The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/netinet/tcp_subr.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
    3  *      The Regents of the University of California.  All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice, this list of conditions and the following disclaimer.
   10  * 2. Redistributions in binary form must reproduce the above copyright
   11  *    notice, this list of conditions and the following disclaimer in the
   12  *    documentation and/or other materials provided with the distribution.
   13  * 4. Neither the name of the University nor the names of its contributors
   14  *    may be used to endorse or promote products derived from this software
   15  *    without specific prior written permission.
   16  *
   17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   27  * SUCH DAMAGE.
   28  *
   29  *      @(#)tcp_subr.c  8.2 (Berkeley) 5/24/95
   30  */
   31 
   32 #include <sys/cdefs.h>
   33 __FBSDID("$FreeBSD$");
   34 
   35 #include "opt_compat.h"
   36 #include "opt_inet.h"
   37 #include "opt_inet6.h"
   38 #include "opt_ipsec.h"
   39 #include "opt_mac.h"
   40 #include "opt_tcpdebug.h"
   41 
   42 #include <sys/param.h>
   43 #include <sys/systm.h>
   44 #include <sys/callout.h>
   45 #include <sys/kernel.h>
   46 #include <sys/sysctl.h>
   47 #include <sys/malloc.h>
   48 #include <sys/mbuf.h>
   49 #ifdef INET6
   50 #include <sys/domain.h>
   51 #endif
   52 #include <sys/priv.h>
   53 #include <sys/proc.h>
   54 #include <sys/socket.h>
   55 #include <sys/socketvar.h>
   56 #include <sys/protosw.h>
   57 #include <sys/random.h>
   58 
   59 #include <vm/uma.h>
   60 
   61 #include <net/route.h>
   62 #include <net/if.h>
   63 
   64 #include <netinet/in.h>
   65 #include <netinet/in_systm.h>
   66 #include <netinet/ip.h>
   67 #ifdef INET6
   68 #include <netinet/ip6.h>
   69 #endif
   70 #include <netinet/in_pcb.h>
   71 #ifdef INET6
   72 #include <netinet6/in6_pcb.h>
   73 #endif
   74 #include <netinet/in_var.h>
   75 #include <netinet/ip_var.h>
   76 #ifdef INET6
   77 #include <netinet6/ip6_var.h>
   78 #include <netinet6/scope6_var.h>
   79 #include <netinet6/nd6.h>
   80 #endif
   81 #include <netinet/ip_icmp.h>
   82 #include <netinet/tcp.h>
   83 #include <netinet/tcp_fsm.h>
   84 #include <netinet/tcp_seq.h>
   85 #include <netinet/tcp_timer.h>
   86 #include <netinet/tcp_var.h>
   87 #include <netinet/tcp_syncache.h>
   88 #include <netinet/tcp_offload.h>
   89 #ifdef INET6
   90 #include <netinet6/tcp6_var.h>
   91 #endif
   92 #include <netinet/tcpip.h>
   93 #ifdef TCPDEBUG
   94 #include <netinet/tcp_debug.h>
   95 #endif
   96 #include <netinet6/ip6protosw.h>
   97 
   98 #ifdef IPSEC
   99 #include <netipsec/ipsec.h>
  100 #include <netipsec/xform.h>
  101 #ifdef INET6
  102 #include <netipsec/ipsec6.h>
  103 #endif
  104 #include <netipsec/key.h>
  105 #include <sys/syslog.h>
  106 #endif /*IPSEC*/
  107 
  108 #include <machine/in_cksum.h>
  109 #include <sys/md5.h>
  110 
  111 #include <security/mac/mac_framework.h>
  112 
  113 int     tcp_mssdflt = TCP_MSS;
  114 SYSCTL_INT(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt, CTLFLAG_RW,
  115     &tcp_mssdflt, 0, "Default TCP Maximum Segment Size");
  116 
  117 #ifdef INET6
  118 int     tcp_v6mssdflt = TCP6_MSS;
  119 SYSCTL_INT(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt,
  120     CTLFLAG_RW, &tcp_v6mssdflt , 0,
  121     "Default TCP Maximum Segment Size for IPv6");
  122 #endif
  123 
  124 /*
  125  * Minimum MSS we accept and use. This prevents DoS attacks where
  126  * we are forced to a ridiculous low MSS like 20 and send hundreds
  127  * of packets instead of one. The effect scales with the available
  128  * bandwidth and quickly saturates the CPU and network interface
  129  * with packet generation and sending. Set to zero to disable MINMSS
  130  * checking. This setting prevents us from sending too small packets.
  131  */
  132 int     tcp_minmss = TCP_MINMSS;
  133 SYSCTL_INT(_net_inet_tcp, OID_AUTO, minmss, CTLFLAG_RW,
  134     &tcp_minmss , 0, "Minmum TCP Maximum Segment Size");
  135 
  136 int     tcp_do_rfc1323 = 1;
  137 SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_RW,
  138     &tcp_do_rfc1323, 0, "Enable rfc1323 (high performance TCP) extensions");
  139 
  140 static int      tcp_log_debug = 0;
  141 SYSCTL_INT(_net_inet_tcp, OID_AUTO, log_debug, CTLFLAG_RW,
  142     &tcp_log_debug, 0, "Log errors caused by incoming TCP segments");
  143 
  144 static int      tcp_tcbhashsize = 0;
  145 SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RDTUN,
  146     &tcp_tcbhashsize, 0, "Size of TCP control-block hashtable");
  147 
  148 static int      do_tcpdrain = 1;
  149 SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW,
  150     &do_tcpdrain, 0,
  151     "Enable tcp_drain routine for extra help when low on mbufs");
  152 
  153 SYSCTL_INT(_net_inet_tcp, OID_AUTO, pcbcount, CTLFLAG_RD,
  154     &tcbinfo.ipi_count, 0, "Number of active PCBs");
  155 
  156 static int      icmp_may_rst = 1;
  157 SYSCTL_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_RW,
  158     &icmp_may_rst, 0,
  159     "Certain ICMP unreachable messages may abort connections in SYN_SENT");
  160 
  161 static int      tcp_isn_reseed_interval = 0;
  162 SYSCTL_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_RW,
  163     &tcp_isn_reseed_interval, 0, "Seconds between reseeding of ISN secret");
  164 
  165 /*
  166  * TCP bandwidth limiting sysctls.  Note that the default lower bound of
  167  * 1024 exists only for debugging.  A good production default would be
  168  * something like 6100.
  169  */
  170 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, inflight, CTLFLAG_RW, 0,
  171     "TCP inflight data limiting");
  172 
  173 static int      tcp_inflight_enable = 1;
  174 SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, enable, CTLFLAG_RW,
  175     &tcp_inflight_enable, 0, "Enable automatic TCP inflight data limiting");
  176 
  177 static int      tcp_inflight_debug = 0;
  178 SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, debug, CTLFLAG_RW,
  179     &tcp_inflight_debug, 0, "Debug TCP inflight calculations");
  180 
  181 static int      tcp_inflight_rttthresh;
  182 SYSCTL_PROC(_net_inet_tcp_inflight, OID_AUTO, rttthresh, CTLTYPE_INT|CTLFLAG_RW,
  183     &tcp_inflight_rttthresh, 0, sysctl_msec_to_ticks, "I",
  184     "RTT threshold below which inflight will deactivate itself");
  185 
  186 static int      tcp_inflight_min = 6144;
  187 SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, min, CTLFLAG_RW,
  188     &tcp_inflight_min, 0, "Lower-bound for TCP inflight window");
  189 
  190 static int      tcp_inflight_max = TCP_MAXWIN << TCP_MAX_WINSHIFT;
  191 SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, max, CTLFLAG_RW,
  192     &tcp_inflight_max, 0, "Upper-bound for TCP inflight window");
  193 
  194 static int      tcp_inflight_stab = 20;
  195 SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, stab, CTLFLAG_RW,
  196     &tcp_inflight_stab, 0, "Inflight Algorithm Stabilization 20 = 2 packets");
  197 
  198 uma_zone_t sack_hole_zone;
  199 
  200 static struct inpcb *tcp_notify(struct inpcb *, int);
  201 static void     tcp_isn_tick(void *);
  202 
  203 /*
  204  * Target size of TCP PCB hash tables. Must be a power of two.
  205  *
  206  * Note that this can be overridden by the kernel environment
  207  * variable net.inet.tcp.tcbhashsize
  208  */
  209 #ifndef TCBHASHSIZE
  210 #define TCBHASHSIZE     512
  211 #endif
  212 
  213 /*
  214  * XXX
  215  * Callouts should be moved into struct tcp directly.  They are currently
  216  * separate because the tcpcb structure is exported to userland for sysctl
  217  * parsing purposes, which do not know about callouts.
  218  */
  219 struct tcpcb_mem {
  220         struct  tcpcb           tcb;
  221         struct  tcp_timer       tt;
  222 };
  223 
  224 static uma_zone_t tcpcb_zone;
  225 MALLOC_DEFINE(M_TCPLOG, "tcplog", "TCP address and flags print buffers");
  226 struct callout isn_callout;
  227 static struct mtx isn_mtx;
  228 
  229 #define ISN_LOCK_INIT() mtx_init(&isn_mtx, "isn_mtx", NULL, MTX_DEF)
  230 #define ISN_LOCK()      mtx_lock(&isn_mtx)
  231 #define ISN_UNLOCK()    mtx_unlock(&isn_mtx)
  232 
  233 /*
  234  * TCP initialization.
  235  */
  236 static void
  237 tcp_zone_change(void *tag)
  238 {
  239 
  240         uma_zone_set_max(tcbinfo.ipi_zone, maxsockets);
  241         uma_zone_set_max(tcpcb_zone, maxsockets);
  242         tcp_tw_zone_change();
  243 }
  244 
  245 static int
  246 tcp_inpcb_init(void *mem, int size, int flags)
  247 {
  248         struct inpcb *inp = mem;
  249 
  250         INP_LOCK_INIT(inp, "inp", "tcpinp");
  251         return (0);
  252 }
  253 
  254 void
  255 tcp_init(void)
  256 {
  257 
  258         int hashsize = TCBHASHSIZE;
  259         tcp_delacktime = TCPTV_DELACK;
  260         tcp_keepinit = TCPTV_KEEP_INIT;
  261         tcp_keepidle = TCPTV_KEEP_IDLE;
  262         tcp_keepintvl = TCPTV_KEEPINTVL;
  263         tcp_maxpersistidle = TCPTV_KEEP_IDLE;
  264         tcp_msl = TCPTV_MSL;
  265         tcp_rexmit_min = TCPTV_MIN;
  266         if (tcp_rexmit_min < 1)
  267                 tcp_rexmit_min = 1;
  268         tcp_rexmit_slop = TCPTV_CPU_VAR;
  269         tcp_inflight_rttthresh = TCPTV_INFLIGHT_RTTTHRESH;
  270         tcp_finwait2_timeout = TCPTV_FINWAIT2_TIMEOUT;
  271 
  272         INP_INFO_LOCK_INIT(&tcbinfo, "tcp");
  273         LIST_INIT(&tcb);
  274         tcbinfo.ipi_listhead = &tcb;
  275         TUNABLE_INT_FETCH("net.inet.tcp.tcbhashsize", &hashsize);
  276         if (!powerof2(hashsize)) {
  277                 printf("WARNING: TCB hash size not a power of 2\n");
  278                 hashsize = 512; /* safe default */
  279         }
  280         tcp_tcbhashsize = hashsize;
  281         tcbinfo.ipi_hashbase = hashinit(hashsize, M_PCB,
  282             &tcbinfo.ipi_hashmask);
  283         tcbinfo.ipi_porthashbase = hashinit(hashsize, M_PCB,
  284             &tcbinfo.ipi_porthashmask);
  285         tcbinfo.ipi_zone = uma_zcreate("inpcb", sizeof(struct inpcb),
  286             NULL, NULL, tcp_inpcb_init, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
  287         uma_zone_set_max(tcbinfo.ipi_zone, maxsockets);
  288 #ifdef INET6
  289 #define TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
  290 #else /* INET6 */
  291 #define TCP_MINPROTOHDR (sizeof(struct tcpiphdr))
  292 #endif /* INET6 */
  293         if (max_protohdr < TCP_MINPROTOHDR)
  294                 max_protohdr = TCP_MINPROTOHDR;
  295         if (max_linkhdr + TCP_MINPROTOHDR > MHLEN)
  296                 panic("tcp_init");
  297 #undef TCP_MINPROTOHDR
  298         /*
  299          * These have to be type stable for the benefit of the timers.
