The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/netinet/tcp_subr.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
    3  *      The Regents of the University of California.  All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice, this list of conditions and the following disclaimer.
   10  * 2. Redistributions in binary form must reproduce the above copyright
   11  *    notice, this list of conditions and the following disclaimer in the
   12  *    documentation and/or other materials provided with the distribution.
   13  * 4. Neither the name of the University nor the names of its contributors
   14  *    may be used to endorse or promote products derived from this software
   15  *    without specific prior written permission.
   16  *
   17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   27  * SUCH DAMAGE.
   28  *
   29  *      @(#)tcp_subr.c  8.2 (Berkeley) 5/24/95
   30  */
   31 
   32 #include <sys/cdefs.h>
   33 __FBSDID("$FreeBSD: releng/7.4/sys/netinet/tcp_subr.c 214878 2010-11-06 13:46:58Z lstewart $");
   34 
   35 #include "opt_compat.h"
   36 #include "opt_inet.h"
   37 #include "opt_inet6.h"
   38 #include "opt_ipsec.h"
   39 #include "opt_mac.h"
   40 #include "opt_tcpdebug.h"
   41 
   42 #include <sys/param.h>
   43 #include <sys/systm.h>
   44 #include <sys/callout.h>
   45 #include <sys/kernel.h>
   46 #include <sys/sysctl.h>
   47 #include <sys/malloc.h>
   48 #include <sys/mbuf.h>
   49 #ifdef INET6
   50 #include <sys/domain.h>
   51 #endif
   52 #include <sys/priv.h>
   53 #include <sys/proc.h>
   54 #include <sys/socket.h>
   55 #include <sys/socketvar.h>
   56 #include <sys/protosw.h>
   57 #include <sys/random.h>
   58 
   59 #include <vm/uma.h>
   60 
   61 #include <net/route.h>
   62 #include <net/if.h>
   63 
   64 #include <netinet/in.h>
   65 #include <netinet/in_systm.h>
   66 #include <netinet/ip.h>
   67 #ifdef INET6
   68 #include <netinet/ip6.h>
   69 #endif
   70 #include <netinet/in_pcb.h>
   71 #ifdef INET6
   72 #include <netinet6/in6_pcb.h>
   73 #endif
   74 #include <netinet/in_var.h>
   75 #include <netinet/ip_var.h>
   76 #ifdef INET6
   77 #include <netinet6/ip6_var.h>
   78 #include <netinet6/scope6_var.h>
   79 #include <netinet6/nd6.h>
   80 #endif
   81 #include <netinet/ip_icmp.h>
   82 #include <netinet/tcp.h>
   83 #include <netinet/tcp_fsm.h>
   84 #include <netinet/tcp_seq.h>
   85 #include <netinet/tcp_timer.h>
   86 #include <netinet/tcp_var.h>
   87 #include <netinet/tcp_syncache.h>
   88 #include <netinet/tcp_offload.h>
   89 #ifdef INET6
   90 #include <netinet6/tcp6_var.h>
   91 #endif
   92 #include <netinet/tcpip.h>
   93 #ifdef TCPDEBUG
   94 #include <netinet/tcp_debug.h>
   95 #endif
   96 #include <netinet6/ip6protosw.h>
   97 
   98 #ifdef IPSEC
   99 #include <netipsec/ipsec.h>
  100 #include <netipsec/xform.h>
  101 #ifdef INET6
  102 #include <netipsec/ipsec6.h>
  103 #endif
  104 #include <netipsec/key.h>
  105 #include <sys/syslog.h>
  106 #endif /*IPSEC*/
  107 
  108 #include <machine/in_cksum.h>
  109 #include <sys/md5.h>
  110 
  111 #include <security/mac/mac_framework.h>
  112 
  113 int     tcp_mssdflt = TCP_MSS;
  114 #ifdef INET6
  115 int     tcp_v6mssdflt = TCP6_MSS;
  116 #endif
  117 
  118 static int
  119 sysctl_net_inet_tcp_mss_check(SYSCTL_HANDLER_ARGS)
  120 {
  121         int error, new;
  122 
  123         new = tcp_mssdflt;
  124         error = sysctl_handle_int(oidp, &new, 0, req);
  125         if (error == 0 && req->newptr) {
  126                 if (new < TCP_MINMSS)
  127                         error = EINVAL;
  128                 else
  129                         tcp_mssdflt = new;
  130         }
  131         return (error);
  132 }
  133 
  134 SYSCTL_PROC(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt, CTLTYPE_INT|CTLFLAG_RW,
  135            &tcp_mssdflt, 0, &sysctl_net_inet_tcp_mss_check, "I",
  136            "Default TCP Maximum Segment Size");
  137 
  138 #ifdef INET6
  139 static int
  140 sysctl_net_inet_tcp_mss_v6_check(SYSCTL_HANDLER_ARGS)
  141 {
  142         int error, new;
  143 
  144         new = tcp_v6mssdflt;
  145         error = sysctl_handle_int(oidp, &new, 0, req);
  146         if (error == 0 && req->newptr) {
  147                 if (new < TCP_MINMSS)
  148                         error = EINVAL;
  149                 else
  150                         tcp_v6mssdflt = new;
  151         }
  152         return (error);
  153 }
  154 
  155 SYSCTL_PROC(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt, CTLTYPE_INT|CTLFLAG_RW,
  156            &tcp_v6mssdflt, 0, &sysctl_net_inet_tcp_mss_v6_check, "I",
  157            "Default TCP Maximum Segment Size for IPv6");
  158 #endif
  159 
  160 /*
  161  * Minimum MSS we accept and use. This prevents DoS attacks where
  162  * we are forced to a ridiculous low MSS like 20 and send hundreds
  163  * of packets instead of one. The effect scales with the available
  164  * bandwidth and quickly saturates the CPU and network interface
  165  * with packet generation and sending. Set to zero to disable MINMSS
  166  * checking. This setting prevents us from sending too small packets.
  167  */
  168 int     tcp_minmss = TCP_MINMSS;
  169 SYSCTL_INT(_net_inet_tcp, OID_AUTO, minmss, CTLFLAG_RW,
  170     &tcp_minmss , 0, "Minmum TCP Maximum Segment Size");
  171 
  172 int     tcp_do_rfc1323 = 1;
  173 SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_RW,
  174     &tcp_do_rfc1323, 0, "Enable rfc1323 (high performance TCP) extensions");
  175 
  176 static int      tcp_log_debug = 0;
  177 SYSCTL_INT(_net_inet_tcp, OID_AUTO, log_debug, CTLFLAG_RW,
  178     &tcp_log_debug, 0, "Log errors caused by incoming TCP segments");
  179 
  180 static int      tcp_tcbhashsize = 0;
  181 SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RDTUN,
  182     &tcp_tcbhashsize, 0, "Size of TCP control-block hashtable");
  183 
  184 static int      do_tcpdrain = 1;
  185 SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW,
  186     &do_tcpdrain, 0,
  187     "Enable tcp_drain routine for extra help when low on mbufs");
  188 
  189 SYSCTL_INT(_net_inet_tcp, OID_AUTO, pcbcount, CTLFLAG_RD,
  190     &tcbinfo.ipi_count, 0, "Number of active PCBs");
  191 
  192 static int      icmp_may_rst = 1;
  193 SYSCTL_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_RW,
  194     &icmp_may_rst, 0,
  195     "Certain ICMP unreachable messages may abort connections in SYN_SENT");
  196 
  197 static int      tcp_isn_reseed_interval = 0;
  198 SYSCTL_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_RW,
  199     &tcp_isn_reseed_interval, 0, "Seconds between reseeding of ISN secret");
  200 
  201 /*
  202  * TCP bandwidth limiting sysctls.  Note that the default lower bound of
  203  * 1024 exists only for debugging.  A good production default would be
  204  * something like 6100.
  205  */
  206 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, inflight, CTLFLAG_RW, 0,
  207     "TCP inflight data limiting");
  208 
  209 static int      tcp_inflight_enable = 0;
  210 SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, enable, CTLFLAG_RW,
  211     &tcp_inflight_enable, 0, "Enable automatic TCP inflight data limiting");
  212 
  213 static int      tcp_inflight_debug = 0;
  214 SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, debug, CTLFLAG_RW,
  215     &tcp_inflight_debug, 0, "Debug TCP inflight calculations");
  216 
  217 static int      tcp_inflight_rttthresh;
  218 SYSCTL_PROC(_net_inet_tcp_inflight, OID_AUTO, rttthresh, CTLTYPE_INT|CTLFLAG_RW,
  219     &tcp_inflight_rttthresh, 0, sysctl_msec_to_ticks, "I",
  220     "RTT threshold below which inflight will deactivate itself");
  221 
  222 static int      tcp_inflight_min = 6144;
  223 SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, min, CTLFLAG_RW,
  224     &tcp_inflight_min, 0, "Lower-bound for TCP inflight window");
  225 
  226 static int      tcp_inflight_max = TCP_MAXWIN << TCP_MAX_WINSHIFT;
  227 SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, max, CTLFLAG_RW,
  228     &tcp_inflight_max, 0, "Upper-bound for TCP inflight window");
  229 
  230 static int      tcp_inflight_stab = 20;
  231 SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, stab, CTLFLAG_RW,
  232     &tcp_inflight_stab, 0, "Inflight Algorithm Stabilization 20 = 2 packets");
  233 
  234 uma_zone_t sack_hole_zone;
  235 
  236 static struct inpcb *tcp_notify(struct inpcb *, int);
  237 static void     tcp_isn_tick(void *);
  238 static char *   tcp_log_addr(struct in_conninfo *inc, struct tcphdr *th,
  239                     void *ip4hdr, const void *ip6hdr);
  240 
  241 /*
  242  * Target size of TCP PCB hash tables. Must be a power of two.
  243  *
  244  * Note that this can be overridden by the kernel environment
  245  * variable net.inet.tcp.tcbhashsize
  246  */
  247 #ifndef TCBHASHSIZE
  248 #define TCBHASHSIZE     512
  249 #endif
  250 
  251 /*
  252  * XXX
  253  * Callouts should be moved into struct tcp directly.  They are currently
  254  * separate because the tcpcb structure is exported to userland for sysctl
  255  * parsing purposes, which do not know about callouts.
  256  */
  257 struct tcpcb_mem {
  258         struct  tcpcb           tcb;
  259         struct  tcp_timer       tt;
  260 };
  261 
  262 static uma_zone_t tcpcb_zone;
  263 MALLOC_DEFINE(M_TCPLOG, "tcplog", "TCP address and flags print buffers");
  264 struct callout isn_callout;
  265 static struct mtx isn_mtx;
  266 
  267 #define ISN_LOCK_INIT() mtx_init(&isn_mtx, "isn_mtx", NULL, MTX_DEF)
  268 #define ISN_LOCK()      mtx_lock(&isn_mtx)
  269 #define ISN_UNLOCK()    mtx_unlock(&isn_mtx)
  270 
  271 /*
  272  * TCP initialization.
