The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/netinet/tcp_subr.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
    3  *      The Regents of the University of California.  All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice, this list of conditions and the following disclaimer.
   10  * 2. Redistributions in binary form must reproduce the above copyright
   11  *    notice, this list of conditions and the following disclaimer in the
   12  *    documentation and/or other materials provided with the distribution.
   13  * 4. Neither the name of the University nor the names of its contributors
   14  *    may be used to endorse or promote products derived from this software
   15  *    without specific prior written permission.
   16  *
   17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   27  * SUCH DAMAGE.
   28  *
   29  *      @(#)tcp_subr.c  8.2 (Berkeley) 5/24/95
   30  */
   31 
   32 #include <sys/cdefs.h>
   33 __FBSDID("$FreeBSD$");
   34 
   35 #include "opt_compat.h"
   36 #include "opt_inet.h"
   37 #include "opt_inet6.h"
   38 #include "opt_ipsec.h"
   39 #include "opt_mac.h"
   40 #include "opt_tcpdebug.h"
   41 
   42 #include <sys/param.h>
   43 #include <sys/systm.h>
   44 #include <sys/callout.h>
   45 #include <sys/kernel.h>
   46 #include <sys/sysctl.h>
   47 #include <sys/malloc.h>
   48 #include <sys/mbuf.h>
   49 #ifdef INET6
   50 #include <sys/domain.h>
   51 #endif
   52 #include <sys/priv.h>
   53 #include <sys/proc.h>
   54 #include <sys/socket.h>
   55 #include <sys/socketvar.h>
   56 #include <sys/protosw.h>
   57 #include <sys/random.h>
   58 
   59 #include <vm/uma.h>
   60 
   61 #include <net/route.h>
   62 #include <net/if.h>
   63 
   64 #include <netinet/in.h>
   65 #include <netinet/in_systm.h>
   66 #include <netinet/ip.h>
   67 #ifdef INET6
   68 #include <netinet/ip6.h>
   69 #endif
   70 #include <netinet/in_pcb.h>
   71 #ifdef INET6
   72 #include <netinet6/in6_pcb.h>
   73 #endif
   74 #include <netinet/in_var.h>
   75 #include <netinet/ip_var.h>
   76 #ifdef INET6
   77 #include <netinet6/ip6_var.h>
   78 #include <netinet6/scope6_var.h>
   79 #include <netinet6/nd6.h>
   80 #endif
   81 #include <netinet/ip_icmp.h>
   82 #include <netinet/tcp.h>
   83 #include <netinet/tcp_fsm.h>
   84 #include <netinet/tcp_seq.h>
   85 #include <netinet/tcp_timer.h>
   86 #include <netinet/tcp_var.h>
   87 #include <netinet/tcp_syncache.h>
   88 #ifdef INET6
   89 #include <netinet6/tcp6_var.h>
   90 #endif
   91 #include <netinet/tcpip.h>
   92 #ifdef TCPDEBUG
   93 #include <netinet/tcp_debug.h>
   94 #endif
   95 #include <netinet6/ip6protosw.h>
   96 
   97 #ifdef IPSEC
   98 #include <netipsec/ipsec.h>
   99 #include <netipsec/xform.h>
  100 #ifdef INET6
  101 #include <netipsec/ipsec6.h>
  102 #endif
  103 #include <netipsec/key.h>
  104 #endif /*IPSEC*/
  105 
  106 #include <machine/in_cksum.h>
  107 #include <sys/md5.h>
  108 
  109 #include <security/mac/mac_framework.h>
  110 
  111 int     tcp_mssdflt = TCP_MSS;
  112 SYSCTL_INT(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt, CTLFLAG_RW,
  113     &tcp_mssdflt, 0, "Default TCP Maximum Segment Size");
  114 
  115 #ifdef INET6
  116 int     tcp_v6mssdflt = TCP6_MSS;
  117 SYSCTL_INT(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt,
  118     CTLFLAG_RW, &tcp_v6mssdflt , 0,
  119     "Default TCP Maximum Segment Size for IPv6");
  120 #endif
  121 
  122 /*
  123  * Minimum MSS we accept and use. This prevents DoS attacks where
  124  * we are forced to a ridiculous low MSS like 20 and send hundreds
  125  * of packets instead of one. The effect scales with the available
  126  * bandwidth and quickly saturates the CPU and network interface
  127  * with packet generation and sending. Set to zero to disable MINMSS
  128  * checking. This setting prevents us from sending too small packets.
  129  */
  130 int     tcp_minmss = TCP_MINMSS;
  131 SYSCTL_INT(_net_inet_tcp, OID_AUTO, minmss, CTLFLAG_RW,
  132     &tcp_minmss , 0, "Minmum TCP Maximum Segment Size");
  133 
  134 int     tcp_do_rfc1323 = 1;
  135 SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_RW,
  136     &tcp_do_rfc1323, 0, "Enable rfc1323 (high performance TCP) extensions");
  137 
  138 static int      tcp_log_debug = 0;
  139 SYSCTL_INT(_net_inet_tcp, OID_AUTO, log_debug, CTLFLAG_RW,
  140     &tcp_log_debug, 0, "Log errors caused by incoming TCP segments");
  141 
  142 static int      tcp_tcbhashsize = 0;
  143 SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RDTUN,
  144     &tcp_tcbhashsize, 0, "Size of TCP control-block hashtable");
  145 
  146 static int      do_tcpdrain = 1;
  147 SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW,
  148     &do_tcpdrain, 0,
  149     "Enable tcp_drain routine for extra help when low on mbufs");
  150 
  151 SYSCTL_INT(_net_inet_tcp, OID_AUTO, pcbcount, CTLFLAG_RD,
  152     &tcbinfo.ipi_count, 0, "Number of active PCBs");
  153 
  154 static int      icmp_may_rst = 1;
  155 SYSCTL_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_RW,
  156     &icmp_may_rst, 0,
  157     "Certain ICMP unreachable messages may abort connections in SYN_SENT");
  158 
  159 static int      tcp_isn_reseed_interval = 0;
  160 SYSCTL_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_RW,
  161     &tcp_isn_reseed_interval, 0, "Seconds between reseeding of ISN secret");
  162 
  163 /*
  164  * TCP bandwidth limiting sysctls.  Note that the default lower bound of
  165  * 1024 exists only for debugging.  A good production default would be
  166  * something like 6100.
  167  */
  168 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, inflight, CTLFLAG_RW, 0,
  169     "TCP inflight data limiting");
  170 
  171 static int      tcp_inflight_enable = 1;
  172 SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, enable, CTLFLAG_RW,
  173     &tcp_inflight_enable, 0, "Enable automatic TCP inflight data limiting");
  174 
  175 static int      tcp_inflight_debug = 0;
  176 SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, debug, CTLFLAG_RW,
  177     &tcp_inflight_debug, 0, "Debug TCP inflight calculations");
  178 
  179 static int      tcp_inflight_rttthresh;
  180 SYSCTL_PROC(_net_inet_tcp_inflight, OID_AUTO, rttthresh, CTLTYPE_INT|CTLFLAG_RW,
  181     &tcp_inflight_rttthresh, 0, sysctl_msec_to_ticks, "I",
  182     "RTT threshold below which inflight will deactivate itself");
  183 
  184 static int      tcp_inflight_min = 6144;
  185 SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, min, CTLFLAG_RW,
  186     &tcp_inflight_min, 0, "Lower-bound for TCP inflight window");
  187 
  188 static int      tcp_inflight_max = TCP_MAXWIN << TCP_MAX_WINSHIFT;
  189 SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, max, CTLFLAG_RW,
  190     &tcp_inflight_max, 0, "Upper-bound for TCP inflight window");
  191 
  192 static int      tcp_inflight_stab = 20;
  193 SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, stab, CTLFLAG_RW,
  194     &tcp_inflight_stab, 0, "Inflight Algorithm Stabilization 20 = 2 packets");
  195 
  196 uma_zone_t sack_hole_zone;
  197 
  198 static struct inpcb *tcp_notify(struct inpcb *, int);
  199 static void     tcp_isn_tick(void *);
  200 
  201 /*
  202  * Target size of TCP PCB hash tables. Must be a power of two.
  203  *
  204  * Note that this can be overridden by the kernel environment
  205  * variable net.inet.tcp.tcbhashsize
  206  */
  207 #ifndef TCBHASHSIZE
  208 #define TCBHASHSIZE     512
  209 #endif
  210 
  211 /*
  212  * XXX
  213  * Callouts should be moved into struct tcp directly.  They are currently
  214  * separate because the tcpcb structure is exported to userland for sysctl
  215  * parsing purposes, which do not know about callouts.
  216  */
  217 struct tcpcb_mem {
  218         struct  tcpcb           tcb;
  219         struct  tcp_timer       tt;
  220 };
  221 
  222 static uma_zone_t tcpcb_zone;
  223 MALLOC_DEFINE(M_TCPLOG, "tcplog", "TCP address and flags print buffers");
  224 struct callout isn_callout;
  225 static struct mtx isn_mtx;
  226 
  227 #define ISN_LOCK_INIT() mtx_init(&isn_mtx, "isn_mtx", NULL, MTX_DEF)
  228 #define ISN_LOCK()      mtx_lock(&isn_mtx)
  229 #define ISN_UNLOCK()    mtx_unlock(&isn_mtx)
  230 
  231 /*
  232  * TCP initialization.
  233  */
  234 static void
  235 tcp_zone_change(void *tag)
  236 {
  237 
  238         uma_zone_set_max(tcbinfo.ipi_zone, maxsockets);
  239         uma_zone_set_max(tcpcb_zone, maxsockets);
  240         tcp_tw_zone_change();
  241 }
  242 
  243 static int
  244 tcp_inpcb_init(void *mem, int size, int flags)
  245 {
  246         struct inpcb *inp = mem;
  247 
  248         INP_LOCK_INIT(inp, "inp", "tcpinp");
  249         return (0);
  250 }
  251 
  252 void
  253 tcp_init(void)
  254 {
  255 
  256         int hashsize = TCBHASHSIZE;
  257         tcp_delacktime = TCPTV_DELACK;
  258         tcp_keepinit = TCPTV_KEEP_INIT;
  259         tcp_keepidle = TCPTV_KEEP_IDLE;
  260         tcp_keepintvl = TCPTV_KEEPINTVL;
  261         tcp_maxpersistidle = TCPTV_KEEP_IDLE;
  262         tcp_msl = TCPTV_MSL;
  263         tcp_rexmit_min = TCPTV_MIN;
  264         if (tcp_rexmit_min < 1)
  265                 tcp_rexmit_min = 1;
  266         tcp_rexmit_slop = TCPTV_CPU_VAR;
  267         tcp_inflight_rttthresh = TCPTV_INFLIGHT_RTTTHRESH;
  268         tcp_finwait2_timeout = TCPTV_FINWAIT2_TIMEOUT;
  269 
  270         INP_INFO_LOCK_INIT(&tcbinfo, "tcp");
  271         LIST_INIT(&tcb);
  272         tcbinfo.ipi_listhead = &tcb;
  273         TUNABLE_INT_FETCH("net.inet.tcp.tcbhashsize", &hashsize);
  274         if (!powerof2(hashsize)) {
  275                 printf("WARNING: TCB hash size not a power of 2\n");
  276                 hashsize = 512; /* safe default */
  277         }
  278         tcp_tcbhashsize = hashsize;
  279         tcbinfo.ipi_hashbase = hashinit(hashsize, M_PCB,
  280             &tcbinfo.ipi_hashmask);
  281         tcbinfo.ipi_porthashbase = hashinit(hashsize, M_PCB,
  282             &tcbinfo.ipi_porthashmask);
  283         tcbinfo.ipi_zone = uma_zcreate("inpcb", sizeof(struct inpcb),
  284             NULL, NULL, tcp_inpcb_init, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
  285         uma_zone_set_max(tcbinfo.ipi_zone, maxsockets);
  286 #ifdef INET6
  287 #define TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
  288 #else /* INET6 */
  289 #define TCP_MINPROTOHDR (sizeof(struct tcpiphdr))
  290 #endif /* INET6 */
  291         if (max_protohdr < TCP_MINPROTOHDR)
  292                 max_protohdr = TCP_MINPROTOHDR;
  293         if (max_linkhdr + TCP_MINPROTOHDR > MHLEN)
  294                 panic("tcp_init");
  295 #undef TCP_MINPROTOHDR
  296         /*
  297          * These have to be type stable for the benefit of the timers.
