The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/netinet/tcp_syncache.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2001 McAfee, Inc.
    3  * Copyright (c) 2006,2013 Andre Oppermann, Internet Business Solutions AG
    4  * All rights reserved.
    5  *
    6  * This software was developed for the FreeBSD Project by Jonathan Lemon
    7  * and McAfee Research, the Security Research Division of McAfee, Inc. under
    8  * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the
    9  * DARPA CHATS research program. [2001 McAfee, Inc.]
   10  *
   11  * Redistribution and use in source and binary forms, with or without
   12  * modification, are permitted provided that the following conditions
   13  * are met:
   14  * 1. Redistributions of source code must retain the above copyright
   15  *    notice, this list of conditions and the following disclaimer.
   16  * 2. Redistributions in binary form must reproduce the above copyright
   17  *    notice, this list of conditions and the following disclaimer in the
   18  *    documentation and/or other materials provided with the distribution.
   19  *
   20  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   30  * SUCH DAMAGE.
   31  */
   32 
   33 #include <sys/cdefs.h>
   34 __FBSDID("$FreeBSD$");
   35 
   36 #include "opt_inet.h"
   37 #include "opt_inet6.h"
   38 #include "opt_ipsec.h"
   39 #include "opt_pcbgroup.h"
   40 
   41 #include <sys/param.h>
   42 #include <sys/systm.h>
   43 #include <sys/hash.h>
   44 #include <sys/refcount.h>
   45 #include <sys/kernel.h>
   46 #include <sys/sysctl.h>
   47 #include <sys/limits.h>
   48 #include <sys/lock.h>
   49 #include <sys/mutex.h>
   50 #include <sys/malloc.h>
   51 #include <sys/mbuf.h>
   52 #include <sys/proc.h>           /* for proc0 declaration */
   53 #include <sys/random.h>
   54 #include <sys/socket.h>
   55 #include <sys/socketvar.h>
   56 #include <sys/syslog.h>
   57 #include <sys/ucred.h>
   58 
   59 #include <sys/md5.h>
   60 #include <crypto/siphash/siphash.h>
   61 
   62 #include <vm/uma.h>
   63 
   64 #include <net/if.h>
   65 #include <net/if_var.h>
   66 #include <net/route.h>
   67 #include <net/vnet.h>
   68 
   69 #include <netinet/in.h>
   70 #include <netinet/in_kdtrace.h>
   71 #include <netinet/in_systm.h>
   72 #include <netinet/ip.h>
   73 #include <netinet/in_var.h>
   74 #include <netinet/in_pcb.h>
   75 #include <netinet/ip_var.h>
   76 #include <netinet/ip_options.h>
   77 #ifdef INET6
   78 #include <netinet/ip6.h>
   79 #include <netinet/icmp6.h>
   80 #include <netinet6/nd6.h>
   81 #include <netinet6/ip6_var.h>
   82 #include <netinet6/in6_pcb.h>
   83 #endif
   84 #include <netinet/tcp.h>
   85 #ifdef TCP_RFC7413
   86 #include <netinet/tcp_fastopen.h>
   87 #endif
   88 #include <netinet/tcp_fsm.h>
   89 #include <netinet/tcp_seq.h>
   90 #include <netinet/tcp_timer.h>
   91 #include <netinet/tcp_var.h>
   92 #include <netinet/tcp_syncache.h>
   93 #ifdef INET6
   94 #include <netinet6/tcp6_var.h>
   95 #endif
   96 #ifdef TCP_OFFLOAD
   97 #include <netinet/toecore.h>
   98 #endif
   99 
  100 #include <netipsec/ipsec_support.h>
  101 
  102 #include <machine/in_cksum.h>
  103 
  104 #include <security/mac/mac_framework.h>
  105 
  106 static VNET_DEFINE(int, tcp_syncookies) = 1;
  107 #define V_tcp_syncookies                VNET(tcp_syncookies)
  108 SYSCTL_INT(_net_inet_tcp, OID_AUTO, syncookies, CTLFLAG_VNET | CTLFLAG_RW,
