1541 
 1542                 in6_pcbnotify(&tcbinfo[0].pcblisthead, sa, th.th_dport,
 1543                     (struct sockaddr *)ip6cp->ip6c_src,
 1544                     th.th_sport, cmd, arg, notify);
 1545 
 1546                 inc.inc_fport = th.th_dport;
 1547                 inc.inc_lport = th.th_sport;
 1548                 inc.inc6_faddr = ((struct sockaddr_in6 *)sa)->sin6_addr;
 1549                 inc.inc6_laddr = ip6cp->ip6c_src->sin6_addr;
 1550                 inc.inc_isipv6 = 1;
 1551                 syncache_unreach(&inc, &th);
 1552         } else {
 1553                 in6_pcbnotify(&tcbinfo[0].pcblisthead, sa, 0,
 1554                     (const struct sockaddr *)sa6_src, 0, cmd, arg, notify);
 1555         }
 1556 out:
 1557         lwkt_replymsg(&msg->ctlinput.base.lmsg, 0);
 1558 }
 1559 
 1560 #endif
 1561 
 1562 /*
 1563  * Following is where TCP initial sequence number generation occurs.
 1564  *
 1565  * There are two places where we must use initial sequence numbers:
 1566  * 1.  In SYN-ACK packets.
 1567  * 2.  In SYN packets.
 1568  *
 1569  * All ISNs for SYN-ACK packets are generated by the syncache.  See
 1570  * tcp_syncache.c for details.
 1571  *
 1572  * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
 1573  * depends on this property.  In addition, these ISNs should be
 1574  * unguessable so as to prevent connection hijacking.  To satisfy
 1575  * the requirements of this situation, the algorithm outlined in
 1576  * RFC 1948 is used to generate sequence numbers.
 1577  *
 1578  * Implementation details:
 1579  *
 1580  * Time is based off the system timer, and is corrected so that it
 1581  * increases by one megabyte per second.  This allows for proper
 1582  * recycling on high speed LANs while still leaving over an hour
 1583  * before rollover.
 1584  *
 1585  * net.inet.tcp.isn_reseed_interval controls the number of seconds
 1586  * between seeding of isn_secret.  This is normally set to zero,
 1587  * as reseeding should not be necessary.
 1588  *
 1589  */
 1590 
 1591 #define ISN_BYTES_PER_SECOND 1048576
 1592 
 1593 u_char isn_secret[32];
 1594 int isn_last_reseed;
 1595 MD5_CTX isn_ctx;
 1596 
 1597 tcp_seq
 1598 tcp_new_isn(struct tcpcb *tp)
 1599 {
 1600         u_int32_t md5_buffer[4];
 1601         tcp_seq new_isn;
 1602 
 1603         /* Seed if this is the first use, reseed if requested. */
 1604         if ((isn_last_reseed == 0) || ((tcp_isn_reseed_interval > 0) &&
 1605              (((u_int)isn_last_reseed + (u_int)tcp_isn_reseed_interval*hz)
 1606                 < (u_int)ticks))) {
 1607                 read_random_unlimited(&isn_secret, sizeof isn_secret);
 1608                 isn_last_reseed = ticks;
 1609         }
 1610 
 1611         /* Compute the md5 hash and return the ISN. */
 1612         MD5Init(&isn_ctx);
 1613         MD5Update(&isn_ctx, (u_char *)&tp->t_inpcb->inp_fport, sizeof(u_short));
 1614         MD5Update(&isn_ctx, (u_char *)&tp->t_inpcb->inp_lport, sizeof(u_short));
 1615 #ifdef INET6
 1616         if (tp->t_inpcb->inp_vflag & INP_IPV6) {
 1617                 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr,
 1618                           sizeof(struct in6_addr));
 1619                 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr,
 1620                           sizeof(struct in6_addr));
 1621         } else
 1622 #endif
 1623         {
 1624                 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr,
 1625                           sizeof(struct in_addr));
 1626                 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr,
 1627                           sizeof(struct in_addr));
 1628         }
 1629         MD5Update(&isn_ctx, (u_char *) &isn_secret, sizeof(isn_secret));
 1630         MD5Final((u_char *) &md5_buffer, &isn_ctx);
 1631         new_isn = (tcp_seq) md5_buffer[0];
 1632         new_isn += ticks * (ISN_BYTES_PER_SECOND / hz);
 1633         return (new_isn);
 1634 }
 1635 
 1636 /*
 1637  * When a source quench is received, close congestion window
 1638  * to one segment.  We will gradually open it again as we proceed.