  300          */
  301         tcpcb_zone = uma_zcreate("tcpcb", sizeof(struct tcpcb_mem),
  302             NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
  303         uma_zone_set_max(tcpcb_zone, maxsockets);
  304         tcp_tw_init();
  305         syncache_init();
  306         tcp_hc_init();
  307         tcp_reass_init();
  308         ISN_LOCK_INIT();
  309         callout_init(&isn_callout, CALLOUT_MPSAFE);
  310         tcp_isn_tick(NULL);
  311         EVENTHANDLER_REGISTER(shutdown_pre_sync, tcp_fini, NULL,
  312                 SHUTDOWN_PRI_DEFAULT);
  313         sack_hole_zone = uma_zcreate("sackhole", sizeof(struct sackhole),
  314             NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
  315         EVENTHANDLER_REGISTER(maxsockets_change, tcp_zone_change, NULL,
  316                 EVENTHANDLER_PRI_ANY);
  317 }
  318 
  319 void
  320 tcp_fini(void *xtp)
  321 {
  322 
  323         callout_stop(&isn_callout);
  324 }
  325 
  326 /*
  327  * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
  328  * tcp_template used to store this data in mbufs, but we now recopy it out
  329  * of the tcpcb each time to conserve mbufs.
  330  */
  331 void
  332 tcpip_fillheaders(struct inpcb *inp, void *ip_ptr, void *tcp_ptr)
  333 {
  334         struct tcphdr *th = (struct tcphdr *)tcp_ptr;
  335 
  336         INP_WLOCK_ASSERT(inp);
  337 
  338 #ifdef INET6
  339         if ((inp->inp_vflag & INP_IPV6) != 0) {
  340                 struct ip6_hdr *ip6;
  341 
  342                 ip6 = (struct ip6_hdr *)ip_ptr;
  343                 ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
  344                         (inp->inp_flow & IPV6_FLOWINFO_MASK);
  345                 ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) |
  346                         (IPV6_VERSION & IPV6_VERSION_MASK);
  347                 ip6->ip6_nxt = IPPROTO_TCP;
  348                 ip6->ip6_plen = htons(sizeof(struct tcphdr));
  349                 ip6->ip6_src = inp->in6p_laddr;
  350                 ip6->ip6_dst = inp->in6p_faddr;
  351         } else
  352 #endif
  353         {
  354                 struct ip *ip;
  355 
  356                 ip = (struct ip *)ip_ptr;
  357                 ip->ip_v = IPVERSION;
  358                 ip->ip_hl = 5;
  359                 ip->ip_tos = inp->inp_ip_tos;
  360                 ip->ip_len = 0;
  361                 ip->ip_id = 0;
  362                 ip->ip_off = 0;
  363                 ip->ip_ttl = inp->inp_ip_ttl;
  364                 ip->ip_sum = 0;
  365                 ip->ip_p = IPPROTO_TCP;
  366                 ip->ip_src = inp->inp_laddr;
  367                 ip->ip_dst = inp->inp_faddr;
  368         }
  369         th->th_sport = inp->inp_lport;
  370         th->th_dport = inp->inp_fport;
  371         th->th_seq = 0;
  372         th->th_ack = 0;
  373         th->th_x2 = 0;
  374         th->th_off = 5;
  375         th->th_flags = 0;
  376         th->th_win = 0;
  377         th->th_urp = 0;
  378         th->th_sum = 0;         /* in_pseudo() is called later for ipv4 */
  379 }
  380 
  381 /*
  382  * Create template to be used to send tcp packets on a connection.
  383  * Allocates an mbuf and fills in a skeletal tcp/ip header.  The only
  384  * use for this function is in keepalives, which use tcp_respond.
  385  */
  386 struct tcptemp *
  387 tcpip_maketemplate(struct inpcb *inp)
  388 {
  389         struct tcptemp *t;
  390 
  391         t = malloc(sizeof(*t), M_TEMP, M_NOWAIT);
  392         if (t == NULL)
  393                 return (NULL);
  394         tcpip_fillheaders(inp, (void *)&t->tt_ipgen, (void *)&t->tt_t);
  395         return (t);
  396 }
  397 
  398 /*
  399  * Send a single message to the TCP at address specified by
  400  * the given TCP/IP header.  If m == NULL, then we make a copy
  401  * of the tcpiphdr at ti and send directly to the addressed host.
  402  * This is used to force keep alive messages out using the TCP
  403  * template for a connection.  If flags are given then we send
  404  * a message back to the TCP which originated the * segment ti,
  405  * and discard the mbuf containing it and any other attached mbufs.
  406  *
  407  * In any case the ack and sequence number of the transmitted
  408  * segment are as specified by the parameters.
  409  *
  410  * NOTE: If m != NULL, then ti must point to *inside* the mbuf.
  411  */
  412 void
  413 tcp_respond(struct tcpcb *tp, void *ipgen, struct tcphdr *th, struct mbuf *m,
  414     tcp_seq ack, tcp_seq seq, int flags)
  415 {
  416         int tlen;
  417         int win = 0;
  418         struct ip *ip;
  419         struct tcphdr *nth;
  420 #ifdef INET6
  421         struct ip6_hdr *ip6;
  422         int isipv6;
  423 #endif /* INET6 */
  424         int ipflags = 0;
  425         struct inpcb *inp;
  426 
  427         KASSERT(tp != NULL || m != NULL, ("tcp_respond: tp and m both NULL"));
  428 
  429 #ifdef INET6
  430         isipv6 = ((struct ip *)ipgen)->ip_v == 6;
  431         ip6 = ipgen;
  432 #endif /* INET6 */
  433         ip = ipgen;
  434 
  435         if (tp != NULL) {
  436                 inp = tp->t_inpcb;
  437                 KASSERT(inp != NULL, ("tcp control block w/o inpcb"));
  438                 INP_WLOCK_ASSERT(inp);
  439         } else
  440                 inp = NULL;
  441 
  442         if (tp != NULL) {
  443                 if (!(flags & TH_RST)) {
  444                         win = sbspace(&inp->inp_socket->so_rcv);
  445                         if (win > (long)TCP_MAXWIN << tp->rcv_scale)
  446                                 win = (long)TCP_MAXWIN << tp->rcv_scale;
  447                 }
  448         }
  449         if (m == NULL) {
  450                 m = m_gethdr(M_DONTWAIT, MT_DATA);
  451                 if (m == NULL)
  452                         return;
  453                 tlen = 0;
  454                 m->m_data += max_linkhdr;
  455 #ifdef INET6
  456                 if (isipv6) {
  457                         bcopy((caddr_t)ip6, mtod(m, caddr_t),
  458                               sizeof(struct ip6_hdr));
  459                         ip6 = mtod(m, struct ip6_hdr *);
  460                         nth = (struct tcphdr *)(ip6 + 1);
  461                 } else
  462 #endif /* INET6 */
  463               {
  464                 bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
  465                 ip = mtod(m, struct ip *);
  466                 nth = (struct tcphdr *)(ip + 1);
  467               }
  468                 bcopy((caddr_t)th, (caddr_t)nth, sizeof(struct tcphdr));
  469                 flags = TH_ACK;
  470         } else {
  471                 /*
  472                  *  reuse the mbuf. 
  473                  * XXX MRT We inherrit the FIB, which is lucky.
  474                  */
  475                 m_freem(m->m_next);
  476                 m->m_next = NULL;
  477                 m->m_data = (caddr_t)ipgen;
  478                 /* m_len is set later */
  479                 tlen = 0;
  480 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
  481 #ifdef INET6
  482                 if (isipv6) {
  483                         xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
  484                         nth = (struct tcphdr *)(ip6 + 1);
  485                 } else
  486 #endif /* INET6 */
  487               {
  488                 xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, uint32_t);
  489                 nth = (struct tcphdr *)(ip + 1);
  490               }
  491                 if (th != nth) {
  492                         /*
  493                          * this is usually a case when an extension header
  494                          * exists between the IPv6 header and the
  495                          * TCP header.
  496                          */
  497                         nth->th_sport = th->th_sport;
  498                         nth->th_dport = th->th_dport;
  499                 }
  500                 xchg(nth->th_dport, nth->th_sport, uint16_t);
  501 #undef xchg
  502         }
  503 #ifdef INET6
  504         if (isipv6) {
  505                 ip6->ip6_flow = 0;
  506                 ip6->ip6_vfc = IPV6_VERSION;
  507                 ip6->ip6_nxt = IPPROTO_TCP;
  508                 ip6->ip6_plen = htons((u_short)(sizeof (struct tcphdr) +
  509                                                 tlen));
  510                 tlen += sizeof (struct ip6_hdr) + sizeof (struct tcphdr);
  511         } else
  512 #endif
  513         {
  514                 tlen += sizeof (struct tcpiphdr);
  515                 ip->ip_len = tlen;
  516                 ip->ip_ttl = ip_defttl;
  517                 if (path_mtu_discovery)
  518                         ip->ip_off |= IP_DF;
  519         }
  520         m->m_len = tlen;
  521         m->m_pkthdr.len = tlen;
  522         m->m_pkthdr.rcvif = NULL;
  523 #ifdef MAC
  524         if (inp != NULL) {
  525                 /*
  526                  * Packet is associated with a socket, so allow the
  527                  * label of the response to reflect the socket label.
  528                  */
  529                 INP_WLOCK_ASSERT(inp);
  530                 mac_create_mbuf_from_inpcb(inp, m);
  531         } else {
  532                 /*
  533                  * Packet is not associated with a socket, so possibly
  534                  * update the label in place.
  535                  */
  536                 mac_reflect_mbuf_tcp(m);
  537         }
  538 #endif
  539         nth->th_seq = htonl(seq);
  540         nth->th_ack = htonl(ack);
  541         nth->th_x2 = 0;
  542         nth->th_off = sizeof (struct tcphdr) >> 2;
  543         nth->th_flags = flags;
  544         if (tp != NULL)
  545                 nth->th_win = htons((u_short) (win >> tp->rcv_scale));
  546         else
  547                 nth->th_win = htons((u_short)win);
  548         nth->th_urp = 0;
  549 #ifdef INET6
  550         if (isipv6) {
  551                 nth->th_sum = 0;
  552                 nth->th_sum = in6_cksum(m, IPPROTO_TCP,
  553                                         sizeof(struct ip6_hdr),
  554                                         tlen - sizeof(struct ip6_hdr));
  555                 ip6->ip6_hlim = in6_selecthlim(tp != NULL ? tp->t_inpcb :
  556                     NULL, NULL);
  557         } else
  558 #endif /* INET6 */
  559         {
  560                 nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
  561                     htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p)));
  562                 m->m_pkthdr.csum_flags = CSUM_TCP;
  563                 m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
  564         }
  565 #ifdef TCPDEBUG
  566         if (tp == NULL || (inp->inp_socket->so_options & SO_DEBUG))
  567                 tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0);
  568 #endif
  569 #ifdef INET6
  570         if (isipv6)
  571                 (void) ip6_output(m, NULL, NULL, ipflags, NULL, NULL, inp);
  572         else
  573 #endif /* INET6 */
  574         (void) ip_output(m, NULL, NULL, ipflags, NULL, inp);
  575 }
  576 
  577 /*
  578  * Create a new TCP control block, making an
  579  * empty reassembly queue and hooking it to the argument
  580  * protocol control block.  The `inp' parameter must have
  581  * come from the zone allocator set up in tcp_init().