  109     &VNET_NAME(tcp_syncookies), 0,
  110     "Use TCP SYN cookies if the syncache overflows");
  111 
  112 static VNET_DEFINE(int, tcp_syncookiesonly) = 0;
  113 #define V_tcp_syncookiesonly            VNET(tcp_syncookiesonly)
  114 SYSCTL_INT(_net_inet_tcp, OID_AUTO, syncookies_only, CTLFLAG_VNET | CTLFLAG_RW,
  115     &VNET_NAME(tcp_syncookiesonly), 0,
  116     "Use only TCP SYN cookies");
  117 
  118 #ifdef TCP_OFFLOAD
  119 #define ADDED_BY_TOE(sc) ((sc)->sc_tod != NULL)
  120 #endif
  121 
  122 static void      syncache_drop(struct syncache *, struct syncache_head *);
  123 static void      syncache_free(struct syncache *);
  124 static void      syncache_insert(struct syncache *, struct syncache_head *);
  125 static int       syncache_respond(struct syncache *, struct syncache_head *, int,
  126                     const struct mbuf *);
  127 static struct    socket *syncache_socket(struct syncache *, struct socket *,
  128                     struct mbuf *m);
  129 static void      syncache_timeout(struct syncache *sc, struct syncache_head *sch,
  130                     int docallout);
  131 static void      syncache_timer(void *);
  132 
  133 static uint32_t  syncookie_mac(struct in_conninfo *, tcp_seq, uint8_t,
  134                     uint8_t *, uintptr_t);
  135 static tcp_seq   syncookie_generate(struct syncache_head *, struct syncache *);
  136 static struct syncache
  137                 *syncookie_lookup(struct in_conninfo *, struct syncache_head *,
  138                     struct syncache *, struct tcphdr *, struct tcpopt *,
  139                     struct socket *);
  140 static void      syncookie_reseed(void *);
  141 #ifdef INVARIANTS
  142 static int       syncookie_cmp(struct in_conninfo *inc, struct syncache_head *sch,
  143                     struct syncache *sc, struct tcphdr *th, struct tcpopt *to,
  144                     struct socket *lso);
  145 #endif
  146 
  147 /*
  148  * Transmit the SYN,ACK fewer times than TCP_MAXRXTSHIFT specifies.
  149  * 3 retransmits corresponds to a timeout of 3 * (1 + 2 + 4 + 8) == 45 seconds,
  150  * the odds are that the user has given up attempting to connect by then.
  151  */
  152 #define SYNCACHE_MAXREXMTS              3
  153 
  154 /* Arbitrary values */
  155 #define TCP_SYNCACHE_HASHSIZE           512
  156 #define TCP_SYNCACHE_BUCKETLIMIT        30
  157 
  158 static VNET_DEFINE(struct tcp_syncache, tcp_syncache);
  159 #define V_tcp_syncache                  VNET(tcp_syncache)
  160 
  161 static SYSCTL_NODE(_net_inet_tcp, OID_AUTO, syncache, CTLFLAG_RW, 0,
  162     "TCP SYN cache");
  163 
  164 SYSCTL_UINT(_net_inet_tcp_syncache, OID_AUTO, bucketlimit, CTLFLAG_VNET | CTLFLAG_RDTUN,
  165     &VNET_NAME(tcp_syncache.bucket_limit), 0,
  166     "Per-bucket hash limit for syncache");
  167 
  168 SYSCTL_UINT(_net_inet_tcp_syncache, OID_AUTO, cachelimit, CTLFLAG_VNET | CTLFLAG_RDTUN,
  169     &VNET_NAME(tcp_syncache.cache_limit), 0,
  170     "Overall entry limit for syncache");
  171 
  172 SYSCTL_UMA_CUR(_net_inet_tcp_syncache, OID_AUTO, count, CTLFLAG_VNET,
  173     &VNET_NAME(tcp_syncache.zone), "Current number of entries in syncache");
  174 
  175 SYSCTL_UINT(_net_inet_tcp_syncache, OID_AUTO, hashsize, CTLFLAG_VNET | CTLFLAG_RDTUN,
  176     &VNET_NAME(tcp_syncache.hashsize), 0,
  177     "Size of TCP syncache hashtable");
  178 
  179 static int