  298          */
  299         tcpcb_zone = uma_zcreate("tcpcb", sizeof(struct tcpcb_mem),
  300             NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
  301         uma_zone_set_max(tcpcb_zone, maxsockets);
  302         tcp_tw_init();
  303         syncache_init();
  304         tcp_hc_init();
  305         tcp_reass_init();
  306         ISN_LOCK_INIT();
  307         callout_init(&isn_callout, CALLOUT_MPSAFE);
  308         tcp_isn_tick(NULL);
  309         EVENTHANDLER_REGISTER(shutdown_pre_sync, tcp_fini, NULL,
  310                 SHUTDOWN_PRI_DEFAULT);
  311         sack_hole_zone = uma_zcreate("sackhole", sizeof(struct sackhole),
  312             NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
  313         EVENTHANDLER_REGISTER(maxsockets_change, tcp_zone_change, NULL,
  314                 EVENTHANDLER_PRI_ANY);
  315 }
  316 
  317 void
  318 tcp_fini(void *xtp)
  319 {
  320 
  321         callout_stop(&isn_callout);
  322 }
  323 
  324 /*
  325  * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
  326  * tcp_template used to store this data in mbufs, but we now recopy it out
  327  * of the tcpcb each time to conserve mbufs.
  328  */
  329 void
  330 tcpip_fillheaders(struct inpcb *inp, void *ip_ptr, void *tcp_ptr)
  331 {
  332         struct tcphdr *th = (struct tcphdr *)tcp_ptr;
  333 
  334         INP_LOCK_ASSERT(inp);
  335 
  336 #ifdef INET6
  337         if ((inp->inp_vflag & INP_IPV6) != 0) {
  338                 struct ip6_hdr *ip6;
  339 
  340                 ip6 = (struct ip6_hdr *)ip_ptr;
  341                 ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
  342                         (inp->in6p_flowinfo & IPV6_FLOWINFO_MASK);
  343                 ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) |
  344                         (IPV6_VERSION & IPV6_VERSION_MASK);
  345                 ip6->ip6_nxt = IPPROTO_TCP;
  346                 ip6->ip6_plen = sizeof(struct tcphdr);
  347                 ip6->ip6_src = inp->in6p_laddr;
  348                 ip6->ip6_dst = inp->in6p_faddr;
  349         } else
  350 #endif
  351         {
  352                 struct ip *ip;
  353 
  354                 ip = (struct ip *)ip_ptr;
  355                 ip->ip_v = IPVERSION;
  356                 ip->ip_hl = 5;
  357                 ip->ip_tos = inp->inp_ip_tos;
  358                 ip->ip_len = 0;
  359                 ip->ip_id = 0;
  360                 ip->ip_off = 0;
  361                 ip->ip_ttl = inp->inp_ip_ttl;
  362                 ip->ip_sum = 0;
  363                 ip->ip_p = IPPROTO_TCP;
  364                 ip->ip_src = inp->inp_laddr;
  365                 ip->ip_dst = inp->inp_faddr;
  366         }
  367         th->th_sport = inp->inp_lport;
  368         th->th_dport = inp->inp_fport;
  369         th->th_seq = 0;
  370         th->th_ack = 0;
  371         th->th_x2 = 0;
  372         th->th_off = 5;
  373         th->th_flags = 0;
  374         th->th_win = 0;
  375         th->th_urp = 0;
  376         th->th_sum = 0;         /* in_pseudo() is called later for ipv4 */
  377 }
  378 
  379 /*
  380  * Create template to be used to send tcp packets on a connection.
  381  * Allocates an mbuf and fills in a skeletal tcp/ip header.  The only
  382  * use for this function is in keepalives, which use tcp_respond.
  383  */
  384 struct tcptemp *
  385 tcpip_maketemplate(struct inpcb *inp)
  386 {
  387         struct mbuf *m;
  388         struct tcptemp *n;
  389 
  390         m = m_get(M_DONTWAIT, MT_DATA);
  391         if (m == NULL)
  392                 return (0);
  393         m->m_len = sizeof(struct tcptemp);
  394         n = mtod(m, struct tcptemp *);
  395 
  396         tcpip_fillheaders(inp, (void *)&n->tt_ipgen, (void *)&n->tt_t);
  397         return (n);
  398 }
  399 
  400 /*
  401  * Send a single message to the TCP at address specified by
  402  * the given TCP/IP header.  If m == NULL, then we make a copy
  403  * of the tcpiphdr at ti and send directly to the addressed host.
  404  * This is used to force keep alive messages out using the TCP
  405  * template for a connection.  If flags are given then we send
  406  * a message back to the TCP which originated the * segment ti,
  407  * and discard the mbuf containing it and any other attached mbufs.
  408  *
  409  * In any case the ack and sequence number of the transmitted
  410  * segment are as specified by the parameters.
  411  *
  412  * NOTE: If m != NULL, then ti must point to *inside* the mbuf.
  413  */
  414 void
  415 tcp_respond(struct tcpcb *tp, void *ipgen, struct tcphdr *th, struct mbuf *m,
  416     tcp_seq ack, tcp_seq seq, int flags)
  417 {
  418         int tlen;
  419         int win = 0;
  420         struct ip *ip;
  421         struct tcphdr *nth;
  422 #ifdef INET6
  423         struct ip6_hdr *ip6;
  424         int isipv6;
  425 #endif /* INET6 */
  426         int ipflags = 0;
  427         struct inpcb *inp;
  428 
  429         KASSERT(tp != NULL || m != NULL, ("tcp_respond: tp and m both NULL"));
  430 
  431 #ifdef INET6
  432         isipv6 = ((struct ip *)ipgen)->ip_v == 6;
  433         ip6 = ipgen;
  434 #endif /* INET6 */
  435         ip = ipgen;
  436 
  437         if (tp != NULL) {
  438                 inp = tp->t_inpcb;
  439                 KASSERT(inp != NULL, ("tcp control block w/o inpcb"));
  440                 INP_LOCK_ASSERT(inp);
  441         } else
  442                 inp = NULL;
  443 
  444         if (tp != NULL) {
  445                 if (!(flags & TH_RST)) {
  446                         win = sbspace(&inp->inp_socket->so_rcv);
  447                         if (win > (long)TCP_MAXWIN << tp->rcv_scale)
  448                                 win = (long)TCP_MAXWIN << tp->rcv_scale;
  449                 }
  450         }
  451         if (m == NULL) {
  452                 m = m_gethdr(M_DONTWAIT, MT_DATA);
  453                 if (m == NULL)
  454                         return;
  455                 tlen = 0;
  456                 m->m_data += max_linkhdr;
  457 #ifdef INET6
  458                 if (isipv6) {
  459                         bcopy((caddr_t)ip6, mtod(m, caddr_t),
  460                               sizeof(struct ip6_hdr));
  461                         ip6 = mtod(m, struct ip6_hdr *);
  462                         nth = (struct tcphdr *)(ip6 + 1);
  463                 } else
  464 #endif /* INET6 */
  465               {
  466                 bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
  467                 ip = mtod(m, struct ip *);
  468                 nth = (struct tcphdr *)(ip + 1);
  469               }
  470                 bcopy((caddr_t)th, (caddr_t)nth, sizeof(struct tcphdr));
  471                 flags = TH_ACK;
  472         } else {
  473                 m_freem(m->m_next);
  474                 m->m_next = NULL;
  475                 m->m_data = (caddr_t)ipgen;
  476                 /* m_len is set later */
  477                 tlen = 0;
  478 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
  479 #ifdef INET6
  480                 if (isipv6) {
  481                         xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
  482                         nth = (struct tcphdr *)(ip6 + 1);
  483                 } else
  484 #endif /* INET6 */
  485               {
  486                 xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, n_long);
  487                 nth = (struct tcphdr *)(ip + 1);
  488               }
  489                 if (th != nth) {
  490                         /*
  491                          * this is usually a case when an extension header
  492                          * exists between the IPv6 header and the
  493                          * TCP header.
  494                          */
  495                         nth->th_sport = th->th_sport;
  496                         nth->th_dport = th->th_dport;
  497                 }
  498                 xchg(nth->th_dport, nth->th_sport, n_short);
  499 #undef xchg
  500         }
  501 #ifdef INET6
  502         if (isipv6) {
  503                 ip6->ip6_flow = 0;
  504                 ip6->ip6_vfc = IPV6_VERSION;
  505                 ip6->ip6_nxt = IPPROTO_TCP;
  506                 ip6->ip6_plen = htons((u_short)(sizeof (struct tcphdr) +
  507                                                 tlen));
  508                 tlen += sizeof (struct ip6_hdr) + sizeof (struct tcphdr);
  509         } else
  510 #endif
  511         {
  512                 tlen += sizeof (struct tcpiphdr);
  513                 ip->ip_len = tlen;
  514                 ip->ip_ttl = ip_defttl;
  515                 if (path_mtu_discovery)
  516                         ip->ip_off |= IP_DF;
  517         }
  518         m->m_len = tlen;
  519         m->m_pkthdr.len = tlen;
  520         m->m_pkthdr.rcvif = NULL;
  521 #ifdef MAC
  522         if (inp != NULL) {
  523                 /*
  524                  * Packet is associated with a socket, so allow the
  525                  * label of the response to reflect the socket label.
  526                  */
  527                 INP_LOCK_ASSERT(inp);
  528                 mac_create_mbuf_from_inpcb(inp, m);
  529         } else {
  530                 /*
  531                  * Packet is not associated with a socket, so possibly
  532                  * update the label in place.
  533                  */
  534                 mac_reflect_mbuf_tcp(m);
  535         }
  536 #endif
  537         nth->th_seq = htonl(seq);
  538         nth->th_ack = htonl(ack);
  539         nth->th_x2 = 0;
  540         nth->th_off = sizeof (struct tcphdr) >> 2;
  541         nth->th_flags = flags;
  542         if (tp != NULL)
  543                 nth->th_win = htons((u_short) (win >> tp->rcv_scale));
  544         else
  545                 nth->th_win = htons((u_short)win);
  546         nth->th_urp = 0;
  547 #ifdef INET6
  548         if (isipv6) {
  549                 nth->th_sum = 0;
  550                 nth->th_sum = in6_cksum(m, IPPROTO_TCP,
  551                                         sizeof(struct ip6_hdr),
  552                                         tlen - sizeof(struct ip6_hdr));
  553                 ip6->ip6_hlim = in6_selecthlim(tp != NULL ? tp->t_inpcb :
  554                     NULL, NULL);
  555         } else
  556 #endif /* INET6 */
  557         {
  558                 nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
  559                     htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p)));
  560                 m->m_pkthdr.csum_flags = CSUM_TCP;
  561                 m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
  562         }
  563 #ifdef TCPDEBUG
  564         if (tp == NULL || (inp->inp_socket->so_options & SO_DEBUG))
  565                 tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0);
  566 #endif
  567 #ifdef INET6
  568         if (isipv6)
  569                 (void) ip6_output(m, NULL, NULL, ipflags, NULL, NULL, inp);
  570         else
  571 #endif /* INET6 */
  572         (void) ip_output(m, NULL, NULL, ipflags, NULL, inp);
  573 }
  574 
  575 /*
  576  * Create a new TCP control block, making an
  577  * empty reassembly queue and hooking it to the argument
  578  * protocol control block.  The `inp' parameter must have
  579  * come from the zone allocator set up in tcp_init().
