The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/netinet/tcp_subr.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
    3  *      The Regents of the University of California.  All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice, this list of conditions and the following disclaimer.
   10  * 2. Redistributions in binary form must reproduce the above copyright
   11  *    notice, this list of conditions and the following disclaimer in the
   12  *    documentation and/or other materials provided with the distribution.
   13  * 4. Neither the name of the University nor the names of its contributors
   14  *    may be used to endorse or promote products derived from this software
   15  *    without specific prior written permission.
   16  *
   17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   27  * SUCH DAMAGE.
   28  *
   29  *      @(#)tcp_subr.c  8.2 (Berkeley) 5/24/95
   30  * $FreeBSD$
   31  */
   32 
   33 #include "opt_compat.h"
   34 #include "opt_inet.h"
   35 #include "opt_inet6.h"
   36 #include "opt_ipsec.h"
   37 #include "opt_mac.h"
   38 #include "opt_tcpdebug.h"
   39 #include "opt_tcp_sack.h"
   40 
   41 #include <sys/param.h>
   42 #include <sys/systm.h>
   43 #include <sys/callout.h>
   44 #include <sys/kernel.h>
   45 #include <sys/sysctl.h>
   46 #include <sys/mac.h>
   47 #include <sys/malloc.h>
   48 #include <sys/mbuf.h>
   49 #ifdef INET6
   50 #include <sys/domain.h>
   51 #endif
   52 #include <sys/proc.h>
   53 #include <sys/socket.h>
   54 #include <sys/socketvar.h>
   55 #include <sys/protosw.h>
   56 #include <sys/random.h>
   57 
   58 #include <vm/uma.h>
   59 
   60 #include <net/route.h>
   61 #include <net/if.h>
   62 
   63 #include <netinet/in.h>
   64 #include <netinet/in_systm.h>
   65 #include <netinet/ip.h>
   66 #ifdef INET6
   67 #include <netinet/ip6.h>
   68 #endif
   69 #include <netinet/in_pcb.h>
   70 #ifdef INET6
   71 #include <netinet6/in6_pcb.h>
   72 #endif
   73 #include <netinet/in_var.h>
   74 #include <netinet/ip_var.h>
   75 #ifdef INET6
   76 #include <netinet6/ip6_var.h>
   77 #include <netinet6/nd6.h>
   78 #endif
   79 #include <netinet/ip_icmp.h>
   80 #include <netinet/tcp.h>
   81 #include <netinet/tcp_fsm.h>
   82 #include <netinet/tcp_seq.h>
   83 #include <netinet/tcp_timer.h>
   84 #include <netinet/tcp_var.h>
   85 #ifdef INET6
   86 #include <netinet6/tcp6_var.h>
   87 #endif
   88 #include <netinet/tcpip.h>
   89 #ifdef TCPDEBUG
   90 #include <netinet/tcp_debug.h>
   91 #endif
   92 #include <netinet6/ip6protosw.h>
   93 
   94 #ifdef IPSEC
   95 #include <netinet6/ipsec.h>
   96 #ifdef INET6
   97 #include <netinet6/ipsec6.h>
   98 #endif
   99 #include <netkey/key.h>
  100 #endif /*IPSEC*/
  101 
  102 #ifdef FAST_IPSEC
  103 #include <netipsec/ipsec.h>
  104 #include <netipsec/xform.h>
  105 #ifdef INET6
  106 #include <netipsec/ipsec6.h>
  107 #endif
  108 #include <netipsec/key.h>
  109 #define IPSEC
  110 #endif /*FAST_IPSEC*/
  111 
  112 #include <machine/in_cksum.h>
  113 #include <sys/md5.h>
  114 
  115 int     tcp_mssdflt = TCP_MSS;
  116 SYSCTL_INT(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt, CTLFLAG_RW,
  117     &tcp_mssdflt , 0, "Default TCP Maximum Segment Size");
  118 
  119 #ifdef INET6
  120 int     tcp_v6mssdflt = TCP6_MSS;
  121 SYSCTL_INT(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt,
  122         CTLFLAG_RW, &tcp_v6mssdflt , 0,
  123         "Default TCP Maximum Segment Size for IPv6");
  124 #endif
  125 
  126 /*
  127  * Minimum MSS we accept and use. This prevents DoS attacks where
  128  * we are forced to a ridiculous low MSS like 20 and send hundreds
  129  * of packets instead of one. The effect scales with the available
  130  * bandwidth and quickly saturates the CPU and network interface
  131  * with packet generation and sending. Set to zero to disable MINMSS
  132  * checking. This setting prevents us from sending too small packets.
  133  */
  134 int     tcp_minmss = TCP_MINMSS;
  135 SYSCTL_INT(_net_inet_tcp, OID_AUTO, minmss, CTLFLAG_RW,
  136     &tcp_minmss , 0, "Minmum TCP Maximum Segment Size");
  137 /*
  138  * Number of TCP segments per second we accept from remote host
  139  * before we start to calculate average segment size. If average
  140  * segment size drops below the minimum TCP MSS we assume a DoS
  141  * attack and reset+drop the connection. Care has to be taken not to
  142  * set this value too small to not kill interactive type connections
  143  * (telnet, SSH) which send many small packets.
  144  */
  145 int     tcp_minmssoverload = TCP_MINMSSOVERLOAD;
  146 SYSCTL_INT(_net_inet_tcp, OID_AUTO, minmssoverload, CTLFLAG_RW,
  147     &tcp_minmssoverload , 0, "Number of TCP Segments per Second allowed to"
  148     "be under the MINMSS Size");
  149 
  150 #if 0
  151 static int      tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
  152 SYSCTL_INT(_net_inet_tcp, TCPCTL_RTTDFLT, rttdflt, CTLFLAG_RW,
  153     &tcp_rttdflt , 0, "Default maximum TCP Round Trip Time");
  154 #endif
  155 
  156 int     tcp_do_rfc1323 = 1;
  157 SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_RW,
  158     &tcp_do_rfc1323 , 0, "Enable rfc1323 (high performance TCP) extensions");
  159 
  160 int     tcp_do_rfc1644 = 0;
  161 SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1644, rfc1644, CTLFLAG_RW,
  162     &tcp_do_rfc1644 , 0, "Enable rfc1644 (TTCP) extensions");
  163 
  164 static int      tcp_tcbhashsize = 0;
  165 SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RDTUN,
  166      &tcp_tcbhashsize, 0, "Size of TCP control-block hashtable");
  167 
  168 static int      do_tcpdrain = 1;
  169 SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0,
  170      "Enable tcp_drain routine for extra help when low on mbufs");
  171 
  172 SYSCTL_INT(_net_inet_tcp, OID_AUTO, pcbcount, CTLFLAG_RD,
  173     &tcbinfo.ipi_count, 0, "Number of active PCBs");
  174 
  175 static int      icmp_may_rst = 1;
  176 SYSCTL_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_RW, &icmp_may_rst, 0,
  177     "Certain ICMP unreachable messages may abort connections in SYN_SENT");
  178 
  179 static int      tcp_isn_reseed_interval = 0;
  180 SYSCTL_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_RW,
  181     &tcp_isn_reseed_interval, 0, "Seconds between reseeding of ISN secret");
  182 
  183 /*
  184  * TCP bandwidth limiting sysctls.  Note that the default lower bound of
  185  * 1024 exists only for debugging.  A good production default would be
  186  * something like 6100.
  187  */
  188 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, inflight, CTLFLAG_RW, 0,
  189     "TCP inflight data limiting");
  190 
  191 static int      tcp_inflight_enable = 1;
  192 SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, enable, CTLFLAG_RW,
  193     &tcp_inflight_enable, 0, "Enable automatic TCP inflight data limiting");
  194 
  195 static int      tcp_inflight_debug = 0;
  196 SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, debug, CTLFLAG_RW,
  197     &tcp_inflight_debug, 0, "Debug TCP inflight calculations");
  198 
  199 static int      tcp_inflight_min = 6144;
  200 SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, min, CTLFLAG_RW,
  201     &tcp_inflight_min, 0, "Lower-bound for TCP inflight window");
  202 
  203 static int      tcp_inflight_max = TCP_MAXWIN << TCP_MAX_WINSHIFT;
  204 SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, max, CTLFLAG_RW,
  205     &tcp_inflight_max, 0, "Upper-bound for TCP inflight window");
  206 
  207 static int      tcp_inflight_stab = 20;
  208 SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, stab, CTLFLAG_RW,
  209     &tcp_inflight_stab, 0, "Inflight Algorithm Stabilization 20 = 2 packets");
  210 
  211 uma_zone_t sack_hole_zone;
  212 
  213 static struct inpcb *tcp_notify(struct inpcb *, int);
  214 static void     tcp_discardcb(struct tcpcb *);
  215 static void     tcp_isn_tick(void *);
  216 
  217 /*
  218  * Target size of TCP PCB hash tables. Must be a power of two.
  219  *
  220  * Note that this can be overridden by the kernel environment
  221  * variable net.inet.tcp.tcbhashsize
  222  */
  223 #ifndef TCBHASHSIZE
  224 #define TCBHASHSIZE     512
  225 #endif
  226 
  227 /*
  228  * XXX
  229  * Callouts should be moved into struct tcp directly.  They are currently
  230  * separate because the tcpcb structure is exported to userland for sysctl
  231  * parsing purposes, which do not know about callouts.
  232  */
  233 struct  tcpcb_mem {
  234         struct  tcpcb tcb;
  235         struct  callout tcpcb_mem_rexmt, tcpcb_mem_persist, tcpcb_mem_keep;
  236         struct  callout tcpcb_mem_2msl, tcpcb_mem_delack;
  237 };
  238 
  239 static uma_zone_t tcpcb_zone;
  240 static uma_zone_t tcptw_zone;
  241 struct callout isn_callout;
  242 
  243 /*
  244  * Tcp initialization
  245  */
  246 void
  247 tcp_init()
  248 {
  249         int hashsize = TCBHASHSIZE;
  250 
  251         tcp_ccgen = 1;
  252 
  253         tcp_delacktime = TCPTV_DELACK;
  254         tcp_keepinit = TCPTV_KEEP_INIT;
  255         tcp_keepidle = TCPTV_KEEP_IDLE;
  256         tcp_keepintvl = TCPTV_KEEPINTVL;
  257         tcp_maxpersistidle = TCPTV_KEEP_IDLE;
  258         tcp_msl = TCPTV_MSL;
  259         tcp_rexmit_min = TCPTV_MIN;
  260         tcp_rexmit_slop = TCPTV_CPU_VAR;
  261 
  262         INP_INFO_LOCK_INIT(&tcbinfo, "tcp");
  263         LIST_INIT(&tcb);
  264         tcbinfo.listhead = &tcb;
  265         TUNABLE_INT_FETCH("net.inet.tcp.tcbhashsize", &hashsize);
  266         if (!powerof2(hashsize)) {
  267                 printf("WARNING: TCB hash size not a power of 2\n");
  268                 hashsize = 512; /* safe default */
  269         }
  270         tcp_tcbhashsize = hashsize;
  271         tcbinfo.hashbase = hashinit(hashsize, M_PCB, &tcbinfo.hashmask);
  272         tcbinfo.porthashbase = hashinit(hashsize, M_PCB,
  273                                         &tcbinfo.porthashmask);
  274         tcbinfo.ipi_zone = uma_zcreate("inpcb", sizeof(struct inpcb),
  275             NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
  276         uma_zone_set_max(tcbinfo.ipi_zone, maxsockets);
  277 #ifdef INET6
  278 #define TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
  279 #else /* INET6 */
  280 #define TCP_MINPROTOHDR (sizeof(struct tcpiphdr))
  281 #endif /* INET6 */
  282         if (max_protohdr < TCP_MINPROTOHDR)
  283                 max_protohdr = TCP_MINPROTOHDR;
  284         if (max_linkhdr + TCP_MINPROTOHDR > MHLEN)
  285                 panic("tcp_init");
  286 #undef TCP_MINPROTOHDR
  287         /*
  288          * These have to be type stable for the benefit of the timers.