  180 sysctl_net_inet_tcp_syncache_rexmtlimit_check(SYSCTL_HANDLER_ARGS)
  181 {
  182         int error;
  183         u_int new;
  184 
  185         new = V_tcp_syncache.rexmt_limit;
  186         error = sysctl_handle_int(oidp, &new, 0, req);
  187         if ((error == 0) && (req->newptr != NULL)) {
  188                 if (new > TCP_MAXRXTSHIFT)
  189                         error = EINVAL;
  190                 else
  191                         V_tcp_syncache.rexmt_limit = new;
  192         }
  193         return (error);
  194 }
  195 
  196 SYSCTL_PROC(_net_inet_tcp_syncache, OID_AUTO, rexmtlimit,
  197     CTLFLAG_VNET | CTLTYPE_UINT | CTLFLAG_RW,
  198     &VNET_NAME(tcp_syncache.rexmt_limit), 0,
  199     sysctl_net_inet_tcp_syncache_rexmtlimit_check, "UI",
  200     "Limit on SYN/ACK retransmissions");
  201 
  202 VNET_DEFINE(int, tcp_sc_rst_sock_fail) = 1;
  203 SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, rst_on_sock_fail,
  204     CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(tcp_sc_rst_sock_fail), 0,
  205     "Send reset on socket allocation failure");
  206 
  207 static MALLOC_DEFINE(M_SYNCACHE, "syncache", "TCP syncache");
  208 
  209 #define SCH_LOCK(sch)           mtx_lock(&(sch)->sch_mtx)
  210 #define SCH_UNLOCK(sch)         mtx_unlock(&(sch)->sch_mtx)
  211 #define SCH_LOCK_ASSERT(sch)    mtx_assert(&(sch)->sch_mtx, MA_OWNED)
  212 
  213 /*
  214  * Requires the syncache entry to be already removed from the bucket list.
  215  */
  216 static void
  217 syncache_free(struct syncache *sc)
  218 {
  219 
  220         if (sc->sc_ipopts)
  221                 (void) m_free(sc->sc_ipopts);
  222         if (sc->sc_cred)
  223                 crfree(sc->sc_cred);
  224 #ifdef MAC
  225         mac_syncache_destroy(&sc->sc_label);
  226 #endif
  227 
  228         uma_zfree(V_tcp_syncache.zone, sc);
  229 }
  230 
  231 void
  232 syncache_init(void)
  233 {
  234         int i;
  235 
  236         V_tcp_syncache.hashsize = TCP_SYNCACHE_HASHSIZE;
  237         V_tcp_syncache.bucket_limit = TCP_SYNCACHE_BUCKETLIMIT;
  238         V_tcp_syncache.rexmt_limit = SYNCACHE_MAXREXMTS;
  239         V_tcp_syncache.hash_secret = arc4random();
  240 
  241         TUNABLE_INT_FETCH("net.inet.tcp.syncache.hashsize",
  242             &V_tcp_syncache.hashsize);
  243         TUNABLE_INT_FETCH("net.inet.tcp.syncache.bucketlimit",
  244             &V_tcp_syncache.bucket_limit);
  245         if (!powerof2(V_tcp_syncache.hashsize) ||
  246             V_tcp_syncache.hashsize == 0) {
  247                 printf("WARNING: syncache hash size is not a power of 2.\n");
  248                 V_tcp_syncache.hashsize = TCP_SYNCACHE_HASHSIZE;
  249         }
  250         V_tcp_syncache.hashmask = V_tcp_syncache.hashsize - 1;
  251 
  252         /* Set limits. */
  253         V_tcp_syncache.cache_limit =
  254             V_tcp_syncache.hashsize * V_tcp_syncache.bucket_limit;
  255         TUNABLE_INT_FETCH("net.inet.tcp.syncache.cachelimit",
  256             &V_tcp_syncache.cache_limit);
  257 
  258         /* Allocate the hash table. */
  259         V_tcp_syncache.hashbase = malloc(V_tcp_syncache.hashsize *
  260             sizeof(struct syncache_head), M_SYNCACHE, M_WAITOK | M_ZERO);
  261 
  262 #ifdef VIMAGE
  263         V_tcp_syncache.vnet = curvnet;
  264 #endif
  265 
  266         /* Initialize the hash buckets. */
  267         for (i = 0; i < V_tcp_syncache.hashsize; i++) {
