The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/netinet/tcp_subr.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
    3  *      The Regents of the University of California.  All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice, this list of conditions and the following disclaimer.
   10  * 2. Redistributions in binary form must reproduce the above copyright
   11  *    notice, this list of conditions and the following disclaimer in the
   12  *    documentation and/or other materials provided with the distribution.
   13  * 4. Neither the name of the University nor the names of its contributors
   14  *    may be used to endorse or promote products derived from this software
   15  *    without specific prior written permission.
   16  *
   17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   27  * SUCH DAMAGE.
   28  *
   29  *      @(#)tcp_subr.c  8.2 (Berkeley) 5/24/95
   30  * $FreeBSD: releng/5.3/sys/netinet/tcp_subr.c 146003 2005-05-08 10:23:51Z cperciva $
   31  */
   32 
   33 #include "opt_compat.h"
   34 #include "opt_inet.h"
   35 #include "opt_inet6.h"
   36 #include "opt_ipsec.h"
   37 #include "opt_mac.h"
   38 #include "opt_tcpdebug.h"
   39 #include "opt_tcp_sack.h"
   40 
   41 #include <sys/param.h>
   42 #include <sys/systm.h>
   43 #include <sys/callout.h>
   44 #include <sys/kernel.h>
   45 #include <sys/sysctl.h>
   46 #include <sys/mac.h>
   47 #include <sys/malloc.h>
   48 #include <sys/mbuf.h>
   49 #ifdef INET6
   50 #include <sys/domain.h>
   51 #endif
   52 #include <sys/proc.h>
   53 #include <sys/socket.h>
   54 #include <sys/socketvar.h>
   55 #include <sys/protosw.h>
   56 #include <sys/random.h>
   57 
   58 #include <vm/uma.h>
   59 
   60 #include <net/route.h>
   61 #include <net/if.h>
   62 
   63 #include <netinet/in.h>
   64 #include <netinet/in_systm.h>
   65 #include <netinet/ip.h>
   66 #ifdef INET6
   67 #include <netinet/ip6.h>
   68 #endif
   69 #include <netinet/in_pcb.h>
   70 #ifdef INET6
   71 #include <netinet6/in6_pcb.h>
   72 #endif
   73 #include <netinet/in_var.h>
   74 #include <netinet/ip_var.h>
   75 #ifdef INET6
   76 #include <netinet6/ip6_var.h>
   77 #include <netinet6/nd6.h>
   78 #endif
   79 #include <netinet/tcp.h>
   80 #include <netinet/tcp_fsm.h>
   81 #include <netinet/tcp_seq.h>
   82 #include <netinet/tcp_timer.h>
   83 #include <netinet/tcp_var.h>
   84 #ifdef INET6
   85 #include <netinet6/tcp6_var.h>
   86 #endif
   87 #include <netinet/tcpip.h>
   88 #ifdef TCPDEBUG
   89 #include <netinet/tcp_debug.h>
   90 #endif
   91 #include <netinet6/ip6protosw.h>
   92 
   93 #ifdef IPSEC
   94 #include <netinet6/ipsec.h>
   95 #ifdef INET6
   96 #include <netinet6/ipsec6.h>
   97 #endif
   98 #endif /*IPSEC*/
   99 
  100 #ifdef FAST_IPSEC
  101 #include <netipsec/ipsec.h>
  102 #include <netipsec/xform.h>
  103 #ifdef INET6
  104 #include <netipsec/ipsec6.h>
  105 #endif
  106 #include <netipsec/key.h>
  107 #define IPSEC
  108 #endif /*FAST_IPSEC*/
  109 
  110 #include <machine/in_cksum.h>
  111 #include <sys/md5.h>
  112 
  113 int     tcp_mssdflt = TCP_MSS;
  114 SYSCTL_INT(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt, CTLFLAG_RW,
  115     &tcp_mssdflt , 0, "Default TCP Maximum Segment Size");
  116 
  117 #ifdef INET6
  118 int     tcp_v6mssdflt = TCP6_MSS;
  119 SYSCTL_INT(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt,
  120         CTLFLAG_RW, &tcp_v6mssdflt , 0,
  121         "Default TCP Maximum Segment Size for IPv6");
  122 #endif
  123 
  124 /*
  125  * Minimum MSS we accept and use. This prevents DoS attacks where
  126  * we are forced to a ridiculous low MSS like 20 and send hundreds
  127  * of packets instead of one. The effect scales with the available
  128  * bandwidth and quickly saturates the CPU and network interface
  129  * with packet generation and sending. Set to zero to disable MINMSS
  130  * checking. This setting prevents us from sending too small packets.
  131  */
  132 int     tcp_minmss = TCP_MINMSS;
  133 SYSCTL_INT(_net_inet_tcp, OID_AUTO, minmss, CTLFLAG_RW,
  134     &tcp_minmss , 0, "Minmum TCP Maximum Segment Size");
  135 /*
  136  * Number of TCP segments per second we accept from remote host
  137  * before we start to calculate average segment size. If average
  138  * segment size drops below the minimum TCP MSS we assume a DoS
  139  * attack and reset+drop the connection. Care has to be taken not to
  140  * set this value too small to not kill interactive type connections
  141  * (telnet, SSH) which send many small packets.
  142  */
  143 int     tcp_minmssoverload = TCP_MINMSSOVERLOAD;
  144 SYSCTL_INT(_net_inet_tcp, OID_AUTO, minmssoverload, CTLFLAG_RW,
  145     &tcp_minmssoverload , 0, "Number of TCP Segments per Second allowed to"
  146     "be under the MINMSS Size");
  147 
  148 #if 0
  149 static int      tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
  150 SYSCTL_INT(_net_inet_tcp, TCPCTL_RTTDFLT, rttdflt, CTLFLAG_RW,
  151     &tcp_rttdflt , 0, "Default maximum TCP Round Trip Time");
  152 #endif
  153 
  154 int     tcp_do_rfc1323 = 1;
  155 SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_RW,
  156     &tcp_do_rfc1323 , 0, "Enable rfc1323 (high performance TCP) extensions");
  157 
  158 int     tcp_do_rfc1644 = 0;
  159 SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1644, rfc1644, CTLFLAG_RW,
  160     &tcp_do_rfc1644 , 0, "Enable rfc1644 (TTCP) extensions");
  161 
  162 static int      tcp_tcbhashsize = 0;
  163 SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RDTUN,
  164      &tcp_tcbhashsize, 0, "Size of TCP control-block hashtable");
  165 
  166 static int      do_tcpdrain = 1;
  167 SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0,
  168      "Enable tcp_drain routine for extra help when low on mbufs");
  169 
  170 SYSCTL_INT(_net_inet_tcp, OID_AUTO, pcbcount, CTLFLAG_RD,
  171     &tcbinfo.ipi_count, 0, "Number of active PCBs");
  172 
  173 static int      icmp_may_rst = 1;
  174 SYSCTL_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_RW, &icmp_may_rst, 0,
  175     "Certain ICMP unreachable messages may abort connections in SYN_SENT");
  176 
  177 static int      tcp_isn_reseed_interval = 0;
  178 SYSCTL_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_RW,
  179     &tcp_isn_reseed_interval, 0, "Seconds between reseeding of ISN secret");
  180 
  181 /*
  182  * TCP bandwidth limiting sysctls.  Note that the default lower bound of
  183  * 1024 exists only for debugging.  A good production default would be
  184  * something like 6100.
  185  */
  186 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, inflight, CTLFLAG_RW, 0,
  187     "TCP inflight data limiting");
  188 
  189 static int      tcp_inflight_enable = 1;
  190 SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, enable, CTLFLAG_RW,
  191     &tcp_inflight_enable, 0, "Enable automatic TCP inflight data limiting");
  192 
  193 static int      tcp_inflight_debug = 0;
  194 SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, debug, CTLFLAG_RW,
  195     &tcp_inflight_debug, 0, "Debug TCP inflight calculations");
  196 
  197 static int      tcp_inflight_min = 6144;
  198 SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, min, CTLFLAG_RW,
  199     &tcp_inflight_min, 0, "Lower-bound for TCP inflight window");
  200 
  201 static int      tcp_inflight_max = TCP_MAXWIN << TCP_MAX_WINSHIFT;
  202 SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, max, CTLFLAG_RW,
  203     &tcp_inflight_max, 0, "Upper-bound for TCP inflight window");
  204 
  205 static int      tcp_inflight_stab = 20;
  206 SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, stab, CTLFLAG_RW,
  207     &tcp_inflight_stab, 0, "Inflight Algorithm Stabilization 20 = 2 packets");
  208 
  209 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, sack, CTLFLAG_RW, 0, "TCP SACK");
  210 int tcp_do_sack = 1;
  211 SYSCTL_INT(_net_inet_tcp_sack, OID_AUTO, enable, CTLFLAG_RW,
  212     &tcp_do_sack, 0, "Enable/Disable TCP SACK support");
  213 
  214 uma_zone_t sack_hole_zone;
  215 
  216 static struct inpcb *tcp_notify(struct inpcb *, int);
  217 static void     tcp_discardcb(struct tcpcb *);
  218 static void     tcp_isn_tick(void *);
  219 
  220 /*
  221  * Target size of TCP PCB hash tables. Must be a power of two.
  222  *
  223  * Note that this can be overridden by the kernel environment
  224  * variable net.inet.tcp.tcbhashsize
  225  */
  226 #ifndef TCBHASHSIZE
  227 #define TCBHASHSIZE     512
  228 #endif
  229 
  230 /*
  231  * XXX
  232  * Callouts should be moved into struct tcp directly.  They are currently
  233  * separate because the tcpcb structure is exported to userland for sysctl
  234  * parsing purposes, which do not know about callouts.
  235  */
  236 struct  tcpcb_mem {
  237         struct  tcpcb tcb;
  238         struct  callout tcpcb_mem_rexmt, tcpcb_mem_persist, tcpcb_mem_keep;
  239         struct  callout tcpcb_mem_2msl, tcpcb_mem_delack;
  240 };
  241 
  242 static uma_zone_t tcpcb_zone;
  243 static uma_zone_t tcptw_zone;
  244 struct callout isn_callout;
  245 
  246 /*
  247  * Tcp initialization
  248  */
  249 void
  250 tcp_init()
  251 {
  252         int hashsize = TCBHASHSIZE;
  253 
  254         tcp_ccgen = 1;
  255 
  256         tcp_delacktime = TCPTV_DELACK;
  257         tcp_keepinit = TCPTV_KEEP_INIT;
  258         tcp_keepidle = TCPTV_KEEP_IDLE;
  259         tcp_keepintvl = TCPTV_KEEPINTVL;
  260         tcp_maxpersistidle = TCPTV_KEEP_IDLE;
  261         tcp_msl = TCPTV_MSL;
  262         tcp_rexmit_min = TCPTV_MIN;
  263         tcp_rexmit_slop = TCPTV_CPU_VAR;
  264 
  265         INP_INFO_LOCK_INIT(&tcbinfo, "tcp");
  266         LIST_INIT(&tcb);
  267         tcbinfo.listhead = &tcb;
  268         TUNABLE_INT_FETCH("net.inet.tcp.tcbhashsize", &hashsize);
  269         if (!powerof2(hashsize)) {
  270                 printf("WARNING: TCB hash size not a power of 2\n");
  271                 hashsize = 512; /* safe default */
  272         }
  273         tcp_tcbhashsize = hashsize;
  274         tcbinfo.hashbase = hashinit(hashsize, M_PCB, &tcbinfo.hashmask);
  275         tcbinfo.porthashbase = hashinit(hashsize, M_PCB,
  276                                         &tcbinfo.porthashmask);
  277         tcbinfo.ipi_zone = uma_zcreate("inpcb", sizeof(struct inpcb),
  278             NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
  279         uma_zone_set_max(tcbinfo.ipi_zone, maxsockets);
  280 #ifdef INET6
  281 #define TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
  282 #else /* INET6 */
  283 #define TCP_MINPROTOHDR (sizeof(struct tcpiphdr))
  284 #endif /* INET6 */
  285         if (max_protohdr < TCP_MINPROTOHDR)
  286                 max_protohdr = TCP_MINPROTOHDR;
  287         if (max_linkhdr + TCP_MINPROTOHDR > MHLEN)
  288                 panic("tcp_init");
  289 #undef TCP_MINPROTOHDR
  290         /*
  291          * These have to be type stable for the benefit of the timers.