  289          */
  290         tcpcb_zone = uma_zcreate("tcpcb", sizeof(struct tcpcb_mem),
  291             NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
  292         uma_zone_set_max(tcpcb_zone, maxsockets);
  293         tcptw_zone = uma_zcreate("tcptw", sizeof(struct tcptw),
  294             NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
  295         uma_zone_set_max(tcptw_zone, maxsockets / 5);
  296         tcp_timer_init();
  297         syncache_init();
  298         tcp_hc_init();
  299         tcp_reass_init();
  300         callout_init(&isn_callout, CALLOUT_MPSAFE);
  301         tcp_isn_tick(NULL);
  302         EVENTHANDLER_REGISTER(shutdown_pre_sync, tcp_fini, NULL,
  303                 SHUTDOWN_PRI_DEFAULT);
  304         sack_hole_zone = uma_zcreate("sackhole", sizeof(struct sackhole),
  305             NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
  306 }
  307 
  308 void
  309 tcp_fini(xtp)
  310         void *xtp;
  311 {
  312         callout_stop(&isn_callout);
  313 
  314 }
  315 
  316 /*
  317  * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
  318  * tcp_template used to store this data in mbufs, but we now recopy it out
  319  * of the tcpcb each time to conserve mbufs.
  320  */
  321 void
  322 tcpip_fillheaders(inp, ip_ptr, tcp_ptr)
  323         struct inpcb *inp;
  324         void *ip_ptr;
  325         void *tcp_ptr;
  326 {
  327         struct tcphdr *th = (struct tcphdr *)tcp_ptr;
  328 
  329         INP_LOCK_ASSERT(inp);
  330 
  331 #ifdef INET6
  332         if ((inp->inp_vflag & INP_IPV6) != 0) {
  333                 struct ip6_hdr *ip6;
  334 
  335                 ip6 = (struct ip6_hdr *)ip_ptr;
  336                 ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
  337                         (inp->in6p_flowinfo & IPV6_FLOWINFO_MASK);
  338                 ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) |
  339                         (IPV6_VERSION & IPV6_VERSION_MASK);
  340                 ip6->ip6_nxt = IPPROTO_TCP;
  341                 ip6->ip6_plen = sizeof(struct tcphdr);
  342                 ip6->ip6_src = inp->in6p_laddr;
  343                 ip6->ip6_dst = inp->in6p_faddr;
  344         } else
  345 #endif
  346         {
  347                 struct ip *ip;
  348 
  349                 ip = (struct ip *)ip_ptr;
  350                 ip->ip_v = IPVERSION;
  351                 ip->ip_hl = 5;
  352                 ip->ip_tos = inp->inp_ip_tos;
  353                 ip->ip_len = 0;
  354                 ip->ip_id = 0;
  355                 ip->ip_off = 0;
  356                 ip->ip_ttl = inp->inp_ip_ttl;
  357                 ip->ip_sum = 0;
  358                 ip->ip_p = IPPROTO_TCP;
  359                 ip->ip_src = inp->inp_laddr;
  360                 ip->ip_dst = inp->inp_faddr;
  361         }
  362         th->th_sport = inp->inp_lport;
  363         th->th_dport = inp->inp_fport;
  364         th->th_seq = 0;
  365         th->th_ack = 0;
  366         th->th_x2 = 0;
  367         th->th_off = 5;
  368         th->th_flags = 0;
  369         th->th_win = 0;
  370         th->th_urp = 0;
  371         th->th_sum = 0;         /* in_pseudo() is called later for ipv4 */
  372 }
  373 
  374 /*
  375  * Create template to be used to send tcp packets on a connection.
  376  * Allocates an mbuf and fills in a skeletal tcp/ip header.  The only
  377  * use for this function is in keepalives, which use tcp_respond.
  378  */
  379 struct tcptemp *
  380 tcpip_maketemplate(inp)
  381         struct inpcb *inp;
  382 {
  383         struct mbuf *m;
  384         struct tcptemp *n;
  385 
  386         m = m_get(M_DONTWAIT, MT_HEADER);
  387         if (m == NULL)
  388                 return (0);
  389         m->m_len = sizeof(struct tcptemp);
  390         n = mtod(m, struct tcptemp *);
  391 
  392         tcpip_fillheaders(inp, (void *)&n->tt_ipgen, (void *)&n->tt_t);
  393         return (n);
  394 }
  395 
  396 /*
  397  * Send a single message to the TCP at address specified by
  398  * the given TCP/IP header.  If m == NULL, then we make a copy
  399  * of the tcpiphdr at ti and send directly to the addressed host.
  400  * This is used to force keep alive messages out using the TCP
  401  * template for a connection.  If flags are given then we send
  402  * a message back to the TCP which originated the * segment ti,
  403  * and discard the mbuf containing it and any other attached mbufs.
  404  *
  405  * In any case the ack and sequence number of the transmitted
  406  * segment are as specified by the parameters.
  407  *
  408  * NOTE: If m != NULL, then ti must point to *inside* the mbuf.
  409  */
  410 void
  411 tcp_respond(tp, ipgen, th, m, ack, seq, flags)
  412         struct tcpcb *tp;
  413         void *ipgen;
  414         register struct tcphdr *th;
  415         register struct mbuf *m;
  416         tcp_seq ack, seq;
  417         int flags;
  418 {
  419         register int tlen;
  420         int win = 0;
  421         struct ip *ip;
  422         struct tcphdr *nth;
  423 #ifdef INET6
  424         struct ip6_hdr *ip6;
  425         int isipv6;
  426 #endif /* INET6 */
  427         int ipflags = 0;
  428         struct inpcb *inp;
  429 
  430         KASSERT(tp != NULL || m != NULL, ("tcp_respond: tp and m both NULL"));
  431 
  432 #ifdef INET6
  433         isipv6 = ((struct ip *)ipgen)->ip_v == 6;
  434         ip6 = ipgen;
  435 #endif /* INET6 */
  436         ip = ipgen;
  437 
  438         if (tp != NULL) {
  439                 inp = tp->t_inpcb;
  440                 KASSERT(inp != NULL, ("tcp control block w/o inpcb"));
  441                 INP_INFO_WLOCK_ASSERT(&tcbinfo);
  442                 INP_LOCK_ASSERT(inp);
  443         } else
  444                 inp = NULL;
  445 
  446         if (tp != NULL) {
  447                 if (!(flags & TH_RST)) {
  448                         win = sbspace(&inp->inp_socket->so_rcv);
  449                         if (win > (long)TCP_MAXWIN << tp->rcv_scale)
  450                                 win = (long)TCP_MAXWIN << tp->rcv_scale;
  451                 }
  452         }
  453         if (m == NULL) {
  454                 m = m_gethdr(M_DONTWAIT, MT_HEADER);
  455                 if (m == NULL)
  456                         return;
  457                 tlen = 0;
  458                 m->m_data += max_linkhdr;
  459 #ifdef INET6
  460                 if (isipv6) {
  461                         bcopy((caddr_t)ip6, mtod(m, caddr_t),
  462                               sizeof(struct ip6_hdr));
  463                         ip6 = mtod(m, struct ip6_hdr *);
  464                         nth = (struct tcphdr *)(ip6 + 1);
  465                 } else
  466 #endif /* INET6 */
  467               {
  468                 bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
  469                 ip = mtod(m, struct ip *);
  470                 nth = (struct tcphdr *)(ip + 1);
  471               }
  472                 bcopy((caddr_t)th, (caddr_t)nth, sizeof(struct tcphdr));
  473                 flags = TH_ACK;
  474         } else {
  475                 m_freem(m->m_next);
  476                 m->m_next = NULL;
  477                 m->m_data = (caddr_t)ipgen;
  478                 /* m_len is set later */
  479                 tlen = 0;
  480 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
  481 #ifdef INET6
  482                 if (isipv6) {
  483                         xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
  484                         nth = (struct tcphdr *)(ip6 + 1);
  485                 } else
  486 #endif /* INET6 */
  487               {
  488                 xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, n_long);
  489                 nth = (struct tcphdr *)(ip + 1);
  490               }
  491                 if (th != nth) {
  492                         /*
  493                          * this is usually a case when an extension header
  494                          * exists between the IPv6 header and the
  495                          * TCP header.
  496                          */
  497                         nth->th_sport = th->th_sport;
  498                         nth->th_dport = th->th_dport;
  499                 }
  500                 xchg(nth->th_dport, nth->th_sport, n_short);
  501 #undef xchg
  502         }
  503 #ifdef INET6
  504         if (isipv6) {
  505                 ip6->ip6_flow = 0;
  506                 ip6->ip6_vfc = IPV6_VERSION;
  507                 ip6->ip6_nxt = IPPROTO_TCP;
  508                 ip6->ip6_plen = htons((u_short)(sizeof (struct tcphdr) +
  509                                                 tlen));
  510                 tlen += sizeof (struct ip6_hdr) + sizeof (struct tcphdr);
  511         } else
  512 #endif
  513         {
  514                 tlen += sizeof (struct tcpiphdr);
  515                 ip->ip_len = tlen;
  516                 ip->ip_ttl = ip_defttl;
  517                 if (path_mtu_discovery)
  518                         ip->ip_off |= IP_DF;
  519         }
  520         m->m_len = tlen;
  521         m->m_pkthdr.len = tlen;
  522         m->m_pkthdr.rcvif = NULL;
  523 #ifdef MAC
  524         if (inp != NULL) {
  525                 /*
  526                  * Packet is associated with a socket, so allow the
  527                  * label of the response to reflect the socket label.
  528                  */
  529                 INP_LOCK_ASSERT(inp);
  530                 mac_create_mbuf_from_inpcb(inp, m);
  531         } else {
  532                 /*
  533                  * Packet is not associated with a socket, so possibly
  534                  * update the label in place.
  535                  */
  536                 mac_reflect_mbuf_tcp(m);
  537         }
  538 #endif
  539         nth->th_seq = htonl(seq);
  540         nth->th_ack = htonl(ack);
  541         nth->th_x2 = 0;
  542         nth->th_off = sizeof (struct tcphdr) >> 2;
  543         nth->th_flags = flags;
  544         if (tp != NULL)
  545                 nth->th_win = htons((u_short) (win >> tp->rcv_scale));
  546         else
  547                 nth->th_win = htons((u_short)win);
  548         nth->th_urp = 0;
  549 #ifdef INET6
  550         if (isipv6) {
  551                 nth->th_sum = 0;
  552                 nth->th_sum = in6_cksum(m, IPPROTO_TCP,
  553                                         sizeof(struct ip6_hdr),
  554                                         tlen - sizeof(struct ip6_hdr));
  555                 ip6->ip6_hlim = in6_selecthlim(tp != NULL ? tp->t_inpcb :
  556                     NULL, NULL);
  557         } else
  558 #endif /* INET6 */
  559         {
  560                 nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
  561                     htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p)));
  562                 m->m_pkthdr.csum_flags = CSUM_TCP;
  563                 m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
  564         }
  565 #ifdef TCPDEBUG
  566         if (tp == NULL || (inp->inp_socket->so_options & SO_DEBUG))
  567                 tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0);
  568 #endif
  569 #ifdef INET6
  570         if (isipv6)
  571                 (void) ip6_output(m, NULL, NULL, ipflags, NULL, NULL, inp);
  572         else
  573 #endif /* INET6 */
  574         (void) ip_output(m, NULL, NULL, ipflags, NULL, inp);
  575 }
  576 
  577 /*
  578  * Create a new TCP control block, making an
  579  * empty reassembly queue and hooking it to the argument
  580  * protocol control block.  The `inp' parameter must have
  581  * come from the zone allocator set up in tcp_init().