  273  */
  274 static void
  275 tcp_zone_change(void *tag)
  276 {
  277 
  278         uma_zone_set_max(tcbinfo.ipi_zone, maxsockets);
  279         uma_zone_set_max(tcpcb_zone, maxsockets);
  280         tcp_tw_zone_change();
  281 }
  282 
  283 static int
  284 tcp_inpcb_init(void *mem, int size, int flags)
  285 {
  286         struct inpcb *inp = mem;
  287 
  288         INP_LOCK_INIT(inp, "inp", "tcpinp");
  289         return (0);
  290 }
  291 
  292 void
  293 tcp_init(void)
  294 {
  295 
  296         int hashsize = TCBHASHSIZE;
  297         tcp_delacktime = TCPTV_DELACK;
  298         tcp_keepinit = TCPTV_KEEP_INIT;
  299         tcp_keepidle = TCPTV_KEEP_IDLE;
  300         tcp_keepintvl = TCPTV_KEEPINTVL;
  301         tcp_maxpersistidle = TCPTV_KEEP_IDLE;
  302         tcp_msl = TCPTV_MSL;
  303         tcp_rexmit_min = TCPTV_MIN;
  304         if (tcp_rexmit_min < 1)
  305                 tcp_rexmit_min = 1;
  306         tcp_rexmit_slop = TCPTV_CPU_VAR;
  307         tcp_inflight_rttthresh = TCPTV_INFLIGHT_RTTTHRESH;
  308         tcp_finwait2_timeout = TCPTV_FINWAIT2_TIMEOUT;
  309 
  310         INP_INFO_LOCK_INIT(&tcbinfo, "tcp");
  311         LIST_INIT(&tcb);
  312         tcbinfo.ipi_listhead = &tcb;
  313         TUNABLE_INT_FETCH("net.inet.tcp.tcbhashsize", &hashsize);
  314         if (!powerof2(hashsize)) {
  315                 printf("WARNING: TCB hash size not a power of 2\n");
  316                 hashsize = 512; /* safe default */
  317         }
  318         tcp_tcbhashsize = hashsize;
  319         tcbinfo.ipi_hashbase = hashinit(hashsize, M_PCB,
  320             &tcbinfo.ipi_hashmask);
  321         tcbinfo.ipi_porthashbase = hashinit(hashsize, M_PCB,
  322             &tcbinfo.ipi_porthashmask);
  323         tcbinfo.ipi_zone = uma_zcreate("inpcb", sizeof(struct inpcb),
  324             NULL, NULL, tcp_inpcb_init, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
  325         uma_zone_set_max(tcbinfo.ipi_zone, maxsockets);
  326 #ifdef INET6
  327 #define TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
  328 #else /* INET6 */
  329 #define TCP_MINPROTOHDR (sizeof(struct tcpiphdr))
  330 #endif /* INET6 */
  331         if (max_protohdr < TCP_MINPROTOHDR)
  332                 max_protohdr = TCP_MINPROTOHDR;
  333         if (max_linkhdr + TCP_MINPROTOHDR > MHLEN)
  334                 panic("tcp_init");
  335 #undef TCP_MINPROTOHDR
  336         /*
  337          * These have to be type stable for the benefit of the timers.
  338          */
  339         tcpcb_zone = uma_zcreate("tcpcb", sizeof(struct tcpcb_mem),
  340             NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
  341         uma_zone_set_max(tcpcb_zone, maxsockets);
  342         tcp_tw_init();
  343         syncache_init();
  344         tcp_hc_init();
  345         tcp_reass_init();
  346         ISN_LOCK_INIT();
  347         callout_init(&isn_callout, CALLOUT_MPSAFE);
  348         tcp_isn_tick(NULL);
  349         EVENTHANDLER_REGISTER(shutdown_pre_sync, tcp_fini, NULL,
  350                 SHUTDOWN_PRI_DEFAULT);
  351         sack_hole_zone = uma_zcreate("sackhole", sizeof(struct sackhole),
  352             NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
  353         EVENTHANDLER_REGISTER(maxsockets_change, tcp_zone_change, NULL,
  354                 EVENTHANDLER_PRI_ANY);
  355 }
  356 
  357 void
  358 tcp_fini(void *xtp)
  359 {
  360 
  361         callout_stop(&isn_callout);
  362 }
  363 
  364 /*
  365  * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
  366  * tcp_template used to store this data in mbufs, but we now recopy it out
  367  * of the tcpcb each time to conserve mbufs.
  368  */
  369 void
  370 tcpip_fillheaders(struct inpcb *inp, void *ip_ptr, void *tcp_ptr)
  371 {
  372         struct tcphdr *th = (struct tcphdr *)tcp_ptr;
  373 
  374         INP_WLOCK_ASSERT(inp);
  375 
  376 #ifdef INET6
  377         if ((inp->inp_vflag & INP_IPV6) != 0) {
  378                 struct ip6_hdr *ip6;
  379 
  380                 ip6 = (struct ip6_hdr *)ip_ptr;
  381                 ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
  382                         (inp->inp_flow & IPV6_FLOWINFO_MASK);
  383                 ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) |
  384                         (IPV6_VERSION & IPV6_VERSION_MASK);
  385                 ip6->ip6_nxt = IPPROTO_TCP;
  386                 ip6->ip6_plen = htons(sizeof(struct tcphdr));
  387                 ip6->ip6_src = inp->in6p_laddr;
  388                 ip6->ip6_dst = inp->in6p_faddr;
  389         } else
  390 #endif
  391         {
  392                 struct ip *ip;
  393 
  394                 ip = (struct ip *)ip_ptr;
  395                 ip->ip_v = IPVERSION;
  396                 ip->ip_hl = 5;
  397                 ip->ip_tos = inp->inp_ip_tos;
  398                 ip->ip_len = 0;
  399                 ip->ip_id = 0;
  400                 ip->ip_off = 0;
  401                 ip->ip_ttl = inp->inp_ip_ttl;
  402                 ip->ip_sum = 0;
  403                 ip->ip_p = IPPROTO_TCP;
  404                 ip->ip_src = inp->inp_laddr;
  405                 ip->ip_dst = inp->inp_faddr;
  406         }
  407         th->th_sport = inp->inp_lport;
  408         th->th_dport = inp->inp_fport;
  409         th->th_seq = 0;
  410         th->th_ack = 0;
  411         th->th_x2 = 0;
  412         th->th_off = 5;
  413         th->th_flags = 0;
  414         th->th_win = 0;
  415         th->th_urp = 0;
  416         th->th_sum = 0;         /* in_pseudo() is called later for ipv4 */
  417 }
  418 
  419 /*
  420  * Create template to be used to send tcp packets on a connection.
  421  * Allocates an mbuf and fills in a skeletal tcp/ip header.  The only
  422  * use for this function is in keepalives, which use tcp_respond.
  423  */
  424 struct tcptemp *
  425 tcpip_maketemplate(struct inpcb *inp)
  426 {
  427         struct tcptemp *t;
  428 
  429         t = malloc(sizeof(*t), M_TEMP, M_NOWAIT);
  430         if (t == NULL)
  431                 return (NULL);
  432         tcpip_fillheaders(inp, (void *)&t->tt_ipgen, (void *)&t->tt_t);
  433         return (t);
  434 }
  435 
  436 /*
  437  * Send a single message to the TCP at address specified by
  438  * the given TCP/IP header.  If m == NULL, then we make a copy
  439  * of the tcpiphdr at ti and send directly to the addressed host.
  440  * This is used to force keep alive messages out using the TCP
  441  * template for a connection.  If flags are given then we send
  442  * a message back to the TCP which originated the * segment ti,
  443  * and discard the mbuf containing it and any other attached mbufs.
  444  *
  445  * In any case the ack and sequence number of the transmitted
  446  * segment are as specified by the parameters.
  447  *
  448  * NOTE: If m != NULL, then ti must point to *inside* the mbuf.
  449  */
  450 void
  451 tcp_respond(struct tcpcb *tp, void *ipgen, struct tcphdr *th, struct mbuf *m,
  452     tcp_seq ack, tcp_seq seq, int flags)
  453 {
  454         int tlen;
  455         int win = 0;
  456         struct ip *ip;
  457         struct tcphdr *nth;
  458 #ifdef INET6
  459         struct ip6_hdr *ip6;
  460         int isipv6;
  461 #endif /* INET6 */
  462         int ipflags = 0;
  463         struct inpcb *inp;
  464 
  465         KASSERT(tp != NULL || m != NULL, ("tcp_respond: tp and m both NULL"));
  466 
  467 #ifdef INET6
  468         isipv6 = ((struct ip *)ipgen)->ip_v == 6;
  469         ip6 = ipgen;
  470 #endif /* INET6 */
  471         ip = ipgen;
  472 
  473         if (tp != NULL) {
  474                 inp = tp->t_inpcb;
  475                 KASSERT(inp != NULL, ("tcp control block w/o inpcb"));
  476                 INP_WLOCK_ASSERT(inp);
  477         } else
  478                 inp = NULL;
  479 
  480         if (tp != NULL) {
  481                 if (!(flags & TH_RST)) {
  482                         win = sbspace(&inp->inp_socket->so_rcv);
  483                         if (win > (long)TCP_MAXWIN << tp->rcv_scale)
  484                                 win = (long)TCP_MAXWIN << tp->rcv_scale;
  485                 }
  486         }
  487         if (m == NULL) {
  488                 m = m_gethdr(M_DONTWAIT, MT_DATA);
  489                 if (m == NULL)
  490                         return;
  491                 tlen = 0;
  492                 m->m_data += max_linkhdr;
  493 #ifdef INET6
  494                 if (isipv6) {
  495                         bcopy((caddr_t)ip6, mtod(m, caddr_t),
  496                               sizeof(struct ip6_hdr));
  497                         ip6 = mtod(m, struct ip6_hdr *);
  498                         nth = (struct tcphdr *)(ip6 + 1);
  499                 } else
  500 #endif /* INET6 */
  501               {
  502                 bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
  503                 ip = mtod(m, struct ip *);
  504                 nth = (struct tcphdr *)(ip + 1);
  505               }
  506                 bcopy((caddr_t)th, (caddr_t)nth, sizeof(struct tcphdr));
  507                 flags = TH_ACK;
  508         } else {
  509                 /*
  510                  *  reuse the mbuf. 
  511                  * XXX MRT We inherrit the FIB, which is lucky.
  512                  */
  513                 m_freem(m->m_next);
  514                 m->m_next = NULL;
  515                 m->m_data = (caddr_t)ipgen;
  516                 /* m_len is set later */
  517                 tlen = 0;
  518 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
  519 #ifdef INET6
  520                 if (isipv6) {
  521                         xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
  522                         nth = (struct tcphdr *)(ip6 + 1);
  523                 } else
  524 #endif /* INET6 */
  525               {
  526                 xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, uint32_t);
  527                 nth = (struct tcphdr *)(ip + 1);
  528               }
  529                 if (th != nth) {
  530                         /*
  531                          * this is usually a case when an extension header
  532                          * exists between the IPv6 header and the
  533                          * TCP header.
  534                          */
  535                         nth->th_sport = th->th_sport;
  536                         nth->th_dport = th->th_dport;
  537                 }
  538                 xchg(nth->th_dport, nth->th_sport, uint16_t);
  539 #undef xchg
  540         }
  541 #ifdef INET6
  542         if (isipv6) {
  543                 ip6->ip6_flow = 0;
  544                 ip6->ip6_vfc = IPV6_VERSION;
  545                 ip6->ip6_nxt = IPPROTO_TCP;
  546                 ip6->ip6_plen = htons((u_short)(sizeof (struct tcphdr) +
  547                                                 tlen));
  548                 tlen += sizeof (struct ip6_hdr) + sizeof (struct tcphdr);
  549         } else
  550 #endif
  551         {
  552                 tlen += sizeof (struct tcpiphdr);
  553                 ip->ip_len = tlen;
  554                 ip->ip_ttl = ip_defttl;
  555                 if (path_mtu_discovery)
  556                         ip->ip_off |= IP_DF;
  557         }
  558         m->m_len = tlen;
  559         m->m_pkthdr.len = tlen;
  560         m->m_pkthdr.rcvif = NULL;
  561 #ifdef MAC
  562         if (inp != NULL) {
  563                 /*
  564                  * Packet is associated with a socket, so allow the
  565                  * label of the response to reflect the socket label.
  566                  */
  567                 INP_WLOCK_ASSERT(inp);
  568                 mac_create_mbuf_from_inpcb(inp, m);
  569         } else {
  570                 /*
  571                  * Packet is not associated with a socket, so possibly
  572                  * update the label in place.