 1639  */
 1640 void
 1641 tcp_quench(struct inpcb *inp, int error)
 1642 {
 1643         struct tcpcb *tp = intotcpcb(inp);
 1644 
 1645         if (tp != NULL) {
 1646                 tp->snd_cwnd = tp->t_maxseg;
 1647                 tp->snd_wacked = 0;
 1648         }
 1649 }
 1650 
 1651 /*
 1652  * When a specific ICMP unreachable message is received and the
 1653  * connection state is SYN-SENT, drop the connection.  This behavior
 1654  * is controlled by the icmp_may_rst sysctl.
 1655  */
 1656 void
 1657 tcp_drop_syn_sent(struct inpcb *inp, int error)
 1658 {
 1659         struct tcpcb *tp = intotcpcb(inp);
 1660 
 1661         if ((tp != NULL) && (tp->t_state == TCPS_SYN_SENT))
 1662                 tcp_drop(tp, error);
 1663 }
 1664 
 1665 /*
 1666  * When a `need fragmentation' ICMP is received, update our idea of the MSS
 1667  * based on the new value in the route.  Also nudge TCP to send something,
 1668  * since we know the packet we just sent was dropped.
 1669  * This duplicates some code in the tcp_mss() function in tcp_input.c.
 1670  */
 1671 void
 1672 tcp_mtudisc(struct inpcb *inp, int mtu)
 1673 {
 1674         struct tcpcb *tp = intotcpcb(inp);
 1675         struct rtentry *rt;
 1676         struct socket *so = inp->inp_socket;
 1677         int maxopd, mss;
 1678 #ifdef INET6
 1679         boolean_t isipv6 = ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0);
 1680 #else
 1681         const boolean_t isipv6 = FALSE;
 1682 #endif
 1683 
 1684         if (tp == NULL)
 1685                 return;
 1686 
 1687         /*
 1688          * If no MTU is provided in the ICMP message, use the
 1689          * next lower likely value, as specified in RFC 1191.
 1690          */
 1691         if (mtu == 0) {
 1692                 int oldmtu;
 1693 
 1694                 oldmtu = tp->t_maxopd + 
 1695                     (isipv6 ?
 1696                      sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
 1697                      sizeof(struct tcpiphdr));
 1698                 mtu = ip_next_mtu(oldmtu, 0);
 1699         }
 1700 
 1701         if (isipv6)
 1702                 rt = tcp_rtlookup6(&inp->inp_inc);
 1703         else
 1704                 rt = tcp_rtlookup(&inp->inp_inc);
 1705         if (rt != NULL) {
 1706                 if (rt->rt_rmx.rmx_mtu != 0 && rt->rt_rmx.rmx_mtu < mtu)
 1707                         mtu = rt->rt_rmx.rmx_mtu;
 1708 
 1709                 maxopd = mtu -
 1710                     (isipv6 ?
 1711                      sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
 1712                      sizeof(struct tcpiphdr));
 1713 
 1714                 /*
 1715                  * XXX - The following conditional probably violates the TCP
 1716                  * spec.  The problem is that, since we don't know the
 1717                  * other end's MSS, we are supposed to use a conservative
 1718                  * default.  But, if we do that, then MTU discovery will
 1719                  * never actually take place, because the conservative
 1720                  * default is much less than the MTUs typically seen
 1721                  * on the Internet today.  For the moment, we'll sweep
 1722                  * this under the carpet.
 1723                  *
 1724                  * The conservative default might not actually be a problem
 1725                  * if the only case this occurs is when sending an initial
 1726                  * SYN with options and data to a host we've never talked
 1727                  * to before.  Then, they will reply with an MSS value which
 1728                  * will get recorded and the new parameters should get
 1729                  * recomputed.  For Further Study.
 1730                  */
 1731                 if (rt->rt_rmx.rmx_mssopt  && rt->rt_rmx.rmx_mssopt < maxopd)
 1732                         maxopd = rt->rt_rmx.rmx_mssopt;
 1733         } else
 1734                 maxopd = mtu -
 1735                     (isipv6 ?
