The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/netinet/tcp_subr.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
    3  *      The Regents of the University of California.  All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice, this list of conditions and the following disclaimer.
   10  * 2. Redistributions in binary form must reproduce the above copyright
   11  *    notice, this list of conditions and the following disclaimer in the
   12  *    documentation and/or other materials provided with the distribution.
   13  * 4. Neither the name of the University nor the names of its contributors
   14  *    may be used to endorse or promote products derived from this software
   15  *    without specific prior written permission.
   16  *
   17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   27  * SUCH DAMAGE.
   28  *
   29  *      @(#)tcp_subr.c  8.2 (Berkeley) 5/24/95
   30  * $FreeBSD: releng/6.0/sys/netinet/tcp_subr.c 151169 2005-10-09 08:21:34Z maxim $
   31  */
   32 
   33 #include "opt_compat.h"
   34 #include "opt_inet.h"
   35 #include "opt_inet6.h"
   36 #include "opt_ipsec.h"
   37 #include "opt_mac.h"
   38 #include "opt_tcpdebug.h"
   39 #include "opt_tcp_sack.h"
   40 
   41 #include <sys/param.h>
   42 #include <sys/systm.h>
   43 #include <sys/callout.h>
   44 #include <sys/kernel.h>
   45 #include <sys/sysctl.h>
   46 #include <sys/mac.h>
   47 #include <sys/malloc.h>
   48 #include <sys/mbuf.h>
   49 #ifdef INET6
   50 #include <sys/domain.h>
   51 #endif
   52 #include <sys/proc.h>
   53 #include <sys/socket.h>
   54 #include <sys/socketvar.h>
   55 #include <sys/protosw.h>
   56 #include <sys/random.h>
   57 
   58 #include <vm/uma.h>
   59 
   60 #include <net/route.h>
   61 #include <net/if.h>
   62 
   63 #include <netinet/in.h>
   64 #include <netinet/in_systm.h>
   65 #include <netinet/ip.h>
   66 #ifdef INET6
   67 #include <netinet/ip6.h>
   68 #endif
   69 #include <netinet/in_pcb.h>
   70 #ifdef INET6
   71 #include <netinet6/in6_pcb.h>
   72 #endif
   73 #include <netinet/in_var.h>
   74 #include <netinet/ip_var.h>
   75 #ifdef INET6
   76 #include <netinet6/ip6_var.h>
   77 #include <netinet6/nd6.h>
   78 #endif
   79 #include <netinet/ip_icmp.h>
   80 #include <netinet/tcp.h>
   81 #include <netinet/tcp_fsm.h>
   82 #include <netinet/tcp_seq.h>
   83 #include <netinet/tcp_timer.h>
   84 #include <netinet/tcp_var.h>
   85 #ifdef INET6
   86 #include <netinet6/tcp6_var.h>
   87 #endif
   88 #include <netinet/tcpip.h>
   89 #ifdef TCPDEBUG
   90 #include <netinet/tcp_debug.h>
   91 #endif
   92 #include <netinet6/ip6protosw.h>
   93 
   94 #ifdef IPSEC
   95 #include <netinet6/ipsec.h>
   96 #ifdef INET6
   97 #include <netinet6/ipsec6.h>
   98 #endif
   99 #include <netkey/key.h>
  100 #endif /*IPSEC*/
  101 
  102 #ifdef FAST_IPSEC
  103 #include <netipsec/ipsec.h>
  104 #include <netipsec/xform.h>
  105 #ifdef INET6
  106 #include <netipsec/ipsec6.h>
  107 #endif
  108 #include <netipsec/key.h>
  109 #define IPSEC
  110 #endif /*FAST_IPSEC*/
  111 
  112 #include <machine/in_cksum.h>
  113 #include <sys/md5.h>
  114 
  115 int     tcp_mssdflt = TCP_MSS;
  116 SYSCTL_INT(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt, CTLFLAG_RW,
  117     &tcp_mssdflt , 0, "Default TCP Maximum Segment Size");
  118 
  119 #ifdef INET6
  120 int     tcp_v6mssdflt = TCP6_MSS;
  121 SYSCTL_INT(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt,
  122         CTLFLAG_RW, &tcp_v6mssdflt , 0,
  123         "Default TCP Maximum Segment Size for IPv6");
  124 #endif
  125 
  126 /*
  127  * Minimum MSS we accept and use. This prevents DoS attacks where
  128  * we are forced to a ridiculous low MSS like 20 and send hundreds
  129  * of packets instead of one. The effect scales with the available
  130  * bandwidth and quickly saturates the CPU and network interface
  131  * with packet generation and sending. Set to zero to disable MINMSS
  132  * checking. This setting prevents us from sending too small packets.
  133  */
  134 int     tcp_minmss = TCP_MINMSS;
  135 SYSCTL_INT(_net_inet_tcp, OID_AUTO, minmss, CTLFLAG_RW,
  136     &tcp_minmss , 0, "Minmum TCP Maximum Segment Size");
  137 /*
  138  * Number of TCP segments per second we accept from remote host
  139  * before we start to calculate average segment size. If average
  140  * segment size drops below the minimum TCP MSS we assume a DoS
  141  * attack and reset+drop the connection. Care has to be taken not to
  142  * set this value too small to not kill interactive type connections
  143  * (telnet, SSH) which send many small packets.
  144  */
  145 int     tcp_minmssoverload = TCP_MINMSSOVERLOAD;
  146 SYSCTL_INT(_net_inet_tcp, OID_AUTO, minmssoverload, CTLFLAG_RW,
  147     &tcp_minmssoverload , 0, "Number of TCP Segments per Second allowed to"
  148     "be under the MINMSS Size");
  149 
  150 #if 0
  151 static int      tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
  152 SYSCTL_INT(_net_inet_tcp, TCPCTL_RTTDFLT, rttdflt, CTLFLAG_RW,
  153     &tcp_rttdflt , 0, "Default maximum TCP Round Trip Time");
  154 #endif
  155 
  156 int     tcp_do_rfc1323 = 1;
  157 SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_RW,
  158     &tcp_do_rfc1323 , 0, "Enable rfc1323 (high performance TCP) extensions");
  159 
  160 static int      tcp_tcbhashsize = 0;
  161 SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RDTUN,
  162      &tcp_tcbhashsize, 0, "Size of TCP control-block hashtable");
  163 
  164 static int      do_tcpdrain = 1;
  165 SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0,
  166      "Enable tcp_drain routine for extra help when low on mbufs");
  167 
  168 SYSCTL_INT(_net_inet_tcp, OID_AUTO, pcbcount, CTLFLAG_RD,
  169     &tcbinfo.ipi_count, 0, "Number of active PCBs");
  170 
  171 static int      icmp_may_rst = 1;
  172 SYSCTL_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_RW, &icmp_may_rst, 0,
  173     "Certain ICMP unreachable messages may abort connections in SYN_SENT");
  174 
  175 static int      tcp_isn_reseed_interval = 0;
  176 SYSCTL_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_RW,
  177     &tcp_isn_reseed_interval, 0, "Seconds between reseeding of ISN secret");
  178 
  179 /*
  180  * TCP bandwidth limiting sysctls.  Note that the default lower bound of
  181  * 1024 exists only for debugging.  A good production default would be
  182  * something like 6100.
  183  */
  184 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, inflight, CTLFLAG_RW, 0,
  185     "TCP inflight data limiting");
  186 
  187 static int      tcp_inflight_enable = 1;
  188 SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, enable, CTLFLAG_RW,
  189     &tcp_inflight_enable, 0, "Enable automatic TCP inflight data limiting");
  190 
  191 static int      tcp_inflight_debug = 0;
  192 SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, debug, CTLFLAG_RW,
  193     &tcp_inflight_debug, 0, "Debug TCP inflight calculations");
  194 
  195 static int      tcp_inflight_min = 6144;
  196 SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, min, CTLFLAG_RW,
  197     &tcp_inflight_min, 0, "Lower-bound for TCP inflight window");
  198 
  199 static int      tcp_inflight_max = TCP_MAXWIN << TCP_MAX_WINSHIFT;
  200 SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, max, CTLFLAG_RW,
  201     &tcp_inflight_max, 0, "Upper-bound for TCP inflight window");
  202 
  203 static int      tcp_inflight_stab = 20;
  204 SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, stab, CTLFLAG_RW,
  205     &tcp_inflight_stab, 0, "Inflight Algorithm Stabilization 20 = 2 packets");
  206 
  207 uma_zone_t sack_hole_zone;
  208 
  209 static struct inpcb *tcp_notify(struct inpcb *, int);
  210 static void     tcp_discardcb(struct tcpcb *);
  211 static void     tcp_isn_tick(void *);
  212 
  213 /*
  214  * Target size of TCP PCB hash tables. Must be a power of two.
  215  *
  216  * Note that this can be overridden by the kernel environment
  217  * variable net.inet.tcp.tcbhashsize
  218  */
  219 #ifndef TCBHASHSIZE
  220 #define TCBHASHSIZE     512
  221 #endif
  222 
  223 /*
  224  * XXX
  225  * Callouts should be moved into struct tcp directly.  They are currently
  226  * separate because the tcpcb structure is exported to userland for sysctl
  227  * parsing purposes, which do not know about callouts.
  228  */
  229 struct  tcpcb_mem {
  230         struct  tcpcb tcb;
  231         struct  callout tcpcb_mem_rexmt, tcpcb_mem_persist, tcpcb_mem_keep;
  232         struct  callout tcpcb_mem_2msl, tcpcb_mem_delack;
  233 };
  234 
  235 static uma_zone_t tcpcb_zone;
  236 static uma_zone_t tcptw_zone;
  237 struct callout isn_callout;
  238 
  239 /*
  240  * Tcp initialization
  241  */
  242 void
  243 tcp_init()
  244 {
  245         int hashsize = TCBHASHSIZE;
  246 
  247         tcp_delacktime = TCPTV_DELACK;
  248         tcp_keepinit = TCPTV_KEEP_INIT;
  249         tcp_keepidle = TCPTV_KEEP_IDLE;
  250         tcp_keepintvl = TCPTV_KEEPINTVL;
  251         tcp_maxpersistidle = TCPTV_KEEP_IDLE;
  252         tcp_msl = TCPTV_MSL;
  253         tcp_rexmit_min = TCPTV_MIN;
  254         tcp_rexmit_slop = TCPTV_CPU_VAR;
  255 
  256         INP_INFO_LOCK_INIT(&tcbinfo, "tcp");
  257         LIST_INIT(&tcb);
  258         tcbinfo.listhead = &tcb;
  259         TUNABLE_INT_FETCH("net.inet.tcp.tcbhashsize", &hashsize);
  260         if (!powerof2(hashsize)) {
  261                 printf("WARNING: TCB hash size not a power of 2\n");
  262                 hashsize = 512; /* safe default */
  263         }
  264         tcp_tcbhashsize = hashsize;
  265         tcbinfo.hashbase = hashinit(hashsize, M_PCB, &tcbinfo.hashmask);
  266         tcbinfo.porthashbase = hashinit(hashsize, M_PCB,
  267                                         &tcbinfo.porthashmask);
  268         tcbinfo.ipi_zone = uma_zcreate("inpcb", sizeof(struct inpcb),
  269             NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
  270         uma_zone_set_max(tcbinfo.ipi_zone, maxsockets);
  271 #ifdef INET6
  272 #define TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
  273 #else /* INET6 */
  274 #define TCP_MINPROTOHDR (sizeof(struct tcpiphdr))
  275 #endif /* INET6 */
  276         if (max_protohdr < TCP_MINPROTOHDR)
  277                 max_protohdr = TCP_MINPROTOHDR;
  278         if (max_linkhdr + TCP_MINPROTOHDR > MHLEN)
  279                 panic("tcp_init");
  280 #undef TCP_MINPROTOHDR
  281         /*
  282          * These have to be type stable for the benefit of the timers.