  292          */
  293         tcpcb_zone = uma_zcreate("tcpcb", sizeof(struct tcpcb_mem),
  294             NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
  295         uma_zone_set_max(tcpcb_zone, maxsockets);
  296         tcptw_zone = uma_zcreate("tcptw", sizeof(struct tcptw),
  297             NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
  298         uma_zone_set_max(tcptw_zone, maxsockets / 5);
  299         tcp_timer_init();
  300         syncache_init();
  301         tcp_hc_init();
  302         tcp_reass_init();
  303         callout_init(&isn_callout, CALLOUT_MPSAFE);
  304         tcp_isn_tick(NULL);
  305         EVENTHANDLER_REGISTER(shutdown_pre_sync, tcp_fini, NULL,
  306                 SHUTDOWN_PRI_DEFAULT);
  307         sack_hole_zone = uma_zcreate("sackhole", sizeof(struct sackhole),
  308             NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
  309 }
  310 
  311 void
  312 tcp_fini(xtp)
  313         void *xtp;
  314 {
  315         callout_stop(&isn_callout);
  316 
  317 }
  318 
  319 /*
  320  * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
  321  * tcp_template used to store this data in mbufs, but we now recopy it out
  322  * of the tcpcb each time to conserve mbufs.
  323  */
  324 void
  325 tcpip_fillheaders(inp, ip_ptr, tcp_ptr)
  326         struct inpcb *inp;
  327         void *ip_ptr;
  328         void *tcp_ptr;
  329 {
  330         struct tcphdr *th = (struct tcphdr *)tcp_ptr;
  331 
  332 #ifdef INET6
  333         if ((inp->inp_vflag & INP_IPV6) != 0) {
  334                 struct ip6_hdr *ip6;
  335 
  336                 ip6 = (struct ip6_hdr *)ip_ptr;
  337                 ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
  338                         (inp->in6p_flowinfo & IPV6_FLOWINFO_MASK);
  339                 ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) |
  340                         (IPV6_VERSION & IPV6_VERSION_MASK);
  341                 ip6->ip6_nxt = IPPROTO_TCP;
  342                 ip6->ip6_plen = sizeof(struct tcphdr);
  343                 ip6->ip6_src = inp->in6p_laddr;
  344                 ip6->ip6_dst = inp->in6p_faddr;
  345         } else
  346 #endif
  347         {
  348                 struct ip *ip;
  349 
  350                 ip = (struct ip *)ip_ptr;
  351                 ip->ip_v = IPVERSION;
  352                 ip->ip_hl = 5;
  353                 ip->ip_tos = inp->inp_ip_tos;
  354                 ip->ip_len = 0;
  355                 ip->ip_id = 0;
  356                 ip->ip_off = 0;
  357                 ip->ip_ttl = inp->inp_ip_ttl;
  358                 ip->ip_sum = 0;
  359                 ip->ip_p = IPPROTO_TCP;
  360                 ip->ip_src = inp->inp_laddr;
  361                 ip->ip_dst = inp->inp_faddr;
  362         }
  363         th->th_sport = inp->inp_lport;
  364         th->th_dport = inp->inp_fport;
  365         th->th_seq = 0;
  366         th->th_ack = 0;
  367         th->th_x2 = 0;
  368         th->th_off = 5;
  369         th->th_flags = 0;
  370         th->th_win = 0;
  371         th->th_urp = 0;
  372         th->th_sum = 0;         /* in_pseudo() is called later for ipv4 */
  373 }
  374 
  375 /*
  376  * Create template to be used to send tcp packets on a connection.
  377  * Allocates an mbuf and fills in a skeletal tcp/ip header.  The only
  378  * use for this function is in keepalives, which use tcp_respond.
  379  */
  380 struct tcptemp *
  381 tcpip_maketemplate(inp)
  382         struct inpcb *inp;
  383 {
  384         struct mbuf *m;
  385         struct tcptemp *n;
  386 
  387         m = m_get(M_DONTWAIT, MT_HEADER);
  388         if (m == NULL)
  389                 return (0);
  390         m->m_len = sizeof(struct tcptemp);
  391         n = mtod(m, struct tcptemp *);
  392 
  393         tcpip_fillheaders(inp, (void *)&n->tt_ipgen, (void *)&n->tt_t);
  394         return (n);
  395 }
  396 
  397 /*
  398  * Send a single message to the TCP at address specified by
  399  * the given TCP/IP header.  If m == NULL, then we make a copy
  400  * of the tcpiphdr at ti and send directly to the addressed host.
  401  * This is used to force keep alive messages out using the TCP
  402  * template for a connection.  If flags are given then we send
  403  * a message back to the TCP which originated the * segment ti,
  404  * and discard the mbuf containing it and any other attached mbufs.
  405  *
  406  * In any case the ack and sequence number of the transmitted
  407  * segment are as specified by the parameters.
  408  *
  409  * NOTE: If m != NULL, then ti must point to *inside* the mbuf.
  410  */
  411 void
  412 tcp_respond(tp, ipgen, th, m, ack, seq, flags)
  413         struct tcpcb *tp;
  414         void *ipgen;
  415         register struct tcphdr *th;
  416         register struct mbuf *m;
  417         tcp_seq ack, seq;
  418         int flags;
  419 {
  420         register int tlen;
  421         int win = 0;
  422         struct ip *ip;
  423         struct tcphdr *nth;
  424 #ifdef INET6
  425         struct ip6_hdr *ip6;
  426         int isipv6;
  427 #endif /* INET6 */
  428         int ipflags = 0;
  429         struct inpcb *inp;
  430 
  431         KASSERT(tp != NULL || m != NULL, ("tcp_respond: tp and m both NULL"));
  432 
  433 #ifdef INET6
  434         isipv6 = ((struct ip *)ipgen)->ip_v == 6;
  435         ip6 = ipgen;
  436 #endif /* INET6 */
  437         ip = ipgen;
  438 
  439         if (tp != NULL) {
  440                 inp = tp->t_inpcb;
  441                 KASSERT(inp != NULL, ("tcp control block w/o inpcb"));
  442                 INP_INFO_WLOCK_ASSERT(&tcbinfo);
  443                 INP_LOCK_ASSERT(inp);
  444         } else
  445                 inp = NULL;
  446 
  447         if (tp != NULL) {
  448                 if (!(flags & TH_RST)) {
  449                         win = sbspace(&inp->inp_socket->so_rcv);
  450                         if (win > (long)TCP_MAXWIN << tp->rcv_scale)
  451                                 win = (long)TCP_MAXWIN << tp->rcv_scale;
  452                 }
  453         }
  454         if (m == NULL) {
  455                 m = m_gethdr(M_DONTWAIT, MT_HEADER);
  456                 if (m == NULL)
  457                         return;
  458                 tlen = 0;
  459                 m->m_data += max_linkhdr;
  460 #ifdef INET6
  461                 if (isipv6) {
  462                         bcopy((caddr_t)ip6, mtod(m, caddr_t),
  463                               sizeof(struct ip6_hdr));
  464                         ip6 = mtod(m, struct ip6_hdr *);
  465                         nth = (struct tcphdr *)(ip6 + 1);
  466                 } else
  467 #endif /* INET6 */
  468               {
  469                 bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
  470                 ip = mtod(m, struct ip *);
  471                 nth = (struct tcphdr *)(ip + 1);
  472               }
  473                 bcopy((caddr_t)th, (caddr_t)nth, sizeof(struct tcphdr));
  474                 flags = TH_ACK;
  475         } else {
  476                 m_freem(m->m_next);
  477                 m->m_next = NULL;
  478                 m->m_data = (caddr_t)ipgen;
  479                 /* m_len is set later */
  480                 tlen = 0;
  481 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
  482 #ifdef INET6
  483                 if (isipv6) {
  484                         xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
  485                         nth = (struct tcphdr *)(ip6 + 1);
  486                 } else
  487 #endif /* INET6 */
  488               {
  489                 xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, n_long);
  490                 nth = (struct tcphdr *)(ip + 1);
  491               }
  492                 if (th != nth) {
  493                         /*
  494                          * this is usually a case when an extension header
  495                          * exists between the IPv6 header and the
  496                          * TCP header.
  497                          */
  498                         nth->th_sport = th->th_sport;
  499                         nth->th_dport = th->th_dport;
  500                 }
  501                 xchg(nth->th_dport, nth->th_sport, n_short);
  502 #undef xchg
  503         }
  504 #ifdef INET6
  505         if (isipv6) {
  506                 ip6->ip6_flow = 0;
  507                 ip6->ip6_vfc = IPV6_VERSION;
  508                 ip6->ip6_nxt = IPPROTO_TCP;
  509                 ip6->ip6_plen = htons((u_short)(sizeof (struct tcphdr) +
  510                                                 tlen));
  511                 tlen += sizeof (struct ip6_hdr) + sizeof (struct tcphdr);
  512         } else
  513 #endif
  514         {
  515                 tlen += sizeof (struct tcpiphdr);
  516                 ip->ip_len = tlen;
  517                 ip->ip_ttl = ip_defttl;
  518                 if (path_mtu_discovery)
  519                         ip->ip_off |= IP_DF;
  520         }
  521         m->m_len = tlen;
  522         m->m_pkthdr.len = tlen;
  523         m->m_pkthdr.rcvif = NULL;
  524 #ifdef MAC
  525         if (inp != NULL) {
  526                 /*
  527                  * Packet is associated with a socket, so allow the
  528                  * label of the response to reflect the socket label.
  529                  */
  530                 INP_LOCK_ASSERT(inp);
  531                 mac_create_mbuf_from_inpcb(inp, m);
  532         } else {
  533                 /*
  534                  * Packet is not associated with a socket, so possibly
  535                  * update the label in place.
