The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/netinet/tcp_subr.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
    3  *      The Regents of the University of California.  All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice, this list of conditions and the following disclaimer.
   10  * 2. Redistributions in binary form must reproduce the above copyright
   11  *    notice, this list of conditions and the following disclaimer in the
   12  *    documentation and/or other materials provided with the distribution.
   13  * 4. Neither the name of the University nor the names of its contributors
   14  *    may be used to endorse or promote products derived from this software
   15  *    without specific prior written permission.
   16  *
   17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   27  * SUCH DAMAGE.
   28  *
   29  *      @(#)tcp_subr.c  8.2 (Berkeley) 5/24/95
   30  */
   31 
   32 #include <sys/cdefs.h>
   33 __FBSDID("$FreeBSD: releng/8.0/sys/netinet/tcp_subr.c 196019 2009-08-01 19:26:27Z rwatson $");
   34 
   35 #include "opt_compat.h"
   36 #include "opt_inet.h"
   37 #include "opt_inet6.h"
   38 #include "opt_ipsec.h"
   39 #include "opt_tcpdebug.h"
   40 
   41 #include <sys/param.h>
   42 #include <sys/systm.h>
   43 #include <sys/callout.h>
   44 #include <sys/kernel.h>
   45 #include <sys/sysctl.h>
   46 #include <sys/jail.h>
   47 #include <sys/malloc.h>
   48 #include <sys/mbuf.h>
   49 #ifdef INET6
   50 #include <sys/domain.h>
   51 #endif
   52 #include <sys/priv.h>
   53 #include <sys/proc.h>
   54 #include <sys/socket.h>
   55 #include <sys/socketvar.h>
   56 #include <sys/protosw.h>
   57 #include <sys/random.h>
   58 
   59 #include <vm/uma.h>
   60 
   61 #include <net/route.h>
   62 #include <net/if.h>
   63 #include <net/vnet.h>
   64 
   65 #include <netinet/in.h>
   66 #include <netinet/in_systm.h>
   67 #include <netinet/ip.h>
   68 #ifdef INET6
   69 #include <netinet/ip6.h>
   70 #endif
   71 #include <netinet/in_pcb.h>
   72 #ifdef INET6
   73 #include <netinet6/in6_pcb.h>
   74 #endif
   75 #include <netinet/in_var.h>
   76 #include <netinet/ip_var.h>
   77 #ifdef INET6
   78 #include <netinet6/ip6_var.h>
   79 #include <netinet6/scope6_var.h>
   80 #include <netinet6/nd6.h>
   81 #endif
   82 #include <netinet/ip_icmp.h>
   83 #include <netinet/tcp.h>
   84 #include <netinet/tcp_fsm.h>
   85 #include <netinet/tcp_seq.h>
   86 #include <netinet/tcp_timer.h>
   87 #include <netinet/tcp_var.h>
   88 #include <netinet/tcp_syncache.h>
   89 #include <netinet/tcp_offload.h>
   90 #ifdef INET6
   91 #include <netinet6/tcp6_var.h>
   92 #endif
   93 #include <netinet/tcpip.h>
   94 #ifdef TCPDEBUG
   95 #include <netinet/tcp_debug.h>
   96 #endif
   97 #include <netinet6/ip6protosw.h>
   98 
   99 #ifdef IPSEC
  100 #include <netipsec/ipsec.h>
  101 #include <netipsec/xform.h>
  102 #ifdef INET6
  103 #include <netipsec/ipsec6.h>
  104 #endif
  105 #include <netipsec/key.h>
  106 #include <sys/syslog.h>
  107 #endif /*IPSEC*/
  108 
  109 #include <machine/in_cksum.h>
  110 #include <sys/md5.h>
  111 
  112 #include <security/mac/mac_framework.h>
  113 
  114 VNET_DEFINE(int, tcp_mssdflt);
  115 #ifdef INET6
  116 VNET_DEFINE(int, tcp_v6mssdflt);
  117 #endif
  118 VNET_DEFINE(int, tcp_minmss);
  119 VNET_DEFINE(int, tcp_do_rfc1323);
  120 
  121 static VNET_DEFINE(int, icmp_may_rst);
  122 static VNET_DEFINE(int, tcp_isn_reseed_interval);
  123 static VNET_DEFINE(int, tcp_inflight_enable);
  124 static VNET_DEFINE(int, tcp_inflight_rttthresh);
  125 static VNET_DEFINE(int, tcp_inflight_min);
  126 static VNET_DEFINE(int, tcp_inflight_max);
  127 static VNET_DEFINE(int, tcp_inflight_stab);
  128 
  129 #define V_icmp_may_rst                  VNET(icmp_may_rst)
  130 #define V_tcp_isn_reseed_interval       VNET(tcp_isn_reseed_interval)
  131 #define V_tcp_inflight_enable           VNET(tcp_inflight_enable)
  132 #define V_tcp_inflight_rttthresh        VNET(tcp_inflight_rttthresh)
  133 #define V_tcp_inflight_min              VNET(tcp_inflight_min)
  134 #define V_tcp_inflight_max              VNET(tcp_inflight_max)
  135 #define V_tcp_inflight_stab             VNET(tcp_inflight_stab)
  136 
  137 static int
  138 sysctl_net_inet_tcp_mss_check(SYSCTL_HANDLER_ARGS)
  139 {
  140         int error, new;
  141 
  142         new = V_tcp_mssdflt;
  143         error = sysctl_handle_int(oidp, &new, 0, req);
  144         if (error == 0 && req->newptr) {
  145                 if (new < TCP_MINMSS)
  146                         error = EINVAL;
  147                 else
  148                         V_tcp_mssdflt = new;
  149         }
  150         return (error);
  151 }
  152 
  153 SYSCTL_VNET_PROC(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt,
  154     CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(tcp_mssdflt), 0,
  155     &sysctl_net_inet_tcp_mss_check, "I",
  156     "Default TCP Maximum Segment Size");
  157 
  158 #ifdef INET6
  159 static int
  160 sysctl_net_inet_tcp_mss_v6_check(SYSCTL_HANDLER_ARGS)
  161 {
  162         int error, new;
  163 
  164         new = V_tcp_v6mssdflt;
  165         error = sysctl_handle_int(oidp, &new, 0, req);
  166         if (error == 0 && req->newptr) {
  167                 if (new < TCP_MINMSS)
  168                         error = EINVAL;
  169                 else
  170                         V_tcp_v6mssdflt = new;
  171         }
  172         return (error);
  173 }
  174 
  175 SYSCTL_VNET_PROC(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt,
  176     CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(tcp_v6mssdflt), 0,
  177     &sysctl_net_inet_tcp_mss_v6_check, "I",
  178    "Default TCP Maximum Segment Size for IPv6");
  179 #endif
  180 
  181 static int
  182 vnet_sysctl_msec_to_ticks(SYSCTL_HANDLER_ARGS)
  183 {
  184 
  185         VNET_SYSCTL_ARG(req, arg1);
  186         return (sysctl_msec_to_ticks(oidp, arg1, arg2, req));
  187 }
  188 
  189 /*
  190  * Minimum MSS we accept and use. This prevents DoS attacks where
  191  * we are forced to a ridiculous low MSS like 20 and send hundreds
  192  * of packets instead of one. The effect scales with the available
  193  * bandwidth and quickly saturates the CPU and network interface
  194  * with packet generation and sending. Set to zero to disable MINMSS
  195  * checking. This setting prevents us from sending too small packets.
  196  */
  197 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, minmss, CTLFLAG_RW,
  198      &VNET_NAME(tcp_minmss), 0,
  199     "Minmum TCP Maximum Segment Size");
  200 
  201 SYSCTL_VNET_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_RW,
  202     &VNET_NAME(tcp_do_rfc1323), 0,
  203     "Enable rfc1323 (high performance TCP) extensions");
  204 
  205 static int      tcp_log_debug = 0;
  206 SYSCTL_INT(_net_inet_tcp, OID_AUTO, log_debug, CTLFLAG_RW,
  207     &tcp_log_debug, 0, "Log errors caused by incoming TCP segments");
  208 
  209 static int      tcp_tcbhashsize = 0;
  210 SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RDTUN,
  211     &tcp_tcbhashsize, 0, "Size of TCP control-block hashtable");
  212 
  213 static int      do_tcpdrain = 1;
  214 SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0,
  215     "Enable tcp_drain routine for extra help when low on mbufs");
  216 
  217 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, pcbcount, CTLFLAG_RD,
  218     &VNET_NAME(tcbinfo.ipi_count), 0, "Number of active PCBs");
  219 
  220 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_RW,
  221     &VNET_NAME(icmp_may_rst), 0,
  222     "Certain ICMP unreachable messages may abort connections in SYN_SENT");
  223 
  224 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_RW,
  225     &VNET_NAME(tcp_isn_reseed_interval), 0,
  226     "Seconds between reseeding of ISN secret");
  227 
  228 /*
  229  * TCP bandwidth limiting sysctls.  Note that the default lower bound of
  230  * 1024 exists only for debugging.  A good production default would be
  231  * something like 6100.
  232  */
  233 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, inflight, CTLFLAG_RW, 0,
  234     "TCP inflight data limiting");
  235 
  236 SYSCTL_VNET_INT(_net_inet_tcp_inflight, OID_AUTO, enable, CTLFLAG_RW,
  237     &VNET_NAME(tcp_inflight_enable), 0,
  238     "Enable automatic TCP inflight data limiting");
  239 
  240 static int      tcp_inflight_debug = 0;
  241 SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, debug, CTLFLAG_RW,
  242     &tcp_inflight_debug, 0,
  243     "Debug TCP inflight calculations");
  244 
  245 SYSCTL_VNET_PROC(_net_inet_tcp_inflight, OID_AUTO, rttthresh,
  246     CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(tcp_inflight_rttthresh), 0,
  247     vnet_sysctl_msec_to_ticks, "I",
  248     "RTT threshold below which inflight will deactivate itself");
  249 
  250 SYSCTL_VNET_INT(_net_inet_tcp_inflight, OID_AUTO, min, CTLFLAG_RW,
  251     &VNET_NAME(tcp_inflight_min), 0,
  252     "Lower-bound for TCP inflight window");
  253 
  254 SYSCTL_VNET_INT(_net_inet_tcp_inflight, OID_AUTO, max, CTLFLAG_RW,
  255     &VNET_NAME(tcp_inflight_max), 0,
  256     "Upper-bound for TCP inflight window");
  257 
  258 SYSCTL_VNET_INT(_net_inet_tcp_inflight, OID_AUTO, stab, CTLFLAG_RW,
  259     &VNET_NAME(tcp_inflight_stab), 0,
  260     "Inflight Algorithm Stabilization 20 = 2 packets");
  261 
  262 VNET_DEFINE(uma_zone_t, sack_hole_zone);
  263 #define V_sack_hole_zone                VNET(sack_hole_zone)
  264 
  265 static struct inpcb *tcp_notify(struct inpcb *, int);
  266 static void     tcp_isn_tick(void *);
  267 
  268 /*
  269  * Target size of TCP PCB hash tables. Must be a power of two.
  270  *
  271  * Note that this can be overridden by the kernel environment
  272  * variable net.inet.tcp.tcbhashsize
  273  */
  274 #ifndef TCBHASHSIZE
  275 #define TCBHASHSIZE     512
  276 #endif
  277 
  278 /*
  279  * XXX
  280  * Callouts should be moved into struct tcp directly.  They are currently
  281  * separate because the tcpcb structure is exported to userland for sysctl
  282  * parsing purposes, which do not know about callouts.
  283  */
  284 struct tcpcb_mem {
  285         struct  tcpcb           tcb;
  286         struct  tcp_timer       tt;
  287 };
  288 
  289 static VNET_DEFINE(uma_zone_t, tcpcb_zone);
  290 #define V_tcpcb_zone                    VNET(tcpcb_zone)
  291 
  292 MALLOC_DEFINE(M_TCPLOG, "tcplog", "TCP address and flags print buffers");
  293 struct callout isn_callout;
  294 static struct mtx isn_mtx;
  295 
  296 #define ISN_LOCK_INIT() mtx_init(&isn_mtx, "isn_mtx", NULL, MTX_DEF)
  297 #define ISN_LOCK()      mtx_lock(&isn_mtx)
  298 #define ISN_UNLOCK()    mtx_unlock(&isn_mtx)
  299 
  300 /*
  301  * TCP initialization.