  283          */
  284         tcpcb_zone = uma_zcreate("tcpcb", sizeof(struct tcpcb_mem),
  285             NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
  286         uma_zone_set_max(tcpcb_zone, maxsockets);
  287         tcptw_zone = uma_zcreate("tcptw", sizeof(struct tcptw),
  288             NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
  289         uma_zone_set_max(tcptw_zone, maxsockets / 5);
  290         tcp_timer_init();
  291         syncache_init();
  292         tcp_hc_init();
  293         tcp_reass_init();
  294         callout_init(&isn_callout, CALLOUT_MPSAFE);
  295         tcp_isn_tick(NULL);
  296         EVENTHANDLER_REGISTER(shutdown_pre_sync, tcp_fini, NULL,
  297                 SHUTDOWN_PRI_DEFAULT);
  298         sack_hole_zone = uma_zcreate("sackhole", sizeof(struct sackhole),
  299             NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
  300 }
  301 
  302 void
  303 tcp_fini(xtp)
  304         void *xtp;
  305 {
  306         callout_stop(&isn_callout);
  307 
  308 }
  309 
  310 /*
  311  * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
  312  * tcp_template used to store this data in mbufs, but we now recopy it out
  313  * of the tcpcb each time to conserve mbufs.
  314  */
  315 void
  316 tcpip_fillheaders(inp, ip_ptr, tcp_ptr)
  317         struct inpcb *inp;
  318         void *ip_ptr;
  319         void *tcp_ptr;
  320 {
  321         struct tcphdr *th = (struct tcphdr *)tcp_ptr;
  322 
  323         INP_LOCK_ASSERT(inp);
  324 
  325 #ifdef INET6
  326         if ((inp->inp_vflag & INP_IPV6) != 0) {
  327                 struct ip6_hdr *ip6;
  328 
  329                 ip6 = (struct ip6_hdr *)ip_ptr;
  330                 ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
  331                         (inp->in6p_flowinfo & IPV6_FLOWINFO_MASK);
  332                 ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) |
  333                         (IPV6_VERSION & IPV6_VERSION_MASK);
  334                 ip6->ip6_nxt = IPPROTO_TCP;
  335                 ip6->ip6_plen = sizeof(struct tcphdr);
  336                 ip6->ip6_src = inp->in6p_laddr;
  337                 ip6->ip6_dst = inp->in6p_faddr;
  338         } else
  339 #endif
  340         {
  341                 struct ip *ip;
  342 
  343                 ip = (struct ip *)ip_ptr;
  344                 ip->ip_v = IPVERSION;
  345                 ip->ip_hl = 5;
  346                 ip->ip_tos = inp->inp_ip_tos;
  347                 ip->ip_len = 0;
  348                 ip->ip_id = 0;
  349                 ip->ip_off = 0;
  350                 ip->ip_ttl = inp->inp_ip_ttl;
  351                 ip->ip_sum = 0;
  352                 ip->ip_p = IPPROTO_TCP;
  353                 ip->ip_src = inp->inp_laddr;
  354                 ip->ip_dst = inp->inp_faddr;
  355         }
  356         th->th_sport = inp->inp_lport;
  357         th->th_dport = inp->inp_fport;
  358         th->th_seq = 0;
  359         th->th_ack = 0;
  360         th->th_x2 = 0;
  361         th->th_off = 5;
  362         th->th_flags = 0;
  363         th->th_win = 0;
  364         th->th_urp = 0;
  365         th->th_sum = 0;         /* in_pseudo() is called later for ipv4 */
  366 }
  367 
  368 /*
  369  * Create template to be used to send tcp packets on a connection.
  370  * Allocates an mbuf and fills in a skeletal tcp/ip header.  The only
  371  * use for this function is in keepalives, which use tcp_respond.
  372  */
  373 struct tcptemp *
  374 tcpip_maketemplate(inp)
  375         struct inpcb *inp;
  376 {
  377         struct mbuf *m;
  378         struct tcptemp *n;
  379 
  380         m = m_get(M_DONTWAIT, MT_DATA);
  381         if (m == NULL)
  382                 return (0);
  383         m->m_len = sizeof(struct tcptemp);
  384         n = mtod(m, struct tcptemp *);
  385 
  386         tcpip_fillheaders(inp, (void *)&n->tt_ipgen, (void *)&n->tt_t);
  387         return (n);
  388 }
  389 
  390 /*
  391  * Send a single message to the TCP at address specified by
  392  * the given TCP/IP header.  If m == NULL, then we make a copy
  393  * of the tcpiphdr at ti and send directly to the addressed host.
  394  * This is used to force keep alive messages out using the TCP
  395  * template for a connection.  If flags are given then we send
  396  * a message back to the TCP which originated the * segment ti,
  397  * and discard the mbuf containing it and any other attached mbufs.
  398  *
  399  * In any case the ack and sequence number of the transmitted
  400  * segment are as specified by the parameters.
  401  *
  402  * NOTE: If m != NULL, then ti must point to *inside* the mbuf.
  403  */
  404 void
  405 tcp_respond(tp, ipgen, th, m, ack, seq, flags)
  406         struct tcpcb *tp;
  407         void *ipgen;
  408         register struct tcphdr *th;
  409         register struct mbuf *m;
  410         tcp_seq ack, seq;
  411         int flags;
  412 {
  413         register int tlen;
  414         int win = 0;
  415         struct ip *ip;
  416         struct tcphdr *nth;
  417 #ifdef INET6
  418         struct ip6_hdr *ip6;
  419         int isipv6;
  420 #endif /* INET6 */
  421         int ipflags = 0;
  422         struct inpcb *inp;
  423 
  424         KASSERT(tp != NULL || m != NULL, ("tcp_respond: tp and m both NULL"));
  425 
  426 #ifdef INET6
  427         isipv6 = ((struct ip *)ipgen)->ip_v == 6;
  428         ip6 = ipgen;
  429 #endif /* INET6 */
  430         ip = ipgen;
  431 
  432         if (tp != NULL) {
  433                 inp = tp->t_inpcb;
  434                 KASSERT(inp != NULL, ("tcp control block w/o inpcb"));
  435                 INP_INFO_WLOCK_ASSERT(&tcbinfo);
  436                 INP_LOCK_ASSERT(inp);
  437         } else
  438                 inp = NULL;
  439 
  440         if (tp != NULL) {
  441                 if (!(flags & TH_RST)) {
  442                         win = sbspace(&inp->inp_socket->so_rcv);
  443                         if (win > (long)TCP_MAXWIN << tp->rcv_scale)
  444                                 win = (long)TCP_MAXWIN << tp->rcv_scale;
  445                 }
  446         }
  447         if (m == NULL) {
  448                 m = m_gethdr(M_DONTWAIT, MT_HEADER);
  449                 if (m == NULL)
  450                         return;
  451                 tlen = 0;
  452                 m->m_data += max_linkhdr;
  453 #ifdef INET6
  454                 if (isipv6) {
  455                         bcopy((caddr_t)ip6, mtod(m, caddr_t),
  456                               sizeof(struct ip6_hdr));
  457                         ip6 = mtod(m, struct ip6_hdr *);
  458                         nth = (struct tcphdr *)(ip6 + 1);
  459                 } else
  460 #endif /* INET6 */
  461               {
  462                 bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
  463                 ip = mtod(m, struct ip *);
  464                 nth = (struct tcphdr *)(ip + 1);
  465               }
  466                 bcopy((caddr_t)th, (caddr_t)nth, sizeof(struct tcphdr));
  467                 flags = TH_ACK;
  468         } else {
  469                 m_freem(m->m_next);
  470                 m->m_next = NULL;
  471                 m->m_data = (caddr_t)ipgen;
  472                 /* m_len is set later */
  473                 tlen = 0;
  474 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
  475 #ifdef INET6
  476                 if (isipv6) {
  477                         xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
  478                         nth = (struct tcphdr *)(ip6 + 1);
  479                 } else
  480 #endif /* INET6 */
  481               {
  482                 xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, n_long);
  483                 nth = (struct tcphdr *)(ip + 1);
  484               }
  485                 if (th != nth) {
  486                         /*
  487                          * this is usually a case when an extension header
  488                          * exists between the IPv6 header and the
  489                          * TCP header.
  490                          */
  491                         nth->th_sport = th->th_sport;
  492                         nth->th_dport = th->th_dport;
  493                 }
  494                 xchg(nth->th_dport, nth->th_sport, n_short);
  495 #undef xchg
  496         }
  497 #ifdef INET6
  498         if (isipv6) {
  499                 ip6->ip6_flow = 0;
  500                 ip6->ip6_vfc = IPV6_VERSION;
  501                 ip6->ip6_nxt = IPPROTO_TCP;
  502                 ip6->ip6_plen = htons((u_short)(sizeof (struct tcphdr) +
  503                                                 tlen));
  504                 tlen += sizeof (struct ip6_hdr) + sizeof (struct tcphdr);
  505         } else
  506 #endif
  507         {
  508                 tlen += sizeof (struct tcpiphdr);
  509                 ip->ip_len = tlen;
  510                 ip->ip_ttl = ip_defttl;
  511                 if (path_mtu_discovery)
  512                         ip->ip_off |= IP_DF;
  513         }
  514         m->m_len = tlen;
  515         m->m_pkthdr.len = tlen;
  516         m->m_pkthdr.rcvif = NULL;
  517 #ifdef MAC
  518         if (inp != NULL) {
  519                 /*
  520                  * Packet is associated with a socket, so allow the
  521                  * label of the response to reflect the socket label.
  522                  */
  523                 INP_LOCK_ASSERT(inp);
  524                 mac_create_mbuf_from_inpcb(inp, m);
  525         } else {
  526                 /*
  527                  * Packet is not associated with a socket, so possibly
  528                  * update the label in place.
  529                  */
  530                 mac_reflect_mbuf_tcp(m);
  531         }
  532 #endif
  533         nth->th_seq = htonl(seq);
  534         nth->th_ack = htonl(ack);
  535         nth->th_x2 = 0;
  536         nth->th_off = sizeof (struct tcphdr) >> 2;
  537         nth->th_flags = flags;
  538         if (tp != NULL)
  539                 nth->th_win = htons((u_short) (win >> tp->rcv_scale));
  540         else
  541                 nth->th_win = htons((u_short)win);
  542         nth->th_urp = 0;
  543 #ifdef INET6
  544         if (isipv6) {
  545                 nth->th_sum = 0;
  546                 nth->th_sum = in6_cksum(m, IPPROTO_TCP,
  547                                         sizeof(struct ip6_hdr),
  548                                         tlen - sizeof(struct ip6_hdr));
  549                 ip6->ip6_hlim = in6_selecthlim(tp != NULL ? tp->t_inpcb :
  550                     NULL, NULL);
  551         } else
  552 #endif /* INET6 */
  553         {
  554                 nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
  555                     htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p)));
  556                 m->m_pkthdr.csum_flags = CSUM_TCP;
  557                 m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
  558         }
  559 #ifdef TCPDEBUG
  560         if (tp == NULL || (inp->inp_socket->so_options & SO_DEBUG))
  561                 tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0);
  562 #endif
  563 #ifdef INET6
  564         if (isipv6)
  565                 (void) ip6_output(m, NULL, NULL, ipflags, NULL, NULL, inp);
  566         else
  567 #endif /* INET6 */
  568         (void) ip_output(m, NULL, NULL, ipflags, NULL, inp);
  569 }
  570 
  571 /*
  572  * Create a new TCP control block, making an
  573  * empty reassembly queue and hooking it to the argument
  574  * protocol control block.  The `inp' parameter must have
  575  * come from the zone allocator set up in tcp_init().