  268                 TAILQ_INIT(&V_tcp_syncache.hashbase[i].sch_bucket);
  269                 mtx_init(&V_tcp_syncache.hashbase[i].sch_mtx, "tcp_sc_head",
  270                          NULL, MTX_DEF);
  271                 callout_init_mtx(&V_tcp_syncache.hashbase[i].sch_timer,
  272                          &V_tcp_syncache.hashbase[i].sch_mtx, 0);
  273                 V_tcp_syncache.hashbase[i].sch_length = 0;
  274                 V_tcp_syncache.hashbase[i].sch_sc = &V_tcp_syncache;
  275                 V_tcp_syncache.hashbase[i].sch_last_overflow =
  276                     -(SYNCOOKIE_LIFETIME + 1);
  277         }
  278 
  279         /* Create the syncache entry zone. */
  280         V_tcp_syncache.zone = uma_zcreate("syncache", sizeof(struct syncache),
  281             NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
  282         V_tcp_syncache.cache_limit = uma_zone_set_max(V_tcp_syncache.zone,
  283             V_tcp_syncache.cache_limit);
  284 
  285         /* Start the SYN cookie reseeder callout. */
  286         callout_init(&V_tcp_syncache.secret.reseed, 1);
  287         arc4rand(V_tcp_syncache.secret.key[0], SYNCOOKIE_SECRET_SIZE, 0);
  288         arc4rand(V_tcp_syncache.secret.key[1], SYNCOOKIE_SECRET_SIZE, 0);
  289         callout_reset(&V_tcp_syncache.secret.reseed, SYNCOOKIE_LIFETIME * hz,
  290             syncookie_reseed, &V_tcp_syncache);
  291 }
  292 
  293 #ifdef VIMAGE
  294 void
  295 syncache_destroy(void)
  296 {
  297         struct syncache_head *sch;
  298         struct syncache *sc, *nsc;
  299         int i;
  300 
  301         /*
  302          * Stop the re-seed timer before freeing resources.  No need to
  303          * possibly schedule it another time.
  304          */
  305         callout_drain(&V_tcp_syncache.secret.reseed);
  306 
  307         /* Cleanup hash buckets: stop timers, free entries, destroy locks. */
  308         for (i = 0; i < V_tcp_syncache.hashsize; i++) {
  309 
  310                 sch = &V_tcp_syncache.hashbase[i];
  311                 callout_drain(&sch->sch_timer);
  312 
  313                 SCH_LOCK(sch);
  314                 TAILQ_FOREACH_SAFE(sc, &sch->sch_bucket, sc_hash, nsc)
  315                         syncache_drop(sc, sch);
  316                 SCH_UNLOCK(sch);
  317                 KASSERT(TAILQ_EMPTY(&sch->sch_bucket),
  318                     ("%s: sch->sch_bucket not empty", __func__));
  319                 KASSERT(sch->sch_length == 0, ("%s: sch->sch_length %d not 0",
  320                     __func__, sch->sch_length));
  321                 mtx_destroy(&sch->sch_mtx);
  322         }
  323 
  324         KASSERT(uma_zone_get_cur(V_tcp_syncache.zone) == 0,
  325             ("%s: cache_count not 0", __func__));
  326 
  327         /* Free the allocated global resources. */
  328         uma_zdestroy(V_tcp_syncache.zone);
  329         free(V_tcp_syncache.hashbase, M_SYNCACHE);
  330 }
  331 #endif
  332 
  333 /*
  334  * Inserts a syncache entry into the specified bucket row.
  335  * Locks and unlocks the syncache_head autonomously.
  336  */
  337 static void
  338 syncache_insert(struct syncache *sc, struct syncache_head *sch)
  339 {
  340         struct syncache *sc2;
  341 
  342         SCH_LOCK(sch);
  343 
  344         /*
  345          * Make sure that we don't overflow the per-bucket limit.
  346          * If the bucket is full, toss the oldest element.