  573                  */
  574                 mac_reflect_mbuf_tcp(m);
  575         }
  576 #endif
  577         nth->th_seq = htonl(seq);
  578         nth->th_ack = htonl(ack);
  579         nth->th_x2 = 0;
  580         nth->th_off = sizeof (struct tcphdr) >> 2;
  581         nth->th_flags = flags;
  582         if (tp != NULL)
  583                 nth->th_win = htons((u_short) (win >> tp->rcv_scale));
  584         else
  585                 nth->th_win = htons((u_short)win);
  586         nth->th_urp = 0;
  587 #ifdef INET6
  588         if (isipv6) {
  589                 nth->th_sum = 0;
  590                 nth->th_sum = in6_cksum(m, IPPROTO_TCP,
  591                                         sizeof(struct ip6_hdr),
  592                                         tlen - sizeof(struct ip6_hdr));
  593                 ip6->ip6_hlim = in6_selecthlim(tp != NULL ? tp->t_inpcb :
  594                     NULL, NULL);
  595         } else
  596 #endif /* INET6 */
  597         {
  598                 nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
  599                     htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p)));
  600                 m->m_pkthdr.csum_flags = CSUM_TCP;
  601                 m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
  602         }
  603 #ifdef TCPDEBUG
  604         if (tp == NULL || (inp->inp_socket->so_options & SO_DEBUG))
  605                 tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0);
  606 #endif
  607 #ifdef INET6
  608         if (isipv6)
  609                 (void) ip6_output(m, NULL, NULL, ipflags, NULL, NULL, inp);
  610         else
  611 #endif /* INET6 */
  612         (void) ip_output(m, NULL, NULL, ipflags, NULL, inp);
  613 }
  614 
  615 /*
  616  * Create a new TCP control block, making an
  617  * empty reassembly queue and hooking it to the argument
  618  * protocol control block.  The `inp' parameter must have
  619  * come from the zone allocator set up in tcp_init().
  620  */
  621 struct tcpcb *
  622 tcp_newtcpcb(struct inpcb *inp)
  623 {
  624         struct tcpcb_mem *tm;
  625         struct tcpcb *tp;
  626 #ifdef INET6
  627         int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
  628 #endif /* INET6 */
  629 
  630         tm = uma_zalloc(tcpcb_zone, M_NOWAIT | M_ZERO);
  631         if (tm == NULL)
  632                 return (NULL);
  633         tp = &tm->tcb;
  634         tp->t_timers = &tm->tt;
  635         /*      LIST_INIT(&tp->t_segq); */      /* XXX covered by M_ZERO */
  636         tp->t_maxseg = tp->t_maxopd =
  637 #ifdef INET6
  638                 isipv6 ? tcp_v6mssdflt :
  639 #endif /* INET6 */
  640                 tcp_mssdflt;
  641 
  642         /* Set up our timeouts. */
  643         callout_init(&tp->t_timers->tt_rexmt, CALLOUT_MPSAFE);
  644         callout_init(&tp->t_timers->tt_persist, CALLOUT_MPSAFE);
  645         callout_init(&tp->t_timers->tt_keep, CALLOUT_MPSAFE);
  646         callout_init(&tp->t_timers->tt_2msl, CALLOUT_MPSAFE);
  647         callout_init(&tp->t_timers->tt_delack, CALLOUT_MPSAFE);
  648 
  649         if (tcp_do_rfc1323)
  650                 tp->t_flags = (TF_REQ_SCALE|TF_REQ_TSTMP);
  651         if (tcp_do_sack)
  652                 tp->t_flags |= TF_SACK_PERMIT;
  653         TAILQ_INIT(&tp->snd_holes);
  654         tp->t_inpcb = inp;      /* XXX */
  655         /*
  656          * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
  657          * rtt estimate.  Set rttvar so that srtt + 4 * rttvar gives
  658          * reasonable initial retransmit time.
  659          */
  660         tp->t_srtt = TCPTV_SRTTBASE;
  661         tp->t_rttvar = ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
  662         tp->t_rttmin = tcp_rexmit_min;
  663         tp->t_rxtcur = TCPTV_RTOBASE;
  664         tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
  665         tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
  666         tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
  667         tp->t_rcvtime = ticks;
  668         tp->t_bw_rtttime = ticks;
  669         /*
  670          * IPv4 TTL initialization is necessary for an IPv6 socket as well,
  671          * because the socket may be bound to an IPv6 wildcard address,
  672          * which may match an IPv4-mapped IPv6 address.
  673          */
  674         inp->inp_ip_ttl = ip_defttl;
  675         inp->inp_ppcb = tp;
  676         return (tp);            /* XXX */
  677 }
  678 
  679 /*
  680  * Drop a TCP connection, reporting
  681  * the specified error.  If connection is synchronized,
  682  * then send a RST to peer.
  683  */
  684 struct tcpcb *
  685 tcp_drop(struct tcpcb *tp, int errno)
  686 {
  687         struct socket *so = tp->t_inpcb->inp_socket;
  688 
  689         INP_INFO_WLOCK_ASSERT(&tcbinfo);
  690         INP_WLOCK_ASSERT(tp->t_inpcb);
  691 
  692         if (TCPS_HAVERCVDSYN(tp->t_state)) {
  693                 tp->t_state = TCPS_CLOSED;
  694                 (void) tcp_output_reset(tp);
  695                 tcpstat.tcps_drops++;
  696         } else
  697                 tcpstat.tcps_conndrops++;
  698         if (errno == ETIMEDOUT && tp->t_softerror)
  699                 errno = tp->t_softerror;
  700         so->so_error = errno;
  701         return (tcp_close(tp));
  702 }
  703 
  704 void
  705 tcp_discardcb(struct tcpcb *tp)
  706 {
  707         struct inpcb *inp = tp->t_inpcb;
  708         struct socket *so = inp->inp_socket;
  709 #ifdef INET6
  710         int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
  711 #endif /* INET6 */
  712 
  713         INP_WLOCK_ASSERT(inp);
  714 
  715         /*
  716          * Make sure that all of our timers are stopped before we
  717          * delete the PCB.
  718          */
  719         callout_stop(&tp->t_timers->tt_rexmt);
  720         callout_stop(&tp->t_timers->tt_persist);
  721         callout_stop(&tp->t_timers->tt_keep);
  722         callout_stop(&tp->t_timers->tt_2msl);
  723         callout_stop(&tp->t_timers->tt_delack);
  724 
  725         /*
  726          * If we got enough samples through the srtt filter,
  727          * save the rtt and rttvar in the routing entry.
  728          * 'Enough' is arbitrarily defined as 4 rtt samples.
  729          * 4 samples is enough for the srtt filter to converge
  730          * to within enough % of the correct value; fewer samples
  731          * and we could save a bogus rtt. The danger is not high
  732          * as tcp quickly recovers from everything.
  733          * XXX: Works very well but needs some more statistics!
  734          */
  735         if (tp->t_rttupdated >= 4) {
  736                 struct hc_metrics_lite metrics;
  737                 u_long ssthresh;
  738 
  739                 bzero(&metrics, sizeof(metrics));
  740                 /*
  741                  * Update the ssthresh always when the conditions below
  742                  * are satisfied. This gives us better new start value
  743                  * for the congestion avoidance for new connections.
  744                  * ssthresh is only set if packet loss occured on a session.
  745                  *
  746                  * XXXRW: 'so' may be NULL here, and/or socket buffer may be
  747                  * being torn down.  Ideally this code would not use 'so'.
  748                  */
  749                 ssthresh = tp->snd_ssthresh;
  750                 if (ssthresh != 0 && ssthresh < so->so_snd.sb_hiwat / 2) {
  751                         /*
  752                          * convert the limit from user data bytes to
  753                          * packets then to packet data bytes.
  754                          */
  755                         ssthresh = (ssthresh + tp->t_maxseg / 2) / tp->t_maxseg;
  756                         if (ssthresh < 2)
  757                                 ssthresh = 2;
  758                         ssthresh *= (u_long)(tp->t_maxseg +
  759 #ifdef INET6
  760                                       (isipv6 ? sizeof (struct ip6_hdr) +
  761                                                sizeof (struct tcphdr) :
  762 #endif
  763                                        sizeof (struct tcpiphdr)
  764 #ifdef INET6
  765                                        )
  766 #endif
  767                                       );
  768                 } else
  769                         ssthresh = 0;
  770                 metrics.rmx_ssthresh = ssthresh;
  771 
  772                 metrics.rmx_rtt = tp->t_srtt;
  773                 metrics.rmx_rttvar = tp->t_rttvar;
  774                 /* XXX: This wraps if the pipe is more than 4 Gbit per second */
  775                 metrics.rmx_bandwidth = tp->snd_bandwidth;
  776                 metrics.rmx_cwnd = tp->snd_cwnd;
  777                 metrics.rmx_sendpipe = 0;
  778                 metrics.rmx_recvpipe = 0;
  779 
  780                 tcp_hc_update(&inp->inp_inc, &metrics);
  781         }
  782 
  783         /* free the reassembly queue, if any */
  784         tcp_reass_flush(tp);
  785         /* Disconnect offload device, if any. */
  786         tcp_offload_detach(tp);
  787                 
  788         tcp_free_sackholes(tp);
  789         inp->inp_ppcb = NULL;
  790         tp->t_inpcb = NULL;
  791         uma_zfree(tcpcb_zone, tp);
  792 }
  793 
  794 /*
  795  * Attempt to close a TCP control block, marking it as dropped, and freeing
  796  * the socket if we hold the only reference.
  797  */
  798 struct tcpcb *
  799 tcp_close(struct tcpcb *tp)
  800 {
  801         struct inpcb *inp = tp->t_inpcb;
  802         struct socket *so;
  803 
  804         INP_INFO_WLOCK_ASSERT(&tcbinfo);
  805         INP_WLOCK_ASSERT(inp);
  806 
  807         /* Notify any offload devices of listener close */
  808         if (tp->t_state == TCPS_LISTEN)
  809                 tcp_offload_listen_close(tp);
  810         in_pcbdrop(inp);
  811         tcpstat.tcps_closed++;
  812         KASSERT(inp->inp_socket != NULL, ("tcp_close: inp_socket NULL"));
  813         so = inp->inp_socket;
  814         soisdisconnected(so);
  815         if (inp->inp_flags & INP_SOCKREF) {
  816                 KASSERT(so->so_state & SS_PROTOREF,
  817                     ("tcp_close: !SS_PROTOREF"));
  818                 inp->inp_flags &= ~INP_SOCKREF;
  819                 INP_WUNLOCK(inp);
  820                 ACCEPT_LOCK();
  821                 SOCK_LOCK(so);
  822                 so->so_state &= ~SS_PROTOREF;
  823                 sofree(so);
  824                 return (NULL);
  825         }
  826         return (tp);
  827 }
  828 
  829 void
  830 tcp_drain(void)
  831 {
  832 
  833         if (do_tcpdrain) {
  834                 struct inpcb *inpb;
  835                 struct tcpcb *tcpb;
  836 
  837         /*
  838          * Walk the tcpbs, if existing, and flush the reassembly queue,
  839          * if there is one...
  840          * XXX: The "Net/3" implementation doesn't imply that the TCP
  841          *      reassembly queue should be flushed, but in a situation
  842          *      where we're really low on mbufs, this is potentially
  843          *      usefull.
  844          */
  845                 INP_INFO_RLOCK(&tcbinfo);
  846                 LIST_FOREACH(inpb, tcbinfo.ipi_listhead, inp_list) {
  847                         if (inpb->inp_flags & INP_TIMEWAIT)
  848                                 continue;
  849                         INP_WLOCK(inpb);
  850                         if ((tcpb = intotcpcb(inpb)) != NULL) {
  851                                 tcp_reass_flush(tcpb);
  852                                 tcp_clean_sackreport(tcpb);
  853                         }
  854                         INP_WUNLOCK(inpb);
  855                 }
  856                 INP_INFO_RUNLOCK(&tcbinfo);
  857         }
  858 }
  859 
  860 /*
  861  * Notify a tcp user of an asynchronous error;
  862  * store error as soft error, but wake up user
  863  * (for now, won't do anything until can select for soft error).
  864  *
  865  * Do not wake up user since there currently is no mechanism for
  866  * reporting soft errors (yet - a kqueue filter may be added).