 1736                      sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
 1737                      sizeof(struct tcpiphdr));
 1738 
 1739         if (tp->t_maxopd <= maxopd)
 1740                 return;
 1741         tp->t_maxopd = maxopd;
 1742 
 1743         mss = maxopd;
 1744         if ((tp->t_flags & (TF_REQ_TSTMP | TF_RCVD_TSTMP | TF_NOOPT)) ==
 1745                            (TF_REQ_TSTMP | TF_RCVD_TSTMP))
 1746                 mss -= TCPOLEN_TSTAMP_APPA;
 1747 
 1748         /* round down to multiple of MCLBYTES */
 1749 #if     (MCLBYTES & (MCLBYTES - 1)) == 0    /* test if MCLBYTES power of 2 */
 1750         if (mss > MCLBYTES)
 1751                 mss &= ~(MCLBYTES - 1); 
 1752 #else
 1753         if (mss > MCLBYTES)
 1754                 mss = (mss / MCLBYTES) * MCLBYTES;
 1755 #endif
 1756 
 1757         if (so->so_snd.ssb_hiwat < mss)
 1758                 mss = so->so_snd.ssb_hiwat;
 1759 
 1760         tp->t_maxseg = mss;
 1761         tp->t_rtttime = 0;
 1762         tp->snd_nxt = tp->snd_una;
 1763         tcp_output(tp);
 1764         tcpstat.tcps_mturesent++;
 1765 }
 1766 
 1767 /*
 1768  * Look-up the routing entry to the peer of this inpcb.  If no route
 1769  * is found and it cannot be allocated the return NULL.  This routine
 1770  * is called by TCP routines that access the rmx structure and by tcp_mss
 1771  * to get the interface MTU.
 1772  */
 1773 struct rtentry *
 1774 tcp_rtlookup(struct in_conninfo *inc)
 1775 {
 1776         struct route *ro = &inc->inc_route;
 1777 
 1778         if (ro->ro_rt == NULL || !(ro->ro_rt->rt_flags & RTF_UP)) {
 1779                 /* No route yet, so try to acquire one */
 1780                 if (inc->inc_faddr.s_addr != INADDR_ANY) {
 1781                         /*
 1782                          * unused portions of the structure MUST be zero'd
 1783                          * out because rtalloc() treats it as opaque data
 1784                          */
 1785                         bzero(&ro->ro_dst, sizeof(struct sockaddr_in));
 1786                         ro->ro_dst.sa_family = AF_INET;
 1787                         ro->ro_dst.sa_len = sizeof(struct sockaddr_in);
 1788                         ((struct sockaddr_in *) &ro->ro_dst)->sin_addr =
 1789                             inc->inc_faddr;
 1790                         rtalloc(ro);
 1791                 }
 1792         }
 1793         return (ro->ro_rt);
 1794 }
 1795 
 1796 #ifdef INET6
 1797 struct rtentry *
 1798 tcp_rtlookup6(struct in_conninfo *inc)
 1799 {
 1800         struct route_in6 *ro6 = &inc->inc6_route;
 1801 
 1802         if (ro6->ro_rt == NULL || !(ro6->ro_rt->rt_flags & RTF_UP)) {
 1803                 /* No route yet, so try to acquire one */
 1804                 if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) {
 1805                         /*
 1806                          * unused portions of the structure MUST be zero'd
 1807                          * out because rtalloc() treats it as opaque data
 1808                          */
 1809                         bzero(&ro6->ro_dst, sizeof(struct sockaddr_in6));
 1810                         ro6->ro_dst.sin6_family = AF_INET6;
 1811                         ro6->ro_dst.sin6_len = sizeof(struct sockaddr_in6);
 1812                         ro6->ro_dst.sin6_addr = inc->inc6_faddr;
 1813                         rtalloc((struct route *)ro6);
 1814                 }
 1815         }
 1816         return (ro6->ro_rt);
 1817 }
 1818 #endif
 1819 
 1820 #ifdef IPSEC
 1821 /* compute ESP/AH header size for TCP, including outer IP header. */
 1822 size_t
 1823 ipsec_hdrsiz_tcp(struct tcpcb *tp)
 1824 {
 1825         struct inpcb *inp;
 1826         struct mbuf *m;
 1827         size_t hdrsiz;
 1828         struct ip *ip;
 1829         struct tcphdr *th;
 1830 
 1831         if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL))
 1832                 return (0);
 1833         MGETHDR(m, MB_DONTWAIT, MT_DATA);
 1834         if (!m)
 1835                 return (0);
 1836 
 1837 #ifdef INET6
 1838         if (inp->inp_vflag & INP_IPV6) {
