The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/netinet/tcp_subr.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
    3  *      The Regents of the University of California.  All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice, this list of conditions and the following disclaimer.
   10  * 2. Redistributions in binary form must reproduce the above copyright
   11  *    notice, this list of conditions and the following disclaimer in the
   12  *    documentation and/or other materials provided with the distribution.
   13  * 3. All advertising materials mentioning features or use of this software
   14  *    must display the following acknowledgement:
   15  *      This product includes software developed by the University of
   16  *      California, Berkeley and its contributors.
   17  * 4. Neither the name of the University nor the names of its contributors
   18  *    may be used to endorse or promote products derived from this software
   19  *    without specific prior written permission.
   20  *
   21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   31  * SUCH DAMAGE.
   32  *
   33  *      @(#)tcp_subr.c  8.2 (Berkeley) 5/24/95
   34  * $FreeBSD: releng/5.2/sys/netinet/tcp_subr.c 126496 2004-03-02 17:24:46Z nectar $
   35  */
   36 
   37 #include "opt_compat.h"
   38 #include "opt_inet6.h"
   39 #include "opt_ipsec.h"
   40 #include "opt_mac.h"
   41 #include "opt_tcpdebug.h"
   42 
   43 #include <sys/param.h>
   44 #include <sys/systm.h>
   45 #include <sys/callout.h>
   46 #include <sys/kernel.h>
   47 #include <sys/sysctl.h>
   48 #include <sys/mac.h>
   49 #include <sys/malloc.h>
   50 #include <sys/mbuf.h>
   51 #ifdef INET6
   52 #include <sys/domain.h>
   53 #endif
   54 #include <sys/proc.h>
   55 #include <sys/socket.h>
   56 #include <sys/socketvar.h>
   57 #include <sys/protosw.h>
   58 #include <sys/random.h>
   59 
   60 #include <vm/uma.h>
   61 
   62 #include <net/route.h>
   63 #include <net/if.h>
   64 
   65 #include <netinet/in.h>
   66 #include <netinet/in_systm.h>
   67 #include <netinet/ip.h>
   68 #ifdef INET6
   69 #include <netinet/ip6.h>
   70 #endif
   71 #include <netinet/in_pcb.h>
   72 #ifdef INET6
   73 #include <netinet6/in6_pcb.h>
   74 #endif
   75 #include <netinet/in_var.h>
   76 #include <netinet/ip_var.h>
   77 #ifdef INET6
   78 #include <netinet6/ip6_var.h>
   79 #include <netinet6/nd6.h>
   80 #endif
   81 #include <netinet/tcp.h>
   82 #include <netinet/tcp_fsm.h>
   83 #include <netinet/tcp_seq.h>
   84 #include <netinet/tcp_timer.h>
   85 #include <netinet/tcp_var.h>
   86 #ifdef INET6
   87 #include <netinet6/tcp6_var.h>
   88 #endif
   89 #include <netinet/tcpip.h>
   90 #ifdef TCPDEBUG
   91 #include <netinet/tcp_debug.h>
   92 #endif
   93 #include <netinet6/ip6protosw.h>
   94 
   95 #ifdef IPSEC
   96 #include <netinet6/ipsec.h>
   97 #ifdef INET6
   98 #include <netinet6/ipsec6.h>
   99 #endif
  100 #endif /*IPSEC*/
  101 
  102 #ifdef FAST_IPSEC
  103 #include <netipsec/ipsec.h>
  104 #ifdef INET6
  105 #include <netipsec/ipsec6.h>
  106 #endif
  107 #define IPSEC
  108 #endif /*FAST_IPSEC*/
  109 
  110 #include <machine/in_cksum.h>
  111 #include <sys/md5.h>
  112 
  113 int     tcp_mssdflt = TCP_MSS;
  114 SYSCTL_INT(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt, CTLFLAG_RW, 
  115     &tcp_mssdflt , 0, "Default TCP Maximum Segment Size");
  116 
  117 #ifdef INET6
  118 int     tcp_v6mssdflt = TCP6_MSS;
  119 SYSCTL_INT(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt,
  120         CTLFLAG_RW, &tcp_v6mssdflt , 0,
  121         "Default TCP Maximum Segment Size for IPv6");
  122 #endif
  123 
  124 /*
  125  * Minimum MSS we accept and use. This prevents DoS attacks where
  126  * we are forced to a ridiculous low MSS like 20 and send hundreds
  127  * of packets instead of one. The effect scales with the available
  128  * bandwidth and quickly saturates the CPU and network interface
  129  * with packet generation and sending. Set to zero to disable MINMSS
  130  * checking. This setting prevents us from sending too small packets.
  131  */
  132 int     tcp_minmss = TCP_MINMSS;
  133 SYSCTL_INT(_net_inet_tcp, OID_AUTO, minmss, CTLFLAG_RW,
  134     &tcp_minmss , 0, "Minmum TCP Maximum Segment Size");
  135 /*
  136  * Number of TCP segments per second we accept from remote host
  137  * before we start to calculate average segment size. If average
  138  * segment size drops below the minimum TCP MSS we assume a DoS
  139  * attack and reset+drop the connection. Care has to be taken not to
  140  * set this value too small to not kill interactive type connections
  141  * (telnet, SSH) which send many small packets.
  142  */
  143 int     tcp_minmssoverload = TCP_MINMSSOVERLOAD;
  144 SYSCTL_INT(_net_inet_tcp, OID_AUTO, minmssoverload, CTLFLAG_RW,
  145     &tcp_minmssoverload , 0, "Number of TCP Segments per Second allowed to"
  146     "be under the MINMSS Size");
  147 
  148 #if 0
  149 static int      tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
  150 SYSCTL_INT(_net_inet_tcp, TCPCTL_RTTDFLT, rttdflt, CTLFLAG_RW, 
  151     &tcp_rttdflt , 0, "Default maximum TCP Round Trip Time");
  152 #endif
  153 
  154 int     tcp_do_rfc1323 = 1;
  155 SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_RW, 
  156     &tcp_do_rfc1323 , 0, "Enable rfc1323 (high performance TCP) extensions");
  157 
  158 int     tcp_do_rfc1644 = 0;
  159 SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1644, rfc1644, CTLFLAG_RW, 
  160     &tcp_do_rfc1644 , 0, "Enable rfc1644 (TTCP) extensions");
  161 
  162 static int      tcp_tcbhashsize = 0;
  163 SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RDTUN,
  164      &tcp_tcbhashsize, 0, "Size of TCP control-block hashtable");
  165 
  166 static int      do_tcpdrain = 1;
  167 SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0,
  168      "Enable tcp_drain routine for extra help when low on mbufs");
  169 
  170 SYSCTL_INT(_net_inet_tcp, OID_AUTO, pcbcount, CTLFLAG_RD, 
  171     &tcbinfo.ipi_count, 0, "Number of active PCBs");
  172 
  173 static int      icmp_may_rst = 1;
  174 SYSCTL_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_RW, &icmp_may_rst, 0, 
  175     "Certain ICMP unreachable messages may abort connections in SYN_SENT");
  176 
  177 static int      tcp_isn_reseed_interval = 0;
  178 SYSCTL_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_RW,
  179     &tcp_isn_reseed_interval, 0, "Seconds between reseeding of ISN secret");
  180 
  181 /*
  182  * TCP bandwidth limiting sysctls.  Note that the default lower bound of 
  183  * 1024 exists only for debugging.  A good production default would be 
  184  * something like 6100.
  185  */
  186 static int      tcp_inflight_enable = 0;
  187 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_enable, CTLFLAG_RW,
  188     &tcp_inflight_enable, 0, "Enable automatic TCP inflight data limiting");
  189 
  190 static int      tcp_inflight_debug = 0;
  191 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_debug, CTLFLAG_RW,
  192     &tcp_inflight_debug, 0, "Debug TCP inflight calculations");
  193 
  194 static int      tcp_inflight_min = 6144;
  195 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_min, CTLFLAG_RW,
  196     &tcp_inflight_min, 0, "Lower-bound for TCP inflight window");
  197 
  198 static int      tcp_inflight_max = TCP_MAXWIN << TCP_MAX_WINSHIFT;
  199 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_max, CTLFLAG_RW,
  200     &tcp_inflight_max, 0, "Upper-bound for TCP inflight window");
  201 static int      tcp_inflight_stab = 20;
  202 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_stab, CTLFLAG_RW,
  203     &tcp_inflight_stab, 0, "Inflight Algorithm Stabilization 20 = 2 packets");
  204 
  205 static struct inpcb *tcp_notify(struct inpcb *, int);
  206 static void     tcp_discardcb(struct tcpcb *);
  207 
  208 /*
  209  * Target size of TCP PCB hash tables. Must be a power of two.
  210  *
  211  * Note that this can be overridden by the kernel environment
  212  * variable net.inet.tcp.tcbhashsize
  213  */
  214 #ifndef TCBHASHSIZE
  215 #define TCBHASHSIZE     512
  216 #endif
  217 
  218 /*
  219  * XXX
  220  * Callouts should be moved into struct tcp directly.  They are currently
  221  * separate becuase the tcpcb structure is exported to userland for sysctl
  222  * parsing purposes, which do not know about callouts.