  576  */
  577 struct tcpcb *
  578 tcp_newtcpcb(inp)
  579         struct inpcb *inp;
  580 {
  581         struct tcpcb_mem *tm;
  582         struct tcpcb *tp;
  583 #ifdef INET6
  584         int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
  585 #endif /* INET6 */
  586 
  587         tm = uma_zalloc(tcpcb_zone, M_NOWAIT | M_ZERO);
  588         if (tm == NULL)
  589                 return (NULL);
  590         tp = &tm->tcb;
  591         /*      LIST_INIT(&tp->t_segq); */      /* XXX covered by M_ZERO */
  592         tp->t_maxseg = tp->t_maxopd =
  593 #ifdef INET6
  594                 isipv6 ? tcp_v6mssdflt :
  595 #endif /* INET6 */
  596                 tcp_mssdflt;
  597 
  598         /* Set up our timeouts. */
  599         callout_init(tp->tt_rexmt = &tm->tcpcb_mem_rexmt, NET_CALLOUT_MPSAFE);
  600         callout_init(tp->tt_persist = &tm->tcpcb_mem_persist, NET_CALLOUT_MPSAFE);
  601         callout_init(tp->tt_keep = &tm->tcpcb_mem_keep, NET_CALLOUT_MPSAFE);
  602         callout_init(tp->tt_2msl = &tm->tcpcb_mem_2msl, NET_CALLOUT_MPSAFE);
  603         callout_init(tp->tt_delack = &tm->tcpcb_mem_delack, NET_CALLOUT_MPSAFE);
  604 
  605         if (tcp_do_rfc1323)
  606                 tp->t_flags = (TF_REQ_SCALE|TF_REQ_TSTMP);
  607         tp->sack_enable = tcp_do_sack;
  608         TAILQ_INIT(&tp->snd_holes);
  609         tp->t_inpcb = inp;      /* XXX */
  610         /*
  611          * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
  612          * rtt estimate.  Set rttvar so that srtt + 4 * rttvar gives
  613          * reasonable initial retransmit time.
  614          */
  615         tp->t_srtt = TCPTV_SRTTBASE;
  616         tp->t_rttvar = ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
  617         tp->t_rttmin = tcp_rexmit_min;
  618         tp->t_rxtcur = TCPTV_RTOBASE;
  619         tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
  620         tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
  621         tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
  622         tp->t_rcvtime = ticks;
  623         tp->t_bw_rtttime = ticks;
  624         /*
  625          * IPv4 TTL initialization is necessary for an IPv6 socket as well,
  626          * because the socket may be bound to an IPv6 wildcard address,
  627          * which may match an IPv4-mapped IPv6 address.
  628          */
  629         inp->inp_ip_ttl = ip_defttl;
  630         inp->inp_ppcb = (caddr_t)tp;
  631         return (tp);            /* XXX */
  632 }
  633 
  634 /*
  635  * Drop a TCP connection, reporting
  636  * the specified error.  If connection is synchronized,
  637  * then send a RST to peer.
  638  */
  639 struct tcpcb *
  640 tcp_drop(tp, errno)
  641         register struct tcpcb *tp;
  642         int errno;
  643 {
  644         struct socket *so = tp->t_inpcb->inp_socket;
  645 
  646         INP_INFO_WLOCK_ASSERT(&tcbinfo);
  647         INP_LOCK_ASSERT(tp->t_inpcb);
  648 
  649         if (TCPS_HAVERCVDSYN(tp->t_state)) {
  650                 tp->t_state = TCPS_CLOSED;
  651                 (void) tcp_output(tp);
  652                 tcpstat.tcps_drops++;
  653         } else
  654                 tcpstat.tcps_conndrops++;
  655         if (errno == ETIMEDOUT && tp->t_softerror)
  656                 errno = tp->t_softerror;
  657         so->so_error = errno;
  658         return (tcp_close(tp));
  659 }
  660 
  661 static void
  662 tcp_discardcb(tp)
  663         struct tcpcb *tp;
  664 {
  665         struct tseg_qent *q;
  666         struct inpcb *inp = tp->t_inpcb;
  667         struct socket *so = inp->inp_socket;
  668 #ifdef INET6
  669         int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
  670 #endif /* INET6 */
  671 
  672         INP_LOCK_ASSERT(inp);
  673 
  674         /*
  675          * Make sure that all of our timers are stopped before we
  676          * delete the PCB.
  677          */
  678         callout_stop(tp->tt_rexmt);
  679         callout_stop(tp->tt_persist);
  680         callout_stop(tp->tt_keep);
  681         callout_stop(tp->tt_2msl);
  682         callout_stop(tp->tt_delack);
  683 
  684         /*
  685          * If we got enough samples through the srtt filter,
  686          * save the rtt and rttvar in the routing entry.
  687          * 'Enough' is arbitrarily defined as 4 rtt samples.
  688          * 4 samples is enough for the srtt filter to converge
  689          * to within enough % of the correct value; fewer samples
  690          * and we could save a bogus rtt. The danger is not high
  691          * as tcp quickly recovers from everything.
  692          * XXX: Works very well but needs some more statistics!
  693          */
  694         if (tp->t_rttupdated >= 4) {
  695                 struct hc_metrics_lite metrics;
  696                 u_long ssthresh;
  697 
  698                 bzero(&metrics, sizeof(metrics));
  699                 /*
  700                  * Update the ssthresh always when the conditions below
  701                  * are satisfied. This gives us better new start value
  702                  * for the congestion avoidance for new connections.
  703                  * ssthresh is only set if packet loss occured on a session.
  704                  */
  705                 ssthresh = tp->snd_ssthresh;
  706                 if (ssthresh != 0 && ssthresh < so->so_snd.sb_hiwat / 2) {
  707                         /*
  708                          * convert the limit from user data bytes to
  709                          * packets then to packet data bytes.
  710                          */
  711                         ssthresh = (ssthresh + tp->t_maxseg / 2) / tp->t_maxseg;
  712                         if (ssthresh < 2)
  713                                 ssthresh = 2;
  714                         ssthresh *= (u_long)(tp->t_maxseg +
  715 #ifdef INET6
  716                                       (isipv6 ? sizeof (struct ip6_hdr) +
  717                                                sizeof (struct tcphdr) :
  718 #endif
  719                                        sizeof (struct tcpiphdr)
  720 #ifdef INET6
  721                                        )
  722 #endif
  723                                       );
  724                 } else
  725                         ssthresh = 0;
  726                 metrics.rmx_ssthresh = ssthresh;
  727 
  728                 metrics.rmx_rtt = tp->t_srtt;
  729                 metrics.rmx_rttvar = tp->t_rttvar;
  730                 /* XXX: This wraps if the pipe is more than 4 Gbit per second */
  731                 metrics.rmx_bandwidth = tp->snd_bandwidth;
  732                 metrics.rmx_cwnd = tp->snd_cwnd;
  733                 metrics.rmx_sendpipe = 0;
  734                 metrics.rmx_recvpipe = 0;
  735 
  736                 tcp_hc_update(&inp->inp_inc, &metrics);
  737         }
  738 
  739         /* free the reassembly queue, if any */
  740         while ((q = LIST_FIRST(&tp->t_segq)) != NULL) {
  741                 LIST_REMOVE(q, tqe_q);
  742                 m_freem(q->tqe_m);
  743                 uma_zfree(tcp_reass_zone, q);
  744                 tp->t_segqlen--;
  745                 tcp_reass_qsize--;
  746         }
  747         tcp_free_sackholes(tp);
  748         inp->inp_ppcb = NULL;
  749         tp->t_inpcb = NULL;
  750         uma_zfree(tcpcb_zone, tp);
  751         soisdisconnected(so);
  752 }
  753 
  754 /*
  755  * Close a TCP control block:
  756  *    discard all space held by the tcp
  757  *    discard internet protocol block
  758  *    wake up any sleepers
  759  */
  760 struct tcpcb *
  761 tcp_close(tp)
  762         struct tcpcb *tp;
  763 {
  764         struct inpcb *inp = tp->t_inpcb;
  765 #ifdef INET6
  766         struct socket *so = inp->inp_socket;
  767 #endif
  768 
  769         INP_INFO_WLOCK_ASSERT(&tcbinfo);
  770         INP_LOCK_ASSERT(inp);
  771 
  772         tcp_discardcb(tp);
  773 #ifdef INET6
  774         if (INP_CHECK_SOCKAF(so, AF_INET6))
  775                 in6_pcbdetach(inp);
  776         else
  777 #endif
  778                 in_pcbdetach(inp);
  779         tcpstat.tcps_closed++;
  780         return (NULL);
  781 }
  782 
  783 void
  784 tcp_drain()
  785 {
  786         if (do_tcpdrain)
  787         {
  788                 struct inpcb *inpb;
  789                 struct tcpcb *tcpb;
  790                 struct tseg_qent *te;
  791 
  792         /*
  793          * Walk the tcpbs, if existing, and flush the reassembly queue,
  794          * if there is one...
  795          * XXX: The "Net/3" implementation doesn't imply that the TCP
  796          *      reassembly queue should be flushed, but in a situation
  797          *      where we're really low on mbufs, this is potentially
  798          *      usefull.
  799          */
  800                 INP_INFO_RLOCK(&tcbinfo);
  801                 LIST_FOREACH(inpb, tcbinfo.listhead, inp_list) {
  802                         if (inpb->inp_vflag & INP_TIMEWAIT)
  803                                 continue;
  804                         INP_LOCK(inpb);
  805                         if ((tcpb = intotcpcb(inpb)) != NULL) {
  806                                 while ((te = LIST_FIRST(&tcpb->t_segq))
  807                                     != NULL) {
  808                                         LIST_REMOVE(te, tqe_q);
  809                                         m_freem(te->tqe_m);
  810                                         uma_zfree(tcp_reass_zone, te);
  811                                         tcpb->t_segqlen--;
  812                                         tcp_reass_qsize--;
  813                                 }
  814                                 tcp_clean_sackreport(tcpb);
  815                         }
  816                         INP_UNLOCK(inpb);
  817                 }
  818                 INP_INFO_RUNLOCK(&tcbinfo);
  819         }
  820 }
  821 
  822 /*
  823  * Notify a tcp user of an asynchronous error;
  824  * store error as soft error, but wake up user
  825  * (for now, won't do anything until can select for soft error).
  826  *
  827  * Do not wake up user since there currently is no mechanism for
  828  * reporting soft errors (yet - a kqueue filter may be added).
  829  */
  830 static struct inpcb *
  831 tcp_notify(inp, error)
  832         struct inpcb *inp;
  833         int error;
  834 {
  835         struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
  836 
  837         INP_INFO_WLOCK_ASSERT(&tcbinfo);
  838         INP_LOCK_ASSERT(inp);
  839 
  840         /*
  841          * Ignore some errors if we are hooked up.
  842          * If connection hasn't completed, has retransmitted several times,
  843          * and receives a second error, give up now.  This is better
  844          * than waiting a long time to establish a connection that
  845          * can never complete.
  846          */
  847         if (tp->t_state == TCPS_ESTABLISHED &&
  848             (error == EHOSTUNREACH || error == ENETUNREACH ||
  849              error == EHOSTDOWN)) {
  850                 return (inp);
  851         } else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
  852             tp->t_softerror) {
  853                 tcp_drop(tp, error);
  854                 return (struct inpcb *)0;
  855         } else {
  856                 tp->t_softerror = error;
  857                 return (inp);
  858         }
  859 #if 0
  860         wakeup( &so->so_timeo);
  861         sorwakeup(so);
  862         sowwakeup(so);
  863 #endif
  864 }
  865 
  866 static int
  867 tcp_pcblist(SYSCTL_HANDLER_ARGS)
  868 {
  869         int error, i, n;
  870         struct inpcb *inp, **inp_list;
  871         inp_gen_t gencnt;
  872         struct xinpgen xig;
  873 
  874         /*
  875          * The process of preparing the TCB list is too time-consuming and
  876          * resource-intensive to repeat twice on every request.
  877          */
  878         if (req->oldptr == NULL) {
  879                 n = tcbinfo.ipi_count;
  880                 req->oldidx = 2 * (sizeof xig)
  881                         + (n + n/8) * sizeof(struct xtcpcb);
  882                 return (0);
  883         }
  884 
  885         if (req->newptr != NULL)
  886                 return (EPERM);
  887 
  888         /*
  889          * OK, now we're committed to doing something.