  582  */
  583 struct tcpcb *
  584 tcp_newtcpcb(inp)
  585         struct inpcb *inp;
  586 {
  587         struct tcpcb_mem *tm;
  588         struct tcpcb *tp;
  589 #ifdef INET6
  590         int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
  591 #endif /* INET6 */
  592         int callout_flag;
  593 
  594         tm = uma_zalloc(tcpcb_zone, M_NOWAIT | M_ZERO);
  595         if (tm == NULL)
  596                 return (NULL);
  597         tp = &tm->tcb;
  598         /*      LIST_INIT(&tp->t_segq); */      /* XXX covered by M_ZERO */
  599         tp->t_maxseg = tp->t_maxopd =
  600 #ifdef INET6
  601                 isipv6 ? tcp_v6mssdflt :
  602 #endif /* INET6 */
  603                 tcp_mssdflt;
  604 
  605         /* Set up our timeouts. */
  606         callout_flag = debug_mpsafenet ? CALLOUT_MPSAFE : 0;
  607         callout_init(tp->tt_rexmt = &tm->tcpcb_mem_rexmt, callout_flag);
  608         callout_init(tp->tt_persist = &tm->tcpcb_mem_persist, callout_flag);
  609         callout_init(tp->tt_keep = &tm->tcpcb_mem_keep, callout_flag);
  610         callout_init(tp->tt_2msl = &tm->tcpcb_mem_2msl, callout_flag);
  611         callout_init(tp->tt_delack = &tm->tcpcb_mem_delack, callout_flag);
  612 
  613         if (tcp_do_rfc1323)
  614                 tp->t_flags = (TF_REQ_SCALE|TF_REQ_TSTMP);
  615         if (tcp_do_rfc1644)
  616                 tp->t_flags |= TF_REQ_CC;
  617         tp->sack_enable = tcp_do_sack;
  618         tp->t_inpcb = inp;      /* XXX */
  619         /*
  620          * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
  621          * rtt estimate.  Set rttvar so that srtt + 4 * rttvar gives
  622          * reasonable initial retransmit time.
  623          */
  624         tp->t_srtt = TCPTV_SRTTBASE;
  625         tp->t_rttvar = ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
  626         tp->t_rttmin = tcp_rexmit_min;
  627         tp->t_rxtcur = TCPTV_RTOBASE;
  628         tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
  629         tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
  630         tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
  631         tp->t_rcvtime = ticks;
  632         tp->t_bw_rtttime = ticks;
  633         /*
  634          * IPv4 TTL initialization is necessary for an IPv6 socket as well,
  635          * because the socket may be bound to an IPv6 wildcard address,
  636          * which may match an IPv4-mapped IPv6 address.
  637          */
  638         inp->inp_ip_ttl = ip_defttl;
  639         inp->inp_ppcb = (caddr_t)tp;
  640         return (tp);            /* XXX */
  641 }
  642 
  643 /*
  644  * Drop a TCP connection, reporting
  645  * the specified error.  If connection is synchronized,
  646  * then send a RST to peer.
  647  */
  648 struct tcpcb *
  649 tcp_drop(tp, errno)
  650         register struct tcpcb *tp;
  651         int errno;
  652 {
  653         struct socket *so = tp->t_inpcb->inp_socket;
  654 
  655         INP_INFO_WLOCK_ASSERT(&tcbinfo);
  656         INP_LOCK_ASSERT(tp->t_inpcb);
  657 
  658         if (TCPS_HAVERCVDSYN(tp->t_state)) {
  659                 tp->t_state = TCPS_CLOSED;
  660                 (void) tcp_output(tp);
  661                 tcpstat.tcps_drops++;
  662         } else
  663                 tcpstat.tcps_conndrops++;
  664         if (errno == ETIMEDOUT && tp->t_softerror)
  665                 errno = tp->t_softerror;
  666         so->so_error = errno;
  667         return (tcp_close(tp));
  668 }
  669 
  670 static void
  671 tcp_discardcb(tp)
  672         struct tcpcb *tp;
  673 {
  674         struct tseg_qent *q;
  675         struct inpcb *inp = tp->t_inpcb;
  676         struct socket *so = inp->inp_socket;
  677 #ifdef INET6
  678         int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
  679 #endif /* INET6 */
  680 
  681         INP_LOCK_ASSERT(inp);
  682 
  683         /*
  684          * Make sure that all of our timers are stopped before we
  685          * delete the PCB.
  686          */
  687         callout_stop(tp->tt_rexmt);
  688         callout_stop(tp->tt_persist);
  689         callout_stop(tp->tt_keep);
  690         callout_stop(tp->tt_2msl);
  691         callout_stop(tp->tt_delack);
  692 
  693         /*
  694          * If we got enough samples through the srtt filter,
  695          * save the rtt and rttvar in the routing entry.
  696          * 'Enough' is arbitrarily defined as 4 rtt samples.
  697          * 4 samples is enough for the srtt filter to converge
  698          * to within enough % of the correct value; fewer samples
  699          * and we could save a bogus rtt. The danger is not high
  700          * as tcp quickly recovers from everything.
  701          * XXX: Works very well but needs some more statistics!
  702          */
  703         if (tp->t_rttupdated >= 4) {
  704                 struct hc_metrics_lite metrics;
  705                 u_long ssthresh;
  706 
  707                 bzero(&metrics, sizeof(metrics));
  708                 /*
  709                  * Update the ssthresh always when the conditions below
  710                  * are satisfied. This gives us better new start value
  711                  * for the congestion avoidance for new connections.
  712                  * ssthresh is only set if packet loss occured on a session.
  713                  */
  714                 ssthresh = tp->snd_ssthresh;
  715                 if (ssthresh != 0 && ssthresh < so->so_snd.sb_hiwat / 2) {
  716                         /*
  717                          * convert the limit from user data bytes to
  718                          * packets then to packet data bytes.
  719                          */
  720                         ssthresh = (ssthresh + tp->t_maxseg / 2) / tp->t_maxseg;
  721                         if (ssthresh < 2)
  722                                 ssthresh = 2;
  723                         ssthresh *= (u_long)(tp->t_maxseg +
  724 #ifdef INET6
  725                                       (isipv6 ? sizeof (struct ip6_hdr) +
  726                                                sizeof (struct tcphdr) :
  727 #endif
  728                                        sizeof (struct tcpiphdr)
  729 #ifdef INET6
  730                                        )
  731 #endif
  732                                       );
  733                 } else
  734                         ssthresh = 0;
  735                 metrics.rmx_ssthresh = ssthresh;
  736 
  737                 metrics.rmx_rtt = tp->t_srtt;
  738                 metrics.rmx_rttvar = tp->t_rttvar;
  739                 /* XXX: This wraps if the pipe is more than 4 Gbit per second */
  740                 metrics.rmx_bandwidth = tp->snd_bandwidth;
  741                 metrics.rmx_cwnd = tp->snd_cwnd;
  742                 metrics.rmx_sendpipe = 0;
  743                 metrics.rmx_recvpipe = 0;
  744 
  745                 tcp_hc_update(&inp->inp_inc, &metrics);
  746         }
  747 
  748         /* free the reassembly queue, if any */
  749         while ((q = LIST_FIRST(&tp->t_segq)) != NULL) {
  750                 LIST_REMOVE(q, tqe_q);
  751                 m_freem(q->tqe_m);
  752                 uma_zfree(tcp_reass_zone, q);
  753                 tp->t_segqlen--;
  754                 tcp_reass_qsize--;
  755         }
  756         tcp_free_sackholes(tp);
  757         inp->inp_ppcb = NULL;
  758         tp->t_inpcb = NULL;
  759         uma_zfree(tcpcb_zone, tp);
  760         soisdisconnected(so);
  761 }
  762 
  763 /*
  764  * Close a TCP control block:
  765  *    discard all space held by the tcp
  766  *    discard internet protocol block
  767  *    wake up any sleepers
  768  */
  769 struct tcpcb *
  770 tcp_close(tp)
  771         struct tcpcb *tp;
  772 {
  773         struct inpcb *inp = tp->t_inpcb;
  774 #ifdef INET6
  775         struct socket *so = inp->inp_socket;
  776 #endif
  777 
  778         INP_INFO_WLOCK_ASSERT(&tcbinfo);
  779         INP_LOCK_ASSERT(inp);
  780 
  781         tcp_discardcb(tp);
  782 #ifdef INET6
  783         if (INP_CHECK_SOCKAF(so, AF_INET6))
  784                 in6_pcbdetach(inp);
  785         else
  786 #endif
  787                 in_pcbdetach(inp);
  788         tcpstat.tcps_closed++;
  789         return (NULL);
  790 }
  791 
  792 void
  793 tcp_drain()
  794 {
  795         if (do_tcpdrain)
  796         {
  797                 struct inpcb *inpb;
  798                 struct tcpcb *tcpb;
  799                 struct tseg_qent *te;
  800 
  801         /*
  802          * Walk the tcpbs, if existing, and flush the reassembly queue,
  803          * if there is one...
  804          * XXX: The "Net/3" implementation doesn't imply that the TCP
  805          *      reassembly queue should be flushed, but in a situation
  806          *      where we're really low on mbufs, this is potentially
  807          *      usefull.
  808          */
  809                 INP_INFO_RLOCK(&tcbinfo);
  810                 LIST_FOREACH(inpb, tcbinfo.listhead, inp_list) {
  811                         if (inpb->inp_vflag & INP_TIMEWAIT)
  812                                 continue;
  813                         INP_LOCK(inpb);
  814                         if ((tcpb = intotcpcb(inpb)) != NULL) {
  815                                 while ((te = LIST_FIRST(&tcpb->t_segq))
  816                                     != NULL) {
  817                                         LIST_REMOVE(te, tqe_q);
  818                                         m_freem(te->tqe_m);
  819                                         uma_zfree(tcp_reass_zone, te);
  820                                         tcpb->t_segqlen--;
  821                                         tcp_reass_qsize--;
  822                                 }
  823                                 tcp_clean_sackreport(tcpb);
  824                         }
  825                         INP_UNLOCK(inpb);
  826                 }
  827                 INP_INFO_RUNLOCK(&tcbinfo);
  828         }
  829 }
  830 
  831 /*
  832  * Notify a tcp user of an asynchronous error;
  833  * store error as soft error, but wake up user
  834  * (for now, won't do anything until can select for soft error).
  835  *
  836  * Do not wake up user since there currently is no mechanism for
  837  * reporting soft errors (yet - a kqueue filter may be added).
  838  */
  839 static struct inpcb *
  840 tcp_notify(inp, error)
  841         struct inpcb *inp;
  842         int error;
  843 {
  844         struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
  845 
  846         INP_INFO_WLOCK_ASSERT(&tcbinfo);
  847         INP_LOCK_ASSERT(inp);
  848 
  849         /*
  850          * Ignore some errors if we are hooked up.
  851          * If connection hasn't completed, has retransmitted several times,
  852          * and receives a second error, give up now.  This is better
  853          * than waiting a long time to establish a connection that
  854          * can never complete.
  855          */
  856         if (tp->t_state == TCPS_ESTABLISHED &&
  857             (error == EHOSTUNREACH || error == ENETUNREACH ||
  858              error == EHOSTDOWN)) {
  859                 return (inp);
  860         } else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
  861             tp->t_softerror) {
  862                 tcp_drop(tp, error);
  863                 return (struct inpcb *)0;
  864         } else {
  865                 tp->t_softerror = error;
  866                 return (inp);
  867         }
  868 #if 0
  869         wakeup( &so->so_timeo);
  870         sorwakeup(so);
  871         sowwakeup(so);
  872 #endif
  873 }
  874 
  875 static int
  876 tcp_pcblist(SYSCTL_HANDLER_ARGS)
  877 {
  878         int error, i, n, s;
  879         struct inpcb *inp, **inp_list;
  880         inp_gen_t gencnt;
  881         struct xinpgen xig;
  882 
  883         /*
  884          * The process of preparing the TCB list is too time-consuming and
  885          * resource-intensive to repeat twice on every request.
  886          */
  887         if (req->oldptr == NULL) {
  888                 n = tcbinfo.ipi_count;
  889                 req->oldidx = 2 * (sizeof xig)
  890                         + (n + n/8) * sizeof(struct xtcpcb);
  891                 return (0);
  892         }
  893 
  894         if (req->newptr != NULL)
  895                 return (EPERM);
  896 
  897         /*
  898          * OK, now we're committed to doing something.