  867  */
  868 static struct inpcb *
  869 tcp_notify(struct inpcb *inp, int error)
  870 {
  871         struct tcpcb *tp;
  872 
  873         INP_INFO_WLOCK_ASSERT(&tcbinfo);
  874         INP_WLOCK_ASSERT(inp);
  875 
  876         if ((inp->inp_flags & INP_TIMEWAIT) ||
  877             (inp->inp_flags & INP_DROPPED))
  878                 return (inp);
  879 
  880         tp = intotcpcb(inp);
  881         KASSERT(tp != NULL, ("tcp_notify: tp == NULL"));
  882 
  883         /*
  884          * Ignore some errors if we are hooked up.
  885          * If connection hasn't completed, has retransmitted several times,
  886          * and receives a second error, give up now.  This is better
  887          * than waiting a long time to establish a connection that
  888          * can never complete.
  889          */
  890         if (tp->t_state == TCPS_ESTABLISHED &&
  891             (error == EHOSTUNREACH || error == ENETUNREACH ||
  892              error == EHOSTDOWN)) {
  893                 return (inp);
  894         } else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
  895             tp->t_softerror) {
  896                 tp = tcp_drop(tp, error);
  897                 if (tp != NULL)
  898                         return (inp);
  899                 else
  900                         return (NULL);
  901         } else {
  902                 tp->t_softerror = error;
  903                 return (inp);
  904         }
  905 #if 0
  906         wakeup( &so->so_timeo);
  907         sorwakeup(so);
  908         sowwakeup(so);
  909 #endif
  910 }
  911 
  912 static int
  913 tcp_pcblist(SYSCTL_HANDLER_ARGS)
  914 {
  915         int error, i, m, n, pcb_count;
  916         struct inpcb *inp, **inp_list;
  917         inp_gen_t gencnt;
  918         struct xinpgen xig;
  919 
  920         /*
  921          * The process of preparing the TCB list is too time-consuming and
  922          * resource-intensive to repeat twice on every request.
  923          */
  924         if (req->oldptr == NULL) {
  925                 n = tcbinfo.ipi_count + syncache_pcbcount();
  926                 n += imax(n / 8, 10);
  927                 req->oldidx = 2 * (sizeof xig) + n * sizeof(struct xtcpcb);
  928                 return (0);
  929         }
  930 
  931         if (req->newptr != NULL)
  932                 return (EPERM);
  933 
  934         /*
  935          * OK, now we're committed to doing something.
  936          */
  937         INP_INFO_RLOCK(&tcbinfo);
  938         gencnt = tcbinfo.ipi_gencnt;
  939         n = tcbinfo.ipi_count;
  940         INP_INFO_RUNLOCK(&tcbinfo);
  941 
  942         m = syncache_pcbcount();
  943 
  944         error = sysctl_wire_old_buffer(req, 2 * (sizeof xig)
  945                 + (n + m) * sizeof(struct xtcpcb));
  946         if (error != 0)
  947                 return (error);
  948 
  949         xig.xig_len = sizeof xig;
  950         xig.xig_count = n + m;
  951         xig.xig_gen = gencnt;
  952         xig.xig_sogen = so_gencnt;
  953         error = SYSCTL_OUT(req, &xig, sizeof xig);
  954         if (error)
  955                 return (error);
  956 
  957         error = syncache_pcblist(req, m, &pcb_count);
  958         if (error)
  959                 return (error);
  960 
  961         inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK);
  962         if (inp_list == NULL)
  963                 return (ENOMEM);
  964 
  965         INP_INFO_RLOCK(&tcbinfo);
  966         for (inp = LIST_FIRST(tcbinfo.ipi_listhead), i = 0; inp != NULL && i
  967             < n; inp = LIST_NEXT(inp, inp_list)) {
  968                 INP_RLOCK(inp);
  969                 if (inp->inp_gencnt <= gencnt) {
  970                         /*
  971                          * XXX: This use of cr_cansee(), introduced with
  972                          * TCP state changes, is not quite right, but for
  973                          * now, better than nothing.
  974                          */
  975                         if (inp->inp_flags & INP_TIMEWAIT) {
  976                                 if (intotw(inp) != NULL)
  977                                         error = cr_cansee(req->td->td_ucred,
  978                                             intotw(inp)->tw_cred);
  979                                 else
  980                                         error = EINVAL; /* Skip this inp. */
  981                         } else
  982                                 error = cr_canseeinpcb(req->td->td_ucred, inp);
  983                         if (error == 0)
  984                                 inp_list[i++] = inp;
  985                 }
  986                 INP_RUNLOCK(inp);
  987         }
  988         INP_INFO_RUNLOCK(&tcbinfo);
  989         n = i;
  990 
  991         error = 0;
  992         for (i = 0; i < n; i++) {
  993                 inp = inp_list[i];
  994                 INP_RLOCK(inp);
  995                 if (inp->inp_gencnt <= gencnt) {
  996                         struct xtcpcb xt;
  997                         void *inp_ppcb;
  998 
  999                         bzero(&xt, sizeof(xt));
 1000                         xt.xt_len = sizeof xt;
 1001                         /* XXX should avoid extra copy */
 1002                         bcopy(inp, &xt.xt_inp, sizeof *inp);
 1003                         inp_ppcb = inp->inp_ppcb;
 1004                         if (inp_ppcb == NULL)
 1005                                 bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
 1006                         else if (inp->inp_flags & INP_TIMEWAIT) {
 1007                                 bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
 1008                                 xt.xt_tp.t_state = TCPS_TIME_WAIT;
 1009                         } else
 1010                                 bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp);
 1011                         if (inp->inp_socket != NULL)
 1012                                 sotoxsocket(inp->inp_socket, &xt.xt_socket);
 1013                         else {
 1014                                 bzero(&xt.xt_socket, sizeof xt.xt_socket);
 1015                                 xt.xt_socket.xso_protocol = IPPROTO_TCP;
 1016                         }
 1017                         xt.xt_inp.inp_gencnt = inp->inp_gencnt;
 1018                         INP_RUNLOCK(inp);
 1019                         error = SYSCTL_OUT(req, &xt, sizeof xt);
 1020                 } else
 1021                         INP_RUNLOCK(inp);
 1022         
 1023         }
 1024         if (!error) {
 1025                 /*
 1026                  * Give the user an updated idea of our state.
 1027                  * If the generation differs from what we told
 1028                  * her before, she knows that something happened
 1029                  * while we were processing this request, and it
 1030                  * might be necessary to retry.
 1031                  */
 1032                 INP_INFO_RLOCK(&tcbinfo);
 1033                 xig.xig_gen = tcbinfo.ipi_gencnt;
 1034                 xig.xig_sogen = so_gencnt;
 1035                 xig.xig_count = tcbinfo.ipi_count + pcb_count;
 1036                 INP_INFO_RUNLOCK(&tcbinfo);
 1037                 error = SYSCTL_OUT(req, &xig, sizeof xig);
 1038         }
 1039         free(inp_list, M_TEMP);
 1040         return (error);
 1041 }
 1042 
 1043 SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist, CTLFLAG_RD, 0, 0,
 1044     tcp_pcblist, "S,xtcpcb", "List of active TCP connections");
 1045 
 1046 static int
 1047 tcp_getcred(SYSCTL_HANDLER_ARGS)
 1048 {
 1049         struct xucred xuc;
 1050         struct sockaddr_in addrs[2];
 1051         struct inpcb *inp;
 1052         int error;
 1053 
 1054         error = priv_check(req->td, PRIV_NETINET_GETCRED);
 1055         if (error)
 1056                 return (error);
 1057         error = SYSCTL_IN(req, addrs, sizeof(addrs));
 1058         if (error)
 1059                 return (error);
 1060         INP_INFO_RLOCK(&tcbinfo);
 1061         inp = in_pcblookup_hash(&tcbinfo, addrs[1].sin_addr, addrs[1].sin_port,
 1062             addrs[0].sin_addr, addrs[0].sin_port, 0, NULL);
 1063         if (inp != NULL) {
 1064                 INP_RLOCK(inp);
 1065                 INP_INFO_RUNLOCK(&tcbinfo);
 1066                 if (inp->inp_socket == NULL)
 1067                         error = ENOENT;
 1068                 if (error == 0)
 1069                         error = cr_canseeinpcb(req->td->td_ucred, inp);
 1070                 if (error == 0)
 1071                         cru2x(inp->inp_cred, &xuc);
 1072                 INP_RUNLOCK(inp);
 1073         } else {
 1074                 INP_INFO_RUNLOCK(&tcbinfo);
 1075                 error = ENOENT;
 1076         }
 1077         if (error == 0)
 1078                 error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
 1079         return (error);
 1080 }
 1081 
 1082 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred,
 1083     CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
 1084     tcp_getcred, "S,xucred", "Get the xucred of a TCP connection");
 1085 
 1086 #ifdef INET6
 1087 static int
 1088 tcp6_getcred(SYSCTL_HANDLER_ARGS)
 1089 {
 1090         struct xucred xuc;
 1091         struct sockaddr_in6 addrs[2];
 1092         struct inpcb *inp;
 1093         int error, mapped = 0;
 1094 
 1095         error = priv_check(req->td, PRIV_NETINET_GETCRED);
 1096         if (error)
 1097                 return (error);
 1098         error = SYSCTL_IN(req, addrs, sizeof(addrs));
 1099         if (error)
 1100                 return (error);
 1101         if ((error = sa6_embedscope(&addrs[0], ip6_use_defzone)) != 0 ||
 1102             (error = sa6_embedscope(&addrs[1], ip6_use_defzone)) != 0) {
 1103                 return (error);
 1104         }
 1105         if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) {
 1106                 if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr))
 1107                         mapped = 1;
 1108                 else
 1109                         return (EINVAL);
 1110         }
 1111 
 1112         INP_INFO_RLOCK(&tcbinfo);
 1113         if (mapped == 1)
 1114                 inp = in_pcblookup_hash(&tcbinfo,
 1115                         *(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12],
 1116                         addrs[1].sin6_port,
 1117                         *(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12],
 1118                         addrs[0].sin6_port,
 1119                         0, NULL);
 1120         else
 1121                 inp = in6_pcblookup_hash(&tcbinfo,
 1122                         &addrs[1].sin6_addr, addrs[1].sin6_port,
 1123                         &addrs[0].sin6_addr, addrs[0].sin6_port, 0, NULL);
 1124         if (inp != NULL) {
 1125                 INP_RLOCK(inp);
 1126                 INP_INFO_RUNLOCK(&tcbinfo);
 1127                 if (inp->inp_socket == NULL)
 1128                         error = ENOENT;
 1129                 if (error == 0)
 1130                         error = cr_canseeinpcb(req->td->td_ucred, inp);
 1131                 if (error == 0)
 1132                         cru2x(inp->inp_cred, &xuc);
 1133                 INP_RUNLOCK(inp);
 1134         } else {
 1135                 INP_INFO_RUNLOCK(&tcbinfo);
 1136                 error = ENOENT;
 1137         }
 1138         if (error == 0)
 1139                 error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
 1140         return (error);
 1141 }
 1142 
 1143 SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred,
 1144     CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
 1145     tcp6_getcred, "S,xucred", "Get the xucred of a TCP6 connection");
 1146 #endif
 1147 
 1148 
 1149 void
 1150 tcp_ctlinput(int cmd, struct sockaddr *sa, void *vip)
 1151 {
 1152         struct ip *ip = vip;
 1153         struct tcphdr *th;
 1154         struct in_addr faddr;
 1155         struct inpcb *inp;
 1156         struct tcpcb *tp;
 1157         struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
 1158         struct icmp *icp;
 1159         struct in_conninfo inc;
 1160         tcp_seq icmp_tcp_seq;
 1161         int mtu;
 1162 
 1163         faddr = ((struct sockaddr_in *)sa)->sin_addr;
 1164         if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
 1165                 return;
 1166 
 1167         if (cmd == PRC_MSGSIZE)
 1168                 notify = tcp_mtudisc;
 1169         else if (icmp_may_rst && (cmd == PRC_UNREACH_ADMIN_PROHIB ||
 1170                 cmd == PRC_UNREACH_PORT || cmd == PRC_TIMXCEED_INTRANS) && ip)
 1171                 notify = tcp_drop_syn_sent;
 1172         /*
 1173          * Redirects don't need to be handled up here.