  890          */
  891         INP_INFO_RLOCK(&tcbinfo);
  892         gencnt = tcbinfo.ipi_gencnt;
  893         n = tcbinfo.ipi_count;
  894         INP_INFO_RUNLOCK(&tcbinfo);
  895 
  896         error = sysctl_wire_old_buffer(req, 2 * (sizeof xig)
  897                 + n * sizeof(struct xtcpcb));
  898         if (error != 0)
  899                 return (error);
  900 
  901         xig.xig_len = sizeof xig;
  902         xig.xig_count = n;
  903         xig.xig_gen = gencnt;
  904         xig.xig_sogen = so_gencnt;
  905         error = SYSCTL_OUT(req, &xig, sizeof xig);
  906         if (error)
  907                 return (error);
  908 
  909         inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK);
  910         if (inp_list == NULL)
  911                 return (ENOMEM);
  912 
  913         INP_INFO_RLOCK(&tcbinfo);
  914         for (inp = LIST_FIRST(tcbinfo.listhead), i = 0; inp != NULL && i < n;
  915              inp = LIST_NEXT(inp, inp_list)) {
  916                 INP_LOCK(inp);
  917                 if (inp->inp_gencnt <= gencnt) {
  918                         /*
  919                          * XXX: This use of cr_cansee(), introduced with
  920                          * TCP state changes, is not quite right, but for
  921                          * now, better than nothing.
  922                          */
  923                         if (inp->inp_vflag & INP_TIMEWAIT)
  924                                 error = cr_cansee(req->td->td_ucred,
  925                                     intotw(inp)->tw_cred);
  926                         else
  927                                 error = cr_canseesocket(req->td->td_ucred,
  928                                     inp->inp_socket);
  929                         if (error == 0)
  930                                 inp_list[i++] = inp;
  931                 }
  932                 INP_UNLOCK(inp);
  933         }
  934         INP_INFO_RUNLOCK(&tcbinfo);
  935         n = i;
  936 
  937         error = 0;
  938         for (i = 0; i < n; i++) {
  939                 inp = inp_list[i];
  940                 if (inp->inp_gencnt <= gencnt) {
  941                         struct xtcpcb xt;
  942                         caddr_t inp_ppcb;
  943 
  944                         bzero(&xt, sizeof(xt));
  945                         xt.xt_len = sizeof xt;
  946                         /* XXX should avoid extra copy */
  947                         bcopy(inp, &xt.xt_inp, sizeof *inp);
  948                         inp_ppcb = inp->inp_ppcb;
  949                         if (inp_ppcb == NULL)
  950                                 bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
  951                         else if (inp->inp_vflag & INP_TIMEWAIT) {
  952                                 bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
  953                                 xt.xt_tp.t_state = TCPS_TIME_WAIT;
  954                         } else
  955                                 bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp);
  956                         if (inp->inp_socket != NULL)
  957                                 sotoxsocket(inp->inp_socket, &xt.xt_socket);
  958                         else {
  959                                 bzero(&xt.xt_socket, sizeof xt.xt_socket);
  960                                 xt.xt_socket.xso_protocol = IPPROTO_TCP;
  961                         }
  962                         xt.xt_inp.inp_gencnt = inp->inp_gencnt;
  963                         error = SYSCTL_OUT(req, &xt, sizeof xt);
  964                 }
  965         }
  966         if (!error) {
  967                 /*
  968                  * Give the user an updated idea of our state.
  969                  * If the generation differs from what we told
  970                  * her before, she knows that something happened
  971                  * while we were processing this request, and it
  972                  * might be necessary to retry.
  973                  */
  974                 INP_INFO_RLOCK(&tcbinfo);
  975                 xig.xig_gen = tcbinfo.ipi_gencnt;
  976                 xig.xig_sogen = so_gencnt;
  977                 xig.xig_count = tcbinfo.ipi_count;
  978                 INP_INFO_RUNLOCK(&tcbinfo);
  979                 error = SYSCTL_OUT(req, &xig, sizeof xig);
  980         }
  981         free(inp_list, M_TEMP);
  982         return (error);
  983 }
  984 
  985 SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist, CTLFLAG_RD, 0, 0,
  986             tcp_pcblist, "S,xtcpcb", "List of active TCP connections");
  987 
  988 static int
  989 tcp_getcred(SYSCTL_HANDLER_ARGS)
  990 {
  991         struct xucred xuc;
  992         struct sockaddr_in addrs[2];
  993         struct inpcb *inp;
  994         int error;
  995 
  996         error = suser_cred(req->td->td_ucred, SUSER_ALLOWJAIL);
  997         if (error)
  998                 return (error);
  999         error = SYSCTL_IN(req, addrs, sizeof(addrs));
 1000         if (error)
 1001                 return (error);
 1002         INP_INFO_RLOCK(&tcbinfo);
 1003         inp = in_pcblookup_hash(&tcbinfo, addrs[1].sin_addr, addrs[1].sin_port,
 1004             addrs[0].sin_addr, addrs[0].sin_port, 0, NULL);
 1005         if (inp == NULL) {
 1006                 error = ENOENT;
 1007                 goto outunlocked;
 1008         }
 1009         INP_LOCK(inp);
 1010         if (inp->inp_socket == NULL) {
 1011                 error = ENOENT;
 1012                 goto out;
 1013         }
 1014         error = cr_canseesocket(req->td->td_ucred, inp->inp_socket);
 1015         if (error)
 1016                 goto out;
 1017         cru2x(inp->inp_socket->so_cred, &xuc);
 1018 out:
 1019         INP_UNLOCK(inp);
 1020 outunlocked:
 1021         INP_INFO_RUNLOCK(&tcbinfo);
 1022         if (error == 0)
 1023                 error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
 1024         return (error);
 1025 }
 1026 
 1027 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred,
 1028     CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
 1029     tcp_getcred, "S,xucred", "Get the xucred of a TCP connection");
 1030 
 1031 #ifdef INET6
 1032 static int
 1033 tcp6_getcred(SYSCTL_HANDLER_ARGS)
 1034 {
 1035         struct xucred xuc;
 1036         struct sockaddr_in6 addrs[2];
 1037         struct in6_addr a6[2];
 1038         struct inpcb *inp;
 1039         int error, mapped = 0;
 1040 
 1041         error = suser_cred(req->td->td_ucred, SUSER_ALLOWJAIL);
 1042         if (error)
 1043                 return (error);
 1044         error = SYSCTL_IN(req, addrs, sizeof(addrs));
 1045         if (error)
 1046                 return (error);
 1047         if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) {
 1048                 if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr))
 1049                         mapped = 1;
 1050                 else
 1051                         return (EINVAL);
 1052         } else {
 1053                 error = in6_embedscope(&a6[0], &addrs[0], NULL, NULL);
 1054                 if (error)
 1055                         return (EINVAL);
 1056                 error = in6_embedscope(&a6[1], &addrs[1], NULL, NULL);
 1057                 if (error)
 1058                         return (EINVAL);
 1059         }
 1060         INP_INFO_RLOCK(&tcbinfo);
 1061         if (mapped == 1)
 1062                 inp = in_pcblookup_hash(&tcbinfo,
 1063                         *(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12],
 1064                         addrs[1].sin6_port,
 1065                         *(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12],
 1066                         addrs[0].sin6_port,
 1067                         0, NULL);
 1068         else
 1069                 inp = in6_pcblookup_hash(&tcbinfo, &a6[1], addrs[1].sin6_port,
 1070                         &a6[0], addrs[0].sin6_port, 0, NULL);
 1071         if (inp == NULL) {
 1072                 error = ENOENT;
 1073                 goto outunlocked;
 1074         }
 1075         INP_LOCK(inp);
 1076         if (inp->inp_socket == NULL) {
 1077                 error = ENOENT;
 1078                 goto out;
 1079         }
 1080         error = cr_canseesocket(req->td->td_ucred, inp->inp_socket);
 1081         if (error)
 1082                 goto out;
 1083         cru2x(inp->inp_socket->so_cred, &xuc);
 1084 out:
 1085         INP_UNLOCK(inp);
 1086 outunlocked:
 1087         INP_INFO_RUNLOCK(&tcbinfo);
 1088         if (error == 0)
 1089                 error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
 1090         return (error);
 1091 }
 1092 
 1093 SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred,
 1094     CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
 1095     tcp6_getcred, "S,xucred", "Get the xucred of a TCP6 connection");
 1096 #endif
 1097 
 1098 
 1099 void
 1100 tcp_ctlinput(cmd, sa, vip)
 1101         int cmd;
 1102         struct sockaddr *sa;
 1103         void *vip;
 1104 {
 1105         struct ip *ip = vip;
 1106         struct tcphdr *th;
 1107         struct in_addr faddr;
 1108         struct inpcb *inp;
 1109         struct tcpcb *tp;
 1110         struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
 1111         struct icmp *icp;
 1112         struct in_conninfo inc;
 1113         tcp_seq icmp_tcp_seq;
 1114         int mtu;
 1115 
 1116         faddr = ((struct sockaddr_in *)sa)->sin_addr;
 1117         if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
 1118                 return;
 1119 
 1120         if (cmd == PRC_MSGSIZE)
 1121                 notify = tcp_mtudisc;
 1122         else if (icmp_may_rst && (cmd == PRC_UNREACH_ADMIN_PROHIB ||
 1123                 cmd == PRC_UNREACH_PORT || cmd == PRC_TIMXCEED_INTRANS) && ip)
 1124                 notify = tcp_drop_syn_sent;
 1125         /*
 1126          * Redirects don't need to be handled up here.
 1127          */
 1128         else if (PRC_IS_REDIRECT(cmd))
 1129                 return;
 1130         /*
 1131          * Source quench is depreciated.
 1132          */
 1133         else if (cmd == PRC_QUENCH)
 1134                 return;
 1135         /*
 1136          * Hostdead is ugly because it goes linearly through all PCBs.
 1137          * XXX: We never get this from ICMP, otherwise it makes an
 1138          * excellent DoS attack on machines with many connections.
 1139          */
 1140         else if (cmd == PRC_HOSTDEAD)
 1141                 ip = NULL;
 1142         else if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0)
 1143                 return;
 1144         if (ip != NULL) {
 1145                 icp = (struct icmp *)((caddr_t)ip
 1146                                       - offsetof(struct icmp, icmp_ip));
 1147                 th = (struct tcphdr *)((caddr_t)ip
 1148                                        + (ip->ip_hl << 2));
 1149                 INP_INFO_WLOCK(&tcbinfo);
 1150                 inp = in_pcblookup_hash(&tcbinfo, faddr, th->th_dport,
 1151                     ip->ip_src, th->th_sport, 0, NULL);
 1152                 if (inp != NULL)  {
 1153                         INP_LOCK(inp);
 1154                         if (inp->inp_socket != NULL) {
 1155                                 icmp_tcp_seq = htonl(th->th_seq);
 1156                                 tp = intotcpcb(inp);
 1157                                 if (SEQ_GEQ(icmp_tcp_seq, tp->snd_una) &&
 1158                                     SEQ_LT(icmp_tcp_seq, tp->snd_max)) {
 1159                                         if (cmd == PRC_MSGSIZE) {
 1160                                             /*
 1161                                              * MTU discovery:
 1162                                              * If we got a needfrag set the MTU
 1163                                              * in the route to the suggested new
 1164                                              * value (if given) and then notify.
 1165                                              */
 1166                                             bzero(&inc, sizeof(inc));
 1167                                             inc.inc_flags = 0;  /* IPv4 */
 1168                                             inc.inc_faddr = faddr;
 1169 
 1170                                             mtu = ntohs(icp->icmp_nextmtu);
 1171                                             /*
 1172                                              * If no alternative MTU was
 1173                                              * proposed, try the next smaller
 1174                                              * one.  ip->ip_len has already
 1175                                              * been swapped in icmp_input().