  580  */
  581 struct tcpcb *
  582 tcp_newtcpcb(struct inpcb *inp)
  583 {
  584         struct tcpcb_mem *tm;
  585         struct tcpcb *tp;
  586 #ifdef INET6
  587         int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
  588 #endif /* INET6 */
  589 
  590         tm = uma_zalloc(tcpcb_zone, M_NOWAIT | M_ZERO);
  591         if (tm == NULL)
  592                 return (NULL);
  593         tp = &tm->tcb;
  594         tp->t_timers = &tm->tt;
  595         /*      LIST_INIT(&tp->t_segq); */      /* XXX covered by M_ZERO */
  596         tp->t_maxseg = tp->t_maxopd =
  597 #ifdef INET6
  598                 isipv6 ? tcp_v6mssdflt :
  599 #endif /* INET6 */
  600                 tcp_mssdflt;
  601 
  602         /* Set up our timeouts. */
  603         callout_init(&tp->t_timers->tt_rexmt, CALLOUT_MPSAFE);
  604         callout_init(&tp->t_timers->tt_persist, CALLOUT_MPSAFE);
  605         callout_init(&tp->t_timers->tt_keep, CALLOUT_MPSAFE);
  606         callout_init(&tp->t_timers->tt_2msl, CALLOUT_MPSAFE);
  607         callout_init(&tp->t_timers->tt_delack, CALLOUT_MPSAFE);
  608 
  609         if (tcp_do_rfc1323)
  610                 tp->t_flags = (TF_REQ_SCALE|TF_REQ_TSTMP);
  611         if (tcp_do_sack)
  612                 tp->t_flags |= TF_SACK_PERMIT;
  613         TAILQ_INIT(&tp->snd_holes);
  614         tp->t_inpcb = inp;      /* XXX */
  615         /*
  616          * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
  617          * rtt estimate.  Set rttvar so that srtt + 4 * rttvar gives
  618          * reasonable initial retransmit time.
  619          */
  620         tp->t_srtt = TCPTV_SRTTBASE;
  621         tp->t_rttvar = ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
  622         tp->t_rttmin = tcp_rexmit_min;
  623         tp->t_rxtcur = TCPTV_RTOBASE;
  624         tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
  625         tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
  626         tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
  627         tp->t_rcvtime = ticks;
  628         tp->t_bw_rtttime = ticks;
  629         /*
  630          * IPv4 TTL initialization is necessary for an IPv6 socket as well,
  631          * because the socket may be bound to an IPv6 wildcard address,
  632          * which may match an IPv4-mapped IPv6 address.
  633          */
  634         inp->inp_ip_ttl = ip_defttl;
  635         inp->inp_ppcb = tp;
  636         return (tp);            /* XXX */
  637 }
  638 
  639 /*
  640  * Drop a TCP connection, reporting
  641  * the specified error.  If connection is synchronized,
  642  * then send a RST to peer.
  643  */
  644 struct tcpcb *
  645 tcp_drop(struct tcpcb *tp, int errno)
  646 {
  647         struct socket *so = tp->t_inpcb->inp_socket;
  648 
  649         INP_INFO_WLOCK_ASSERT(&tcbinfo);
  650         INP_LOCK_ASSERT(tp->t_inpcb);
  651 
  652         if (TCPS_HAVERCVDSYN(tp->t_state)) {
  653                 tp->t_state = TCPS_CLOSED;
  654                 (void) tcp_output(tp);
  655                 tcpstat.tcps_drops++;
  656         } else
  657                 tcpstat.tcps_conndrops++;
  658         if (errno == ETIMEDOUT && tp->t_softerror)
  659                 errno = tp->t_softerror;
  660         so->so_error = errno;
  661         return (tcp_close(tp));
  662 }
  663 
  664 void
  665 tcp_discardcb(struct tcpcb *tp)
  666 {
  667         struct tseg_qent *q;
  668         struct inpcb *inp = tp->t_inpcb;
  669         struct socket *so = inp->inp_socket;
  670 #ifdef INET6
  671         int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
  672 #endif /* INET6 */
  673 
  674         INP_LOCK_ASSERT(inp);
  675 
  676         /*
  677          * Make sure that all of our timers are stopped before we
  678          * delete the PCB.
  679          */
  680         callout_stop(&tp->t_timers->tt_rexmt);
  681         callout_stop(&tp->t_timers->tt_persist);
  682         callout_stop(&tp->t_timers->tt_keep);
  683         callout_stop(&tp->t_timers->tt_2msl);
  684         callout_stop(&tp->t_timers->tt_delack);
  685 
  686         /*
  687          * If we got enough samples through the srtt filter,
  688          * save the rtt and rttvar in the routing entry.
  689          * 'Enough' is arbitrarily defined as 4 rtt samples.
  690          * 4 samples is enough for the srtt filter to converge
  691          * to within enough % of the correct value; fewer samples
  692          * and we could save a bogus rtt. The danger is not high
  693          * as tcp quickly recovers from everything.
  694          * XXX: Works very well but needs some more statistics!
  695          */
  696         if (tp->t_rttupdated >= 4) {
  697                 struct hc_metrics_lite metrics;
  698                 u_long ssthresh;
  699 
  700                 bzero(&metrics, sizeof(metrics));
  701                 /*
  702                  * Update the ssthresh always when the conditions below
  703                  * are satisfied. This gives us better new start value
  704                  * for the congestion avoidance for new connections.
  705                  * ssthresh is only set if packet loss occured on a session.
  706                  *
  707                  * XXXRW: 'so' may be NULL here, and/or socket buffer may be
  708                  * being torn down.  Ideally this code would not use 'so'.
  709                  */
  710                 ssthresh = tp->snd_ssthresh;
  711                 if (ssthresh != 0 && ssthresh < so->so_snd.sb_hiwat / 2) {
  712                         /*
  713                          * convert the limit from user data bytes to
  714                          * packets then to packet data bytes.
  715                          */
  716                         ssthresh = (ssthresh + tp->t_maxseg / 2) / tp->t_maxseg;
  717                         if (ssthresh < 2)
  718                                 ssthresh = 2;
  719                         ssthresh *= (u_long)(tp->t_maxseg +
  720 #ifdef INET6
  721                                       (isipv6 ? sizeof (struct ip6_hdr) +
  722                                                sizeof (struct tcphdr) :
  723 #endif
  724                                        sizeof (struct tcpiphdr)
  725 #ifdef INET6
  726                                        )
  727 #endif
  728                                       );
  729                 } else
  730                         ssthresh = 0;
  731                 metrics.rmx_ssthresh = ssthresh;
  732 
  733                 metrics.rmx_rtt = tp->t_srtt;
  734                 metrics.rmx_rttvar = tp->t_rttvar;
  735                 /* XXX: This wraps if the pipe is more than 4 Gbit per second */
  736                 metrics.rmx_bandwidth = tp->snd_bandwidth;
  737                 metrics.rmx_cwnd = tp->snd_cwnd;
  738                 metrics.rmx_sendpipe = 0;
  739                 metrics.rmx_recvpipe = 0;
  740 
  741                 tcp_hc_update(&inp->inp_inc, &metrics);
  742         }
  743 
  744         /* free the reassembly queue, if any */
  745         while ((q = LIST_FIRST(&tp->t_segq)) != NULL) {
  746                 LIST_REMOVE(q, tqe_q);
  747                 m_freem(q->tqe_m);
  748                 uma_zfree(tcp_reass_zone, q);
  749                 tp->t_segqlen--;
  750                 tcp_reass_qsize--;
  751         }
  752         tcp_free_sackholes(tp);
  753         inp->inp_ppcb = NULL;
  754         tp->t_inpcb = NULL;
  755         uma_zfree(tcpcb_zone, tp);
  756 }
  757 
  758 /*
  759  * Attempt to close a TCP control block, marking it as dropped, and freeing
  760  * the socket if we hold the only reference.
  761  */
  762 struct tcpcb *
  763 tcp_close(struct tcpcb *tp)
  764 {
  765         struct inpcb *inp = tp->t_inpcb;
  766         struct socket *so;
  767 
  768         INP_INFO_WLOCK_ASSERT(&tcbinfo);
  769         INP_LOCK_ASSERT(inp);
  770 
  771         in_pcbdrop(inp);
  772         tcpstat.tcps_closed++;
  773         KASSERT(inp->inp_socket != NULL, ("tcp_close: inp_socket NULL"));
  774         so = inp->inp_socket;
  775         soisdisconnected(so);
  776         if (inp->inp_vflag & INP_SOCKREF) {
  777                 KASSERT(so->so_state & SS_PROTOREF,
  778                     ("tcp_close: !SS_PROTOREF"));
  779                 inp->inp_vflag &= ~INP_SOCKREF;
  780                 INP_UNLOCK(inp);
  781                 ACCEPT_LOCK();
  782                 SOCK_LOCK(so);
  783                 so->so_state &= ~SS_PROTOREF;
  784                 sofree(so);
  785                 return (NULL);
  786         }
  787         return (tp);
  788 }
  789 
  790 void
  791 tcp_drain(void)
  792 {
  793 
  794         if (do_tcpdrain) {
  795                 struct inpcb *inpb;
  796                 struct tcpcb *tcpb;
  797                 struct tseg_qent *te;
  798 
  799         /*
  800          * Walk the tcpbs, if existing, and flush the reassembly queue,
  801          * if there is one...
  802          * XXX: The "Net/3" implementation doesn't imply that the TCP
  803          *      reassembly queue should be flushed, but in a situation
  804          *      where we're really low on mbufs, this is potentially
  805          *      usefull.
  806          */
  807                 INP_INFO_RLOCK(&tcbinfo);
  808                 LIST_FOREACH(inpb, tcbinfo.ipi_listhead, inp_list) {
  809                         if (inpb->inp_vflag & INP_TIMEWAIT)
  810                                 continue;
  811                         INP_LOCK(inpb);
  812                         if ((tcpb = intotcpcb(inpb)) != NULL) {
  813                                 while ((te = LIST_FIRST(&tcpb->t_segq))
  814                                     != NULL) {
  815                                         LIST_REMOVE(te, tqe_q);
  816                                         m_freem(te->tqe_m);
  817                                         uma_zfree(tcp_reass_zone, te);
  818                                         tcpb->t_segqlen--;
  819                                         tcp_reass_qsize--;
  820                                 }
  821                                 tcp_clean_sackreport(tcpb);
  822                         }
  823                         INP_UNLOCK(inpb);
  824                 }
  825                 INP_INFO_RUNLOCK(&tcbinfo);
  826         }
  827 }
  828 
  829 /*
  830  * Notify a tcp user of an asynchronous error;
  831  * store error as soft error, but wake up user
  832  * (for now, won't do anything until can select for soft error).
  833  *
  834  * Do not wake up user since there currently is no mechanism for
  835  * reporting soft errors (yet - a kqueue filter may be added).