 1174          */
 1175         else if (PRC_IS_REDIRECT(cmd))
 1176                 return;
 1177         /*
 1178          * Source quench is depreciated.
 1179          */
 1180         else if (cmd == PRC_QUENCH)
 1181                 return;
 1182         /*
 1183          * Hostdead is ugly because it goes linearly through all PCBs.
 1184          * XXX: We never get this from ICMP, otherwise it makes an
 1185          * excellent DoS attack on machines with many connections.
 1186          */
 1187         else if (cmd == PRC_HOSTDEAD)
 1188                 ip = NULL;
 1189         else if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0)
 1190                 return;
 1191         if (ip != NULL) {
 1192                 icp = (struct icmp *)((caddr_t)ip
 1193                                       - offsetof(struct icmp, icmp_ip));
 1194                 th = (struct tcphdr *)((caddr_t)ip
 1195                                        + (ip->ip_hl << 2));
 1196                 INP_INFO_WLOCK(&tcbinfo);
 1197                 inp = in_pcblookup_hash(&tcbinfo, faddr, th->th_dport,
 1198                     ip->ip_src, th->th_sport, 0, NULL);
 1199                 if (inp != NULL)  {
 1200                         INP_WLOCK(inp);
 1201                         if (!(inp->inp_flags & INP_TIMEWAIT) &&
 1202                             !(inp->inp_flags & INP_DROPPED) &&
 1203                             !(inp->inp_socket == NULL)) {
 1204                                 icmp_tcp_seq = htonl(th->th_seq);
 1205                                 tp = intotcpcb(inp);
 1206                                 if (SEQ_GEQ(icmp_tcp_seq, tp->snd_una) &&
 1207                                     SEQ_LT(icmp_tcp_seq, tp->snd_max)) {
 1208                                         if (cmd == PRC_MSGSIZE) {
 1209                                             /*
 1210                                              * MTU discovery:
 1211                                              * If we got a needfrag set the MTU
 1212                                              * in the route to the suggested new
 1213                                              * value (if given) and then notify.
 1214                                              */
 1215                                             bzero(&inc, sizeof(inc));
 1216                                             inc.inc_faddr = faddr;
 1217                                             inc.inc_fibnum =
 1218                                                 inp->inp_inc.inc_fibnum;
 1219 
 1220                                             mtu = ntohs(icp->icmp_nextmtu);
 1221                                             /*
 1222                                              * If no alternative MTU was
 1223                                              * proposed, try the next smaller
 1224                                              * one.  ip->ip_len has already
 1225                                              * been swapped in icmp_input().
 1226                                              */
 1227                                             if (!mtu)
 1228                                                 mtu = ip_next_mtu(ip->ip_len,
 1229                                                  1);
 1230                                             if (mtu < tcp_minmss
 1231                                                  + sizeof(struct tcpiphdr))
 1232                                                 mtu = tcp_minmss
 1233                                                  + sizeof(struct tcpiphdr);
 1234                                             /*
 1235                                              * Only cache the the MTU if it
 1236                                              * is smaller than the interface
 1237                                              * or route MTU.  tcp_mtudisc()
 1238                                              * will do right thing by itself.
 1239                                              */
 1240                                             if (mtu <= tcp_maxmtu(&inc, NULL))
 1241                                                 tcp_hc_updatemtu(&inc, mtu);
 1242                                         }
 1243 
 1244                                         inp = (*notify)(inp, inetctlerrmap[cmd]);
 1245                                 }
 1246                         }
 1247                         if (inp != NULL)
 1248                                 INP_WUNLOCK(inp);
 1249                 } else {
 1250                         bzero(&inc, sizeof(inc));
 1251                         inc.inc_fport = th->th_dport;
 1252                         inc.inc_lport = th->th_sport;
 1253                         inc.inc_faddr = faddr;
 1254                         inc.inc_laddr = ip->ip_src;
 1255                         syncache_unreach(&inc, th);
 1256                 }
 1257                 INP_INFO_WUNLOCK(&tcbinfo);
 1258         } else
 1259                 in_pcbnotifyall(&tcbinfo, faddr, inetctlerrmap[cmd], notify);
 1260 }
 1261 
 1262 #ifdef INET6
 1263 void
 1264 tcp6_ctlinput(int cmd, struct sockaddr *sa, void *d)
 1265 {
 1266         struct tcphdr th;
 1267         struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
 1268         struct ip6_hdr *ip6;
 1269         struct mbuf *m;
 1270         struct ip6ctlparam *ip6cp = NULL;
 1271         const struct sockaddr_in6 *sa6_src = NULL;
 1272         int off;
 1273         struct tcp_portonly {
 1274                 u_int16_t th_sport;
 1275                 u_int16_t th_dport;
 1276         } *thp;
 1277 
 1278         if (sa->sa_family != AF_INET6 ||
 1279             sa->sa_len != sizeof(struct sockaddr_in6))
 1280                 return;
 1281 
 1282         if (cmd == PRC_MSGSIZE)
 1283                 notify = tcp_mtudisc;
 1284         else if (!PRC_IS_REDIRECT(cmd) &&
 1285                  ((unsigned)cmd >= PRC_NCMDS || inet6ctlerrmap[cmd] == 0))
 1286                 return;
 1287         /* Source quench is depreciated. */
 1288         else if (cmd == PRC_QUENCH)
 1289                 return;
 1290 
 1291         /* if the parameter is from icmp6, decode it. */
 1292         if (d != NULL) {
 1293                 ip6cp = (struct ip6ctlparam *)d;
 1294                 m = ip6cp->ip6c_m;
 1295                 ip6 = ip6cp->ip6c_ip6;
 1296                 off = ip6cp->ip6c_off;
 1297                 sa6_src = ip6cp->ip6c_src;
 1298         } else {
 1299                 m = NULL;
 1300                 ip6 = NULL;
 1301                 off = 0;        /* fool gcc */
 1302                 sa6_src = &sa6_any;
 1303         }
 1304 
 1305         if (ip6 != NULL) {
 1306                 struct in_conninfo inc;
 1307                 /*
 1308                  * XXX: We assume that when IPV6 is non NULL,
 1309                  * M and OFF are valid.
 1310                  */
 1311 
 1312                 /* check if we can safely examine src and dst ports */
 1313                 if (m->m_pkthdr.len < off + sizeof(*thp))
 1314                         return;
 1315 
 1316                 bzero(&th, sizeof(th));
 1317                 m_copydata(m, off, sizeof(*thp), (caddr_t)&th);
 1318 
 1319                 in6_pcbnotify(&tcbinfo, sa, th.th_dport,
 1320                     (struct sockaddr *)ip6cp->ip6c_src,
 1321                     th.th_sport, cmd, NULL, notify);
 1322 
 1323                 bzero(&inc, sizeof(inc));
 1324                 inc.inc_fport = th.th_dport;
 1325                 inc.inc_lport = th.th_sport;
 1326                 inc.inc6_faddr = ((struct sockaddr_in6 *)sa)->sin6_addr;
 1327                 inc.inc6_laddr = ip6cp->ip6c_src->sin6_addr;
 1328                 inc.inc_flags |= INC_ISIPV6;
 1329                 INP_INFO_WLOCK(&tcbinfo);
 1330                 syncache_unreach(&inc, &th);
 1331                 INP_INFO_WUNLOCK(&tcbinfo);
 1332         } else
 1333                 in6_pcbnotify(&tcbinfo, sa, 0, (const struct sockaddr *)sa6_src,
 1334                               0, cmd, NULL, notify);
 1335 }
 1336 #endif /* INET6 */
 1337 
 1338 
 1339 /*
 1340  * Following is where TCP initial sequence number generation occurs.
 1341  *
 1342  * There are two places where we must use initial sequence numbers:
 1343  * 1.  In SYN-ACK packets.
 1344  * 2.  In SYN packets.
 1345  *
 1346  * All ISNs for SYN-ACK packets are generated by the syncache.  See
 1347  * tcp_syncache.c for details.
 1348  *
 1349  * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
 1350  * depends on this property.  In addition, these ISNs should be
 1351  * unguessable so as to prevent connection hijacking.  To satisfy
 1352  * the requirements of this situation, the algorithm outlined in
 1353  * RFC 1948 is used, with only small modifications.
 1354  *
 1355  * Implementation details:
 1356  *
 1357  * Time is based off the system timer, and is corrected so that it
 1358  * increases by one megabyte per second.  This allows for proper
 1359  * recycling on high speed LANs while still leaving over an hour
 1360  * before rollover.
 1361  *
 1362  * As reading the *exact* system time is too expensive to be done
 1363  * whenever setting up a TCP connection, we increment the time
 1364  * offset in two ways.  First, a small random positive increment
 1365  * is added to isn_offset for each connection that is set up.
 1366  * Second, the function tcp_isn_tick fires once per clock tick
 1367  * and increments isn_offset as necessary so that sequence numbers
 1368  * are incremented at approximately ISN_BYTES_PER_SECOND.  The
 1369  * random positive increments serve only to ensure that the same
 1370  * exact sequence number is never sent out twice (as could otherwise
 1371  * happen when a port is recycled in less than the system tick
 1372  * interval.)
 1373  *
 1374  * net.inet.tcp.isn_reseed_interval controls the number of seconds
 1375  * between seeding of isn_secret.  This is normally set to zero,
 1376  * as reseeding should not be necessary.
 1377  *
 1378  * Locking of the global variables isn_secret, isn_last_reseed, isn_offset,
 1379  * isn_offset_old, and isn_ctx is performed using the TCP pcbinfo lock.  In
 1380  * general, this means holding an exclusive (write) lock.
 1381  */
 1382 
 1383 #define ISN_BYTES_PER_SECOND 1048576
 1384 #define ISN_STATIC_INCREMENT 4096
 1385 #define ISN_RANDOM_INCREMENT (4096 - 1)
 1386 
 1387 static u_char isn_secret[32];
 1388 static int isn_last_reseed;
 1389 static u_int32_t isn_offset, isn_offset_old;
 1390 static MD5_CTX isn_ctx;
 1391 
 1392 tcp_seq
 1393 tcp_new_isn(struct tcpcb *tp)
 1394 {
 1395         u_int32_t md5_buffer[4];
 1396         tcp_seq new_isn;
 1397 
 1398         INP_WLOCK_ASSERT(tp->t_inpcb);
 1399 
 1400         ISN_LOCK();
 1401         /* Seed if this is the first use, reseed if requested. */
 1402         if ((isn_last_reseed == 0) || ((tcp_isn_reseed_interval > 0) &&
 1403              (((u_int)isn_last_reseed + (u_int)tcp_isn_reseed_interval*hz)
 1404                 < (u_int)ticks))) {
 1405                 read_random(&isn_secret, sizeof(isn_secret));
 1406                 isn_last_reseed = ticks;
 1407         }
 1408 
 1409         /* Compute the md5 hash and return the ISN. */
 1410         MD5Init(&isn_ctx);
 1411         MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_fport, sizeof(u_short));
 1412         MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_lport, sizeof(u_short));
 1413 #ifdef INET6
 1414         if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0) {
 1415                 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr,
 1416                           sizeof(struct in6_addr));
 1417                 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr,
 1418                           sizeof(struct in6_addr));
 1419         } else
 1420 #endif
 1421         {
 1422                 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr,
 1423                           sizeof(struct in_addr));
 1424                 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr,
 1425                           sizeof(struct in_addr));
 1426         }
 1427         MD5Update(&isn_ctx, (u_char *) &isn_secret, sizeof(isn_secret));
 1428         MD5Final((u_char *) &md5_buffer, &isn_ctx);
 1429         new_isn = (tcp_seq) md5_buffer[0];
 1430         isn_offset += ISN_STATIC_INCREMENT +
 1431                 (arc4random() & ISN_RANDOM_INCREMENT);
 1432         new_isn += isn_offset;
 1433         ISN_UNLOCK();
 1434         return (new_isn);
 1435 }
 1436 
 1437 /*
 1438  * Increment the offset to the next ISN_BYTES_PER_SECOND / 100 boundary
 1439  * to keep time flowing at a relatively constant rate.  If the random
 1440  * increments have already pushed us past the projected offset, do nothing.