  223  */
  224 struct  tcpcb_mem {
  225         struct  tcpcb tcb;
  226         struct  callout tcpcb_mem_rexmt, tcpcb_mem_persist, tcpcb_mem_keep;
  227         struct  callout tcpcb_mem_2msl, tcpcb_mem_delack;
  228 };
  229 
  230 static uma_zone_t tcpcb_zone;
  231 static uma_zone_t tcptw_zone;
  232 
  233 /*
  234  * Tcp initialization
  235  */
  236 void
  237 tcp_init()
  238 {
  239         int hashsize = TCBHASHSIZE;
  240         
  241         tcp_ccgen = 1;
  242 
  243         tcp_delacktime = TCPTV_DELACK;
  244         tcp_keepinit = TCPTV_KEEP_INIT;
  245         tcp_keepidle = TCPTV_KEEP_IDLE;
  246         tcp_keepintvl = TCPTV_KEEPINTVL;
  247         tcp_maxpersistidle = TCPTV_KEEP_IDLE;
  248         tcp_msl = TCPTV_MSL;
  249         tcp_rexmit_min = TCPTV_MIN;
  250         tcp_rexmit_slop = TCPTV_CPU_VAR;
  251 
  252         INP_INFO_LOCK_INIT(&tcbinfo, "tcp");
  253         LIST_INIT(&tcb);
  254         tcbinfo.listhead = &tcb;
  255         TUNABLE_INT_FETCH("net.inet.tcp.tcbhashsize", &hashsize);
  256         if (!powerof2(hashsize)) {
  257                 printf("WARNING: TCB hash size not a power of 2\n");
  258                 hashsize = 512; /* safe default */
  259         }
  260         tcp_tcbhashsize = hashsize;
  261         tcbinfo.hashbase = hashinit(hashsize, M_PCB, &tcbinfo.hashmask);
  262         tcbinfo.porthashbase = hashinit(hashsize, M_PCB,
  263                                         &tcbinfo.porthashmask);
  264         tcbinfo.ipi_zone = uma_zcreate("inpcb", sizeof(struct inpcb), 
  265             NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
  266         uma_zone_set_max(tcbinfo.ipi_zone, maxsockets);
  267 #ifdef INET6
  268 #define TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
  269 #else /* INET6 */
  270 #define TCP_MINPROTOHDR (sizeof(struct tcpiphdr))
  271 #endif /* INET6 */
  272         if (max_protohdr < TCP_MINPROTOHDR)
  273                 max_protohdr = TCP_MINPROTOHDR;
  274         if (max_linkhdr + TCP_MINPROTOHDR > MHLEN)
  275                 panic("tcp_init");
  276 #undef TCP_MINPROTOHDR
  277         /*
  278          * These have to be type stable for the benefit of the timers.
  279          */
  280         tcpcb_zone = uma_zcreate("tcpcb", sizeof(struct tcpcb_mem), 
  281             NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
  282         uma_zone_set_max(tcpcb_zone, maxsockets);
  283         tcptw_zone = uma_zcreate("tcptw", sizeof(struct tcptw), 
  284             NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
  285         uma_zone_set_max(tcptw_zone, maxsockets / 5);
  286         tcp_timer_init();
  287         syncache_init();
  288         tcp_hc_init();
  289         tcp_reass_init();
  290 }
  291 
  292 /*
  293  * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
  294  * tcp_template used to store this data in mbufs, but we now recopy it out
  295  * of the tcpcb each time to conserve mbufs.
  296  */
  297 void
  298 tcpip_fillheaders(inp, ip_ptr, tcp_ptr)
  299         struct inpcb *inp;
  300         void *ip_ptr;
  301         void *tcp_ptr;
  302 {
  303         struct tcphdr *th = (struct tcphdr *)tcp_ptr;
  304 
  305 #ifdef INET6
  306         if ((inp->inp_vflag & INP_IPV6) != 0) {
  307                 struct ip6_hdr *ip6;
  308 
  309                 ip6 = (struct ip6_hdr *)ip_ptr;
  310                 ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
  311                         (inp->in6p_flowinfo & IPV6_FLOWINFO_MASK);
  312                 ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) |
  313                         (IPV6_VERSION & IPV6_VERSION_MASK);
  314                 ip6->ip6_nxt = IPPROTO_TCP;
  315                 ip6->ip6_plen = sizeof(struct tcphdr);
  316                 ip6->ip6_src = inp->in6p_laddr;
  317                 ip6->ip6_dst = inp->in6p_faddr;
  318         } else
  319 #endif
  320         {
  321                 struct ip *ip;
  322 
  323                 ip = (struct ip *)ip_ptr;
  324                 ip->ip_v = IPVERSION;
  325                 ip->ip_hl = 5;
  326                 ip->ip_tos = inp->inp_ip_tos;
  327                 ip->ip_len = 0;
  328                 ip->ip_id = 0;
  329                 ip->ip_off = 0;
  330                 ip->ip_ttl = inp->inp_ip_ttl;
  331                 ip->ip_sum = 0;
  332                 ip->ip_p = IPPROTO_TCP;
  333                 ip->ip_src = inp->inp_laddr;
  334                 ip->ip_dst = inp->inp_faddr;
  335         }
  336         th->th_sport = inp->inp_lport;
  337         th->th_dport = inp->inp_fport;
  338         th->th_seq = 0;
  339         th->th_ack = 0;
  340         th->th_x2 = 0;
  341         th->th_off = 5;
  342         th->th_flags = 0;
  343         th->th_win = 0;
  344         th->th_urp = 0;
  345         th->th_sum = 0;         /* in_pseudo() is called later for ipv4 */
  346 }
  347 
  348 /*
  349  * Create template to be used to send tcp packets on a connection.
  350  * Allocates an mbuf and fills in a skeletal tcp/ip header.  The only
  351  * use for this function is in keepalives, which use tcp_respond.
  352  */
  353 struct tcptemp *
  354 tcpip_maketemplate(inp)
  355         struct inpcb *inp;
  356 {
  357         struct mbuf *m;
  358         struct tcptemp *n;
  359 
  360         m = m_get(M_DONTWAIT, MT_HEADER);
  361         if (m == NULL)
  362                 return (0);
  363         m->m_len = sizeof(struct tcptemp);
  364         n = mtod(m, struct tcptemp *);
  365 
  366         tcpip_fillheaders(inp, (void *)&n->tt_ipgen, (void *)&n->tt_t);
  367         return (n);
  368 }
  369 
  370 /*
  371  * Send a single message to the TCP at address specified by
  372  * the given TCP/IP header.  If m == 0, then we make a copy
  373  * of the tcpiphdr at ti and send directly to the addressed host.
  374  * This is used to force keep alive messages out using the TCP
  375  * template for a connection.  If flags are given then we send
  376  * a message back to the TCP which originated the * segment ti,
  377  * and discard the mbuf containing it and any other attached mbufs.
  378  *
  379  * In any case the ack and sequence number of the transmitted
  380  * segment are as specified by the parameters.
  381  *
  382  * NOTE: If m != NULL, then ti must point to *inside* the mbuf.
  383  */
  384 void
  385 tcp_respond(tp, ipgen, th, m, ack, seq, flags)
  386         struct tcpcb *tp;
  387         void *ipgen;
  388         register struct tcphdr *th;
  389         register struct mbuf *m;
  390         tcp_seq ack, seq;
  391         int flags;
  392 {
  393         register int tlen;
  394         int win = 0;
  395         struct ip *ip;
  396         struct tcphdr *nth;
  397 #ifdef INET6
  398         struct ip6_hdr *ip6;
  399         int isipv6;
  400 #endif /* INET6 */
  401         int ipflags = 0;
  402         struct inpcb *inp = NULL;
  403 
  404         KASSERT(tp != NULL || m != NULL, ("tcp_respond: tp and m both NULL"));
  405 
  406 #ifdef INET6
  407         isipv6 = ((struct ip *)ipgen)->ip_v == 6;
  408         ip6 = ipgen;
  409 #endif /* INET6 */
  410         ip = ipgen;
  411 
  412         if (tp) {
  413                 inp = tp->t_inpcb;
  414                 KASSERT(inp != NULL, ("tcp control block w/o inpcb"));
  415                 INP_INFO_WLOCK_ASSERT(&tcbinfo);
  416                 INP_LOCK_ASSERT(inp);
  417                 if (!(flags & TH_RST)) {
  418                         win = sbspace(&inp->inp_socket->so_rcv);
  419                         if (win > (long)TCP_MAXWIN << tp->rcv_scale)
  420                                 win = (long)TCP_MAXWIN << tp->rcv_scale;
  421                 }
  422         }
  423         if (m == 0) {
  424                 m = m_gethdr(M_DONTWAIT, MT_HEADER);
  425                 if (m == NULL)
  426                         return;
  427                 tlen = 0;
  428                 m->m_data += max_linkhdr;
  429 #ifdef INET6
  430                 if (isipv6) {
  431                         bcopy((caddr_t)ip6, mtod(m, caddr_t), 
  432                               sizeof(struct ip6_hdr));
  433                         ip6 = mtod(m, struct ip6_hdr *);
  434                         nth = (struct tcphdr *)(ip6 + 1);
  435                 } else
  436 #endif /* INET6 */
  437               {
  438                 bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
  439                 ip = mtod(m, struct ip *);
  440                 nth = (struct tcphdr *)(ip + 1);
  441               }
  442                 bcopy((caddr_t)th, (caddr_t)nth, sizeof(struct tcphdr));
  443                 flags = TH_ACK;
  444         } else {
  445                 m_freem(m->m_next);
  446                 m->m_next = 0;
  447                 m->m_data = (caddr_t)ipgen;
  448                 /* m_len is set later */
  449                 tlen = 0;
  450 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
  451 #ifdef INET6
  452                 if (isipv6) {
  453                         xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
  454                         nth = (struct tcphdr *)(ip6 + 1);
  455                 } else
  456 #endif /* INET6 */
  457               {
  458                 xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, n_long);
  459                 nth = (struct tcphdr *)(ip + 1);
  460               }
  461                 if (th != nth) {
  462                         /*
  463                          * this is usually a case when an extension header
  464                          * exists between the IPv6 header and the
  465                          * TCP header.
  466                          */
  467                         nth->th_sport = th->th_sport;
  468                         nth->th_dport = th->th_dport;
  469                 }
  470                 xchg(nth->th_dport, nth->th_sport, n_short);
  471 #undef xchg
  472         }
  473 #ifdef INET6
  474         if (isipv6) {
  475                 ip6->ip6_flow = 0;
  476                 ip6->ip6_vfc = IPV6_VERSION;
  477                 ip6->ip6_nxt = IPPROTO_TCP;
  478                 ip6->ip6_plen = htons((u_short)(sizeof (struct tcphdr) +
  479                                                 tlen));
  480                 tlen += sizeof (struct ip6_hdr) + sizeof (struct tcphdr);
  481         } else
  482 #endif
  483       {
  484         tlen += sizeof (struct tcpiphdr);
  485         ip->ip_len = tlen;
  486         ip->ip_ttl = ip_defttl;
  487         if (path_mtu_discovery)
  488                 ip->ip_off |= IP_DF;
  489       }
  490         m->m_len = tlen;
  491         m->m_pkthdr.len = tlen;
  492         m->m_pkthdr.rcvif = (struct ifnet *) 0;
  493 #ifdef MAC
  494         if (inp != NULL) {
  495                 /*
  496                  * Packet is associated with a socket, so allow the
  497                  * label of the response to reflect the socket label.