  302  */
  303 static void
  304 tcp_zone_change(void *tag)
  305 {
  306 
  307         uma_zone_set_max(V_tcbinfo.ipi_zone, maxsockets);
  308         uma_zone_set_max(V_tcpcb_zone, maxsockets);
  309         tcp_tw_zone_change();
  310 }
  311 
  312 static int
  313 tcp_inpcb_init(void *mem, int size, int flags)
  314 {
  315         struct inpcb *inp = mem;
  316 
  317         INP_LOCK_INIT(inp, "inp", "tcpinp");
  318         return (0);
  319 }
  320 
  321 void
  322 tcp_init(void)
  323 {
  324         int hashsize;
  325 
  326         V_blackhole = 0;
  327         V_tcp_delack_enabled = 1;
  328         V_drop_synfin = 0;
  329         V_tcp_do_rfc3042 = 1;
  330         V_tcp_do_rfc3390 = 1;
  331         V_tcp_do_ecn = 0;
  332         V_tcp_ecn_maxretries = 1;
  333         V_tcp_insecure_rst = 0;
  334         V_tcp_do_autorcvbuf = 1;
  335         V_tcp_autorcvbuf_inc = 16*1024;
  336         V_tcp_autorcvbuf_max = 256*1024;
  337         V_tcp_do_rfc3465 = 1;
  338         V_tcp_abc_l_var = 2;
  339 
  340         V_tcp_mssdflt = TCP_MSS;
  341 #ifdef INET6
  342         V_tcp_v6mssdflt = TCP6_MSS;
  343 #endif
  344         V_tcp_minmss = TCP_MINMSS;
  345         V_tcp_do_rfc1323 = 1;
  346         V_icmp_may_rst = 1;
  347         V_tcp_isn_reseed_interval = 0;
  348         V_tcp_inflight_enable = 1;
  349         V_tcp_inflight_min = 6144;
  350         V_tcp_inflight_max = TCP_MAXWIN << TCP_MAX_WINSHIFT;
  351         V_tcp_inflight_stab = 20;
  352 
  353         V_path_mtu_discovery = 1;
  354         V_ss_fltsz = 1;
  355         V_ss_fltsz_local = 4;
  356         V_tcp_do_newreno = 1;
  357         V_tcp_do_tso = 1;
  358         V_tcp_do_autosndbuf = 1;
  359         V_tcp_autosndbuf_inc = 8*1024;
  360         V_tcp_autosndbuf_max = 256*1024;
  361 
  362         V_nolocaltimewait = 0;
  363 
  364         V_tcp_do_sack = 1;
  365         V_tcp_sack_maxholes = 128;
  366         V_tcp_sack_globalmaxholes = 65536;
  367         V_tcp_sack_globalholes = 0;
  368 
  369         V_tcp_inflight_rttthresh = TCPTV_INFLIGHT_RTTTHRESH;
  370 
  371         TUNABLE_INT_FETCH("net.inet.tcp.sack.enable", &V_tcp_do_sack);
  372 
  373         INP_INFO_LOCK_INIT(&V_tcbinfo, "tcp");
  374         LIST_INIT(&V_tcb);
  375 #ifdef VIMAGE
  376         V_tcbinfo.ipi_vnet = curvnet;
  377 #endif
  378         V_tcbinfo.ipi_listhead = &V_tcb;
  379         hashsize = TCBHASHSIZE;
  380         TUNABLE_INT_FETCH("net.inet.tcp.tcbhashsize", &hashsize);
  381         if (!powerof2(hashsize)) {
  382                 printf("WARNING: TCB hash size not a power of 2\n");
  383                 hashsize = 512; /* safe default */
  384         }
  385         V_tcbinfo.ipi_hashbase = hashinit(hashsize, M_PCB,
  386             &V_tcbinfo.ipi_hashmask);
  387         V_tcbinfo.ipi_porthashbase = hashinit(hashsize, M_PCB,
  388             &V_tcbinfo.ipi_porthashmask);
  389         V_tcbinfo.ipi_zone = uma_zcreate("tcp_inpcb", sizeof(struct inpcb),
  390             NULL, NULL, tcp_inpcb_init, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
  391         uma_zone_set_max(V_tcbinfo.ipi_zone, maxsockets);
  392         /*
  393          * These have to be type stable for the benefit of the timers.
  394          */
  395         V_tcpcb_zone = uma_zcreate("tcpcb", sizeof(struct tcpcb_mem),
  396             NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
  397         uma_zone_set_max(V_tcpcb_zone, maxsockets);
  398         tcp_tw_init();
  399         syncache_init();
  400         tcp_hc_init();
  401         tcp_reass_init();
  402         V_sack_hole_zone = uma_zcreate("sackhole", sizeof(struct sackhole),
  403             NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
  404 
  405         /* Skip initialization of globals for non-default instances. */
  406         if (!IS_DEFAULT_VNET(curvnet))
  407                 return;
  408 
  409         /* XXX virtualize those bellow? */
  410         tcp_delacktime = TCPTV_DELACK;
  411         tcp_keepinit = TCPTV_KEEP_INIT;
  412         tcp_keepidle = TCPTV_KEEP_IDLE;
  413         tcp_keepintvl = TCPTV_KEEPINTVL;
  414         tcp_maxpersistidle = TCPTV_KEEP_IDLE;
  415         tcp_msl = TCPTV_MSL;
  416         tcp_rexmit_min = TCPTV_MIN;
  417         if (tcp_rexmit_min < 1)
  418                 tcp_rexmit_min = 1;
  419         tcp_rexmit_slop = TCPTV_CPU_VAR;
  420         tcp_finwait2_timeout = TCPTV_FINWAIT2_TIMEOUT;
  421         tcp_tcbhashsize = hashsize;
  422 
  423 #ifdef INET6
  424 #define TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
  425 #else /* INET6 */
  426 #define TCP_MINPROTOHDR (sizeof(struct tcpiphdr))
  427 #endif /* INET6 */
  428         if (max_protohdr < TCP_MINPROTOHDR)
  429                 max_protohdr = TCP_MINPROTOHDR;
  430         if (max_linkhdr + TCP_MINPROTOHDR > MHLEN)
  431                 panic("tcp_init");
  432 #undef TCP_MINPROTOHDR
  433 
  434         ISN_LOCK_INIT();
  435         callout_init(&isn_callout, CALLOUT_MPSAFE);
  436         callout_reset(&isn_callout, hz/100, tcp_isn_tick, NULL);
  437         EVENTHANDLER_REGISTER(shutdown_pre_sync, tcp_fini, NULL,
  438                 SHUTDOWN_PRI_DEFAULT);
  439         EVENTHANDLER_REGISTER(maxsockets_change, tcp_zone_change, NULL,
  440                 EVENTHANDLER_PRI_ANY);
  441 }
  442 
  443 #ifdef VIMAGE
  444 void
  445 tcp_destroy(void)
  446 {
  447 
  448         tcp_tw_destroy();
  449         tcp_hc_destroy();
  450         syncache_destroy();
  451 
  452         /* XXX check that hashes are empty! */
  453         hashdestroy(V_tcbinfo.ipi_hashbase, M_PCB,
  454             V_tcbinfo.ipi_hashmask);
  455         hashdestroy(V_tcbinfo.ipi_porthashbase, M_PCB,
  456             V_tcbinfo.ipi_porthashmask);
  457         INP_INFO_LOCK_DESTROY(&V_tcbinfo);
  458 }
  459 #endif
  460 
  461 void
  462 tcp_fini(void *xtp)
  463 {
  464 
  465         callout_stop(&isn_callout);
  466 }
  467 
  468 /*
  469  * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
  470  * tcp_template used to store this data in mbufs, but we now recopy it out
  471  * of the tcpcb each time to conserve mbufs.
  472  */
  473 void
  474 tcpip_fillheaders(struct inpcb *inp, void *ip_ptr, void *tcp_ptr)
  475 {
  476         struct tcphdr *th = (struct tcphdr *)tcp_ptr;
  477 
  478         INP_WLOCK_ASSERT(inp);
  479 
  480 #ifdef INET6
  481         if ((inp->inp_vflag & INP_IPV6) != 0) {
  482                 struct ip6_hdr *ip6;
  483 
  484                 ip6 = (struct ip6_hdr *)ip_ptr;
  485                 ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
  486                         (inp->inp_flow & IPV6_FLOWINFO_MASK);
  487                 ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) |
  488                         (IPV6_VERSION & IPV6_VERSION_MASK);
  489                 ip6->ip6_nxt = IPPROTO_TCP;
  490                 ip6->ip6_plen = htons(sizeof(struct tcphdr));
  491                 ip6->ip6_src = inp->in6p_laddr;
  492                 ip6->ip6_dst = inp->in6p_faddr;
  493         } else
  494 #endif
  495         {
  496                 struct ip *ip;
  497 
  498                 ip = (struct ip *)ip_ptr;
  499                 ip->ip_v = IPVERSION;
  500                 ip->ip_hl = 5;
  501                 ip->ip_tos = inp->inp_ip_tos;
  502                 ip->ip_len = 0;
  503                 ip->ip_id = 0;
  504                 ip->ip_off = 0;
  505                 ip->ip_ttl = inp->inp_ip_ttl;
  506                 ip->ip_sum = 0;
  507                 ip->ip_p = IPPROTO_TCP;
  508                 ip->ip_src = inp->inp_laddr;
  509                 ip->ip_dst = inp->inp_faddr;
  510         }
  511         th->th_sport = inp->inp_lport;
  512         th->th_dport = inp->inp_fport;
  513         th->th_seq = 0;
  514         th->th_ack = 0;
  515         th->th_x2 = 0;
  516         th->th_off = 5;
  517         th->th_flags = 0;
  518         th->th_win = 0;
  519         th->th_urp = 0;
  520         th->th_sum = 0;         /* in_pseudo() is called later for ipv4 */
  521 }
  522 
  523 /*
  524  * Create template to be used to send tcp packets on a connection.
  525  * Allocates an mbuf and fills in a skeletal tcp/ip header.  The only
  526  * use for this function is in keepalives, which use tcp_respond.
  527  */
  528 struct tcptemp *
  529 tcpip_maketemplate(struct inpcb *inp)
  530 {
  531         struct tcptemp *t;
  532 
  533         t = malloc(sizeof(*t), M_TEMP, M_NOWAIT);
  534         if (t == NULL)
  535                 return (NULL);
  536         tcpip_fillheaders(inp, (void *)&t->tt_ipgen, (void *)&t->tt_t);
  537         return (t);
  538 }
  539 
  540 /*
  541  * Send a single message to the TCP at address specified by
  542  * the given TCP/IP header.  If m == NULL, then we make a copy
  543  * of the tcpiphdr at ti and send directly to the addressed host.
  544  * This is used to force keep alive messages out using the TCP
  545  * template for a connection.  If flags are given then we send
  546  * a message back to the TCP which originated the * segment ti,
  547  * and discard the mbuf containing it and any other attached mbufs.
  548  *
  549  * In any case the ack and sequence number of the transmitted
  550  * segment are as specified by the parameters.
  551  *
  552  * NOTE: If m != NULL, then ti must point to *inside* the mbuf.
  553  */
  554 void
  555 tcp_respond(struct tcpcb *tp, void *ipgen, struct tcphdr *th, struct mbuf *m,
  556     tcp_seq ack, tcp_seq seq, int flags)
  557 {
  558         int tlen;
  559         int win = 0;
  560         struct ip *ip;
  561         struct tcphdr *nth;
  562 #ifdef INET6
  563         struct ip6_hdr *ip6;
  564         int isipv6;
  565 #endif /* INET6 */
  566         int ipflags = 0;
  567         struct inpcb *inp;
  568 
  569         KASSERT(tp != NULL || m != NULL, ("tcp_respond: tp and m both NULL"));
  570 
  571 #ifdef INET6
  572         isipv6 = ((struct ip *)ipgen)->ip_v == 6;
  573         ip6 = ipgen;
  574 #endif /* INET6 */
  575         ip = ipgen;
  576 
  577         if (tp != NULL) {
  578                 inp = tp->t_inpcb;
  579                 KASSERT(inp != NULL, ("tcp control block w/o inpcb"));
  580                 INP_WLOCK_ASSERT(inp);
  581         } else
  582                 inp = NULL;
  583 
  584         if (tp != NULL) {
  585                 if (!(flags & TH_RST)) {
  586                         win = sbspace(&inp->inp_socket->so_rcv);
  587                         if (win > (long)TCP_MAXWIN << tp->rcv_scale)
  588                                 win = (long)TCP_MAXWIN << tp->rcv_scale;
  589                 }
  590         }
  591         if (m == NULL) {
  592                 m = m_gethdr(M_DONTWAIT, MT_DATA);
  593                 if (m == NULL)
  594                         return;
  595                 tlen = 0;
  596                 m->m_data += max_linkhdr;
  597 #ifdef INET6
  598                 if (isipv6) {
  599                         bcopy((caddr_t)ip6, mtod(m, caddr_t),
  600                               sizeof(struct ip6_hdr));
  601                         ip6 = mtod(m, struct ip6_hdr *);
  602                         nth = (struct tcphdr *)(ip6 + 1);
  603                 } else
  604 #endif /* INET6 */
  605               {
  606                 bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
  607                 ip = mtod(m, struct ip *);
  608                 nth = (struct tcphdr *)(ip + 1);
  609               }
  610                 bcopy((caddr_t)th, (caddr_t)nth, sizeof(struct tcphdr));
  611                 flags = TH_ACK;
  612         } else {
  613                 /*
  614                  *  reuse the mbuf. 