  347          */
  348         if (sch->sch_length >= V_tcp_syncache.bucket_limit) {
  349                 KASSERT(!TAILQ_EMPTY(&sch->sch_bucket),
  350                         ("sch->sch_length incorrect"));
  351                 sc2 = TAILQ_LAST(&sch->sch_bucket, sch_head);
  352                 sch->sch_last_overflow = time_uptime;
  353                 syncache_drop(sc2, sch);
  354                 TCPSTAT_INC(tcps_sc_bucketoverflow);
  355         }
  356 
  357         /* Put it into the bucket. */
  358         TAILQ_INSERT_HEAD(&sch->sch_bucket, sc, sc_hash);
  359         sch->sch_length++;
  360 
  361 #ifdef TCP_OFFLOAD
  362         if (ADDED_BY_TOE(sc)) {
  363                 struct toedev *tod = sc->sc_tod;
  364 
  365                 tod->tod_syncache_added(tod, sc->sc_todctx);
  366         }
  367 #endif
  368 
  369         /* Reinitialize the bucket row's timer. */
  370         if (sch->sch_length == 1)
  371                 sch->sch_nextc = ticks + INT_MAX;
  372         syncache_timeout(sc, sch, 1);
  373 
  374         SCH_UNLOCK(sch);
  375 
  376         TCPSTATES_INC(TCPS_SYN_RECEIVED);
  377         TCPSTAT_INC(tcps_sc_added);
  378 }
  379 
  380 /*
  381  * Remove and free entry from syncache bucket row.
  382  * Expects locked syncache head.
  383  */
  384 static void
  385 syncache_drop(struct syncache *sc, struct syncache_head *sch)
  386 {
  387 
  388         SCH_LOCK_ASSERT(sch);
  389 
  390         TCPSTATES_DEC(TCPS_SYN_RECEIVED);
  391         TAILQ_REMOVE(&sch->sch_bucket, sc, sc_hash);
  392         sch->sch_length--;
  393 
  394 #ifdef TCP_OFFLOAD
  395         if (ADDED_BY_TOE(sc)) {
  396                 struct toedev *tod = sc->sc_tod;
  397 
  398                 tod->tod_syncache_removed(tod, sc->sc_todctx);
  399         }
  400 #endif
  401 
  402         syncache_free(sc);
  403 }
  404 
  405 /*
  406  * Engage/reengage time on bucket row.
  407  */
  408 static void
  409 syncache_timeout(struct syncache *sc, struct syncache_head *sch, int docallout)
  410 {
  411         int rexmt;
  412 
  413         if (sc->sc_rxmits == 0)
  414                 rexmt = TCPTV_RTOBASE;
  415         else
  416                 TCPT_RANGESET(rexmt, TCPTV_RTOBASE * tcp_syn_backoff[sc->sc_rxmits],
  417                     tcp_rexmit_min, TCPTV_REXMTMAX);
  418         sc->sc_rxttime = ticks + rexmt;
  419         sc->sc_rxmits++;
  420         if (TSTMP_LT(sc->sc_rxttime, sch->sch_nextc)) {
  421                 sch->sch_nextc = sc->sc_rxttime;
  422                 if (docallout)
  423                         callout_reset(&sch->sch_timer, sch->sch_nextc - ticks,
  424                             syncache_timer, (void *)sch);
  425         }
  426 }
  427 
  428 /*
  429  * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
  430  * If we have retransmitted an entry the maximum number of times, expire it.
  431  * One separate timer for each bucket row.
  432  */
  433 static void
  434 syncache_timer(void *xsch)
  435 {
  436         struct syncache_head *sch = (struct syncache_head *)xsch;
  437         struct syncache *sc, *nsc;
  438         int tick = ticks;
  439         char *s;
  440 
  441         CURVNET_SET(sch->sch_sc->vnet);
  442 
  443         /* NB: syncache_head has already been locked by the callout. */
  444         SCH_LOCK_ASSERT(sch);
  445 
  446         /*
  447          * In the following cycle we may remove some entries and/or
  448          * advance some timeouts, so re-initialize the bucket timer.