  498                  */
  499                 mac_create_mbuf_from_socket(inp->inp_socket, m);
  500         } else {
  501                 /*
  502                  * Packet is not associated with a socket, so possibly
  503                  * update the label in place.
  504                  */
  505                 mac_reflect_mbuf_tcp(m);
  506         }
  507 #endif
  508         nth->th_seq = htonl(seq);
  509         nth->th_ack = htonl(ack);
  510         nth->th_x2 = 0;
  511         nth->th_off = sizeof (struct tcphdr) >> 2;
  512         nth->th_flags = flags;
  513         if (tp)
  514                 nth->th_win = htons((u_short) (win >> tp->rcv_scale));
  515         else
  516                 nth->th_win = htons((u_short)win);
  517         nth->th_urp = 0;
  518 #ifdef INET6
  519         if (isipv6) {
  520                 nth->th_sum = 0;
  521                 nth->th_sum = in6_cksum(m, IPPROTO_TCP,
  522                                         sizeof(struct ip6_hdr),
  523                                         tlen - sizeof(struct ip6_hdr));
  524                 ip6->ip6_hlim = in6_selecthlim(tp ? tp->t_inpcb : NULL, NULL);
  525         } else
  526 #endif /* INET6 */
  527       {
  528         nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
  529             htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p)));
  530         m->m_pkthdr.csum_flags = CSUM_TCP;
  531         m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
  532       }
  533 #ifdef TCPDEBUG
  534         if (tp == NULL || (inp->inp_socket->so_options & SO_DEBUG))
  535                 tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0);
  536 #endif
  537 #ifdef INET6
  538         if (isipv6)
  539                 (void) ip6_output(m, NULL, NULL, ipflags, NULL, NULL, inp);
  540         else
  541 #endif /* INET6 */
  542         (void) ip_output(m, NULL, NULL, ipflags, NULL, inp);
  543 }
  544 
  545 /*
  546  * Create a new TCP control block, making an
  547  * empty reassembly queue and hooking it to the argument
  548  * protocol control block.  The `inp' parameter must have
  549  * come from the zone allocator set up in tcp_init().
  550  */
  551 struct tcpcb *
  552 tcp_newtcpcb(inp)
  553         struct inpcb *inp;
  554 {
  555         struct tcpcb_mem *tm;
  556         struct tcpcb *tp;
  557 #ifdef INET6
  558         int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
  559 #endif /* INET6 */
  560 
  561         tm = uma_zalloc(tcpcb_zone, M_NOWAIT | M_ZERO);
  562         if (tm == NULL)
  563                 return (NULL);
  564         tp = &tm->tcb;
  565         /*      LIST_INIT(&tp->t_segq); */      /* XXX covered by M_ZERO */
  566         tp->t_maxseg = tp->t_maxopd =
  567 #ifdef INET6
  568                 isipv6 ? tcp_v6mssdflt :
  569 #endif /* INET6 */
  570                 tcp_mssdflt;
  571 
  572         /* Set up our timeouts. */
  573         callout_init(tp->tt_rexmt = &tm->tcpcb_mem_rexmt, 0);
  574         callout_init(tp->tt_persist = &tm->tcpcb_mem_persist, 0);
  575         callout_init(tp->tt_keep = &tm->tcpcb_mem_keep, 0);
  576         callout_init(tp->tt_2msl = &tm->tcpcb_mem_2msl, 0);
  577         callout_init(tp->tt_delack = &tm->tcpcb_mem_delack, 0);
  578 
  579         if (tcp_do_rfc1323)
  580                 tp->t_flags = (TF_REQ_SCALE|TF_REQ_TSTMP);
  581         if (tcp_do_rfc1644)
  582                 tp->t_flags |= TF_REQ_CC;
  583         tp->t_inpcb = inp;      /* XXX */
  584         /*
  585          * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
  586          * rtt estimate.  Set rttvar so that srtt + 4 * rttvar gives
  587          * reasonable initial retransmit time.
  588          */
  589         tp->t_srtt = TCPTV_SRTTBASE;
  590         tp->t_rttvar = ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
  591         tp->t_rttmin = tcp_rexmit_min;
  592         tp->t_rxtcur = TCPTV_RTOBASE;
  593         tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
  594         tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
  595         tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
  596         tp->t_rcvtime = ticks;
  597         tp->t_bw_rtttime = ticks;
  598         /*
  599          * IPv4 TTL initialization is necessary for an IPv6 socket as well,
  600          * because the socket may be bound to an IPv6 wildcard address,
  601          * which may match an IPv4-mapped IPv6 address.
  602          */
  603         inp->inp_ip_ttl = ip_defttl;
  604         inp->inp_ppcb = (caddr_t)tp;
  605         return (tp);            /* XXX */
  606 }
  607 
  608 /*
  609  * Drop a TCP connection, reporting
  610  * the specified error.  If connection is synchronized,
  611  * then send a RST to peer.
  612  */
  613 struct tcpcb *
  614 tcp_drop(tp, errno)
  615         register struct tcpcb *tp;
  616         int errno;
  617 {
  618         struct socket *so = tp->t_inpcb->inp_socket;
  619 
  620         if (TCPS_HAVERCVDSYN(tp->t_state)) {
  621                 tp->t_state = TCPS_CLOSED;
  622                 (void) tcp_output(tp);
  623                 tcpstat.tcps_drops++;
  624         } else
  625                 tcpstat.tcps_conndrops++;
  626         if (errno == ETIMEDOUT && tp->t_softerror)
  627                 errno = tp->t_softerror;
  628         so->so_error = errno;
  629         return (tcp_close(tp));
  630 }
  631 
  632 static void
  633 tcp_discardcb(tp)
  634         struct tcpcb *tp;
  635 {
  636         struct tseg_qent *q;
  637         struct inpcb *inp = tp->t_inpcb;
  638         struct socket *so = inp->inp_socket;
  639 #ifdef INET6
  640         int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
  641 #endif /* INET6 */
  642 
  643         /*
  644          * Make sure that all of our timers are stopped before we
  645          * delete the PCB.
  646          */
  647         callout_stop(tp->tt_rexmt);
  648         callout_stop(tp->tt_persist);
  649         callout_stop(tp->tt_keep);
  650         callout_stop(tp->tt_2msl);
  651         callout_stop(tp->tt_delack);
  652 
  653         /*
  654          * If we got enough samples through the srtt filter,
  655          * save the rtt and rttvar in the routing entry.
  656          * 'Enough' is arbitrarily defined as 4 rtt samples.
  657          * 4 samples is enough for the srtt filter to converge
  658          * to within enough % of the correct value; fewer samples
  659          * and we could save a bogus rtt. The danger is not high
  660          * as tcp quickly recovers from everything.
  661          * XXX: Works very well but needs some more statistics!
  662          */
  663         if (tp->t_rttupdated >= 4) {
  664                 struct hc_metrics_lite metrics;
  665                 u_long ssthresh;
  666 
  667                 bzero(&metrics, sizeof(metrics));
  668                 /*
  669                  * Update the ssthresh always when the conditions below
  670                  * are satisfied. This gives us better new start value
  671                  * for the congestion avoidance for new connections.
  672                  * ssthresh is only set if packet loss occured on a session.
  673                  */
  674                 ssthresh = tp->snd_ssthresh;
  675                 if (ssthresh != 0 && ssthresh < so->so_snd.sb_hiwat / 2) {
  676                         /*
  677                          * convert the limit from user data bytes to
  678                          * packets then to packet data bytes.
  679                          */
  680                         ssthresh = (ssthresh + tp->t_maxseg / 2) / tp->t_maxseg;
  681                         if (ssthresh < 2)
  682                                 ssthresh = 2;
  683                         ssthresh *= (u_long)(tp->t_maxseg +
  684 #ifdef INET6
  685                                       (isipv6 ? sizeof (struct ip6_hdr) +
  686                                                sizeof (struct tcphdr) :
  687 #endif
  688                                        sizeof (struct tcpiphdr)
  689 #ifdef INET6
  690                                        )
  691 #endif
  692                                       );
  693                 } else
  694                         ssthresh = 0;
  695                 metrics.rmx_ssthresh = ssthresh;
  696 
  697                 metrics.rmx_rtt = tp->t_srtt;
  698                 metrics.rmx_rttvar = tp->t_rttvar;
  699                 /* XXX: This wraps if the pipe is more than 4 Gbit per second */
  700                 metrics.rmx_bandwidth = tp->snd_bandwidth;
  701                 metrics.rmx_cwnd = tp->snd_cwnd;
  702                 metrics.rmx_sendpipe = 0; 
  703                 metrics.rmx_recvpipe = 0;
  704 
  705                 tcp_hc_update(&inp->inp_inc, &metrics);
  706         }
  707 
  708         /* free the reassembly queue, if any */
  709         while ((q = LIST_FIRST(&tp->t_segq)) != NULL) {
  710                 LIST_REMOVE(q, tqe_q);
  711                 m_freem(q->tqe_m);
  712                 uma_zfree(tcp_reass_zone, q);
  713                 tcp_reass_qsize--;
  714         }
  715         inp->inp_ppcb = NULL;
  716         tp->t_inpcb = NULL;
  717         uma_zfree(tcpcb_zone, tp);
  718         soisdisconnected(so);
  719 }
  720 
  721 /*
  722  * Close a TCP control block:
  723  *    discard all space held by the tcp
  724  *    discard internet protocol block
  725  *    wake up any sleepers
  726  */
  727 struct tcpcb *
  728 tcp_close(tp)
  729         struct tcpcb *tp;
  730 {
  731         struct inpcb *inp = tp->t_inpcb;
  732 #ifdef INET6
  733         struct socket *so = inp->inp_socket;
  734 #endif
  735 
  736         tcp_discardcb(tp);
  737 #ifdef INET6
  738         if (INP_CHECK_SOCKAF(so, AF_INET6))
  739                 in6_pcbdetach(inp);
  740         else
  741 #endif
  742                 in_pcbdetach(inp);
  743         tcpstat.tcps_closed++;
  744         return ((struct tcpcb *)0);
  745 }
  746 
  747 void
  748 tcp_drain()
  749 {
  750         if (do_tcpdrain)
  751         {
  752                 struct inpcb *inpb;
  753                 struct tcpcb *tcpb;
  754                 struct tseg_qent *te;
  755 
  756         /*
  757          * Walk the tcpbs, if existing, and flush the reassembly queue,
  758          * if there is one...