  615                  * XXX MRT We inherrit the FIB, which is lucky.
  616                  */
  617                 m_freem(m->m_next);
  618                 m->m_next = NULL;
  619                 m->m_data = (caddr_t)ipgen;
  620                 /* m_len is set later */
  621                 tlen = 0;
  622 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
  623 #ifdef INET6
  624                 if (isipv6) {
  625                         xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
  626                         nth = (struct tcphdr *)(ip6 + 1);
  627                 } else
  628 #endif /* INET6 */
  629               {
  630                 xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, uint32_t);
  631                 nth = (struct tcphdr *)(ip + 1);
  632               }
  633                 if (th != nth) {
  634                         /*
  635                          * this is usually a case when an extension header
  636                          * exists between the IPv6 header and the
  637                          * TCP header.
  638                          */
  639                         nth->th_sport = th->th_sport;
  640                         nth->th_dport = th->th_dport;
  641                 }
  642                 xchg(nth->th_dport, nth->th_sport, uint16_t);
  643 #undef xchg
  644         }
  645 #ifdef INET6
  646         if (isipv6) {
  647                 ip6->ip6_flow = 0;
  648                 ip6->ip6_vfc = IPV6_VERSION;
  649                 ip6->ip6_nxt = IPPROTO_TCP;
  650                 ip6->ip6_plen = htons((u_short)(sizeof (struct tcphdr) +
  651                                                 tlen));
  652                 tlen += sizeof (struct ip6_hdr) + sizeof (struct tcphdr);
  653         } else
  654 #endif
  655         {
  656                 tlen += sizeof (struct tcpiphdr);
  657                 ip->ip_len = tlen;
  658                 ip->ip_ttl = V_ip_defttl;
  659                 if (V_path_mtu_discovery)
  660                         ip->ip_off |= IP_DF;
  661         }
  662         m->m_len = tlen;
  663         m->m_pkthdr.len = tlen;
  664         m->m_pkthdr.rcvif = NULL;
  665 #ifdef MAC
  666         if (inp != NULL) {
  667                 /*
  668                  * Packet is associated with a socket, so allow the
  669                  * label of the response to reflect the socket label.
  670                  */
  671                 INP_WLOCK_ASSERT(inp);
  672                 mac_inpcb_create_mbuf(inp, m);
  673         } else {
  674                 /*
  675                  * Packet is not associated with a socket, so possibly
  676                  * update the label in place.
  677                  */
  678                 mac_netinet_tcp_reply(m);
  679         }
  680 #endif
  681         nth->th_seq = htonl(seq);
  682         nth->th_ack = htonl(ack);
  683         nth->th_x2 = 0;
  684         nth->th_off = sizeof (struct tcphdr) >> 2;
  685         nth->th_flags = flags;
  686         if (tp != NULL)
  687                 nth->th_win = htons((u_short) (win >> tp->rcv_scale));
  688         else
  689                 nth->th_win = htons((u_short)win);
  690         nth->th_urp = 0;
  691 #ifdef INET6
  692         if (isipv6) {
  693                 nth->th_sum = 0;
  694                 nth->th_sum = in6_cksum(m, IPPROTO_TCP,
  695                                         sizeof(struct ip6_hdr),
  696                                         tlen - sizeof(struct ip6_hdr));
  697                 ip6->ip6_hlim = in6_selecthlim(tp != NULL ? tp->t_inpcb :
  698                     NULL, NULL);
  699         } else
  700 #endif /* INET6 */
  701         {
  702                 nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
  703                     htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p)));
  704                 m->m_pkthdr.csum_flags = CSUM_TCP;
  705                 m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
  706         }
  707 #ifdef TCPDEBUG
  708         if (tp == NULL || (inp->inp_socket->so_options & SO_DEBUG))
  709                 tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0);
  710 #endif
  711 #ifdef INET6
  712         if (isipv6)
  713                 (void) ip6_output(m, NULL, NULL, ipflags, NULL, NULL, inp);
  714         else
  715 #endif /* INET6 */
  716         (void) ip_output(m, NULL, NULL, ipflags, NULL, inp);
  717 }
  718 
  719 /*
  720  * Create a new TCP control block, making an
  721  * empty reassembly queue and hooking it to the argument
  722  * protocol control block.  The `inp' parameter must have
  723  * come from the zone allocator set up in tcp_init().
  724  */
  725 struct tcpcb *
  726 tcp_newtcpcb(struct inpcb *inp)
  727 {
  728         struct tcpcb_mem *tm;
  729         struct tcpcb *tp;
  730 #ifdef INET6
  731         int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
  732 #endif /* INET6 */
  733 
  734         tm = uma_zalloc(V_tcpcb_zone, M_NOWAIT | M_ZERO);
  735         if (tm == NULL)
  736                 return (NULL);
  737         tp = &tm->tcb;
  738 #ifdef VIMAGE
  739         tp->t_vnet = inp->inp_vnet;
  740 #endif
  741         tp->t_timers = &tm->tt;
  742         /*      LIST_INIT(&tp->t_segq); */      /* XXX covered by M_ZERO */
  743         tp->t_maxseg = tp->t_maxopd =
  744 #ifdef INET6
  745                 isipv6 ? V_tcp_v6mssdflt :
  746 #endif /* INET6 */
  747                 V_tcp_mssdflt;
  748 
  749         /* Set up our timeouts. */
  750         callout_init(&tp->t_timers->tt_rexmt, CALLOUT_MPSAFE);
  751         callout_init(&tp->t_timers->tt_persist, CALLOUT_MPSAFE);
  752         callout_init(&tp->t_timers->tt_keep, CALLOUT_MPSAFE);
  753         callout_init(&tp->t_timers->tt_2msl, CALLOUT_MPSAFE);
  754         callout_init(&tp->t_timers->tt_delack, CALLOUT_MPSAFE);
  755 
  756         if (V_tcp_do_rfc1323)
  757                 tp->t_flags = (TF_REQ_SCALE|TF_REQ_TSTMP);
  758         if (V_tcp_do_sack)
  759                 tp->t_flags |= TF_SACK_PERMIT;
  760         TAILQ_INIT(&tp->snd_holes);
  761         tp->t_inpcb = inp;      /* XXX */
  762         /*
  763          * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
  764          * rtt estimate.  Set rttvar so that srtt + 4 * rttvar gives
  765          * reasonable initial retransmit time.
  766          */
  767         tp->t_srtt = TCPTV_SRTTBASE;
  768         tp->t_rttvar = ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
  769         tp->t_rttmin = tcp_rexmit_min;
  770         tp->t_rxtcur = TCPTV_RTOBASE;
  771         tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
  772         tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
  773         tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
  774         tp->t_rcvtime = ticks;
  775         tp->t_bw_rtttime = ticks;
  776         /*
  777          * IPv4 TTL initialization is necessary for an IPv6 socket as well,
  778          * because the socket may be bound to an IPv6 wildcard address,
  779          * which may match an IPv4-mapped IPv6 address.
  780          */
  781         inp->inp_ip_ttl = V_ip_defttl;
  782         inp->inp_ppcb = tp;
  783         return (tp);            /* XXX */
  784 }
  785 
  786 /*
  787  * Drop a TCP connection, reporting
  788  * the specified error.  If connection is synchronized,
  789  * then send a RST to peer.
  790  */
  791 struct tcpcb *
  792 tcp_drop(struct tcpcb *tp, int errno)
  793 {
  794         struct socket *so = tp->t_inpcb->inp_socket;
  795 
  796         INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
  797         INP_WLOCK_ASSERT(tp->t_inpcb);
  798 
  799         if (TCPS_HAVERCVDSYN(tp->t_state)) {
  800                 tp->t_state = TCPS_CLOSED;
  801                 (void) tcp_output_reset(tp);
  802                 TCPSTAT_INC(tcps_drops);
  803         } else
  804                 TCPSTAT_INC(tcps_conndrops);
  805         if (errno == ETIMEDOUT && tp->t_softerror)
  806                 errno = tp->t_softerror;
  807         so->so_error = errno;
  808         return (tcp_close(tp));
  809 }
  810 
  811 void
  812 tcp_discardcb(struct tcpcb *tp)
  813 {
  814         struct tseg_qent *q;
  815         struct inpcb *inp = tp->t_inpcb;
  816         struct socket *so = inp->inp_socket;
  817 #ifdef INET6
  818         int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
  819 #endif /* INET6 */
  820 
  821         INP_WLOCK_ASSERT(inp);
  822 
  823         /*
  824          * Make sure that all of our timers are stopped before we
  825          * delete the PCB.
  826          */
  827         callout_stop(&tp->t_timers->tt_rexmt);
  828         callout_stop(&tp->t_timers->tt_persist);
  829         callout_stop(&tp->t_timers->tt_keep);
  830         callout_stop(&tp->t_timers->tt_2msl);
  831         callout_stop(&tp->t_timers->tt_delack);
  832 
  833         /*
  834          * If we got enough samples through the srtt filter,
  835          * save the rtt and rttvar in the routing entry.
  836          * 'Enough' is arbitrarily defined as 4 rtt samples.
  837          * 4 samples is enough for the srtt filter to converge
  838          * to within enough % of the correct value; fewer samples
  839          * and we could save a bogus rtt. The danger is not high
  840          * as tcp quickly recovers from everything.
  841          * XXX: Works very well but needs some more statistics!
  842          */
  843         if (tp->t_rttupdated >= 4) {
  844                 struct hc_metrics_lite metrics;
  845                 u_long ssthresh;
  846 
  847                 bzero(&metrics, sizeof(metrics));
  848                 /*
  849                  * Update the ssthresh always when the conditions below
  850                  * are satisfied. This gives us better new start value
  851                  * for the congestion avoidance for new connections.
  852                  * ssthresh is only set if packet loss occured on a session.
  853                  *
  854                  * XXXRW: 'so' may be NULL here, and/or socket buffer may be
  855                  * being torn down.  Ideally this code would not use 'so'.
  856                  */
  857                 ssthresh = tp->snd_ssthresh;
  858                 if (ssthresh != 0 && ssthresh < so->so_snd.sb_hiwat / 2) {
  859                         /*
  860                          * convert the limit from user data bytes to
  861                          * packets then to packet data bytes.
  862                          */
  863                         ssthresh = (ssthresh + tp->t_maxseg / 2) / tp->t_maxseg;
  864                         if (ssthresh < 2)
  865                                 ssthresh = 2;
  866                         ssthresh *= (u_long)(tp->t_maxseg +
  867 #ifdef INET6
  868                                       (isipv6 ? sizeof (struct ip6_hdr) +
  869                                                sizeof (struct tcphdr) :
  870 #endif
  871                                        sizeof (struct tcpiphdr)
  872 #ifdef INET6
  873                                        )
  874 #endif
  875                                       );
  876                 } else
  877                         ssthresh = 0;
  878                 metrics.rmx_ssthresh = ssthresh;
  879 
  880                 metrics.rmx_rtt = tp->t_srtt;
  881                 metrics.rmx_rttvar = tp->t_rttvar;
  882                 /* XXX: This wraps if the pipe is more than 4 Gbit per second */
  883                 metrics.rmx_bandwidth = tp->snd_bandwidth;
  884                 metrics.rmx_cwnd = tp->snd_cwnd;
  885                 metrics.rmx_sendpipe = 0;
  886                 metrics.rmx_recvpipe = 0;
  887 
  888                 tcp_hc_update(&inp->inp_inc, &metrics);
  889         }
  890 
  891         /* free the reassembly queue, if any */
  892         while ((q = LIST_FIRST(&tp->t_segq)) != NULL) {
  893                 LIST_REMOVE(q, tqe_q);
  894                 m_freem(q->tqe_m);
  895                 uma_zfree(V_tcp_reass_zone, q);
  896                 tp->t_segqlen--;
  897                 V_tcp_reass_qsize--;
  898         }
  899         /* Disconnect offload device, if any. */
  900         tcp_offload_detach(tp);
  901                 
  902         tcp_free_sackholes(tp);
  903         inp->inp_ppcb = NULL;
  904         tp->t_inpcb = NULL;
  905         uma_zfree(V_tcpcb_zone, tp);
  906 }
  907 
  908 /*
  909  * Attempt to close a TCP control block, marking it as dropped, and freeing
  910  * the socket if we hold the only reference.