 1441  */
 1442 static void
 1443 tcp_isn_tick(void *xtp)
 1444 {
 1445         u_int32_t projected_offset;
 1446 
 1447         ISN_LOCK();
 1448         projected_offset = isn_offset_old + ISN_BYTES_PER_SECOND / 100;
 1449 
 1450         if (SEQ_GT(projected_offset, isn_offset))
 1451                 isn_offset = projected_offset;
 1452 
 1453         isn_offset_old = isn_offset;
 1454         callout_reset(&isn_callout, hz/100, tcp_isn_tick, NULL);
 1455         ISN_UNLOCK();
 1456 }
 1457 
 1458 /*
 1459  * When a specific ICMP unreachable message is received and the
 1460  * connection state is SYN-SENT, drop the connection.  This behavior
 1461  * is controlled by the icmp_may_rst sysctl.
 1462  */
 1463 struct inpcb *
 1464 tcp_drop_syn_sent(struct inpcb *inp, int errno)
 1465 {
 1466         struct tcpcb *tp;
 1467 
 1468         INP_INFO_WLOCK_ASSERT(&tcbinfo);
 1469         INP_WLOCK_ASSERT(inp);
 1470 
 1471         if ((inp->inp_flags & INP_TIMEWAIT) ||
 1472             (inp->inp_flags & INP_DROPPED))
 1473                 return (inp);
 1474 
 1475         tp = intotcpcb(inp);
 1476         if (tp->t_state != TCPS_SYN_SENT)
 1477                 return (inp);
 1478 
 1479         tp = tcp_drop(tp, errno);
 1480         if (tp != NULL)
 1481                 return (inp);
 1482         else
 1483                 return (NULL);
 1484 }
 1485 
 1486 /*
 1487  * When `need fragmentation' ICMP is received, update our idea of the MSS
 1488  * based on the new value in the route.  Also nudge TCP to send something,
 1489  * since we know the packet we just sent was dropped.
 1490  * This duplicates some code in the tcp_mss() function in tcp_input.c.
 1491  */
 1492 struct inpcb *
 1493 tcp_mtudisc(struct inpcb *inp, int errno)
 1494 {
 1495         struct tcpcb *tp;
 1496         struct socket *so;
 1497 
 1498         INP_WLOCK_ASSERT(inp);
 1499         if ((inp->inp_flags & INP_TIMEWAIT) ||
 1500             (inp->inp_flags & INP_DROPPED))
 1501                 return (inp);
 1502 
 1503         tp = intotcpcb(inp);
 1504         KASSERT(tp != NULL, ("tcp_mtudisc: tp == NULL"));
 1505 
 1506         tcp_mss_update(tp, -1, NULL, NULL);
 1507   
 1508         so = inp->inp_socket;
 1509         SOCKBUF_LOCK(&so->so_snd);
 1510         /* If the mss is larger than the socket buffer, decrease the mss. */
 1511         if (so->so_snd.sb_hiwat < tp->t_maxseg)
 1512                 tp->t_maxseg = so->so_snd.sb_hiwat;
 1513         SOCKBUF_UNLOCK(&so->so_snd);
 1514 
 1515         tcpstat.tcps_mturesent++;
 1516         tp->t_rtttime = 0;
 1517         tp->snd_nxt = tp->snd_una;
 1518         tcp_free_sackholes(tp);
 1519         tp->snd_recover = tp->snd_max;
 1520         if (tp->t_flags & TF_SACK_PERMIT)
 1521                 EXIT_FASTRECOVERY(tp);
 1522         tcp_output_send(tp);
 1523         return (inp);
 1524 }
 1525 
 1526 /*
 1527  * Look-up the routing entry to the peer of this inpcb.  If no route
 1528  * is found and it cannot be allocated, then return 0.  This routine
 1529  * is called by TCP routines that access the rmx structure and by
 1530  * tcp_mss_update to get the peer/interface MTU.
 1531  */
 1532 u_long
 1533 tcp_maxmtu(struct in_conninfo *inc, int *flags)
 1534 {
 1535         struct route sro;
 1536         struct sockaddr_in *dst;
 1537         struct ifnet *ifp;
 1538         u_long maxmtu = 0;
 1539 
 1540         KASSERT(inc != NULL, ("tcp_maxmtu with NULL in_conninfo pointer"));
 1541 
 1542         bzero(&sro, sizeof(sro));
 1543         if (inc->inc_faddr.s_addr != INADDR_ANY) {
 1544                 dst = (struct sockaddr_in *)&sro.ro_dst;
 1545                 dst->sin_family = AF_INET;
 1546                 dst->sin_len = sizeof(*dst);
 1547                 dst->sin_addr = inc->inc_faddr;
 1548                 in_rtalloc_ign(&sro, RTF_CLONING, inc->inc_fibnum);
 1549         }
 1550         if (sro.ro_rt != NULL) {
 1551                 ifp = sro.ro_rt->rt_ifp;
 1552                 if (sro.ro_rt->rt_rmx.rmx_mtu == 0)
 1553                         maxmtu = ifp->if_mtu;
 1554                 else
 1555                         maxmtu = min(sro.ro_rt->rt_rmx.rmx_mtu, ifp->if_mtu);
 1556 
 1557                 /* Report additional interface capabilities. */
 1558                 if (flags != NULL) {
 1559                         if (ifp->if_capenable & IFCAP_TSO4 &&
 1560                             ifp->if_hwassist & CSUM_TSO)
 1561                                 *flags |= CSUM_TSO;
 1562                 }
 1563                 RTFREE(sro.ro_rt);
 1564         }
 1565         return (maxmtu);
 1566 }
 1567 
 1568 #ifdef INET6
 1569 u_long
 1570 tcp_maxmtu6(struct in_conninfo *inc, int *flags)
 1571 {
 1572         struct route_in6 sro6;
 1573         struct ifnet *ifp;
 1574         u_long maxmtu = 0;
 1575 
 1576         KASSERT(inc != NULL, ("tcp_maxmtu6 with NULL in_conninfo pointer"));
 1577 
 1578         bzero(&sro6, sizeof(sro6));
 1579         if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) {
 1580                 sro6.ro_dst.sin6_family = AF_INET6;
 1581                 sro6.ro_dst.sin6_len = sizeof(struct sockaddr_in6);
 1582                 sro6.ro_dst.sin6_addr = inc->inc6_faddr;
 1583                 rtalloc_ign((struct route *)&sro6, RTF_CLONING);
 1584         }
 1585         if (sro6.ro_rt != NULL) {
 1586                 ifp = sro6.ro_rt->rt_ifp;
 1587                 if (sro6.ro_rt->rt_rmx.rmx_mtu == 0)
 1588                         maxmtu = IN6_LINKMTU(sro6.ro_rt->rt_ifp);
 1589                 else
 1590                         maxmtu = min(sro6.ro_rt->rt_rmx.rmx_mtu,
 1591                                      IN6_LINKMTU(sro6.ro_rt->rt_ifp));
 1592 
 1593                 /* Report additional interface capabilities. */
 1594                 if (flags != NULL) {
 1595                         if (ifp->if_capenable & IFCAP_TSO6 &&
 1596                             ifp->if_hwassist & CSUM_TSO)
 1597                                 *flags |= CSUM_TSO;
 1598                 }
 1599                 RTFREE(sro6.ro_rt);
 1600         }
 1601 
 1602         return (maxmtu);
 1603 }
 1604 #endif /* INET6 */
 1605 
 1606 #ifdef IPSEC
 1607 /* compute ESP/AH header size for TCP, including outer IP header. */
 1608 size_t
 1609 ipsec_hdrsiz_tcp(struct tcpcb *tp)
 1610 {
 1611         struct inpcb *inp;
 1612         struct mbuf *m;
 1613         size_t hdrsiz;
 1614         struct ip *ip;
 1615 #ifdef INET6
 1616         struct ip6_hdr *ip6;
 1617 #endif
 1618         struct tcphdr *th;
 1619 
 1620         if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL))
 1621                 return (0);
 1622         MGETHDR(m, M_DONTWAIT, MT_DATA);
 1623         if (!m)
 1624                 return (0);
 1625 
 1626 #ifdef INET6
 1627         if ((inp->inp_vflag & INP_IPV6) != 0) {
 1628                 ip6 = mtod(m, struct ip6_hdr *);
 1629                 th = (struct tcphdr *)(ip6 + 1);
 1630                 m->m_pkthdr.len = m->m_len =
 1631                         sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
 1632                 tcpip_fillheaders(inp, ip6, th);
 1633                 hdrsiz = ipsec6_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
 1634         } else
 1635 #endif /* INET6 */
 1636         {
 1637                 ip = mtod(m, struct ip *);
 1638                 th = (struct tcphdr *)(ip + 1);
 1639                 m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr);
 1640                 tcpip_fillheaders(inp, ip, th);
 1641                 hdrsiz = ipsec4_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
 1642         }
 1643 
 1644         m_free(m);
 1645         return (hdrsiz);
 1646 }
 1647 #endif /* IPSEC */
 1648 
 1649 /*
 1650  * TCP BANDWIDTH DELAY PRODUCT WINDOW LIMITING
 1651  *
 1652  * This code attempts to calculate the bandwidth-delay product as a
 1653  * means of determining the optimal window size to maximize bandwidth,
 1654  * minimize RTT, and avoid the over-allocation of buffers on interfaces and
 1655  * routers.  This code also does a fairly good job keeping RTTs in check
 1656  * across slow links like modems.  We implement an algorithm which is very
 1657  * similar (but not meant to be) TCP/Vegas.  The code operates on the
 1658  * transmitter side of a TCP connection and so only effects the transmit
 1659  * side of the connection.
 1660  *
 1661  * BACKGROUND:  TCP makes no provision for the management of buffer space
 1662  * at the end points or at the intermediate routers and switches.  A TCP
 1663  * stream, whether using NewReno or not, will eventually buffer as
 1664  * many packets as it is able and the only reason this typically works is
 1665  * due to the fairly small default buffers made available for a connection
 1666  * (typicaly 16K or 32K).  As machines use larger windows and/or window
 1667  * scaling it is now fairly easy for even a single TCP connection to blow-out
 1668  * all available buffer space not only on the local interface, but on
 1669  * intermediate routers and switches as well.  NewReno makes a misguided
 1670  * attempt to 'solve' this problem by waiting for an actual failure to occur,
 1671  * then backing off, then steadily increasing the window again until another
 1672  * failure occurs, ad-infinitum.  This results in terrible oscillation that
 1673  * is only made worse as network loads increase and the idea of intentionally
 1674  * blowing out network buffers is, frankly, a terrible way to manage network
 1675  * resources.
 1676  *
 1677  * It is far better to limit the transmit window prior to the failure
 1678  * condition being achieved.  There are two general ways to do this:  First
 1679  * you can 'scan' through different transmit window sizes and locate the
 1680  * point where the RTT stops increasing, indicating that you have filled the
 1681  * pipe, then scan backwards until you note that RTT stops decreasing, then
 1682  * repeat ad-infinitum.  This method works in principle but has severe
 1683  * implementation issues due to RTT variances, timer granularity, and
 1684  * instability in the algorithm which can lead to many false positives and
 1685  * create oscillations as well as interact badly with other TCP streams
 1686  * implementing the same algorithm.