  449          */
  450         sch->sch_nextc = tick + INT_MAX;
  451 
  452         TAILQ_FOREACH_SAFE(sc, &sch->sch_bucket, sc_hash, nsc) {
  453                 /*
  454                  * We do not check if the listen socket still exists
  455                  * and accept the case where the listen socket may be
  456                  * gone by the time we resend the SYN/ACK.  We do
  457                  * not expect this to happens often. If it does,
  458                  * then the RST will be sent by the time the remote
  459                  * host does the SYN/ACK->ACK.
  460                  */
  461                 if (TSTMP_GT(sc->sc_rxttime, tick)) {
  462                         if (TSTMP_LT(sc->sc_rxttime, sch->sch_nextc))
  463                                 sch->sch_nextc = sc->sc_rxttime;
  464                         continue;
  465                 }
  466                 if (sc->sc_rxmits > V_tcp_syncache.rexmt_limit) {
  467                         if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
  468                                 log(LOG_DEBUG, "%s; %s: Retransmits exhausted, "
  469                                     "giving up and removing syncache entry\n",
  470                                     s, __func__);
  471                                 free(s, M_TCPLOG);
  472                         }
  473                         syncache_drop(sc, sch);
  474                         TCPSTAT_INC(tcps_sc_stale);
  475                         continue;
  476                 }
  477                 if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
  478                         log(LOG_DEBUG, "%s; %s: Response timeout, "
  479                             "retransmitting (%u) SYN|ACK\n",
  480                             s, __func__, sc->sc_rxmits);
  481                         free(s, M_TCPLOG);
  482                 }
  483 
  484                 syncache_respond(sc, sch, 1, NULL);
  485                 TCPSTAT_INC(tcps_sc_retransmitted);
  486                 syncache_timeout(sc, sch, 0);
  487         }
  488         if (!TAILQ_EMPTY(&(sch)->sch_bucket))
  489                 callout_reset(&(sch)->sch_timer, (sch)->sch_nextc - tick,
  490                         syncache_timer, (void *)(sch));
  491         CURVNET_RESTORE();
  492 }
  493 
  494 /*
  495  * Find an entry in the syncache.
  496  * Returns always with locked syncache_head plus a matching entry or NULL.
  497  */
  498 static struct syncache *
  499 syncache_lookup(struct in_conninfo *inc, struct syncache_head **schp)
  500 {
  501         struct syncache *sc;
  502         struct syncache_head *sch;
  503         uint32_t hash;
  504 
  505         /*
  506          * The hash is built on foreign port + local port + foreign address.
  507          * We rely on the fact that struct in_conninfo starts with 16 bits
  508          * of foreign port, then 16 bits of local port then followed by 128
  509          * bits of foreign address.  In case of IPv4 address, the first 3
  510          * 32-bit words of the address always are zeroes.
  511          */
  512         hash = jenkins_hash32((uint32_t *)&inc->inc_ie, 5,
  513             V_tcp_syncache.hash_secret) & V_tcp_syncache.hashmask;
  514 
  515         sch = &V_tcp_syncache.hashbase[hash];
  516         *schp = sch;
  517         SCH_LOCK(sch);
  518 
  519         /* Circle through bucket row to find matching entry. */
  520         TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash)
  521                 if (bcmp(&inc->inc_ie, &sc->sc_inc.inc_ie,
  522                     sizeof(struct in_endpoints)) == 0)
  523                         break;
  524 
  525         return (sc);    /* Always returns with locked sch. */
  526 }
  527 
  528 /*
  529  * This function is called when we get a RST for a
  530  * non-existent connection, so that we can see if the
  531  * connection is in the syn cache.  If it is, zap it.
  532  */
  533 void
  534 syncache_chkrst(struct in_conninfo *inc, struct tcphdr *th)
  535 {
  536         struct syncache *sc;
  537         struct syncache_head *sch;
  538         char *s = NULL;
  539 
  540         sc = syncache_lookup(inc, &sch);        /* returns locked sch */
  541         SCH_LOCK_ASSERT(sch);
  542 
  543         /*
  544          * Any RST to our SYN|ACK must not carry ACK, SYN or FIN flags.
  545          * See RFC 793 page 65, section SEGMENT ARRIVES.