  899          */
  900         s = splnet();
  901         INP_INFO_RLOCK(&tcbinfo);
  902         gencnt = tcbinfo.ipi_gencnt;
  903         n = tcbinfo.ipi_count;
  904         INP_INFO_RUNLOCK(&tcbinfo);
  905         splx(s);
  906 
  907         error = sysctl_wire_old_buffer(req, 2 * (sizeof xig)
  908                 + n * sizeof(struct xtcpcb));
  909         if (error != 0)
  910                 return (error);
  911 
  912         xig.xig_len = sizeof xig;
  913         xig.xig_count = n;
  914         xig.xig_gen = gencnt;
  915         xig.xig_sogen = so_gencnt;
  916         error = SYSCTL_OUT(req, &xig, sizeof xig);
  917         if (error)
  918                 return (error);
  919 
  920         inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK);
  921         if (inp_list == NULL)
  922                 return (ENOMEM);
  923 
  924         s = splnet();
  925         INP_INFO_RLOCK(&tcbinfo);
  926         for (inp = LIST_FIRST(tcbinfo.listhead), i = 0; inp != NULL && i < n;
  927              inp = LIST_NEXT(inp, inp_list)) {
  928                 INP_LOCK(inp);
  929                 if (inp->inp_gencnt <= gencnt) {
  930                         /*
  931                          * XXX: This use of cr_cansee(), introduced with
  932                          * TCP state changes, is not quite right, but for
  933                          * now, better than nothing.
  934                          */
  935                         if (inp->inp_vflag & INP_TIMEWAIT)
  936                                 error = cr_cansee(req->td->td_ucred,
  937                                     intotw(inp)->tw_cred);
  938                         else
  939                                 error = cr_canseesocket(req->td->td_ucred,
  940                                     inp->inp_socket);
  941                         if (error == 0)
  942                                 inp_list[i++] = inp;
  943                 }
  944                 INP_UNLOCK(inp);
  945         }
  946         INP_INFO_RUNLOCK(&tcbinfo);
  947         splx(s);
  948         n = i;
  949 
  950         error = 0;
  951         for (i = 0; i < n; i++) {
  952                 inp = inp_list[i];
  953                 if (inp->inp_gencnt <= gencnt) {
  954                         struct xtcpcb xt;
  955                         caddr_t inp_ppcb;
  956 
  957                         bzero(&xt, sizeof(xt));
  958                         xt.xt_len = sizeof xt;
  959                         /* XXX should avoid extra copy */
  960                         bcopy(inp, &xt.xt_inp, sizeof *inp);
  961                         inp_ppcb = inp->inp_ppcb;
  962                         if (inp_ppcb == NULL)
  963                                 bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
  964                         else if (inp->inp_vflag & INP_TIMEWAIT) {
  965                                 bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
  966                                 xt.xt_tp.t_state = TCPS_TIME_WAIT;
  967                         } else
  968                                 bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp);
  969                         if (inp->inp_socket != NULL)
  970                                 sotoxsocket(inp->inp_socket, &xt.xt_socket);
  971                         else {
  972                                 bzero(&xt.xt_socket, sizeof xt.xt_socket);
  973                                 xt.xt_socket.xso_protocol = IPPROTO_TCP;
  974                         }
  975                         xt.xt_inp.inp_gencnt = inp->inp_gencnt;
  976                         error = SYSCTL_OUT(req, &xt, sizeof xt);
  977                 }
  978         }
  979         if (!error) {
  980                 /*
  981                  * Give the user an updated idea of our state.
  982                  * If the generation differs from what we told
  983                  * her before, she knows that something happened
  984                  * while we were processing this request, and it
  985                  * might be necessary to retry.
  986                  */
  987                 s = splnet();
  988                 INP_INFO_RLOCK(&tcbinfo);
  989                 xig.xig_gen = tcbinfo.ipi_gencnt;
  990                 xig.xig_sogen = so_gencnt;
  991                 xig.xig_count = tcbinfo.ipi_count;
  992                 INP_INFO_RUNLOCK(&tcbinfo);
  993                 splx(s);
  994                 error = SYSCTL_OUT(req, &xig, sizeof xig);
  995         }
  996         free(inp_list, M_TEMP);
  997         return (error);
  998 }
  999 
 1000 SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist, CTLFLAG_RD, 0, 0,
 1001             tcp_pcblist, "S,xtcpcb", "List of active TCP connections");
 1002 
 1003 static int
 1004 tcp_getcred(SYSCTL_HANDLER_ARGS)
 1005 {
 1006         struct xucred xuc;
 1007         struct sockaddr_in addrs[2];
 1008         struct inpcb *inp;
 1009         int error, s;
 1010 
 1011         error = suser_cred(req->td->td_ucred, SUSER_ALLOWJAIL);
 1012         if (error)
 1013                 return (error);
 1014         error = SYSCTL_IN(req, addrs, sizeof(addrs));
 1015         if (error)
 1016                 return (error);
 1017         s = splnet();
 1018         INP_INFO_RLOCK(&tcbinfo);
 1019         inp = in_pcblookup_hash(&tcbinfo, addrs[1].sin_addr, addrs[1].sin_port,
 1020             addrs[0].sin_addr, addrs[0].sin_port, 0, NULL);
 1021         if (inp == NULL) {
 1022                 error = ENOENT;
 1023                 goto outunlocked;
 1024         }
 1025         INP_LOCK(inp);
 1026         if (inp->inp_socket == NULL) {
 1027                 error = ENOENT;
 1028                 goto out;
 1029         }
 1030         error = cr_canseesocket(req->td->td_ucred, inp->inp_socket);
 1031         if (error)
 1032                 goto out;
 1033         cru2x(inp->inp_socket->so_cred, &xuc);
 1034 out:
 1035         INP_UNLOCK(inp);
 1036 outunlocked:
 1037         INP_INFO_RUNLOCK(&tcbinfo);
 1038         splx(s);
 1039         if (error == 0)
 1040                 error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
 1041         return (error);
 1042 }
 1043 
 1044 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred,
 1045     CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
 1046     tcp_getcred, "S,xucred", "Get the xucred of a TCP connection");
 1047 
 1048 #ifdef INET6
 1049 static int
 1050 tcp6_getcred(SYSCTL_HANDLER_ARGS)
 1051 {
 1052         struct xucred xuc;
 1053         struct sockaddr_in6 addrs[2];
 1054         struct in6_addr a6[2];
 1055         struct inpcb *inp;
 1056         int error, s, mapped = 0;
 1057 
 1058         error = suser_cred(req->td->td_ucred, SUSER_ALLOWJAIL);
 1059         if (error)
 1060                 return (error);
 1061         error = SYSCTL_IN(req, addrs, sizeof(addrs));
 1062         if (error)
 1063                 return (error);
 1064         if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) {
 1065                 if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr))
 1066                         mapped = 1;
 1067                 else
 1068                         return (EINVAL);
 1069         } else {
 1070                 error = in6_embedscope(&a6[0], &addrs[0], NULL, NULL);
 1071                 if (error)
 1072                         return (EINVAL);
 1073                 error = in6_embedscope(&a6[1], &addrs[1], NULL, NULL);
 1074                 if (error)
 1075                         return (EINVAL);
 1076         }
 1077         s = splnet();
 1078         INP_INFO_RLOCK(&tcbinfo);
 1079         if (mapped == 1)
 1080                 inp = in_pcblookup_hash(&tcbinfo,
 1081                         *(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12],
 1082                         addrs[1].sin6_port,
 1083                         *(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12],
 1084                         addrs[0].sin6_port,
 1085                         0, NULL);
 1086         else
 1087                 inp = in6_pcblookup_hash(&tcbinfo, &a6[1], addrs[1].sin6_port,
 1088                         &a6[0], addrs[0].sin6_port, 0, NULL);
 1089         if (inp == NULL) {
 1090                 error = ENOENT;
 1091                 goto outunlocked;
 1092         }
 1093         INP_LOCK(inp);
 1094         if (inp->inp_socket == NULL) {
 1095                 error = ENOENT;
 1096                 goto out;
 1097         }
 1098         error = cr_canseesocket(req->td->td_ucred, inp->inp_socket);
 1099         if (error)
 1100                 goto out;
 1101         cru2x(inp->inp_socket->so_cred, &xuc);
 1102 out:
 1103         INP_UNLOCK(inp);
 1104 outunlocked:
 1105         INP_INFO_RUNLOCK(&tcbinfo);
 1106         splx(s);
 1107         if (error == 0)
 1108                 error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
 1109         return (error);
 1110 }
 1111 
 1112 SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred,
 1113     CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
 1114     tcp6_getcred, "S,xucred", "Get the xucred of a TCP6 connection");
 1115 #endif
 1116 
 1117 
 1118 void
 1119 tcp_ctlinput(cmd, sa, vip)
 1120         int cmd;
 1121         struct sockaddr *sa;
 1122         void *vip;
 1123 {
 1124         struct ip *ip = vip;
 1125         struct tcphdr *th;
 1126         struct in_addr faddr;
 1127         struct inpcb *inp;
 1128         struct tcpcb *tp;
 1129         struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
 1130         struct icmp *icp;
 1131         struct in_conninfo inc;
 1132         tcp_seq icmp_tcp_seq;
 1133         int mtu, s;
 1134 
 1135         faddr = ((struct sockaddr_in *)sa)->sin_addr;
 1136         if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
 1137                 return;
 1138 
 1139         if (cmd == PRC_MSGSIZE)
 1140                 notify = tcp_mtudisc;
 1141         else if (icmp_may_rst && (cmd == PRC_UNREACH_ADMIN_PROHIB ||
 1142                 cmd == PRC_UNREACH_PORT || cmd == PRC_TIMXCEED_INTRANS) && ip)
 1143                 notify = tcp_drop_syn_sent;
 1144         /*
 1145          * Redirects don't need to be handled up here.
 1146          */
 1147         else if (PRC_IS_REDIRECT(cmd))
 1148                 return;
 1149         /*
 1150          * Source quench is depreciated.
 1151          */
 1152         else if (cmd == PRC_QUENCH)
 1153                 return;
 1154         /*
 1155          * Hostdead is ugly because it goes linearly through all PCBs.
 1156          * XXX: We never get this from ICMP, otherwise it makes an
 1157          * excellent DoS attack on machines with many connections.
 1158          */
 1159         else if (cmd == PRC_HOSTDEAD)
 1160                 ip = NULL;
 1161         else if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0)
 1162                 return;
 1163         if (ip != NULL) {
 1164                 s = splnet();
 1165                 icp = (struct icmp *)((caddr_t)ip
 1166                                       - offsetof(struct icmp, icmp_ip));
 1167                 th = (struct tcphdr *)((caddr_t)ip
 1168                                        + (ip->ip_hl << 2));
 1169                 INP_INFO_WLOCK(&tcbinfo);
 1170                 inp = in_pcblookup_hash(&tcbinfo, faddr, th->th_dport,
 1171                     ip->ip_src, th->th_sport, 0, NULL);
 1172                 if (inp != NULL)  {
 1173                         INP_LOCK(inp);
 1174                         if (inp->inp_socket != NULL) {
 1175                                 icmp_tcp_seq = htonl(th->th_seq);
 1176                                 tp = intotcpcb(inp);
 1177                                 if (SEQ_GEQ(icmp_tcp_seq, tp->snd_una) &&
 1178                                     SEQ_LT(icmp_tcp_seq, tp->snd_max)) {
 1179                                         if (cmd == PRC_MSGSIZE) {
 1180                                             /*
 1181                                              * MTU discovery:
 1182                                              * If we got a needfrag set the MTU
 1183                                              * in the route to the suggested new
 1184                                              * value (if given) and then notify.
 1185                                              */
 1186                                             bzero(&inc, sizeof(inc));
 1187                                             inc.inc_flags = 0;  /* IPv4 */
 1188                                             inc.inc_faddr = faddr;
 1189 
 1190                                             mtu = ntohs(icp->icmp_nextmtu);
 1191                                             /*
 1192                                              * If no alternative MTU was
 1193                                              * proposed, try the next smaller
 1194                                              * one.  ip->ip_len has already
 1195                                              * been swapped in icmp_input().
 1196                                              */
 1197                                             if (!mtu)
 1198                                                 mtu = ip_next_mtu(ip->ip_len,
 1199                                                  1);
 1200                                             if (mtu < max(296, (tcp_minmss)
 1201                                                  + sizeof(struct tcpiphdr)))
 1202                                                 mtu = 0;
 1203                                             if (!mtu)
 1204                                                 mtu = tcp_mssdflt
 1205                                                  + sizeof(struct tcpiphdr);
 1206                                             /*
 1207                                              * Only cache the the MTU if it
 1208                                              * is smaller than the interface
 1209                                              * or route MTU.  tcp_mtudisc()
 1210                                              * will do right thing by itself.