 1176                                              */
 1177                                             if (!mtu)
 1178                                                 mtu = ip_next_mtu(ip->ip_len,
 1179                                                  1);
 1180                                             if (mtu < max(296, (tcp_minmss)
 1181                                                  + sizeof(struct tcpiphdr)))
 1182                                                 mtu = 0;
 1183                                             if (!mtu)
 1184                                                 mtu = tcp_mssdflt
 1185                                                  + sizeof(struct tcpiphdr);
 1186                                             /*
 1187                                              * Only cache the the MTU if it
 1188                                              * is smaller than the interface
 1189                                              * or route MTU.  tcp_mtudisc()
 1190                                              * will do right thing by itself.
 1191                                              */
 1192                                             if (mtu <= tcp_maxmtu(&inc))
 1193                                                 tcp_hc_updatemtu(&inc, mtu);
 1194                                         }
 1195 
 1196                                         inp = (*notify)(inp, inetctlerrmap[cmd]);
 1197                                 }
 1198                         }
 1199                         if (inp != NULL)
 1200                                 INP_UNLOCK(inp);
 1201                 } else {
 1202                         inc.inc_fport = th->th_dport;
 1203                         inc.inc_lport = th->th_sport;
 1204                         inc.inc_faddr = faddr;
 1205                         inc.inc_laddr = ip->ip_src;
 1206 #ifdef INET6
 1207                         inc.inc_isipv6 = 0;
 1208 #endif
 1209                         syncache_unreach(&inc, th);
 1210                 }
 1211                 INP_INFO_WUNLOCK(&tcbinfo);
 1212         } else
 1213                 in_pcbnotifyall(&tcbinfo, faddr, inetctlerrmap[cmd], notify);
 1214 }
 1215 
 1216 #ifdef INET6
 1217 void
 1218 tcp6_ctlinput(cmd, sa, d)
 1219         int cmd;
 1220         struct sockaddr *sa;
 1221         void *d;
 1222 {
 1223         struct tcphdr th;
 1224         struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
 1225         struct ip6_hdr *ip6;
 1226         struct mbuf *m;
 1227         struct ip6ctlparam *ip6cp = NULL;
 1228         const struct sockaddr_in6 *sa6_src = NULL;
 1229         int off;
 1230         struct tcp_portonly {
 1231                 u_int16_t th_sport;
 1232                 u_int16_t th_dport;
 1233         } *thp;
 1234 
 1235         if (sa->sa_family != AF_INET6 ||
 1236             sa->sa_len != sizeof(struct sockaddr_in6))
 1237                 return;
 1238 
 1239         if (cmd == PRC_MSGSIZE)
 1240                 notify = tcp_mtudisc;
 1241         else if (!PRC_IS_REDIRECT(cmd) &&
 1242                  ((unsigned)cmd >= PRC_NCMDS || inet6ctlerrmap[cmd] == 0))
 1243                 return;
 1244         /* Source quench is depreciated. */
 1245         else if (cmd == PRC_QUENCH)
 1246                 return;
 1247 
 1248         /* if the parameter is from icmp6, decode it. */
 1249         if (d != NULL) {
 1250                 ip6cp = (struct ip6ctlparam *)d;
 1251                 m = ip6cp->ip6c_m;
 1252                 ip6 = ip6cp->ip6c_ip6;
 1253                 off = ip6cp->ip6c_off;
 1254                 sa6_src = ip6cp->ip6c_src;
 1255         } else {
 1256                 m = NULL;
 1257                 ip6 = NULL;
 1258                 off = 0;        /* fool gcc */
 1259                 sa6_src = &sa6_any;
 1260         }
 1261 
 1262         if (ip6 != NULL) {
 1263                 struct in_conninfo inc;
 1264                 /*
 1265                  * XXX: We assume that when IPV6 is non NULL,
 1266                  * M and OFF are valid.
 1267                  */
 1268 
 1269                 /* check if we can safely examine src and dst ports */
 1270                 if (m->m_pkthdr.len < off + sizeof(*thp))
 1271                         return;
 1272 
 1273                 bzero(&th, sizeof(th));
 1274                 m_copydata(m, off, sizeof(*thp), (caddr_t)&th);
 1275 
 1276                 in6_pcbnotify(&tcbinfo, sa, th.th_dport,
 1277                     (struct sockaddr *)ip6cp->ip6c_src,
 1278                     th.th_sport, cmd, NULL, notify);
 1279 
 1280                 inc.inc_fport = th.th_dport;
 1281                 inc.inc_lport = th.th_sport;
 1282                 inc.inc6_faddr = ((struct sockaddr_in6 *)sa)->sin6_addr;
 1283                 inc.inc6_laddr = ip6cp->ip6c_src->sin6_addr;
 1284                 inc.inc_isipv6 = 1;
 1285                 INP_INFO_WLOCK(&tcbinfo);
 1286                 syncache_unreach(&inc, &th);
 1287                 INP_INFO_WUNLOCK(&tcbinfo);
 1288         } else
 1289                 in6_pcbnotify(&tcbinfo, sa, 0, (const struct sockaddr *)sa6_src,
 1290                               0, cmd, NULL, notify);
 1291 }
 1292 #endif /* INET6 */
 1293 
 1294 
 1295 /*
 1296  * Following is where TCP initial sequence number generation occurs.
 1297  *
 1298  * There are two places where we must use initial sequence numbers:
 1299  * 1.  In SYN-ACK packets.
 1300  * 2.  In SYN packets.
 1301  *
 1302  * All ISNs for SYN-ACK packets are generated by the syncache.  See
 1303  * tcp_syncache.c for details.
 1304  *
 1305  * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
 1306  * depends on this property.  In addition, these ISNs should be
 1307  * unguessable so as to prevent connection hijacking.  To satisfy
 1308  * the requirements of this situation, the algorithm outlined in
 1309  * RFC 1948 is used, with only small modifications.
 1310  *
 1311  * Implementation details:
 1312  *
 1313  * Time is based off the system timer, and is corrected so that it
 1314  * increases by one megabyte per second.  This allows for proper
 1315  * recycling on high speed LANs while still leaving over an hour
 1316  * before rollover.
 1317  *
 1318  * As reading the *exact* system time is too expensive to be done
 1319  * whenever setting up a TCP connection, we increment the time
 1320  * offset in two ways.  First, a small random positive increment
 1321  * is added to isn_offset for each connection that is set up.
 1322  * Second, the function tcp_isn_tick fires once per clock tick
 1323  * and increments isn_offset as necessary so that sequence numbers
 1324  * are incremented at approximately ISN_BYTES_PER_SECOND.  The
 1325  * random positive increments serve only to ensure that the same
 1326  * exact sequence number is never sent out twice (as could otherwise
 1327  * happen when a port is recycled in less than the system tick
 1328  * interval.)
 1329  *
 1330  * net.inet.tcp.isn_reseed_interval controls the number of seconds
 1331  * between seeding of isn_secret.  This is normally set to zero,
 1332  * as reseeding should not be necessary.
 1333  *
 1334  * Locking of the global variables isn_secret, isn_last_reseed, isn_offset,
 1335  * isn_offset_old, and isn_ctx is performed using the TCP pcbinfo lock.  In
 1336  * general, this means holding an exclusive (write) lock.
 1337  */
 1338 
 1339 #define ISN_BYTES_PER_SECOND 1048576
 1340 #define ISN_STATIC_INCREMENT 4096
 1341 #define ISN_RANDOM_INCREMENT (4096 - 1)
 1342 
 1343 static u_char isn_secret[32];
 1344 static int isn_last_reseed;
 1345 static u_int32_t isn_offset, isn_offset_old;
 1346 static MD5_CTX isn_ctx;
 1347 
 1348 tcp_seq
 1349 tcp_new_isn(tp)
 1350         struct tcpcb *tp;
 1351 {
 1352         u_int32_t md5_buffer[4];
 1353         tcp_seq new_isn;
 1354 
 1355         INP_INFO_WLOCK_ASSERT(&tcbinfo);
 1356         INP_LOCK_ASSERT(tp->t_inpcb);
 1357 
 1358         /* Seed if this is the first use, reseed if requested. */
 1359         if ((isn_last_reseed == 0) || ((tcp_isn_reseed_interval > 0) &&
 1360              (((u_int)isn_last_reseed + (u_int)tcp_isn_reseed_interval*hz)
 1361                 < (u_int)ticks))) {
 1362                 read_random(&isn_secret, sizeof(isn_secret));
 1363                 isn_last_reseed = ticks;
 1364         }
 1365 
 1366         /* Compute the md5 hash and return the ISN. */
 1367         MD5Init(&isn_ctx);
 1368         MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_fport, sizeof(u_short));
 1369         MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_lport, sizeof(u_short));
 1370 #ifdef INET6
 1371         if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0) {
 1372                 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr,
 1373                           sizeof(struct in6_addr));
 1374                 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr,
 1375                           sizeof(struct in6_addr));
 1376         } else
 1377 #endif
 1378         {
 1379                 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr,
 1380                           sizeof(struct in_addr));
 1381                 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr,
 1382                           sizeof(struct in_addr));
 1383         }
 1384         MD5Update(&isn_ctx, (u_char *) &isn_secret, sizeof(isn_secret));
 1385         MD5Final((u_char *) &md5_buffer, &isn_ctx);
 1386         new_isn = (tcp_seq) md5_buffer[0];
 1387         isn_offset += ISN_STATIC_INCREMENT +
 1388                 (arc4random() & ISN_RANDOM_INCREMENT);
 1389         new_isn += isn_offset;
 1390         return (new_isn);
 1391 }
 1392 
 1393 /*
 1394  * Increment the offset to the next ISN_BYTES_PER_SECOND / hz boundary
 1395  * to keep time flowing at a relatively constant rate.  If the random
 1396  * increments have already pushed us past the projected offset, do nothing.
 1397  */
 1398 static void
 1399 tcp_isn_tick(xtp)
 1400         void *xtp;
 1401 {
 1402         u_int32_t projected_offset;
 1403 
 1404         INP_INFO_WLOCK(&tcbinfo);
 1405         projected_offset = isn_offset_old + ISN_BYTES_PER_SECOND / 100;
 1406 
 1407         if (projected_offset > isn_offset)
 1408                 isn_offset = projected_offset;
 1409 
 1410         isn_offset_old = isn_offset;
 1411         callout_reset(&isn_callout, hz/100, tcp_isn_tick, NULL);
 1412         INP_INFO_WUNLOCK(&tcbinfo);
 1413 }
 1414 
 1415 /*
 1416  * When a specific ICMP unreachable message is received and the
 1417  * connection state is SYN-SENT, drop the connection.  This behavior
 1418  * is controlled by the icmp_may_rst sysctl.
 1419  */
 1420 struct inpcb *
 1421 tcp_drop_syn_sent(inp, errno)
 1422         struct inpcb *inp;
 1423         int errno;
 1424 {
 1425         struct tcpcb *tp = intotcpcb(inp);
 1426 
 1427         INP_INFO_WLOCK_ASSERT(&tcbinfo);
 1428         INP_LOCK_ASSERT(inp);
 1429 
 1430         if (tp != NULL && tp->t_state == TCPS_SYN_SENT) {
 1431                 tcp_drop(tp, errno);
 1432                 return (NULL);
 1433         }
 1434         return (inp);
 1435 }
 1436 
 1437 /*
 1438  * When `need fragmentation' ICMP is received, update our idea of the MSS
 1439  * based on the new value in the route.  Also nudge TCP to send something,
 1440  * since we know the packet we just sent was dropped.
 1441  * This duplicates some code in the tcp_mss() function in tcp_input.c.