  546          */
  547         if (th->th_flags & (TH_ACK|TH_SYN|TH_FIN)) {
  548                 if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
  549                         log(LOG_DEBUG, "%s; %s: Spurious RST with ACK, SYN or "
  550                             "FIN flag set, segment ignored\n", s, __func__);
  551                 TCPSTAT_INC(tcps_badrst);
  552                 goto done;
  553         }
  554 
  555         /*
  556          * No corresponding connection was found in syncache.
  557          * If syncookies are enabled and possibly exclusively
  558          * used, or we are under memory pressure, a valid RST
  559          * may not find a syncache entry.  In that case we're
  560          * done and no SYN|ACK retransmissions will happen.
  561          * Otherwise the RST was misdirected or spoofed.
  562          */
  563         if (sc == NULL) {
  564                 if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
  565                         log(LOG_DEBUG, "%s; %s: Spurious RST without matching "
  566                             "syncache entry (possibly syncookie only), "
  567                             "segment ignored\n", s, __func__);
  568                 TCPSTAT_INC(tcps_badrst);
  569                 goto done;
  570         }
  571 
  572         /*
  573          * If the RST bit is set, check the sequence number to see
  574          * if this is a valid reset segment.
  575          * RFC 793 page 37:
  576          *   In all states except SYN-SENT, all reset (RST) segments
  577          *   are validated by checking their SEQ-fields.  A reset is
  578          *   valid if its sequence number is in the window.
  579          *
  580          *   The sequence number in the reset segment is normally an
  581          *   echo of our outgoing acknowlegement numbers, but some hosts
  582          *   send a reset with the sequence number at the rightmost edge
  583          *   of our receive window, and we have to handle this case.
  584          */
  585         if (SEQ_GEQ(th->th_seq, sc->sc_irs) &&
  586             SEQ_LEQ(th->th_seq, sc->sc_irs + sc->sc_wnd)) {
  587                 syncache_drop(sc, sch);
  588                 if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
  589                         log(LOG_DEBUG, "%s; %s: Our SYN|ACK was rejected, "
  590                             "connection attempt aborted by remote endpoint\n",
  591                             s, __func__);
  592                 TCPSTAT_INC(tcps_sc_reset);
  593         } else {
  594                 if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
  595                         log(LOG_DEBUG, "%s; %s: RST with invalid SEQ %u != "
  596                             "IRS %u (+WND %u), segment ignored\n",
  597                             s, __func__, th->th_seq, sc->sc_irs, sc->sc_wnd);
  598                 TCPSTAT_INC(tcps_badrst);
  599         }
  600 
  601 done:
  602         if (s != NULL)
  603                 free(s, M_TCPLOG);
  604         SCH_UNLOCK(sch);
  605 }
  606 
  607 void
  608 syncache_badack(struct in_conninfo *inc)
  609 {
  610         struct syncache *sc;
  611         struct syncache_head *sch;
  612 
  613         sc = syncache_lookup(inc, &sch);        /* returns locked sch */
  614         SCH_LOCK_ASSERT(sch);
  615         if (sc != NULL) {
  616                 syncache_drop(sc, sch);
  617                 TCPSTAT_INC(tcps_sc_badack);
  618         }
  619         SCH_UNLOCK(sch);
  620 }
  621 
  622 void
  623 syncache_unreach(struct in_conninfo *inc, tcp_seq th_seq)
  624 {
  625         struct syncache *sc;
  626         struct syncache_head *sch;
  627 
  628         sc = syncache_lookup(inc, &sch);        /* returns locked sch */
  629         SCH_LOCK_ASSERT(sch);
  630         if (sc == NULL)
  631                 goto done;
  632 
  633         /* If the sequence number != sc_iss, then it's a bogus ICMP msg */
  634         if (ntohl(th_seq) != sc->sc_iss)
  635                 goto done;
  636 
  637         /*
  638          * If we've rertransmitted 3 times and this is our second error,
  639          * we remove the entry.  Otherwise, we allow it to continue on.
  640          * This prevents us from incorrectly nuking an entry during a
  641          * spurious network outage.
  642          *
  643          * See tcp_notify().