  836  */
  837 static struct inpcb *
  838 tcp_notify(struct inpcb *inp, int error)
  839 {
  840         struct tcpcb *tp;
  841 
  842         INP_INFO_WLOCK_ASSERT(&tcbinfo);
  843         INP_LOCK_ASSERT(inp);
  844 
  845         if ((inp->inp_vflag & INP_TIMEWAIT) ||
  846             (inp->inp_vflag & INP_DROPPED))
  847                 return (inp);
  848 
  849         tp = intotcpcb(inp);
  850         KASSERT(tp != NULL, ("tcp_notify: tp == NULL"));
  851 
  852         /*
  853          * Ignore some errors if we are hooked up.
  854          * If connection hasn't completed, has retransmitted several times,
  855          * and receives a second error, give up now.  This is better
  856          * than waiting a long time to establish a connection that
  857          * can never complete.
  858          */
  859         if (tp->t_state == TCPS_ESTABLISHED &&
  860             (error == EHOSTUNREACH || error == ENETUNREACH ||
  861              error == EHOSTDOWN)) {
  862                 return (inp);
  863         } else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
  864             tp->t_softerror) {
  865                 tp = tcp_drop(tp, error);
  866                 if (tp != NULL)
  867                         return (inp);
  868                 else
  869                         return (NULL);
  870         } else {
  871                 tp->t_softerror = error;
  872                 return (inp);
  873         }
  874 #if 0
  875         wakeup( &so->so_timeo);
  876         sorwakeup(so);
  877         sowwakeup(so);
  878 #endif
  879 }
  880 
  881 static int
  882 tcp_pcblist(SYSCTL_HANDLER_ARGS)
  883 {
  884         int error, i, m, n, pcb_count;
  885         struct inpcb *inp, **inp_list;
  886         inp_gen_t gencnt;
  887         struct xinpgen xig;
  888 
  889         /*
  890          * The process of preparing the TCB list is too time-consuming and
  891          * resource-intensive to repeat twice on every request.
  892          */
  893         if (req->oldptr == NULL) {
  894                 m = syncache_pcbcount();
  895                 n = tcbinfo.ipi_count;
  896                 req->oldidx = 2 * (sizeof xig)
  897                         + ((m + n) + n/8) * sizeof(struct xtcpcb);
  898                 return (0);
  899         }
  900 
  901         if (req->newptr != NULL)
  902                 return (EPERM);
  903 
  904         /*
  905          * OK, now we're committed to doing something.
  906          */
  907         INP_INFO_RLOCK(&tcbinfo);
  908         gencnt = tcbinfo.ipi_gencnt;
  909         n = tcbinfo.ipi_count;
  910         INP_INFO_RUNLOCK(&tcbinfo);
  911 
  912         m = syncache_pcbcount();
  913 
  914         error = sysctl_wire_old_buffer(req, 2 * (sizeof xig)
  915                 + (n + m) * sizeof(struct xtcpcb));
  916         if (error != 0)
  917                 return (error);
  918 
  919         xig.xig_len = sizeof xig;
  920         xig.xig_count = n + m;
  921         xig.xig_gen = gencnt;
  922         xig.xig_sogen = so_gencnt;
  923         error = SYSCTL_OUT(req, &xig, sizeof xig);
  924         if (error)
  925                 return (error);
  926 
  927         error = syncache_pcblist(req, m, &pcb_count);
  928         if (error)
  929                 return (error);
  930 
  931         inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK);
  932         if (inp_list == NULL)
  933                 return (ENOMEM);
  934 
  935         INP_INFO_RLOCK(&tcbinfo);
  936         for (inp = LIST_FIRST(tcbinfo.ipi_listhead), i = 0; inp != NULL && i
  937             < n; inp = LIST_NEXT(inp, inp_list)) {
  938                 INP_LOCK(inp);
  939                 if (inp->inp_gencnt <= gencnt) {
  940                         /*
  941                          * XXX: This use of cr_cansee(), introduced with
  942                          * TCP state changes, is not quite right, but for
  943                          * now, better than nothing.
  944                          */
  945                         if (inp->inp_vflag & INP_TIMEWAIT) {
  946                                 if (intotw(inp) != NULL)
  947                                         error = cr_cansee(req->td->td_ucred,
  948                                             intotw(inp)->tw_cred);
  949                                 else
  950                                         error = EINVAL; /* Skip this inp. */
  951                         } else
  952                                 error = cr_canseesocket(req->td->td_ucred,
  953                                     inp->inp_socket);
  954                         if (error == 0)
  955                                 inp_list[i++] = inp;
  956                 }
  957                 INP_UNLOCK(inp);
  958         }
  959         INP_INFO_RUNLOCK(&tcbinfo);
  960         n = i;
  961 
  962         error = 0;
  963         for (i = 0; i < n; i++) {
  964                 inp = inp_list[i];
  965                 INP_LOCK(inp);
  966                 if (inp->inp_gencnt <= gencnt) {
  967                         struct xtcpcb xt;
  968                         void *inp_ppcb;
  969 
  970                         bzero(&xt, sizeof(xt));
  971                         xt.xt_len = sizeof xt;
  972                         /* XXX should avoid extra copy */
  973                         bcopy(inp, &xt.xt_inp, sizeof *inp);
  974                         inp_ppcb = inp->inp_ppcb;
  975                         if (inp_ppcb == NULL)
  976                                 bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
  977                         else if (inp->inp_vflag & INP_TIMEWAIT) {
  978                                 bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
  979                                 xt.xt_tp.t_state = TCPS_TIME_WAIT;
  980                         } else
  981                                 bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp);
  982                         if (inp->inp_socket != NULL)
  983                                 sotoxsocket(inp->inp_socket, &xt.xt_socket);
  984                         else {
  985                                 bzero(&xt.xt_socket, sizeof xt.xt_socket);
  986                                 xt.xt_socket.xso_protocol = IPPROTO_TCP;
  987                         }
  988                         xt.xt_inp.inp_gencnt = inp->inp_gencnt;
  989                         INP_UNLOCK(inp);
  990                         error = SYSCTL_OUT(req, &xt, sizeof xt);
  991                 } else
  992                         INP_UNLOCK(inp);
  993         
  994         }
  995         if (!error) {
  996                 /*
  997                  * Give the user an updated idea of our state.
  998                  * If the generation differs from what we told
  999                  * her before, she knows that something happened
 1000                  * while we were processing this request, and it
 1001                  * might be necessary to retry.
 1002                  */
 1003                 INP_INFO_RLOCK(&tcbinfo);
 1004                 xig.xig_gen = tcbinfo.ipi_gencnt;
 1005                 xig.xig_sogen = so_gencnt;
 1006                 xig.xig_count = tcbinfo.ipi_count + pcb_count;
 1007                 INP_INFO_RUNLOCK(&tcbinfo);
 1008                 error = SYSCTL_OUT(req, &xig, sizeof xig);
 1009         }
 1010         free(inp_list, M_TEMP);
 1011         return (error);
 1012 }
 1013 
 1014 SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist, CTLFLAG_RD, 0, 0,
 1015     tcp_pcblist, "S,xtcpcb", "List of active TCP connections");
 1016 
 1017 static int
 1018 tcp_getcred(SYSCTL_HANDLER_ARGS)
 1019 {
 1020         struct xucred xuc;
 1021         struct sockaddr_in addrs[2];
 1022         struct inpcb *inp;
 1023         int error;
 1024 
 1025         error = priv_check(req->td, PRIV_NETINET_GETCRED);
 1026         if (error)
 1027                 return (error);
 1028         error = SYSCTL_IN(req, addrs, sizeof(addrs));
 1029         if (error)
 1030                 return (error);
 1031         INP_INFO_RLOCK(&tcbinfo);
 1032         inp = in_pcblookup_hash(&tcbinfo, addrs[1].sin_addr, addrs[1].sin_port,
 1033             addrs[0].sin_addr, addrs[0].sin_port, 0, NULL);
 1034         if (inp == NULL) {
 1035                 error = ENOENT;
 1036                 goto outunlocked;
 1037         }
 1038         INP_LOCK(inp);
 1039         if (inp->inp_socket == NULL) {
 1040                 error = ENOENT;
 1041                 goto out;
 1042         }
 1043         error = cr_canseesocket(req->td->td_ucred, inp->inp_socket);
 1044         if (error)
 1045                 goto out;
 1046         cru2x(inp->inp_socket->so_cred, &xuc);
 1047 out:
 1048         INP_UNLOCK(inp);
 1049 outunlocked:
 1050         INP_INFO_RUNLOCK(&tcbinfo);
 1051         if (error == 0)
 1052                 error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
 1053         return (error);
 1054 }
 1055 
 1056 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred,
 1057     CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
 1058     tcp_getcred, "S,xucred", "Get the xucred of a TCP connection");
 1059 
 1060 #ifdef INET6
 1061 static int
 1062 tcp6_getcred(SYSCTL_HANDLER_ARGS)
 1063 {
 1064         struct xucred xuc;
 1065         struct sockaddr_in6 addrs[2];
 1066         struct inpcb *inp;
 1067         int error, mapped = 0;
 1068 
 1069         error = priv_check(req->td, PRIV_NETINET_GETCRED);
 1070         if (error)
 1071                 return (error);
 1072         error = SYSCTL_IN(req, addrs, sizeof(addrs));
 1073         if (error)
 1074                 return (error);
 1075         if ((error = sa6_embedscope(&addrs[0], ip6_use_defzone)) != 0 ||
 1076             (error = sa6_embedscope(&addrs[1], ip6_use_defzone)) != 0) {
 1077                 return (error);
 1078         }
 1079         if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) {
 1080                 if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr))
 1081                         mapped = 1;
 1082                 else
 1083                         return (EINVAL);
 1084         }
 1085 
 1086         INP_INFO_RLOCK(&tcbinfo);
 1087         if (mapped == 1)
 1088                 inp = in_pcblookup_hash(&tcbinfo,
 1089                         *(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12],
 1090                         addrs[1].sin6_port,
 1091                         *(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12],
 1092                         addrs[0].sin6_port,
 1093                         0, NULL);
 1094         else
 1095                 inp = in6_pcblookup_hash(&tcbinfo,
 1096                         &addrs[1].sin6_addr, addrs[1].sin6_port,
 1097                         &addrs[0].sin6_addr, addrs[0].sin6_port, 0, NULL);
 1098         if (inp == NULL) {
 1099                 error = ENOENT;
 1100                 goto outunlocked;
 1101         }
 1102         INP_LOCK(inp);
 1103         if (inp->inp_socket == NULL) {
 1104                 error = ENOENT;
 1105                 goto out;
 1106         }
 1107         error = cr_canseesocket(req->td->td_ucred, inp->inp_socket);
 1108         if (error)
 1109                 goto out;
 1110         cru2x(inp->inp_socket->so_cred, &xuc);
 1111 out:
 1112         INP_UNLOCK(inp);
 1113 outunlocked:
 1114         INP_INFO_RUNLOCK(&tcbinfo);
 1115         if (error == 0)
 1116                 error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
 1117         return (error);
 1118 }
 1119 
 1120 SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred,
 1121     CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
 1122     tcp6_getcred, "S,xucred", "Get the xucred of a TCP6 connection");
 1123 #endif
 1124 
 1125 
 1126 void
 1127 tcp_ctlinput(int cmd, struct sockaddr *sa, void *vip)
 1128 {
 1129         struct ip *ip = vip;
 1130         struct tcphdr *th;
 1131         struct in_addr faddr;
 1132         struct inpcb *inp;
 1133         struct tcpcb *tp;
 1134         struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
 1135         struct icmp *icp;
 1136         struct in_conninfo inc;
 1137         tcp_seq icmp_tcp_seq;
 1138         int mtu;
 1139 
 1140         faddr = ((struct sockaddr_in *)sa)->sin_addr;
 1141         if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
 1142                 return;
 1143 
 1144         if (cmd == PRC_MSGSIZE)
 1145                 notify = tcp_mtudisc;
 1146         else if (icmp_may_rst && (cmd == PRC_UNREACH_ADMIN_PROHIB ||
 1147                 cmd == PRC_UNREACH_PORT || cmd == PRC_TIMXCEED_INTRANS) && ip)
 1148                 notify = tcp_drop_syn_sent;
 1149         /*
 1150          * Redirects don't need to be handled up here.