  582  */
  583 struct tcpcb *
  584 tcp_newtcpcb(struct inpcb *inp)
  585 {
  586         struct tcpcb_mem *tm;
  587         struct tcpcb *tp;
  588 #ifdef INET6
  589         int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
  590 #endif /* INET6 */
  591 
  592         tm = uma_zalloc(tcpcb_zone, M_NOWAIT | M_ZERO);
  593         if (tm == NULL)
  594                 return (NULL);
  595         tp = &tm->tcb;
  596         tp->t_timers = &tm->tt;
  597         /*      LIST_INIT(&tp->t_segq); */      /* XXX covered by M_ZERO */
  598         tp->t_maxseg = tp->t_maxopd =
  599 #ifdef INET6
  600                 isipv6 ? tcp_v6mssdflt :
  601 #endif /* INET6 */
  602                 tcp_mssdflt;
  603 
  604         /* Set up our timeouts. */
  605         callout_init(&tp->t_timers->tt_rexmt, CALLOUT_MPSAFE);
  606         callout_init(&tp->t_timers->tt_persist, CALLOUT_MPSAFE);
  607         callout_init(&tp->t_timers->tt_keep, CALLOUT_MPSAFE);
  608         callout_init(&tp->t_timers->tt_2msl, CALLOUT_MPSAFE);
  609         callout_init(&tp->t_timers->tt_delack, CALLOUT_MPSAFE);
  610 
  611         if (tcp_do_rfc1323)
  612                 tp->t_flags = (TF_REQ_SCALE|TF_REQ_TSTMP);
  613         if (tcp_do_sack)
  614                 tp->t_flags |= TF_SACK_PERMIT;
  615         TAILQ_INIT(&tp->snd_holes);
  616         tp->t_inpcb = inp;      /* XXX */
  617         /*
  618          * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
  619          * rtt estimate.  Set rttvar so that srtt + 4 * rttvar gives
  620          * reasonable initial retransmit time.
  621          */
  622         tp->t_srtt = TCPTV_SRTTBASE;
  623         tp->t_rttvar = ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
  624         tp->t_rttmin = tcp_rexmit_min;
  625         tp->t_rxtcur = TCPTV_RTOBASE;
  626         tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
  627         tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
  628         tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
  629         tp->t_rcvtime = ticks;
  630         tp->t_bw_rtttime = ticks;
  631         /*
  632          * IPv4 TTL initialization is necessary for an IPv6 socket as well,
  633          * because the socket may be bound to an IPv6 wildcard address,
  634          * which may match an IPv4-mapped IPv6 address.
  635          */
  636         inp->inp_ip_ttl = ip_defttl;
  637         inp->inp_ppcb = tp;
  638         return (tp);            /* XXX */
  639 }
  640 
  641 /*
  642  * Drop a TCP connection, reporting
  643  * the specified error.  If connection is synchronized,
  644  * then send a RST to peer.
  645  */
  646 struct tcpcb *
  647 tcp_drop(struct tcpcb *tp, int errno)
  648 {
  649         struct socket *so = tp->t_inpcb->inp_socket;
  650 
  651         INP_INFO_WLOCK_ASSERT(&tcbinfo);
  652         INP_WLOCK_ASSERT(tp->t_inpcb);
  653 
  654         if (TCPS_HAVERCVDSYN(tp->t_state)) {
  655                 tp->t_state = TCPS_CLOSED;
  656                 (void) tcp_output_reset(tp);
  657                 tcpstat.tcps_drops++;
  658         } else
  659                 tcpstat.tcps_conndrops++;
  660         if (errno == ETIMEDOUT && tp->t_softerror)
  661                 errno = tp->t_softerror;
  662         so->so_error = errno;
  663         return (tcp_close(tp));
  664 }
  665 
  666 void
  667 tcp_discardcb(struct tcpcb *tp)
  668 {
  669         struct tseg_qent *q;
  670         struct inpcb *inp = tp->t_inpcb;
  671         struct socket *so = inp->inp_socket;
  672 #ifdef INET6
  673         int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
  674 #endif /* INET6 */
  675 
  676         INP_WLOCK_ASSERT(inp);
  677 
  678         /*
  679          * Make sure that all of our timers are stopped before we
  680          * delete the PCB.
  681          */
  682         callout_stop(&tp->t_timers->tt_rexmt);
  683         callout_stop(&tp->t_timers->tt_persist);
  684         callout_stop(&tp->t_timers->tt_keep);
  685         callout_stop(&tp->t_timers->tt_2msl);
  686         callout_stop(&tp->t_timers->tt_delack);
  687 
  688         /*
  689          * If we got enough samples through the srtt filter,
  690          * save the rtt and rttvar in the routing entry.
  691          * 'Enough' is arbitrarily defined as 4 rtt samples.
  692          * 4 samples is enough for the srtt filter to converge
  693          * to within enough % of the correct value; fewer samples
  694          * and we could save a bogus rtt. The danger is not high
  695          * as tcp quickly recovers from everything.
  696          * XXX: Works very well but needs some more statistics!
  697          */
  698         if (tp->t_rttupdated >= 4) {
  699                 struct hc_metrics_lite metrics;
  700                 u_long ssthresh;
  701 
  702                 bzero(&metrics, sizeof(metrics));
  703                 /*
  704                  * Update the ssthresh always when the conditions below
  705                  * are satisfied. This gives us better new start value
  706                  * for the congestion avoidance for new connections.
  707                  * ssthresh is only set if packet loss occured on a session.
  708                  *
  709                  * XXXRW: 'so' may be NULL here, and/or socket buffer may be
  710                  * being torn down.  Ideally this code would not use 'so'.
  711                  */
  712                 ssthresh = tp->snd_ssthresh;
  713                 if (ssthresh != 0 && ssthresh < so->so_snd.sb_hiwat / 2) {
  714                         /*
  715                          * convert the limit from user data bytes to
  716                          * packets then to packet data bytes.
  717                          */
  718                         ssthresh = (ssthresh + tp->t_maxseg / 2) / tp->t_maxseg;
  719                         if (ssthresh < 2)
  720                                 ssthresh = 2;
  721                         ssthresh *= (u_long)(tp->t_maxseg +
  722 #ifdef INET6
  723                                       (isipv6 ? sizeof (struct ip6_hdr) +
  724                                                sizeof (struct tcphdr) :
  725 #endif
  726                                        sizeof (struct tcpiphdr)
  727 #ifdef INET6
  728                                        )
  729 #endif
  730                                       );
  731                 } else
  732                         ssthresh = 0;
  733                 metrics.rmx_ssthresh = ssthresh;
  734 
  735                 metrics.rmx_rtt = tp->t_srtt;
  736                 metrics.rmx_rttvar = tp->t_rttvar;
  737                 /* XXX: This wraps if the pipe is more than 4 Gbit per second */
  738                 metrics.rmx_bandwidth = tp->snd_bandwidth;
  739                 metrics.rmx_cwnd = tp->snd_cwnd;
  740                 metrics.rmx_sendpipe = 0;
  741                 metrics.rmx_recvpipe = 0;
  742 
  743                 tcp_hc_update(&inp->inp_inc, &metrics);
  744         }
  745 
  746         /* free the reassembly queue, if any */
  747         while ((q = LIST_FIRST(&tp->t_segq)) != NULL) {
  748                 LIST_REMOVE(q, tqe_q);
  749                 m_freem(q->tqe_m);
  750                 uma_zfree(tcp_reass_zone, q);
  751                 tp->t_segqlen--;
  752                 tcp_reass_qsize--;
  753         }
  754         /* Disconnect offload device, if any. */
  755         tcp_offload_detach(tp);
  756                 
  757         tcp_free_sackholes(tp);
  758         inp->inp_ppcb = NULL;
  759         tp->t_inpcb = NULL;
  760         uma_zfree(tcpcb_zone, tp);
  761 }
  762 
  763 /*
  764  * Attempt to close a TCP control block, marking it as dropped, and freeing
  765  * the socket if we hold the only reference.
  766  */
  767 struct tcpcb *
  768 tcp_close(struct tcpcb *tp)
  769 {
  770         struct inpcb *inp = tp->t_inpcb;
  771         struct socket *so;
  772 
  773         INP_INFO_WLOCK_ASSERT(&tcbinfo);
  774         INP_WLOCK_ASSERT(inp);
  775 
  776         /* Notify any offload devices of listener close */
  777         if (tp->t_state == TCPS_LISTEN)
  778                 tcp_offload_listen_close(tp);
  779         in_pcbdrop(inp);
  780         tcpstat.tcps_closed++;
  781         KASSERT(inp->inp_socket != NULL, ("tcp_close: inp_socket NULL"));
  782         so = inp->inp_socket;
  783         soisdisconnected(so);
  784         if (inp->inp_flags & INP_SOCKREF) {
  785                 KASSERT(so->so_state & SS_PROTOREF,
  786                     ("tcp_close: !SS_PROTOREF"));
  787                 inp->inp_flags &= ~INP_SOCKREF;
  788                 INP_WUNLOCK(inp);
  789                 ACCEPT_LOCK();
  790                 SOCK_LOCK(so);
  791                 so->so_state &= ~SS_PROTOREF;
  792                 sofree(so);
  793                 return (NULL);
  794         }
  795         return (tp);
  796 }
  797 
  798 void
  799 tcp_drain(void)
  800 {
  801 
  802         if (do_tcpdrain) {
  803                 struct inpcb *inpb;
  804                 struct tcpcb *tcpb;
  805                 struct tseg_qent *te;
  806 
  807         /*
  808          * Walk the tcpbs, if existing, and flush the reassembly queue,
  809          * if there is one...
  810          * XXX: The "Net/3" implementation doesn't imply that the TCP
  811          *      reassembly queue should be flushed, but in a situation
  812          *      where we're really low on mbufs, this is potentially
  813          *      usefull.
  814          */
  815                 INP_INFO_RLOCK(&tcbinfo);
  816                 LIST_FOREACH(inpb, tcbinfo.ipi_listhead, inp_list) {
  817                         if (inpb->inp_flags & INP_TIMEWAIT)
  818                                 continue;
  819                         INP_WLOCK(inpb);
  820                         if ((tcpb = intotcpcb(inpb)) != NULL) {
  821                                 while ((te = LIST_FIRST(&tcpb->t_segq))
  822                                     != NULL) {
  823                                         LIST_REMOVE(te, tqe_q);
  824                                         m_freem(te->tqe_m);
  825                                         uma_zfree(tcp_reass_zone, te);
  826                                         tcpb->t_segqlen--;
  827                                         tcp_reass_qsize--;
  828                                 }
  829                                 tcp_clean_sackreport(tcpb);
  830                         }
  831                         INP_WUNLOCK(inpb);
  832                 }
  833                 INP_INFO_RUNLOCK(&tcbinfo);
  834         }
  835 }
  836 
  837 /*
  838  * Notify a tcp user of an asynchronous error;
  839  * store error as soft error, but wake up user
  840  * (for now, won't do anything until can select for soft error).
  841  *
  842  * Do not wake up user since there currently is no mechanism for
  843  * reporting soft errors (yet - a kqueue filter may be added).
  844  */
  845 static struct inpcb *
  846 tcp_notify(struct inpcb *inp, int error)
  847 {
  848         struct tcpcb *tp;
  849 
  850         INP_INFO_WLOCK_ASSERT(&tcbinfo);
  851         INP_WLOCK_ASSERT(inp);
  852 
  853         if ((inp->inp_flags & INP_TIMEWAIT) ||
  854             (inp->inp_flags & INP_DROPPED))
  855                 return (inp);
  856 
  857         tp = intotcpcb(inp);
  858         KASSERT(tp != NULL, ("tcp_notify: tp == NULL"));
  859 
  860         /*
  861          * Ignore some errors if we are hooked up.
  862          * If connection hasn't completed, has retransmitted several times,
  863          * and receives a second error, give up now.  This is better
  864          * than waiting a long time to establish a connection that
  865          * can never complete.