 1211                                              */
 1212                                             if (mtu <= tcp_maxmtu(&inc))
 1213                                                 tcp_hc_updatemtu(&inc, mtu);
 1214                                         }
 1215 
 1216                                         inp = (*notify)(inp, inetctlerrmap[cmd]);
 1217                                 }
 1218                         }
 1219                         if (inp != NULL)
 1220                                 INP_UNLOCK(inp);
 1221                 } else {
 1222                         inc.inc_fport = th->th_dport;
 1223                         inc.inc_lport = th->th_sport;
 1224                         inc.inc_faddr = faddr;
 1225                         inc.inc_laddr = ip->ip_src;
 1226 #ifdef INET6
 1227                         inc.inc_isipv6 = 0;
 1228 #endif
 1229                         syncache_unreach(&inc, th);
 1230                 }
 1231                 INP_INFO_WUNLOCK(&tcbinfo);
 1232                 splx(s);
 1233         } else
 1234                 in_pcbnotifyall(&tcbinfo, faddr, inetctlerrmap[cmd], notify);
 1235 }
 1236 
 1237 #ifdef INET6
 1238 void
 1239 tcp6_ctlinput(cmd, sa, d)
 1240         int cmd;
 1241         struct sockaddr *sa;
 1242         void *d;
 1243 {
 1244         struct tcphdr th;
 1245         struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
 1246         struct ip6_hdr *ip6;
 1247         struct mbuf *m;
 1248         struct ip6ctlparam *ip6cp = NULL;
 1249         const struct sockaddr_in6 *sa6_src = NULL;
 1250         int off;
 1251         struct tcp_portonly {
 1252                 u_int16_t th_sport;
 1253                 u_int16_t th_dport;
 1254         } *thp;
 1255 
 1256         if (sa->sa_family != AF_INET6 ||
 1257             sa->sa_len != sizeof(struct sockaddr_in6))
 1258                 return;
 1259 
 1260         if (cmd == PRC_MSGSIZE)
 1261                 notify = tcp_mtudisc;
 1262         else if (!PRC_IS_REDIRECT(cmd) &&
 1263                  ((unsigned)cmd >= PRC_NCMDS || inet6ctlerrmap[cmd] == 0))
 1264                 return;
 1265         /* Source quench is depreciated. */
 1266         else if (cmd == PRC_QUENCH)
 1267                 return;
 1268 
 1269         /* if the parameter is from icmp6, decode it. */
 1270         if (d != NULL) {
 1271                 ip6cp = (struct ip6ctlparam *)d;
 1272                 m = ip6cp->ip6c_m;
 1273                 ip6 = ip6cp->ip6c_ip6;
 1274                 off = ip6cp->ip6c_off;
 1275                 sa6_src = ip6cp->ip6c_src;
 1276         } else {
 1277                 m = NULL;
 1278                 ip6 = NULL;
 1279                 off = 0;        /* fool gcc */
 1280                 sa6_src = &sa6_any;
 1281         }
 1282 
 1283         if (ip6 != NULL) {
 1284                 struct in_conninfo inc;
 1285                 /*
 1286                  * XXX: We assume that when IPV6 is non NULL,
 1287                  * M and OFF are valid.
 1288                  */
 1289 
 1290                 /* check if we can safely examine src and dst ports */
 1291                 if (m->m_pkthdr.len < off + sizeof(*thp))
 1292                         return;
 1293 
 1294                 bzero(&th, sizeof(th));
 1295                 m_copydata(m, off, sizeof(*thp), (caddr_t)&th);
 1296 
 1297                 in6_pcbnotify(&tcbinfo, sa, th.th_dport,
 1298                     (struct sockaddr *)ip6cp->ip6c_src,
 1299                     th.th_sport, cmd, NULL, notify);
 1300 
 1301                 inc.inc_fport = th.th_dport;
 1302                 inc.inc_lport = th.th_sport;
 1303                 inc.inc6_faddr = ((struct sockaddr_in6 *)sa)->sin6_addr;
 1304                 inc.inc6_laddr = ip6cp->ip6c_src->sin6_addr;
 1305                 inc.inc_isipv6 = 1;
 1306                 INP_INFO_WLOCK(&tcbinfo);
 1307                 syncache_unreach(&inc, &th);
 1308                 INP_INFO_WUNLOCK(&tcbinfo);
 1309         } else
 1310                 in6_pcbnotify(&tcbinfo, sa, 0, (const struct sockaddr *)sa6_src,
 1311                               0, cmd, NULL, notify);
 1312 }
 1313 #endif /* INET6 */
 1314 
 1315 
 1316 /*
 1317  * Following is where TCP initial sequence number generation occurs.
 1318  *
 1319  * There are two places where we must use initial sequence numbers:
 1320  * 1.  In SYN-ACK packets.
 1321  * 2.  In SYN packets.
 1322  *
 1323  * All ISNs for SYN-ACK packets are generated by the syncache.  See
 1324  * tcp_syncache.c for details.
 1325  *
 1326  * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
 1327  * depends on this property.  In addition, these ISNs should be
 1328  * unguessable so as to prevent connection hijacking.  To satisfy
 1329  * the requirements of this situation, the algorithm outlined in
 1330  * RFC 1948 is used, with only small modifications.
 1331  *
 1332  * Implementation details:
 1333  *
 1334  * Time is based off the system timer, and is corrected so that it
 1335  * increases by one megabyte per second.  This allows for proper
 1336  * recycling on high speed LANs while still leaving over an hour
 1337  * before rollover.
 1338  *
 1339  * As reading the *exact* system time is too expensive to be done
 1340  * whenever setting up a TCP connection, we increment the time
 1341  * offset in two ways.  First, a small random positive increment
 1342  * is added to isn_offset for each connection that is set up.
 1343  * Second, the function tcp_isn_tick fires once per clock tick
 1344  * and increments isn_offset as necessary so that sequence numbers
 1345  * are incremented at approximately ISN_BYTES_PER_SECOND.  The
 1346  * random positive increments serve only to ensure that the same
 1347  * exact sequence number is never sent out twice (as could otherwise
 1348  * happen when a port is recycled in less than the system tick
 1349  * interval.)
 1350  *
 1351  * net.inet.tcp.isn_reseed_interval controls the number of seconds
 1352  * between seeding of isn_secret.  This is normally set to zero,
 1353  * as reseeding should not be necessary.
 1354  *
 1355  * Locking of the global variables isn_secret, isn_last_reseed, isn_offset,
 1356  * isn_offset_old, and isn_ctx is performed using the TCP pcbinfo lock.  In
 1357  * general, this means holding an exclusive (write) lock.
 1358  */
 1359 
 1360 #define ISN_BYTES_PER_SECOND 1048576
 1361 #define ISN_STATIC_INCREMENT 4096
 1362 #define ISN_RANDOM_INCREMENT (4096 - 1)
 1363 
 1364 static u_char isn_secret[32];
 1365 static int isn_last_reseed;
 1366 static u_int32_t isn_offset, isn_offset_old;
 1367 static MD5_CTX isn_ctx;
 1368 
 1369 tcp_seq
 1370 tcp_new_isn(tp)
 1371         struct tcpcb *tp;
 1372 {
 1373         u_int32_t md5_buffer[4];
 1374         tcp_seq new_isn;
 1375 
 1376         INP_INFO_WLOCK_ASSERT(&tcbinfo);
 1377         INP_LOCK_ASSERT(tp->t_inpcb);
 1378 
 1379         /* Seed if this is the first use, reseed if requested. */
 1380         if ((isn_last_reseed == 0) || ((tcp_isn_reseed_interval > 0) &&
 1381              (((u_int)isn_last_reseed + (u_int)tcp_isn_reseed_interval*hz)
 1382                 < (u_int)ticks))) {
 1383                 read_random(&isn_secret, sizeof(isn_secret));
 1384                 isn_last_reseed = ticks;
 1385         }
 1386 
 1387         /* Compute the md5 hash and return the ISN. */
 1388         MD5Init(&isn_ctx);
 1389         MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_fport, sizeof(u_short));
 1390         MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_lport, sizeof(u_short));
 1391 #ifdef INET6
 1392         if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0) {
 1393                 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr,
 1394                           sizeof(struct in6_addr));
 1395                 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr,
 1396                           sizeof(struct in6_addr));
 1397         } else
 1398 #endif
 1399         {
 1400                 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr,
 1401                           sizeof(struct in_addr));
 1402                 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr,
 1403                           sizeof(struct in_addr));
 1404         }
 1405         MD5Update(&isn_ctx, (u_char *) &isn_secret, sizeof(isn_secret));
 1406         MD5Final((u_char *) &md5_buffer, &isn_ctx);
 1407         new_isn = (tcp_seq) md5_buffer[0];
 1408         isn_offset += ISN_STATIC_INCREMENT +
 1409                 (arc4random() & ISN_RANDOM_INCREMENT);
 1410         new_isn += isn_offset;
 1411         return (new_isn);
 1412 }
 1413 
 1414 /*
 1415  * Increment the offset to the next ISN_BYTES_PER_SECOND / hz boundary
 1416  * to keep time flowing at a relatively constant rate.  If the random
 1417  * increments have already pushed us past the projected offset, do nothing.
 1418  */
 1419 static void
 1420 tcp_isn_tick(xtp)
 1421         void *xtp;
 1422 {
 1423         u_int32_t projected_offset;
 1424 
 1425         INP_INFO_WLOCK(&tcbinfo);
 1426         projected_offset = isn_offset_old + ISN_BYTES_PER_SECOND / 100;
 1427 
 1428         if (projected_offset > isn_offset)
 1429                 isn_offset = projected_offset;
 1430 
 1431         isn_offset_old = isn_offset;
 1432         callout_reset(&isn_callout, hz/100, tcp_isn_tick, NULL);
 1433         INP_INFO_WUNLOCK(&tcbinfo);
 1434 }
 1435 
 1436 /*
 1437  * When a specific ICMP unreachable message is received and the
 1438  * connection state is SYN-SENT, drop the connection.  This behavior
 1439  * is controlled by the icmp_may_rst sysctl.
 1440  */
 1441 struct inpcb *
 1442 tcp_drop_syn_sent(inp, errno)
 1443         struct inpcb *inp;
 1444         int errno;
 1445 {
 1446         struct tcpcb *tp = intotcpcb(inp);
 1447 
 1448         INP_INFO_WLOCK_ASSERT(&tcbinfo);
 1449         INP_LOCK_ASSERT(inp);
 1450 
 1451         if (tp != NULL && tp->t_state == TCPS_SYN_SENT) {
 1452                 tcp_drop(tp, errno);
 1453                 return (NULL);
 1454         }
 1455         return (inp);
 1456 }
 1457 
 1458 /*
 1459  * When `need fragmentation' ICMP is received, update our idea of the MSS
 1460  * based on the new value in the route.  Also nudge TCP to send something,
 1461  * since we know the packet we just sent was dropped.
 1462  * This duplicates some code in the tcp_mss() function in tcp_input.c.
 1463  */
 1464 struct inpcb *
 1465 tcp_mtudisc(inp, errno)
 1466         struct inpcb *inp;
 1467         int errno;
 1468 {
 1469         struct tcpcb *tp = intotcpcb(inp);
 1470         struct rmxp_tao tao;
 1471         struct socket *so = inp->inp_socket;
 1472         u_int maxmtu;
 1473         u_int romtu;
 1474         int mss;
 1475 #ifdef INET6
 1476         int isipv6;
 1477 #endif /* INET6 */
 1478         bzero(&tao, sizeof(tao));
 1479 
 1480         INP_LOCK_ASSERT(inp);
 1481         if (tp != NULL) {
 1482 #ifdef INET6
 1483                 isipv6 = (tp->t_inpcb->inp_vflag & INP_IPV6) != 0;
 1484 #endif
 1485                 maxmtu = tcp_hc_getmtu(&inp->inp_inc); /* IPv4 and IPv6 */
 1486                 romtu =
 1487 #ifdef INET6
 1488                     isipv6 ? tcp_maxmtu6(&inp->inp_inc) :
 1489 #endif /* INET6 */
 1490                     tcp_maxmtu(&inp->inp_inc);
 1491                 if (!maxmtu)
 1492                         maxmtu = romtu;
 1493                 else
 1494                         maxmtu = min(maxmtu, romtu);
 1495                 if (!maxmtu) {
 1496                         tp->t_maxopd = tp->t_maxseg =
 1497 #ifdef INET6
 1498                                 isipv6 ? tcp_v6mssdflt :
 1499 #endif /* INET6 */
 1500                                 tcp_mssdflt;
 1501                         return (inp);
 1502                 }
 1503                 mss = maxmtu -
 1504 #ifdef INET6
 1505                         (isipv6 ?