  759          * XXX: The "Net/3" implementation doesn't imply that the TCP
  760          *      reassembly queue should be flushed, but in a situation
  761          *      where we're really low on mbufs, this is potentially
  762          *      usefull.        
  763          */
  764                 INP_INFO_RLOCK(&tcbinfo);
  765                 LIST_FOREACH(inpb, tcbinfo.listhead, inp_list) {
  766                         if (inpb->inp_vflag & INP_TIMEWAIT)
  767                                 continue;
  768                         INP_LOCK(inpb);
  769                         if ((tcpb = intotcpcb(inpb))) {
  770                                 while ((te = LIST_FIRST(&tcpb->t_segq))
  771                                     != NULL) {
  772                                         LIST_REMOVE(te, tqe_q);
  773                                         m_freem(te->tqe_m);
  774                                         uma_zfree(tcp_reass_zone, te);
  775                                         tcp_reass_qsize--;
  776                                 }
  777                         }
  778                         INP_UNLOCK(inpb);
  779                 }
  780                 INP_INFO_RUNLOCK(&tcbinfo);
  781         }
  782 }
  783 
  784 /*
  785  * Notify a tcp user of an asynchronous error;
  786  * store error as soft error, but wake up user
  787  * (for now, won't do anything until can select for soft error).
  788  *
  789  * Do not wake up user since there currently is no mechanism for
  790  * reporting soft errors (yet - a kqueue filter may be added).
  791  */
  792 static struct inpcb *
  793 tcp_notify(inp, error)
  794         struct inpcb *inp;
  795         int error;
  796 {
  797         struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
  798 
  799         /*
  800          * Ignore some errors if we are hooked up.
  801          * If connection hasn't completed, has retransmitted several times,
  802          * and receives a second error, give up now.  This is better
  803          * than waiting a long time to establish a connection that
  804          * can never complete.
  805          */
  806         if (tp->t_state == TCPS_ESTABLISHED &&
  807             (error == EHOSTUNREACH || error == ENETUNREACH ||
  808              error == EHOSTDOWN)) {
  809                 return inp;
  810         } else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
  811             tp->t_softerror) {
  812                 tcp_drop(tp, error);
  813                 return (struct inpcb *)0;
  814         } else {
  815                 tp->t_softerror = error;
  816                 return inp;
  817         }
  818 #if 0
  819         wakeup( &so->so_timeo);
  820         sorwakeup(so);
  821         sowwakeup(so);
  822 #endif
  823 }
  824 
  825 static int
  826 tcp_pcblist(SYSCTL_HANDLER_ARGS)
  827 {
  828         int error, i, n, s;
  829         struct inpcb *inp, **inp_list;
  830         inp_gen_t gencnt;
  831         struct xinpgen xig;
  832 
  833         /*
  834          * The process of preparing the TCB list is too time-consuming and
  835          * resource-intensive to repeat twice on every request.
  836          */
  837         if (req->oldptr == 0) {
  838                 n = tcbinfo.ipi_count;
  839                 req->oldidx = 2 * (sizeof xig)
  840                         + (n + n/8) * sizeof(struct xtcpcb);
  841                 return 0;
  842         }
  843 
  844         if (req->newptr != 0)
  845                 return EPERM;
  846 
  847         /*
  848          * OK, now we're committed to doing something.
  849          */
  850         s = splnet();
  851         INP_INFO_RLOCK(&tcbinfo);
  852         gencnt = tcbinfo.ipi_gencnt;
  853         n = tcbinfo.ipi_count;
  854         INP_INFO_RUNLOCK(&tcbinfo);
  855         splx(s);
  856 
  857         sysctl_wire_old_buffer(req, 2 * (sizeof xig)
  858                 + n * sizeof(struct xtcpcb));
  859 
  860         xig.xig_len = sizeof xig;
  861         xig.xig_count = n;
  862         xig.xig_gen = gencnt;
  863         xig.xig_sogen = so_gencnt;
  864         error = SYSCTL_OUT(req, &xig, sizeof xig);
  865         if (error)
  866                 return error;
  867 
  868         inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK);
  869         if (inp_list == 0)
  870                 return ENOMEM;
  871         
  872         s = splnet();
  873         INP_INFO_RLOCK(&tcbinfo);
  874         for (inp = LIST_FIRST(tcbinfo.listhead), i = 0; inp && i < n;
  875              inp = LIST_NEXT(inp, inp_list)) {
  876                 INP_LOCK(inp);
  877                 if (inp->inp_gencnt <= gencnt) {
  878                         /*
  879                          * XXX: This use of cr_cansee(), introduced with
  880                          * TCP state changes, is not quite right, but for
  881                          * now, better than nothing.
  882                          */
  883                         if (inp->inp_vflag & INP_TIMEWAIT)
  884                                 error = cr_cansee(req->td->td_ucred,
  885                                     intotw(inp)->tw_cred);
  886                         else
  887                                 error = cr_canseesocket(req->td->td_ucred,
  888                                     inp->inp_socket);
  889                         if (error == 0)
  890                                 inp_list[i++] = inp;
  891                 }
  892                 INP_UNLOCK(inp);
  893         }
  894         INP_INFO_RUNLOCK(&tcbinfo);
  895         splx(s);
  896         n = i;
  897 
  898         error = 0;
  899         for (i = 0; i < n; i++) {
  900                 inp = inp_list[i];
  901                 if (inp->inp_gencnt <= gencnt) {
  902                         struct xtcpcb xt;
  903                         caddr_t inp_ppcb;
  904                         xt.xt_len = sizeof xt;
  905                         /* XXX should avoid extra copy */
  906                         bcopy(inp, &xt.xt_inp, sizeof *inp);
  907                         inp_ppcb = inp->inp_ppcb;
  908                         if (inp_ppcb == NULL)
  909                                 bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
  910                         else if (inp->inp_vflag & INP_TIMEWAIT) {
  911                                 bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
  912                                 xt.xt_tp.t_state = TCPS_TIME_WAIT;
  913                         } else
  914                                 bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp);
  915                         if (inp->inp_socket)
  916                                 sotoxsocket(inp->inp_socket, &xt.xt_socket);
  917                         else {
  918                                 bzero(&xt.xt_socket, sizeof xt.xt_socket);
  919                                 xt.xt_socket.xso_protocol = IPPROTO_TCP;
  920                         }
  921                         xt.xt_inp.inp_gencnt = inp->inp_gencnt;
  922                         error = SYSCTL_OUT(req, &xt, sizeof xt);
  923                 }
  924         }
  925         if (!error) {
  926                 /*
  927                  * Give the user an updated idea of our state.
  928                  * If the generation differs from what we told
  929                  * her before, she knows that something happened
  930                  * while we were processing this request, and it
  931                  * might be necessary to retry.