  911  */
  912 struct tcpcb *
  913 tcp_close(struct tcpcb *tp)
  914 {
  915         struct inpcb *inp = tp->t_inpcb;
  916         struct socket *so;
  917 
  918         INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
  919         INP_WLOCK_ASSERT(inp);
  920 
  921         /* Notify any offload devices of listener close */
  922         if (tp->t_state == TCPS_LISTEN)
  923                 tcp_offload_listen_close(tp);
  924         in_pcbdrop(inp);
  925         TCPSTAT_INC(tcps_closed);
  926         KASSERT(inp->inp_socket != NULL, ("tcp_close: inp_socket NULL"));
  927         so = inp->inp_socket;
  928         soisdisconnected(so);
  929         if (inp->inp_flags & INP_SOCKREF) {
  930                 KASSERT(so->so_state & SS_PROTOREF,
  931                     ("tcp_close: !SS_PROTOREF"));
  932                 inp->inp_flags &= ~INP_SOCKREF;
  933                 INP_WUNLOCK(inp);
  934                 ACCEPT_LOCK();
  935                 SOCK_LOCK(so);
  936                 so->so_state &= ~SS_PROTOREF;
  937                 sofree(so);
  938                 return (NULL);
  939         }
  940         return (tp);
  941 }
  942 
  943 void
  944 tcp_drain(void)
  945 {
  946         VNET_ITERATOR_DECL(vnet_iter);
  947 
  948         if (!do_tcpdrain)
  949                 return;
  950 
  951         VNET_LIST_RLOCK_NOSLEEP();
  952         VNET_FOREACH(vnet_iter) {
  953                 CURVNET_SET(vnet_iter);
  954                 struct inpcb *inpb;
  955                 struct tcpcb *tcpb;
  956                 struct tseg_qent *te;
  957 
  958         /*
  959          * Walk the tcpbs, if existing, and flush the reassembly queue,
  960          * if there is one...
  961          * XXX: The "Net/3" implementation doesn't imply that the TCP
  962          *      reassembly queue should be flushed, but in a situation
  963          *      where we're really low on mbufs, this is potentially
  964          *      usefull.
  965          */
  966                 INP_INFO_RLOCK(&V_tcbinfo);
  967                 LIST_FOREACH(inpb, V_tcbinfo.ipi_listhead, inp_list) {
  968                         if (inpb->inp_flags & INP_TIMEWAIT)
  969                                 continue;
  970                         INP_WLOCK(inpb);
  971                         if ((tcpb = intotcpcb(inpb)) != NULL) {
  972                                 while ((te = LIST_FIRST(&tcpb->t_segq))
  973                                     != NULL) {
  974                                         LIST_REMOVE(te, tqe_q);
  975                                         m_freem(te->tqe_m);
  976                                         uma_zfree(V_tcp_reass_zone, te);
  977                                         tcpb->t_segqlen--;
  978                                         V_tcp_reass_qsize--;
  979                                 }
  980                                 tcp_clean_sackreport(tcpb);
  981                         }
  982                         INP_WUNLOCK(inpb);
  983                 }
  984                 INP_INFO_RUNLOCK(&V_tcbinfo);
  985                 CURVNET_RESTORE();
  986         }
  987         VNET_LIST_RUNLOCK_NOSLEEP();
  988 }
  989 
  990 /*
  991  * Notify a tcp user of an asynchronous error;
  992  * store error as soft error, but wake up user
  993  * (for now, won't do anything until can select for soft error).
  994  *
  995  * Do not wake up user since there currently is no mechanism for
  996  * reporting soft errors (yet - a kqueue filter may be added).
  997  */
  998 static struct inpcb *
  999 tcp_notify(struct inpcb *inp, int error)
 1000 {
 1001         struct tcpcb *tp;
 1002 
 1003         INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
 1004         INP_WLOCK_ASSERT(inp);
 1005 
 1006         if ((inp->inp_flags & INP_TIMEWAIT) ||
 1007             (inp->inp_flags & INP_DROPPED))
 1008                 return (inp);
 1009 
 1010         tp = intotcpcb(inp);
 1011         KASSERT(tp != NULL, ("tcp_notify: tp == NULL"));
 1012 
 1013         /*
 1014          * Ignore some errors if we are hooked up.
 1015          * If connection hasn't completed, has retransmitted several times,
 1016          * and receives a second error, give up now.  This is better
 1017          * than waiting a long time to establish a connection that
 1018          * can never complete.
 1019          */
 1020         if (tp->t_state == TCPS_ESTABLISHED &&
 1021             (error == EHOSTUNREACH || error == ENETUNREACH ||
 1022              error == EHOSTDOWN)) {
 1023                 return (inp);
 1024         } else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
 1025             tp->t_softerror) {
 1026                 tp = tcp_drop(tp, error);
 1027                 if (tp != NULL)
 1028                         return (inp);
 1029                 else
 1030                         return (NULL);
 1031         } else {
 1032                 tp->t_softerror = error;
 1033                 return (inp);
 1034         }
 1035 #if 0
 1036         wakeup( &so->so_timeo);
 1037         sorwakeup(so);
 1038         sowwakeup(so);
 1039 #endif
 1040 }
 1041 
 1042 static int
 1043 tcp_pcblist(SYSCTL_HANDLER_ARGS)
 1044 {
 1045         int error, i, m, n, pcb_count;
 1046         struct inpcb *inp, **inp_list;
 1047         inp_gen_t gencnt;
 1048         struct xinpgen xig;
 1049 
 1050         /*
 1051          * The process of preparing the TCB list is too time-consuming and
 1052          * resource-intensive to repeat twice on every request.
 1053          */
 1054         if (req->oldptr == NULL) {
 1055                 m = syncache_pcbcount();
 1056                 n = V_tcbinfo.ipi_count;
 1057                 req->oldidx = 2 * (sizeof xig)
 1058                         + ((m + n) + n/8) * sizeof(struct xtcpcb);
 1059                 return (0);
 1060         }
 1061 
 1062         if (req->newptr != NULL)
 1063                 return (EPERM);
 1064 
 1065         /*
 1066          * OK, now we're committed to doing something.
 1067          */
 1068         INP_INFO_RLOCK(&V_tcbinfo);
 1069         gencnt = V_tcbinfo.ipi_gencnt;
 1070         n = V_tcbinfo.ipi_count;
 1071         INP_INFO_RUNLOCK(&V_tcbinfo);
 1072 
 1073         m = syncache_pcbcount();
 1074 
 1075         error = sysctl_wire_old_buffer(req, 2 * (sizeof xig)
 1076                 + (n + m) * sizeof(struct xtcpcb));
 1077         if (error != 0)
 1078                 return (error);
 1079 
 1080         xig.xig_len = sizeof xig;
 1081         xig.xig_count = n + m;
 1082         xig.xig_gen = gencnt;
 1083         xig.xig_sogen = so_gencnt;
 1084         error = SYSCTL_OUT(req, &xig, sizeof xig);
 1085         if (error)
 1086                 return (error);
 1087 
 1088         error = syncache_pcblist(req, m, &pcb_count);
 1089         if (error)
 1090                 return (error);
 1091 
 1092         inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK);
 1093         if (inp_list == NULL)
 1094                 return (ENOMEM);
 1095 
 1096         INP_INFO_RLOCK(&V_tcbinfo);
 1097         for (inp = LIST_FIRST(V_tcbinfo.ipi_listhead), i = 0;
 1098             inp != NULL && i < n; inp = LIST_NEXT(inp, inp_list)) {
 1099                 INP_RLOCK(inp);
 1100                 if (inp->inp_gencnt <= gencnt) {
 1101                         /*
 1102                          * XXX: This use of cr_cansee(), introduced with
 1103                          * TCP state changes, is not quite right, but for
 1104                          * now, better than nothing.
 1105                          */
 1106                         if (inp->inp_flags & INP_TIMEWAIT) {
 1107                                 if (intotw(inp) != NULL)
 1108                                         error = cr_cansee(req->td->td_ucred,
 1109                                             intotw(inp)->tw_cred);
 1110                                 else
 1111                                         error = EINVAL; /* Skip this inp. */
 1112                         } else
 1113                                 error = cr_canseeinpcb(req->td->td_ucred, inp);
 1114                         if (error == 0)
 1115                                 inp_list[i++] = inp;
 1116                 }
 1117                 INP_RUNLOCK(inp);
 1118         }
 1119         INP_INFO_RUNLOCK(&V_tcbinfo);
 1120         n = i;
 1121 
 1122         error = 0;
 1123         for (i = 0; i < n; i++) {
 1124                 inp = inp_list[i];
 1125                 INP_RLOCK(inp);
 1126                 if (inp->inp_gencnt <= gencnt) {
 1127                         struct xtcpcb xt;
 1128                         void *inp_ppcb;
 1129 
 1130                         bzero(&xt, sizeof(xt));
 1131                         xt.xt_len = sizeof xt;
 1132                         /* XXX should avoid extra copy */
 1133                         bcopy(inp, &xt.xt_inp, sizeof *inp);
 1134                         inp_ppcb = inp->inp_ppcb;
 1135                         if (inp_ppcb == NULL)
 1136                                 bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
 1137                         else if (inp->inp_flags & INP_TIMEWAIT) {
 1138                                 bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
 1139                                 xt.xt_tp.t_state = TCPS_TIME_WAIT;
 1140                         } else
 1141                                 bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp);
 1142                         if (inp->inp_socket != NULL)
 1143                                 sotoxsocket(inp->inp_socket, &xt.xt_socket);
 1144                         else {
 1145                                 bzero(&xt.xt_socket, sizeof xt.xt_socket);
 1146                                 xt.xt_socket.xso_protocol = IPPROTO_TCP;
 1147                         }
 1148                         xt.xt_inp.inp_gencnt = inp->inp_gencnt;
 1149                         INP_RUNLOCK(inp);
 1150                         error = SYSCTL_OUT(req, &xt, sizeof xt);
 1151                 } else
 1152                         INP_RUNLOCK(inp);
 1153         
 1154         }
 1155         if (!error) {
 1156                 /*
 1157                  * Give the user an updated idea of our state.
 1158                  * If the generation differs from what we told
 1159                  * her before, she knows that something happened
 1160                  * while we were processing this request, and it
 1161                  * might be necessary to retry.