  536                  */
  537                 mac_reflect_mbuf_tcp(m);
  538         }
  539 #endif
  540         nth->th_seq = htonl(seq);
  541         nth->th_ack = htonl(ack);
  542         nth->th_x2 = 0;
  543         nth->th_off = sizeof (struct tcphdr) >> 2;
  544         nth->th_flags = flags;
  545         if (tp != NULL)
  546                 nth->th_win = htons((u_short) (win >> tp->rcv_scale));
  547         else
  548                 nth->th_win = htons((u_short)win);
  549         nth->th_urp = 0;
  550 #ifdef INET6
  551         if (isipv6) {
  552                 nth->th_sum = 0;
  553                 nth->th_sum = in6_cksum(m, IPPROTO_TCP,
  554                                         sizeof(struct ip6_hdr),
  555                                         tlen - sizeof(struct ip6_hdr));
  556                 ip6->ip6_hlim = in6_selecthlim(tp != NULL ? tp->t_inpcb :
  557                     NULL, NULL);
  558         } else
  559 #endif /* INET6 */
  560         {
  561                 nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
  562                     htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p)));
  563                 m->m_pkthdr.csum_flags = CSUM_TCP;
  564                 m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
  565         }
  566 #ifdef TCPDEBUG
  567         if (tp == NULL || (inp->inp_socket->so_options & SO_DEBUG))
  568                 tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0);
  569 #endif
  570 #ifdef INET6
  571         if (isipv6)
  572                 (void) ip6_output(m, NULL, NULL, ipflags, NULL, NULL, inp);
  573         else
  574 #endif /* INET6 */
  575         (void) ip_output(m, NULL, NULL, ipflags, NULL, inp);
  576 }
  577 
  578 /*
  579  * Create a new TCP control block, making an
  580  * empty reassembly queue and hooking it to the argument
  581  * protocol control block.  The `inp' parameter must have
  582  * come from the zone allocator set up in tcp_init().
  583  */
  584 struct tcpcb *
  585 tcp_newtcpcb(inp)
  586         struct inpcb *inp;
  587 {
  588         struct tcpcb_mem *tm;
  589         struct tcpcb *tp;
  590 #ifdef INET6
  591         int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
  592 #endif /* INET6 */
  593         int callout_flag;
  594 
  595         tm = uma_zalloc(tcpcb_zone, M_NOWAIT | M_ZERO);
  596         if (tm == NULL)
  597                 return (NULL);
  598         tp = &tm->tcb;
  599         /*      LIST_INIT(&tp->t_segq); */      /* XXX covered by M_ZERO */
  600         tp->t_maxseg = tp->t_maxopd =
  601 #ifdef INET6
  602                 isipv6 ? tcp_v6mssdflt :
  603 #endif /* INET6 */
  604                 tcp_mssdflt;
  605 
  606         /* Set up our timeouts. */
  607         /*
  608          * XXXRW: Are these actually MPSAFE?  I think so, but need to
  609          * review the timed wait code, as it has some list variables,
  610          * etc, that are global.
  611          */
  612         callout_flag = debug_mpsafenet ? CALLOUT_MPSAFE : 0;
  613         callout_init(tp->tt_rexmt = &tm->tcpcb_mem_rexmt, callout_flag);
  614         callout_init(tp->tt_persist = &tm->tcpcb_mem_persist, callout_flag);
  615         callout_init(tp->tt_keep = &tm->tcpcb_mem_keep, callout_flag);
  616         callout_init(tp->tt_2msl = &tm->tcpcb_mem_2msl, callout_flag);
  617         callout_init(tp->tt_delack = &tm->tcpcb_mem_delack, callout_flag);
  618 
  619         if (tcp_do_rfc1323)
  620                 tp->t_flags = (TF_REQ_SCALE|TF_REQ_TSTMP);
  621         if (tcp_do_rfc1644)
  622                 tp->t_flags |= TF_REQ_CC;
  623         tp->sack_enable = tcp_do_sack;
  624         tp->t_inpcb = inp;      /* XXX */
  625         /*
  626          * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
  627          * rtt estimate.  Set rttvar so that srtt + 4 * rttvar gives
  628          * reasonable initial retransmit time.
  629          */
  630         tp->t_srtt = TCPTV_SRTTBASE;
  631         tp->t_rttvar = ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
  632         tp->t_rttmin = tcp_rexmit_min;
  633         tp->t_rxtcur = TCPTV_RTOBASE;
  634         tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
  635         tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
  636         tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
  637         tp->t_rcvtime = ticks;
  638         tp->t_bw_rtttime = ticks;
  639         /*
  640          * IPv4 TTL initialization is necessary for an IPv6 socket as well,
  641          * because the socket may be bound to an IPv6 wildcard address,
  642          * which may match an IPv4-mapped IPv6 address.
  643          */
  644         inp->inp_ip_ttl = ip_defttl;
  645         inp->inp_ppcb = (caddr_t)tp;
  646         return (tp);            /* XXX */
  647 }
  648 
  649 /*
  650  * Drop a TCP connection, reporting
  651  * the specified error.  If connection is synchronized,
  652  * then send a RST to peer.
  653  */
  654 struct tcpcb *
  655 tcp_drop(tp, errno)
  656         register struct tcpcb *tp;
  657         int errno;
  658 {
  659         struct socket *so = tp->t_inpcb->inp_socket;
  660 
  661         if (TCPS_HAVERCVDSYN(tp->t_state)) {
  662                 tp->t_state = TCPS_CLOSED;
  663                 (void) tcp_output(tp);
  664                 tcpstat.tcps_drops++;
  665         } else
  666                 tcpstat.tcps_conndrops++;
  667         if (errno == ETIMEDOUT && tp->t_softerror)
  668                 errno = tp->t_softerror;
  669         so->so_error = errno;
  670         return (tcp_close(tp));
  671 }
  672 
  673 static void
  674 tcp_discardcb(tp)
  675         struct tcpcb *tp;
  676 {
  677         struct tseg_qent *q;
  678         struct inpcb *inp = tp->t_inpcb;
  679         struct socket *so = inp->inp_socket;
  680 #ifdef INET6
  681         int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
  682 #endif /* INET6 */
  683 
  684         /*
  685          * Make sure that all of our timers are stopped before we
  686          * delete the PCB.
  687          */
  688         callout_stop(tp->tt_rexmt);
  689         callout_stop(tp->tt_persist);
  690         callout_stop(tp->tt_keep);
  691         callout_stop(tp->tt_2msl);
  692         callout_stop(tp->tt_delack);
  693 
  694         /*
  695          * If we got enough samples through the srtt filter,
  696          * save the rtt and rttvar in the routing entry.
  697          * 'Enough' is arbitrarily defined as 4 rtt samples.
  698          * 4 samples is enough for the srtt filter to converge
  699          * to within enough % of the correct value; fewer samples
  700          * and we could save a bogus rtt. The danger is not high
  701          * as tcp quickly recovers from everything.
  702          * XXX: Works very well but needs some more statistics!
  703          */
  704         if (tp->t_rttupdated >= 4) {
  705                 struct hc_metrics_lite metrics;
  706                 u_long ssthresh;
  707 
  708                 bzero(&metrics, sizeof(metrics));
  709                 /*
  710                  * Update the ssthresh always when the conditions below
  711                  * are satisfied. This gives us better new start value
  712                  * for the congestion avoidance for new connections.
  713                  * ssthresh is only set if packet loss occured on a session.
  714                  */
  715                 ssthresh = tp->snd_ssthresh;
  716                 if (ssthresh != 0 && ssthresh < so->so_snd.sb_hiwat / 2) {
  717                         /*
  718                          * convert the limit from user data bytes to
  719                          * packets then to packet data bytes.
  720                          */
  721                         ssthresh = (ssthresh + tp->t_maxseg / 2) / tp->t_maxseg;
  722                         if (ssthresh < 2)
  723                                 ssthresh = 2;
  724                         ssthresh *= (u_long)(tp->t_maxseg +
  725 #ifdef INET6
  726                                       (isipv6 ? sizeof (struct ip6_hdr) +
  727                                                sizeof (struct tcphdr) :
  728 #endif
  729                                        sizeof (struct tcpiphdr)
  730 #ifdef INET6
  731                                        )
  732 #endif
  733                                       );
  734                 } else
  735                         ssthresh = 0;
  736                 metrics.rmx_ssthresh = ssthresh;
  737 
  738                 metrics.rmx_rtt = tp->t_srtt;
  739                 metrics.rmx_rttvar = tp->t_rttvar;
  740                 /* XXX: This wraps if the pipe is more than 4 Gbit per second */
  741                 metrics.rmx_bandwidth = tp->snd_bandwidth;
  742                 metrics.rmx_cwnd = tp->snd_cwnd;
  743                 metrics.rmx_sendpipe = 0;
  744                 metrics.rmx_recvpipe = 0;
  745 
  746                 tcp_hc_update(&inp->inp_inc, &metrics);
  747         }
  748 
  749         /* free the reassembly queue, if any */
  750         while ((q = LIST_FIRST(&tp->t_segq)) != NULL) {
  751                 LIST_REMOVE(q, tqe_q);
  752                 m_freem(q->tqe_m);
  753                 uma_zfree(tcp_reass_zone, q);
  754                 tp->t_segqlen--;
  755                 tcp_reass_qsize--;
  756         }
  757         tcp_free_sackholes(tp);
  758         inp->inp_ppcb = NULL;
  759         tp->t_inpcb = NULL;
  760         uma_zfree(tcpcb_zone, tp);
  761         soisdisconnected(so);
  762 }
  763 
  764 /*
  765  * Close a TCP control block:
  766  *    discard all space held by the tcp
  767  *    discard internet protocol block
  768  *    wake up any sleepers
  769  */
  770 struct tcpcb *
  771 tcp_close(tp)
  772         struct tcpcb *tp;
  773 {
  774         struct inpcb *inp = tp->t_inpcb;
  775 #ifdef INET6
  776         struct socket *so = inp->inp_socket;
  777 #endif
  778 
  779         tcp_discardcb(tp);
  780 #ifdef INET6
  781         if (INP_CHECK_SOCKAF(so, AF_INET6))
  782                 in6_pcbdetach(inp);
  783         else
  784 #endif
  785                 in_pcbdetach(inp);
  786         tcpstat.tcps_closed++;
  787         return (NULL);
  788 }
  789 
  790 void
  791 tcp_drain()
  792 {
  793         if (do_tcpdrain)
  794         {
  795                 struct inpcb *inpb;
  796                 struct tcpcb *tcpb;
  797                 struct tseg_qent *te;
  798 
  799         /*
  800          * Walk the tcpbs, if existing, and flush the reassembly queue,
  801          * if there is one...
  802          * XXX: The "Net/3" implementation doesn't imply that the TCP
  803          *      reassembly queue should be flushed, but in a situation
  804          *      where we're really low on mbufs, this is potentially
  805          *      usefull.
  806          */
  807                 INP_INFO_RLOCK(&tcbinfo);
  808                 LIST_FOREACH(inpb, tcbinfo.listhead, inp_list) {
  809                         if (inpb->inp_vflag & INP_TIMEWAIT)
  810                                 continue;
  811                         INP_LOCK(inpb);
  812                         if ((tcpb = intotcpcb(inpb)) != NULL) {
  813                                 while ((te = LIST_FIRST(&tcpb->t_segq))
  814                                     != NULL) {
  815                                         LIST_REMOVE(te, tqe_q);
  816                                         m_freem(te->tqe_m);
  817                                         uma_zfree(tcp_reass_zone, te);
  818                                         tcpb->t_segqlen--;
  819                                         tcp_reass_qsize--;
  820                                 }
  821                         }
  822                         INP_UNLOCK(inpb);
  823                 }
  824                 INP_INFO_RUNLOCK(&tcbinfo);
  825         }
  826 }
  827 
  828 /*
  829  * Notify a tcp user of an asynchronous error;
  830  * store error as soft error, but wake up user
  831  * (for now, won't do anything until can select for soft error).