  866          */
  867         if (tp->t_state == TCPS_ESTABLISHED &&
  868             (error == EHOSTUNREACH || error == ENETUNREACH ||
  869              error == EHOSTDOWN)) {
  870                 return (inp);
  871         } else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
  872             tp->t_softerror) {
  873                 tp = tcp_drop(tp, error);
  874                 if (tp != NULL)
  875                         return (inp);
  876                 else
  877                         return (NULL);
  878         } else {
  879                 tp->t_softerror = error;
  880                 return (inp);
  881         }
  882 #if 0
  883         wakeup( &so->so_timeo);
  884         sorwakeup(so);
  885         sowwakeup(so);
  886 #endif
  887 }
  888 
  889 static int
  890 tcp_pcblist(SYSCTL_HANDLER_ARGS)
  891 {
  892         int error, i, m, n, pcb_count;
  893         struct inpcb *inp, **inp_list;
  894         inp_gen_t gencnt;
  895         struct xinpgen xig;
  896 
  897         /*
  898          * The process of preparing the TCB list is too time-consuming and
  899          * resource-intensive to repeat twice on every request.
  900          */
  901         if (req->oldptr == NULL) {
  902                 m = syncache_pcbcount();
  903                 n = tcbinfo.ipi_count;
  904                 req->oldidx = 2 * (sizeof xig)
  905                         + ((m + n) + n/8) * sizeof(struct xtcpcb);
  906                 return (0);
  907         }
  908 
  909         if (req->newptr != NULL)
  910                 return (EPERM);
  911 
  912         /*
  913          * OK, now we're committed to doing something.
  914          */
  915         INP_INFO_RLOCK(&tcbinfo);
  916         gencnt = tcbinfo.ipi_gencnt;
  917         n = tcbinfo.ipi_count;
  918         INP_INFO_RUNLOCK(&tcbinfo);
  919 
  920         m = syncache_pcbcount();
  921 
  922         error = sysctl_wire_old_buffer(req, 2 * (sizeof xig)
  923                 + (n + m) * sizeof(struct xtcpcb));
  924         if (error != 0)
  925                 return (error);
  926 
  927         xig.xig_len = sizeof xig;
  928         xig.xig_count = n + m;
  929         xig.xig_gen = gencnt;
  930         xig.xig_sogen = so_gencnt;
  931         error = SYSCTL_OUT(req, &xig, sizeof xig);
  932         if (error)
  933                 return (error);
  934 
  935         error = syncache_pcblist(req, m, &pcb_count);
  936         if (error)
  937                 return (error);
  938 
  939         inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK);
  940         if (inp_list == NULL)
  941                 return (ENOMEM);
  942 
  943         INP_INFO_RLOCK(&tcbinfo);
  944         for (inp = LIST_FIRST(tcbinfo.ipi_listhead), i = 0; inp != NULL && i
  945             < n; inp = LIST_NEXT(inp, inp_list)) {
  946                 INP_RLOCK(inp);
  947                 if (inp->inp_gencnt <= gencnt) {
  948                         /*
  949                          * XXX: This use of cr_cansee(), introduced with
  950                          * TCP state changes, is not quite right, but for
  951                          * now, better than nothing.
  952                          */
  953                         if (inp->inp_flags & INP_TIMEWAIT) {
  954                                 if (intotw(inp) != NULL)
  955                                         error = cr_cansee(req->td->td_ucred,
  956                                             intotw(inp)->tw_cred);
  957                                 else
  958                                         error = EINVAL; /* Skip this inp. */
  959                         } else
  960                                 error = cr_canseeinpcb(req->td->td_ucred, inp);
  961                         if (error == 0)
  962                                 inp_list[i++] = inp;
  963                 }
  964                 INP_RUNLOCK(inp);
  965         }
  966         INP_INFO_RUNLOCK(&tcbinfo);
  967         n = i;
  968 
  969         error = 0;
  970         for (i = 0; i < n; i++) {
  971                 inp = inp_list[i];
  972                 INP_RLOCK(inp);
  973                 if (inp->inp_gencnt <= gencnt) {
  974                         struct xtcpcb xt;
  975                         void *inp_ppcb;
  976 
  977                         bzero(&xt, sizeof(xt));
  978                         xt.xt_len = sizeof xt;
  979                         /* XXX should avoid extra copy */
  980                         bcopy(inp, &xt.xt_inp, sizeof *inp);
  981                         inp_ppcb = inp->inp_ppcb;
  982                         if (inp_ppcb == NULL)
  983                                 bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
  984                         else if (inp->inp_flags & INP_TIMEWAIT) {
  985                                 bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
  986                                 xt.xt_tp.t_state = TCPS_TIME_WAIT;
  987                         } else
  988                                 bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp);
  989                         if (inp->inp_socket != NULL)
  990                                 sotoxsocket(inp->inp_socket, &xt.xt_socket);
  991                         else {
  992                                 bzero(&xt.xt_socket, sizeof xt.xt_socket);
  993                                 xt.xt_socket.xso_protocol = IPPROTO_TCP;
  994                         }
  995                         xt.xt_inp.inp_gencnt = inp->inp_gencnt;
  996                         INP_RUNLOCK(inp);
  997                         error = SYSCTL_OUT(req, &xt, sizeof xt);
  998                 } else
  999                         INP_RUNLOCK(inp);
 1000         
 1001         }
 1002         if (!error) {
 1003                 /*
 1004                  * Give the user an updated idea of our state.
 1005                  * If the generation differs from what we told
 1006                  * her before, she knows that something happened
 1007                  * while we were processing this request, and it
 1008                  * might be necessary to retry.
 1009                  */
 1010                 INP_INFO_RLOCK(&tcbinfo);
 1011                 xig.xig_gen = tcbinfo.ipi_gencnt;
 1012                 xig.xig_sogen = so_gencnt;
 1013                 xig.xig_count = tcbinfo.ipi_count + pcb_count;
 1014                 INP_INFO_RUNLOCK(&tcbinfo);
 1015                 error = SYSCTL_OUT(req, &xig, sizeof xig);
 1016         }
 1017         free(inp_list, M_TEMP);
 1018         return (error);
 1019 }
 1020 
 1021 SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist, CTLFLAG_RD, 0, 0,
 1022     tcp_pcblist, "S,xtcpcb", "List of active TCP connections");
 1023 
 1024 static int
 1025 tcp_getcred(SYSCTL_HANDLER_ARGS)
 1026 {
 1027         struct xucred xuc;
 1028         struct sockaddr_in addrs[2];
 1029         struct inpcb *inp;
 1030         int error;
 1031 
 1032         error = priv_check(req->td, PRIV_NETINET_GETCRED);
 1033         if (error)
 1034                 return (error);
 1035         error = SYSCTL_IN(req, addrs, sizeof(addrs));
 1036         if (error)
 1037                 return (error);
 1038         INP_INFO_RLOCK(&tcbinfo);
 1039         inp = in_pcblookup_hash(&tcbinfo, addrs[1].sin_addr, addrs[1].sin_port,
 1040             addrs[0].sin_addr, addrs[0].sin_port, 0, NULL);
 1041         if (inp != NULL) {
 1042                 INP_RLOCK(inp);
 1043                 INP_INFO_RUNLOCK(&tcbinfo);
 1044                 if (inp->inp_socket == NULL)
 1045                         error = ENOENT;
 1046                 if (error == 0)
 1047                         error = cr_canseeinpcb(req->td->td_ucred, inp);
 1048                 if (error == 0)
 1049                         cru2x(inp->inp_cred, &xuc);
 1050                 INP_RUNLOCK(inp);
 1051         } else {
 1052                 INP_INFO_RUNLOCK(&tcbinfo);
 1053                 error = ENOENT;
 1054         }
 1055         if (error == 0)
 1056                 error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
 1057         return (error);
 1058 }
 1059 
 1060 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred,
 1061     CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
 1062     tcp_getcred, "S,xucred", "Get the xucred of a TCP connection");
 1063 
 1064 #ifdef INET6
 1065 static int
 1066 tcp6_getcred(SYSCTL_HANDLER_ARGS)
 1067 {
 1068         struct xucred xuc;
 1069         struct sockaddr_in6 addrs[2];
 1070         struct inpcb *inp;
 1071         int error, mapped = 0;
 1072 
 1073         error = priv_check(req->td, PRIV_NETINET_GETCRED);
 1074         if (error)
 1075                 return (error);
 1076         error = SYSCTL_IN(req, addrs, sizeof(addrs));
 1077         if (error)
 1078                 return (error);
 1079         if ((error = sa6_embedscope(&addrs[0], ip6_use_defzone)) != 0 ||
 1080             (error = sa6_embedscope(&addrs[1], ip6_use_defzone)) != 0) {
 1081                 return (error);
 1082         }
 1083         if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) {
 1084                 if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr))
 1085                         mapped = 1;
 1086                 else
 1087                         return (EINVAL);
 1088         }
 1089 
 1090         INP_INFO_RLOCK(&tcbinfo);
 1091         if (mapped == 1)
 1092                 inp = in_pcblookup_hash(&tcbinfo,
 1093                         *(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12],
 1094                         addrs[1].sin6_port,
 1095                         *(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12],
 1096                         addrs[0].sin6_port,
 1097                         0, NULL);
 1098         else
 1099                 inp = in6_pcblookup_hash(&tcbinfo,
 1100                         &addrs[1].sin6_addr, addrs[1].sin6_port,
 1101                         &addrs[0].sin6_addr, addrs[0].sin6_port, 0, NULL);
 1102         if (inp != NULL) {
 1103                 INP_RLOCK(inp);
 1104                 INP_INFO_RUNLOCK(&tcbinfo);
 1105                 if (inp->inp_socket == NULL)
 1106                         error = ENOENT;
 1107                 if (error == 0)
 1108                         error = cr_canseeinpcb(req->td->td_ucred, inp);
 1109                 if (error == 0)
 1110                         cru2x(inp->inp_cred, &xuc);
 1111                 INP_RUNLOCK(inp);
 1112         } else {
 1113                 INP_INFO_RUNLOCK(&tcbinfo);
 1114                 error = ENOENT;
 1115         }
 1116         if (error == 0)
 1117                 error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
 1118         return (error);
 1119 }
 1120 
 1121 SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred,
 1122     CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
 1123     tcp6_getcred, "S,xucred", "Get the xucred of a TCP6 connection");
 1124 #endif
 1125 
 1126 
 1127 void
 1128 tcp_ctlinput(int cmd, struct sockaddr *sa, void *vip)
 1129 {
 1130         struct ip *ip = vip;
 1131         struct tcphdr *th;
 1132         struct in_addr faddr;
 1133         struct inpcb *inp;
 1134         struct tcpcb *tp;
 1135         struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
 1136         struct icmp *icp;
 1137         struct in_conninfo inc;
 1138         tcp_seq icmp_tcp_seq;
 1139         int mtu;
 1140 
 1141         faddr = ((struct sockaddr_in *)sa)->sin_addr;
 1142         if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
 1143                 return;
 1144 
 1145         if (cmd == PRC_MSGSIZE)
 1146                 notify = tcp_mtudisc;
 1147         else if (icmp_may_rst && (cmd == PRC_UNREACH_ADMIN_PROHIB ||
 1148                 cmd == PRC_UNREACH_PORT || cmd == PRC_TIMXCEED_INTRANS) && ip)
 1149                 notify = tcp_drop_syn_sent;
 1150         /*
 1151          * Redirects don't need to be handled up here.
 1152          */
 1153         else if (PRC_IS_REDIRECT(cmd))
 1154                 return;
 1155         /*
 1156          * Source quench is depreciated.
 1157          */
 1158         else if (cmd == PRC_QUENCH)
 1159                 return;
 1160         /*
 1161          * Hostdead is ugly because it goes linearly through all PCBs.
 1162          * XXX: We never get this from ICMP, otherwise it makes an
 1163          * excellent DoS attack on machines with many connections.