 1687  *
 1688  * The second method is to limit the window to the bandwidth delay product
 1689  * of the link.  This is the method we implement.  RTT variances and our
 1690  * own manipulation of the congestion window, bwnd, can potentially
 1691  * destabilize the algorithm.  For this reason we have to stabilize the
 1692  * elements used to calculate the window.  We do this by using the minimum
 1693  * observed RTT, the long term average of the observed bandwidth, and
 1694  * by adding two segments worth of slop.  It isn't perfect but it is able
 1695  * to react to changing conditions and gives us a very stable basis on
 1696  * which to extend the algorithm.
 1697  */
 1698 void
 1699 tcp_xmit_bandwidth_limit(struct tcpcb *tp, tcp_seq ack_seq)
 1700 {
 1701         u_long bw;
 1702         u_long bwnd;
 1703         int save_ticks;
 1704 
 1705         INP_WLOCK_ASSERT(tp->t_inpcb);
 1706 
 1707         /*
 1708          * If inflight_enable is disabled in the middle of a tcp connection,
 1709          * make sure snd_bwnd is effectively disabled.
 1710          */
 1711         if (tcp_inflight_enable == 0 || tp->t_rttlow < tcp_inflight_rttthresh) {
 1712                 tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
 1713                 tp->snd_bandwidth = 0;
 1714                 return;
 1715         }
 1716 
 1717         /*
 1718          * Figure out the bandwidth.  Due to the tick granularity this
 1719          * is a very rough number and it MUST be averaged over a fairly
 1720          * long period of time.  XXX we need to take into account a link
 1721          * that is not using all available bandwidth, but for now our
 1722          * slop will ramp us up if this case occurs and the bandwidth later
 1723          * increases.
 1724          *
 1725          * Note: if ticks rollover 'bw' may wind up negative.  We must
 1726          * effectively reset t_bw_rtttime for this case.
 1727          */
 1728         save_ticks = ticks;
 1729         if ((u_int)(save_ticks - tp->t_bw_rtttime) < 1)
 1730                 return;
 1731 
 1732         bw = (int64_t)(ack_seq - tp->t_bw_rtseq) * hz /
 1733             (save_ticks - tp->t_bw_rtttime);
 1734         tp->t_bw_rtttime = save_ticks;
 1735         tp->t_bw_rtseq = ack_seq;
 1736         if (tp->t_bw_rtttime == 0 || (int)bw < 0)
 1737                 return;
 1738         bw = ((int64_t)tp->snd_bandwidth * 15 + bw) >> 4;
 1739 
 1740         tp->snd_bandwidth = bw;
 1741 
 1742         /*
 1743          * Calculate the semi-static bandwidth delay product, plus two maximal
 1744          * segments.  The additional slop puts us squarely in the sweet
 1745          * spot and also handles the bandwidth run-up case and stabilization.
 1746          * Without the slop we could be locking ourselves into a lower
 1747          * bandwidth.
 1748          *
 1749          * Situations Handled:
 1750          *      (1) Prevents over-queueing of packets on LANs, especially on
 1751          *          high speed LANs, allowing larger TCP buffers to be
 1752          *          specified, and also does a good job preventing
 1753          *          over-queueing of packets over choke points like modems
 1754          *          (at least for the transmit side).
 1755          *
 1756          *      (2) Is able to handle changing network loads (bandwidth
 1757          *          drops so bwnd drops, bandwidth increases so bwnd
 1758          *          increases).
 1759          *
 1760          *      (3) Theoretically should stabilize in the face of multiple
 1761          *          connections implementing the same algorithm (this may need
 1762          *          a little work).
 1763          *
 1764          *      (4) Stability value (defaults to 20 = 2 maximal packets) can
 1765          *          be adjusted with a sysctl but typically only needs to be
 1766          *          on very slow connections.  A value no smaller then 5
 1767          *          should be used, but only reduce this default if you have
 1768          *          no other choice.
 1769          */
 1770 #define USERTT  ((tp->t_srtt + tp->t_rttbest) / 2)
 1771         bwnd = (int64_t)bw * USERTT / (hz << TCP_RTT_SHIFT) + tcp_inflight_stab * tp->t_maxseg / 10;
 1772 #undef USERTT
 1773 
 1774         if (tcp_inflight_debug > 0) {
 1775                 static int ltime;
 1776                 if ((u_int)(ticks - ltime) >= hz / tcp_inflight_debug) {
 1777                         ltime = ticks;
 1778                         printf("%p bw %ld rttbest %d srtt %d bwnd %ld\n",
 1779                             tp,
 1780                             bw,
 1781                             tp->t_rttbest,
 1782                             tp->t_srtt,
 1783                             bwnd
 1784                         );
 1785                 }
 1786         }
 1787         if ((long)bwnd < tcp_inflight_min)
 1788                 bwnd = tcp_inflight_min;
 1789         if (bwnd > tcp_inflight_max)
 1790                 bwnd = tcp_inflight_max;
 1791         if ((long)bwnd < tp->t_maxseg * 2)
 1792                 bwnd = tp->t_maxseg * 2;
 1793         tp->snd_bwnd = bwnd;
 1794 }
 1795 
 1796 #ifdef TCP_SIGNATURE
 1797 /*
 1798  * Callback function invoked by m_apply() to digest TCP segment data
 1799  * contained within an mbuf chain.
 1800  */
 1801 static int
 1802 tcp_signature_apply(void *fstate, void *data, u_int len)
 1803 {
 1804 
 1805         MD5Update(fstate, (u_char *)data, len);
 1806         return (0);
 1807 }
 1808 
 1809 /*
 1810  * Compute TCP-MD5 hash of a TCP segment. (RFC2385)
 1811  *
 1812  * Parameters:
 1813  * m            pointer to head of mbuf chain
 1814  * _unused      
 1815  * len          length of TCP segment data, excluding options
 1816  * optlen       length of TCP segment options
 1817  * buf          pointer to storage for computed MD5 digest
 1818  * direction    direction of flow (IPSEC_DIR_INBOUND or OUTBOUND)
 1819  *
 1820  * We do this over ip, tcphdr, segment data, and the key in the SADB.
 1821  * When called from tcp_input(), we can be sure that th_sum has been
 1822  * zeroed out and verified already.
 1823  *
 1824  * Return 0 if successful, otherwise return -1.
 1825  *
 1826  * XXX The key is retrieved from the system's PF_KEY SADB, by keying a
 1827  * search with the destination IP address, and a 'magic SPI' to be
 1828  * determined by the application. This is hardcoded elsewhere to 1179
 1829  * right now. Another branch of this code exists which uses the SPD to
 1830  * specify per-application flows but it is unstable.
 1831  */
 1832 int
 1833 tcp_signature_compute(struct mbuf *m, int _unused, int len, int optlen,
 1834     u_char *buf, u_int direction)
 1835 {
 1836         union sockaddr_union dst;
 1837         struct ippseudo ippseudo;
 1838         MD5_CTX ctx;
 1839         int doff;
 1840         struct ip *ip;
 1841         struct ipovly *ipovly;
 1842         struct secasvar *sav;
 1843         struct tcphdr *th;
 1844 #ifdef INET6
 1845         struct ip6_hdr *ip6;
 1846         struct in6_addr in6;
 1847         char ip6buf[INET6_ADDRSTRLEN];
 1848         uint32_t plen;
 1849         uint16_t nhdr;
 1850 #endif
 1851         u_short savecsum;
 1852 
 1853         KASSERT(m != NULL, ("NULL mbuf chain"));
 1854         KASSERT(buf != NULL, ("NULL signature pointer"));
 1855 
 1856         /* Extract the destination from the IP header in the mbuf. */
 1857         bzero(&dst, sizeof(union sockaddr_union));
 1858         ip = mtod(m, struct ip *);
 1859 #ifdef INET6
 1860         ip6 = NULL;     /* Make the compiler happy. */
 1861 #endif
 1862         switch (ip->ip_v) {
 1863         case IPVERSION:
 1864                 dst.sa.sa_len = sizeof(struct sockaddr_in);
 1865                 dst.sa.sa_family = AF_INET;
 1866                 dst.sin.sin_addr = (direction == IPSEC_DIR_INBOUND) ?
 1867                     ip->ip_src : ip->ip_dst;
 1868                 break;
 1869 #ifdef INET6
 1870         case (IPV6_VERSION >> 4):
 1871                 ip6 = mtod(m, struct ip6_hdr *);
 1872                 dst.sa.sa_len = sizeof(struct sockaddr_in6);
 1873                 dst.sa.sa_family = AF_INET6;
 1874                 dst.sin6.sin6_addr = (direction == IPSEC_DIR_INBOUND) ?
 1875                     ip6->ip6_src : ip6->ip6_dst;
 1876                 break;
 1877 #endif
 1878         default:
 1879                 return (EINVAL);
 1880                 /* NOTREACHED */
 1881                 break;
 1882         }
 1883 
 1884         /* Look up an SADB entry which matches the address of the peer. */
 1885         sav = KEY_ALLOCSA(&dst, IPPROTO_TCP, htonl(TCP_SIG_SPI));
 1886         if (sav == NULL) {
 1887                 ipseclog((LOG_ERR, "%s: SADB lookup failed for %s\n", __func__,
 1888                     (ip->ip_v == IPVERSION) ? inet_ntoa(dst.sin.sin_addr) :
 1889 #ifdef INET6
 1890                         (ip->ip_v == (IPV6_VERSION >> 4)) ?
 1891                             ip6_sprintf(ip6buf, &dst.sin6.sin6_addr) :
 1892 #endif
 1893                         "(unsupported)"));
 1894                 return (EINVAL);
 1895         }
 1896 
 1897         MD5Init(&ctx);
 1898         /*
 1899          * Step 1: Update MD5 hash with IP(v6) pseudo-header.
 1900          *
 1901          * XXX The ippseudo header MUST be digested in network byte order,
 1902          * or else we'll fail the regression test. Assume all fields we've
 1903          * been doing arithmetic on have been in host byte order.
 1904          * XXX One cannot depend on ipovly->ih_len here. When called from
 1905          * tcp_output(), the underlying ip_len member has not yet been set.
 1906          */
 1907         switch (ip->ip_v) {
 1908         case IPVERSION:
 1909                 ipovly = (struct ipovly *)ip;
 1910                 ippseudo.ippseudo_src = ipovly->ih_src;
 1911                 ippseudo.ippseudo_dst = ipovly->ih_dst;
 1912                 ippseudo.ippseudo_pad = 0;
 1913                 ippseudo.ippseudo_p = IPPROTO_TCP;
 1914                 ippseudo.ippseudo_len = htons(len + sizeof(struct tcphdr) +
 1915                     optlen);
 1916                 MD5Update(&ctx, (char *)&ippseudo, sizeof(struct ippseudo));
 1917 
 1918                 th = (struct tcphdr *)((u_char *)ip + sizeof(struct ip));
 1919                 doff = sizeof(struct ip) + sizeof(struct tcphdr) + optlen;
 1920                 break;
 1921 #ifdef INET6
 1922         /*
 1923          * RFC 2385, 2.0  Proposal
 1924          * For IPv6, the pseudo-header is as described in RFC 2460, namely the
 1925          * 128-bit source IPv6 address, 128-bit destination IPv6 address, zero-
 1926          * extended next header value (to form 32 bits), and 32-bit segment
 1927          * length.
 1928          * Note: Upper-Layer Packet Length comes before Next Header.
 1929          */
 1930         case (IPV6_VERSION >> 4):
 1931                 in6 = ip6->ip6_src;
 1932                 in6_clearscope(&in6);
 1933                 MD5Update(&ctx, (char *)&in6, sizeof(struct in6_addr));
 1934                 in6 = ip6->ip6_dst;
 1935                 in6_clearscope(&in6);
 1936                 MD5Update(&ctx, (char *)&in6, sizeof(struct in6_addr));
 1937                 plen = htonl(len + sizeof(struct tcphdr) + optlen);
 1938                 MD5Update(&ctx, (char *)&plen, sizeof(uint32_t));
 1939                 nhdr = 0;
 1940                 MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
 1941                 MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
 1942                 MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
 1943                 nhdr = IPPROTO_TCP;
 1944                 MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
 1945 
 1946                 th = (struct tcphdr *)((u_char *)ip6 + sizeof(struct ip6_hdr));
 1947                 doff = sizeof(struct ip6_hdr) + sizeof(struct tcphdr) + optlen;
 1948                 break;
 1949 #endif
 1950         default:
 1951                 return (EINVAL);
 1952                 /* NOTREACHED */
 1953                 break;
 1954         }
 1955 
 1956 
 1957         /*
 1958          * Step 2: Update MD5 hash with TCP header, excluding options.