  832  *
  833  * Do not wake up user since there currently is no mechanism for
  834  * reporting soft errors (yet - a kqueue filter may be added).
  835  */
  836 static struct inpcb *
  837 tcp_notify(inp, error)
  838         struct inpcb *inp;
  839         int error;
  840 {
  841         struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
  842 
  843         /*
  844          * Ignore some errors if we are hooked up.
  845          * If connection hasn't completed, has retransmitted several times,
  846          * and receives a second error, give up now.  This is better
  847          * than waiting a long time to establish a connection that
  848          * can never complete.
  849          */
  850         if (tp->t_state == TCPS_ESTABLISHED &&
  851             (error == EHOSTUNREACH || error == ENETUNREACH ||
  852              error == EHOSTDOWN)) {
  853                 return inp;
  854         } else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
  855             tp->t_softerror) {
  856                 tcp_drop(tp, error);
  857                 return (struct inpcb *)0;
  858         } else {
  859                 tp->t_softerror = error;
  860                 return inp;
  861         }
  862 #if 0
  863         wakeup( &so->so_timeo);
  864         sorwakeup(so);
  865         sowwakeup(so);
  866 #endif
  867 }
  868 
  869 static int
  870 tcp_pcblist(SYSCTL_HANDLER_ARGS)
  871 {
  872         int error, i, n, s;
  873         struct inpcb *inp, **inp_list;
  874         inp_gen_t gencnt;
  875         struct xinpgen xig;
  876 
  877         /*
  878          * The process of preparing the TCB list is too time-consuming and
  879          * resource-intensive to repeat twice on every request.
  880          */
  881         if (req->oldptr == NULL) {
  882                 n = tcbinfo.ipi_count;
  883                 req->oldidx = 2 * (sizeof xig)
  884                         + (n + n/8) * sizeof(struct xtcpcb);
  885                 return 0;
  886         }
  887 
  888         if (req->newptr != NULL)
  889                 return EPERM;
  890 
  891         /*
  892          * OK, now we're committed to doing something.
  893          */
  894         s = splnet();
  895         INP_INFO_RLOCK(&tcbinfo);
  896         gencnt = tcbinfo.ipi_gencnt;
  897         n = tcbinfo.ipi_count;
  898         INP_INFO_RUNLOCK(&tcbinfo);
  899         splx(s);
  900 
  901         error = sysctl_wire_old_buffer(req, 2 * (sizeof xig)
  902                 + n * sizeof(struct xtcpcb));
  903         if (error != 0)
  904                 return (error);
  905 
  906         xig.xig_len = sizeof xig;
  907         xig.xig_count = n;
  908         xig.xig_gen = gencnt;
  909         xig.xig_sogen = so_gencnt;
  910         error = SYSCTL_OUT(req, &xig, sizeof xig);
  911         if (error)
  912                 return error;
  913 
  914         inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK);
  915         if (inp_list == NULL)
  916                 return ENOMEM;
  917 
  918         s = splnet();
  919         INP_INFO_RLOCK(&tcbinfo);
  920         for (inp = LIST_FIRST(tcbinfo.listhead), i = 0; inp != NULL && i < n;
  921              inp = LIST_NEXT(inp, inp_list)) {
  922                 INP_LOCK(inp);
  923                 if (inp->inp_gencnt <= gencnt) {
  924                         /*
  925                          * XXX: This use of cr_cansee(), introduced with
  926                          * TCP state changes, is not quite right, but for
  927                          * now, better than nothing.
  928                          */
  929                         if (inp->inp_vflag & INP_TIMEWAIT)
  930                                 error = cr_cansee(req->td->td_ucred,
  931                                     intotw(inp)->tw_cred);
  932                         else
  933                                 error = cr_canseesocket(req->td->td_ucred,
  934                                     inp->inp_socket);
  935                         if (error == 0)
  936                                 inp_list[i++] = inp;
  937                 }
  938                 INP_UNLOCK(inp);
  939         }
  940         INP_INFO_RUNLOCK(&tcbinfo);
  941         splx(s);
  942         n = i;
  943 
  944         error = 0;
  945         for (i = 0; i < n; i++) {
  946                 inp = inp_list[i];
  947                 if (inp->inp_gencnt <= gencnt) {
  948                         struct xtcpcb xt;
  949                         caddr_t inp_ppcb;
  950 
  951                         bzero(&xt, sizeof(xt));
  952                         xt.xt_len = sizeof xt;
  953                         /* XXX should avoid extra copy */
  954                         bcopy(inp, &xt.xt_inp, sizeof *inp);
  955                         inp_ppcb = inp->inp_ppcb;
  956                         if (inp_ppcb == NULL)
  957                                 bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
  958                         else if (inp->inp_vflag & INP_TIMEWAIT) {
  959                                 bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
  960                                 xt.xt_tp.t_state = TCPS_TIME_WAIT;
  961                         } else
  962                                 bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp);
  963                         if (inp->inp_socket != NULL)
  964                                 sotoxsocket(inp->inp_socket, &xt.xt_socket);
  965                         else {
  966                                 bzero(&xt.xt_socket, sizeof xt.xt_socket);
  967                                 xt.xt_socket.xso_protocol = IPPROTO_TCP;
  968                         }
  969                         xt.xt_inp.inp_gencnt = inp->inp_gencnt;
  970                         error = SYSCTL_OUT(req, &xt, sizeof xt);
  971                 }
  972         }
  973         if (!error) {
  974                 /*
  975                  * Give the user an updated idea of our state.
  976                  * If the generation differs from what we told
  977                  * her before, she knows that something happened
  978                  * while we were processing this request, and it
  979                  * might be necessary to retry.
  980                  */
  981                 s = splnet();
  982                 INP_INFO_RLOCK(&tcbinfo);
  983                 xig.xig_gen = tcbinfo.ipi_gencnt;
  984                 xig.xig_sogen = so_gencnt;
  985                 xig.xig_count = tcbinfo.ipi_count;
  986                 INP_INFO_RUNLOCK(&tcbinfo);
  987                 splx(s);
  988                 error = SYSCTL_OUT(req, &xig, sizeof xig);
  989         }
  990         free(inp_list, M_TEMP);
  991         return error;
  992 }
  993 
  994 SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist, CTLFLAG_RD, 0, 0,
  995             tcp_pcblist, "S,xtcpcb", "List of active TCP connections");
  996 
  997 static int
  998 tcp_getcred(SYSCTL_HANDLER_ARGS)
  999 {
 1000         struct xucred xuc;
 1001         struct sockaddr_in addrs[2];
 1002         struct inpcb *inp;
 1003         int error, s;
 1004 
 1005         error = suser_cred(req->td->td_ucred, SUSER_ALLOWJAIL);
 1006         if (error)
 1007                 return (error);
 1008         error = SYSCTL_IN(req, addrs, sizeof(addrs));
 1009         if (error)
 1010                 return (error);
 1011         s = splnet();
 1012         INP_INFO_RLOCK(&tcbinfo);
 1013         inp = in_pcblookup_hash(&tcbinfo, addrs[1].sin_addr, addrs[1].sin_port,
 1014             addrs[0].sin_addr, addrs[0].sin_port, 0, NULL);
 1015         if (inp == NULL) {
 1016                 error = ENOENT;
 1017                 goto outunlocked;
 1018         }
 1019         INP_LOCK(inp);
 1020         if (inp->inp_socket == NULL) {
 1021                 error = ENOENT;
 1022                 goto out;
 1023         }
 1024         error = cr_canseesocket(req->td->td_ucred, inp->inp_socket);
 1025         if (error)
 1026                 goto out;
 1027         cru2x(inp->inp_socket->so_cred, &xuc);
 1028 out:
 1029         INP_UNLOCK(inp);
 1030 outunlocked:
 1031         INP_INFO_RUNLOCK(&tcbinfo);
 1032         splx(s);
 1033         if (error == 0)
 1034                 error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
 1035         return (error);
 1036 }
 1037 
 1038 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred,
 1039     CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
 1040     tcp_getcred, "S,xucred", "Get the xucred of a TCP connection");
 1041 
 1042 #ifdef INET6
 1043 static int
 1044 tcp6_getcred(SYSCTL_HANDLER_ARGS)
 1045 {
 1046         struct xucred xuc;
 1047         struct sockaddr_in6 addrs[2];
 1048         struct inpcb *inp;
 1049         int error, s, mapped = 0;
 1050 
 1051         error = suser_cred(req->td->td_ucred, SUSER_ALLOWJAIL);
 1052         if (error)
 1053                 return (error);
 1054         error = SYSCTL_IN(req, addrs, sizeof(addrs));
 1055         if (error)
 1056                 return (error);
 1057         if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) {
 1058                 if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr))
 1059                         mapped = 1;
 1060                 else
 1061                         return (EINVAL);
 1062         }
 1063         s = splnet();
 1064         INP_INFO_RLOCK(&tcbinfo);
 1065         if (mapped == 1)
 1066                 inp = in_pcblookup_hash(&tcbinfo,
 1067                         *(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12],
 1068                         addrs[1].sin6_port,
 1069                         *(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12],
 1070                         addrs[0].sin6_port,
 1071                         0, NULL);
 1072         else
 1073                 inp = in6_pcblookup_hash(&tcbinfo, &addrs[1].sin6_addr,
 1074                                  addrs[1].sin6_port,
 1075                                  &addrs[0].sin6_addr, addrs[0].sin6_port,
 1076                                  0, NULL);
 1077         if (inp == NULL) {
 1078                 error = ENOENT;
 1079                 goto outunlocked;
 1080         }
 1081         INP_LOCK(inp);
 1082         if (inp->inp_socket == NULL) {
 1083                 error = ENOENT;
 1084                 goto out;
 1085         }
 1086         error = cr_canseesocket(req->td->td_ucred, inp->inp_socket);
 1087         if (error)
 1088                 goto out;
 1089         cru2x(inp->inp_socket->so_cred, &xuc);
 1090 out:
 1091         INP_UNLOCK(inp);
 1092 outunlocked:
 1093         INP_INFO_RUNLOCK(&tcbinfo);
 1094         splx(s);
 1095         if (error == 0)
 1096                 error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
 1097         return (error);
 1098 }
 1099 
 1100 SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred,
 1101     CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
 1102     tcp6_getcred, "S,xucred", "Get the xucred of a TCP6 connection");
 1103 #endif
 1104 
 1105 
 1106 void
 1107 tcp_ctlinput(cmd, sa, vip)
 1108         int cmd;
 1109         struct sockaddr *sa;
 1110         void *vip;
 1111 {
 1112         struct ip *ip = vip;
 1113         struct tcphdr *th;
 1114         struct in_addr faddr;
 1115         struct inpcb *inp;
 1116         struct tcpcb *tp;
 1117         struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
 1118         tcp_seq icmp_seq;
 1119         int s;
 1120 
 1121         faddr = ((struct sockaddr_in *)sa)->sin_addr;
 1122         if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
 1123                 return;
 1124 
 1125         if (cmd == PRC_QUENCH)
 1126                 notify = tcp_quench;
 1127         else if (icmp_may_rst && (cmd == PRC_UNREACH_ADMIN_PROHIB ||
 1128                 cmd == PRC_UNREACH_PORT || cmd == PRC_TIMXCEED_INTRANS) && ip)
 1129                 notify = tcp_drop_syn_sent;
 1130         else if (cmd == PRC_MSGSIZE)
 1131                 notify = tcp_mtudisc;
 1132         /*
 1133          * Redirects don't need to be handled up here.