 1442  */
 1443 struct inpcb *
 1444 tcp_mtudisc(inp, errno)
 1445         struct inpcb *inp;
 1446         int errno;
 1447 {
 1448         struct tcpcb *tp = intotcpcb(inp);
 1449         struct socket *so = inp->inp_socket;
 1450         u_int maxmtu;
 1451         u_int romtu;
 1452         int mss;
 1453 #ifdef INET6
 1454         int isipv6;
 1455 #endif /* INET6 */
 1456 
 1457         INP_LOCK_ASSERT(inp);
 1458         if (tp != NULL) {
 1459 #ifdef INET6
 1460                 isipv6 = (tp->t_inpcb->inp_vflag & INP_IPV6) != 0;
 1461 #endif
 1462                 maxmtu = tcp_hc_getmtu(&inp->inp_inc); /* IPv4 and IPv6 */
 1463                 romtu =
 1464 #ifdef INET6
 1465                     isipv6 ? tcp_maxmtu6(&inp->inp_inc) :
 1466 #endif /* INET6 */
 1467                     tcp_maxmtu(&inp->inp_inc);
 1468                 if (!maxmtu)
 1469                         maxmtu = romtu;
 1470                 else
 1471                         maxmtu = min(maxmtu, romtu);
 1472                 if (!maxmtu) {
 1473                         tp->t_maxopd = tp->t_maxseg =
 1474 #ifdef INET6
 1475                                 isipv6 ? tcp_v6mssdflt :
 1476 #endif /* INET6 */
 1477                                 tcp_mssdflt;
 1478                         return (inp);
 1479                 }
 1480                 mss = maxmtu -
 1481 #ifdef INET6
 1482                         (isipv6 ?
 1483                          sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
 1484 #endif /* INET6 */
 1485                          sizeof(struct tcpiphdr)
 1486 #ifdef INET6
 1487                          )
 1488 #endif /* INET6 */
 1489                         ;
 1490 
 1491                 /*
 1492                  * XXX - The above conditional probably violates the TCP
 1493                  * spec.  The problem is that, since we don't know the
 1494                  * other end's MSS, we are supposed to use a conservative
 1495                  * default.  But, if we do that, then MTU discovery will
 1496                  * never actually take place, because the conservative
 1497                  * default is much less than the MTUs typically seen
 1498                  * on the Internet today.  For the moment, we'll sweep
 1499                  * this under the carpet.
 1500                  *
 1501                  * The conservative default might not actually be a problem
 1502                  * if the only case this occurs is when sending an initial
 1503                  * SYN with options and data to a host we've never talked
 1504                  * to before.  Then, they will reply with an MSS value which
 1505                  * will get recorded and the new parameters should get
 1506                  * recomputed.  For Further Study.
 1507                  */
 1508                 if (tp->t_maxopd <= mss)
 1509                         return (inp);
 1510                 tp->t_maxopd = mss;
 1511 
 1512                 if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
 1513                     (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP)
 1514                         mss -= TCPOLEN_TSTAMP_APPA;
 1515 #if     (MCLBYTES & (MCLBYTES - 1)) == 0
 1516                 if (mss > MCLBYTES)
 1517                         mss &= ~(MCLBYTES-1);
 1518 #else
 1519                 if (mss > MCLBYTES)
 1520                         mss = mss / MCLBYTES * MCLBYTES;
 1521 #endif
 1522                 if (so->so_snd.sb_hiwat < mss)
 1523                         mss = so->so_snd.sb_hiwat;
 1524 
 1525                 tp->t_maxseg = mss;
 1526 
 1527                 tcpstat.tcps_mturesent++;
 1528                 tp->t_rtttime = 0;
 1529                 tp->snd_nxt = tp->snd_una;
 1530                 tcp_output(tp);
 1531         }
 1532         return (inp);
 1533 }
 1534 
 1535 /*
 1536  * Look-up the routing entry to the peer of this inpcb.  If no route
 1537  * is found and it cannot be allocated, then return NULL.  This routine
 1538  * is called by TCP routines that access the rmx structure and by tcp_mss
 1539  * to get the interface MTU.
 1540  */
 1541 u_long
 1542 tcp_maxmtu(inc)
 1543         struct in_conninfo *inc;
 1544 {
 1545         struct route sro;
 1546         struct sockaddr_in *dst;
 1547         struct ifnet *ifp;
 1548         u_long maxmtu = 0;
 1549 
 1550         KASSERT(inc != NULL, ("tcp_maxmtu with NULL in_conninfo pointer"));
 1551 
 1552         bzero(&sro, sizeof(sro));
 1553         if (inc->inc_faddr.s_addr != INADDR_ANY) {
 1554                 dst = (struct sockaddr_in *)&sro.ro_dst;
 1555                 dst->sin_family = AF_INET;
 1556                 dst->sin_len = sizeof(*dst);
 1557                 dst->sin_addr = inc->inc_faddr;
 1558                 rtalloc_ign(&sro, RTF_CLONING);
 1559         }
 1560         if (sro.ro_rt != NULL) {
 1561                 ifp = sro.ro_rt->rt_ifp;
 1562                 if (sro.ro_rt->rt_rmx.rmx_mtu == 0)
 1563                         maxmtu = ifp->if_mtu;
 1564                 else
 1565                         maxmtu = min(sro.ro_rt->rt_rmx.rmx_mtu, ifp->if_mtu);
 1566                 RTFREE(sro.ro_rt);
 1567         }
 1568         return (maxmtu);
 1569 }
 1570 
 1571 #ifdef INET6
 1572 u_long
 1573 tcp_maxmtu6(inc)
 1574         struct in_conninfo *inc;
 1575 {
 1576         struct route_in6 sro6;
 1577         struct ifnet *ifp;
 1578         u_long maxmtu = 0;
 1579 
 1580         KASSERT(inc != NULL, ("tcp_maxmtu6 with NULL in_conninfo pointer"));
 1581 
 1582         bzero(&sro6, sizeof(sro6));
 1583         if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) {
 1584                 sro6.ro_dst.sin6_family = AF_INET6;
 1585                 sro6.ro_dst.sin6_len = sizeof(struct sockaddr_in6);
 1586                 sro6.ro_dst.sin6_addr = inc->inc6_faddr;
 1587                 rtalloc_ign((struct route *)&sro6, RTF_CLONING);
 1588         }
 1589         if (sro6.ro_rt != NULL) {
 1590                 ifp = sro6.ro_rt->rt_ifp;
 1591                 if (sro6.ro_rt->rt_rmx.rmx_mtu == 0)
 1592                         maxmtu = IN6_LINKMTU(sro6.ro_rt->rt_ifp);
 1593                 else
 1594                         maxmtu = min(sro6.ro_rt->rt_rmx.rmx_mtu,
 1595                                      IN6_LINKMTU(sro6.ro_rt->rt_ifp));
 1596                 RTFREE(sro6.ro_rt);
 1597         }
 1598 
 1599         return (maxmtu);
 1600 }
 1601 #endif /* INET6 */
 1602 
 1603 #ifdef IPSEC
 1604 /* compute ESP/AH header size for TCP, including outer IP header. */
 1605 size_t
 1606 ipsec_hdrsiz_tcp(tp)
 1607         struct tcpcb *tp;
 1608 {
 1609         struct inpcb *inp;
 1610         struct mbuf *m;
 1611         size_t hdrsiz;
 1612         struct ip *ip;
 1613 #ifdef INET6
 1614         struct ip6_hdr *ip6;
 1615 #endif
 1616         struct tcphdr *th;
 1617 
 1618         if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL))
 1619                 return (0);
 1620         MGETHDR(m, M_DONTWAIT, MT_DATA);
 1621         if (!m)
 1622                 return (0);
 1623 
 1624 #ifdef INET6
 1625         if ((inp->inp_vflag & INP_IPV6) != 0) {
 1626                 ip6 = mtod(m, struct ip6_hdr *);
 1627                 th = (struct tcphdr *)(ip6 + 1);
 1628                 m->m_pkthdr.len = m->m_len =
 1629                         sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
 1630                 tcpip_fillheaders(inp, ip6, th);
 1631                 hdrsiz = ipsec6_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
 1632         } else
 1633 #endif /* INET6 */
 1634         {
 1635                 ip = mtod(m, struct ip *);
 1636                 th = (struct tcphdr *)(ip + 1);
 1637                 m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr);
 1638                 tcpip_fillheaders(inp, ip, th);
 1639                 hdrsiz = ipsec4_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
 1640         }
 1641 
 1642         m_free(m);
 1643         return (hdrsiz);
 1644 }
 1645 #endif /*IPSEC*/
 1646 
 1647 /*
 1648  * Move a TCP connection into TIME_WAIT state.
 1649  *    tcbinfo is locked.
 1650  *    inp is locked, and is unlocked before returning.
 1651  */
 1652 void
 1653 tcp_twstart(tp)
 1654         struct tcpcb *tp;
 1655 {
 1656         struct tcptw *tw;
 1657         struct inpcb *inp;
 1658         int tw_time, acknow;
 1659         struct socket *so;
 1660 
 1661         INP_INFO_WLOCK_ASSERT(&tcbinfo);        /* tcp_timer_2msl_reset(). */
 1662         INP_LOCK_ASSERT(tp->t_inpcb);
 1663 
 1664         tw = uma_zalloc(tcptw_zone, M_NOWAIT);
 1665         if (tw == NULL) {
 1666                 tw = tcp_timer_2msl_tw(1);
 1667                 if (tw == NULL) {
 1668                         tcp_close(tp);
 1669                         return;
 1670                 }
 1671         }
 1672         inp = tp->t_inpcb;
 1673         tw->tw_inpcb = inp;
 1674 
 1675         /*
 1676          * Recover last window size sent.
 1677          */
 1678         tw->last_win = (tp->rcv_adv - tp->rcv_nxt) >> tp->rcv_scale;
 1679 
 1680         /*
 1681          * Set t_recent if timestamps are used on the connection.
 1682          */
 1683         if ((tp->t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP|TF_NOOPT)) ==
 1684             (TF_REQ_TSTMP|TF_RCVD_TSTMP))
 1685                 tw->t_recent = tp->ts_recent;
 1686         else
 1687                 tw->t_recent = 0;
 1688 
 1689         tw->snd_nxt = tp->snd_nxt;
 1690         tw->rcv_nxt = tp->rcv_nxt;
 1691         tw->iss     = tp->iss;
 1692         tw->irs     = tp->irs;
 1693         tw->t_starttime = tp->t_starttime;
 1694         tw->tw_time = 0;
 1695 
 1696 /* XXX
 1697  * If this code will
 1698  * be used for fin-wait-2 state also, then we may need
 1699  * a ts_recent from the last segment.
 1700  */
 1701         tw_time = 2 * tcp_msl;
 1702         acknow = tp->t_flags & TF_ACKNOW;
 1703         tcp_discardcb(tp);
 1704         so = inp->inp_socket;
 1705         ACCEPT_LOCK();
 1706         SOCK_LOCK(so);
 1707         so->so_pcb = NULL;
 1708         tw->tw_cred = crhold(so->so_cred);
 1709         tw->tw_so_options = so->so_options;
 1710         sotryfree(so);
 1711         inp->inp_socket = NULL;
 1712         if (acknow)
 1713                 tcp_twrespond(tw, TH_ACK);
 1714         inp->inp_ppcb = (caddr_t)tw;
 1715         inp->inp_vflag |= INP_TIMEWAIT;
 1716         tcp_timer_2msl_reset(tw, tw_time);
 1717         INP_UNLOCK(inp);
 1718 }
 1719 
 1720 /*
 1721  * The appromixate rate of ISN increase of Microsoft TCP stacks;
 1722  * the actual rate is slightly higher due to the addition of
 1723  * random positive increments.
 1724  *
 1725  * Most other new OSes use semi-randomized ISN values, so we
 1726  * do not need to worry about them.
 1727  */
 1728 #define MS_ISN_BYTES_PER_SECOND         250000
 1729 
 1730 /*
 1731  * Determine if the ISN we will generate has advanced beyond the last
 1732  * sequence number used by the previous connection.  If so, indicate
 1733  * that it is safe to recycle this tw socket by returning 1.