 1959          * The TCP checksum must be set to zero.
 1960          */
 1961         savecsum = th->th_sum;
 1962         th->th_sum = 0;
 1963         MD5Update(&ctx, (char *)th, sizeof(struct tcphdr));
 1964         th->th_sum = savecsum;
 1965 
 1966         /*
 1967          * Step 3: Update MD5 hash with TCP segment data.
 1968          *         Use m_apply() to avoid an early m_pullup().
 1969          */
 1970         if (len > 0)
 1971                 m_apply(m, doff, len, tcp_signature_apply, &ctx);
 1972 
 1973         /*
 1974          * Step 4: Update MD5 hash with shared secret.
 1975          */
 1976         MD5Update(&ctx, sav->key_auth->key_data, _KEYLEN(sav->key_auth));
 1977         MD5Final(buf, &ctx);
 1978 
 1979         key_sa_recordxfer(sav, m);
 1980         KEY_FREESAV(&sav);
 1981         return (0);
 1982 }
 1983 #endif /* TCP_SIGNATURE */
 1984 
 1985 static int
 1986 sysctl_drop(SYSCTL_HANDLER_ARGS)
 1987 {
 1988         /* addrs[0] is a foreign socket, addrs[1] is a local one. */
 1989         struct sockaddr_storage addrs[2];
 1990         struct inpcb *inp;
 1991         struct tcpcb *tp;
 1992         struct tcptw *tw;
 1993         struct sockaddr_in *fin, *lin;
 1994 #ifdef INET6
 1995         struct sockaddr_in6 *fin6, *lin6;
 1996         struct in6_addr f6, l6;
 1997 #endif
 1998         int error;
 1999 
 2000         inp = NULL;
 2001         fin = lin = NULL;
 2002 #ifdef INET6
 2003         fin6 = lin6 = NULL;
 2004 #endif
 2005         error = 0;
 2006 
 2007         if (req->oldptr != NULL || req->oldlen != 0)
 2008                 return (EINVAL);
 2009         if (req->newptr == NULL)
 2010                 return (EPERM);
 2011         if (req->newlen < sizeof(addrs))
 2012                 return (ENOMEM);
 2013         error = SYSCTL_IN(req, &addrs, sizeof(addrs));
 2014         if (error)
 2015                 return (error);
 2016 
 2017         switch (addrs[0].ss_family) {
 2018 #ifdef INET6
 2019         case AF_INET6:
 2020                 fin6 = (struct sockaddr_in6 *)&addrs[0];
 2021                 lin6 = (struct sockaddr_in6 *)&addrs[1];
 2022                 if (fin6->sin6_len != sizeof(struct sockaddr_in6) ||
 2023                     lin6->sin6_len != sizeof(struct sockaddr_in6))
 2024                         return (EINVAL);
 2025                 if (IN6_IS_ADDR_V4MAPPED(&fin6->sin6_addr)) {
 2026                         if (!IN6_IS_ADDR_V4MAPPED(&lin6->sin6_addr))
 2027                                 return (EINVAL);
 2028                         in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[0]);
 2029                         in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[1]);
 2030                         fin = (struct sockaddr_in *)&addrs[0];
 2031                         lin = (struct sockaddr_in *)&addrs[1];
 2032                         break;
 2033                 }
 2034                 error = sa6_embedscope(fin6, ip6_use_defzone);
 2035                 if (error)
 2036                         return (error);
 2037                 error = sa6_embedscope(lin6, ip6_use_defzone);
 2038                 if (error)
 2039                         return (error);
 2040                 break;
 2041 #endif
 2042         case AF_INET:
 2043                 fin = (struct sockaddr_in *)&addrs[0];
 2044                 lin = (struct sockaddr_in *)&addrs[1];
 2045                 if (fin->sin_len != sizeof(struct sockaddr_in) ||
 2046                     lin->sin_len != sizeof(struct sockaddr_in))
 2047                         return (EINVAL);
 2048                 break;
 2049         default:
 2050                 return (EINVAL);
 2051         }
 2052         INP_INFO_WLOCK(&tcbinfo);
 2053         switch (addrs[0].ss_family) {
 2054 #ifdef INET6
 2055         case AF_INET6:
 2056                 inp = in6_pcblookup_hash(&tcbinfo, &f6, fin6->sin6_port,
 2057                     &l6, lin6->sin6_port, 0, NULL);
 2058                 break;
 2059 #endif
 2060         case AF_INET:
 2061                 inp = in_pcblookup_hash(&tcbinfo, fin->sin_addr, fin->sin_port,
 2062                     lin->sin_addr, lin->sin_port, 0, NULL);
 2063                 break;
 2064         }
 2065         if (inp != NULL) {
 2066                 INP_WLOCK(inp);
 2067                 if (inp->inp_flags & INP_TIMEWAIT) {
 2068                         /*
 2069                          * XXXRW: There currently exists a state where an
 2070                          * inpcb is present, but its timewait state has been
 2071                          * discarded.  For now, don't allow dropping of this
 2072                          * type of inpcb.
 2073                          */
 2074                         tw = intotw(inp);
 2075                         if (tw != NULL)
 2076                                 tcp_twclose(tw, 0);
 2077                         else
 2078                                 INP_WUNLOCK(inp);
 2079                 } else if (!(inp->inp_flags & INP_DROPPED) &&
 2080                            !(inp->inp_socket->so_options & SO_ACCEPTCONN)) {
 2081                         tp = intotcpcb(inp);
 2082                         tp = tcp_drop(tp, ECONNABORTED);
 2083                         if (tp != NULL)
 2084                                 INP_WUNLOCK(inp);
 2085                 } else
 2086                         INP_WUNLOCK(inp);
 2087         } else
 2088                 error = ESRCH;
 2089         INP_INFO_WUNLOCK(&tcbinfo);
 2090         return (error);
 2091 }
 2092 
 2093 SYSCTL_PROC(_net_inet_tcp, TCPCTL_DROP, drop,
 2094     CTLTYPE_STRUCT|CTLFLAG_WR|CTLFLAG_SKIP, NULL,
 2095     0, sysctl_drop, "", "Drop TCP connection");
 2096 
 2097 /*
 2098  * Generate a standardized TCP log line for use throughout the
 2099  * tcp subsystem.  Memory allocation is done with M_NOWAIT to
 2100  * allow use in the interrupt context.
 2101  *
 2102  * NB: The caller MUST free(s, M_TCPLOG) the returned string.
 2103  * NB: The function may return NULL if memory allocation failed.
 2104  *
 2105  * Due to header inclusion and ordering limitations the struct ip
 2106  * and ip6_hdr pointers have to be passed as void pointers.
 2107  */
 2108 char *
 2109 tcp_log_vain(struct in_conninfo *inc, struct tcphdr *th, void *ip4hdr,
 2110     const void *ip6hdr)
 2111 {
 2112 
 2113         /* Is logging enabled? */
 2114         if (tcp_log_in_vain == 0)
 2115                 return (NULL);
 2116 
 2117         return (tcp_log_addr(inc, th, ip4hdr, ip6hdr));
 2118 }
 2119 
 2120 char *
 2121 tcp_log_addrs(struct in_conninfo *inc, struct tcphdr *th, void *ip4hdr,
 2122     const void *ip6hdr)
 2123 {
 2124 
 2125         /* Is logging enabled? */
 2126         if (tcp_log_debug == 0)
 2127                 return (NULL);
 2128 
 2129         return (tcp_log_addr(inc, th, ip4hdr, ip6hdr));
 2130 }
 2131 
 2132 static char *
 2133 tcp_log_addr(struct in_conninfo *inc, struct tcphdr *th, void *ip4hdr,
 2134     const void *ip6hdr)
 2135 {
 2136         char *s, *sp;
 2137         size_t size;
 2138         struct ip *ip;
 2139 #ifdef INET6
 2140         const struct ip6_hdr *ip6;
 2141 
 2142         ip6 = (const struct ip6_hdr *)ip6hdr;
 2143 #endif /* INET6 */
 2144         ip = (struct ip *)ip4hdr;
 2145 
 2146         /*
 2147          * The log line looks like this:
 2148          * "TCP: [1.2.3.4]:50332 to [1.2.3.4]:80 tcpflags 0x2<SYN>"
 2149          */
 2150         size = sizeof("TCP: []:12345 to []:12345 tcpflags 0x2<>") +
 2151             sizeof(PRINT_TH_FLAGS) + 1 +
 2152 #ifdef INET6
 2153             2 * INET6_ADDRSTRLEN;
 2154 #else
 2155             2 * INET_ADDRSTRLEN;
 2156 #endif /* INET6 */
 2157 
 2158         s = malloc(size, M_TCPLOG, M_ZERO|M_NOWAIT);
 2159         if (s == NULL)
 2160                 return (NULL);
 2161 
 2162         strcat(s, "TCP: [");
 2163         sp = s + strlen(s);
 2164 
 2165         if (inc && ((inc->inc_flags & INC_ISIPV6) == 0)) {
 2166                 inet_ntoa_r(inc->inc_faddr, sp);
 2167                 sp = s + strlen(s);
 2168                 sprintf(sp, "]:%i to [", ntohs(inc->inc_fport));
 2169                 sp = s + strlen(s);
 2170                 inet_ntoa_r(inc->inc_laddr, sp);
 2171                 sp = s + strlen(s);
 2172                 sprintf(sp, "]:%i", ntohs(inc->inc_lport));
 2173 #ifdef INET6
 2174         } else if (inc) {
 2175                 ip6_sprintf(sp, &inc->inc6_faddr);
 2176                 sp = s + strlen(s);
 2177                 sprintf(sp, "]:%i to [", ntohs(inc->inc_fport));
 2178                 sp = s + strlen(s);
 2179                 ip6_sprintf(sp, &inc->inc6_laddr);
 2180                 sp = s + strlen(s);
 2181                 sprintf(sp, "]:%i", ntohs(inc->inc_lport));
 2182         } else if (ip6 && th) {
 2183                 ip6_sprintf(sp, &ip6->ip6_src);
 2184                 sp = s + strlen(s);
 2185                 sprintf(sp, "]:%i to [", ntohs(th->th_sport));
 2186                 sp = s + strlen(s);
 2187                 ip6_sprintf(sp, &ip6->ip6_dst);
 2188                 sp = s + strlen(s);
 2189                 sprintf(sp, "]:%i", ntohs(th->th_dport));
 2190 #endif /* INET6 */
 2191         } else if (ip && th) {
 2192                 inet_ntoa_r(ip->ip_src, sp);
 2193                 sp = s + strlen(s);
 2194                 sprintf(sp, "]:%i to [", ntohs(th->th_sport));
 2195                 sp = s + strlen(s);
 2196                 inet_ntoa_r(ip->ip_dst, sp);
 2197                 sp = s + strlen(s);
 2198                 sprintf(sp, "]:%i", ntohs(th->th_dport));
 2199         } else {
 2200                 free(s, M_TCPLOG);
 2201                 return (NULL);
 2202         }
 2203         sp = s + strlen(s);
 2204         if (th)
 2205                 sprintf(sp, " tcpflags 0x%b", th->th_flags, PRINT_TH_FLAGS);
 2206         if (*(s + size - 1) != '\0')
 2207                 panic("%s: string too long", __func__);
 2208         return (s);
 2209 }

Cache object: 4a0b78745848fdc3ce24f4b8dc2ffd3f


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.