 1839                 struct ip6_hdr *ip6 = mtod(m, struct ip6_hdr *);
 1840 
 1841                 th = (struct tcphdr *)(ip6 + 1);
 1842                 m->m_pkthdr.len = m->m_len =
 1843                     sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
 1844                 tcp_fillheaders(tp, ip6, th, FALSE);
 1845                 hdrsiz = ipsec6_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
 1846         } else
 1847 #endif
 1848         {
 1849                 ip = mtod(m, struct ip *);
 1850                 th = (struct tcphdr *)(ip + 1);
 1851                 m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr);
 1852                 tcp_fillheaders(tp, ip, th, FALSE);
 1853                 hdrsiz = ipsec4_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
 1854         }
 1855 
 1856         m_free(m);
 1857         return (hdrsiz);
 1858 }
 1859 #endif
 1860 
 1861 /*
 1862  * TCP BANDWIDTH DELAY PRODUCT WINDOW LIMITING
 1863  *
 1864  * This code attempts to calculate the bandwidth-delay product as a
 1865  * means of determining the optimal window size to maximize bandwidth,
 1866  * minimize RTT, and avoid the over-allocation of buffers on interfaces and
 1867  * routers.  This code also does a fairly good job keeping RTTs in check
 1868  * across slow links like modems.  We implement an algorithm which is very
 1869  * similar (but not meant to be) TCP/Vegas.  The code operates on the
 1870  * transmitter side of a TCP connection and so only effects the transmit
 1871  * side of the connection.
 1872  *
 1873  * BACKGROUND:  TCP makes no provision for the management of buffer space
 1874  * at the end points or at the intermediate routers and switches.  A TCP
 1875  * stream, whether using NewReno or not, will eventually buffer as
 1876  * many packets as it is able and the only reason this typically works is
 1877  * due to the fairly small default buffers made available for a connection
 1878  * (typicaly 16K or 32K).  As machines use larger windows and/or window
 1879  * scaling it is now fairly easy for even a single TCP connection to blow-out
 1880  * all available buffer space not only on the local interface, but on
 1881  * intermediate routers and switches as well.  NewReno makes a misguided
 1882  * attempt to 'solve' this problem by waiting for an actual failure to occur,
 1883  * then backing off, then steadily increasing the window again until another
 1884  * failure occurs, ad-infinitum.  This results in terrible oscillation that
 1885  * is only made worse as network loads increase and the idea of intentionally
 1886  * blowing out network buffers is, frankly, a terrible way to manage network
 1887  * resources.
 1888  *
 1889  * It is far better to limit the transmit window prior to the failure
 1890  * condition being achieved.  There are two general ways to do this:  First
 1891  * you can 'scan' through different transmit window sizes and locate the
 1892  * point where the RTT stops increasing, indicating that you have filled the
 1893  * pipe, then scan backwards until you note that RTT stops decreasing, then
 1894  * repeat ad-infinitum.  This method works in principle but has severe
 1895  * implementation issues due to RTT variances, timer granularity, and
 1896  * instability in the algorithm which can lead to many false positives and
 1897  * create oscillations as well as interact badly with other TCP streams
 1898  * implementing the same algorithm.
 1899  *
 1900  * The second method is to limit the window to the bandwidth delay product
 1901  * of the link.  This is the method we implement.  RTT variances and our
 1902  * own manipulation of the congestion window, bwnd, can potentially
 1903  * destabilize the algorithm.  For this reason we have to stabilize the
 1904  * elements used to calculate the window.  We do this by using the minimum
 1905  * observed RTT, the long term average of the observed bandwidth, and
 1906  * by adding two segments worth of slop.  It isn't perfect but it is able
 1907  * to react to changing conditions and gives us a very stable basis on
 1908  * which to extend the algorithm.