 1734  *
 1735  * XXXRW: This function should assert the inpcb lock as it does multiple
 1736  * non-atomic reads from the tcptw, but is currently called without it from
 1737  * in_pcb.c:in_pcblookup_local().
 1738  */
 1739 int
 1740 tcp_twrecycleable(struct tcptw *tw)
 1741 {
 1742         tcp_seq new_iss = tw->iss;
 1743         tcp_seq new_irs = tw->irs;
 1744 
 1745         new_iss += (ticks - tw->t_starttime) * (ISN_BYTES_PER_SECOND / hz);
 1746         new_irs += (ticks - tw->t_starttime) * (MS_ISN_BYTES_PER_SECOND / hz);
 1747 
 1748         if (SEQ_GT(new_iss, tw->snd_nxt) && SEQ_GT(new_irs, tw->rcv_nxt))
 1749                 return (1);
 1750         else
 1751                 return (0);
 1752 }
 1753 
 1754 struct tcptw *
 1755 tcp_twclose(struct tcptw *tw, int reuse)
 1756 {
 1757         struct inpcb *inp;
 1758 
 1759         inp = tw->tw_inpcb;
 1760         INP_INFO_WLOCK_ASSERT(&tcbinfo);        /* tcp_timer_2msl_stop(). */
 1761         INP_LOCK_ASSERT(inp);
 1762 
 1763         tw->tw_inpcb = NULL;
 1764         tcp_timer_2msl_stop(tw);
 1765         inp->inp_ppcb = NULL;
 1766 #ifdef INET6
 1767         if (inp->inp_vflag & INP_IPV6PROTO)
 1768                 in6_pcbdetach(inp);
 1769         else
 1770 #endif
 1771                 in_pcbdetach(inp);
 1772         tcpstat.tcps_closed++;
 1773         crfree(tw->tw_cred);
 1774         tw->tw_cred = NULL;
 1775         if (reuse)
 1776                 return (tw);
 1777         uma_zfree(tcptw_zone, tw);
 1778         return (NULL);
 1779 }
 1780 
 1781 int
 1782 tcp_twrespond(struct tcptw *tw, int flags)
 1783 {
 1784         struct inpcb *inp = tw->tw_inpcb;
 1785         struct tcphdr *th;
 1786         struct mbuf *m;
 1787         struct ip *ip = NULL;
 1788         u_int8_t *optp;
 1789         u_int hdrlen, optlen;
 1790         int error;
 1791 #ifdef INET6
 1792         struct ip6_hdr *ip6 = NULL;
 1793         int isipv6 = inp->inp_inc.inc_isipv6;
 1794 #endif
 1795 
 1796         INP_LOCK_ASSERT(inp);
 1797 
 1798         m = m_gethdr(M_DONTWAIT, MT_HEADER);
 1799         if (m == NULL)
 1800                 return (ENOBUFS);
 1801         m->m_data += max_linkhdr;
 1802 
 1803 #ifdef MAC
 1804         mac_create_mbuf_from_inpcb(inp, m);
 1805 #endif
 1806 
 1807 #ifdef INET6
 1808         if (isipv6) {
 1809                 hdrlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
 1810                 ip6 = mtod(m, struct ip6_hdr *);
 1811                 th = (struct tcphdr *)(ip6 + 1);
 1812                 tcpip_fillheaders(inp, ip6, th);
 1813         } else
 1814 #endif
 1815         {
 1816                 hdrlen = sizeof(struct tcpiphdr);
 1817                 ip = mtod(m, struct ip *);
 1818                 th = (struct tcphdr *)(ip + 1);
 1819                 tcpip_fillheaders(inp, ip, th);
 1820         }
 1821         optp = (u_int8_t *)(th + 1);
 1822 
 1823         /*
 1824          * Send a timestamp and echo-reply if both our side and our peer
 1825          * have sent timestamps in our SYN's and this is not a RST.
 1826          */
 1827         if (tw->t_recent && flags == TH_ACK) {
 1828                 u_int32_t *lp = (u_int32_t *)optp;
 1829 
 1830                 /* Form timestamp option as shown in appendix A of RFC 1323. */
 1831                 *lp++ = htonl(TCPOPT_TSTAMP_HDR);
 1832                 *lp++ = htonl(ticks);
 1833                 *lp   = htonl(tw->t_recent);
 1834                 optp += TCPOLEN_TSTAMP_APPA;
 1835         }
 1836 
 1837         optlen = optp - (u_int8_t *)(th + 1);
 1838 
 1839         m->m_len = hdrlen + optlen;
 1840         m->m_pkthdr.len = m->m_len;
 1841 
 1842         KASSERT(max_linkhdr + m->m_len <= MHLEN, ("tcptw: mbuf too small"));
 1843 
 1844         th->th_seq = htonl(tw->snd_nxt);
 1845         th->th_ack = htonl(tw->rcv_nxt);
 1846         th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
 1847         th->th_flags = flags;
 1848         th->th_win = htons(tw->last_win);
 1849 
 1850 #ifdef INET6
 1851         if (isipv6) {
 1852                 th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(struct ip6_hdr),
 1853                     sizeof(struct tcphdr) + optlen);
 1854                 ip6->ip6_hlim = in6_selecthlim(inp, NULL);
 1855                 error = ip6_output(m, inp->in6p_outputopts, NULL,
 1856                     (tw->tw_so_options & SO_DONTROUTE), NULL, NULL, inp);
 1857         } else
 1858 #endif
 1859         {
 1860                 th->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
 1861                     htons(sizeof(struct tcphdr) + optlen + IPPROTO_TCP));
 1862                 m->m_pkthdr.csum_flags = CSUM_TCP;
 1863                 m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
 1864                 ip->ip_len = m->m_pkthdr.len;
 1865                 if (path_mtu_discovery)
 1866                         ip->ip_off |= IP_DF;
 1867                 error = ip_output(m, inp->inp_options, NULL,
 1868                     ((tw->tw_so_options & SO_DONTROUTE) ? IP_ROUTETOIF : 0),
 1869                     NULL, inp);
 1870         }
 1871         if (flags & TH_ACK)
 1872                 tcpstat.tcps_sndacks++;
 1873         else
 1874                 tcpstat.tcps_sndctrl++;
 1875         tcpstat.tcps_sndtotal++;
 1876         return (error);
 1877 }
 1878 
 1879 /*
 1880  * TCP BANDWIDTH DELAY PRODUCT WINDOW LIMITING
 1881  *
 1882  * This code attempts to calculate the bandwidth-delay product as a
 1883  * means of determining the optimal window size to maximize bandwidth,
 1884  * minimize RTT, and avoid the over-allocation of buffers on interfaces and
 1885  * routers.  This code also does a fairly good job keeping RTTs in check
 1886  * across slow links like modems.  We implement an algorithm which is very
 1887  * similar (but not meant to be) TCP/Vegas.  The code operates on the
 1888  * transmitter side of a TCP connection and so only effects the transmit
 1889  * side of the connection.
 1890  *
 1891  * BACKGROUND:  TCP makes no provision for the management of buffer space
 1892  * at the end points or at the intermediate routers and switches.  A TCP
 1893  * stream, whether using NewReno or not, will eventually buffer as
 1894  * many packets as it is able and the only reason this typically works is
 1895  * due to the fairly small default buffers made available for a connection
 1896  * (typicaly 16K or 32K).  As machines use larger windows and/or window
 1897  * scaling it is now fairly easy for even a single TCP connection to blow-out
 1898  * all available buffer space not only on the local interface, but on
 1899  * intermediate routers and switches as well.  NewReno makes a misguided
 1900  * attempt to 'solve' this problem by waiting for an actual failure to occur,
 1901  * then backing off, then steadily increasing the window again until another
 1902  * failure occurs, ad-infinitum.  This results in terrible oscillation that
 1903  * is only made worse as network loads increase and the idea of intentionally
 1904  * blowing out network buffers is, frankly, a terrible way to manage network
 1905  * resources.
 1906  *
 1907  * It is far better to limit the transmit window prior to the failure
 1908  * condition being achieved.  There are two general ways to do this:  First
 1909  * you can 'scan' through different transmit window sizes and locate the
 1910  * point where the RTT stops increasing, indicating that you have filled the
 1911  * pipe, then scan backwards until you note that RTT stops decreasing, then
 1912  * repeat ad-infinitum.  This method works in principle but has severe
 1913  * implementation issues due to RTT variances, timer granularity, and
 1914  * instability in the algorithm which can lead to many false positives and
 1915  * create oscillations as well as interact badly with other TCP streams
 1916  * implementing the same algorithm.
 1917  *
 1918  * The second method is to limit the window to the bandwidth delay product
 1919  * of the link.  This is the method we implement.  RTT variances and our
 1920  * own manipulation of the congestion window, bwnd, can potentially
 1921  * destabilize the algorithm.  For this reason we have to stabilize the
 1922  * elements used to calculate the window.  We do this by using the minimum
 1923  * observed RTT, the long term average of the observed bandwidth, and
 1924  * by adding two segments worth of slop.  It isn't perfect but it is able
 1925  * to react to changing conditions and gives us a very stable basis on
 1926  * which to extend the algorithm.
 1927  */
 1928 void
 1929 tcp_xmit_bandwidth_limit(struct tcpcb *tp, tcp_seq ack_seq)
 1930 {
 1931         u_long bw;
 1932         u_long bwnd;
 1933         int save_ticks;
 1934 
 1935         INP_LOCK_ASSERT(tp->t_inpcb);
 1936 
 1937         /*
 1938          * If inflight_enable is disabled in the middle of a tcp connection,
 1939          * make sure snd_bwnd is effectively disabled.
 1940          */
 1941         if (tcp_inflight_enable == 0) {
 1942                 tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
 1943                 tp->snd_bandwidth = 0;
 1944                 return;
 1945         }
 1946 
 1947         /*
 1948          * Figure out the bandwidth.  Due to the tick granularity this
 1949          * is a very rough number and it MUST be averaged over a fairly
 1950          * long period of time.  XXX we need to take into account a link
 1951          * that is not using all available bandwidth, but for now our
 1952          * slop will ramp us up if this case occurs and the bandwidth later
 1953          * increases.
 1954          *
 1955          * Note: if ticks rollover 'bw' may wind up negative.  We must
 1956          * effectively reset t_bw_rtttime for this case.
 1957          */
 1958         save_ticks = ticks;
 1959         if ((u_int)(save_ticks - tp->t_bw_rtttime) < 1)
 1960                 return;
 1961 
 1962         bw = (int64_t)(ack_seq - tp->t_bw_rtseq) * hz /
 1963             (save_ticks - tp->t_bw_rtttime);
 1964         tp->t_bw_rtttime = save_ticks;
 1965         tp->t_bw_rtseq = ack_seq;
 1966         if (tp->t_bw_rtttime == 0 || (int)bw < 0)
 1967                 return;
 1968         bw = ((int64_t)tp->snd_bandwidth * 15 + bw) >> 4;
 1969 
 1970         tp->snd_bandwidth = bw;
 1971 
 1972         /*
 1973          * Calculate the semi-static bandwidth delay product, plus two maximal
 1974          * segments.  The additional slop puts us squarely in the sweet
 1975          * spot and also handles the bandwidth run-up case and stabilization.
 1976          * Without the slop we could be locking ourselves into a lower
 1977          * bandwidth.
 1978          *
 1979          * Situations Handled:
 1980          *      (1) Prevents over-queueing of packets on LANs, especially on
 1981          *          high speed LANs, allowing larger TCP buffers to be
 1982          *          specified, and also does a good job preventing
 1983          *          over-queueing of packets over choke points like modems
 1984          *          (at least for the transmit side).
 1985          *
 1986          *      (2) Is able to handle changing network loads (bandwidth
 1987          *          drops so bwnd drops, bandwidth increases so bwnd
 1988          *          increases).