 1164          */
 1165         else if (cmd == PRC_HOSTDEAD)
 1166                 ip = NULL;
 1167         else if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0)
 1168                 return;
 1169         if (ip != NULL) {
 1170                 icp = (struct icmp *)((caddr_t)ip
 1171                                       - offsetof(struct icmp, icmp_ip));
 1172                 th = (struct tcphdr *)((caddr_t)ip
 1173                                        + (ip->ip_hl << 2));
 1174                 INP_INFO_WLOCK(&tcbinfo);
 1175                 inp = in_pcblookup_hash(&tcbinfo, faddr, th->th_dport,
 1176                     ip->ip_src, th->th_sport, 0, NULL);
 1177                 if (inp != NULL)  {
 1178                         INP_WLOCK(inp);
 1179                         if (!(inp->inp_flags & INP_TIMEWAIT) &&
 1180                             !(inp->inp_flags & INP_DROPPED) &&
 1181                             !(inp->inp_socket == NULL)) {
 1182                                 icmp_tcp_seq = htonl(th->th_seq);
 1183                                 tp = intotcpcb(inp);
 1184                                 if (SEQ_GEQ(icmp_tcp_seq, tp->snd_una) &&
 1185                                     SEQ_LT(icmp_tcp_seq, tp->snd_max)) {
 1186                                         if (cmd == PRC_MSGSIZE) {
 1187                                             /*
 1188                                              * MTU discovery:
 1189                                              * If we got a needfrag set the MTU
 1190                                              * in the route to the suggested new
 1191                                              * value (if given) and then notify.
 1192                                              */
 1193                                             bzero(&inc, sizeof(inc));
 1194                                             inc.inc_faddr = faddr;
 1195                                             inc.inc_fibnum =
 1196                                                 inp->inp_inc.inc_fibnum;
 1197 
 1198                                             mtu = ntohs(icp->icmp_nextmtu);
 1199                                             /*
 1200                                              * If no alternative MTU was
 1201                                              * proposed, try the next smaller
 1202                                              * one.  ip->ip_len has already
 1203                                              * been swapped in icmp_input().
 1204                                              */
 1205                                             if (!mtu)
 1206                                                 mtu = ip_next_mtu(ip->ip_len,
 1207                                                  1);
 1208                                             if (mtu < max(296, (tcp_minmss)
 1209                                                  + sizeof(struct tcpiphdr)))
 1210                                                 mtu = 0;
 1211                                             if (!mtu)
 1212                                                 mtu = tcp_mssdflt
 1213                                                  + sizeof(struct tcpiphdr);
 1214                                             /*
 1215                                              * Only cache the the MTU if it
 1216                                              * is smaller than the interface
 1217                                              * or route MTU.  tcp_mtudisc()
 1218                                              * will do right thing by itself.
 1219                                              */
 1220                                             if (mtu <= tcp_maxmtu(&inc, NULL))
 1221                                                 tcp_hc_updatemtu(&inc, mtu);
 1222                                         }
 1223 
 1224                                         inp = (*notify)(inp, inetctlerrmap[cmd]);
 1225                                 }
 1226                         }
 1227                         if (inp != NULL)
 1228                                 INP_WUNLOCK(inp);
 1229                 } else {
 1230                         bzero(&inc, sizeof(inc));
 1231                         inc.inc_fport = th->th_dport;
 1232                         inc.inc_lport = th->th_sport;
 1233                         inc.inc_faddr = faddr;
 1234                         inc.inc_laddr = ip->ip_src;
 1235                         syncache_unreach(&inc, th);
 1236                 }
 1237                 INP_INFO_WUNLOCK(&tcbinfo);
 1238         } else
 1239                 in_pcbnotifyall(&tcbinfo, faddr, inetctlerrmap[cmd], notify);
 1240 }
 1241 
 1242 #ifdef INET6
 1243 void
 1244 tcp6_ctlinput(int cmd, struct sockaddr *sa, void *d)
 1245 {
 1246         struct tcphdr th;
 1247         struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
 1248         struct ip6_hdr *ip6;
 1249         struct mbuf *m;
 1250         struct ip6ctlparam *ip6cp = NULL;
 1251         const struct sockaddr_in6 *sa6_src = NULL;
 1252         int off;
 1253         struct tcp_portonly {
 1254                 u_int16_t th_sport;
 1255                 u_int16_t th_dport;
 1256         } *thp;
 1257 
 1258         if (sa->sa_family != AF_INET6 ||
 1259             sa->sa_len != sizeof(struct sockaddr_in6))
 1260                 return;
 1261 
 1262         if (cmd == PRC_MSGSIZE)
 1263                 notify = tcp_mtudisc;
 1264         else if (!PRC_IS_REDIRECT(cmd) &&
 1265                  ((unsigned)cmd >= PRC_NCMDS || inet6ctlerrmap[cmd] == 0))
 1266                 return;
 1267         /* Source quench is depreciated. */
 1268         else if (cmd == PRC_QUENCH)
 1269                 return;
 1270 
 1271         /* if the parameter is from icmp6, decode it. */
 1272         if (d != NULL) {
 1273                 ip6cp = (struct ip6ctlparam *)d;
 1274                 m = ip6cp->ip6c_m;
 1275                 ip6 = ip6cp->ip6c_ip6;
 1276                 off = ip6cp->ip6c_off;
 1277                 sa6_src = ip6cp->ip6c_src;
 1278         } else {
 1279                 m = NULL;
 1280                 ip6 = NULL;
 1281                 off = 0;        /* fool gcc */
 1282                 sa6_src = &sa6_any;
 1283         }
 1284 
 1285         if (ip6 != NULL) {
 1286                 struct in_conninfo inc;
 1287                 /*
 1288                  * XXX: We assume that when IPV6 is non NULL,
 1289                  * M and OFF are valid.
 1290                  */
 1291 
 1292                 /* check if we can safely examine src and dst ports */
 1293                 if (m->m_pkthdr.len < off + sizeof(*thp))
 1294                         return;
 1295 
 1296                 bzero(&th, sizeof(th));
 1297                 m_copydata(m, off, sizeof(*thp), (caddr_t)&th);
 1298 
 1299                 in6_pcbnotify(&tcbinfo, sa, th.th_dport,
 1300                     (struct sockaddr *)ip6cp->ip6c_src,
 1301                     th.th_sport, cmd, NULL, notify);
 1302 
 1303                 bzero(&inc, sizeof(inc));
 1304                 inc.inc_fport = th.th_dport;
 1305                 inc.inc_lport = th.th_sport;
 1306                 inc.inc6_faddr = ((struct sockaddr_in6 *)sa)->sin6_addr;
 1307                 inc.inc6_laddr = ip6cp->ip6c_src->sin6_addr;
 1308                 inc.inc_flags |= INC_ISIPV6;
 1309                 INP_INFO_WLOCK(&tcbinfo);
 1310                 syncache_unreach(&inc, &th);
 1311                 INP_INFO_WUNLOCK(&tcbinfo);
 1312         } else
 1313                 in6_pcbnotify(&tcbinfo, sa, 0, (const struct sockaddr *)sa6_src,
 1314                               0, cmd, NULL, notify);
 1315 }
 1316 #endif /* INET6 */
 1317 
 1318 
 1319 /*
 1320  * Following is where TCP initial sequence number generation occurs.
 1321  *
 1322  * There are two places where we must use initial sequence numbers:
 1323  * 1.  In SYN-ACK packets.
 1324  * 2.  In SYN packets.
 1325  *
 1326  * All ISNs for SYN-ACK packets are generated by the syncache.  See
 1327  * tcp_syncache.c for details.
 1328  *
 1329  * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
 1330  * depends on this property.  In addition, these ISNs should be
 1331  * unguessable so as to prevent connection hijacking.  To satisfy
 1332  * the requirements of this situation, the algorithm outlined in
 1333  * RFC 1948 is used, with only small modifications.
 1334  *
 1335  * Implementation details:
 1336  *
 1337  * Time is based off the system timer, and is corrected so that it
 1338  * increases by one megabyte per second.  This allows for proper
 1339  * recycling on high speed LANs while still leaving over an hour
 1340  * before rollover.
 1341  *
 1342  * As reading the *exact* system time is too expensive to be done
 1343  * whenever setting up a TCP connection, we increment the time
 1344  * offset in two ways.  First, a small random positive increment
 1345  * is added to isn_offset for each connection that is set up.
 1346  * Second, the function tcp_isn_tick fires once per clock tick
 1347  * and increments isn_offset as necessary so that sequence numbers
 1348  * are incremented at approximately ISN_BYTES_PER_SECOND.  The
 1349  * random positive increments serve only to ensure that the same
 1350  * exact sequence number is never sent out twice (as could otherwise
 1351  * happen when a port is recycled in less than the system tick
 1352  * interval.)
 1353  *
 1354  * net.inet.tcp.isn_reseed_interval controls the number of seconds
 1355  * between seeding of isn_secret.  This is normally set to zero,
 1356  * as reseeding should not be necessary.
 1357  *
 1358  * Locking of the global variables isn_secret, isn_last_reseed, isn_offset,
 1359  * isn_offset_old, and isn_ctx is performed using the TCP pcbinfo lock.  In
 1360  * general, this means holding an exclusive (write) lock.
 1361  */
 1362 
 1363 #define ISN_BYTES_PER_SECOND 1048576
 1364 #define ISN_STATIC_INCREMENT 4096
 1365 #define ISN_RANDOM_INCREMENT (4096 - 1)
 1366 
 1367 static u_char isn_secret[32];
 1368 static int isn_last_reseed;
 1369 static u_int32_t isn_offset, isn_offset_old;
 1370 static MD5_CTX isn_ctx;
 1371 
 1372 tcp_seq
 1373 tcp_new_isn(struct tcpcb *tp)
 1374 {
 1375         u_int32_t md5_buffer[4];
 1376         tcp_seq new_isn;
 1377 
 1378         INP_WLOCK_ASSERT(tp->t_inpcb);
 1379 
 1380         ISN_LOCK();
 1381         /* Seed if this is the first use, reseed if requested. */
 1382         if ((isn_last_reseed == 0) || ((tcp_isn_reseed_interval > 0) &&
 1383              (((u_int)isn_last_reseed + (u_int)tcp_isn_reseed_interval*hz)
 1384                 < (u_int)ticks))) {
 1385                 read_random(&isn_secret, sizeof(isn_secret));
 1386                 isn_last_reseed = ticks;
 1387         }
 1388 
 1389         /* Compute the md5 hash and return the ISN. */
 1390         MD5Init(&isn_ctx);
 1391         MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_fport, sizeof(u_short));
 1392         MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_lport, sizeof(u_short));
 1393 #ifdef INET6
 1394         if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0) {
 1395                 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr,
 1396                           sizeof(struct in6_addr));
 1397                 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr,
 1398                           sizeof(struct in6_addr));
 1399         } else
 1400 #endif
 1401         {
 1402                 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr,
 1403                           sizeof(struct in_addr));
 1404                 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr,
 1405                           sizeof(struct in_addr));
 1406         }
 1407         MD5Update(&isn_ctx, (u_char *) &isn_secret, sizeof(isn_secret));
 1408         MD5Final((u_char *) &md5_buffer, &isn_ctx);
 1409         new_isn = (tcp_seq) md5_buffer[0];
 1410         isn_offset += ISN_STATIC_INCREMENT +
 1411                 (arc4random() & ISN_RANDOM_INCREMENT);
 1412         new_isn += isn_offset;
 1413         ISN_UNLOCK();
 1414         return (new_isn);
 1415 }
 1416 
 1417 /*
 1418  * Increment the offset to the next ISN_BYTES_PER_SECOND / 100 boundary
 1419  * to keep time flowing at a relatively constant rate.  If the random
 1420  * increments have already pushed us past the projected offset, do nothing.
 1421  */
 1422 static void
 1423 tcp_isn_tick(void *xtp)
 1424 {
 1425         u_int32_t projected_offset;
 1426 
 1427         ISN_LOCK();
 1428         projected_offset = isn_offset_old + ISN_BYTES_PER_SECOND / 100;
 1429 
 1430         if (SEQ_GT(projected_offset, isn_offset))
 1431                 isn_offset = projected_offset;
 1432 
 1433         isn_offset_old = isn_offset;
 1434         callout_reset(&isn_callout, hz/100, tcp_isn_tick, NULL);
 1435         ISN_UNLOCK();
 1436 }
 1437 
 1438 /*
 1439  * When a specific ICMP unreachable message is received and the
 1440  * connection state is SYN-SENT, drop the connection.  This behavior
 1441  * is controlled by the icmp_may_rst sysctl.