 1909  */
 1910 void
 1911 tcp_xmit_bandwidth_limit(struct tcpcb *tp, tcp_seq ack_seq)
 1912 {
 1913         u_long bw;
 1914         u_long bwnd;
 1915         int save_ticks;
 1916         int delta_ticks;
 1917 
 1918         /*
 1919          * If inflight_enable is disabled in the middle of a tcp connection,
 1920          * make sure snd_bwnd is effectively disabled.
 1921          */
 1922         if (!tcp_inflight_enable) {
 1923                 tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
 1924                 tp->snd_bandwidth = 0;
 1925                 return;
 1926         }
 1927 
 1928         /*
 1929          * Validate the delta time.  If a connection is new or has been idle
 1930          * a long time we have to reset the bandwidth calculator.
 1931          */
 1932         save_ticks = ticks;
 1933         delta_ticks = save_ticks - tp->t_bw_rtttime;
 1934         if (tp->t_bw_rtttime == 0 || delta_ticks < 0 || delta_ticks > hz * 10) {
 1935                 tp->t_bw_rtttime = ticks;
 1936                 tp->t_bw_rtseq = ack_seq;
 1937                 if (tp->snd_bandwidth == 0)
 1938                         tp->snd_bandwidth = tcp_inflight_min;
 1939                 return;
 1940         }
 1941         if (delta_ticks == 0)
 1942                 return;
 1943 
 1944         /*
 1945          * Sanity check, plus ignore pure window update acks.
 1946          */
 1947         if ((int)(ack_seq - tp->t_bw_rtseq) <= 0)
 1948                 return;
 1949 
 1950         /*
 1951          * Figure out the bandwidth.  Due to the tick granularity this
 1952          * is a very rough number and it MUST be averaged over a fairly
 1953          * long period of time.  XXX we need to take into account a link
 1954          * that is not using all available bandwidth, but for now our
 1955          * slop will ramp us up if this case occurs and the bandwidth later
 1956          * increases.
 1957          */
 1958         bw = (int64_t)(ack_seq - tp->t_bw_rtseq) * hz / delta_ticks;
 1959         tp->t_bw_rtttime = save_ticks;
 1960         tp->t_bw_rtseq = ack_seq;
 1961         bw = ((int64_t)tp->snd_bandwidth * 15 + bw) >> 4;
 1962 
 1963         tp->snd_bandwidth = bw;
 1964 
 1965         /*
 1966          * Calculate the semi-static bandwidth delay product, plus two maximal
 1967          * segments.  The additional slop puts us squarely in the sweet
 1968          * spot and also handles the bandwidth run-up case.  Without the
 1969          * slop we could be locking ourselves into a lower bandwidth.
 1970          *
 1971          * Situations Handled:
 1972          *      (1) Prevents over-queueing of packets on LANs, especially on
 1973          *          high speed LANs, allowing larger TCP buffers to be
 1974          *          specified, and also does a good job preventing
 1975          *          over-queueing of packets over choke points like modems
 1976          *          (at least for the transmit side).
 1977          *
 1978          *      (2) Is able to handle changing network loads (bandwidth
 1979          *          drops so bwnd drops, bandwidth increases so bwnd
 1980          *          increases).
 1981          *
 1982          *      (3) Theoretically should stabilize in the face of multiple
 1983          *          connections implementing the same algorithm (this may need
 1984          *          a little work).
 1985          *
 1986          *      (4) Stability value (defaults to 20 = 2 maximal packets) can
 1987          *          be adjusted with a sysctl but typically only needs to be on
 1988          *          very slow connections.  A value no smaller then 5 should
 1989          *          be used, but only reduce this default if you have no other
 1990          *          choice.