 1134          */
 1135         else if (PRC_IS_REDIRECT(cmd))
 1136                 return;
 1137         /*
 1138          * Hostdead is ugly because it goes linearly through all PCBs.
 1139          * XXX: We never get this from ICMP, otherwise it makes an
 1140          * excellent DoS attack on machines with many connections.
 1141          */
 1142         else if (cmd == PRC_HOSTDEAD)
 1143                 ip = NULL;
 1144         else if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0)
 1145                 return;
 1146         if (ip != NULL) {
 1147                 s = splnet();
 1148                 th = (struct tcphdr *)((caddr_t)ip
 1149                                        + (ip->ip_hl << 2));
 1150                 INP_INFO_WLOCK(&tcbinfo);
 1151                 inp = in_pcblookup_hash(&tcbinfo, faddr, th->th_dport,
 1152                     ip->ip_src, th->th_sport, 0, NULL);
 1153                 if (inp != NULL)  {
 1154                         INP_LOCK(inp);
 1155                         if (inp->inp_socket != NULL) {
 1156                                 icmp_seq = htonl(th->th_seq);
 1157                                 tp = intotcpcb(inp);
 1158                                 if (SEQ_GEQ(icmp_seq, tp->snd_una) &&
 1159                                         SEQ_LT(icmp_seq, tp->snd_max))
 1160                                         inp = (*notify)(inp, inetctlerrmap[cmd]);
 1161                         }
 1162                         if (inp != NULL)
 1163                                 INP_UNLOCK(inp);
 1164                 } else {
 1165                         struct in_conninfo inc;
 1166 
 1167                         inc.inc_fport = th->th_dport;
 1168                         inc.inc_lport = th->th_sport;
 1169                         inc.inc_faddr = faddr;
 1170                         inc.inc_laddr = ip->ip_src;
 1171 #ifdef INET6
 1172                         inc.inc_isipv6 = 0;
 1173 #endif
 1174                         syncache_unreach(&inc, th);
 1175                 }
 1176                 INP_INFO_WUNLOCK(&tcbinfo);
 1177                 splx(s);
 1178         } else
 1179                 in_pcbnotifyall(&tcbinfo, faddr, inetctlerrmap[cmd], notify);
 1180 }
 1181 
 1182 #ifdef INET6
 1183 void
 1184 tcp6_ctlinput(cmd, sa, d)
 1185         int cmd;
 1186         struct sockaddr *sa;
 1187         void *d;
 1188 {
 1189         struct tcphdr th;
 1190         struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
 1191         struct ip6_hdr *ip6;
 1192         struct mbuf *m;
 1193         struct ip6ctlparam *ip6cp = NULL;
 1194         const struct sockaddr_in6 *sa6_src = NULL;
 1195         int off;
 1196         struct tcp_portonly {
 1197                 u_int16_t th_sport;
 1198                 u_int16_t th_dport;
 1199         } *thp;
 1200 
 1201         if (sa->sa_family != AF_INET6 ||
 1202             sa->sa_len != sizeof(struct sockaddr_in6))
 1203                 return;
 1204 
 1205         if (cmd == PRC_QUENCH)
 1206                 notify = tcp_quench;
 1207         else if (cmd == PRC_MSGSIZE)
 1208                 notify = tcp_mtudisc;
 1209         else if (!PRC_IS_REDIRECT(cmd) &&
 1210                  ((unsigned)cmd >= PRC_NCMDS || inet6ctlerrmap[cmd] == 0))
 1211                 return;
 1212 
 1213         /* if the parameter is from icmp6, decode it. */
 1214         if (d != NULL) {
 1215                 ip6cp = (struct ip6ctlparam *)d;
 1216                 m = ip6cp->ip6c_m;
 1217                 ip6 = ip6cp->ip6c_ip6;
 1218                 off = ip6cp->ip6c_off;
 1219                 sa6_src = ip6cp->ip6c_src;
 1220         } else {
 1221                 m = NULL;
 1222                 ip6 = NULL;
 1223                 off = 0;        /* fool gcc */
 1224                 sa6_src = &sa6_any;
 1225         }
 1226 
 1227         if (ip6 != NULL) {
 1228                 struct in_conninfo inc;
 1229                 /*
 1230                  * XXX: We assume that when IPV6 is non NULL,
 1231                  * M and OFF are valid.
 1232                  */
 1233 
 1234                 /* check if we can safely examine src and dst ports */
 1235                 if (m->m_pkthdr.len < off + sizeof(*thp))
 1236                         return;
 1237 
 1238                 bzero(&th, sizeof(th));
 1239                 m_copydata(m, off, sizeof(*thp), (caddr_t)&th);
 1240 
 1241                 in6_pcbnotify(&tcbinfo, sa, th.th_dport,
 1242                     (struct sockaddr *)ip6cp->ip6c_src,
 1243                     th.th_sport, cmd, NULL, notify);
 1244 
 1245                 inc.inc_fport = th.th_dport;
 1246                 inc.inc_lport = th.th_sport;
 1247                 inc.inc6_faddr = ((struct sockaddr_in6 *)sa)->sin6_addr;
 1248                 inc.inc6_laddr = ip6cp->ip6c_src->sin6_addr;
 1249                 inc.inc_isipv6 = 1;
 1250                 INP_INFO_WLOCK(&tcbinfo);
 1251                 syncache_unreach(&inc, &th);
 1252                 INP_INFO_WUNLOCK(&tcbinfo);
 1253         } else
 1254                 in6_pcbnotify(&tcbinfo, sa, 0, (const struct sockaddr *)sa6_src,
 1255                               0, cmd, NULL, notify);
 1256 }
 1257 #endif /* INET6 */
 1258 
 1259 
 1260 /*
 1261  * Following is where TCP initial sequence number generation occurs.
 1262  *
 1263  * There are two places where we must use initial sequence numbers:
 1264  * 1.  In SYN-ACK packets.
 1265  * 2.  In SYN packets.
 1266  *
 1267  * All ISNs for SYN-ACK packets are generated by the syncache.  See
 1268  * tcp_syncache.c for details.
 1269  *
 1270  * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
 1271  * depends on this property.  In addition, these ISNs should be
 1272  * unguessable so as to prevent connection hijacking.  To satisfy
 1273  * the requirements of this situation, the algorithm outlined in
 1274  * RFC 1948 is used, with only small modifications.
 1275  *
 1276  * Implementation details:
 1277  *
 1278  * Time is based off the system timer, and is corrected so that it
 1279  * increases by one megabyte per second.  This allows for proper
 1280  * recycling on high speed LANs while still leaving over an hour
 1281  * before rollover.
 1282  *
 1283  * As reading the *exact* system time is too expensive to be done
 1284  * whenever setting up a TCP connection, we increment the time
 1285  * offset in two ways.  First, a small random positive increment
 1286  * is added to isn_offset for each connection that is set up.
 1287  * Second, the function tcp_isn_tick fires once per clock tick
 1288  * and increments isn_offset as necessary so that sequence numbers
 1289  * are incremented at approximately ISN_BYTES_PER_SECOND.  The
 1290  * random positive increments serve only to ensure that the same
 1291  * exact sequence number is never sent out twice (as could otherwise
 1292  * happen when a port is recycled in less than the system tick
 1293  * interval.)
 1294  *
 1295  * net.inet.tcp.isn_reseed_interval controls the number of seconds
 1296  * between seeding of isn_secret.  This is normally set to zero,
 1297  * as reseeding should not be necessary.
 1298  *
 1299  */
 1300 
 1301 #define ISN_BYTES_PER_SECOND 1048576
 1302 #define ISN_STATIC_INCREMENT 4096
 1303 #define ISN_RANDOM_INCREMENT (4096 - 1)
 1304 
 1305 u_char isn_secret[32];
 1306 int isn_last_reseed;
 1307 u_int32_t isn_offset, isn_offset_old;
 1308 MD5_CTX isn_ctx;
 1309 
 1310 tcp_seq
 1311 tcp_new_isn(tp)
 1312         struct tcpcb *tp;
 1313 {
 1314         u_int32_t md5_buffer[4];
 1315         tcp_seq new_isn;
 1316 
 1317         /* Seed if this is the first use, reseed if requested. */
 1318         if ((isn_last_reseed == 0) || ((tcp_isn_reseed_interval > 0) &&
 1319              (((u_int)isn_last_reseed + (u_int)tcp_isn_reseed_interval*hz)
 1320                 < (u_int)ticks))) {
 1321                 read_random(&isn_secret, sizeof(isn_secret));
 1322                 isn_last_reseed = ticks;
 1323         }
 1324 
 1325         /* Compute the md5 hash and return the ISN. */
 1326         MD5Init(&isn_ctx);
 1327         MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_fport, sizeof(u_short));
 1328         MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_lport, sizeof(u_short));
 1329 #ifdef INET6
 1330         if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0) {
 1331                 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr,
 1332                           sizeof(struct in6_addr));
 1333                 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr,
 1334                           sizeof(struct in6_addr));
 1335         } else
 1336 #endif
 1337         {
 1338                 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr,
 1339                           sizeof(struct in_addr));
 1340                 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr,
 1341                           sizeof(struct in_addr));
 1342         }
 1343         MD5Update(&isn_ctx, (u_char *) &isn_secret, sizeof(isn_secret));
 1344         MD5Final((u_char *) &md5_buffer, &isn_ctx);
 1345         new_isn = (tcp_seq) md5_buffer[0];
 1346         isn_offset += ISN_STATIC_INCREMENT +
 1347                 (arc4random() & ISN_RANDOM_INCREMENT);
 1348         new_isn += isn_offset;
 1349         return new_isn;
 1350 }
 1351 
 1352 /*
 1353  * Increment the offset to the next ISN_BYTES_PER_SECOND / hz boundary
 1354  * to keep time flowing at a relatively constant rate.  If the random
 1355  * increments have already pushed us past the projected offset, do nothing.
 1356  */
 1357 static void
 1358 tcp_isn_tick(xtp)
 1359         void *xtp;
 1360 {
 1361         u_int32_t projected_offset;
 1362 
 1363         projected_offset = isn_offset_old + ISN_BYTES_PER_SECOND / hz;
 1364 
 1365         if (projected_offset > isn_offset)
 1366                 isn_offset = projected_offset;
 1367 
 1368         isn_offset_old = isn_offset;
 1369         callout_reset(&isn_callout, 1, tcp_isn_tick, NULL);
 1370 }
 1371 
 1372 /*
 1373  * When a source quench is received, close congestion window
 1374  * to one segment.  We will gradually open it again as we proceed.