 1151          */
 1152         else if (PRC_IS_REDIRECT(cmd))
 1153                 return;
 1154         /*
 1155          * Source quench is depreciated.
 1156          */
 1157         else if (cmd == PRC_QUENCH)
 1158                 return;
 1159         /*
 1160          * Hostdead is ugly because it goes linearly through all PCBs.
 1161          * XXX: We never get this from ICMP, otherwise it makes an
 1162          * excellent DoS attack on machines with many connections.
 1163          */
 1164         else if (cmd == PRC_HOSTDEAD)
 1165                 ip = NULL;
 1166         else if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0)
 1167                 return;
 1168         if (ip != NULL) {
 1169                 icp = (struct icmp *)((caddr_t)ip
 1170                                       - offsetof(struct icmp, icmp_ip));
 1171                 th = (struct tcphdr *)((caddr_t)ip
 1172                                        + (ip->ip_hl << 2));
 1173                 INP_INFO_WLOCK(&tcbinfo);
 1174                 inp = in_pcblookup_hash(&tcbinfo, faddr, th->th_dport,
 1175                     ip->ip_src, th->th_sport, 0, NULL);
 1176                 if (inp != NULL)  {
 1177                         INP_LOCK(inp);
 1178                         if (!(inp->inp_vflag & INP_TIMEWAIT) &&
 1179                             !(inp->inp_vflag & INP_DROPPED) &&
 1180                             !(inp->inp_socket == NULL)) {
 1181                                 icmp_tcp_seq = htonl(th->th_seq);
 1182                                 tp = intotcpcb(inp);
 1183                                 if (SEQ_GEQ(icmp_tcp_seq, tp->snd_una) &&
 1184                                     SEQ_LT(icmp_tcp_seq, tp->snd_max)) {
 1185                                         if (cmd == PRC_MSGSIZE) {
 1186                                             /*
 1187                                              * MTU discovery:
 1188                                              * If we got a needfrag set the MTU
 1189                                              * in the route to the suggested new
 1190                                              * value (if given) and then notify.
 1191                                              */
 1192                                             bzero(&inc, sizeof(inc));
 1193                                             inc.inc_flags = 0;  /* IPv4 */
 1194                                             inc.inc_faddr = faddr;
 1195 
 1196                                             mtu = ntohs(icp->icmp_nextmtu);
 1197                                             /*
 1198                                              * If no alternative MTU was
 1199                                              * proposed, try the next smaller
 1200                                              * one.  ip->ip_len has already
 1201                                              * been swapped in icmp_input().
 1202                                              */
 1203                                             if (!mtu)
 1204                                                 mtu = ip_next_mtu(ip->ip_len,
 1205                                                  1);
 1206                                             if (mtu < max(296, (tcp_minmss)
 1207                                                  + sizeof(struct tcpiphdr)))
 1208                                                 mtu = 0;
 1209                                             if (!mtu)
 1210                                                 mtu = tcp_mssdflt
 1211                                                  + sizeof(struct tcpiphdr);
 1212                                             /*
 1213                                              * Only cache the the MTU if it
 1214                                              * is smaller than the interface
 1215                                              * or route MTU.  tcp_mtudisc()
 1216                                              * will do right thing by itself.
 1217                                              */
 1218                                             if (mtu <= tcp_maxmtu(&inc, NULL))
 1219                                                 tcp_hc_updatemtu(&inc, mtu);
 1220                                         }
 1221 
 1222                                         inp = (*notify)(inp, inetctlerrmap[cmd]);
 1223                                 }
 1224                         }
 1225                         if (inp != NULL)
 1226                                 INP_UNLOCK(inp);
 1227                 } else {
 1228                         inc.inc_fport = th->th_dport;
 1229                         inc.inc_lport = th->th_sport;
 1230                         inc.inc_faddr = faddr;
 1231                         inc.inc_laddr = ip->ip_src;
 1232 #ifdef INET6
 1233                         inc.inc_isipv6 = 0;
 1234 #endif
 1235                         syncache_unreach(&inc, th);
 1236                 }
 1237                 INP_INFO_WUNLOCK(&tcbinfo);
 1238         } else
 1239                 in_pcbnotifyall(&tcbinfo, faddr, inetctlerrmap[cmd], notify);
 1240 }
 1241 
 1242 #ifdef INET6
 1243 void
 1244 tcp6_ctlinput(int cmd, struct sockaddr *sa, void *d)
 1245 {
 1246         struct tcphdr th;
 1247         struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
 1248         struct ip6_hdr *ip6;
 1249         struct mbuf *m;
 1250         struct ip6ctlparam *ip6cp = NULL;
 1251         const struct sockaddr_in6 *sa6_src = NULL;
 1252         int off;
 1253         struct tcp_portonly {
 1254                 u_int16_t th_sport;
 1255                 u_int16_t th_dport;
 1256         } *thp;
 1257 
 1258         if (sa->sa_family != AF_INET6 ||
 1259             sa->sa_len != sizeof(struct sockaddr_in6))
 1260                 return;
 1261 
 1262         if (cmd == PRC_MSGSIZE)
 1263                 notify = tcp_mtudisc;
 1264         else if (!PRC_IS_REDIRECT(cmd) &&
 1265                  ((unsigned)cmd >= PRC_NCMDS || inet6ctlerrmap[cmd] == 0))
 1266                 return;
 1267         /* Source quench is depreciated. */
 1268         else if (cmd == PRC_QUENCH)
 1269                 return;
 1270 
 1271         /* if the parameter is from icmp6, decode it. */
 1272         if (d != NULL) {
 1273                 ip6cp = (struct ip6ctlparam *)d;
 1274                 m = ip6cp->ip6c_m;
 1275                 ip6 = ip6cp->ip6c_ip6;
 1276                 off = ip6cp->ip6c_off;
 1277                 sa6_src = ip6cp->ip6c_src;
 1278         } else {
 1279                 m = NULL;
 1280                 ip6 = NULL;
 1281                 off = 0;        /* fool gcc */
 1282                 sa6_src = &sa6_any;
 1283         }
 1284 
 1285         if (ip6 != NULL) {
 1286                 struct in_conninfo inc;
 1287                 /*
 1288                  * XXX: We assume that when IPV6 is non NULL,
 1289                  * M and OFF are valid.
 1290                  */
 1291 
 1292                 /* check if we can safely examine src and dst ports */
 1293                 if (m->m_pkthdr.len < off + sizeof(*thp))
 1294                         return;
 1295 
 1296                 bzero(&th, sizeof(th));
 1297                 m_copydata(m, off, sizeof(*thp), (caddr_t)&th);
 1298 
 1299                 in6_pcbnotify(&tcbinfo, sa, th.th_dport,
 1300                     (struct sockaddr *)ip6cp->ip6c_src,
 1301                     th.th_sport, cmd, NULL, notify);
 1302 
 1303                 inc.inc_fport = th.th_dport;
 1304                 inc.inc_lport = th.th_sport;
 1305                 inc.inc6_faddr = ((struct sockaddr_in6 *)sa)->sin6_addr;
 1306                 inc.inc6_laddr = ip6cp->ip6c_src->sin6_addr;
 1307                 inc.inc_isipv6 = 1;
 1308                 INP_INFO_WLOCK(&tcbinfo);
 1309                 syncache_unreach(&inc, &th);
 1310                 INP_INFO_WUNLOCK(&tcbinfo);
 1311         } else
 1312                 in6_pcbnotify(&tcbinfo, sa, 0, (const struct sockaddr *)sa6_src,
 1313                               0, cmd, NULL, notify);
 1314 }
 1315 #endif /* INET6 */
 1316 
 1317 
 1318 /*
 1319  * Following is where TCP initial sequence number generation occurs.
 1320  *
 1321  * There are two places where we must use initial sequence numbers:
 1322  * 1.  In SYN-ACK packets.
 1323  * 2.  In SYN packets.
 1324  *
 1325  * All ISNs for SYN-ACK packets are generated by the syncache.  See
 1326  * tcp_syncache.c for details.
 1327  *
 1328  * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
 1329  * depends on this property.  In addition, these ISNs should be
 1330  * unguessable so as to prevent connection hijacking.  To satisfy
 1331  * the requirements of this situation, the algorithm outlined in
 1332  * RFC 1948 is used, with only small modifications.
 1333  *
 1334  * Implementation details:
 1335  *
 1336  * Time is based off the system timer, and is corrected so that it
 1337  * increases by one megabyte per second.  This allows for proper
 1338  * recycling on high speed LANs while still leaving over an hour
 1339  * before rollover.
 1340  *
 1341  * As reading the *exact* system time is too expensive to be done
 1342  * whenever setting up a TCP connection, we increment the time
 1343  * offset in two ways.  First, a small random positive increment
 1344  * is added to isn_offset for each connection that is set up.
 1345  * Second, the function tcp_isn_tick fires once per clock tick
 1346  * and increments isn_offset as necessary so that sequence numbers
 1347  * are incremented at approximately ISN_BYTES_PER_SECOND.  The
 1348  * random positive increments serve only to ensure that the same
 1349  * exact sequence number is never sent out twice (as could otherwise
 1350  * happen when a port is recycled in less than the system tick
 1351  * interval.)
 1352  *
 1353  * net.inet.tcp.isn_reseed_interval controls the number of seconds
 1354  * between seeding of isn_secret.  This is normally set to zero,
 1355  * as reseeding should not be necessary.
 1356  *
 1357  * Locking of the global variables isn_secret, isn_last_reseed, isn_offset,
 1358  * isn_offset_old, and isn_ctx is performed using the TCP pcbinfo lock.  In
 1359  * general, this means holding an exclusive (write) lock.
 1360  */
 1361 
 1362 #define ISN_BYTES_PER_SECOND 1048576
 1363 #define ISN_STATIC_INCREMENT 4096
 1364 #define ISN_RANDOM_INCREMENT (4096 - 1)
 1365 
 1366 static u_char isn_secret[32];
 1367 static int isn_last_reseed;
 1368 static u_int32_t isn_offset, isn_offset_old;
 1369 static MD5_CTX isn_ctx;
 1370 
 1371 tcp_seq
 1372 tcp_new_isn(struct tcpcb *tp)
 1373 {
 1374         u_int32_t md5_buffer[4];
 1375         tcp_seq new_isn;
 1376 
 1377         INP_LOCK_ASSERT(tp->t_inpcb);
 1378 
 1379         ISN_LOCK();
 1380         /* Seed if this is the first use, reseed if requested. */
 1381         if ((isn_last_reseed == 0) || ((tcp_isn_reseed_interval > 0) &&
 1382              (((u_int)isn_last_reseed + (u_int)tcp_isn_reseed_interval*hz)
 1383                 < (u_int)ticks))) {
 1384                 read_random(&isn_secret, sizeof(isn_secret));
 1385                 isn_last_reseed = ticks;
 1386         }
 1387 
 1388         /* Compute the md5 hash and return the ISN. */
 1389         MD5Init(&isn_ctx);
 1390         MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_fport, sizeof(u_short));
 1391         MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_lport, sizeof(u_short));
 1392 #ifdef INET6
 1393         if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0) {
 1394                 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr,
 1395                           sizeof(struct in6_addr));
 1396                 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr,
 1397                           sizeof(struct in6_addr));
 1398         } else
 1399 #endif
 1400         {
 1401                 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr,
 1402                           sizeof(struct in_addr));
 1403                 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr,
 1404                           sizeof(struct in_addr));
 1405         }
 1406         MD5Update(&isn_ctx, (u_char *) &isn_secret, sizeof(isn_secret));
 1407         MD5Final((u_char *) &md5_buffer, &isn_ctx);
 1408         new_isn = (tcp_seq) md5_buffer[0];
 1409         isn_offset += ISN_STATIC_INCREMENT +
 1410                 (arc4random() & ISN_RANDOM_INCREMENT);
 1411         new_isn += isn_offset;
 1412         ISN_UNLOCK();
 1413         return (new_isn);
 1414 }
 1415 
 1416 /*
 1417  * Increment the offset to the next ISN_BYTES_PER_SECOND / 100 boundary
 1418  * to keep time flowing at a relatively constant rate.  If the random
 1419  * increments have already pushed us past the projected offset, do nothing.