 1442  */
 1443 struct inpcb *
 1444 tcp_drop_syn_sent(struct inpcb *inp, int errno)
 1445 {
 1446         struct tcpcb *tp;
 1447 
 1448         INP_INFO_WLOCK_ASSERT(&tcbinfo);
 1449         INP_WLOCK_ASSERT(inp);
 1450 
 1451         if ((inp->inp_flags & INP_TIMEWAIT) ||
 1452             (inp->inp_flags & INP_DROPPED))
 1453                 return (inp);
 1454 
 1455         tp = intotcpcb(inp);
 1456         if (tp->t_state != TCPS_SYN_SENT)
 1457                 return (inp);
 1458 
 1459         tp = tcp_drop(tp, errno);
 1460         if (tp != NULL)
 1461                 return (inp);
 1462         else
 1463                 return (NULL);
 1464 }
 1465 
 1466 /*
 1467  * When `need fragmentation' ICMP is received, update our idea of the MSS
 1468  * based on the new value in the route.  Also nudge TCP to send something,
 1469  * since we know the packet we just sent was dropped.
 1470  * This duplicates some code in the tcp_mss() function in tcp_input.c.
 1471  */
 1472 struct inpcb *
 1473 tcp_mtudisc(struct inpcb *inp, int errno)
 1474 {
 1475         struct tcpcb *tp;
 1476         struct socket *so = inp->inp_socket;
 1477         u_int maxmtu;
 1478         u_int romtu;
 1479         int mss;
 1480 #ifdef INET6
 1481         int isipv6;
 1482 #endif /* INET6 */
 1483 
 1484         INP_WLOCK_ASSERT(inp);
 1485         if ((inp->inp_flags & INP_TIMEWAIT) ||
 1486             (inp->inp_flags & INP_DROPPED))
 1487                 return (inp);
 1488 
 1489         tp = intotcpcb(inp);
 1490         KASSERT(tp != NULL, ("tcp_mtudisc: tp == NULL"));
 1491 
 1492 #ifdef INET6
 1493         isipv6 = (tp->t_inpcb->inp_vflag & INP_IPV6) != 0;
 1494 #endif
 1495         maxmtu = tcp_hc_getmtu(&inp->inp_inc); /* IPv4 and IPv6 */
 1496         romtu =
 1497 #ifdef INET6
 1498             isipv6 ? tcp_maxmtu6(&inp->inp_inc, NULL) :
 1499 #endif /* INET6 */
 1500             tcp_maxmtu(&inp->inp_inc, NULL);
 1501         if (!maxmtu)
 1502                 maxmtu = romtu;
 1503         else
 1504                 maxmtu = min(maxmtu, romtu);
 1505         if (!maxmtu) {
 1506                 tp->t_maxopd = tp->t_maxseg =
 1507 #ifdef INET6
 1508                         isipv6 ? tcp_v6mssdflt :
 1509 #endif /* INET6 */
 1510                         tcp_mssdflt;
 1511                 return (inp);
 1512         }
 1513         mss = maxmtu -
 1514 #ifdef INET6
 1515                 (isipv6 ? sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
 1516 #endif /* INET6 */
 1517                  sizeof(struct tcpiphdr)
 1518 #ifdef INET6
 1519                  )
 1520 #endif /* INET6 */
 1521                 ;
 1522 
 1523         /*
 1524          * XXX - The above conditional probably violates the TCP
 1525          * spec.  The problem is that, since we don't know the
 1526          * other end's MSS, we are supposed to use a conservative
 1527          * default.  But, if we do that, then MTU discovery will
 1528          * never actually take place, because the conservative
 1529          * default is much less than the MTUs typically seen
 1530          * on the Internet today.  For the moment, we'll sweep
 1531          * this under the carpet.
 1532          *
 1533          * The conservative default might not actually be a problem
 1534          * if the only case this occurs is when sending an initial
 1535          * SYN with options and data to a host we've never talked
 1536          * to before.  Then, they will reply with an MSS value which
 1537          * will get recorded and the new parameters should get
 1538          * recomputed.  For Further Study.
 1539          */
 1540         if (tp->t_maxopd <= mss)
 1541                 return (inp);
 1542         tp->t_maxopd = mss;
 1543 
 1544         if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
 1545             (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP)
 1546                 mss -= TCPOLEN_TSTAMP_APPA;
 1547 #if     (MCLBYTES & (MCLBYTES - 1)) == 0
 1548         if (mss > MCLBYTES)
 1549                 mss &= ~(MCLBYTES-1);
 1550 #else
 1551         if (mss > MCLBYTES)
 1552                 mss = mss / MCLBYTES * MCLBYTES;
 1553 #endif
 1554         if (so->so_snd.sb_hiwat < mss)
 1555                 mss = so->so_snd.sb_hiwat;
 1556 
 1557         tp->t_maxseg = mss;
 1558 
 1559         tcpstat.tcps_mturesent++;
 1560         tp->t_rtttime = 0;
 1561         tp->snd_nxt = tp->snd_una;
 1562         tcp_free_sackholes(tp);
 1563         tp->snd_recover = tp->snd_max;
 1564         if (tp->t_flags & TF_SACK_PERMIT)
 1565                 EXIT_FASTRECOVERY(tp);
 1566         tcp_output_send(tp);
 1567         return (inp);
 1568 }
 1569 
 1570 /*
 1571  * Look-up the routing entry to the peer of this inpcb.  If no route
 1572  * is found and it cannot be allocated, then return NULL.  This routine
 1573  * is called by TCP routines that access the rmx structure and by tcp_mss
 1574  * to get the interface MTU.
 1575  */
 1576 u_long
 1577 tcp_maxmtu(struct in_conninfo *inc, int *flags)
 1578 {
 1579         struct route sro;
 1580         struct sockaddr_in *dst;
 1581         struct ifnet *ifp;
 1582         u_long maxmtu = 0;
 1583 
 1584         KASSERT(inc != NULL, ("tcp_maxmtu with NULL in_conninfo pointer"));
 1585 
 1586         bzero(&sro, sizeof(sro));
 1587         if (inc->inc_faddr.s_addr != INADDR_ANY) {
 1588                 dst = (struct sockaddr_in *)&sro.ro_dst;
 1589                 dst->sin_family = AF_INET;
 1590                 dst->sin_len = sizeof(*dst);
 1591                 dst->sin_addr = inc->inc_faddr;
 1592                 in_rtalloc_ign(&sro, RTF_CLONING, inc->inc_fibnum);
 1593         }
 1594         if (sro.ro_rt != NULL) {
 1595                 ifp = sro.ro_rt->rt_ifp;
 1596                 if (sro.ro_rt->rt_rmx.rmx_mtu == 0)
 1597                         maxmtu = ifp->if_mtu;
 1598                 else
 1599                         maxmtu = min(sro.ro_rt->rt_rmx.rmx_mtu, ifp->if_mtu);
 1600 
 1601                 /* Report additional interface capabilities. */
 1602                 if (flags != NULL) {
 1603                         if (ifp->if_capenable & IFCAP_TSO4 &&
 1604                             ifp->if_hwassist & CSUM_TSO)
 1605                                 *flags |= CSUM_TSO;
 1606                 }
 1607                 RTFREE(sro.ro_rt);
 1608         }
 1609         return (maxmtu);
 1610 }
 1611 
 1612 #ifdef INET6
 1613 u_long
 1614 tcp_maxmtu6(struct in_conninfo *inc, int *flags)
 1615 {
 1616         struct route_in6 sro6;
 1617         struct ifnet *ifp;
 1618         u_long maxmtu = 0;
 1619 
 1620         KASSERT(inc != NULL, ("tcp_maxmtu6 with NULL in_conninfo pointer"));
 1621 
 1622         bzero(&sro6, sizeof(sro6));
 1623         if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) {
 1624                 sro6.ro_dst.sin6_family = AF_INET6;
 1625                 sro6.ro_dst.sin6_len = sizeof(struct sockaddr_in6);
 1626                 sro6.ro_dst.sin6_addr = inc->inc6_faddr;
 1627                 rtalloc_ign((struct route *)&sro6, RTF_CLONING);
 1628         }
 1629         if (sro6.ro_rt != NULL) {
 1630                 ifp = sro6.ro_rt->rt_ifp;
 1631                 if (sro6.ro_rt->rt_rmx.rmx_mtu == 0)
 1632                         maxmtu = IN6_LINKMTU(sro6.ro_rt->rt_ifp);
 1633                 else
 1634                         maxmtu = min(sro6.ro_rt->rt_rmx.rmx_mtu,
 1635                                      IN6_LINKMTU(sro6.ro_rt->rt_ifp));
 1636 
 1637                 /* Report additional interface capabilities. */
 1638                 if (flags != NULL) {
 1639                         if (ifp->if_capenable & IFCAP_TSO6 &&
 1640                             ifp->if_hwassist & CSUM_TSO)
 1641                                 *flags |= CSUM_TSO;
 1642                 }
 1643                 RTFREE(sro6.ro_rt);
 1644         }
 1645 
 1646         return (maxmtu);
 1647 }
 1648 #endif /* INET6 */
 1649 
 1650 #ifdef IPSEC
 1651 /* compute ESP/AH header size for TCP, including outer IP header. */
 1652 size_t
 1653 ipsec_hdrsiz_tcp(struct tcpcb *tp)
 1654 {
 1655         struct inpcb *inp;
 1656         struct mbuf *m;
 1657         size_t hdrsiz;
 1658         struct ip *ip;
 1659 #ifdef INET6
 1660         struct ip6_hdr *ip6;
 1661 #endif
 1662         struct tcphdr *th;
 1663 
 1664         if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL))
 1665                 return (0);
 1666         MGETHDR(m, M_DONTWAIT, MT_DATA);
 1667         if (!m)
 1668                 return (0);
 1669 
 1670 #ifdef INET6
 1671         if ((inp->inp_vflag & INP_IPV6) != 0) {
 1672                 ip6 = mtod(m, struct ip6_hdr *);
 1673                 th = (struct tcphdr *)(ip6 + 1);
 1674                 m->m_pkthdr.len = m->m_len =
 1675                         sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
 1676                 tcpip_fillheaders(inp, ip6, th);
 1677                 hdrsiz = ipsec6_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
 1678         } else
 1679 #endif /* INET6 */
 1680         {
 1681                 ip = mtod(m, struct ip *);
 1682                 th = (struct tcphdr *)(ip + 1);
 1683                 m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr);
 1684                 tcpip_fillheaders(inp, ip, th);
 1685                 hdrsiz = ipsec4_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
 1686         }
 1687 
 1688         m_free(m);
 1689         return (hdrsiz);
 1690 }
 1691 #endif /* IPSEC */
 1692 
 1693 /*
 1694  * TCP BANDWIDTH DELAY PRODUCT WINDOW LIMITING
 1695  *
 1696  * This code attempts to calculate the bandwidth-delay product as a
 1697  * means of determining the optimal window size to maximize bandwidth,
 1698  * minimize RTT, and avoid the over-allocation of buffers on interfaces and
 1699  * routers.  This code also does a fairly good job keeping RTTs in check
 1700  * across slow links like modems.  We implement an algorithm which is very
 1701  * similar (but not meant to be) TCP/Vegas.  The code operates on the
 1702  * transmitter side of a TCP connection and so only effects the transmit
 1703  * side of the connection.
 1704  *
 1705  * BACKGROUND:  TCP makes no provision for the management of buffer space
 1706  * at the end points or at the intermediate routers and switches.  A TCP
 1707  * stream, whether using NewReno or not, will eventually buffer as
 1708  * many packets as it is able and the only reason this typically works is
 1709  * due to the fairly small default buffers made available for a connection
 1710  * (typicaly 16K or 32K).  As machines use larger windows and/or window
 1711  * scaling it is now fairly easy for even a single TCP connection to blow-out
 1712  * all available buffer space not only on the local interface, but on
 1713  * intermediate routers and switches as well.  NewReno makes a misguided
 1714  * attempt to 'solve' this problem by waiting for an actual failure to occur,
 1715  * then backing off, then steadily increasing the window again until another
 1716  * failure occurs, ad-infinitum.  This results in terrible oscillation that
 1717  * is only made worse as network loads increase and the idea of intentionally
 1718  * blowing out network buffers is, frankly, a terrible way to manage network
 1719  * resources.