 1506                          sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
 1507 #endif /* INET6 */
 1508                          sizeof(struct tcpiphdr)
 1509 #ifdef INET6
 1510                          )
 1511 #endif /* INET6 */
 1512                         ;
 1513 
 1514                 if (tcp_do_rfc1644) {
 1515                         tcp_hc_gettao(&inp->inp_inc, &tao);
 1516                         if (tao.tao_mssopt)
 1517                                 mss = min(mss, tao.tao_mssopt);
 1518                 }
 1519                 /*
 1520                  * XXX - The above conditional probably violates the TCP
 1521                  * spec.  The problem is that, since we don't know the
 1522                  * other end's MSS, we are supposed to use a conservative
 1523                  * default.  But, if we do that, then MTU discovery will
 1524                  * never actually take place, because the conservative
 1525                  * default is much less than the MTUs typically seen
 1526                  * on the Internet today.  For the moment, we'll sweep
 1527                  * this under the carpet.
 1528                  *
 1529                  * The conservative default might not actually be a problem
 1530                  * if the only case this occurs is when sending an initial
 1531                  * SYN with options and data to a host we've never talked
 1532                  * to before.  Then, they will reply with an MSS value which
 1533                  * will get recorded and the new parameters should get
 1534                  * recomputed.  For Further Study.
 1535                  */
 1536                 if (tp->t_maxopd <= mss)
 1537                         return (inp);
 1538                 tp->t_maxopd = mss;
 1539 
 1540                 if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
 1541                     (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP)
 1542                         mss -= TCPOLEN_TSTAMP_APPA;
 1543                 if ((tp->t_flags & (TF_REQ_CC|TF_NOOPT)) == TF_REQ_CC &&
 1544                     (tp->t_flags & TF_RCVD_CC) == TF_RCVD_CC)
 1545                         mss -= TCPOLEN_CC_APPA;
 1546 #if     (MCLBYTES & (MCLBYTES - 1)) == 0
 1547                 if (mss > MCLBYTES)
 1548                         mss &= ~(MCLBYTES-1);
 1549 #else
 1550                 if (mss > MCLBYTES)
 1551                         mss = mss / MCLBYTES * MCLBYTES;
 1552 #endif
 1553                 if (so->so_snd.sb_hiwat < mss)
 1554                         mss = so->so_snd.sb_hiwat;
 1555 
 1556                 tp->t_maxseg = mss;
 1557 
 1558                 tcpstat.tcps_mturesent++;
 1559                 tp->t_rtttime = 0;
 1560                 tp->snd_nxt = tp->snd_una;
 1561                 tcp_output(tp);
 1562         }
 1563         return (inp);
 1564 }
 1565 
 1566 /*
 1567  * Look-up the routing entry to the peer of this inpcb.  If no route
 1568  * is found and it cannot be allocated, then return NULL.  This routine
 1569  * is called by TCP routines that access the rmx structure and by tcp_mss
 1570  * to get the interface MTU.
 1571  */
 1572 u_long
 1573 tcp_maxmtu(inc)
 1574         struct in_conninfo *inc;
 1575 {
 1576         struct route sro;
 1577         struct sockaddr_in *dst;
 1578         struct ifnet *ifp;
 1579         u_long maxmtu = 0;
 1580 
 1581         KASSERT(inc != NULL, ("tcp_maxmtu with NULL in_conninfo pointer"));
 1582 
 1583         bzero(&sro, sizeof(sro));
 1584         if (inc->inc_faddr.s_addr != INADDR_ANY) {
 1585                 dst = (struct sockaddr_in *)&sro.ro_dst;
 1586                 dst->sin_family = AF_INET;
 1587                 dst->sin_len = sizeof(*dst);
 1588                 dst->sin_addr = inc->inc_faddr;
 1589                 rtalloc_ign(&sro, RTF_CLONING);
 1590         }
 1591         if (sro.ro_rt != NULL) {
 1592                 ifp = sro.ro_rt->rt_ifp;
 1593                 if (sro.ro_rt->rt_rmx.rmx_mtu == 0)
 1594                         maxmtu = ifp->if_mtu;
 1595                 else
 1596                         maxmtu = min(sro.ro_rt->rt_rmx.rmx_mtu, ifp->if_mtu);
 1597                 RTFREE(sro.ro_rt);
 1598         }
 1599         return (maxmtu);
 1600 }
 1601 
 1602 #ifdef INET6
 1603 u_long
 1604 tcp_maxmtu6(inc)
 1605         struct in_conninfo *inc;
 1606 {
 1607         struct route_in6 sro6;
 1608         struct ifnet *ifp;
 1609         u_long maxmtu = 0;
 1610 
 1611         KASSERT(inc != NULL, ("tcp_maxmtu6 with NULL in_conninfo pointer"));
 1612 
 1613         bzero(&sro6, sizeof(sro6));
 1614         if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) {
 1615                 sro6.ro_dst.sin6_family = AF_INET6;
 1616                 sro6.ro_dst.sin6_len = sizeof(struct sockaddr_in6);
 1617                 sro6.ro_dst.sin6_addr = inc->inc6_faddr;
 1618                 rtalloc_ign((struct route *)&sro6, RTF_CLONING);
 1619         }
 1620         if (sro6.ro_rt != NULL) {
 1621                 ifp = sro6.ro_rt->rt_ifp;
 1622                 if (sro6.ro_rt->rt_rmx.rmx_mtu == 0)
 1623                         maxmtu = IN6_LINKMTU(sro6.ro_rt->rt_ifp);
 1624                 else
 1625                         maxmtu = min(sro6.ro_rt->rt_rmx.rmx_mtu,
 1626                                      IN6_LINKMTU(sro6.ro_rt->rt_ifp));
 1627                 RTFREE(sro6.ro_rt);
 1628         }
 1629 
 1630         return (maxmtu);
 1631 }
 1632 #endif /* INET6 */
 1633 
 1634 #ifdef IPSEC
 1635 /* compute ESP/AH header size for TCP, including outer IP header. */
 1636 size_t
 1637 ipsec_hdrsiz_tcp(tp)
 1638         struct tcpcb *tp;
 1639 {
 1640         struct inpcb *inp;
 1641         struct mbuf *m;
 1642         size_t hdrsiz;
 1643         struct ip *ip;
 1644 #ifdef INET6
 1645         struct ip6_hdr *ip6;
 1646 #endif
 1647         struct tcphdr *th;
 1648 
 1649         if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL))
 1650                 return (0);
 1651         MGETHDR(m, M_DONTWAIT, MT_DATA);
 1652         if (!m)
 1653                 return (0);
 1654 
 1655 #ifdef INET6
 1656         if ((inp->inp_vflag & INP_IPV6) != 0) {
 1657                 ip6 = mtod(m, struct ip6_hdr *);
 1658                 th = (struct tcphdr *)(ip6 + 1);
 1659                 m->m_pkthdr.len = m->m_len =
 1660                         sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
 1661                 tcpip_fillheaders(inp, ip6, th);
 1662                 hdrsiz = ipsec6_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
 1663         } else
 1664 #endif /* INET6 */
 1665         {
 1666                 ip = mtod(m, struct ip *);
 1667                 th = (struct tcphdr *)(ip + 1);
 1668                 m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr);
 1669                 tcpip_fillheaders(inp, ip, th);
 1670                 hdrsiz = ipsec4_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
 1671         }
 1672 
 1673         m_free(m);
 1674         return (hdrsiz);
 1675 }
 1676 #endif /*IPSEC*/
 1677 
 1678 /*
 1679  * Move a TCP connection into TIME_WAIT state.
 1680  *    tcbinfo is locked.
 1681  *    inp is locked, and is unlocked before returning.
 1682  */
 1683 void
 1684 tcp_twstart(tp)
 1685         struct tcpcb *tp;
 1686 {
 1687         struct tcptw *tw;
 1688         struct inpcb *inp;
 1689         int tw_time, acknow;
 1690         struct socket *so;
 1691 
 1692         INP_INFO_WLOCK_ASSERT(&tcbinfo);        /* tcp_timer_2msl_reset(). */
 1693         INP_LOCK_ASSERT(tp->t_inpcb);
 1694 
 1695         tw = uma_zalloc(tcptw_zone, M_NOWAIT);
 1696         if (tw == NULL) {
 1697                 tw = tcp_timer_2msl_tw(1);
 1698                 if (tw == NULL) {
 1699                         tcp_close(tp);
 1700                         return;
 1701                 }
 1702         }
 1703         inp = tp->t_inpcb;
 1704         tw->tw_inpcb = inp;
 1705 
 1706         /*
 1707          * Recover last window size sent.
 1708          */
 1709         tw->last_win = (tp->rcv_adv - tp->rcv_nxt) >> tp->rcv_scale;
 1710 
 1711         /*
 1712          * Set t_recent if timestamps are used on the connection.
 1713          */
 1714         if ((tp->t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP|TF_NOOPT)) ==
 1715             (TF_REQ_TSTMP|TF_RCVD_TSTMP))
 1716                 tw->t_recent = tp->ts_recent;
 1717         else
 1718                 tw->t_recent = 0;
 1719 
 1720         tw->snd_nxt = tp->snd_nxt;
 1721         tw->rcv_nxt = tp->rcv_nxt;
 1722         tw->iss     = tp->iss;
 1723         tw->irs     = tp->irs;
 1724         tw->cc_recv = tp->cc_recv;
 1725         tw->cc_send = tp->cc_send;
 1726         tw->t_starttime = tp->t_starttime;
 1727         tw->tw_time = 0;
 1728 
 1729 /* XXX
 1730  * If this code will
 1731  * be used for fin-wait-2 state also, then we may need
 1732  * a ts_recent from the last segment.
 1733  */
 1734         /* Shorten TIME_WAIT [RFC-1644, p.28] */
 1735         if (tp->cc_recv != 0 && (ticks - tp->t_starttime) < tcp_msl) {
 1736                 tw_time = tp->t_rxtcur * TCPTV_TWTRUNC;
 1737                 /* For T/TCP client, force ACK now. */
 1738                 acknow = 1;
 1739         } else {
 1740                 tw_time = 2 * tcp_msl;
 1741                 acknow = tp->t_flags & TF_ACKNOW;
 1742         }
 1743         tcp_discardcb(tp);
 1744         so = inp->inp_socket;
 1745         ACCEPT_LOCK();
 1746         SOCK_LOCK(so);
 1747         so->so_pcb = NULL;
 1748         tw->tw_cred = crhold(so->so_cred);
 1749         tw->tw_so_options = so->so_options;
 1750         sotryfree(so);
 1751         inp->inp_socket = NULL;
 1752         if (acknow)
 1753                 tcp_twrespond(tw, TH_ACK);
 1754         inp->inp_ppcb = (caddr_t)tw;
 1755         inp->inp_vflag |= INP_TIMEWAIT;
 1756         tcp_timer_2msl_reset(tw, tw_time);
 1757         INP_UNLOCK(inp);
 1758 }
 1759 
 1760 /*
 1761  * The appromixate rate of ISN increase of Microsoft TCP stacks;
 1762  * the actual rate is slightly higher due to the addition of
 1763  * random positive increments.
 1764  *
 1765  * Most other new OSes use semi-randomized ISN values, so we
 1766  * do not need to worry about them.
 1767  */
 1768 #define MS_ISN_BYTES_PER_SECOND         250000
 1769 
 1770 /*
 1771  * Determine if the ISN we will generate has advanced beyond the last
 1772  * sequence number used by the previous connection.  If so, indicate
 1773  * that it is safe to recycle this tw socket by returning 1.