 1420  */
 1421 static void
 1422 tcp_isn_tick(void *xtp)
 1423 {
 1424         u_int32_t projected_offset;
 1425 
 1426         ISN_LOCK();
 1427         projected_offset = isn_offset_old + ISN_BYTES_PER_SECOND / 100;
 1428 
 1429         if (SEQ_GT(projected_offset, isn_offset))
 1430                 isn_offset = projected_offset;
 1431 
 1432         isn_offset_old = isn_offset;
 1433         callout_reset(&isn_callout, hz/100, tcp_isn_tick, NULL);
 1434         ISN_UNLOCK();
 1435 }
 1436 
 1437 /*
 1438  * When a specific ICMP unreachable message is received and the
 1439  * connection state is SYN-SENT, drop the connection.  This behavior
 1440  * is controlled by the icmp_may_rst sysctl.
 1441  */
 1442 struct inpcb *
 1443 tcp_drop_syn_sent(struct inpcb *inp, int errno)
 1444 {
 1445         struct tcpcb *tp;
 1446 
 1447         INP_INFO_WLOCK_ASSERT(&tcbinfo);
 1448         INP_LOCK_ASSERT(inp);
 1449 
 1450         if ((inp->inp_vflag & INP_TIMEWAIT) ||
 1451             (inp->inp_vflag & INP_DROPPED))
 1452                 return (inp);
 1453 
 1454         tp = intotcpcb(inp);
 1455         if (tp->t_state != TCPS_SYN_SENT)
 1456                 return (inp);
 1457 
 1458         tp = tcp_drop(tp, errno);
 1459         if (tp != NULL)
 1460                 return (inp);
 1461         else
 1462                 return (NULL);
 1463 }
 1464 
 1465 /*
 1466  * When `need fragmentation' ICMP is received, update our idea of the MSS
 1467  * based on the new value in the route.  Also nudge TCP to send something,
 1468  * since we know the packet we just sent was dropped.
 1469  * This duplicates some code in the tcp_mss() function in tcp_input.c.
 1470  */
 1471 struct inpcb *
 1472 tcp_mtudisc(struct inpcb *inp, int errno)
 1473 {
 1474         struct tcpcb *tp;
 1475         struct socket *so = inp->inp_socket;
 1476         u_int maxmtu;
 1477         u_int romtu;
 1478         int mss;
 1479 #ifdef INET6
 1480         int isipv6;
 1481 #endif /* INET6 */
 1482 
 1483         INP_LOCK_ASSERT(inp);
 1484         if ((inp->inp_vflag & INP_TIMEWAIT) ||
 1485             (inp->inp_vflag & INP_DROPPED))
 1486                 return (inp);
 1487 
 1488         tp = intotcpcb(inp);
 1489         KASSERT(tp != NULL, ("tcp_mtudisc: tp == NULL"));
 1490 
 1491 #ifdef INET6
 1492         isipv6 = (tp->t_inpcb->inp_vflag & INP_IPV6) != 0;
 1493 #endif
 1494         maxmtu = tcp_hc_getmtu(&inp->inp_inc); /* IPv4 and IPv6 */
 1495         romtu =
 1496 #ifdef INET6
 1497             isipv6 ? tcp_maxmtu6(&inp->inp_inc, NULL) :
 1498 #endif /* INET6 */
 1499             tcp_maxmtu(&inp->inp_inc, NULL);
 1500         if (!maxmtu)
 1501                 maxmtu = romtu;
 1502         else
 1503                 maxmtu = min(maxmtu, romtu);
 1504         if (!maxmtu) {
 1505                 tp->t_maxopd = tp->t_maxseg =
 1506 #ifdef INET6
 1507                         isipv6 ? tcp_v6mssdflt :
 1508 #endif /* INET6 */
 1509                         tcp_mssdflt;
 1510                 return (inp);
 1511         }
 1512         mss = maxmtu -
 1513 #ifdef INET6
 1514                 (isipv6 ? sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
 1515 #endif /* INET6 */
 1516                  sizeof(struct tcpiphdr)
 1517 #ifdef INET6
 1518                  )
 1519 #endif /* INET6 */
 1520                 ;
 1521 
 1522         /*
 1523          * XXX - The above conditional probably violates the TCP
 1524          * spec.  The problem is that, since we don't know the
 1525          * other end's MSS, we are supposed to use a conservative
 1526          * default.  But, if we do that, then MTU discovery will
 1527          * never actually take place, because the conservative
 1528          * default is much less than the MTUs typically seen
 1529          * on the Internet today.  For the moment, we'll sweep
 1530          * this under the carpet.
 1531          *
 1532          * The conservative default might not actually be a problem
 1533          * if the only case this occurs is when sending an initial
 1534          * SYN with options and data to a host we've never talked
 1535          * to before.  Then, they will reply with an MSS value which
 1536          * will get recorded and the new parameters should get
 1537          * recomputed.  For Further Study.
 1538          */
 1539         if (tp->t_maxopd <= mss)
 1540                 return (inp);
 1541         tp->t_maxopd = mss;
 1542 
 1543         if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
 1544             (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP)
 1545                 mss -= TCPOLEN_TSTAMP_APPA;
 1546 #if     (MCLBYTES & (MCLBYTES - 1)) == 0
 1547         if (mss > MCLBYTES)
 1548                 mss &= ~(MCLBYTES-1);
 1549 #else
 1550         if (mss > MCLBYTES)
 1551                 mss = mss / MCLBYTES * MCLBYTES;
 1552 #endif
 1553         if (so->so_snd.sb_hiwat < mss)
 1554                 mss = so->so_snd.sb_hiwat;
 1555 
 1556         tp->t_maxseg = mss;
 1557 
 1558         tcpstat.tcps_mturesent++;
 1559         tp->t_rtttime = 0;
 1560         tp->snd_nxt = tp->snd_una;
 1561         tcp_free_sackholes(tp);
 1562         tp->snd_recover = tp->snd_max;
 1563         if (tp->t_flags & TF_SACK_PERMIT)
 1564                 EXIT_FASTRECOVERY(tp);
 1565         tcp_output(tp);
 1566         return (inp);
 1567 }
 1568 
 1569 /*
 1570  * Look-up the routing entry to the peer of this inpcb.  If no route
 1571  * is found and it cannot be allocated, then return NULL.  This routine
 1572  * is called by TCP routines that access the rmx structure and by tcp_mss
 1573  * to get the interface MTU.
 1574  */
 1575 u_long
 1576 tcp_maxmtu(struct in_conninfo *inc, int *flags)
 1577 {
 1578         struct route sro;
 1579         struct sockaddr_in *dst;
 1580         struct ifnet *ifp;
 1581         u_long maxmtu = 0;
 1582 
 1583         KASSERT(inc != NULL, ("tcp_maxmtu with NULL in_conninfo pointer"));
 1584 
 1585         bzero(&sro, sizeof(sro));
 1586         if (inc->inc_faddr.s_addr != INADDR_ANY) {
 1587                 dst = (struct sockaddr_in *)&sro.ro_dst;
 1588                 dst->sin_family = AF_INET;
 1589                 dst->sin_len = sizeof(*dst);
 1590                 dst->sin_addr = inc->inc_faddr;
 1591                 rtalloc_ign(&sro, RTF_CLONING);
 1592         }
 1593         if (sro.ro_rt != NULL) {
 1594                 ifp = sro.ro_rt->rt_ifp;
 1595                 if (sro.ro_rt->rt_rmx.rmx_mtu == 0)
 1596                         maxmtu = ifp->if_mtu;
 1597                 else
 1598                         maxmtu = min(sro.ro_rt->rt_rmx.rmx_mtu, ifp->if_mtu);
 1599 
 1600                 /* Report additional interface capabilities. */
 1601                 if (flags != NULL) {
 1602                         if (ifp->if_capenable & IFCAP_TSO4 &&
 1603                             ifp->if_hwassist & CSUM_TSO)
 1604                                 *flags |= CSUM_TSO;
 1605                 }
 1606                 RTFREE(sro.ro_rt);
 1607         }
 1608         return (maxmtu);
 1609 }
 1610 
 1611 #ifdef INET6
 1612 u_long
 1613 tcp_maxmtu6(struct in_conninfo *inc, int *flags)
 1614 {
 1615         struct route_in6 sro6;
 1616         struct ifnet *ifp;
 1617         u_long maxmtu = 0;
 1618 
 1619         KASSERT(inc != NULL, ("tcp_maxmtu6 with NULL in_conninfo pointer"));
 1620 
 1621         bzero(&sro6, sizeof(sro6));
 1622         if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) {
 1623                 sro6.ro_dst.sin6_family = AF_INET6;
 1624                 sro6.ro_dst.sin6_len = sizeof(struct sockaddr_in6);
 1625                 sro6.ro_dst.sin6_addr = inc->inc6_faddr;
 1626                 rtalloc_ign((struct route *)&sro6, RTF_CLONING);
 1627         }
 1628         if (sro6.ro_rt != NULL) {
 1629                 ifp = sro6.ro_rt->rt_ifp;
 1630                 if (sro6.ro_rt->rt_rmx.rmx_mtu == 0)
 1631                         maxmtu = IN6_LINKMTU(sro6.ro_rt->rt_ifp);
 1632                 else
 1633                         maxmtu = min(sro6.ro_rt->rt_rmx.rmx_mtu,
 1634                                      IN6_LINKMTU(sro6.ro_rt->rt_ifp));
 1635 
 1636                 /* Report additional interface capabilities. */
 1637                 if (flags != NULL) {
 1638                         if (ifp->if_capenable & IFCAP_TSO6 &&
 1639                             ifp->if_hwassist & CSUM_TSO)
 1640                                 *flags |= CSUM_TSO;
 1641                 }
 1642                 RTFREE(sro6.ro_rt);
 1643         }
 1644 
 1645         return (maxmtu);
 1646 }
 1647 #endif /* INET6 */
 1648 
 1649 #ifdef IPSEC
 1650 /* compute ESP/AH header size for TCP, including outer IP header. */
 1651 size_t
 1652 ipsec_hdrsiz_tcp(struct tcpcb *tp)
 1653 {
 1654         struct inpcb *inp;
 1655         struct mbuf *m;
 1656         size_t hdrsiz;
 1657         struct ip *ip;
 1658 #ifdef INET6
 1659         struct ip6_hdr *ip6;
 1660 #endif
 1661         struct tcphdr *th;
 1662 
 1663         if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL))
 1664                 return (0);
 1665         MGETHDR(m, M_DONTWAIT, MT_DATA);
 1666         if (!m)
 1667                 return (0);
 1668 
 1669 #ifdef INET6
 1670         if ((inp->inp_vflag & INP_IPV6) != 0) {
 1671                 ip6 = mtod(m, struct ip6_hdr *);
 1672                 th = (struct tcphdr *)(ip6 + 1);
 1673                 m->m_pkthdr.len = m->m_len =
 1674                         sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
 1675                 tcpip_fillheaders(inp, ip6, th);
 1676                 hdrsiz = ipsec6_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
 1677         } else
 1678 #endif /* INET6 */
 1679         {
 1680                 ip = mtod(m, struct ip *);
 1681                 th = (struct tcphdr *)(ip + 1);
 1682                 m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr);
 1683                 tcpip_fillheaders(inp, ip, th);
 1684                 hdrsiz = ipsec4_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
 1685         }
 1686 
 1687         m_free(m);
 1688         return (hdrsiz);
 1689 }
 1690 #endif /* IPSEC */
 1691 
 1692 /*
 1693  * TCP BANDWIDTH DELAY PRODUCT WINDOW LIMITING
 1694  *
 1695  * This code attempts to calculate the bandwidth-delay product as a
 1696  * means of determining the optimal window size to maximize bandwidth,
 1697  * minimize RTT, and avoid the over-allocation of buffers on interfaces and
 1698  * routers.  This code also does a fairly good job keeping RTTs in check
 1699  * across slow links like modems.  We implement an algorithm which is very
 1700  * similar (but not meant to be) TCP/Vegas.  The code operates on the
 1701  * transmitter side of a TCP connection and so only effects the transmit
 1702  * side of the connection.