 1991          */
 1992 
 1993 #define USERTT  ((tp->t_srtt + tp->t_rttbest) / 2)
 1994         bwnd = (int64_t)bw * USERTT / (hz << TCP_RTT_SHIFT) +
 1995                tcp_inflight_stab * (int)tp->t_maxseg / 10;
 1996 #undef USERTT
 1997 
 1998         if (tcp_inflight_debug > 0) {
 1999                 static int ltime;
 2000                 if ((u_int)(ticks - ltime) >= hz / tcp_inflight_debug) {
 2001                         ltime = ticks;
 2002                         kprintf("%p bw %ld rttbest %d srtt %d bwnd %ld\n",
 2003                                 tp, bw, tp->t_rttbest, tp->t_srtt, bwnd);
 2004                 }
 2005         }
 2006         if ((long)bwnd < tcp_inflight_min)
 2007                 bwnd = tcp_inflight_min;
 2008         if (bwnd > tcp_inflight_max)
 2009                 bwnd = tcp_inflight_max;
 2010         if ((long)bwnd < tp->t_maxseg * 2)
 2011                 bwnd = tp->t_maxseg * 2;
 2012         tp->snd_bwnd = bwnd;
 2013 }
 2014 
 2015 static void
 2016 tcp_rmx_iwsegs(struct tcpcb *tp, u_long *maxsegs, u_long *capsegs)
 2017 {
 2018         struct rtentry *rt;
 2019         struct inpcb *inp = tp->t_inpcb;
 2020 #ifdef INET6
 2021         boolean_t isipv6 = ((inp->inp_vflag & INP_IPV6) ? TRUE : FALSE);
 2022 #else
 2023         const boolean_t isipv6 = FALSE;
 2024 #endif
 2025 
 2026         /* XXX */
 2027         if (tcp_iw_maxsegs < TCP_IW_MAXSEGS_DFLT)
 2028                 tcp_iw_maxsegs = TCP_IW_MAXSEGS_DFLT;
 2029         if (tcp_iw_capsegs < TCP_IW_CAPSEGS_DFLT)
 2030                 tcp_iw_capsegs = TCP_IW_CAPSEGS_DFLT;
 2031 
 2032         if (isipv6)
 2033                 rt = tcp_rtlookup6(&inp->inp_inc);
 2034         else
 2035                 rt = tcp_rtlookup(&inp->inp_inc);
 2036         if (rt == NULL ||
 2037             rt->rt_rmx.rmx_iwmaxsegs < TCP_IW_MAXSEGS_DFLT ||
 2038             rt->rt_rmx.rmx_iwcapsegs < TCP_IW_CAPSEGS_DFLT) {
 2039                 *maxsegs = tcp_iw_maxsegs;
 2040                 *capsegs = tcp_iw_capsegs;
 2041                 return;
 2042         }
 2043         *maxsegs = rt->rt_rmx.rmx_iwmaxsegs;
 2044         *capsegs = rt->rt_rmx.rmx_iwcapsegs;
 2045 }
 2046 
 2047 u_long
 2048 tcp_initial_window(struct tcpcb *tp)
 2049 {
 2050         if (tcp_do_rfc3390) {
 2051                 /*
 2052                  * RFC3390:
 2053                  * "If the SYN or SYN/ACK is lost, the initial window
 2054                  *  used by a sender after a correctly transmitted SYN
 2055                  *  MUST be one segment consisting of MSS bytes."
 2056                  *
 2057                  * However, we do something a little bit more aggressive
 2058                  * then RFC3390 here:
 2059                  * - Only if time spent in the SYN or SYN|ACK retransmition
 2060                  *   >= 3 seconds, the IW is reduced.  We do this mainly
 2061                  *   because when RFC3390 is published, the initial RTO is
 2062                  *   still 3 seconds (the threshold we test here), while
 2063                  *   after RFC6298, the initial RTO is 1 second.  This
 2064                  *   behaviour probably still falls within the spirit of
 2065                  *   RFC3390.
 2066                  * - When IW is reduced, 2*MSS is used instead of 1*MSS.
 2067                  *   Mainly to avoid sender and receiver deadlock until
 2068                  *   delayed ACK timer expires.  And even RFC2581 does not
 2069                  *   try to reduce IW upon SYN or SYN|ACK retransmition
 2070                  *   timeout.