 1162                  */
 1163                 INP_INFO_RLOCK(&V_tcbinfo);
 1164                 xig.xig_gen = V_tcbinfo.ipi_gencnt;
 1165                 xig.xig_sogen = so_gencnt;
 1166                 xig.xig_count = V_tcbinfo.ipi_count + pcb_count;
 1167                 INP_INFO_RUNLOCK(&V_tcbinfo);
 1168                 error = SYSCTL_OUT(req, &xig, sizeof xig);
 1169         }
 1170         free(inp_list, M_TEMP);
 1171         return (error);
 1172 }
 1173 
 1174 SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist, CTLFLAG_RD, 0, 0,
 1175     tcp_pcblist, "S,xtcpcb", "List of active TCP connections");
 1176 
 1177 static int
 1178 tcp_getcred(SYSCTL_HANDLER_ARGS)
 1179 {
 1180         struct xucred xuc;
 1181         struct sockaddr_in addrs[2];
 1182         struct inpcb *inp;
 1183         int error;
 1184 
 1185         error = priv_check(req->td, PRIV_NETINET_GETCRED);
 1186         if (error)
 1187                 return (error);
 1188         error = SYSCTL_IN(req, addrs, sizeof(addrs));
 1189         if (error)
 1190                 return (error);
 1191         INP_INFO_RLOCK(&V_tcbinfo);
 1192         inp = in_pcblookup_hash(&V_tcbinfo, addrs[1].sin_addr,
 1193             addrs[1].sin_port, addrs[0].sin_addr, addrs[0].sin_port, 0, NULL);
 1194         if (inp != NULL) {
 1195                 INP_RLOCK(inp);
 1196                 INP_INFO_RUNLOCK(&V_tcbinfo);
 1197                 if (inp->inp_socket == NULL)
 1198                         error = ENOENT;
 1199                 if (error == 0)
 1200                         error = cr_canseeinpcb(req->td->td_ucred, inp);
 1201                 if (error == 0)
 1202                         cru2x(inp->inp_cred, &xuc);
 1203                 INP_RUNLOCK(inp);
 1204         } else {
 1205                 INP_INFO_RUNLOCK(&V_tcbinfo);
 1206                 error = ENOENT;
 1207         }
 1208         if (error == 0)
 1209                 error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
 1210         return (error);
 1211 }
 1212 
 1213 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred,
 1214     CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
 1215     tcp_getcred, "S,xucred", "Get the xucred of a TCP connection");
 1216 
 1217 #ifdef INET6
 1218 static int
 1219 tcp6_getcred(SYSCTL_HANDLER_ARGS)
 1220 {
 1221         struct xucred xuc;
 1222         struct sockaddr_in6 addrs[2];
 1223         struct inpcb *inp;
 1224         int error, mapped = 0;
 1225 
 1226         error = priv_check(req->td, PRIV_NETINET_GETCRED);
 1227         if (error)
 1228                 return (error);
 1229         error = SYSCTL_IN(req, addrs, sizeof(addrs));
 1230         if (error)
 1231                 return (error);
 1232         if ((error = sa6_embedscope(&addrs[0], V_ip6_use_defzone)) != 0 ||
 1233             (error = sa6_embedscope(&addrs[1], V_ip6_use_defzone)) != 0) {
 1234                 return (error);
 1235         }
 1236         if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) {
 1237                 if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr))
 1238                         mapped = 1;
 1239                 else
 1240                         return (EINVAL);
 1241         }
 1242 
 1243         INP_INFO_RLOCK(&V_tcbinfo);
 1244         if (mapped == 1)
 1245                 inp = in_pcblookup_hash(&V_tcbinfo,
 1246                         *(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12],
 1247                         addrs[1].sin6_port,
 1248                         *(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12],
 1249                         addrs[0].sin6_port,
 1250                         0, NULL);
 1251         else
 1252                 inp = in6_pcblookup_hash(&V_tcbinfo,
 1253                         &addrs[1].sin6_addr, addrs[1].sin6_port,
 1254                         &addrs[0].sin6_addr, addrs[0].sin6_port, 0, NULL);
 1255         if (inp != NULL) {
 1256                 INP_RLOCK(inp);
 1257                 INP_INFO_RUNLOCK(&V_tcbinfo);
 1258                 if (inp->inp_socket == NULL)
 1259                         error = ENOENT;
 1260                 if (error == 0)
 1261                         error = cr_canseeinpcb(req->td->td_ucred, inp);
 1262                 if (error == 0)
 1263                         cru2x(inp->inp_cred, &xuc);
 1264                 INP_RUNLOCK(inp);
 1265         } else {
 1266                 INP_INFO_RUNLOCK(&V_tcbinfo);
 1267                 error = ENOENT;
 1268         }
 1269         if (error == 0)
 1270                 error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
 1271         return (error);
 1272 }
 1273 
 1274 SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred,
 1275     CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
 1276     tcp6_getcred, "S,xucred", "Get the xucred of a TCP6 connection");
 1277 #endif
 1278 
 1279 
 1280 void
 1281 tcp_ctlinput(int cmd, struct sockaddr *sa, void *vip)
 1282 {
 1283         struct ip *ip = vip;
 1284         struct tcphdr *th;
 1285         struct in_addr faddr;
 1286         struct inpcb *inp;
 1287         struct tcpcb *tp;
 1288         struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
 1289         struct icmp *icp;
 1290         struct in_conninfo inc;
 1291         tcp_seq icmp_tcp_seq;
 1292         int mtu;
 1293 
 1294         faddr = ((struct sockaddr_in *)sa)->sin_addr;
 1295         if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
 1296                 return;
 1297 
 1298         if (cmd == PRC_MSGSIZE)
 1299                 notify = tcp_mtudisc;
 1300         else if (V_icmp_may_rst && (cmd == PRC_UNREACH_ADMIN_PROHIB ||
 1301                 cmd == PRC_UNREACH_PORT || cmd == PRC_TIMXCEED_INTRANS) && ip)
 1302                 notify = tcp_drop_syn_sent;
 1303         /*
 1304          * Redirects don't need to be handled up here.
 1305          */
 1306         else if (PRC_IS_REDIRECT(cmd))
 1307                 return;
 1308         /*
 1309          * Source quench is depreciated.
 1310          */
 1311         else if (cmd == PRC_QUENCH)
 1312                 return;
 1313         /*
 1314          * Hostdead is ugly because it goes linearly through all PCBs.
 1315          * XXX: We never get this from ICMP, otherwise it makes an
 1316          * excellent DoS attack on machines with many connections.
 1317          */
 1318         else if (cmd == PRC_HOSTDEAD)
 1319                 ip = NULL;
 1320         else if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0)
 1321                 return;
 1322         if (ip != NULL) {
 1323                 icp = (struct icmp *)((caddr_t)ip
 1324                                       - offsetof(struct icmp, icmp_ip));
 1325                 th = (struct tcphdr *)((caddr_t)ip
 1326                                        + (ip->ip_hl << 2));
 1327                 INP_INFO_WLOCK(&V_tcbinfo);
 1328                 inp = in_pcblookup_hash(&V_tcbinfo, faddr, th->th_dport,
 1329                     ip->ip_src, th->th_sport, 0, NULL);
 1330                 if (inp != NULL)  {
 1331                         INP_WLOCK(inp);
 1332                         if (!(inp->inp_flags & INP_TIMEWAIT) &&
 1333                             !(inp->inp_flags & INP_DROPPED) &&
 1334                             !(inp->inp_socket == NULL)) {
 1335                                 icmp_tcp_seq = htonl(th->th_seq);
 1336                                 tp = intotcpcb(inp);
 1337                                 if (SEQ_GEQ(icmp_tcp_seq, tp->snd_una) &&
 1338                                     SEQ_LT(icmp_tcp_seq, tp->snd_max)) {
 1339                                         if (cmd == PRC_MSGSIZE) {
 1340                                             /*
 1341                                              * MTU discovery:
 1342                                              * If we got a needfrag set the MTU
 1343                                              * in the route to the suggested new
 1344                                              * value (if given) and then notify.
 1345                                              */
 1346                                             bzero(&inc, sizeof(inc));
 1347                                             inc.inc_faddr = faddr;
 1348                                             inc.inc_fibnum =
 1349                                                 inp->inp_inc.inc_fibnum;
 1350 
 1351                                             mtu = ntohs(icp->icmp_nextmtu);
 1352                                             /*
 1353                                              * If no alternative MTU was
 1354                                              * proposed, try the next smaller
 1355                                              * one.  ip->ip_len has already
 1356                                              * been swapped in icmp_input().
 1357                                              */
 1358                                             if (!mtu)
 1359                                                 mtu = ip_next_mtu(ip->ip_len,
 1360                                                  1);
 1361                                             if (mtu < max(296, V_tcp_minmss
 1362                                                  + sizeof(struct tcpiphdr)))
 1363                                                 mtu = 0;
 1364                                             if (!mtu)
 1365                                                 mtu = V_tcp_mssdflt
 1366                                                  + sizeof(struct tcpiphdr);
 1367                                             /*
 1368                                              * Only cache the the MTU if it
 1369                                              * is smaller than the interface
 1370                                              * or route MTU.  tcp_mtudisc()
 1371                                              * will do right thing by itself.
 1372                                              */
 1373                                             if (mtu <= tcp_maxmtu(&inc, NULL))
 1374                                                 tcp_hc_updatemtu(&inc, mtu);
 1375                                         }
 1376 
 1377                                         inp = (*notify)(inp, inetctlerrmap[cmd]);
 1378                                 }
 1379                         }
 1380                         if (inp != NULL)
 1381                                 INP_WUNLOCK(inp);
 1382                 } else {
 1383                         bzero(&inc, sizeof(inc));
 1384                         inc.inc_fport = th->th_dport;
 1385                         inc.inc_lport = th->th_sport;
 1386                         inc.inc_faddr = faddr;
 1387                         inc.inc_laddr = ip->ip_src;
 1388                         syncache_unreach(&inc, th);
 1389                 }
 1390                 INP_INFO_WUNLOCK(&V_tcbinfo);
 1391         } else
 1392                 in_pcbnotifyall(&V_tcbinfo, faddr, inetctlerrmap[cmd], notify);
 1393 }
 1394 
 1395 #ifdef INET6
 1396 void
 1397 tcp6_ctlinput(int cmd, struct sockaddr *sa, void *d)
 1398 {
 1399         struct tcphdr th;
 1400         struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
 1401         struct ip6_hdr *ip6;
 1402         struct mbuf *m;
 1403         struct ip6ctlparam *ip6cp = NULL;
 1404         const struct sockaddr_in6 *sa6_src = NULL;
 1405         int off;
 1406         struct tcp_portonly {
 1407                 u_int16_t th_sport;
 1408                 u_int16_t th_dport;
 1409         } *thp;
 1410 
 1411         if (sa->sa_family != AF_INET6 ||
 1412             sa->sa_len != sizeof(struct sockaddr_in6))
 1413                 return;
 1414 
 1415         if (cmd == PRC_MSGSIZE)
 1416                 notify = tcp_mtudisc;
 1417         else if (!PRC_IS_REDIRECT(cmd) &&
 1418                  ((unsigned)cmd >= PRC_NCMDS || inet6ctlerrmap[cmd] == 0))
 1419                 return;
 1420         /* Source quench is depreciated. */
 1421         else if (cmd == PRC_QUENCH)
 1422                 return;
 1423 
 1424         /* if the parameter is from icmp6, decode it. */
 1425         if (d != NULL) {
 1426                 ip6cp = (struct ip6ctlparam *)d;
 1427                 m = ip6cp->ip6c_m;
 1428                 ip6 = ip6cp->ip6c_ip6;
 1429                 off = ip6cp->ip6c_off;
 1430                 sa6_src = ip6cp->ip6c_src;
 1431         } else {
 1432                 m = NULL;
 1433                 ip6 = NULL;
 1434                 off = 0;        /* fool gcc */
 1435                 sa6_src = &sa6_any;
 1436         }
 1437 
 1438         if (ip6 != NULL) {
 1439                 struct in_conninfo inc;
 1440                 /*
 1441                  * XXX: We assume that when IPV6 is non NULL,
 1442                  * M and OFF are valid.
 1443                  */
 1444 
 1445                 /* check if we can safely examine src and dst ports */
 1446                 if (m->m_pkthdr.len < off + sizeof(*thp))
 1447                         return;
 1448 
 1449                 bzero(&th, sizeof(th));
 1450                 m_copydata(m, off, sizeof(*thp), (caddr_t)&th);
 1451 
 1452                 in6_pcbnotify(&V_tcbinfo, sa, th.th_dport,
 1453                     (struct sockaddr *)ip6cp->ip6c_src,
 1454                     th.th_sport, cmd, NULL, notify);
 1455 
 1456                 bzero(&inc, sizeof(inc));
 1457                 inc.inc_fport = th.th_dport;
 1458                 inc.inc_lport = th.th_sport;
 1459                 inc.inc6_faddr = ((struct sockaddr_in6 *)sa)->sin6_addr;
 1460                 inc.inc6_laddr = ip6cp->ip6c_src->sin6_addr;
 1461                 inc.inc_flags |= INC_ISIPV6;
 1462                 INP_INFO_WLOCK(&V_tcbinfo);
 1463                 syncache_unreach(&inc, &th);
 1464                 INP_INFO_WUNLOCK(&V_tcbinfo);
 1465         } else
 1466                 in6_pcbnotify(&V_tcbinfo, sa, 0, (const struct sockaddr *)sa6_src,
 1467                               0, cmd, NULL, notify);
 1468 }
 1469 #endif /* INET6 */
 1470 
 1471 
 1472 /*
 1473  * Following is where TCP initial sequence number generation occurs.
 1474  *
 1475  * There are two places where we must use initial sequence numbers:
 1476  * 1.  In SYN-ACK packets.
 1477  * 2.  In SYN packets.
 1478  *
 1479  * All ISNs for SYN-ACK packets are generated by the syncache.  See
 1480  * tcp_syncache.c for details.
 1481  *
 1482  * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
 1483  * depends on this property.  In addition, these ISNs should be
 1484  * unguessable so as to prevent connection hijacking.  To satisfy
 1485  * the requirements of this situation, the algorithm outlined in
 1486  * RFC 1948 is used, with only small modifications.
 1487  *
 1488  * Implementation details:
 1489  *
 1490  * Time is based off the system timer, and is corrected so that it
 1491  * increases by one megabyte per second.  This allows for proper
 1492  * recycling on high speed LANs while still leaving over an hour
 1493  * before rollover.
 1494  *
 1495  * As reading the *exact* system time is too expensive to be done
 1496  * whenever setting up a TCP connection, we increment the time
 1497  * offset in two ways.  First, a small random positive increment
 1498  * is added to isn_offset for each connection that is set up.
 1499  * Second, the function tcp_isn_tick fires once per clock tick
 1500  * and increments isn_offset as necessary so that sequence numbers
 1501  * are incremented at approximately ISN_BYTES_PER_SECOND.  The
 1502  * random positive increments serve only to ensure that the same
 1503  * exact sequence number is never sent out twice (as could otherwise
 1504  * happen when a port is recycled in less than the system tick
 1505  * interval.)
 1506  *
 1507  * net.inet.tcp.isn_reseed_interval controls the number of seconds
 1508  * between seeding of isn_secret.  This is normally set to zero,
 1509  * as reseeding should not be necessary.