 1375  */
 1376 struct inpcb *
 1377 tcp_quench(inp, errno)
 1378         struct inpcb *inp;
 1379         int errno;
 1380 {
 1381         struct tcpcb *tp = intotcpcb(inp);
 1382 
 1383         if (tp != NULL)
 1384                 tp->snd_cwnd = tp->t_maxseg;
 1385         return (inp);
 1386 }
 1387 
 1388 /*
 1389  * When a specific ICMP unreachable message is received and the
 1390  * connection state is SYN-SENT, drop the connection.  This behavior
 1391  * is controlled by the icmp_may_rst sysctl.
 1392  */
 1393 struct inpcb *
 1394 tcp_drop_syn_sent(inp, errno)
 1395         struct inpcb *inp;
 1396         int errno;
 1397 {
 1398         struct tcpcb *tp = intotcpcb(inp);
 1399 
 1400         if (tp != NULL && tp->t_state == TCPS_SYN_SENT) {
 1401                 tcp_drop(tp, errno);
 1402                 return (struct inpcb *)0;
 1403         }
 1404         return inp;
 1405 }
 1406 
 1407 /*
 1408  * When `need fragmentation' ICMP is received, update our idea of the MSS
 1409  * based on the new value in the route.  Also nudge TCP to send something,
 1410  * since we know the packet we just sent was dropped.
 1411  * This duplicates some code in the tcp_mss() function in tcp_input.c.
 1412  */
 1413 struct inpcb *
 1414 tcp_mtudisc(inp, errno)
 1415         struct inpcb *inp;
 1416         int errno;
 1417 {
 1418         struct tcpcb *tp = intotcpcb(inp);
 1419         struct rmxp_tao tao;
 1420         struct socket *so = inp->inp_socket;
 1421         u_int maxmtu;
 1422         u_int romtu;
 1423         int mss;
 1424 #ifdef INET6
 1425         int isipv6;
 1426 #endif /* INET6 */
 1427         bzero(&tao, sizeof(tao));
 1428 
 1429         if (tp != NULL) {
 1430 #ifdef INET6
 1431                 isipv6 = (tp->t_inpcb->inp_vflag & INP_IPV6) != 0;
 1432 #endif
 1433                 maxmtu = tcp_hc_getmtu(&inp->inp_inc); /* IPv4 and IPv6 */
 1434                 romtu =
 1435 #ifdef INET6
 1436                     isipv6 ? tcp_maxmtu6(&inp->inp_inc) :
 1437 #endif /* INET6 */
 1438                     tcp_maxmtu(&inp->inp_inc);
 1439                 if (!maxmtu)
 1440                         maxmtu = romtu;
 1441                 else
 1442                         maxmtu = min(maxmtu, romtu);
 1443                 if (!maxmtu) {
 1444                         tp->t_maxopd = tp->t_maxseg =
 1445 #ifdef INET6
 1446                                 isipv6 ? tcp_v6mssdflt :
 1447 #endif /* INET6 */
 1448                                 tcp_mssdflt;
 1449                         return inp;
 1450                 }
 1451                 mss = maxmtu -
 1452 #ifdef INET6
 1453                         (isipv6 ?
 1454                          sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
 1455 #endif /* INET6 */
 1456                          sizeof(struct tcpiphdr)
 1457 #ifdef INET6
 1458                          )
 1459 #endif /* INET6 */
 1460                         ;
 1461 
 1462                 if (tcp_do_rfc1644) {
 1463                         tcp_hc_gettao(&inp->inp_inc, &tao);
 1464                         if (tao.tao_mssopt)
 1465                                 mss = min(mss, tao.tao_mssopt);
 1466                 }
 1467                 /*
 1468                  * XXX - The above conditional probably violates the TCP
 1469                  * spec.  The problem is that, since we don't know the
 1470                  * other end's MSS, we are supposed to use a conservative
 1471                  * default.  But, if we do that, then MTU discovery will
 1472                  * never actually take place, because the conservative
 1473                  * default is much less than the MTUs typically seen
 1474                  * on the Internet today.  For the moment, we'll sweep
 1475                  * this under the carpet.
 1476                  *
 1477                  * The conservative default might not actually be a problem
 1478                  * if the only case this occurs is when sending an initial
 1479                  * SYN with options and data to a host we've never talked
 1480                  * to before.  Then, they will reply with an MSS value which
 1481                  * will get recorded and the new parameters should get
 1482                  * recomputed.  For Further Study.
 1483                  */
 1484                 if (tp->t_maxopd <= mss)
 1485                         return inp;
 1486                 tp->t_maxopd = mss;
 1487 
 1488                 if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
 1489                     (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP)
 1490                         mss -= TCPOLEN_TSTAMP_APPA;
 1491                 if ((tp->t_flags & (TF_REQ_CC|TF_NOOPT)) == TF_REQ_CC &&
 1492                     (tp->t_flags & TF_RCVD_CC) == TF_RCVD_CC)
 1493                         mss -= TCPOLEN_CC_APPA;
 1494 #if     (MCLBYTES & (MCLBYTES - 1)) == 0
 1495                 if (mss > MCLBYTES)
 1496                         mss &= ~(MCLBYTES-1);
 1497 #else
 1498                 if (mss > MCLBYTES)
 1499                         mss = mss / MCLBYTES * MCLBYTES;
 1500 #endif
 1501                 if (so->so_snd.sb_hiwat < mss)
 1502                         mss = so->so_snd.sb_hiwat;
 1503 
 1504                 tp->t_maxseg = mss;
 1505 
 1506                 tcpstat.tcps_mturesent++;
 1507                 tp->t_rtttime = 0;
 1508                 tp->snd_nxt = tp->snd_una;
 1509                 tcp_output(tp);
 1510         }
 1511         return inp;
 1512 }
 1513 
 1514 /*
 1515  * Look-up the routing entry to the peer of this inpcb.  If no route
 1516  * is found and it cannot be allocated, then return NULL.  This routine
 1517  * is called by TCP routines that access the rmx structure and by tcp_mss
 1518  * to get the interface MTU.
 1519  */
 1520 u_long
 1521 tcp_maxmtu(inc)
 1522         struct in_conninfo *inc;
 1523 {
 1524         struct route sro;
 1525         struct sockaddr_in *dst;
 1526         struct ifnet *ifp;
 1527         u_long maxmtu = 0;
 1528 
 1529         KASSERT(inc != NULL, ("tcp_maxmtu with NULL in_conninfo pointer"));
 1530 
 1531         bzero(&sro, sizeof(sro));
 1532         if (inc->inc_faddr.s_addr != INADDR_ANY) {
 1533                 dst = (struct sockaddr_in *)&sro.ro_dst;
 1534                 dst->sin_family = AF_INET;
 1535                 dst->sin_len = sizeof(*dst);
 1536                 dst->sin_addr = inc->inc_faddr;
 1537                 rtalloc_ign(&sro, RTF_CLONING);
 1538         }
 1539         if (sro.ro_rt != NULL) {
 1540                 ifp = sro.ro_rt->rt_ifp;
 1541                 if (sro.ro_rt->rt_rmx.rmx_mtu == 0)
 1542                         maxmtu = ifp->if_mtu;
 1543                 else
 1544                         maxmtu = min(sro.ro_rt->rt_rmx.rmx_mtu, ifp->if_mtu);
 1545                 RTFREE(sro.ro_rt);
 1546         }
 1547         return (maxmtu);
 1548 }
 1549 
 1550 #ifdef INET6
 1551 u_long
 1552 tcp_maxmtu6(inc)
 1553         struct in_conninfo *inc;
 1554 {
 1555         struct route_in6 sro6;
 1556         struct ifnet *ifp;
 1557         u_long maxmtu = 0;
 1558 
 1559         KASSERT(inc != NULL, ("tcp_maxmtu6 with NULL in_conninfo pointer"));
 1560 
 1561         bzero(&sro6, sizeof(sro6));
 1562         if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) {
 1563                 sro6.ro_dst.sin6_family = AF_INET6;
 1564                 sro6.ro_dst.sin6_len = sizeof(struct sockaddr_in6);
 1565                 sro6.ro_dst.sin6_addr = inc->inc6_faddr;
 1566                 rtalloc_ign((struct route *)&sro6, RTF_CLONING);
 1567         }
 1568         if (sro6.ro_rt != NULL) {
 1569                 ifp = sro6.ro_rt->rt_ifp;
 1570                 if (sro6.ro_rt->rt_rmx.rmx_mtu == 0)
 1571                         maxmtu = IN6_LINKMTU(sro6.ro_rt->rt_ifp);
 1572                 else
 1573                         maxmtu = min(sro6.ro_rt->rt_rmx.rmx_mtu,
 1574                                      IN6_LINKMTU(sro6.ro_rt->rt_ifp));
 1575                 RTFREE(sro6.ro_rt);
 1576         }
 1577 
 1578         return (maxmtu);
 1579 }
 1580 #endif /* INET6 */
 1581 
 1582 #ifdef IPSEC
 1583 /* compute ESP/AH header size for TCP, including outer IP header. */
 1584 size_t
 1585 ipsec_hdrsiz_tcp(tp)
 1586         struct tcpcb *tp;
 1587 {
 1588         struct inpcb *inp;
 1589         struct mbuf *m;
 1590         size_t hdrsiz;
 1591         struct ip *ip;
 1592 #ifdef INET6
 1593         struct ip6_hdr *ip6;
 1594 #endif
 1595         struct tcphdr *th;
 1596 
 1597         if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL))
 1598                 return 0;
 1599         MGETHDR(m, M_DONTWAIT, MT_DATA);
 1600         if (!m)
 1601                 return 0;
 1602 
 1603 #ifdef INET6
 1604         if ((inp->inp_vflag & INP_IPV6) != 0) {
 1605                 ip6 = mtod(m, struct ip6_hdr *);
 1606                 th = (struct tcphdr *)(ip6 + 1);
 1607                 m->m_pkthdr.len = m->m_len =
 1608                         sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
 1609                 tcpip_fillheaders(inp, ip6, th);
 1610                 hdrsiz = ipsec6_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
 1611         } else
 1612 #endif /* INET6 */
 1613         {
 1614                 ip = mtod(m, struct ip *);
 1615                 th = (struct tcphdr *)(ip + 1);
 1616                 m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr);
 1617                 tcpip_fillheaders(inp, ip, th);
 1618                 hdrsiz = ipsec4_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
 1619         }
 1620 
 1621         m_free(m);
 1622         return hdrsiz;
 1623 }
 1624 #endif /*IPSEC*/
 1625 
 1626 /*
 1627  * Move a TCP connection into TIME_WAIT state.
 1628  *    tcbinfo is unlocked.
 1629  *    inp is locked, and is unlocked before returning.