 1774  *
 1775  * XXXRW: This function should assert the inpcb lock as it does multiple
 1776  * non-atomic reads from the tcptw, but is currently called without it from
 1777  * in_pcb.c:in_pcblookup_local().
 1778  */
 1779 int
 1780 tcp_twrecycleable(struct tcptw *tw)
 1781 {
 1782         tcp_seq new_iss = tw->iss;
 1783         tcp_seq new_irs = tw->irs;
 1784 
 1785         new_iss += (ticks - tw->t_starttime) * (ISN_BYTES_PER_SECOND / hz);
 1786         new_irs += (ticks - tw->t_starttime) * (MS_ISN_BYTES_PER_SECOND / hz);
 1787 
 1788         if (SEQ_GT(new_iss, tw->snd_nxt) && SEQ_GT(new_irs, tw->rcv_nxt))
 1789                 return (1);
 1790         else
 1791                 return (0);
 1792 }
 1793 
 1794 struct tcptw *
 1795 tcp_twclose(struct tcptw *tw, int reuse)
 1796 {
 1797         struct inpcb *inp;
 1798 
 1799         inp = tw->tw_inpcb;
 1800         INP_INFO_WLOCK_ASSERT(&tcbinfo);        /* tcp_timer_2msl_stop(). */
 1801         INP_LOCK_ASSERT(inp);
 1802 
 1803         tw->tw_inpcb = NULL;
 1804         tcp_timer_2msl_stop(tw);
 1805         inp->inp_ppcb = NULL;
 1806 #ifdef INET6
 1807         if (inp->inp_vflag & INP_IPV6PROTO)
 1808                 in6_pcbdetach(inp);
 1809         else
 1810 #endif
 1811                 in_pcbdetach(inp);
 1812         tcpstat.tcps_closed++;
 1813         crfree(tw->tw_cred);
 1814         tw->tw_cred = NULL;
 1815         if (reuse)
 1816                 return (tw);
 1817         uma_zfree(tcptw_zone, tw);
 1818         return (NULL);
 1819 }
 1820 
 1821 int
 1822 tcp_twrespond(struct tcptw *tw, int flags)
 1823 {
 1824         struct inpcb *inp = tw->tw_inpcb;
 1825         struct tcphdr *th;
 1826         struct mbuf *m;
 1827         struct ip *ip = NULL;
 1828         u_int8_t *optp;
 1829         u_int hdrlen, optlen;
 1830         int error;
 1831 #ifdef INET6
 1832         struct ip6_hdr *ip6 = NULL;
 1833         int isipv6 = inp->inp_inc.inc_isipv6;
 1834 #endif
 1835 
 1836         INP_LOCK_ASSERT(inp);
 1837 
 1838         m = m_gethdr(M_DONTWAIT, MT_HEADER);
 1839         if (m == NULL)
 1840                 return (ENOBUFS);
 1841         m->m_data += max_linkhdr;
 1842 
 1843 #ifdef MAC
 1844         mac_create_mbuf_from_inpcb(inp, m);
 1845 #endif
 1846 
 1847 #ifdef INET6
 1848         if (isipv6) {
 1849                 hdrlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
 1850                 ip6 = mtod(m, struct ip6_hdr *);
 1851                 th = (struct tcphdr *)(ip6 + 1);
 1852                 tcpip_fillheaders(inp, ip6, th);
 1853         } else
 1854 #endif
 1855         {
 1856                 hdrlen = sizeof(struct tcpiphdr);
 1857                 ip = mtod(m, struct ip *);
 1858                 th = (struct tcphdr *)(ip + 1);
 1859                 tcpip_fillheaders(inp, ip, th);
 1860         }
 1861         optp = (u_int8_t *)(th + 1);
 1862 
 1863         /*
 1864          * Send a timestamp and echo-reply if both our side and our peer
 1865          * have sent timestamps in our SYN's and this is not a RST.
 1866          */
 1867         if (tw->t_recent && flags == TH_ACK) {
 1868                 u_int32_t *lp = (u_int32_t *)optp;
 1869 
 1870                 /* Form timestamp option as shown in appendix A of RFC 1323. */
 1871                 *lp++ = htonl(TCPOPT_TSTAMP_HDR);
 1872                 *lp++ = htonl(ticks);
 1873                 *lp   = htonl(tw->t_recent);
 1874                 optp += TCPOLEN_TSTAMP_APPA;
 1875         }
 1876 
 1877         /*
 1878          * Send `CC-family' options if needed, and it's not a RST.
 1879          */
 1880         if (tw->cc_recv != 0 && flags == TH_ACK) {
 1881                 u_int32_t *lp = (u_int32_t *)optp;
 1882 
 1883                 *lp++ = htonl(TCPOPT_CC_HDR(TCPOPT_CC));
 1884                 *lp   = htonl(tw->cc_send);
 1885                 optp += TCPOLEN_CC_APPA;
 1886         }
 1887         optlen = optp - (u_int8_t *)(th + 1);
 1888 
 1889         m->m_len = hdrlen + optlen;
 1890         m->m_pkthdr.len = m->m_len;
 1891 
 1892         KASSERT(max_linkhdr + m->m_len <= MHLEN, ("tcptw: mbuf too small"));
 1893 
 1894         th->th_seq = htonl(tw->snd_nxt);
 1895         th->th_ack = htonl(tw->rcv_nxt);
 1896         th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
 1897         th->th_flags = flags;
 1898         th->th_win = htons(tw->last_win);
 1899 
 1900 #ifdef INET6
 1901         if (isipv6) {
 1902                 th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(struct ip6_hdr),
 1903                     sizeof(struct tcphdr) + optlen);
 1904                 ip6->ip6_hlim = in6_selecthlim(inp, NULL);
 1905                 error = ip6_output(m, inp->in6p_outputopts, NULL,
 1906                     (tw->tw_so_options & SO_DONTROUTE), NULL, NULL, inp);
 1907         } else
 1908 #endif
 1909         {
 1910                 th->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
 1911                     htons(sizeof(struct tcphdr) + optlen + IPPROTO_TCP));
 1912                 m->m_pkthdr.csum_flags = CSUM_TCP;
 1913                 m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
 1914                 ip->ip_len = m->m_pkthdr.len;
 1915                 if (path_mtu_discovery)
 1916                         ip->ip_off |= IP_DF;
 1917                 error = ip_output(m, inp->inp_options, NULL,
 1918                     (tw->tw_so_options & SO_DONTROUTE), NULL, inp);
 1919         }
 1920         if (flags & TH_ACK)
 1921                 tcpstat.tcps_sndacks++;
 1922         else
 1923                 tcpstat.tcps_sndctrl++;
 1924         tcpstat.tcps_sndtotal++;
 1925         return (error);
 1926 }
 1927 
 1928 /*
 1929  * TCP BANDWIDTH DELAY PRODUCT WINDOW LIMITING
 1930  *
 1931  * This code attempts to calculate the bandwidth-delay product as a
 1932  * means of determining the optimal window size to maximize bandwidth,
 1933  * minimize RTT, and avoid the over-allocation of buffers on interfaces and
 1934  * routers.  This code also does a fairly good job keeping RTTs in check
 1935  * across slow links like modems.  We implement an algorithm which is very
 1936  * similar (but not meant to be) TCP/Vegas.  The code operates on the
 1937  * transmitter side of a TCP connection and so only effects the transmit
 1938  * side of the connection.
 1939  *
 1940  * BACKGROUND:  TCP makes no provision for the management of buffer space
 1941  * at the end points or at the intermediate routers and switches.  A TCP
 1942  * stream, whether using NewReno or not, will eventually buffer as
 1943  * many packets as it is able and the only reason this typically works is
 1944  * due to the fairly small default buffers made available for a connection
 1945  * (typicaly 16K or 32K).  As machines use larger windows and/or window
 1946  * scaling it is now fairly easy for even a single TCP connection to blow-out
 1947  * all available buffer space not only on the local interface, but on
 1948  * intermediate routers and switches as well.  NewReno makes a misguided
 1949  * attempt to 'solve' this problem by waiting for an actual failure to occur,
 1950  * then backing off, then steadily increasing the window again until another
 1951  * failure occurs, ad-infinitum.  This results in terrible oscillation that
 1952  * is only made worse as network loads increase and the idea of intentionally
 1953  * blowing out network buffers is, frankly, a terrible way to manage network
 1954  * resources.
 1955  *
 1956  * It is far better to limit the transmit window prior to the failure
 1957  * condition being achieved.  There are two general ways to do this:  First
 1958  * you can 'scan' through different transmit window sizes and locate the
 1959  * point where the RTT stops increasing, indicating that you have filled the
 1960  * pipe, then scan backwards until you note that RTT stops decreasing, then
 1961  * repeat ad-infinitum.  This method works in principle but has severe
 1962  * implementation issues due to RTT variances, timer granularity, and
 1963  * instability in the algorithm which can lead to many false positives and
 1964  * create oscillations as well as interact badly with other TCP streams
 1965  * implementing the same algorithm.
 1966  *
 1967  * The second method is to limit the window to the bandwidth delay product
 1968  * of the link.  This is the method we implement.  RTT variances and our
 1969  * own manipulation of the congestion window, bwnd, can potentially
 1970  * destabilize the algorithm.  For this reason we have to stabilize the
 1971  * elements used to calculate the window.  We do this by using the minimum
 1972  * observed RTT, the long term average of the observed bandwidth, and
 1973  * by adding two segments worth of slop.  It isn't perfect but it is able
 1974  * to react to changing conditions and gives us a very stable basis on
 1975  * which to extend the algorithm.
 1976  */
 1977 void
 1978 tcp_xmit_bandwidth_limit(struct tcpcb *tp, tcp_seq ack_seq)
 1979 {
 1980         u_long bw;
 1981         u_long bwnd;
 1982         int save_ticks;
 1983 
 1984         INP_LOCK_ASSERT(tp->t_inpcb);
 1985 
 1986         /*
 1987          * If inflight_enable is disabled in the middle of a tcp connection,
 1988          * make sure snd_bwnd is effectively disabled.
 1989          */
 1990         if (tcp_inflight_enable == 0) {
 1991                 tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
 1992                 tp->snd_bandwidth = 0;
 1993                 return;
 1994         }
 1995 
 1996         /*
 1997          * Figure out the bandwidth.  Due to the tick granularity this
 1998          * is a very rough number and it MUST be averaged over a fairly
 1999          * long period of time.  XXX we need to take into account a link
 2000          * that is not using all available bandwidth, but for now our
 2001          * slop will ramp us up if this case occurs and the bandwidth later
 2002          * increases.
 2003          *
 2004          * Note: if ticks rollover 'bw' may wind up negative.  We must
 2005          * effectively reset t_bw_rtttime for this case.
 2006          */
 2007         save_ticks = ticks;
 2008         if ((u_int)(save_ticks - tp->t_bw_rtttime) < 1)
 2009                 return;
 2010 
 2011         bw = (int64_t)(ack_seq - tp->t_bw_rtseq) * hz /
 2012             (save_ticks - tp->t_bw_rtttime);
 2013         tp->t_bw_rtttime = save_ticks;
 2014         tp->t_bw_rtseq = ack_seq;
 2015         if (tp->t_bw_rtttime == 0 || (int)bw < 0)
 2016                 return;
 2017         bw = ((int64_t)tp->snd_bandwidth * 15 + bw) >> 4;
 2018 
 2019         tp->snd_bandwidth = bw;
 2020 
 2021         /*
 2022          * Calculate the semi-static bandwidth delay product, plus two maximal
 2023          * segments.  The additional slop puts us squarely in the sweet
 2024          * spot and also handles the bandwidth run-up case and stabilization.
 2025          * Without the slop we could be locking ourselves into a lower
 2026          * bandwidth.
 2027          *
 2028          * Situations Handled:
 2029          *      (1) Prevents over-queueing of packets on LANs, especially on
 2030          *          high speed LANs, allowing larger TCP buffers to be
 2031          *          specified, and also does a good job preventing
 2032          *          over-queueing of packets over choke points like modems
 2033          *          (at least for the transmit side).