 1703  *
 1704  * BACKGROUND:  TCP makes no provision for the management of buffer space
 1705  * at the end points or at the intermediate routers and switches.  A TCP
 1706  * stream, whether using NewReno or not, will eventually buffer as
 1707  * many packets as it is able and the only reason this typically works is
 1708  * due to the fairly small default buffers made available for a connection
 1709  * (typicaly 16K or 32K).  As machines use larger windows and/or window
 1710  * scaling it is now fairly easy for even a single TCP connection to blow-out
 1711  * all available buffer space not only on the local interface, but on
 1712  * intermediate routers and switches as well.  NewReno makes a misguided
 1713  * attempt to 'solve' this problem by waiting for an actual failure to occur,
 1714  * then backing off, then steadily increasing the window again until another
 1715  * failure occurs, ad-infinitum.  This results in terrible oscillation that
 1716  * is only made worse as network loads increase and the idea of intentionally
 1717  * blowing out network buffers is, frankly, a terrible way to manage network
 1718  * resources.
 1719  *
 1720  * It is far better to limit the transmit window prior to the failure
 1721  * condition being achieved.  There are two general ways to do this:  First
 1722  * you can 'scan' through different transmit window sizes and locate the
 1723  * point where the RTT stops increasing, indicating that you have filled the
 1724  * pipe, then scan backwards until you note that RTT stops decreasing, then
 1725  * repeat ad-infinitum.  This method works in principle but has severe
 1726  * implementation issues due to RTT variances, timer granularity, and
 1727  * instability in the algorithm which can lead to many false positives and
 1728  * create oscillations as well as interact badly with other TCP streams
 1729  * implementing the same algorithm.
 1730  *
 1731  * The second method is to limit the window to the bandwidth delay product
 1732  * of the link.  This is the method we implement.  RTT variances and our
 1733  * own manipulation of the congestion window, bwnd, can potentially
 1734  * destabilize the algorithm.  For this reason we have to stabilize the
 1735  * elements used to calculate the window.  We do this by using the minimum
 1736  * observed RTT, the long term average of the observed bandwidth, and
 1737  * by adding two segments worth of slop.  It isn't perfect but it is able
 1738  * to react to changing conditions and gives us a very stable basis on
 1739  * which to extend the algorithm.
 1740  */
 1741 void
 1742 tcp_xmit_bandwidth_limit(struct tcpcb *tp, tcp_seq ack_seq)
 1743 {
 1744         u_long bw;
 1745         u_long bwnd;
 1746         int save_ticks;
 1747 
 1748         INP_LOCK_ASSERT(tp->t_inpcb);
 1749 
 1750         /*
 1751          * If inflight_enable is disabled in the middle of a tcp connection,
 1752          * make sure snd_bwnd is effectively disabled.
 1753          */
 1754         if (tcp_inflight_enable == 0 || tp->t_rttlow < tcp_inflight_rttthresh) {
 1755                 tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
 1756                 tp->snd_bandwidth = 0;
 1757                 return;
 1758         }
 1759 
 1760         /*
 1761          * Figure out the bandwidth.  Due to the tick granularity this
 1762          * is a very rough number and it MUST be averaged over a fairly
 1763          * long period of time.  XXX we need to take into account a link
 1764          * that is not using all available bandwidth, but for now our
 1765          * slop will ramp us up if this case occurs and the bandwidth later
 1766          * increases.
 1767          *
 1768          * Note: if ticks rollover 'bw' may wind up negative.  We must
 1769          * effectively reset t_bw_rtttime for this case.
 1770          */
 1771         save_ticks = ticks;
 1772         if ((u_int)(save_ticks - tp->t_bw_rtttime) < 1)
 1773                 return;
 1774 
 1775         bw = (int64_t)(ack_seq - tp->t_bw_rtseq) * hz /
 1776             (save_ticks - tp->t_bw_rtttime);
 1777         tp->t_bw_rtttime = save_ticks;
 1778         tp->t_bw_rtseq = ack_seq;
 1779         if (tp->t_bw_rtttime == 0 || (int)bw < 0)
 1780                 return;
 1781         bw = ((int64_t)tp->snd_bandwidth * 15 + bw) >> 4;
 1782 
 1783         tp->snd_bandwidth = bw;
 1784 
 1785         /*
 1786          * Calculate the semi-static bandwidth delay product, plus two maximal
 1787          * segments.  The additional slop puts us squarely in the sweet
 1788          * spot and also handles the bandwidth run-up case and stabilization.
 1789          * Without the slop we could be locking ourselves into a lower
 1790          * bandwidth.
 1791          *
 1792          * Situations Handled:
 1793          *      (1) Prevents over-queueing of packets on LANs, especially on
 1794          *          high speed LANs, allowing larger TCP buffers to be
 1795          *          specified, and also does a good job preventing
 1796          *          over-queueing of packets over choke points like modems
 1797          *          (at least for the transmit side).
 1798          *
 1799          *      (2) Is able to handle changing network loads (bandwidth
 1800          *          drops so bwnd drops, bandwidth increases so bwnd
 1801          *          increases).
 1802          *
 1803          *      (3) Theoretically should stabilize in the face of multiple
 1804          *          connections implementing the same algorithm (this may need
 1805          *          a little work).
 1806          *
 1807          *      (4) Stability value (defaults to 20 = 2 maximal packets) can
 1808          *          be adjusted with a sysctl but typically only needs to be
 1809          *          on very slow connections.  A value no smaller then 5
 1810          *          should be used, but only reduce this default if you have
 1811          *          no other choice.
 1812          */
 1813 #define USERTT  ((tp->t_srtt + tp->t_rttbest) / 2)
 1814         bwnd = (int64_t)bw * USERTT / (hz << TCP_RTT_SHIFT) + tcp_inflight_stab * tp->t_maxseg / 10;
 1815 #undef USERTT
 1816 
 1817         if (tcp_inflight_debug > 0) {
 1818                 static int ltime;
 1819                 if ((u_int)(ticks - ltime) >= hz / tcp_inflight_debug) {
 1820                         ltime = ticks;
 1821                         printf("%p bw %ld rttbest %d srtt %d bwnd %ld\n",
 1822                             tp,
 1823                             bw,
 1824                             tp->t_rttbest,
 1825                             tp->t_srtt,
 1826                             bwnd
 1827                         );
 1828                 }
 1829         }
 1830         if ((long)bwnd < tcp_inflight_min)
 1831                 bwnd = tcp_inflight_min;
 1832         if (bwnd > tcp_inflight_max)
 1833                 bwnd = tcp_inflight_max;
 1834         if ((long)bwnd < tp->t_maxseg * 2)
 1835                 bwnd = tp->t_maxseg * 2;
 1836         tp->snd_bwnd = bwnd;
 1837 }
 1838 
 1839 #ifdef TCP_SIGNATURE
 1840 /*
 1841  * Callback function invoked by m_apply() to digest TCP segment data
 1842  * contained within an mbuf chain.
 1843  */
 1844 static int
 1845 tcp_signature_apply(void *fstate, void *data, u_int len)
 1846 {
 1847 
 1848         MD5Update(fstate, (u_char *)data, len);
 1849         return (0);
 1850 }
 1851 
 1852 /*
 1853  * Compute TCP-MD5 hash of a TCPv4 segment. (RFC2385)
 1854  *
 1855  * Parameters:
 1856  * m            pointer to head of mbuf chain
 1857  * off0         offset to TCP header within the mbuf chain
 1858  * len          length of TCP segment data, excluding options
 1859  * optlen       length of TCP segment options
 1860  * buf          pointer to storage for computed MD5 digest
 1861  * direction    direction of flow (IPSEC_DIR_INBOUND or OUTBOUND)
 1862  *
 1863  * We do this over ip, tcphdr, segment data, and the key in the SADB.
 1864  * When called from tcp_input(), we can be sure that th_sum has been
 1865  * zeroed out and verified already.
 1866  *
 1867  * This function is for IPv4 use only. Calling this function with an
 1868  * IPv6 packet in the mbuf chain will yield undefined results.
 1869  *
 1870  * Return 0 if successful, otherwise return -1.
 1871  *
 1872  * XXX The key is retrieved from the system's PF_KEY SADB, by keying a
 1873  * search with the destination IP address, and a 'magic SPI' to be
 1874  * determined by the application. This is hardcoded elsewhere to 1179
 1875  * right now. Another branch of this code exists which uses the SPD to
 1876  * specify per-application flows but it is unstable.
 1877  */
 1878 int
 1879 tcp_signature_compute(struct mbuf *m, int off0, int len, int optlen,
 1880     u_char *buf, u_int direction)
 1881 {
 1882         union sockaddr_union dst;
 1883         struct ippseudo ippseudo;
 1884         MD5_CTX ctx;
 1885         int doff;
 1886         struct ip *ip;
 1887         struct ipovly *ipovly;
 1888         struct secasvar *sav;
 1889         struct tcphdr *th;
 1890         u_short savecsum;
 1891 
 1892         KASSERT(m != NULL, ("NULL mbuf chain"));
 1893         KASSERT(buf != NULL, ("NULL signature pointer"));
 1894 
 1895         /* Extract the destination from the IP header in the mbuf. */
 1896         ip = mtod(m, struct ip *);
 1897         bzero(&dst, sizeof(union sockaddr_union));
 1898         dst.sa.sa_len = sizeof(struct sockaddr_in);
 1899         dst.sa.sa_family = AF_INET;
 1900         dst.sin.sin_addr = (direction == IPSEC_DIR_INBOUND) ?
 1901             ip->ip_src : ip->ip_dst;
 1902 
 1903         /* Look up an SADB entry which matches the address of the peer. */
 1904         sav = KEY_ALLOCSA(&dst, IPPROTO_TCP, htonl(TCP_SIG_SPI));
 1905         if (sav == NULL) {
 1906                 printf("%s: SADB lookup failed for %s\n", __func__,
 1907                     inet_ntoa(dst.sin.sin_addr));
 1908                 return (EINVAL);
 1909         }
 1910 
 1911         MD5Init(&ctx);
 1912         ipovly = (struct ipovly *)ip;
 1913         th = (struct tcphdr *)((u_char *)ip + off0);
 1914         doff = off0 + sizeof(struct tcphdr) + optlen;
 1915 
 1916         /*
 1917          * Step 1: Update MD5 hash with IP pseudo-header.