 2071                  *
 2072                  * See also:
 2073                  * http://tools.ietf.org/html/draft-ietf-tcpm-initcwnd-03
 2074                  */
 2075                 if (tp->t_rxtsyn >= TCPTV_RTOBASE3) {
 2076                         return (2 * tp->t_maxseg);
 2077                 } else {
 2078                         u_long maxsegs, capsegs;
 2079 
 2080                         tcp_rmx_iwsegs(tp, &maxsegs, &capsegs);
 2081                         return min(maxsegs * tp->t_maxseg,
 2082                                    max(2 * tp->t_maxseg, capsegs * 1460));
 2083                 }
 2084         } else {
 2085                 /*
 2086                  * Even RFC2581 (back to 1999) allows 2*SMSS IW.
 2087                  *
 2088                  * Mainly to avoid sender and receiver deadlock
 2089                  * until delayed ACK timer expires.
 2090                  */
 2091                 return (2 * tp->t_maxseg);
 2092         }
 2093 }
 2094 
 2095 #ifdef TCP_SIGNATURE
 2096 /*
 2097  * Compute TCP-MD5 hash of a TCP segment. (RFC2385)
 2098  *
 2099  * We do this over ip, tcphdr, segment data, and the key in the SADB.
 2100  * When called from tcp_input(), we can be sure that th_sum has been
 2101  * zeroed out and verified already.
 2102  *
 2103  * Return 0 if successful, otherwise return -1.
 2104  *
 2105  * XXX The key is retrieved from the system's PF_KEY SADB, by keying a
 2106  * search with the destination IP address, and a 'magic SPI' to be
 2107  * determined by the application. This is hardcoded elsewhere to 1179
 2108  * right now. Another branch of this code exists which uses the SPD to
 2109  * specify per-application flows but it is unstable.
 2110  */
 2111 int
 2112 tcpsignature_compute(
 2113         struct mbuf *m,         /* mbuf chain */
 2114         int len,                /* length of TCP data */
 2115         int optlen,             /* length of TCP options */
 2116         u_char *buf,            /* storage for MD5 digest */
 2117         u_int direction)        /* direction of flow */
 2118 {
 2119         struct ippseudo ippseudo;
 2120         MD5_CTX ctx;
 2121         int doff;
 2122         struct ip *ip;
 2123         struct ipovly *ipovly;
 2124         struct secasvar *sav;
 2125         struct tcphdr *th;
 2126 #ifdef INET6
 2127         struct ip6_hdr *ip6;
 2128         struct in6_addr in6;
 2129         uint32_t plen;
 2130         uint16_t nhdr;
 2131 #endif /* INET6 */
 2132         u_short savecsum;
 2133 
 2134         KASSERT(m != NULL, ("passed NULL mbuf. Game over."));
 2135         KASSERT(buf != NULL, ("passed NULL storage pointer for MD5 signature"));
 2136         /*
 2137          * Extract the destination from the IP header in the mbuf.
 2138          */
 2139         ip = mtod(m, struct ip *);
 2140 #ifdef INET6
 2141         ip6 = NULL;     /* Make the compiler happy. */
 2142 #endif /* INET6 */
 2143         /*
 2144          * Look up an SADB entry which matches the address found in
 2145          * the segment.
 2146          */
 2147         switch (IP_VHL_V(ip->ip_vhl)) {
 2148         case IPVERSION:
 2149                 sav = key_allocsa(AF_INET, (caddr_t)&ip->ip_src, (caddr_t)&ip->ip_dst,
 2150                                 IPPROTO_TCP, htonl(TCP_SIG_SPI));
 2151                 break;
 2152 #ifdef INET6
 2153         case (IPV6_VERSION >> 4):
 2154                 ip6 = mtod(m, struct ip6_hdr *);
 2155                 sav = key_allocsa(AF_INET6, (caddr_t)&ip6->ip6_src, (caddr_t)&ip6->ip6_dst,
 2156                                 IPPROTO_TCP, htonl(TCP_SIG_SPI));
 2157                 break;
 2158 #endif /* INET6 */
 2159         default:
 2160                 return (EINVAL);
 2161                 /* NOTREACHED */
 2162                 break;
 2163         }
 2164         if (sav == NULL) {
 2165                 kprintf("%s: SADB lookup failed\n", __func__);
 2166                 return (EINVAL);
 2167         }
 2168         MD5Init(&ctx);
 2169 
 2170         /*
 2171          * Step 1: Update MD5 hash with IP pseudo-header.