  932                  */
  933                 s = splnet();
  934                 INP_INFO_RLOCK(&tcbinfo);
  935                 xig.xig_gen = tcbinfo.ipi_gencnt;
  936                 xig.xig_sogen = so_gencnt;
  937                 xig.xig_count = tcbinfo.ipi_count;
  938                 INP_INFO_RUNLOCK(&tcbinfo);
  939                 splx(s);
  940                 error = SYSCTL_OUT(req, &xig, sizeof xig);
  941         }
  942         free(inp_list, M_TEMP);
  943         return error;
  944 }
  945 
  946 SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist, CTLFLAG_RD, 0, 0,
  947             tcp_pcblist, "S,xtcpcb", "List of active TCP connections");
  948 
  949 static int
  950 tcp_getcred(SYSCTL_HANDLER_ARGS)
  951 {
  952         struct xucred xuc;
  953         struct sockaddr_in addrs[2];
  954         struct inpcb *inp;
  955         int error, s;
  956 
  957         error = suser_cred(req->td->td_ucred, PRISON_ROOT);
  958         if (error)
  959                 return (error);
  960         error = SYSCTL_IN(req, addrs, sizeof(addrs));
  961         if (error)
  962                 return (error);
  963         s = splnet();
  964         INP_INFO_RLOCK(&tcbinfo);
  965         inp = in_pcblookup_hash(&tcbinfo, addrs[1].sin_addr, addrs[1].sin_port,
  966             addrs[0].sin_addr, addrs[0].sin_port, 0, NULL);
  967         if (inp == NULL) {
  968                 error = ENOENT;
  969                 goto outunlocked;
  970         }
  971         INP_LOCK(inp);
  972         if (inp->inp_socket == NULL) {
  973                 error = ENOENT;
  974                 goto out;
  975         }
  976         error = cr_canseesocket(req->td->td_ucred, inp->inp_socket);
  977         if (error)
  978                 goto out;
  979         cru2x(inp->inp_socket->so_cred, &xuc);
  980 out:
  981         INP_UNLOCK(inp);
  982 outunlocked:
  983         INP_INFO_RUNLOCK(&tcbinfo);
  984         splx(s);
  985         if (error == 0)
  986                 error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
  987         return (error);
  988 }
  989 
  990 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred,
  991     CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
  992     tcp_getcred, "S,xucred", "Get the xucred of a TCP connection");
  993 
  994 #ifdef INET6
  995 static int
  996 tcp6_getcred(SYSCTL_HANDLER_ARGS)
  997 {
  998         struct xucred xuc;
  999         struct sockaddr_in6 addrs[2];
 1000         struct inpcb *inp;
 1001         int error, s, mapped = 0;
 1002 
 1003         error = suser_cred(req->td->td_ucred, PRISON_ROOT);
 1004         if (error)
 1005                 return (error);
 1006         error = SYSCTL_IN(req, addrs, sizeof(addrs));
 1007         if (error)
 1008                 return (error);
 1009         if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) {
 1010                 if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr))
 1011                         mapped = 1;
 1012                 else
 1013                         return (EINVAL);
 1014         }
 1015         s = splnet();
 1016         INP_INFO_RLOCK(&tcbinfo);
 1017         if (mapped == 1)
 1018                 inp = in_pcblookup_hash(&tcbinfo,
 1019                         *(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12],
 1020                         addrs[1].sin6_port,
 1021                         *(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12],
 1022                         addrs[0].sin6_port,
 1023                         0, NULL);
 1024         else
 1025                 inp = in6_pcblookup_hash(&tcbinfo, &addrs[1].sin6_addr,
 1026                                  addrs[1].sin6_port,
 1027                                  &addrs[0].sin6_addr, addrs[0].sin6_port,
 1028                                  0, NULL);
 1029         if (inp == NULL) {
 1030                 error = ENOENT;
 1031                 goto outunlocked;
 1032         }
 1033         INP_LOCK(inp);
 1034         if (inp->inp_socket == NULL) {
 1035                 error = ENOENT;
 1036                 goto out;
 1037         }
 1038         error = cr_canseesocket(req->td->td_ucred, inp->inp_socket);
 1039         if (error)
 1040                 goto out;
 1041         cru2x(inp->inp_socket->so_cred, &xuc);
 1042 out:
 1043         INP_UNLOCK(inp);
 1044 outunlocked:
 1045         INP_INFO_RUNLOCK(&tcbinfo);
 1046         splx(s);
 1047         if (error == 0)
 1048                 error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
 1049         return (error);
 1050 }
 1051 
 1052 SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred,
 1053     CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
 1054     tcp6_getcred, "S,xucred", "Get the xucred of a TCP6 connection");
 1055 #endif
 1056 
 1057 
 1058 void
 1059 tcp_ctlinput(cmd, sa, vip)
 1060         int cmd;
 1061         struct sockaddr *sa;
 1062         void *vip;
 1063 {
 1064         struct ip *ip = vip;
 1065         struct tcphdr *th;
 1066         struct in_addr faddr;
 1067         struct inpcb *inp;
 1068         struct tcpcb *tp;
 1069         struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
 1070         tcp_seq icmp_seq;
 1071         int s;
 1072 
 1073         faddr = ((struct sockaddr_in *)sa)->sin_addr;
 1074         if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
 1075                 return;
 1076 
 1077         if (cmd == PRC_QUENCH)
 1078                 notify = tcp_quench;
 1079         else if (icmp_may_rst && (cmd == PRC_UNREACH_ADMIN_PROHIB ||
 1080                 cmd == PRC_UNREACH_PORT || cmd == PRC_TIMXCEED_INTRANS) && ip)
 1081                 notify = tcp_drop_syn_sent;
 1082         else if (cmd == PRC_MSGSIZE)
 1083                 notify = tcp_mtudisc;
 1084         /*
 1085          * Redirects don't need to be handled up here.
 1086          */
 1087         else if (PRC_IS_REDIRECT(cmd))
 1088                 return;
 1089         /*
 1090          * Hostdead is ugly because it goes linearly through all PCBs.
 1091          * XXX: We never get this from ICMP, otherwise it makes an
 1092          * excellent DoS attack on machines with many connections.
 1093          */
 1094         else if (cmd == PRC_HOSTDEAD)
 1095                 ip = 0;
 1096         else if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0)
 1097                 return;
 1098         if (ip) {
 1099                 s = splnet();
 1100                 th = (struct tcphdr *)((caddr_t)ip 
 1101                                        + (ip->ip_hl << 2));
 1102                 INP_INFO_WLOCK(&tcbinfo);
 1103                 inp = in_pcblookup_hash(&tcbinfo, faddr, th->th_dport,
 1104                     ip->ip_src, th->th_sport, 0, NULL);
 1105                 if (inp != NULL)  {
 1106                         INP_LOCK(inp);
 1107                         if (inp->inp_socket != NULL) {
 1108                                 icmp_seq = htonl(th->th_seq);
 1109                                 tp = intotcpcb(inp);
 1110                                 if (SEQ_GEQ(icmp_seq, tp->snd_una) &&
 1111                                         SEQ_LT(icmp_seq, tp->snd_max))
 1112                                         inp = (*notify)(inp, inetctlerrmap[cmd]);
 1113                         }
 1114                         if (inp)
 1115                                 INP_UNLOCK(inp);
 1116                 } else {
 1117                         struct in_conninfo inc;
 1118 
 1119                         inc.inc_fport = th->th_dport;
 1120                         inc.inc_lport = th->th_sport;
 1121                         inc.inc_faddr = faddr;
 1122                         inc.inc_laddr = ip->ip_src;
 1123 #ifdef INET6
 1124                         inc.inc_isipv6 = 0;
 1125 #endif
 1126                         syncache_unreach(&inc, th);
 1127                 }
 1128                 INP_INFO_WUNLOCK(&tcbinfo);
 1129                 splx(s);
 1130         } else
 1131                 in_pcbnotifyall(&tcbinfo, faddr, inetctlerrmap[cmd], notify);
 1132 }
 1133 
 1134 #ifdef INET6
 1135 void
 1136 tcp6_ctlinput(cmd, sa, d)
 1137         int cmd;
 1138         struct sockaddr *sa;
 1139         void *d;
 1140 {
 1141         struct tcphdr th;
 1142         struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
 1143         struct ip6_hdr *ip6;
 1144         struct mbuf *m;
 1145         struct ip6ctlparam *ip6cp = NULL;
 1146         const struct sockaddr_in6 *sa6_src = NULL;
 1147         int off;
 1148         struct tcp_portonly {
 1149                 u_int16_t th_sport;
 1150                 u_int16_t th_dport;
 1151         } *thp;
 1152 
 1153         if (sa->sa_family != AF_INET6 ||
 1154             sa->sa_len != sizeof(struct sockaddr_in6))
 1155                 return;
 1156 
 1157         if (cmd == PRC_QUENCH)
 1158                 notify = tcp_quench;
 1159         else if (cmd == PRC_MSGSIZE)
 1160                 notify = tcp_mtudisc;
 1161         else if (!PRC_IS_REDIRECT(cmd) &&
 1162                  ((unsigned)cmd >= PRC_NCMDS || inet6ctlerrmap[cmd] == 0))
 1163                 return;
 1164 
 1165         /* if the parameter is from icmp6, decode it. */
 1166         if (d != NULL) {
 1167                 ip6cp = (struct ip6ctlparam *)d;
 1168                 m = ip6cp->ip6c_m;
 1169                 ip6 = ip6cp->ip6c_ip6;
 1170                 off = ip6cp->ip6c_off;
 1171                 sa6_src = ip6cp->ip6c_src;
 1172         } else {
 1173                 m = NULL;
 1174                 ip6 = NULL;
 1175                 off = 0;        /* fool gcc */
 1176                 sa6_src = &sa6_any;
 1177         }
 1178 
 1179         if (ip6) {
 1180                 struct in_conninfo inc;
 1181                 /*
 1182                  * XXX: We assume that when IPV6 is non NULL,
 1183                  * M and OFF are valid.
 1184                  */
 1185 
 1186                 /* check if we can safely examine src and dst ports */
 1187                 if (m->m_pkthdr.len < off + sizeof(*thp))
 1188                         return;
 1189 
 1190                 bzero(&th, sizeof(th));
 1191                 m_copydata(m, off, sizeof(*thp), (caddr_t)&th);
 1192 
 1193                 in6_pcbnotify(&tcb, sa, th.th_dport,
 1194                     (struct sockaddr *)ip6cp->ip6c_src,
 1195                     th.th_sport, cmd, notify);
 1196 
 1197                 inc.inc_fport = th.th_dport;
 1198                 inc.inc_lport = th.th_sport;
 1199                 inc.inc6_faddr = ((struct sockaddr_in6 *)sa)->sin6_addr;
 1200                 inc.inc6_laddr = ip6cp->ip6c_src->sin6_addr;
 1201                 inc.inc_isipv6 = 1;
 1202                 syncache_unreach(&inc, &th);
 1203         } else
 1204                 in6_pcbnotify(&tcb, sa, 0, (const struct sockaddr *)sa6_src,
 1205                               0, cmd, notify);
 1206 }
 1207 #endif /* INET6 */
 1208 
 1209 
 1210 /*
 1211  * Following is where TCP initial sequence number generation occurs.
 1212  *
 1213  * There are two places where we must use initial sequence numbers:
 1214  * 1.  In SYN-ACK packets.
 1215  * 2.  In SYN packets.
 1216  *
 1217  * All ISNs for SYN-ACK packets are generated by the syncache.  See
 1218  * tcp_syncache.c for details.
 1219  *
 1220  * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
 1221  * depends on this property.  In addition, these ISNs should be
 1222  * unguessable so as to prevent connection hijacking.  To satisfy
 1223  * the requirements of this situation, the algorithm outlined in
 1224  * RFC 1948 is used to generate sequence numbers.
 1225  *
 1226  * Implementation details:
 1227  *
 1228  * Time is based off the system timer, and is corrected so that it
 1229  * increases by one megabyte per second.  This allows for proper
 1230  * recycling on high speed LANs while still leaving over an hour
 1231  * before rollover.
 1232  *
 1233  * net.inet.tcp.isn_reseed_interval controls the number of seconds
 1234  * between seeding of isn_secret.  This is normally set to zero,
 1235  * as reseeding should not be necessary.