 1918          *
 1919          * XXX The ippseudo header MUST be digested in network byte order,
 1920          * or else we'll fail the regression test. Assume all fields we've
 1921          * been doing arithmetic on have been in host byte order.
 1922          * XXX One cannot depend on ipovly->ih_len here. When called from
 1923          * tcp_output(), the underlying ip_len member has not yet been set.
 1924          */
 1925         ippseudo.ippseudo_src = ipovly->ih_src;
 1926         ippseudo.ippseudo_dst = ipovly->ih_dst;
 1927         ippseudo.ippseudo_pad = 0;
 1928         ippseudo.ippseudo_p = IPPROTO_TCP;
 1929         ippseudo.ippseudo_len = htons(len + sizeof(struct tcphdr) + optlen);
 1930         MD5Update(&ctx, (char *)&ippseudo, sizeof(struct ippseudo));
 1931 
 1932         /*
 1933          * Step 2: Update MD5 hash with TCP header, excluding options.
 1934          * The TCP checksum must be set to zero.
 1935          */
 1936         savecsum = th->th_sum;
 1937         th->th_sum = 0;
 1938         MD5Update(&ctx, (char *)th, sizeof(struct tcphdr));
 1939         th->th_sum = savecsum;
 1940 
 1941         /*
 1942          * Step 3: Update MD5 hash with TCP segment data.
 1943          *         Use m_apply() to avoid an early m_pullup().
 1944          */
 1945         if (len > 0)
 1946                 m_apply(m, doff, len, tcp_signature_apply, &ctx);
 1947 
 1948         /*
 1949          * Step 4: Update MD5 hash with shared secret.
 1950          */
 1951         MD5Update(&ctx, sav->key_auth->key_data, _KEYLEN(sav->key_auth));
 1952         MD5Final(buf, &ctx);
 1953 
 1954         key_sa_recordxfer(sav, m);
 1955         KEY_FREESAV(&sav);
 1956         return (0);
 1957 }
 1958 #endif /* TCP_SIGNATURE */
 1959 
 1960 static int
 1961 sysctl_drop(SYSCTL_HANDLER_ARGS)
 1962 {
 1963         /* addrs[0] is a foreign socket, addrs[1] is a local one. */
 1964         struct sockaddr_storage addrs[2];
 1965         struct inpcb *inp;
 1966         struct tcpcb *tp;
 1967         struct tcptw *tw;
 1968         struct sockaddr_in *fin, *lin;
 1969 #ifdef INET6
 1970         struct sockaddr_in6 *fin6, *lin6;
 1971         struct in6_addr f6, l6;
 1972 #endif
 1973         int error;
 1974 
 1975         inp = NULL;
 1976         fin = lin = NULL;
 1977 #ifdef INET6
 1978         fin6 = lin6 = NULL;
 1979 #endif
 1980         error = 0;
 1981 
 1982         if (req->oldptr != NULL || req->oldlen != 0)
 1983                 return (EINVAL);
 1984         if (req->newptr == NULL)
 1985                 return (EPERM);
 1986         if (req->newlen < sizeof(addrs))
 1987                 return (ENOMEM);
 1988         error = SYSCTL_IN(req, &addrs, sizeof(addrs));
 1989         if (error)
 1990                 return (error);
 1991 
 1992         switch (addrs[0].ss_family) {
 1993 #ifdef INET6
 1994         case AF_INET6:
 1995                 fin6 = (struct sockaddr_in6 *)&addrs[0];
 1996                 lin6 = (struct sockaddr_in6 *)&addrs[1];
 1997                 if (fin6->sin6_len != sizeof(struct sockaddr_in6) ||
 1998                     lin6->sin6_len != sizeof(struct sockaddr_in6))
 1999                         return (EINVAL);
 2000                 if (IN6_IS_ADDR_V4MAPPED(&fin6->sin6_addr)) {
 2001                         if (!IN6_IS_ADDR_V4MAPPED(&lin6->sin6_addr))
 2002                                 return (EINVAL);
 2003                         in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[0]);
 2004                         in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[1]);
 2005                         fin = (struct sockaddr_in *)&addrs[0];
 2006                         lin = (struct sockaddr_in *)&addrs[1];
 2007                         break;
 2008                 }
 2009                 error = sa6_embedscope(fin6, ip6_use_defzone);
 2010                 if (error)
 2011                         return (error);
 2012                 error = sa6_embedscope(lin6, ip6_use_defzone);
 2013                 if (error)
 2014                         return (error);
 2015                 break;
 2016 #endif
 2017         case AF_INET:
 2018                 fin = (struct sockaddr_in *)&addrs[0];
 2019                 lin = (struct sockaddr_in *)&addrs[1];
 2020                 if (fin->sin_len != sizeof(struct sockaddr_in) ||
 2021                     lin->sin_len != sizeof(struct sockaddr_in))
 2022                         return (EINVAL);
 2023                 break;
 2024         default:
 2025                 return (EINVAL);
 2026         }
 2027         INP_INFO_WLOCK(&tcbinfo);
 2028         switch (addrs[0].ss_family) {
 2029 #ifdef INET6
 2030         case AF_INET6:
 2031                 inp = in6_pcblookup_hash(&tcbinfo, &f6, fin6->sin6_port,
 2032                     &l6, lin6->sin6_port, 0, NULL);
 2033                 break;
 2034 #endif
 2035         case AF_INET:
 2036                 inp = in_pcblookup_hash(&tcbinfo, fin->sin_addr, fin->sin_port,
 2037                     lin->sin_addr, lin->sin_port, 0, NULL);
 2038                 break;
 2039         }
 2040         if (inp != NULL) {
 2041                 INP_LOCK(inp);
 2042                 if (inp->inp_vflag & INP_TIMEWAIT) {
 2043                         /*
 2044                          * XXXRW: There currently exists a state where an
 2045                          * inpcb is present, but its timewait state has been
 2046                          * discarded.  For now, don't allow dropping of this
 2047                          * type of inpcb.
 2048                          */
 2049                         tw = intotw(inp);
 2050                         if (tw != NULL)
 2051                                 tcp_twclose(tw, 0);
 2052                         else
 2053                                 INP_UNLOCK(inp);
 2054                 } else if (!(inp->inp_vflag & INP_DROPPED) &&
 2055                            !(inp->inp_socket->so_options & SO_ACCEPTCONN)) {
 2056                         tp = intotcpcb(inp);
 2057                         tp = tcp_drop(tp, ECONNABORTED);
 2058                         if (tp != NULL)
 2059                                 INP_UNLOCK(inp);
 2060                 } else
 2061                         INP_UNLOCK(inp);
 2062         } else
 2063                 error = ESRCH;
 2064         INP_INFO_WUNLOCK(&tcbinfo);
 2065         return (error);
 2066 }
 2067 
 2068 SYSCTL_PROC(_net_inet_tcp, TCPCTL_DROP, drop,
 2069     CTLTYPE_STRUCT|CTLFLAG_WR|CTLFLAG_SKIP, NULL,
 2070     0, sysctl_drop, "", "Drop TCP connection");
 2071 
 2072 /*
 2073  * Generate a standardized TCP log line for use throughout the
 2074  * tcp subsystem.  Memory allocation is done with M_NOWAIT to
 2075  * allow use in the interrupt context.
 2076  *
 2077  * NB: The caller MUST free(s, M_TCPLOG) the returned string.
 2078  * NB: The function may return NULL if memory allocation failed.
 2079  *
 2080  * Due to header inclusion and ordering limitations the struct ip
 2081  * and ip6_hdr pointers have to be passed as void pointers.
 2082  */
 2083 char *
 2084 tcp_log_addrs(struct in_conninfo *inc, struct tcphdr *th, void *ip4hdr,
 2085     const void *ip6hdr)
 2086 {
 2087         char *s, *sp;
 2088         size_t size;
 2089         struct ip *ip;
 2090 #ifdef INET6
 2091         const struct ip6_hdr *ip6;
 2092 
 2093         ip6 = (const struct ip6_hdr *)ip6hdr;
 2094 #endif /* INET6 */
 2095         ip = (struct ip *)ip4hdr;
 2096 
 2097         /*
 2098          * The log line looks like this:
 2099          * "TCP: [1.2.3.4]:50332 to [1.2.3.4]:80 tcpflags 0x2<SYN>"
 2100          */
 2101         size = sizeof("TCP: []:12345 to []:12345 tcpflags 0x2<>") +
 2102             sizeof(PRINT_TH_FLAGS) + 1 +
 2103 #ifdef INET6
 2104             2 * INET6_ADDRSTRLEN;
 2105 #else
 2106             2 * INET_ADDRSTRLEN;
 2107 #endif /* INET6 */
 2108 
 2109         /* Is logging enabled? */
 2110         if (tcp_log_debug == 0 && tcp_log_in_vain == 0)
 2111                 return (NULL);
 2112 
 2113         s = malloc(size, M_TCPLOG, M_ZERO|M_NOWAIT);
 2114         if (s == NULL)
 2115                 return (NULL);
 2116 
 2117         strcat(s, "TCP: [");
 2118         sp = s + strlen(s);
 2119 
 2120         if (inc && inc->inc_isipv6 == 0) {
 2121                 inet_ntoa_r(inc->inc_faddr, sp);
 2122                 sp = s + strlen(s);
 2123                 sprintf(sp, "]:%i to [", ntohs(inc->inc_fport));
 2124                 sp = s + strlen(s);
 2125                 inet_ntoa_r(inc->inc_laddr, sp);
 2126                 sp = s + strlen(s);
 2127                 sprintf(sp, "]:%i", ntohs(inc->inc_lport));
 2128 #ifdef INET6
 2129         } else if (inc) {
 2130                 ip6_sprintf(sp, &inc->inc6_faddr);
 2131                 sp = s + strlen(s);
 2132                 sprintf(sp, "]:%i to [", ntohs(inc->inc_fport));
 2133                 sp = s + strlen(s);
 2134                 ip6_sprintf(sp, &inc->inc6_laddr);
 2135                 sp = s + strlen(s);
 2136                 sprintf(sp, "]:%i", ntohs(inc->inc_lport));
 2137         } else if (ip6 && th) {
 2138                 ip6_sprintf(sp, &ip6->ip6_src);
 2139                 sp = s + strlen(s);
 2140                 sprintf(sp, "]:%i to [", ntohs(th->th_sport));
 2141                 sp = s + strlen(s);
 2142                 ip6_sprintf(sp, &ip6->ip6_dst);
 2143                 sp = s + strlen(s);
 2144                 sprintf(sp, "]:%i", ntohs(th->th_dport));
 2145 #endif /* INET6 */
 2146         } else if (ip && th) {
 2147                 inet_ntoa_r(ip->ip_src, sp);
 2148                 sp = s + strlen(s);
 2149                 sprintf(sp, "]:%i to [", ntohs(th->th_sport));
 2150                 sp = s + strlen(s);
 2151                 inet_ntoa_r(ip->ip_dst, sp);
 2152                 sp = s + strlen(s);
 2153                 sprintf(sp, "]:%i", ntohs(th->th_dport));
 2154         } else {
 2155                 free(s, M_TCPLOG);
 2156                 return (NULL);
 2157         }
 2158         sp = s + strlen(s);
 2159         if (th)
 2160                 sprintf(sp, " tcpflags 0x%b", th->th_flags, PRINT_TH_FLAGS);
 2161         if (*(s + size - 1) != '\0')
 2162                 panic("%s: string too long", __func__);
 2163         return (s);
 2164 }

Cache object: f761325f9b195df2f2f71d4b5a561796


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.