 1510  *
 1511  * Locking of the global variables isn_secret, isn_last_reseed, isn_offset,
 1512  * isn_offset_old, and isn_ctx is performed using the TCP pcbinfo lock.  In
 1513  * general, this means holding an exclusive (write) lock.
 1514  */
 1515 
 1516 #define ISN_BYTES_PER_SECOND 1048576
 1517 #define ISN_STATIC_INCREMENT 4096
 1518 #define ISN_RANDOM_INCREMENT (4096 - 1)
 1519 
 1520 static VNET_DEFINE(u_char, isn_secret[32]);
 1521 static VNET_DEFINE(int, isn_last_reseed);
 1522 static VNET_DEFINE(u_int32_t, isn_offset);
 1523 static VNET_DEFINE(u_int32_t, isn_offset_old);
 1524 
 1525 #define V_isn_secret                    VNET(isn_secret)
 1526 #define V_isn_last_reseed               VNET(isn_last_reseed)
 1527 #define V_isn_offset                    VNET(isn_offset)
 1528 #define V_isn_offset_old                VNET(isn_offset_old)
 1529 
 1530 tcp_seq
 1531 tcp_new_isn(struct tcpcb *tp)
 1532 {
 1533         MD5_CTX isn_ctx;
 1534         u_int32_t md5_buffer[4];
 1535         tcp_seq new_isn;
 1536 
 1537         INP_WLOCK_ASSERT(tp->t_inpcb);
 1538 
 1539         ISN_LOCK();
 1540         /* Seed if this is the first use, reseed if requested. */
 1541         if ((V_isn_last_reseed == 0) || ((V_tcp_isn_reseed_interval > 0) &&
 1542              (((u_int)V_isn_last_reseed + (u_int)V_tcp_isn_reseed_interval*hz)
 1543                 < (u_int)ticks))) {
 1544                 read_random(&V_isn_secret, sizeof(V_isn_secret));
 1545                 V_isn_last_reseed = ticks;
 1546         }
 1547 
 1548         /* Compute the md5 hash and return the ISN. */
 1549         MD5Init(&isn_ctx);
 1550         MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_fport, sizeof(u_short));
 1551         MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_lport, sizeof(u_short));
 1552 #ifdef INET6
 1553         if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0) {
 1554                 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr,
 1555                           sizeof(struct in6_addr));
 1556                 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr,
 1557                           sizeof(struct in6_addr));
 1558         } else
 1559 #endif
 1560         {
 1561                 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr,
 1562                           sizeof(struct in_addr));
 1563                 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr,
 1564                           sizeof(struct in_addr));
 1565         }
 1566         MD5Update(&isn_ctx, (u_char *) &V_isn_secret, sizeof(V_isn_secret));
 1567         MD5Final((u_char *) &md5_buffer, &isn_ctx);
 1568         new_isn = (tcp_seq) md5_buffer[0];
 1569         V_isn_offset += ISN_STATIC_INCREMENT +
 1570                 (arc4random() & ISN_RANDOM_INCREMENT);
 1571         new_isn += V_isn_offset;
 1572         ISN_UNLOCK();
 1573         return (new_isn);
 1574 }
 1575 
 1576 /*
 1577  * Increment the offset to the next ISN_BYTES_PER_SECOND / 100 boundary
 1578  * to keep time flowing at a relatively constant rate.  If the random
 1579  * increments have already pushed us past the projected offset, do nothing.
 1580  */
 1581 static void
 1582 tcp_isn_tick(void *xtp)
 1583 {
 1584         VNET_ITERATOR_DECL(vnet_iter);
 1585         u_int32_t projected_offset;
 1586 
 1587         VNET_LIST_RLOCK_NOSLEEP();
 1588         ISN_LOCK();
 1589         VNET_FOREACH(vnet_iter) {
 1590                 CURVNET_SET(vnet_iter); /* XXX appease INVARIANTS */
 1591                 projected_offset =
 1592                     V_isn_offset_old + ISN_BYTES_PER_SECOND / 100;
 1593 
 1594                 if (SEQ_GT(projected_offset, V_isn_offset))
 1595                         V_isn_offset = projected_offset;
 1596 
 1597                 V_isn_offset_old = V_isn_offset;
 1598                 CURVNET_RESTORE();
 1599         }
 1600         ISN_UNLOCK();
 1601         VNET_LIST_RUNLOCK_NOSLEEP();
 1602         callout_reset(&isn_callout, hz/100, tcp_isn_tick, NULL);
 1603 }
 1604 
 1605 /*
 1606  * When a specific ICMP unreachable message is received and the
 1607  * connection state is SYN-SENT, drop the connection.  This behavior
 1608  * is controlled by the icmp_may_rst sysctl.
 1609  */
 1610 struct inpcb *
 1611 tcp_drop_syn_sent(struct inpcb *inp, int errno)
 1612 {
 1613         struct tcpcb *tp;
 1614 
 1615         INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
 1616         INP_WLOCK_ASSERT(inp);
 1617 
 1618         if ((inp->inp_flags & INP_TIMEWAIT) ||
 1619             (inp->inp_flags & INP_DROPPED))
 1620                 return (inp);
 1621 
 1622         tp = intotcpcb(inp);
 1623         if (tp->t_state != TCPS_SYN_SENT)
 1624                 return (inp);
 1625 
 1626         tp = tcp_drop(tp, errno);
 1627         if (tp != NULL)
 1628                 return (inp);
 1629         else
 1630                 return (NULL);
 1631 }
 1632 
 1633 /*
 1634  * When `need fragmentation' ICMP is received, update our idea of the MSS
 1635  * based on the new value in the route.  Also nudge TCP to send something,
 1636  * since we know the packet we just sent was dropped.
 1637  * This duplicates some code in the tcp_mss() function in tcp_input.c.
 1638  */
 1639 struct inpcb *
 1640 tcp_mtudisc(struct inpcb *inp, int errno)
 1641 {
 1642         struct tcpcb *tp;
 1643         struct socket *so;
 1644 
 1645         INP_WLOCK_ASSERT(inp);
 1646         if ((inp->inp_flags & INP_TIMEWAIT) ||
 1647             (inp->inp_flags & INP_DROPPED))
 1648                 return (inp);
 1649 
 1650         tp = intotcpcb(inp);
 1651         KASSERT(tp != NULL, ("tcp_mtudisc: tp == NULL"));
 1652 
 1653         tcp_mss_update(tp, -1, NULL, NULL);
 1654   
 1655         so = inp->inp_socket;
 1656         SOCKBUF_LOCK(&so->so_snd);
 1657         /* If the mss is larger than the socket buffer, decrease the mss. */
 1658         if (so->so_snd.sb_hiwat < tp->t_maxseg)
 1659                 tp->t_maxseg = so->so_snd.sb_hiwat;
 1660         SOCKBUF_UNLOCK(&so->so_snd);
 1661 
 1662         TCPSTAT_INC(tcps_mturesent);
 1663         tp->t_rtttime = 0;
 1664         tp->snd_nxt = tp->snd_una;
 1665         tcp_free_sackholes(tp);
 1666         tp->snd_recover = tp->snd_max;
 1667         if (tp->t_flags & TF_SACK_PERMIT)
 1668                 EXIT_FASTRECOVERY(tp);
 1669         tcp_output_send(tp);
 1670         return (inp);
 1671 }
 1672 
 1673 /*
 1674  * Look-up the routing entry to the peer of this inpcb.  If no route
 1675  * is found and it cannot be allocated, then return 0.  This routine
 1676  * is called by TCP routines that access the rmx structure and by
 1677  * tcp_mss_update to get the peer/interface MTU.
 1678  */
 1679 u_long
 1680 tcp_maxmtu(struct in_conninfo *inc, int *flags)
 1681 {
 1682         struct route sro;
 1683         struct sockaddr_in *dst;
 1684         struct ifnet *ifp;
 1685         u_long maxmtu = 0;
 1686 
 1687         KASSERT(inc != NULL, ("tcp_maxmtu with NULL in_conninfo pointer"));
 1688 
 1689         bzero(&sro, sizeof(sro));
 1690         if (inc->inc_faddr.s_addr != INADDR_ANY) {
 1691                 dst = (struct sockaddr_in *)&sro.ro_dst;
 1692                 dst->sin_family = AF_INET;
 1693                 dst->sin_len = sizeof(*dst);
 1694                 dst->sin_addr = inc->inc_faddr;
 1695                 in_rtalloc_ign(&sro, 0, inc->inc_fibnum);
 1696         }
 1697         if (sro.ro_rt != NULL) {
 1698                 ifp = sro.ro_rt->rt_ifp;
 1699                 if (sro.ro_rt->rt_rmx.rmx_mtu == 0)
 1700                         maxmtu = ifp->if_mtu;
 1701                 else
 1702                         maxmtu = min(sro.ro_rt->rt_rmx.rmx_mtu, ifp->if_mtu);
 1703 
 1704                 /* Report additional interface capabilities. */
 1705                 if (flags != NULL) {
 1706                         if (ifp->if_capenable & IFCAP_TSO4 &&
 1707                             ifp->if_hwassist & CSUM_TSO)
 1708                                 *flags |= CSUM_TSO;
 1709                 }
 1710                 RTFREE(sro.ro_rt);
 1711         }
 1712         return (maxmtu);
 1713 }
 1714 
 1715 #ifdef INET6
 1716 u_long
 1717 tcp_maxmtu6(struct in_conninfo *inc, int *flags)
 1718 {
 1719         struct route_in6 sro6;
 1720         struct ifnet *ifp;
 1721         u_long maxmtu = 0;
 1722 
 1723         KASSERT(inc != NULL, ("tcp_maxmtu6 with NULL in_conninfo pointer"));
 1724 
 1725         bzero(&sro6, sizeof(sro6));
 1726         if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) {
 1727                 sro6.ro_dst.sin6_family = AF_INET6;
 1728                 sro6.ro_dst.sin6_len = sizeof(struct sockaddr_in6);
 1729                 sro6.ro_dst.sin6_addr = inc->inc6_faddr;
 1730                 rtalloc_ign((struct route *)&sro6, 0);
 1731         }
 1732         if (sro6.ro_rt != NULL) {
 1733                 ifp = sro6.ro_rt->rt_ifp;
 1734                 if (sro6.ro_rt->rt_rmx.rmx_mtu == 0)
 1735                         maxmtu = IN6_LINKMTU(sro6.ro_rt->rt_ifp);
 1736                 else
 1737                         maxmtu = min(sro6.ro_rt->rt_rmx.rmx_mtu,
 1738                                      IN6_LINKMTU(sro6.ro_rt->rt_ifp));
 1739 
 1740                 /* Report additional interface capabilities. */
 1741                 if (flags != NULL) {
 1742                         if (ifp->if_capenable & IFCAP_TSO6 &&
 1743                             ifp->if_hwassist & CSUM_TSO)
 1744                                 *flags |= CSUM_TSO;
 1745                 }
 1746                 RTFREE(sro6.ro_rt);
 1747         }
 1748 
 1749         return (maxmtu);
 1750 }
 1751 #endif /* INET6 */
 1752 
 1753 #ifdef IPSEC
 1754 /* compute ESP/AH header size for TCP, including outer IP header. */
 1755 size_t
 1756 ipsec_hdrsiz_tcp(struct tcpcb *tp)
 1757 {
 1758         struct inpcb *inp;
 1759         struct mbuf *m;
 1760         size_t hdrsiz;
 1761         struct ip *ip;
 1762 #ifdef INET6
 1763         struct ip6_hdr *ip6;
 1764 #endif
 1765         struct tcphdr *th;
 1766 
 1767         if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL))
 1768                 return (0);
 1769         MGETHDR(m, M_DONTWAIT, MT_DATA);
 1770         if (!m)
 1771                 return (0);
 1772 
 1773 #ifdef INET6
 1774         if ((inp->inp_vflag & INP_IPV6) != 0) {
 1775                 ip6 = mtod(m, struct ip6_hdr *);
 1776                 th = (struct tcphdr *)(ip6 + 1);
 1777                 m->m_pkthdr.len = m->m_len =
 1778                         sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
 1779                 tcpip_fillheaders(inp, ip6, th);
 1780                 hdrsiz = ipsec_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
 1781         } else
 1782 #endif /* INET6 */
 1783         {
 1784                 ip = mtod(m, struct ip *);
 1785                 th = (struct tcphdr *)(ip + 1);
 1786                 m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr);
 1787                 tcpip_fillheaders(inp, ip, th);
 1788                 hdrsiz = ipsec_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
 1789         }
 1790 
 1791         m_free(m);
 1792         return (hdrsiz);
 1793 }
 1794 #endif /* IPSEC */
 1795 
 1796 /*
 1797  * TCP BANDWIDTH DELAY PRODUCT WINDOW LIMITING
 1798  *
 1799  * This code attempts to calculate the bandwidth-delay product as a
 1800  * means of determining the optimal window size to maximize bandwidth,
 1801  * minimize RTT, and avoid the over-allocation of buffers on interfaces and
 1802  * routers.  This code also does a fairly good job keeping RTTs in check
 1803  * across slow links like modems.  We implement an algorithm which is very
 1804  * similar (but not meant to be) TCP/Vegas.  The code operates on the
 1805  * transmitter side of a TCP connection and so only effects the transmit
 1806  * side of the connection.