 1236  *
 1237  */
 1238 
 1239 #define ISN_BYTES_PER_SECOND 1048576
 1240 
 1241 u_char isn_secret[32];
 1242 int isn_last_reseed;
 1243 MD5_CTX isn_ctx;
 1244 
 1245 tcp_seq
 1246 tcp_new_isn(tp)
 1247         struct tcpcb *tp;
 1248 {
 1249         u_int32_t md5_buffer[4];
 1250         tcp_seq new_isn;
 1251 
 1252         /* Seed if this is the first use, reseed if requested. */
 1253         if ((isn_last_reseed == 0) || ((tcp_isn_reseed_interval > 0) &&
 1254              (((u_int)isn_last_reseed + (u_int)tcp_isn_reseed_interval*hz)
 1255                 < (u_int)ticks))) {
 1256                 read_random(&isn_secret, sizeof(isn_secret));
 1257                 isn_last_reseed = ticks;
 1258         }
 1259                 
 1260         /* Compute the md5 hash and return the ISN. */
 1261         MD5Init(&isn_ctx);
 1262         MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_fport, sizeof(u_short));
 1263         MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_lport, sizeof(u_short));
 1264 #ifdef INET6
 1265         if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0) {
 1266                 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr,
 1267                           sizeof(struct in6_addr));
 1268                 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr,
 1269                           sizeof(struct in6_addr));
 1270         } else
 1271 #endif
 1272         {
 1273                 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr,
 1274                           sizeof(struct in_addr));
 1275                 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr,
 1276                           sizeof(struct in_addr));
 1277         }
 1278         MD5Update(&isn_ctx, (u_char *) &isn_secret, sizeof(isn_secret));
 1279         MD5Final((u_char *) &md5_buffer, &isn_ctx);
 1280         new_isn = (tcp_seq) md5_buffer[0];
 1281         new_isn += ticks * (ISN_BYTES_PER_SECOND / hz);
 1282         return new_isn;
 1283 }
 1284 
 1285 /*
 1286  * When a source quench is received, close congestion window
 1287  * to one segment.  We will gradually open it again as we proceed.
 1288  */
 1289 struct inpcb *
 1290 tcp_quench(inp, errno)
 1291         struct inpcb *inp;
 1292         int errno;
 1293 {
 1294         struct tcpcb *tp = intotcpcb(inp);
 1295 
 1296         if (tp)
 1297                 tp->snd_cwnd = tp->t_maxseg;
 1298         return (inp);
 1299 }
 1300 
 1301 /*
 1302  * When a specific ICMP unreachable message is received and the
 1303  * connection state is SYN-SENT, drop the connection.  This behavior
 1304  * is controlled by the icmp_may_rst sysctl.
 1305  */
 1306 struct inpcb *
 1307 tcp_drop_syn_sent(inp, errno)
 1308         struct inpcb *inp;
 1309         int errno;
 1310 {
 1311         struct tcpcb *tp = intotcpcb(inp);
 1312 
 1313         if (tp && tp->t_state == TCPS_SYN_SENT) {
 1314                 tcp_drop(tp, errno);
 1315                 return (struct inpcb *)0;
 1316         }
 1317         return inp;
 1318 }
 1319 
 1320 /*
 1321  * When `need fragmentation' ICMP is received, update our idea of the MSS
 1322  * based on the new value in the route.  Also nudge TCP to send something,
 1323  * since we know the packet we just sent was dropped.
 1324  * This duplicates some code in the tcp_mss() function in tcp_input.c.
 1325  */
 1326 struct inpcb *
 1327 tcp_mtudisc(inp, errno)
 1328         struct inpcb *inp;
 1329         int errno;
 1330 {
 1331         struct tcpcb *tp = intotcpcb(inp);
 1332         struct rmxp_tao tao;
 1333         struct socket *so = inp->inp_socket;
 1334         u_int maxmtu;
 1335         u_int romtu;
 1336         int mss;
 1337 #ifdef INET6
 1338         int isipv6 = (tp->t_inpcb->inp_vflag & INP_IPV6) != 0;
 1339 #endif /* INET6 */
 1340         bzero(&tao, sizeof(tao));
 1341 
 1342         if (tp) {
 1343                 maxmtu = tcp_hc_getmtu(&inp->inp_inc); /* IPv4 and IPv6 */
 1344                 romtu =
 1345 #ifdef INET6
 1346                     isipv6 ? tcp_maxmtu6(&inp->inp_inc) :
 1347 #endif /* INET6 */
 1348                     tcp_maxmtu(&inp->inp_inc);
 1349                 if (!maxmtu)
 1350                         maxmtu = romtu;
 1351                 else
 1352                         maxmtu = min(maxmtu, romtu);
 1353                 if (!maxmtu) {
 1354                         tp->t_maxopd = tp->t_maxseg =
 1355 #ifdef INET6
 1356                                 isipv6 ? tcp_v6mssdflt :
 1357 #endif /* INET6 */
 1358                                 tcp_mssdflt;
 1359                         return inp;
 1360                 }
 1361                 mss = maxmtu -
 1362 #ifdef INET6
 1363                         (isipv6 ?
 1364                          sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
 1365 #endif /* INET6 */
 1366                          sizeof(struct tcpiphdr)
 1367 #ifdef INET6
 1368                          )
 1369 #endif /* INET6 */
 1370                         ;
 1371 
 1372                 if (tcp_do_rfc1644) {
 1373                         tcp_hc_gettao(&inp->inp_inc, &tao);
 1374                         if (tao.tao_mssopt)
 1375                                 mss = min(mss, tao.tao_mssopt);
 1376                 }
 1377                 /*
 1378                  * XXX - The above conditional probably violates the TCP
 1379                  * spec.  The problem is that, since we don't know the
 1380                  * other end's MSS, we are supposed to use a conservative
 1381                  * default.  But, if we do that, then MTU discovery will
 1382                  * never actually take place, because the conservative
 1383                  * default is much less than the MTUs typically seen
 1384                  * on the Internet today.  For the moment, we'll sweep
 1385                  * this under the carpet.
 1386                  *
 1387                  * The conservative default might not actually be a problem
 1388                  * if the only case this occurs is when sending an initial
 1389                  * SYN with options and data to a host we've never talked
 1390                  * to before.  Then, they will reply with an MSS value which
 1391                  * will get recorded and the new parameters should get
 1392                  * recomputed.  For Further Study.
 1393                  */
 1394                 if (tp->t_maxopd <= mss)
 1395                         return inp;
 1396                 tp->t_maxopd = mss;
 1397 
 1398                 if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
 1399                     (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP)
 1400                         mss -= TCPOLEN_TSTAMP_APPA;
 1401                 if ((tp->t_flags & (TF_REQ_CC|TF_NOOPT)) == TF_REQ_CC &&
 1402                     (tp->t_flags & TF_RCVD_CC) == TF_RCVD_CC)
 1403                         mss -= TCPOLEN_CC_APPA;
 1404 #if     (MCLBYTES & (MCLBYTES - 1)) == 0
 1405                 if (mss > MCLBYTES)
 1406                         mss &= ~(MCLBYTES-1);
 1407 #else
 1408                 if (mss > MCLBYTES)
 1409                         mss = mss / MCLBYTES * MCLBYTES;
 1410 #endif
 1411                 if (so->so_snd.sb_hiwat < mss)
 1412                         mss = so->so_snd.sb_hiwat;
 1413 
 1414                 tp->t_maxseg = mss;
 1415 
 1416                 tcpstat.tcps_mturesent++;
 1417                 tp->t_rtttime = 0;
 1418                 tp->snd_nxt = tp->snd_una;
 1419                 tcp_output(tp);
 1420         }
 1421         return inp;
 1422 }
 1423 
 1424 /*
 1425  * Look-up the routing entry to the peer of this inpcb.  If no route
 1426  * is found and it cannot be allocated, then return NULL.  This routine
 1427  * is called by TCP routines that access the rmx structure and by tcp_mss
 1428  * to get the interface MTU.