 1720  *
 1721  * It is far better to limit the transmit window prior to the failure
 1722  * condition being achieved.  There are two general ways to do this:  First
 1723  * you can 'scan' through different transmit window sizes and locate the
 1724  * point where the RTT stops increasing, indicating that you have filled the
 1725  * pipe, then scan backwards until you note that RTT stops decreasing, then
 1726  * repeat ad-infinitum.  This method works in principle but has severe
 1727  * implementation issues due to RTT variances, timer granularity, and
 1728  * instability in the algorithm which can lead to many false positives and
 1729  * create oscillations as well as interact badly with other TCP streams
 1730  * implementing the same algorithm.
 1731  *
 1732  * The second method is to limit the window to the bandwidth delay product
 1733  * of the link.  This is the method we implement.  RTT variances and our
 1734  * own manipulation of the congestion window, bwnd, can potentially
 1735  * destabilize the algorithm.  For this reason we have to stabilize the
 1736  * elements used to calculate the window.  We do this by using the minimum
 1737  * observed RTT, the long term average of the observed bandwidth, and
 1738  * by adding two segments worth of slop.  It isn't perfect but it is able
 1739  * to react to changing conditions and gives us a very stable basis on
 1740  * which to extend the algorithm.
 1741  */
 1742 void
 1743 tcp_xmit_bandwidth_limit(struct tcpcb *tp, tcp_seq ack_seq)
 1744 {
 1745         u_long bw;
 1746         u_long bwnd;
 1747         int save_ticks;
 1748 
 1749         INP_WLOCK_ASSERT(tp->t_inpcb);
 1750 
 1751         /*
 1752          * If inflight_enable is disabled in the middle of a tcp connection,
 1753          * make sure snd_bwnd is effectively disabled.
 1754          */
 1755         if (tcp_inflight_enable == 0 || tp->t_rttlow < tcp_inflight_rttthresh) {
 1756                 tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
 1757                 tp->snd_bandwidth = 0;
 1758                 return;
 1759         }
 1760 
 1761         /*
 1762          * Figure out the bandwidth.  Due to the tick granularity this
 1763          * is a very rough number and it MUST be averaged over a fairly
 1764          * long period of time.  XXX we need to take into account a link
 1765          * that is not using all available bandwidth, but for now our
 1766          * slop will ramp us up if this case occurs and the bandwidth later
 1767          * increases.
 1768          *
 1769          * Note: if ticks rollover 'bw' may wind up negative.  We must
 1770          * effectively reset t_bw_rtttime for this case.
 1771          */
 1772         save_ticks = ticks;
 1773         if ((u_int)(save_ticks - tp->t_bw_rtttime) < 1)
 1774                 return;
 1775 
 1776         bw = (int64_t)(ack_seq - tp->t_bw_rtseq) * hz /
 1777             (save_ticks - tp->t_bw_rtttime);
 1778         tp->t_bw_rtttime = save_ticks;
 1779         tp->t_bw_rtseq = ack_seq;
 1780         if (tp->t_bw_rtttime == 0 || (int)bw < 0)
 1781                 return;
 1782         bw = ((int64_t)tp->snd_bandwidth * 15 + bw) >> 4;
 1783 
 1784         tp->snd_bandwidth = bw;
 1785 
 1786         /*
 1787          * Calculate the semi-static bandwidth delay product, plus two maximal
 1788          * segments.  The additional slop puts us squarely in the sweet
 1789          * spot and also handles the bandwidth run-up case and stabilization.
 1790          * Without the slop we could be locking ourselves into a lower
 1791          * bandwidth.
 1792          *
 1793          * Situations Handled:
 1794          *      (1) Prevents over-queueing of packets on LANs, especially on
 1795          *          high speed LANs, allowing larger TCP buffers to be
 1796          *          specified, and also does a good job preventing
 1797          *          over-queueing of packets over choke points like modems
 1798          *          (at least for the transmit side).
 1799          *
 1800          *      (2) Is able to handle changing network loads (bandwidth
 1801          *          drops so bwnd drops, bandwidth increases so bwnd
 1802          *          increases).
 1803          *
 1804          *      (3) Theoretically should stabilize in the face of multiple
 1805          *          connections implementing the same algorithm (this may need
 1806          *          a little work).
 1807          *
 1808          *      (4) Stability value (defaults to 20 = 2 maximal packets) can
 1809          *          be adjusted with a sysctl but typically only needs to be
 1810          *          on very slow connections.  A value no smaller then 5
 1811          *          should be used, but only reduce this default if you have
 1812          *          no other choice.
 1813          */
 1814 #define USERTT  ((tp->t_srtt + tp->t_rttbest) / 2)
 1815         bwnd = (int64_t)bw * USERTT / (hz << TCP_RTT_SHIFT) + tcp_inflight_stab * tp->t_maxseg / 10;
 1816 #undef USERTT
 1817 
 1818         if (tcp_inflight_debug > 0) {
 1819                 static int ltime;
 1820                 if ((u_int)(ticks - ltime) >= hz / tcp_inflight_debug) {
 1821                         ltime = ticks;
 1822                         printf("%p bw %ld rttbest %d srtt %d bwnd %ld\n",
 1823                             tp,
 1824                             bw,
 1825                             tp->t_rttbest,
 1826                             tp->t_srtt,
 1827                             bwnd
 1828                         );
 1829                 }
 1830         }
 1831         if ((long)bwnd < tcp_inflight_min)
 1832                 bwnd = tcp_inflight_min;
 1833         if (bwnd > tcp_inflight_max)
 1834                 bwnd = tcp_inflight_max;
 1835         if ((long)bwnd < tp->t_maxseg * 2)
 1836                 bwnd = tp->t_maxseg * 2;
 1837         tp->snd_bwnd = bwnd;
 1838 }
 1839 
 1840 #ifdef TCP_SIGNATURE
 1841 /*
 1842  * Callback function invoked by m_apply() to digest TCP segment data
 1843  * contained within an mbuf chain.
 1844  */
 1845 static int
 1846 tcp_signature_apply(void *fstate, void *data, u_int len)
 1847 {
 1848 
 1849         MD5Update(fstate, (u_char *)data, len);
 1850         return (0);
 1851 }
 1852 
 1853 /*
 1854  * Compute TCP-MD5 hash of a TCP segment. (RFC2385)
 1855  *
 1856  * Parameters:
 1857  * m            pointer to head of mbuf chain
 1858  * _unused      
 1859  * len          length of TCP segment data, excluding options
 1860  * optlen       length of TCP segment options
 1861  * buf          pointer to storage for computed MD5 digest
 1862  * direction    direction of flow (IPSEC_DIR_INBOUND or OUTBOUND)
 1863  *
 1864  * We do this over ip, tcphdr, segment data, and the key in the SADB.
 1865  * When called from tcp_input(), we can be sure that th_sum has been
 1866  * zeroed out and verified already.
 1867  *
 1868  * Return 0 if successful, otherwise return -1.
 1869  *
 1870  * XXX The key is retrieved from the system's PF_KEY SADB, by keying a
 1871  * search with the destination IP address, and a 'magic SPI' to be
 1872  * determined by the application. This is hardcoded elsewhere to 1179
 1873  * right now. Another branch of this code exists which uses the SPD to
 1874  * specify per-application flows but it is unstable.
 1875  */
 1876 int
 1877 tcp_signature_compute(struct mbuf *m, int _unused, int len, int optlen,
 1878     u_char *buf, u_int direction)
 1879 {
 1880         union sockaddr_union dst;
 1881         struct ippseudo ippseudo;
 1882         MD5_CTX ctx;
 1883         int doff;
 1884         struct ip *ip;
 1885         struct ipovly *ipovly;
 1886         struct secasvar *sav;
 1887         struct tcphdr *th;
 1888 #ifdef INET6
 1889         struct ip6_hdr *ip6;
 1890         struct in6_addr in6;
 1891         char ip6buf[INET6_ADDRSTRLEN];
 1892         uint32_t plen;
 1893         uint16_t nhdr;
 1894 #endif
 1895         u_short savecsum;
 1896 
 1897         KASSERT(m != NULL, ("NULL mbuf chain"));
 1898         KASSERT(buf != NULL, ("NULL signature pointer"));
 1899 
 1900         /* Extract the destination from the IP header in the mbuf. */
 1901         bzero(&dst, sizeof(union sockaddr_union));
 1902         ip = mtod(m, struct ip *);
 1903 #ifdef INET6
 1904         ip6 = NULL;     /* Make the compiler happy. */
 1905 #endif
 1906         switch (ip->ip_v) {
 1907         case IPVERSION:
 1908                 dst.sa.sa_len = sizeof(struct sockaddr_in);
 1909                 dst.sa.sa_family = AF_INET;
 1910                 dst.sin.sin_addr = (direction == IPSEC_DIR_INBOUND) ?
 1911                     ip->ip_src : ip->ip_dst;
 1912                 break;
 1913 #ifdef INET6
 1914         case (IPV6_VERSION >> 4):
 1915                 ip6 = mtod(m, struct ip6_hdr *);
 1916                 dst.sa.sa_len = sizeof(struct sockaddr_in6);
 1917                 dst.sa.sa_family = AF_INET6;
 1918                 dst.sin6.sin6_addr = (direction == IPSEC_DIR_INBOUND) ?
 1919                     ip6->ip6_src : ip6->ip6_dst;
 1920                 break;
 1921 #endif
 1922         default:
 1923                 return (EINVAL);
 1924                 /* NOTREACHED */
 1925                 break;
 1926         }
 1927 
 1928         /* Look up an SADB entry which matches the address of the peer. */
 1929         sav = KEY_ALLOCSA(&dst, IPPROTO_TCP, htonl(TCP_SIG_SPI));
 1930         if (sav == NULL) {
 1931                 ipseclog((LOG_ERR, "%s: SADB lookup failed for %s\n", __func__,
 1932                     (ip->ip_v == IPVERSION) ? inet_ntoa(dst.sin.sin_addr) :
 1933 #ifdef INET6
 1934                         (ip->ip_v == (IPV6_VERSION >> 4)) ?
 1935                             ip6_sprintf(ip6buf, &dst.sin6.sin6_addr) :
 1936 #endif
 1937                         "(unsupported)"));
 1938                 return (EINVAL);
 1939         }
 1940 
 1941         MD5Init(&ctx);
 1942         /*
 1943          * Step 1: Update MD5 hash with IP(v6) pseudo-header.
 1944          *
 1945          * XXX The ippseudo header MUST be digested in network byte order,
 1946          * or else we'll fail the regression test. Assume all fields we've
 1947          * been doing arithmetic on have been in host byte order.
 1948          * XXX One cannot depend on ipovly->ih_len here. When called from
 1949          * tcp_output(), the underlying ip_len member has not yet been set.
 1950          */
 1951         switch (ip->ip_v) {
 1952         case IPVERSION:
 1953                 ipovly = (struct ipovly *)ip;
 1954                 ippseudo.ippseudo_src = ipovly->ih_src;
 1955                 ippseudo.ippseudo_dst = ipovly->ih_dst;
 1956                 ippseudo.ippseudo_pad = 0;
 1957                 ippseudo.ippseudo_p = IPPROTO_TCP;
 1958                 ippseudo.ippseudo_len = htons(len + sizeof(struct tcphdr) +
 1959                     optlen);
 1960                 MD5Update(&ctx, (char *)&ippseudo, sizeof(struct ippseudo));
 1961 
 1962                 th = (struct tcphdr *)((u_char *)ip + sizeof(struct ip));
 1963                 doff = sizeof(struct ip) + sizeof(struct tcphdr) + optlen;
 1964                 break;
 1965 #ifdef INET6
 1966         /*
 1967          * RFC 2385, 2.0  Proposal
 1968          * For IPv6, the pseudo-header is as described in RFC 2460, namely the
 1969          * 128-bit source IPv6 address, 128-bit destination IPv6 address, zero-
 1970          * extended next header value (to form 32 bits), and 32-bit segment
 1971          * length.