 1630  */
 1631 void
 1632 tcp_twstart(tp)
 1633         struct tcpcb *tp;
 1634 {
 1635         struct tcptw *tw;
 1636         struct inpcb *inp;
 1637         int tw_time, acknow;
 1638         struct socket *so;
 1639 
 1640         tw = uma_zalloc(tcptw_zone, M_NOWAIT);
 1641         if (tw == NULL) {
 1642                 tw = tcp_timer_2msl_tw(1);
 1643                 if (tw == NULL) {
 1644                         tcp_close(tp);
 1645                         return;
 1646                 }
 1647         }
 1648         inp = tp->t_inpcb;
 1649         tw->tw_inpcb = inp;
 1650 
 1651         /*
 1652          * Recover last window size sent.
 1653          */
 1654         tw->last_win = (tp->rcv_adv - tp->rcv_nxt) >> tp->rcv_scale;
 1655 
 1656         /*
 1657          * Set t_recent if timestamps are used on the connection.
 1658          */
 1659         if ((tp->t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP|TF_NOOPT)) ==
 1660             (TF_REQ_TSTMP|TF_RCVD_TSTMP))
 1661                 tw->t_recent = tp->ts_recent;
 1662         else
 1663                 tw->t_recent = 0;
 1664 
 1665         tw->snd_nxt = tp->snd_nxt;
 1666         tw->rcv_nxt = tp->rcv_nxt;
 1667         tw->iss     = tp->iss;
 1668         tw->irs     = tp->irs;
 1669         tw->cc_recv = tp->cc_recv;
 1670         tw->cc_send = tp->cc_send;
 1671         tw->t_starttime = tp->t_starttime;
 1672         tw->tw_time = 0;
 1673 
 1674 /* XXX
 1675  * If this code will
 1676  * be used for fin-wait-2 state also, then we may need
 1677  * a ts_recent from the last segment.
 1678  */
 1679         /* Shorten TIME_WAIT [RFC-1644, p.28] */
 1680         if (tp->cc_recv != 0 && (ticks - tp->t_starttime) < tcp_msl) {
 1681                 tw_time = tp->t_rxtcur * TCPTV_TWTRUNC;
 1682                 /* For T/TCP client, force ACK now. */
 1683                 acknow = 1;
 1684         } else {
 1685                 tw_time = 2 * tcp_msl;
 1686                 acknow = tp->t_flags & TF_ACKNOW;
 1687         }
 1688         tcp_discardcb(tp);
 1689         so = inp->inp_socket;
 1690         ACCEPT_LOCK();
 1691         SOCK_LOCK(so);
 1692         so->so_pcb = NULL;
 1693         tw->tw_cred = crhold(so->so_cred);
 1694         tw->tw_so_options = so->so_options;
 1695         sotryfree(so);
 1696         inp->inp_socket = NULL;
 1697         if (acknow)
 1698                 tcp_twrespond(tw, TH_ACK);
 1699         inp->inp_ppcb = (caddr_t)tw;
 1700         inp->inp_vflag |= INP_TIMEWAIT;
 1701         tcp_timer_2msl_reset(tw, tw_time);
 1702         INP_UNLOCK(inp);
 1703 }
 1704 
 1705 /*
 1706  * The appromixate rate of ISN increase of Microsoft TCP stacks;
 1707  * the actual rate is slightly higher due to the addition of
 1708  * random positive increments.
 1709  *
 1710  * Most other new OSes use semi-randomized ISN values, so we
 1711  * do not need to worry about them.
 1712  */
 1713 #define MS_ISN_BYTES_PER_SECOND         250000
 1714 
 1715 /*
 1716  * Determine if the ISN we will generate has advanced beyond the last
 1717  * sequence number used by the previous connection.  If so, indicate
 1718  * that it is safe to recycle this tw socket by returning 1.
 1719  */
 1720 int
 1721 tcp_twrecycleable(struct tcptw *tw)
 1722 {
 1723         tcp_seq new_iss = tw->iss;
 1724         tcp_seq new_irs = tw->irs;
 1725 
 1726         new_iss += (ticks - tw->t_starttime) * (ISN_BYTES_PER_SECOND / hz);
 1727         new_irs += (ticks - tw->t_starttime) * (MS_ISN_BYTES_PER_SECOND / hz);
 1728 
 1729         if (SEQ_GT(new_iss, tw->snd_nxt) && SEQ_GT(new_irs, tw->rcv_nxt))
 1730                 return 1;
 1731         else
 1732                 return 0;
 1733 }
 1734 
 1735 struct tcptw *
 1736 tcp_twclose(struct tcptw *tw, int reuse)
 1737 {
 1738         struct inpcb *inp;
 1739 
 1740         inp = tw->tw_inpcb;
 1741         tw->tw_inpcb = NULL;
 1742         tcp_timer_2msl_stop(tw);
 1743         inp->inp_ppcb = NULL;
 1744 #ifdef INET6
 1745         if (inp->inp_vflag & INP_IPV6PROTO)
 1746                 in6_pcbdetach(inp);
 1747         else
 1748 #endif
 1749                 in_pcbdetach(inp);
 1750         tcpstat.tcps_closed++;
 1751         crfree(tw->tw_cred);
 1752         tw->tw_cred = NULL;
 1753         if (reuse)
 1754                 return (tw);
 1755         uma_zfree(tcptw_zone, tw);
 1756         return (NULL);
 1757 }
 1758 
 1759 int
 1760 tcp_twrespond(struct tcptw *tw, int flags)
 1761 {
 1762         struct inpcb *inp = tw->tw_inpcb;
 1763         struct tcphdr *th;
 1764         struct mbuf *m;
 1765         struct ip *ip = NULL;
 1766         u_int8_t *optp;
 1767         u_int hdrlen, optlen;
 1768         int error;
 1769 #ifdef INET6
 1770         struct ip6_hdr *ip6 = NULL;
 1771         int isipv6 = inp->inp_inc.inc_isipv6;
 1772 #endif
 1773 
 1774         m = m_gethdr(M_DONTWAIT, MT_HEADER);
 1775         if (m == NULL)
 1776                 return (ENOBUFS);
 1777         m->m_data += max_linkhdr;
 1778 
 1779 #ifdef MAC
 1780         mac_create_mbuf_from_inpcb(inp, m);
 1781 #endif
 1782 
 1783 #ifdef INET6
 1784         if (isipv6) {
 1785                 hdrlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
 1786                 ip6 = mtod(m, struct ip6_hdr *);
 1787                 th = (struct tcphdr *)(ip6 + 1);
 1788                 tcpip_fillheaders(inp, ip6, th);
 1789         } else
 1790 #endif
 1791         {
 1792                 hdrlen = sizeof(struct tcpiphdr);
 1793                 ip = mtod(m, struct ip *);
 1794                 th = (struct tcphdr *)(ip + 1);
 1795                 tcpip_fillheaders(inp, ip, th);
 1796         }
 1797         optp = (u_int8_t *)(th + 1);
 1798 
 1799         /*
 1800          * Send a timestamp and echo-reply if both our side and our peer
 1801          * have sent timestamps in our SYN's and this is not a RST.
 1802          */
 1803         if (tw->t_recent && flags == TH_ACK) {
 1804                 u_int32_t *lp = (u_int32_t *)optp;
 1805 
 1806                 /* Form timestamp option as shown in appendix A of RFC 1323. */
 1807                 *lp++ = htonl(TCPOPT_TSTAMP_HDR);
 1808                 *lp++ = htonl(ticks);
 1809                 *lp   = htonl(tw->t_recent);
 1810                 optp += TCPOLEN_TSTAMP_APPA;
 1811         }
 1812 
 1813         /*
 1814          * Send `CC-family' options if needed, and it's not a RST.
 1815          */
 1816         if (tw->cc_recv != 0 && flags == TH_ACK) {
 1817                 u_int32_t *lp = (u_int32_t *)optp;
 1818 
 1819                 *lp++ = htonl(TCPOPT_CC_HDR(TCPOPT_CC));
 1820                 *lp   = htonl(tw->cc_send);
 1821                 optp += TCPOLEN_CC_APPA;
 1822         }
 1823         optlen = optp - (u_int8_t *)(th + 1);
 1824 
 1825         m->m_len = hdrlen + optlen;
 1826         m->m_pkthdr.len = m->m_len;
 1827 
 1828         KASSERT(max_linkhdr + m->m_len <= MHLEN, ("tcptw: mbuf too small"));
 1829 
 1830         th->th_seq = htonl(tw->snd_nxt);
 1831         th->th_ack = htonl(tw->rcv_nxt);
 1832         th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
 1833         th->th_flags = flags;
 1834         th->th_win = htons(tw->last_win);
 1835 
 1836 #ifdef INET6
 1837         if (isipv6) {
 1838                 th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(struct ip6_hdr),
 1839                     sizeof(struct tcphdr) + optlen);
 1840                 ip6->ip6_hlim = in6_selecthlim(inp, NULL);
 1841                 error = ip6_output(m, inp->in6p_outputopts, NULL,
 1842                     (tw->tw_so_options & SO_DONTROUTE), NULL, NULL, inp);
 1843         } else
 1844 #endif
 1845         {
 1846                 th->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
 1847                     htons(sizeof(struct tcphdr) + optlen + IPPROTO_TCP));
 1848                 m->m_pkthdr.csum_flags = CSUM_TCP;
 1849                 m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
 1850                 ip->ip_len = m->m_pkthdr.len;
 1851                 if (path_mtu_discovery)
 1852                         ip->ip_off |= IP_DF;
 1853                 error = ip_output(m, inp->inp_options, NULL,
 1854                     (tw->tw_so_options & SO_DONTROUTE), NULL, inp);
 1855         }
 1856         if (flags & TH_ACK)
 1857                 tcpstat.tcps_sndacks++;
 1858         else
 1859                 tcpstat.tcps_sndctrl++;
 1860         tcpstat.tcps_sndtotal++;
 1861         return (error);
 1862 }
 1863 
 1864 /*
 1865  * TCP BANDWIDTH DELAY PRODUCT WINDOW LIMITING
 1866  *
 1867  * This code attempts to calculate the bandwidth-delay product as a
 1868  * means of determining the optimal window size to maximize bandwidth,
 1869  * minimize RTT, and avoid the over-allocation of buffers on interfaces and
 1870  * routers.  This code also does a fairly good job keeping RTTs in check
 1871  * across slow links like modems.  We implement an algorithm which is very
 1872  * similar (but not meant to be) TCP/Vegas.  The code operates on the
 1873  * transmitter side of a TCP connection and so only effects the transmit
 1874  * side of the connection.
 1875  *
 1876  * BACKGROUND:  TCP makes no provision for the management of buffer space
 1877  * at the end points or at the intermediate routers and switches.  A TCP
 1878  * stream, whether using NewReno or not, will eventually buffer as
 1879  * many packets as it is able and the only reason this typically works is
 1880  * due to the fairly small default buffers made available for a connection
 1881  * (typicaly 16K or 32K).  As machines use larger windows and/or window
 1882  * scaling it is now fairly easy for even a single TCP connection to blow-out
 1883  * all available buffer space not only on the local interface, but on
 1884  * intermediate routers and switches as well.  NewReno makes a misguided
 1885  * attempt to 'solve' this problem by waiting for an actual failure to occur,
 1886  * then backing off, then steadily increasing the window again until another
 1887  * failure occurs, ad-infinitum.  This results in terrible oscillation that
 1888  * is only made worse as network loads increase and the idea of intentionally
 1889  * blowing out network buffers is, frankly, a terrible way to manage network
 1890  * resources.