 1429  */
 1430 u_long 
 1431 tcp_maxmtu(inc)
 1432         struct in_conninfo *inc;
 1433 {
 1434         struct route sro;
 1435         struct sockaddr_in *dst;
 1436         struct ifnet *ifp;
 1437         u_long maxmtu = 0;
 1438 
 1439         KASSERT(inc != NULL, ("tcp_maxmtu with NULL in_conninfo pointer"));
 1440 
 1441         bzero(&sro, sizeof(sro));
 1442         if (inc->inc_faddr.s_addr != INADDR_ANY) {
 1443                 dst = (struct sockaddr_in *)&sro.ro_dst;
 1444                 dst->sin_family = AF_INET;
 1445                 dst->sin_len = sizeof(*dst);
 1446                 dst->sin_addr = inc->inc_faddr;
 1447                 rtalloc_ign(&sro, RTF_CLONING);
 1448         }
 1449         if (sro.ro_rt != NULL) {
 1450                 ifp = sro.ro_rt->rt_ifp;
 1451                 if (sro.ro_rt->rt_rmx.rmx_mtu == 0)
 1452                         maxmtu = ifp->if_mtu;
 1453                 else
 1454                         maxmtu = min(sro.ro_rt->rt_rmx.rmx_mtu, ifp->if_mtu);
 1455                 RTFREE(sro.ro_rt);
 1456         }
 1457         return (maxmtu);
 1458 }
 1459 
 1460 #ifdef INET6
 1461 u_long
 1462 tcp_maxmtu6(inc)
 1463         struct in_conninfo *inc;
 1464 {
 1465         struct route_in6 sro6;
 1466         struct ifnet *ifp;
 1467         u_long maxmtu = 0;
 1468 
 1469         KASSERT(inc != NULL, ("tcp_maxmtu6 with NULL in_conninfo pointer"));
 1470 
 1471         bzero(&sro6, sizeof(sro6));
 1472         if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) {
 1473                 sro6.ro_dst.sin6_family = AF_INET6;
 1474                 sro6.ro_dst.sin6_len = sizeof(struct sockaddr_in6);
 1475                 sro6.ro_dst.sin6_addr = inc->inc6_faddr;
 1476                 rtalloc_ign((struct route *)&sro6, RTF_CLONING);
 1477         }
 1478         if (sro6.ro_rt != NULL) {
 1479                 ifp = sro6.ro_rt->rt_ifp;
 1480                 if (sro6.ro_rt->rt_rmx.rmx_mtu == 0)
 1481                         maxmtu = IN6_LINKMTU(sro6.ro_rt->rt_ifp);
 1482                 else
 1483                         maxmtu = min(sro6.ro_rt->rt_rmx.rmx_mtu,
 1484                                      IN6_LINKMTU(sro6.ro_rt->rt_ifp));
 1485                 RTFREE(sro6.ro_rt);
 1486         }
 1487 
 1488         return (maxmtu);
 1489 }
 1490 #endif /* INET6 */
 1491 
 1492 #ifdef IPSEC
 1493 /* compute ESP/AH header size for TCP, including outer IP header. */
 1494 size_t
 1495 ipsec_hdrsiz_tcp(tp)
 1496         struct tcpcb *tp;
 1497 {
 1498         struct inpcb *inp;
 1499         struct mbuf *m;
 1500         size_t hdrsiz;
 1501         struct ip *ip;
 1502 #ifdef INET6
 1503         struct ip6_hdr *ip6;
 1504 #endif
 1505         struct tcphdr *th;
 1506 
 1507         if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL))
 1508                 return 0;
 1509         MGETHDR(m, M_DONTWAIT, MT_DATA);
 1510         if (!m)
 1511                 return 0;
 1512 
 1513 #ifdef INET6
 1514         if ((inp->inp_vflag & INP_IPV6) != 0) {
 1515                 ip6 = mtod(m, struct ip6_hdr *);
 1516                 th = (struct tcphdr *)(ip6 + 1);
 1517                 m->m_pkthdr.len = m->m_len =
 1518                         sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
 1519                 tcpip_fillheaders(inp, ip6, th);
 1520                 hdrsiz = ipsec6_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
 1521         } else
 1522 #endif /* INET6 */
 1523       {
 1524         ip = mtod(m, struct ip *);
 1525         th = (struct tcphdr *)(ip + 1);
 1526         m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr);
 1527         tcpip_fillheaders(inp, ip, th);
 1528         hdrsiz = ipsec4_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
 1529       }
 1530 
 1531         m_free(m);
 1532         return hdrsiz;
 1533 }
 1534 #endif /*IPSEC*/
 1535 
 1536 /*
 1537  * Move a TCP connection into TIME_WAIT state.
 1538  *    tcbinfo is unlocked.
 1539  *    inp is locked, and is unlocked before returning.
 1540  */
 1541 void
 1542 tcp_twstart(tp)
 1543         struct tcpcb *tp;
 1544 {
 1545         struct tcptw *tw;
 1546         struct inpcb *inp;
 1547         int tw_time, acknow;
 1548         struct socket *so;
 1549 
 1550         tw = uma_zalloc(tcptw_zone, M_NOWAIT);
 1551         if (tw == NULL) {
 1552                 tw = tcp_timer_2msl_tw(1);
 1553                 if (tw == NULL) {
 1554                         tcp_close(tp);
 1555                         return;
 1556                 }
 1557         }
 1558         inp = tp->t_inpcb;
 1559         tw->tw_inpcb = inp;
 1560 
 1561         /*
 1562          * Recover last window size sent.
 1563          */
 1564         tw->last_win = (tp->rcv_adv - tp->rcv_nxt) >> tp->rcv_scale;
 1565 
 1566         /*
 1567          * Set t_recent if timestamps are used on the connection.
 1568          */
 1569         if ((tp->t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP|TF_NOOPT)) ==
 1570             (TF_REQ_TSTMP|TF_RCVD_TSTMP))
 1571                 tw->t_recent = tp->ts_recent;
 1572         else
 1573                 tw->t_recent = 0;
 1574 
 1575         tw->snd_nxt = tp->snd_nxt;
 1576         tw->rcv_nxt = tp->rcv_nxt;
 1577         tw->iss     = tp->iss;
 1578         tw->irs     = tp->irs;
 1579         tw->cc_recv = tp->cc_recv;
 1580         tw->cc_send = tp->cc_send;
 1581         tw->t_starttime = tp->t_starttime;
 1582         tw->tw_time = 0;
 1583 
 1584 /* XXX
 1585  * If this code will
 1586  * be used for fin-wait-2 state also, then we may need
 1587  * a ts_recent from the last segment.
 1588  */
 1589         /* Shorten TIME_WAIT [RFC-1644, p.28] */
 1590         if (tp->cc_recv != 0 && (ticks - tp->t_starttime) < tcp_msl) {
 1591                 tw_time = tp->t_rxtcur * TCPTV_TWTRUNC;
 1592                 /* For T/TCP client, force ACK now. */
 1593                 acknow = 1;
 1594         } else {
 1595                 tw_time = 2 * tcp_msl;
 1596                 acknow = tp->t_flags & TF_ACKNOW;
 1597         }
 1598         tcp_discardcb(tp);
 1599         so = inp->inp_socket;
 1600         so->so_pcb = NULL;
 1601         tw->tw_cred = crhold(so->so_cred);
 1602         tw->tw_so_options = so->so_options;
 1603         if (acknow)
 1604                 tcp_twrespond(tw, so, NULL, TH_ACK);
 1605         sotryfree(so);
 1606         inp->inp_socket = NULL;
 1607         inp->inp_ppcb = (caddr_t)tw;
 1608         inp->inp_vflag |= INP_TIMEWAIT;
 1609         tcp_timer_2msl_reset(tw, tw_time);
 1610         INP_UNLOCK(inp);
 1611 }
 1612 
 1613 /*
 1614  * The appromixate rate of ISN increase of Microsoft TCP stacks;
 1615  * the actual rate is slightly higher due to the addition of
 1616  * random positive increments.
 1617  *
 1618  * Most other new OSes use semi-randomized ISN values, so we
 1619  * do not need to worry about them.
 1620  */
 1621 #define MS_ISN_BYTES_PER_SECOND         250000
 1622 
 1623 /*
 1624  * Determine if the ISN we will generate has advanced beyond the last
 1625  * sequence number used by the previous connection.  If so, indicate
 1626  * that it is safe to recycle this tw socket by returning 1.
 1627  */
 1628 int
 1629 tcp_twrecycleable(struct tcptw *tw)
 1630 {
 1631         tcp_seq new_iss = tw->iss;
 1632         tcp_seq new_irs = tw->irs;
 1633 
 1634         new_iss += (ticks - tw->t_starttime) * (ISN_BYTES_PER_SECOND / hz);
 1635         new_irs += (ticks - tw->t_starttime) * (MS_ISN_BYTES_PER_SECOND / hz);
 1636         
 1637         if (SEQ_GT(new_iss, tw->snd_nxt) && SEQ_GT(new_irs, tw->rcv_nxt))
 1638                 return 1;
 1639         else
 1640                 return 0;
 1641 }
 1642 
 1643 struct tcptw *
 1644 tcp_twclose(struct tcptw *tw, int reuse)
 1645 {
 1646         struct inpcb *inp;
 1647 
 1648         inp = tw->tw_inpcb;
 1649         tw->tw_inpcb = NULL;
 1650         tcp_timer_2msl_stop(tw);
 1651         inp->inp_ppcb = NULL;
 1652 #ifdef INET6
 1653         if (inp->inp_vflag & INP_IPV6PROTO)
 1654                 in6_pcbdetach(inp);
 1655         else
 1656 #endif
 1657                 in_pcbdetach(inp);
 1658         tcpstat.tcps_closed++;
 1659         crfree(tw->tw_cred);
 1660         tw->tw_cred = NULL;
 1661         if (reuse)
 1662                 return (tw);
 1663         uma_zfree(tcptw_zone, tw);
 1664         return (NULL);
 1665 }
 1666 
 1667 /*
 1668  * One of so and msrc must be non-NULL for use by the MAC Framework to
 1669  * construct a label for ay resulting packet.
 1670  */
 1671 int
 1672 tcp_twrespond(struct tcptw *tw, struct socket *so, struct mbuf *msrc,
 1673     int flags)
 1674 {
 1675         struct inpcb *inp = tw->tw_inpcb;
 1676         struct tcphdr *th;
 1677         struct mbuf *m;
 1678         struct ip *ip = NULL;
 1679         u_int8_t *optp;
 1680         u_int hdrlen, optlen;
 1681         int error;
 1682 #ifdef INET6
 1683         struct ip6_hdr *ip6 = NULL;
 1684         int isipv6 = inp->inp_inc.inc_isipv6;
 1685 #endif
 1686 
 1687         KASSERT(so != NULL || msrc != NULL,
 1688             ("tcp_twrespond: so and msrc NULL"));
 1689 
 1690         m = m_gethdr(M_DONTWAIT, MT_HEADER);
 1691         if (m == NULL)
 1692                 return (ENOBUFS);
 1693         m->m_data += max_linkhdr;
 1694 
 1695 #ifdef MAC
 1696         if (so != NULL)
 1697                 mac_create_mbuf_from_socket(so, m);
 1698         else
 1699                 mac_create_mbuf_netlayer(msrc, m);
 1700 #endif
 1701 
 1702 #ifdef INET6
 1703         if (isipv6) {
 1704                 hdrlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
 1705                 ip6 = mtod(m, struct ip6_hdr *);
 1706                 th = (struct tcphdr *)(ip6 + 1);
 1707                 tcpip_fillheaders(inp, ip6, th);
 1708         } else
 1709 #endif
 1710         {
 1711                 hdrlen = sizeof(struct tcpiphdr);
 1712                 ip = mtod(m, struct ip *);
 1713                 th = (struct tcphdr *)(ip + 1);
 1714                 tcpip_fillheaders(inp, ip, th);
 1715         }
 1716         optp = (u_int8_t *)(th + 1);
 1717                 
 1718         /*
 1719          * Send a timestamp and echo-reply if both our side and our peer
 1720          * have sent timestamps in our SYN's and this is not a RST.