 1989          *
 1990          *      (3) Theoretically should stabilize in the face of multiple
 1991          *          connections implementing the same algorithm (this may need
 1992          *          a little work).
 1993          *
 1994          *      (4) Stability value (defaults to 20 = 2 maximal packets) can
 1995          *          be adjusted with a sysctl but typically only needs to be
 1996          *          on very slow connections.  A value no smaller then 5
 1997          *          should be used, but only reduce this default if you have
 1998          *          no other choice.
 1999          */
 2000 #define USERTT  ((tp->t_srtt + tp->t_rttbest) / 2)
 2001         bwnd = (int64_t)bw * USERTT / (hz << TCP_RTT_SHIFT) + tcp_inflight_stab * tp->t_maxseg / 10;
 2002 #undef USERTT
 2003 
 2004         if (tcp_inflight_debug > 0) {
 2005                 static int ltime;
 2006                 if ((u_int)(ticks - ltime) >= hz / tcp_inflight_debug) {
 2007                         ltime = ticks;
 2008                         printf("%p bw %ld rttbest %d srtt %d bwnd %ld\n",
 2009                             tp,
 2010                             bw,
 2011                             tp->t_rttbest,
 2012                             tp->t_srtt,
 2013                             bwnd
 2014                         );
 2015                 }
 2016         }
 2017         if ((long)bwnd < tcp_inflight_min)
 2018                 bwnd = tcp_inflight_min;
 2019         if (bwnd > tcp_inflight_max)
 2020                 bwnd = tcp_inflight_max;
 2021         if ((long)bwnd < tp->t_maxseg * 2)
 2022                 bwnd = tp->t_maxseg * 2;
 2023         tp->snd_bwnd = bwnd;
 2024 }
 2025 
 2026 #ifdef TCP_SIGNATURE
 2027 /*
 2028  * Callback function invoked by m_apply() to digest TCP segment data
 2029  * contained within an mbuf chain.
 2030  */
 2031 static int
 2032 tcp_signature_apply(void *fstate, void *data, u_int len)
 2033 {
 2034 
 2035         MD5Update(fstate, (u_char *)data, len);
 2036         return (0);
 2037 }
 2038 
 2039 /*
 2040  * Compute TCP-MD5 hash of a TCPv4 segment. (RFC2385)
 2041  *
 2042  * Parameters:
 2043  * m            pointer to head of mbuf chain
 2044  * off0         offset to TCP header within the mbuf chain
 2045  * len          length of TCP segment data, excluding options
 2046  * optlen       length of TCP segment options
 2047  * buf          pointer to storage for computed MD5 digest
 2048  * direction    direction of flow (IPSEC_DIR_INBOUND or OUTBOUND)
 2049  *
 2050  * We do this over ip, tcphdr, segment data, and the key in the SADB.
 2051  * When called from tcp_input(), we can be sure that th_sum has been
 2052  * zeroed out and verified already.
 2053  *
 2054  * This function is for IPv4 use only. Calling this function with an
 2055  * IPv6 packet in the mbuf chain will yield undefined results.
 2056  *
 2057  * Return 0 if successful, otherwise return -1.
 2058  *
 2059  * XXX The key is retrieved from the system's PF_KEY SADB, by keying a
 2060  * search with the destination IP address, and a 'magic SPI' to be
 2061  * determined by the application. This is hardcoded elsewhere to 1179
 2062  * right now. Another branch of this code exists which uses the SPD to
 2063  * specify per-application flows but it is unstable.
 2064  */
 2065 int
 2066 tcp_signature_compute(struct mbuf *m, int off0, int len, int optlen,
 2067     u_char *buf, u_int direction)
 2068 {
 2069         union sockaddr_union dst;
 2070         struct ippseudo ippseudo;
 2071         MD5_CTX ctx;
 2072         int doff;
 2073         struct ip *ip;
 2074         struct ipovly *ipovly;
 2075         struct secasvar *sav;
 2076         struct tcphdr *th;
 2077         u_short savecsum;
 2078 
 2079         KASSERT(m != NULL, ("NULL mbuf chain"));
 2080         KASSERT(buf != NULL, ("NULL signature pointer"));
 2081 
 2082         /* Extract the destination from the IP header in the mbuf. */
 2083         ip = mtod(m, struct ip *);
 2084         bzero(&dst, sizeof(union sockaddr_union));
 2085         dst.sa.sa_len = sizeof(struct sockaddr_in);
 2086         dst.sa.sa_family = AF_INET;
 2087         dst.sin.sin_addr = (direction == IPSEC_DIR_INBOUND) ?
 2088             ip->ip_src : ip->ip_dst;
 2089 
 2090         /* Look up an SADB entry which matches the address of the peer. */
 2091         sav = KEY_ALLOCSA(&dst, IPPROTO_TCP, htonl(TCP_SIG_SPI));
 2092         if (sav == NULL) {
 2093                 printf("%s: SADB lookup failed for %s\n", __func__,
 2094                     inet_ntoa(dst.sin.sin_addr));
 2095                 return (EINVAL);
 2096         }
 2097 
 2098         MD5Init(&ctx);
 2099         ipovly = (struct ipovly *)ip;
 2100         th = (struct tcphdr *)((u_char *)ip + off0);
 2101         doff = off0 + sizeof(struct tcphdr) + optlen;
 2102 
 2103         /*
 2104          * Step 1: Update MD5 hash with IP pseudo-header.
 2105          *
 2106          * XXX The ippseudo header MUST be digested in network byte order,
 2107          * or else we'll fail the regression test. Assume all fields we've
 2108          * been doing arithmetic on have been in host byte order.
 2109          * XXX One cannot depend on ipovly->ih_len here. When called from
 2110          * tcp_output(), the underlying ip_len member has not yet been set.
 2111          */
 2112         ippseudo.ippseudo_src = ipovly->ih_src;
 2113         ippseudo.ippseudo_dst = ipovly->ih_dst;
 2114         ippseudo.ippseudo_pad = 0;
 2115         ippseudo.ippseudo_p = IPPROTO_TCP;
 2116         ippseudo.ippseudo_len = htons(len + sizeof(struct tcphdr) + optlen);
 2117         MD5Update(&ctx, (char *)&ippseudo, sizeof(struct ippseudo));
 2118 
 2119         /*
 2120          * Step 2: Update MD5 hash with TCP header, excluding options.
 2121          * The TCP checksum must be set to zero.
 2122          */
 2123         savecsum = th->th_sum;
 2124         th->th_sum = 0;
 2125         MD5Update(&ctx, (char *)th, sizeof(struct tcphdr));
 2126         th->th_sum = savecsum;
 2127 
 2128         /*
 2129          * Step 3: Update MD5 hash with TCP segment data.
 2130          *         Use m_apply() to avoid an early m_pullup().
 2131          */
 2132         if (len > 0)
 2133                 m_apply(m, doff, len, tcp_signature_apply, &ctx);
 2134 
 2135         /*
 2136          * Step 4: Update MD5 hash with shared secret.
 2137          */
 2138         MD5Update(&ctx, _KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth));
 2139         MD5Final(buf, &ctx);
 2140 
 2141         key_sa_recordxfer(sav, m);
 2142         KEY_FREESAV(&sav);
 2143         return (0);
 2144 }
 2145 #endif /* TCP_SIGNATURE */
 2146 
 2147 static int
 2148 sysctl_drop(SYSCTL_HANDLER_ARGS)
 2149 {
 2150         /* addrs[0] is a foreign socket, addrs[1] is a local one. */
 2151         struct sockaddr_storage addrs[2];
 2152         struct inpcb *inp;
 2153         struct tcpcb *tp;
 2154         struct tcptw *tw;
 2155         struct sockaddr_in *fin, *lin;
 2156 #ifdef INET6
 2157         struct sockaddr_in6 *fin6, *lin6;
 2158         struct in6_addr f6, l6;
 2159 #endif
 2160         int error;
 2161 
 2162         inp = NULL;
 2163         fin = lin = NULL;
 2164 #ifdef INET6
 2165         fin6 = lin6 = NULL;
 2166 #endif
 2167         error = 0;
 2168 
 2169         if (req->oldptr != NULL || req->oldlen != 0)
 2170                 return (EINVAL);
 2171         if (req->newptr == NULL)
 2172                 return (EPERM);
 2173         if (req->newlen < sizeof(addrs))
 2174                 return (ENOMEM);
 2175         error = SYSCTL_IN(req, &addrs, sizeof(addrs));
 2176         if (error)
 2177                 return (error);
 2178 
 2179         switch (addrs[0].ss_family) {
 2180 #ifdef INET6
 2181         case AF_INET6:
 2182                 fin6 = (struct sockaddr_in6 *)&addrs[0];
 2183                 lin6 = (struct sockaddr_in6 *)&addrs[1];
 2184                 if (fin6->sin6_len != sizeof(struct sockaddr_in6) ||
 2185                     lin6->sin6_len != sizeof(struct sockaddr_in6))
 2186                         return (EINVAL);
 2187                 if (IN6_IS_ADDR_V4MAPPED(&fin6->sin6_addr)) {
 2188                         if (!IN6_IS_ADDR_V4MAPPED(&lin6->sin6_addr))
 2189                                 return (EINVAL);
 2190                         in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[0]);
 2191                         in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[1]);
 2192                         fin = (struct sockaddr_in *)&addrs[0];
 2193                         lin = (struct sockaddr_in *)&addrs[1];
 2194                         break;
 2195                 }
 2196                 error = in6_embedscope(&f6, fin6, NULL, NULL);
 2197                 if (error)
 2198                         return (EINVAL);
 2199                 error = in6_embedscope(&l6, lin6, NULL, NULL);
 2200                 if (error)
 2201                         return (EINVAL);
 2202                 break;
 2203 #endif
 2204         case AF_INET:
 2205                 fin = (struct sockaddr_in *)&addrs[0];
 2206                 lin = (struct sockaddr_in *)&addrs[1];
 2207                 if (fin->sin_len != sizeof(struct sockaddr_in) ||
 2208                     lin->sin_len != sizeof(struct sockaddr_in))
 2209                         return (EINVAL);
 2210                 break;
 2211         default:
 2212                 return (EINVAL);
 2213         }
 2214         INP_INFO_WLOCK(&tcbinfo);
 2215         switch (addrs[0].ss_family) {
 2216 #ifdef INET6
 2217         case AF_INET6:
 2218                 inp = in6_pcblookup_hash(&tcbinfo, &f6, fin6->sin6_port,
 2219                     &l6, lin6->sin6_port, 0, NULL);
 2220                 break;
 2221 #endif
 2222         case AF_INET:
 2223                 inp = in_pcblookup_hash(&tcbinfo, fin->sin_addr, fin->sin_port,
 2224                     lin->sin_addr, lin->sin_port, 0, NULL);
 2225                 break;
 2226         }
 2227         if (inp != NULL) {
 2228                 INP_LOCK(inp);
 2229                 if ((tw = intotw(inp)) &&
 2230                     (inp->inp_vflag & INP_TIMEWAIT) != 0) {
 2231                         (void) tcp_twclose(tw, 0);
 2232                 } else if ((tp = intotcpcb(inp)) &&
 2233                     ((inp->inp_socket->so_options & SO_ACCEPTCONN) == 0)) {
 2234                         tp = tcp_drop(tp, ECONNABORTED);
 2235                         if (tp != NULL)
 2236                                 INP_UNLOCK(inp);
 2237                 } else
 2238                         INP_UNLOCK(inp);
 2239         } else
 2240                 error = ESRCH;
 2241         INP_INFO_WUNLOCK(&tcbinfo);
 2242         return (error);
 2243 }
 2244 
 2245 SYSCTL_PROC(_net_inet_tcp, TCPCTL_DROP, drop,
 2246     CTLTYPE_STRUCT|CTLFLAG_WR|CTLFLAG_SKIP, NULL,
 2247     0, sysctl_drop, "", "Drop TCP connection");

Cache object: 1d7433c45b2cb528c2bd615f1b26b979


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.