 1891  *
 1892  * It is far better to limit the transmit window prior to the failure
 1893  * condition being achieved.  There are two general ways to do this:  First
 1894  * you can 'scan' through different transmit window sizes and locate the
 1895  * point where the RTT stops increasing, indicating that you have filled the
 1896  * pipe, then scan backwards until you note that RTT stops decreasing, then
 1897  * repeat ad-infinitum.  This method works in principle but has severe
 1898  * implementation issues due to RTT variances, timer granularity, and
 1899  * instability in the algorithm which can lead to many false positives and
 1900  * create oscillations as well as interact badly with other TCP streams
 1901  * implementing the same algorithm.
 1902  *
 1903  * The second method is to limit the window to the bandwidth delay product
 1904  * of the link.  This is the method we implement.  RTT variances and our
 1905  * own manipulation of the congestion window, bwnd, can potentially
 1906  * destabilize the algorithm.  For this reason we have to stabilize the
 1907  * elements used to calculate the window.  We do this by using the minimum
 1908  * observed RTT, the long term average of the observed bandwidth, and
 1909  * by adding two segments worth of slop.  It isn't perfect but it is able
 1910  * to react to changing conditions and gives us a very stable basis on
 1911  * which to extend the algorithm.
 1912  */
 1913 void
 1914 tcp_xmit_bandwidth_limit(struct tcpcb *tp, tcp_seq ack_seq)
 1915 {
 1916         u_long bw;
 1917         u_long bwnd;
 1918         int save_ticks;
 1919 
 1920         /*
 1921          * If inflight_enable is disabled in the middle of a tcp connection,
 1922          * make sure snd_bwnd is effectively disabled.
 1923          */
 1924         if (tcp_inflight_enable == 0) {
 1925                 tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
 1926                 tp->snd_bandwidth = 0;
 1927                 return;
 1928         }
 1929 
 1930         /*
 1931          * Figure out the bandwidth.  Due to the tick granularity this
 1932          * is a very rough number and it MUST be averaged over a fairly
 1933          * long period of time.  XXX we need to take into account a link
 1934          * that is not using all available bandwidth, but for now our
 1935          * slop will ramp us up if this case occurs and the bandwidth later
 1936          * increases.
 1937          *
 1938          * Note: if ticks rollover 'bw' may wind up negative.  We must
 1939          * effectively reset t_bw_rtttime for this case.
 1940          */
 1941         save_ticks = ticks;
 1942         if ((u_int)(save_ticks - tp->t_bw_rtttime) < 1)
 1943                 return;
 1944 
 1945         bw = (int64_t)(ack_seq - tp->t_bw_rtseq) * hz /
 1946             (save_ticks - tp->t_bw_rtttime);
 1947         tp->t_bw_rtttime = save_ticks;
 1948         tp->t_bw_rtseq = ack_seq;
 1949         if (tp->t_bw_rtttime == 0 || (int)bw < 0)
 1950                 return;
 1951         bw = ((int64_t)tp->snd_bandwidth * 15 + bw) >> 4;
 1952 
 1953         tp->snd_bandwidth = bw;
 1954 
 1955         /*
 1956          * Calculate the semi-static bandwidth delay product, plus two maximal
 1957          * segments.  The additional slop puts us squarely in the sweet
 1958          * spot and also handles the bandwidth run-up case and stabilization.
 1959          * Without the slop we could be locking ourselves into a lower
 1960          * bandwidth.
 1961          *
 1962          * Situations Handled:
 1963          *      (1) Prevents over-queueing of packets on LANs, especially on
 1964          *          high speed LANs, allowing larger TCP buffers to be
 1965          *          specified, and also does a good job preventing
 1966          *          over-queueing of packets over choke points like modems
 1967          *          (at least for the transmit side).
 1968          *
 1969          *      (2) Is able to handle changing network loads (bandwidth
 1970          *          drops so bwnd drops, bandwidth increases so bwnd
 1971          *          increases).
 1972          *
 1973          *      (3) Theoretically should stabilize in the face of multiple
 1974          *          connections implementing the same algorithm (this may need
 1975          *          a little work).
 1976          *
 1977          *      (4) Stability value (defaults to 20 = 2 maximal packets) can
 1978          *          be adjusted with a sysctl but typically only needs to be
 1979          *          on very slow connections.  A value no smaller then 5
 1980          *          should be used, but only reduce this default if you have
 1981          *          no other choice.
 1982          */
 1983 #define USERTT  ((tp->t_srtt + tp->t_rttbest) / 2)
 1984         bwnd = (int64_t)bw * USERTT / (hz << TCP_RTT_SHIFT) + tcp_inflight_stab * tp->t_maxseg / 10;
 1985 #undef USERTT
 1986 
 1987         if (tcp_inflight_debug > 0) {
 1988                 static int ltime;
 1989                 if ((u_int)(ticks - ltime) >= hz / tcp_inflight_debug) {
 1990                         ltime = ticks;
 1991                         printf("%p bw %ld rttbest %d srtt %d bwnd %ld\n",
 1992                             tp,
 1993                             bw,
 1994                             tp->t_rttbest,
 1995                             tp->t_srtt,
 1996                             bwnd
 1997                         );
 1998                 }
 1999         }
 2000         if ((long)bwnd < tcp_inflight_min)
 2001                 bwnd = tcp_inflight_min;
 2002         if (bwnd > tcp_inflight_max)
 2003                 bwnd = tcp_inflight_max;
 2004         if ((long)bwnd < tp->t_maxseg * 2)
 2005                 bwnd = tp->t_maxseg * 2;
 2006         tp->snd_bwnd = bwnd;
 2007 }
 2008 
 2009 #ifdef TCP_SIGNATURE
 2010 /*
 2011  * Callback function invoked by m_apply() to digest TCP segment data
 2012  * contained within an mbuf chain.
 2013  */
 2014 static int
 2015 tcp_signature_apply(void *fstate, void *data, u_int len)
 2016 {
 2017 
 2018         MD5Update(fstate, (u_char *)data, len);
 2019         return (0);
 2020 }
 2021 
 2022 /*
 2023  * Compute TCP-MD5 hash of a TCPv4 segment. (RFC2385)
 2024  *
 2025  * Parameters:
 2026  * m            pointer to head of mbuf chain
 2027  * off0         offset to TCP header within the mbuf chain
 2028  * len          length of TCP segment data, excluding options
 2029  * optlen       length of TCP segment options
 2030  * buf          pointer to storage for computed MD5 digest
 2031  * direction    direction of flow (IPSEC_DIR_INBOUND or OUTBOUND)
 2032  *
 2033  * We do this over ip, tcphdr, segment data, and the key in the SADB.
 2034  * When called from tcp_input(), we can be sure that th_sum has been
 2035  * zeroed out and verified already.
 2036  *
 2037  * This function is for IPv4 use only. Calling this function with an
 2038  * IPv6 packet in the mbuf chain will yield undefined results.
 2039  *
 2040  * Return 0 if successful, otherwise return -1.
 2041  *
 2042  * XXX The key is retrieved from the system's PF_KEY SADB, by keying a
 2043  * search with the destination IP address, and a 'magic SPI' to be
 2044  * determined by the application. This is hardcoded elsewhere to 1179
 2045  * right now. Another branch of this code exists which uses the SPD to
 2046  * specify per-application flows but it is unstable.
 2047  */
 2048 int
 2049 tcp_signature_compute(struct mbuf *m, int off0, int len, int optlen,
 2050     u_char *buf, u_int direction)
 2051 {
 2052         union sockaddr_union dst;
 2053         struct ippseudo ippseudo;
 2054         MD5_CTX ctx;
 2055         int doff;
 2056         struct ip *ip;
 2057         struct ipovly *ipovly;
 2058         struct secasvar *sav;
 2059         struct tcphdr *th;
 2060         u_short savecsum;
 2061 
 2062         KASSERT(m != NULL, ("NULL mbuf chain"));
 2063         KASSERT(buf != NULL, ("NULL signature pointer"));
 2064 
 2065         /* Extract the destination from the IP header in the mbuf. */
 2066         ip = mtod(m, struct ip *);
 2067         bzero(&dst, sizeof(union sockaddr_union));
 2068         dst.sa.sa_len = sizeof(struct sockaddr_in);
 2069         dst.sa.sa_family = AF_INET;
 2070         dst.sin.sin_addr = (direction == IPSEC_DIR_INBOUND) ?
 2071             ip->ip_src : ip->ip_dst;
 2072 
 2073         /* Look up an SADB entry which matches the address of the peer. */
 2074         sav = KEY_ALLOCSA(&dst, IPPROTO_TCP, htonl(TCP_SIG_SPI));
 2075         if (sav == NULL) {
 2076                 printf("%s: SADB lookup failed for %s\n", __func__,
 2077                     inet_ntoa(dst.sin.sin_addr));
 2078                 return (EINVAL);
 2079         }
 2080 
 2081         MD5Init(&ctx);
 2082         ipovly = (struct ipovly *)ip;
 2083         th = (struct tcphdr *)((u_char *)ip + off0);
 2084         doff = off0 + sizeof(struct tcphdr) + optlen;
 2085 
 2086         /*
 2087          * Step 1: Update MD5 hash with IP pseudo-header.
 2088          *
 2089          * XXX The ippseudo header MUST be digested in network byte order,
 2090          * or else we'll fail the regression test. Assume all fields we've
 2091          * been doing arithmetic on have been in host byte order.
 2092          * XXX One cannot depend on ipovly->ih_len here. When called from
 2093          * tcp_output(), the underlying ip_len member has not yet been set.
 2094          */
 2095         ippseudo.ippseudo_src = ipovly->ih_src;
 2096         ippseudo.ippseudo_dst = ipovly->ih_dst;
 2097         ippseudo.ippseudo_pad = 0;
 2098         ippseudo.ippseudo_p = IPPROTO_TCP;
 2099         ippseudo.ippseudo_len = htons(len + sizeof(struct tcphdr) + optlen);
 2100         MD5Update(&ctx, (char *)&ippseudo, sizeof(struct ippseudo));
 2101 
 2102         /*
 2103          * Step 2: Update MD5 hash with TCP header, excluding options.
 2104          * The TCP checksum must be set to zero.
 2105          */
 2106         savecsum = th->th_sum;
 2107         th->th_sum = 0;
 2108         MD5Update(&ctx, (char *)th, sizeof(struct tcphdr));
 2109         th->th_sum = savecsum;
 2110 
 2111         /*
 2112          * Step 3: Update MD5 hash with TCP segment data.
 2113          *         Use m_apply() to avoid an early m_pullup().
 2114          */
 2115         if (len > 0)
 2116                 m_apply(m, doff, len, tcp_signature_apply, &ctx);
 2117 
 2118         /*
 2119          * Step 4: Update MD5 hash with shared secret.
 2120          */
 2121         MD5Update(&ctx, _KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth));
 2122         MD5Final(buf, &ctx);
 2123 
 2124         key_sa_recordxfer(sav, m);
 2125         KEY_FREESAV(&sav);
 2126         return (0);
 2127 }
 2128 #endif /* TCP_SIGNATURE */

Cache object: 72b5a5643d13bc27b3e76440bf4a3840


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.