 2034          *
 2035          *      (2) Is able to handle changing network loads (bandwidth
 2036          *          drops so bwnd drops, bandwidth increases so bwnd
 2037          *          increases).
 2038          *
 2039          *      (3) Theoretically should stabilize in the face of multiple
 2040          *          connections implementing the same algorithm (this may need
 2041          *          a little work).
 2042          *
 2043          *      (4) Stability value (defaults to 20 = 2 maximal packets) can
 2044          *          be adjusted with a sysctl but typically only needs to be
 2045          *          on very slow connections.  A value no smaller then 5
 2046          *          should be used, but only reduce this default if you have
 2047          *          no other choice.
 2048          */
 2049 #define USERTT  ((tp->t_srtt + tp->t_rttbest) / 2)
 2050         bwnd = (int64_t)bw * USERTT / (hz << TCP_RTT_SHIFT) + tcp_inflight_stab * tp->t_maxseg / 10;
 2051 #undef USERTT
 2052 
 2053         if (tcp_inflight_debug > 0) {
 2054                 static int ltime;
 2055                 if ((u_int)(ticks - ltime) >= hz / tcp_inflight_debug) {
 2056                         ltime = ticks;
 2057                         printf("%p bw %ld rttbest %d srtt %d bwnd %ld\n",
 2058                             tp,
 2059                             bw,
 2060                             tp->t_rttbest,
 2061                             tp->t_srtt,
 2062                             bwnd
 2063                         );
 2064                 }
 2065         }
 2066         if ((long)bwnd < tcp_inflight_min)
 2067                 bwnd = tcp_inflight_min;
 2068         if (bwnd > tcp_inflight_max)
 2069                 bwnd = tcp_inflight_max;
 2070         if ((long)bwnd < tp->t_maxseg * 2)
 2071                 bwnd = tp->t_maxseg * 2;
 2072         tp->snd_bwnd = bwnd;
 2073 }
 2074 
 2075 #ifdef TCP_SIGNATURE
 2076 /*
 2077  * Callback function invoked by m_apply() to digest TCP segment data
 2078  * contained within an mbuf chain.
 2079  */
 2080 static int
 2081 tcp_signature_apply(void *fstate, void *data, u_int len)
 2082 {
 2083 
 2084         MD5Update(fstate, (u_char *)data, len);
 2085         return (0);
 2086 }
 2087 
 2088 /*
 2089  * Compute TCP-MD5 hash of a TCPv4 segment. (RFC2385)
 2090  *
 2091  * Parameters:
 2092  * m            pointer to head of mbuf chain
 2093  * off0         offset to TCP header within the mbuf chain
 2094  * len          length of TCP segment data, excluding options
 2095  * optlen       length of TCP segment options
 2096  * buf          pointer to storage for computed MD5 digest
 2097  * direction    direction of flow (IPSEC_DIR_INBOUND or OUTBOUND)
 2098  *
 2099  * We do this over ip, tcphdr, segment data, and the key in the SADB.
 2100  * When called from tcp_input(), we can be sure that th_sum has been
 2101  * zeroed out and verified already.
 2102  *
 2103  * This function is for IPv4 use only. Calling this function with an
 2104  * IPv6 packet in the mbuf chain will yield undefined results.
 2105  *
 2106  * Return 0 if successful, otherwise return -1.
 2107  *
 2108  * XXX The key is retrieved from the system's PF_KEY SADB, by keying a
 2109  * search with the destination IP address, and a 'magic SPI' to be
 2110  * determined by the application. This is hardcoded elsewhere to 1179
 2111  * right now. Another branch of this code exists which uses the SPD to
 2112  * specify per-application flows but it is unstable.
 2113  */
 2114 int
 2115 tcp_signature_compute(struct mbuf *m, int off0, int len, int optlen,
 2116     u_char *buf, u_int direction)
 2117 {
 2118         union sockaddr_union dst;
 2119         struct ippseudo ippseudo;
 2120         MD5_CTX ctx;
 2121         int doff;
 2122         struct ip *ip;
 2123         struct ipovly *ipovly;
 2124         struct secasvar *sav;
 2125         struct tcphdr *th;
 2126         u_short savecsum;
 2127 
 2128         KASSERT(m != NULL, ("NULL mbuf chain"));
 2129         KASSERT(buf != NULL, ("NULL signature pointer"));
 2130 
 2131         /* Extract the destination from the IP header in the mbuf. */
 2132         ip = mtod(m, struct ip *);
 2133         bzero(&dst, sizeof(union sockaddr_union));
 2134         dst.sa.sa_len = sizeof(struct sockaddr_in);
 2135         dst.sa.sa_family = AF_INET;
 2136         dst.sin.sin_addr = (direction == IPSEC_DIR_INBOUND) ?
 2137             ip->ip_src : ip->ip_dst;
 2138 
 2139         /* Look up an SADB entry which matches the address of the peer. */
 2140         sav = KEY_ALLOCSA(&dst, IPPROTO_TCP, htonl(TCP_SIG_SPI));
 2141         if (sav == NULL) {
 2142                 printf("%s: SADB lookup failed for %s\n", __func__,
 2143                     inet_ntoa(dst.sin.sin_addr));
 2144                 return (EINVAL);
 2145         }
 2146 
 2147         MD5Init(&ctx);
 2148         ipovly = (struct ipovly *)ip;
 2149         th = (struct tcphdr *)((u_char *)ip + off0);
 2150         doff = off0 + sizeof(struct tcphdr) + optlen;
 2151 
 2152         /*
 2153          * Step 1: Update MD5 hash with IP pseudo-header.
 2154          *
 2155          * XXX The ippseudo header MUST be digested in network byte order,
 2156          * or else we'll fail the regression test. Assume all fields we've
 2157          * been doing arithmetic on have been in host byte order.
 2158          * XXX One cannot depend on ipovly->ih_len here. When called from
 2159          * tcp_output(), the underlying ip_len member has not yet been set.
 2160          */
 2161         ippseudo.ippseudo_src = ipovly->ih_src;
 2162         ippseudo.ippseudo_dst = ipovly->ih_dst;
 2163         ippseudo.ippseudo_pad = 0;
 2164         ippseudo.ippseudo_p = IPPROTO_TCP;
 2165         ippseudo.ippseudo_len = htons(len + sizeof(struct tcphdr) + optlen);
 2166         MD5Update(&ctx, (char *)&ippseudo, sizeof(struct ippseudo));
 2167 
 2168         /*
 2169          * Step 2: Update MD5 hash with TCP header, excluding options.
 2170          * The TCP checksum must be set to zero.
 2171          */
 2172         savecsum = th->th_sum;
 2173         th->th_sum = 0;
 2174         MD5Update(&ctx, (char *)th, sizeof(struct tcphdr));
 2175         th->th_sum = savecsum;
 2176 
 2177         /*
 2178          * Step 3: Update MD5 hash with TCP segment data.
 2179          *         Use m_apply() to avoid an early m_pullup().
 2180          */
 2181         if (len > 0)
 2182                 m_apply(m, doff, len, tcp_signature_apply, &ctx);
 2183 
 2184         /*
 2185          * Step 4: Update MD5 hash with shared secret.
 2186          */
 2187         MD5Update(&ctx, _KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth));
 2188         MD5Final(buf, &ctx);
 2189 
 2190         key_sa_recordxfer(sav, m);
 2191         KEY_FREESAV(&sav);
 2192         return (0);
 2193 }
 2194 #endif /* TCP_SIGNATURE */
 2195 
 2196 static int
 2197 sysctl_drop(SYSCTL_HANDLER_ARGS)
 2198 {
 2199         /* addrs[0] is a foreign socket, addrs[1] is a local one. */
 2200         struct sockaddr_storage addrs[2];
 2201         struct inpcb *inp;
 2202         struct tcpcb *tp;
 2203         struct tcptw *tw;
 2204         struct sockaddr_in *fin, *lin;
 2205 #ifdef INET6
 2206         struct sockaddr_in6 *fin6, *lin6;
 2207         struct in6_addr f6, l6;
 2208 #endif
 2209         int error;
 2210 
 2211         inp = NULL;
 2212         fin = lin = NULL;
 2213 #ifdef INET6
 2214         fin6 = lin6 = NULL;
 2215 #endif
 2216         error = 0;
 2217 
 2218         if (req->oldptr != NULL || req->oldlen != 0)
 2219                 return (EINVAL);
 2220         if (req->newptr == NULL)
 2221                 return (EPERM);
 2222         if (req->newlen < sizeof(addrs))
 2223                 return (ENOMEM);
 2224         error = SYSCTL_IN(req, &addrs, sizeof(addrs));
 2225         if (error)
 2226                 return (error);
 2227 
 2228         switch (addrs[0].ss_family) {
 2229 #ifdef INET6
 2230         case AF_INET6:
 2231                 fin6 = (struct sockaddr_in6 *)&addrs[0];
 2232                 lin6 = (struct sockaddr_in6 *)&addrs[1];
 2233                 if (fin6->sin6_len != sizeof(struct sockaddr_in6) ||
 2234                     lin6->sin6_len != sizeof(struct sockaddr_in6))
 2235                         return (EINVAL);
 2236                 if (IN6_IS_ADDR_V4MAPPED(&fin6->sin6_addr)) {
 2237                         if (!IN6_IS_ADDR_V4MAPPED(&lin6->sin6_addr))
 2238                                 return (EINVAL);
 2239                         in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[0]);
 2240                         in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[1]);
 2241                         fin = (struct sockaddr_in *)&addrs[0];
 2242                         lin = (struct sockaddr_in *)&addrs[1];
 2243                         break;
 2244                 }
 2245                 error = in6_embedscope(&f6, fin6, NULL, NULL);
 2246                 if (error)
 2247                         return (EINVAL);
 2248                 error = in6_embedscope(&l6, lin6, NULL, NULL);
 2249                 if (error)
 2250                         return (EINVAL);
 2251                 break;
 2252 #endif
 2253         case AF_INET:
 2254                 fin = (struct sockaddr_in *)&addrs[0];
 2255                 lin = (struct sockaddr_in *)&addrs[1];
 2256                 if (fin->sin_len != sizeof(struct sockaddr_in) ||
 2257                     lin->sin_len != sizeof(struct sockaddr_in))
 2258                         return (EINVAL);
 2259                 break;
 2260         default:
 2261                 return (EINVAL);
 2262         }
 2263         INP_INFO_WLOCK(&tcbinfo);
 2264         switch (addrs[0].ss_family) {
 2265 #ifdef INET6
 2266         case AF_INET6:
 2267                 inp = in6_pcblookup_hash(&tcbinfo, &f6, fin6->sin6_port,
 2268                     &l6, lin6->sin6_port, 0, NULL);
 2269                 break;
 2270 #endif
 2271         case AF_INET:
 2272                 inp = in_pcblookup_hash(&tcbinfo, fin->sin_addr, fin->sin_port,
 2273                     lin->sin_addr, lin->sin_port, 0, NULL);
 2274                 break;
 2275         }
 2276         if (inp != NULL) {
 2277                 INP_LOCK(inp);
 2278                 if ((tw = intotw(inp)) &&
 2279                     (inp->inp_vflag & INP_TIMEWAIT) != 0) {
 2280                         (void) tcp_twclose(tw, 0);
 2281                 } else if ((tp = intotcpcb(inp)) &&
 2282                     ((inp->inp_socket->so_options & SO_ACCEPTCONN) == 0)) {
 2283                         tp = tcp_drop(tp, ECONNABORTED);
 2284                         if (tp != NULL)
 2285                                 INP_UNLOCK(inp);
 2286                 } else
 2287                         INP_UNLOCK(inp);
 2288         } else
 2289                 error = ESRCH;
 2290         INP_INFO_WUNLOCK(&tcbinfo);
 2291         return (error);
 2292 }
 2293 
 2294 SYSCTL_PROC(_net_inet_tcp, TCPCTL_DROP, drop,
 2295     CTLTYPE_STRUCT|CTLFLAG_WR|CTLFLAG_SKIP, NULL,
 2296     0, sysctl_drop, "", "Drop TCP connection");

Cache object: e2a783cee173ed4aa7b3db30a6275c0a


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.