 1972          * Note: Upper-Layer Packet Length comes before Next Header.
 1973          */
 1974         case (IPV6_VERSION >> 4):
 1975                 in6 = ip6->ip6_src;
 1976                 in6_clearscope(&in6);
 1977                 MD5Update(&ctx, (char *)&in6, sizeof(struct in6_addr));
 1978                 in6 = ip6->ip6_dst;
 1979                 in6_clearscope(&in6);
 1980                 MD5Update(&ctx, (char *)&in6, sizeof(struct in6_addr));
 1981                 plen = htonl(len + sizeof(struct tcphdr) + optlen);
 1982                 MD5Update(&ctx, (char *)&plen, sizeof(uint32_t));
 1983                 nhdr = 0;
 1984                 MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
 1985                 MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
 1986                 MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
 1987                 nhdr = IPPROTO_TCP;
 1988                 MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
 1989 
 1990                 th = (struct tcphdr *)((u_char *)ip6 + sizeof(struct ip6_hdr));
 1991                 doff = sizeof(struct ip6_hdr) + sizeof(struct tcphdr) + optlen;
 1992                 break;
 1993 #endif
 1994         default:
 1995                 return (EINVAL);
 1996                 /* NOTREACHED */
 1997                 break;
 1998         }
 1999 
 2000 
 2001         /*
 2002          * Step 2: Update MD5 hash with TCP header, excluding options.
 2003          * The TCP checksum must be set to zero.
 2004          */
 2005         savecsum = th->th_sum;
 2006         th->th_sum = 0;
 2007         MD5Update(&ctx, (char *)th, sizeof(struct tcphdr));
 2008         th->th_sum = savecsum;
 2009 
 2010         /*
 2011          * Step 3: Update MD5 hash with TCP segment data.
 2012          *         Use m_apply() to avoid an early m_pullup().
 2013          */
 2014         if (len > 0)
 2015                 m_apply(m, doff, len, tcp_signature_apply, &ctx);
 2016 
 2017         /*
 2018          * Step 4: Update MD5 hash with shared secret.
 2019          */
 2020         MD5Update(&ctx, sav->key_auth->key_data, _KEYLEN(sav->key_auth));
 2021         MD5Final(buf, &ctx);
 2022 
 2023         key_sa_recordxfer(sav, m);
 2024         KEY_FREESAV(&sav);
 2025         return (0);
 2026 }
 2027 #endif /* TCP_SIGNATURE */
 2028 
 2029 static int
 2030 sysctl_drop(SYSCTL_HANDLER_ARGS)
 2031 {
 2032         /* addrs[0] is a foreign socket, addrs[1] is a local one. */
 2033         struct sockaddr_storage addrs[2];
 2034         struct inpcb *inp;
 2035         struct tcpcb *tp;
 2036         struct tcptw *tw;
 2037         struct sockaddr_in *fin, *lin;
 2038 #ifdef INET6
 2039         struct sockaddr_in6 *fin6, *lin6;
 2040         struct in6_addr f6, l6;
 2041 #endif
 2042         int error;
 2043 
 2044         inp = NULL;
 2045         fin = lin = NULL;
 2046 #ifdef INET6
 2047         fin6 = lin6 = NULL;
 2048 #endif
 2049         error = 0;
 2050 
 2051         if (req->oldptr != NULL || req->oldlen != 0)
 2052                 return (EINVAL);
 2053         if (req->newptr == NULL)
 2054                 return (EPERM);
 2055         if (req->newlen < sizeof(addrs))
 2056                 return (ENOMEM);
 2057         error = SYSCTL_IN(req, &addrs, sizeof(addrs));
 2058         if (error)
 2059                 return (error);
 2060 
 2061         switch (addrs[0].ss_family) {
 2062 #ifdef INET6
 2063         case AF_INET6:
 2064                 fin6 = (struct sockaddr_in6 *)&addrs[0];
 2065                 lin6 = (struct sockaddr_in6 *)&addrs[1];
 2066                 if (fin6->sin6_len != sizeof(struct sockaddr_in6) ||
 2067                     lin6->sin6_len != sizeof(struct sockaddr_in6))
 2068                         return (EINVAL);
 2069                 if (IN6_IS_ADDR_V4MAPPED(&fin6->sin6_addr)) {
 2070                         if (!IN6_IS_ADDR_V4MAPPED(&lin6->sin6_addr))
 2071                                 return (EINVAL);
 2072                         in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[0]);
 2073                         in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[1]);
 2074                         fin = (struct sockaddr_in *)&addrs[0];
 2075                         lin = (struct sockaddr_in *)&addrs[1];
 2076                         break;
 2077                 }
 2078                 error = sa6_embedscope(fin6, ip6_use_defzone);
 2079                 if (error)
 2080                         return (error);
 2081                 error = sa6_embedscope(lin6, ip6_use_defzone);
 2082                 if (error)
 2083                         return (error);
 2084                 break;
 2085 #endif
 2086         case AF_INET:
 2087                 fin = (struct sockaddr_in *)&addrs[0];
 2088                 lin = (struct sockaddr_in *)&addrs[1];
 2089                 if (fin->sin_len != sizeof(struct sockaddr_in) ||
 2090                     lin->sin_len != sizeof(struct sockaddr_in))
 2091                         return (EINVAL);
 2092                 break;
 2093         default:
 2094                 return (EINVAL);
 2095         }
 2096         INP_INFO_WLOCK(&tcbinfo);
 2097         switch (addrs[0].ss_family) {
 2098 #ifdef INET6
 2099         case AF_INET6:
 2100                 inp = in6_pcblookup_hash(&tcbinfo, &f6, fin6->sin6_port,
 2101                     &l6, lin6->sin6_port, 0, NULL);
 2102                 break;
 2103 #endif
 2104         case AF_INET:
 2105                 inp = in_pcblookup_hash(&tcbinfo, fin->sin_addr, fin->sin_port,
 2106                     lin->sin_addr, lin->sin_port, 0, NULL);
 2107                 break;
 2108         }
 2109         if (inp != NULL) {
 2110                 INP_WLOCK(inp);
 2111                 if (inp->inp_flags & INP_TIMEWAIT) {
 2112                         /*
 2113                          * XXXRW: There currently exists a state where an
 2114                          * inpcb is present, but its timewait state has been
 2115                          * discarded.  For now, don't allow dropping of this
 2116                          * type of inpcb.
 2117                          */
 2118                         tw = intotw(inp);
 2119                         if (tw != NULL)
 2120                                 tcp_twclose(tw, 0);
 2121                         else
 2122                                 INP_WUNLOCK(inp);
 2123                 } else if (!(inp->inp_flags & INP_DROPPED) &&
 2124                            !(inp->inp_socket->so_options & SO_ACCEPTCONN)) {
 2125                         tp = intotcpcb(inp);
 2126                         tp = tcp_drop(tp, ECONNABORTED);
 2127                         if (tp != NULL)
 2128                                 INP_WUNLOCK(inp);
 2129                 } else
 2130                         INP_WUNLOCK(inp);
 2131         } else
 2132                 error = ESRCH;
 2133         INP_INFO_WUNLOCK(&tcbinfo);
 2134         return (error);
 2135 }
 2136 
 2137 SYSCTL_PROC(_net_inet_tcp, TCPCTL_DROP, drop,
 2138     CTLTYPE_STRUCT|CTLFLAG_WR|CTLFLAG_SKIP, NULL,
 2139     0, sysctl_drop, "", "Drop TCP connection");
 2140 
 2141 /*
 2142  * Generate a standardized TCP log line for use throughout the
 2143  * tcp subsystem.  Memory allocation is done with M_NOWAIT to
 2144  * allow use in the interrupt context.
 2145  *
 2146  * NB: The caller MUST free(s, M_TCPLOG) the returned string.
 2147  * NB: The function may return NULL if memory allocation failed.
 2148  *
 2149  * Due to header inclusion and ordering limitations the struct ip
 2150  * and ip6_hdr pointers have to be passed as void pointers.
 2151  */
 2152 char *
 2153 tcp_log_addrs(struct in_conninfo *inc, struct tcphdr *th, void *ip4hdr,
 2154     const void *ip6hdr)
 2155 {
 2156         char *s, *sp;
 2157         size_t size;
 2158         struct ip *ip;
 2159 #ifdef INET6
 2160         const struct ip6_hdr *ip6;
 2161 
 2162         ip6 = (const struct ip6_hdr *)ip6hdr;
 2163 #endif /* INET6 */
 2164         ip = (struct ip *)ip4hdr;
 2165 
 2166         /*
 2167          * The log line looks like this:
 2168          * "TCP: [1.2.3.4]:50332 to [1.2.3.4]:80 tcpflags 0x2<SYN>"
 2169          */
 2170         size = sizeof("TCP: []:12345 to []:12345 tcpflags 0x2<>") +
 2171             sizeof(PRINT_TH_FLAGS) + 1 +
 2172 #ifdef INET6
 2173             2 * INET6_ADDRSTRLEN;
 2174 #else
 2175             2 * INET_ADDRSTRLEN;
 2176 #endif /* INET6 */
 2177 
 2178         /* Is logging enabled? */
 2179         if (tcp_log_debug == 0 && tcp_log_in_vain == 0)
 2180                 return (NULL);
 2181 
 2182         s = malloc(size, M_TCPLOG, M_ZERO|M_NOWAIT);
 2183         if (s == NULL)
 2184                 return (NULL);
 2185 
 2186         strcat(s, "TCP: [");
 2187         sp = s + strlen(s);
 2188 
 2189         if (inc && ((inc->inc_flags & INC_ISIPV6) == 0)) {
 2190                 inet_ntoa_r(inc->inc_faddr, sp);
 2191                 sp = s + strlen(s);
 2192                 sprintf(sp, "]:%i to [", ntohs(inc->inc_fport));
 2193                 sp = s + strlen(s);
 2194                 inet_ntoa_r(inc->inc_laddr, sp);
 2195                 sp = s + strlen(s);
 2196                 sprintf(sp, "]:%i", ntohs(inc->inc_lport));
 2197 #ifdef INET6
 2198         } else if (inc) {
 2199                 ip6_sprintf(sp, &inc->inc6_faddr);
 2200                 sp = s + strlen(s);
 2201                 sprintf(sp, "]:%i to [", ntohs(inc->inc_fport));
 2202                 sp = s + strlen(s);
 2203                 ip6_sprintf(sp, &inc->inc6_laddr);
 2204                 sp = s + strlen(s);
 2205                 sprintf(sp, "]:%i", ntohs(inc->inc_lport));
 2206         } else if (ip6 && th) {
 2207                 ip6_sprintf(sp, &ip6->ip6_src);
 2208                 sp = s + strlen(s);
 2209                 sprintf(sp, "]:%i to [", ntohs(th->th_sport));
 2210                 sp = s + strlen(s);
 2211                 ip6_sprintf(sp, &ip6->ip6_dst);
 2212                 sp = s + strlen(s);
 2213                 sprintf(sp, "]:%i", ntohs(th->th_dport));
 2214 #endif /* INET6 */
 2215         } else if (ip && th) {
 2216                 inet_ntoa_r(ip->ip_src, sp);
 2217                 sp = s + strlen(s);
 2218                 sprintf(sp, "]:%i to [", ntohs(th->th_sport));
 2219                 sp = s + strlen(s);
 2220                 inet_ntoa_r(ip->ip_dst, sp);
 2221                 sp = s + strlen(s);
 2222                 sprintf(sp, "]:%i", ntohs(th->th_dport));
 2223         } else {
 2224                 free(s, M_TCPLOG);
 2225                 return (NULL);
 2226         }
 2227         sp = s + strlen(s);
 2228         if (th)
 2229                 sprintf(sp, " tcpflags 0x%b", th->th_flags, PRINT_TH_FLAGS);
 2230         if (*(s + size - 1) != '\0')
 2231                 panic("%s: string too long", __func__);
 2232         return (s);
 2233 }

Cache object: abfe32edf121b1ab5e52954b5acefc1a


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.