 1807  *
 1808  * BACKGROUND:  TCP makes no provision for the management of buffer space
 1809  * at the end points or at the intermediate routers and switches.  A TCP
 1810  * stream, whether using NewReno or not, will eventually buffer as
 1811  * many packets as it is able and the only reason this typically works is
 1812  * due to the fairly small default buffers made available for a connection
 1813  * (typicaly 16K or 32K).  As machines use larger windows and/or window
 1814  * scaling it is now fairly easy for even a single TCP connection to blow-out
 1815  * all available buffer space not only on the local interface, but on
 1816  * intermediate routers and switches as well.  NewReno makes a misguided
 1817  * attempt to 'solve' this problem by waiting for an actual failure to occur,
 1818  * then backing off, then steadily increasing the window again until another
 1819  * failure occurs, ad-infinitum.  This results in terrible oscillation that
 1820  * is only made worse as network loads increase and the idea of intentionally
 1821  * blowing out network buffers is, frankly, a terrible way to manage network
 1822  * resources.
 1823  *
 1824  * It is far better to limit the transmit window prior to the failure
 1825  * condition being achieved.  There are two general ways to do this:  First
 1826  * you can 'scan' through different transmit window sizes and locate the
 1827  * point where the RTT stops increasing, indicating that you have filled the
 1828  * pipe, then scan backwards until you note that RTT stops decreasing, then
 1829  * repeat ad-infinitum.  This method works in principle but has severe
 1830  * implementation issues due to RTT variances, timer granularity, and
 1831  * instability in the algorithm which can lead to many false positives and
 1832  * create oscillations as well as interact badly with other TCP streams
 1833  * implementing the same algorithm.
 1834  *
 1835  * The second method is to limit the window to the bandwidth delay product
 1836  * of the link.  This is the method we implement.  RTT variances and our
 1837  * own manipulation of the congestion window, bwnd, can potentially
 1838  * destabilize the algorithm.  For this reason we have to stabilize the
 1839  * elements used to calculate the window.  We do this by using the minimum
 1840  * observed RTT, the long term average of the observed bandwidth, and
 1841  * by adding two segments worth of slop.  It isn't perfect but it is able
 1842  * to react to changing conditions and gives us a very stable basis on
 1843  * which to extend the algorithm.
 1844  */
 1845 void
 1846 tcp_xmit_bandwidth_limit(struct tcpcb *tp, tcp_seq ack_seq)
 1847 {
 1848         u_long bw;
 1849         u_long bwnd;
 1850         int save_ticks;
 1851 
 1852         INP_WLOCK_ASSERT(tp->t_inpcb);
 1853 
 1854         /*
 1855          * If inflight_enable is disabled in the middle of a tcp connection,
 1856          * make sure snd_bwnd is effectively disabled.
 1857          */
 1858         if (V_tcp_inflight_enable == 0 ||
 1859             tp->t_rttlow < V_tcp_inflight_rttthresh) {
 1860                 tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
 1861                 tp->snd_bandwidth = 0;
 1862                 return;
 1863         }
 1864 
 1865         /*
 1866          * Figure out the bandwidth.  Due to the tick granularity this
 1867          * is a very rough number and it MUST be averaged over a fairly
 1868          * long period of time.  XXX we need to take into account a link
 1869          * that is not using all available bandwidth, but for now our
 1870          * slop will ramp us up if this case occurs and the bandwidth later
 1871          * increases.
 1872          *
 1873          * Note: if ticks rollover 'bw' may wind up negative.  We must
 1874          * effectively reset t_bw_rtttime for this case.
 1875          */
 1876         save_ticks = ticks;
 1877         if ((u_int)(save_ticks - tp->t_bw_rtttime) < 1)
 1878                 return;
 1879 
 1880         bw = (int64_t)(ack_seq - tp->t_bw_rtseq) * hz /
 1881             (save_ticks - tp->t_bw_rtttime);
 1882         tp->t_bw_rtttime = save_ticks;
 1883         tp->t_bw_rtseq = ack_seq;
 1884         if (tp->t_bw_rtttime == 0 || (int)bw < 0)
 1885                 return;
 1886         bw = ((int64_t)tp->snd_bandwidth * 15 + bw) >> 4;
 1887 
 1888         tp->snd_bandwidth = bw;
 1889 
 1890         /*
 1891          * Calculate the semi-static bandwidth delay product, plus two maximal
 1892          * segments.  The additional slop puts us squarely in the sweet
 1893          * spot and also handles the bandwidth run-up case and stabilization.
 1894          * Without the slop we could be locking ourselves into a lower
 1895          * bandwidth.
 1896          *
 1897          * Situations Handled:
 1898          *      (1) Prevents over-queueing of packets on LANs, especially on
 1899          *          high speed LANs, allowing larger TCP buffers to be
 1900          *          specified, and also does a good job preventing
 1901          *          over-queueing of packets over choke points like modems
 1902          *          (at least for the transmit side).
 1903          *
 1904          *      (2) Is able to handle changing network loads (bandwidth
 1905          *          drops so bwnd drops, bandwidth increases so bwnd
 1906          *          increases).
 1907          *
 1908          *      (3) Theoretically should stabilize in the face of multiple
 1909          *          connections implementing the same algorithm (this may need
 1910          *          a little work).
 1911          *
 1912          *      (4) Stability value (defaults to 20 = 2 maximal packets) can
 1913          *          be adjusted with a sysctl but typically only needs to be
 1914          *          on very slow connections.  A value no smaller then 5
 1915          *          should be used, but only reduce this default if you have
 1916          *          no other choice.
 1917          */
 1918 #define USERTT  ((tp->t_srtt + tp->t_rttbest) / 2)
 1919         bwnd = (int64_t)bw * USERTT / (hz << TCP_RTT_SHIFT) + V_tcp_inflight_stab * tp->t_maxseg / 10;
 1920 #undef USERTT
 1921 
 1922         if (tcp_inflight_debug > 0) {
 1923                 static int ltime;
 1924                 if ((u_int)(ticks - ltime) >= hz / tcp_inflight_debug) {
 1925                         ltime = ticks;
 1926                         printf("%p bw %ld rttbest %d srtt %d bwnd %ld\n",
 1927                             tp,
 1928                             bw,
 1929                             tp->t_rttbest,
 1930                             tp->t_srtt,
 1931                             bwnd
 1932                         );
 1933                 }
 1934         }
 1935         if ((long)bwnd < V_tcp_inflight_min)
 1936                 bwnd = V_tcp_inflight_min;
 1937         if (bwnd > V_tcp_inflight_max)
 1938                 bwnd = V_tcp_inflight_max;
 1939         if ((long)bwnd < tp->t_maxseg * 2)
 1940                 bwnd = tp->t_maxseg * 2;
 1941         tp->snd_bwnd = bwnd;
 1942 }
 1943 
 1944 #ifdef TCP_SIGNATURE
 1945 /*
 1946  * Callback function invoked by m_apply() to digest TCP segment data
 1947  * contained within an mbuf chain.
 1948  */
 1949 static int
 1950 tcp_signature_apply(void *fstate, void *data, u_int len)
 1951 {
 1952 
 1953         MD5Update(fstate, (u_char *)data, len);
 1954         return (0);
 1955 }
 1956 
 1957 /*
 1958  * Compute TCP-MD5 hash of a TCP segment. (RFC2385)
 1959  *
 1960  * Parameters:
 1961  * m            pointer to head of mbuf chain
 1962  * _unused      
 1963  * len          length of TCP segment data, excluding options
 1964  * optlen       length of TCP segment options
 1965  * buf          pointer to storage for computed MD5 digest
 1966  * direction    direction of flow (IPSEC_DIR_INBOUND or OUTBOUND)
 1967  *
 1968  * We do this over ip, tcphdr, segment data, and the key in the SADB.
 1969  * When called from tcp_input(), we can be sure that th_sum has been
 1970  * zeroed out and verified already.
 1971  *
 1972  * Return 0 if successful, otherwise return -1.
 1973  *
 1974  * XXX The key is retrieved from the system's PF_KEY SADB, by keying a
 1975  * search with the destination IP address, and a 'magic SPI' to be
 1976  * determined by the application. This is hardcoded elsewhere to 1179
 1977  * right now. Another branch of this code exists which uses the SPD to
 1978  * specify per-application flows but it is unstable.
 1979  */
 1980 int
 1981 tcp_signature_compute(struct mbuf *m, int _unused, int len, int optlen,
 1982     u_char *buf, u_int direction)
 1983 {
 1984         union sockaddr_union dst;
 1985         struct ippseudo ippseudo;
 1986         MD5_CTX ctx;
 1987         int doff;
 1988         struct ip *ip;
 1989         struct ipovly *ipovly;
 1990         struct secasvar *sav;
 1991         struct tcphdr *th;
 1992 #ifdef INET6
 1993         struct ip6_hdr *ip6;
 1994         struct in6_addr in6;
 1995         char ip6buf[INET6_ADDRSTRLEN];
 1996         uint32_t plen;
 1997         uint16_t nhdr;
 1998 #endif
 1999         u_short savecsum;
 2000 
 2001         KASSERT(m != NULL, ("NULL mbuf chain"));
 2002         KASSERT(buf != NULL, ("NULL signature pointer"));
 2003 
 2004         /* Extract the destination from the IP header in the mbuf. */
 2005         bzero(&dst, sizeof(union sockaddr_union));
 2006         ip = mtod(m, struct ip *);
 2007 #ifdef INET6
 2008         ip6 = NULL;     /* Make the compiler happy. */
 2009 #endif
 2010         switch (ip->ip_v) {
 2011         case IPVERSION:
 2012                 dst.sa.sa_len = sizeof(struct sockaddr_in);
 2013                 dst.sa.sa_family = AF_INET;
 2014                 dst.sin.sin_addr = (direction == IPSEC_DIR_INBOUND) ?
 2015                     ip->ip_src : ip->ip_dst;
 2016                 break;
 2017 #ifdef INET6
 2018         case (IPV6_VERSION >> 4):
 2019                 ip6 = mtod(m, struct ip6_hdr *);
 2020                 dst.sa.sa_len = sizeof(struct sockaddr_in6);
 2021                 dst.sa.sa_family = AF_INET6;
 2022                 dst.sin6.sin6_addr = (direction == IPSEC_DIR_INBOUND) ?
 2023                     ip6->ip6_src : ip6->ip6_dst;
 2024                 break;
 2025 #endif
 2026         default:
 2027                 return (EINVAL);
 2028                 /* NOTREACHED */
 2029                 break;
 2030         }
 2031 
 2032         /* Look up an SADB entry which matches the address of the peer. */
 2033         sav = KEY_ALLOCSA(&dst, IPPROTO_TCP, htonl(TCP_SIG_SPI));
 2034         if (sav == NULL) {
 2035                 ipseclog((LOG_ERR, "%s: SADB lookup failed for %s\n", __func__,
 2036                     (ip->ip_v == IPVERSION) ? inet_ntoa(dst.sin.sin_addr) :
 2037 #ifdef INET6
 2038                         (ip->ip_v == (IPV6_VERSION >> 4)) ?
 2039                             ip6_sprintf(ip6buf, &dst.sin6.sin6_addr) :
 2040 #endif
 2041                         "(unsupported)"));
 2042                 return (EINVAL);
 2043         }
 2044 
 2045         MD5Init(&ctx);
 2046         /*
 2047          * Step 1: Update MD5 hash with IP(v6) pseudo-header.
 2048          *
 2049          * XXX The ippseudo header MUST be digested in network byte order,
 2050          * or else we'll fail the regression test. Assume all fields we've
 2051          * been doing arithmetic on have been in host byte order.
 2052          * XXX One cannot depend on ipovly->ih_len here. When called from
 2053          * tcp_output(), the underlying ip_len member has not yet been set.