 2172          *
 2173          * XXX The ippseudo header MUST be digested in network byte order,
 2174          * or else we'll fail the regression test. Assume all fields we've
 2175          * been doing arithmetic on have been in host byte order.
 2176          * XXX One cannot depend on ipovly->ih_len here. When called from
 2177          * tcp_output(), the underlying ip_len member has not yet been set.
 2178          */
 2179         switch (IP_VHL_V(ip->ip_vhl)) {
 2180         case IPVERSION:
 2181                 ipovly = (struct ipovly *)ip;
 2182                 ippseudo.ippseudo_src = ipovly->ih_src;
 2183                 ippseudo.ippseudo_dst = ipovly->ih_dst;
 2184                 ippseudo.ippseudo_pad = 0;
 2185                 ippseudo.ippseudo_p = IPPROTO_TCP;
 2186                 ippseudo.ippseudo_len = htons(len + sizeof(struct tcphdr) + optlen);
 2187                 MD5Update(&ctx, (char *)&ippseudo, sizeof(struct ippseudo));
 2188                 th = (struct tcphdr *)((u_char *)ip + sizeof(struct ip));
 2189                 doff = sizeof(struct ip) + sizeof(struct tcphdr) + optlen;
 2190                 break;
 2191 #ifdef INET6
 2192         /*
 2193          * RFC 2385, 2.0  Proposal
 2194          * For IPv6, the pseudo-header is as described in RFC 2460, namely the
 2195          * 128-bit source IPv6 address, 128-bit destination IPv6 address, zero-
 2196          * extended next header value (to form 32 bits), and 32-bit segment
 2197          * length.
 2198          * Note: Upper-Layer Packet Length comes before Next Header.
 2199          */
 2200         case (IPV6_VERSION >> 4):
 2201                 in6 = ip6->ip6_src;
 2202                 in6_clearscope(&in6);
 2203                 MD5Update(&ctx, (char *)&in6, sizeof(struct in6_addr));
 2204                 in6 = ip6->ip6_dst;
 2205                 in6_clearscope(&in6);
 2206                 MD5Update(&ctx, (char *)&in6, sizeof(struct in6_addr));
 2207                 plen = htonl(len + sizeof(struct tcphdr) + optlen);
 2208                 MD5Update(&ctx, (char *)&plen, sizeof(uint32_t));
 2209                 nhdr = 0;
 2210                 MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
 2211                 MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
 2212                 MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
 2213                 nhdr = IPPROTO_TCP;
 2214                 MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
 2215                 th = (struct tcphdr *)((u_char *)ip6 + sizeof(struct ip6_hdr));
 2216                 doff = sizeof(struct ip6_hdr) + sizeof(struct tcphdr) + optlen;
 2217                 break;
 2218 #endif /* INET6 */
 2219         default:
 2220                 return (EINVAL);
 2221                 /* NOTREACHED */
 2222                 break;
 2223         }
 2224         /*
 2225          * Step 2: Update MD5 hash with TCP header, excluding options.
 2226          * The TCP checksum must be set to zero.
 2227          */
 2228         savecsum = th->th_sum;
 2229         th->th_sum = 0;
 2230         MD5Update(&ctx, (char *)th, sizeof(struct tcphdr));
 2231         th->th_sum = savecsum;
 2232         /*
 2233          * Step 3: Update MD5 hash with TCP segment data.
 2234          *         Use m_apply() to avoid an early m_pullup().
 2235          */
 2236         if (len > 0)
 2237                 m_apply(m, doff, len, tcpsignature_apply, &ctx);
 2238         /*
 2239          * Step 4: Update MD5 hash with shared secret.
 2240          */
 2241         MD5Update(&ctx, _KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth));
 2242         MD5Final(buf, &ctx);
 2243         key_sa_recordxfer(sav, m);
 2244         key_freesav(sav);
 2245         return (0);
 2246 }
 2247 
 2248 int
 2249 tcpsignature_apply(void *fstate, void *data, unsigned int len)
 2250 {
 2251 
 2252         MD5Update((MD5_CTX *)fstate, (unsigned char *)data, len);
 2253         return (0);
 2254 }
 2255 #endif /* TCP_SIGNATURE */

Cache object: 3f69a3694ee3b091237337fba2fd0492


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.