 1721          */
 1722         if (tw->t_recent && flags == TH_ACK) {
 1723                 u_int32_t *lp = (u_int32_t *)optp;
 1724 
 1725                 /* Form timestamp option as shown in appendix A of RFC 1323. */
 1726                 *lp++ = htonl(TCPOPT_TSTAMP_HDR);
 1727                 *lp++ = htonl(ticks);
 1728                 *lp   = htonl(tw->t_recent);
 1729                 optp += TCPOLEN_TSTAMP_APPA;
 1730         }
 1731 
 1732         /*
 1733          * Send `CC-family' options if needed, and it's not a RST.
 1734          */
 1735         if (tw->cc_recv != 0 && flags == TH_ACK) {
 1736                 u_int32_t *lp = (u_int32_t *)optp;
 1737 
 1738                 *lp++ = htonl(TCPOPT_CC_HDR(TCPOPT_CC));
 1739                 *lp   = htonl(tw->cc_send);
 1740                 optp += TCPOLEN_CC_APPA;
 1741         }
 1742         optlen = optp - (u_int8_t *)(th + 1);
 1743 
 1744         m->m_len = hdrlen + optlen;
 1745         m->m_pkthdr.len = m->m_len;
 1746 
 1747         KASSERT(max_linkhdr + m->m_len <= MHLEN, ("tcptw: mbuf too small"));
 1748 
 1749         th->th_seq = htonl(tw->snd_nxt);
 1750         th->th_ack = htonl(tw->rcv_nxt);
 1751         th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
 1752         th->th_flags = flags;
 1753         th->th_win = htons(tw->last_win);
 1754 
 1755 #ifdef INET6
 1756         if (isipv6) {
 1757                 th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(struct ip6_hdr),
 1758                     sizeof(struct tcphdr) + optlen);
 1759                 ip6->ip6_hlim = in6_selecthlim(inp, NULL);
 1760                 error = ip6_output(m, inp->in6p_outputopts, NULL,
 1761                     (tw->tw_so_options & SO_DONTROUTE), NULL, NULL, inp);
 1762         } else
 1763 #endif
 1764         {
 1765                 th->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
 1766                     htons(sizeof(struct tcphdr) + optlen + IPPROTO_TCP));
 1767                 m->m_pkthdr.csum_flags = CSUM_TCP;
 1768                 m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
 1769                 ip->ip_len = m->m_pkthdr.len;
 1770                 if (path_mtu_discovery)
 1771                         ip->ip_off |= IP_DF;
 1772                 error = ip_output(m, inp->inp_options, NULL,
 1773                     (tw->tw_so_options & SO_DONTROUTE), NULL, inp);
 1774         }
 1775         if (flags & TH_ACK)
 1776                 tcpstat.tcps_sndacks++;
 1777         else
 1778                 tcpstat.tcps_sndctrl++;
 1779         tcpstat.tcps_sndtotal++;
 1780         return (error);
 1781 }
 1782 
 1783 /*
 1784  * TCP BANDWIDTH DELAY PRODUCT WINDOW LIMITING
 1785  *
 1786  * This code attempts to calculate the bandwidth-delay product as a
 1787  * means of determining the optimal window size to maximize bandwidth,
 1788  * minimize RTT, and avoid the over-allocation of buffers on interfaces and
 1789  * routers.  This code also does a fairly good job keeping RTTs in check
 1790  * across slow links like modems.  We implement an algorithm which is very
 1791  * similar (but not meant to be) TCP/Vegas.  The code operates on the
 1792  * transmitter side of a TCP connection and so only effects the transmit
 1793  * side of the connection.
 1794  *
 1795  * BACKGROUND:  TCP makes no provision for the management of buffer space
 1796  * at the end points or at the intermediate routers and switches.  A TCP 
 1797  * stream, whether using NewReno or not, will eventually buffer as
 1798  * many packets as it is able and the only reason this typically works is
 1799  * due to the fairly small default buffers made available for a connection
 1800  * (typicaly 16K or 32K).  As machines use larger windows and/or window
 1801  * scaling it is now fairly easy for even a single TCP connection to blow-out
 1802  * all available buffer space not only on the local interface, but on 
 1803  * intermediate routers and switches as well.  NewReno makes a misguided
 1804  * attempt to 'solve' this problem by waiting for an actual failure to occur,
 1805  * then backing off, then steadily increasing the window again until another
 1806  * failure occurs, ad-infinitum.  This results in terrible oscillation that
 1807  * is only made worse as network loads increase and the idea of intentionally
 1808  * blowing out network buffers is, frankly, a terrible way to manage network
 1809  * resources.
 1810  *
 1811  * It is far better to limit the transmit window prior to the failure
 1812  * condition being achieved.  There are two general ways to do this:  First
 1813  * you can 'scan' through different transmit window sizes and locate the
 1814  * point where the RTT stops increasing, indicating that you have filled the
 1815  * pipe, then scan backwards until you note that RTT stops decreasing, then
 1816  * repeat ad-infinitum.  This method works in principle but has severe
 1817  * implementation issues due to RTT variances, timer granularity, and
 1818  * instability in the algorithm which can lead to many false positives and
 1819  * create oscillations as well as interact badly with other TCP streams
 1820  * implementing the same algorithm.
 1821  *
 1822  * The second method is to limit the window to the bandwidth delay product
 1823  * of the link.  This is the method we implement.  RTT variances and our
 1824  * own manipulation of the congestion window, bwnd, can potentially 
 1825  * destabilize the algorithm.  For this reason we have to stabilize the
 1826  * elements used to calculate the window.  We do this by using the minimum
 1827  * observed RTT, the long term average of the observed bandwidth, and
 1828  * by adding two segments worth of slop.  It isn't perfect but it is able
 1829  * to react to changing conditions and gives us a very stable basis on
 1830  * which to extend the algorithm.
 1831  */
 1832 void
 1833 tcp_xmit_bandwidth_limit(struct tcpcb *tp, tcp_seq ack_seq)
 1834 {
 1835         u_long bw;
 1836         u_long bwnd;
 1837         int save_ticks;
 1838 
 1839         /*
 1840          * If inflight_enable is disabled in the middle of a tcp connection,
 1841          * make sure snd_bwnd is effectively disabled.
 1842          */
 1843         if (tcp_inflight_enable == 0) {
 1844                 tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
 1845                 tp->snd_bandwidth = 0;
 1846                 return;
 1847         }
 1848 
 1849         /*
 1850          * Figure out the bandwidth.  Due to the tick granularity this
 1851          * is a very rough number and it MUST be averaged over a fairly
 1852          * long period of time.  XXX we need to take into account a link
 1853          * that is not using all available bandwidth, but for now our
 1854          * slop will ramp us up if this case occurs and the bandwidth later
 1855          * increases.
 1856          *
 1857          * Note: if ticks rollover 'bw' may wind up negative.  We must
 1858          * effectively reset t_bw_rtttime for this case.
 1859          */
 1860         save_ticks = ticks;
 1861         if ((u_int)(save_ticks - tp->t_bw_rtttime) < 1)
 1862                 return;
 1863 
 1864         bw = (int64_t)(ack_seq - tp->t_bw_rtseq) * hz / 
 1865             (save_ticks - tp->t_bw_rtttime);
 1866         tp->t_bw_rtttime = save_ticks;
 1867         tp->t_bw_rtseq = ack_seq;
 1868         if (tp->t_bw_rtttime == 0 || (int)bw < 0)
 1869                 return;
 1870         bw = ((int64_t)tp->snd_bandwidth * 15 + bw) >> 4;
 1871 
 1872         tp->snd_bandwidth = bw;
 1873 
 1874         /*
 1875          * Calculate the semi-static bandwidth delay product, plus two maximal
 1876          * segments.  The additional slop puts us squarely in the sweet
 1877          * spot and also handles the bandwidth run-up case and stabilization.
 1878          * Without the slop we could be locking ourselves into a lower
 1879          * bandwidth.
 1880          *
 1881          * Situations Handled:
 1882          *      (1) Prevents over-queueing of packets on LANs, especially on
 1883          *          high speed LANs, allowing larger TCP buffers to be
 1884          *          specified, and also does a good job preventing 
 1885          *          over-queueing of packets over choke points like modems
 1886          *          (at least for the transmit side).
 1887          *
 1888          *      (2) Is able to handle changing network loads (bandwidth
 1889          *          drops so bwnd drops, bandwidth increases so bwnd
 1890          *          increases).
 1891          *
 1892          *      (3) Theoretically should stabilize in the face of multiple
 1893          *          connections implementing the same algorithm (this may need
 1894          *          a little work).
 1895          *
 1896          *      (4) Stability value (defaults to 20 = 2 maximal packets) can
 1897          *          be adjusted with a sysctl but typically only needs to be
 1898          *          on very slow connections.  A value no smaller then 5
 1899          *          should be used, but only reduce this default if you have
 1900          *          no other choice.
 1901          */
 1902 #define USERTT  ((tp->t_srtt + tp->t_rttbest) / 2)
 1903         bwnd = (int64_t)bw * USERTT / (hz << TCP_RTT_SHIFT) + tcp_inflight_stab * tp->t_maxseg / 10;
 1904 #undef USERTT
 1905 
 1906         if (tcp_inflight_debug > 0) {
 1907                 static int ltime;
 1908                 if ((u_int)(ticks - ltime) >= hz / tcp_inflight_debug) {
 1909                         ltime = ticks;
 1910                         printf("%p bw %ld rttbest %d srtt %d bwnd %ld\n",
 1911                             tp,
 1912                             bw,
 1913                             tp->t_rttbest,
 1914                             tp->t_srtt,
 1915                             bwnd
 1916                         );
 1917                 }
 1918         }
 1919         if ((long)bwnd < tcp_inflight_min)
 1920                 bwnd = tcp_inflight_min;
 1921         if (bwnd > tcp_inflight_max)
 1922                 bwnd = tcp_inflight_max;
 1923         if ((long)bwnd < tp->t_maxseg * 2)
 1924                 bwnd = tp->t_maxseg * 2;
 1925         tp->snd_bwnd = bwnd;
 1926 }
 1927 

Cache object: f2f5b036dc041b5519d1bea4c904eaf0


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.