 2054          */
 2055         switch (ip->ip_v) {
 2056         case IPVERSION:
 2057                 ipovly = (struct ipovly *)ip;
 2058                 ippseudo.ippseudo_src = ipovly->ih_src;
 2059                 ippseudo.ippseudo_dst = ipovly->ih_dst;
 2060                 ippseudo.ippseudo_pad = 0;
 2061                 ippseudo.ippseudo_p = IPPROTO_TCP;
 2062                 ippseudo.ippseudo_len = htons(len + sizeof(struct tcphdr) +
 2063                     optlen);
 2064                 MD5Update(&ctx, (char *)&ippseudo, sizeof(struct ippseudo));
 2065 
 2066                 th = (struct tcphdr *)((u_char *)ip + sizeof(struct ip));
 2067                 doff = sizeof(struct ip) + sizeof(struct tcphdr) + optlen;
 2068                 break;
 2069 #ifdef INET6
 2070         /*
 2071          * RFC 2385, 2.0  Proposal
 2072          * For IPv6, the pseudo-header is as described in RFC 2460, namely the
 2073          * 128-bit source IPv6 address, 128-bit destination IPv6 address, zero-
 2074          * extended next header value (to form 32 bits), and 32-bit segment
 2075          * length.
 2076          * Note: Upper-Layer Packet Length comes before Next Header.
 2077          */
 2078         case (IPV6_VERSION >> 4):
 2079                 in6 = ip6->ip6_src;
 2080                 in6_clearscope(&in6);
 2081                 MD5Update(&ctx, (char *)&in6, sizeof(struct in6_addr));
 2082                 in6 = ip6->ip6_dst;
 2083                 in6_clearscope(&in6);
 2084                 MD5Update(&ctx, (char *)&in6, sizeof(struct in6_addr));
 2085                 plen = htonl(len + sizeof(struct tcphdr) + optlen);
 2086                 MD5Update(&ctx, (char *)&plen, sizeof(uint32_t));
 2087                 nhdr = 0;
 2088                 MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
 2089                 MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
 2090                 MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
 2091                 nhdr = IPPROTO_TCP;
 2092                 MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
 2093 
 2094                 th = (struct tcphdr *)((u_char *)ip6 + sizeof(struct ip6_hdr));
 2095                 doff = sizeof(struct ip6_hdr) + sizeof(struct tcphdr) + optlen;
 2096                 break;
 2097 #endif
 2098         default:
 2099                 return (EINVAL);
 2100                 /* NOTREACHED */
 2101                 break;
 2102         }
 2103 
 2104 
 2105         /*
 2106          * Step 2: Update MD5 hash with TCP header, excluding options.
 2107          * The TCP checksum must be set to zero.
 2108          */
 2109         savecsum = th->th_sum;
 2110         th->th_sum = 0;
 2111         MD5Update(&ctx, (char *)th, sizeof(struct tcphdr));
 2112         th->th_sum = savecsum;
 2113 
 2114         /*
 2115          * Step 3: Update MD5 hash with TCP segment data.
 2116          *         Use m_apply() to avoid an early m_pullup().
 2117          */
 2118         if (len > 0)
 2119                 m_apply(m, doff, len, tcp_signature_apply, &ctx);
 2120 
 2121         /*
 2122          * Step 4: Update MD5 hash with shared secret.
 2123          */
 2124         MD5Update(&ctx, sav->key_auth->key_data, _KEYLEN(sav->key_auth));
 2125         MD5Final(buf, &ctx);
 2126 
 2127         key_sa_recordxfer(sav, m);
 2128         KEY_FREESAV(&sav);
 2129         return (0);
 2130 }
 2131 #endif /* TCP_SIGNATURE */
 2132 
 2133 static int
 2134 sysctl_drop(SYSCTL_HANDLER_ARGS)
 2135 {
 2136         /* addrs[0] is a foreign socket, addrs[1] is a local one. */
 2137         struct sockaddr_storage addrs[2];
 2138         struct inpcb *inp;
 2139         struct tcpcb *tp;
 2140         struct tcptw *tw;
 2141         struct sockaddr_in *fin, *lin;
 2142 #ifdef INET6
 2143         struct sockaddr_in6 *fin6, *lin6;
 2144 #endif
 2145         int error;
 2146 
 2147         inp = NULL;
 2148         fin = lin = NULL;
 2149 #ifdef INET6
 2150         fin6 = lin6 = NULL;
 2151 #endif
 2152         error = 0;
 2153 
 2154         if (req->oldptr != NULL || req->oldlen != 0)
 2155                 return (EINVAL);
 2156         if (req->newptr == NULL)
 2157                 return (EPERM);
 2158         if (req->newlen < sizeof(addrs))
 2159                 return (ENOMEM);
 2160         error = SYSCTL_IN(req, &addrs, sizeof(addrs));
 2161         if (error)
 2162                 return (error);
 2163 
 2164         switch (addrs[0].ss_family) {
 2165 #ifdef INET6
 2166         case AF_INET6:
 2167                 fin6 = (struct sockaddr_in6 *)&addrs[0];
 2168                 lin6 = (struct sockaddr_in6 *)&addrs[1];
 2169                 if (fin6->sin6_len != sizeof(struct sockaddr_in6) ||
 2170                     lin6->sin6_len != sizeof(struct sockaddr_in6))
 2171                         return (EINVAL);
 2172                 if (IN6_IS_ADDR_V4MAPPED(&fin6->sin6_addr)) {
 2173                         if (!IN6_IS_ADDR_V4MAPPED(&lin6->sin6_addr))
 2174                                 return (EINVAL);
 2175                         in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[0]);
 2176                         in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[1]);
 2177                         fin = (struct sockaddr_in *)&addrs[0];
 2178                         lin = (struct sockaddr_in *)&addrs[1];
 2179                         break;
 2180                 }
 2181                 error = sa6_embedscope(fin6, V_ip6_use_defzone);
 2182                 if (error)
 2183                         return (error);
 2184                 error = sa6_embedscope(lin6, V_ip6_use_defzone);
 2185                 if (error)
 2186                         return (error);
 2187                 break;
 2188 #endif
 2189         case AF_INET:
 2190                 fin = (struct sockaddr_in *)&addrs[0];
 2191                 lin = (struct sockaddr_in *)&addrs[1];
 2192                 if (fin->sin_len != sizeof(struct sockaddr_in) ||
 2193                     lin->sin_len != sizeof(struct sockaddr_in))
 2194                         return (EINVAL);
 2195                 break;
 2196         default:
 2197                 return (EINVAL);
 2198         }
 2199         INP_INFO_WLOCK(&V_tcbinfo);
 2200         switch (addrs[0].ss_family) {
 2201 #ifdef INET6
 2202         case AF_INET6:
 2203                 inp = in6_pcblookup_hash(&V_tcbinfo, &fin6->sin6_addr,
 2204                     fin6->sin6_port, &lin6->sin6_addr, lin6->sin6_port, 0,
 2205                     NULL);
 2206                 break;
 2207 #endif
 2208         case AF_INET:
 2209                 inp = in_pcblookup_hash(&V_tcbinfo, fin->sin_addr,
 2210                     fin->sin_port, lin->sin_addr, lin->sin_port, 0, NULL);
 2211                 break;
 2212         }
 2213         if (inp != NULL) {
 2214                 INP_WLOCK(inp);
 2215                 if (inp->inp_flags & INP_TIMEWAIT) {
 2216                         /*
 2217                          * XXXRW: There currently exists a state where an
 2218                          * inpcb is present, but its timewait state has been
 2219                          * discarded.  For now, don't allow dropping of this
 2220                          * type of inpcb.
 2221                          */
 2222                         tw = intotw(inp);
 2223                         if (tw != NULL)
 2224                                 tcp_twclose(tw, 0);
 2225                         else
 2226                                 INP_WUNLOCK(inp);
 2227                 } else if (!(inp->inp_flags & INP_DROPPED) &&
 2228                            !(inp->inp_socket->so_options & SO_ACCEPTCONN)) {
 2229                         tp = intotcpcb(inp);
 2230                         tp = tcp_drop(tp, ECONNABORTED);
 2231                         if (tp != NULL)
 2232                                 INP_WUNLOCK(inp);
 2233                 } else
 2234                         INP_WUNLOCK(inp);
 2235         } else
 2236                 error = ESRCH;
 2237         INP_INFO_WUNLOCK(&V_tcbinfo);
 2238         return (error);
 2239 }
 2240 
 2241 SYSCTL_PROC(_net_inet_tcp, TCPCTL_DROP, drop,
 2242     CTLTYPE_STRUCT|CTLFLAG_WR|CTLFLAG_SKIP, NULL,
 2243     0, sysctl_drop, "", "Drop TCP connection");
 2244 
 2245 /*
 2246  * Generate a standardized TCP log line for use throughout the
 2247  * tcp subsystem.  Memory allocation is done with M_NOWAIT to
 2248  * allow use in the interrupt context.
 2249  *
 2250  * NB: The caller MUST free(s, M_TCPLOG) the returned string.
 2251  * NB: The function may return NULL if memory allocation failed.
 2252  *
 2253  * Due to header inclusion and ordering limitations the struct ip
 2254  * and ip6_hdr pointers have to be passed as void pointers.
 2255  */
 2256 char *
 2257 tcp_log_addrs(struct in_conninfo *inc, struct tcphdr *th, void *ip4hdr,
 2258     const void *ip6hdr)
 2259 {
 2260         char *s, *sp;
 2261         size_t size;
 2262         struct ip *ip;
 2263 #ifdef INET6
 2264         const struct ip6_hdr *ip6;
 2265 
 2266         ip6 = (const struct ip6_hdr *)ip6hdr;
 2267 #endif /* INET6 */
 2268         ip = (struct ip *)ip4hdr;
 2269 
 2270         /*
 2271          * The log line looks like this:
 2272          * "TCP: [1.2.3.4]:50332 to [1.2.3.4]:80 tcpflags 0x2<SYN>"
 2273          */
 2274         size = sizeof("TCP: []:12345 to []:12345 tcpflags 0x2<>") +
 2275             sizeof(PRINT_TH_FLAGS) + 1 +
 2276 #ifdef INET6
 2277             2 * INET6_ADDRSTRLEN;
 2278 #else
 2279             2 * INET_ADDRSTRLEN;
 2280 #endif /* INET6 */
 2281 
 2282         /* Is logging enabled? */
 2283         if (tcp_log_debug == 0 && tcp_log_in_vain == 0)
 2284                 return (NULL);
 2285 
 2286         s = malloc(size, M_TCPLOG, M_ZERO|M_NOWAIT);
 2287         if (s == NULL)
 2288                 return (NULL);
 2289 
 2290         strcat(s, "TCP: [");
 2291         sp = s + strlen(s);
 2292 
 2293         if (inc && ((inc->inc_flags & INC_ISIPV6) == 0)) {
 2294                 inet_ntoa_r(inc->inc_faddr, sp);
 2295                 sp = s + strlen(s);
 2296                 sprintf(sp, "]:%i to [", ntohs(inc->inc_fport));
 2297                 sp = s + strlen(s);
 2298                 inet_ntoa_r(inc->inc_laddr, sp);
 2299                 sp = s + strlen(s);
 2300                 sprintf(sp, "]:%i", ntohs(inc->inc_lport));
 2301 #ifdef INET6
 2302         } else if (inc) {
 2303                 ip6_sprintf(sp, &inc->inc6_faddr);
 2304                 sp = s + strlen(s);
 2305                 sprintf(sp, "]:%i to [", ntohs(inc->inc_fport));
 2306                 sp = s + strlen(s);
 2307                 ip6_sprintf(sp, &inc->inc6_laddr);
 2308                 sp = s + strlen(s);
 2309                 sprintf(sp, "]:%i", ntohs(inc->inc_lport));
 2310         } else if (ip6 && th) {
 2311                 ip6_sprintf(sp, &ip6->ip6_src);
 2312                 sp = s + strlen(s);
 2313                 sprintf(sp, "]:%i to [", ntohs(th->th_sport));
 2314                 sp = s + strlen(s);
 2315                 ip6_sprintf(sp, &ip6->ip6_dst);
 2316                 sp = s + strlen(s);
 2317                 sprintf(sp, "]:%i", ntohs(th->th_dport));
 2318 #endif /* INET6 */
 2319         } else if (ip && th) {
 2320                 inet_ntoa_r(ip->ip_src, sp);
 2321                 sp = s + strlen(s);
 2322                 sprintf(sp, "]:%i to [", ntohs(th->th_sport));
 2323                 sp = s + strlen(s);
 2324                 inet_ntoa_r(ip->ip_dst, sp);
 2325                 sp = s + strlen(s);
 2326                 sprintf(sp, "]:%i", ntohs(th->th_dport));
 2327         } else {
 2328                 free(s, M_TCPLOG);
 2329                 return (NULL);
 2330         }
 2331         sp = s + strlen(s);
 2332         if (th)
 2333                 sprintf(sp, " tcpflags 0x%b", th->th_flags, PRINT_TH_FLAGS);
 2334         if (*(s + size - 1) != '\0')
 2335                 panic("%s: string too long", __func__);
 2336         return (s);
 2337 }

Cache object: dae35f3f7ff4d02cde9d22976399e5d7


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.