  644          */
  645         if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxmits < 3 + 1) {
  646                 sc->sc_flags |= SCF_UNREACH;
  647                 goto done;
  648         }
  649         syncache_drop(sc, sch);
  650         TCPSTAT_INC(tcps_sc_unreach);
  651 done:
  652         SCH_UNLOCK(sch);
  653 }
  654 
  655 /*
  656  * Build a new TCP socket structure from a syncache entry.
  657  *
  658  * On success return the newly created socket with its underlying inp locked.
  659  */
  660 static struct socket *
  661 syncache_socket(struct syncache *sc, struct socket *lso, struct mbuf *m)
  662 {
  663         struct tcp_function_block *blk;
  664         struct inpcb *inp = NULL;
  665         struct socket *so;
  666         struct tcpcb *tp;
  667         int error;
  668         char *s;
  669 
  670         INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
  671 
  672         /*
  673          * Ok, create the full blown connection, and set things up
  674          * as they would have been set up if we had created the
  675          * connection when the SYN arrived.  If we can't create
  676          * the connection, abort it.
  677          */
  678         so = sonewconn(lso, 0);
  679         if (so == NULL) {
  680                 /*
  681                  * Drop the connection; we will either send a RST or
  682                  * have the peer retransmit its SYN again after its
  683                  * RTO and try again.
  684                  */
  685                 TCPSTAT_INC(tcps_listendrop);
  686                 if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
  687                         log(LOG_DEBUG, "%s; %s: Socket create failed "
  688                             "due to limits or memory shortage\n",
  689                             s, __func__);
  690                         free(s, M_TCPLOG);
  691                 }
  692                 goto abort2;
  693         }
  694 #ifdef MAC
  695         mac_socketpeer_set_from_mbuf(m, so);
  696 #endif
  697 
  698         inp = sotoinpcb(so);
  699         inp->inp_inc.inc_fibnum = so->so_fibnum;
  700         INP_WLOCK(inp);
  701         /*
  702          * Exclusive pcbinfo lock is not required in syncache socket case even
  703          * if two inpcb locks can be acquired simultaneously:
  704          *  - the inpcb in LISTEN state,
  705          *  - the newly created inp.
  706          *
  707          * In this case, an inp cannot be at same time in LISTEN state and
  708          * just created by an accept() call.
  709          */
  710         INP_HASH_WLOCK(&V_tcbinfo);
  711 
  712         /* Insert new socket into PCB hash list. */
  713         inp->inp_inc.inc_flags = sc->sc_inc.inc_flags;
  714 #ifdef INET6
  715         if (sc->sc_inc.inc_flags & INC_ISIPV6) {
  716                 inp->inp_vflag &= ~INP_IPV4;
  717                 inp->inp_vflag |= INP_IPV6;
  718                 inp->in6p_laddr = sc->sc_inc.inc6_laddr;
  719         } else {
  720                 inp->inp_vflag &= ~INP_IPV6;
  721                 inp->inp_vflag |= INP_IPV4;
  722 #endif
  723                 inp->inp_laddr = sc->sc_inc.inc_laddr;
  724 #ifdef INET6
  725         }
  726 #endif
  727 
  728         /*
  729          * If there's an mbuf and it has a flowid, then let's initialise the
  730          * inp with that particular flowid.
  731          */
  732         if (m != NULL && M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) {
  733                 inp->inp_flowid = m->m_pkthdr.flowid;
  734                 inp->inp_flowtype = M_HASHTYPE_GET(m);
  735         }
  736 
  737         /*
  738          * Install in the reservation hash table for now, but don't yet
  739          * install a connection group since the full 4-tuple isn't yet
  740          * configured.
  741          */
  742         inp->inp_lport = sc->sc_inc.inc_lport;
  743         if ((error = in_pcbinshash_nopcbgroup(inp)) != 0) {
  744                 /*
  745                  * Undo the assignments above if we failed to
  746                  * put the PCB on the hash lists.
  747                  */
  748 #ifdef INET6
  749                 if (sc->sc_inc.inc_flags & INC_ISIPV6)
  750                         inp->in6p_laddr = in6addr_any;
  751                 else
  752 #endif
  753                         inp->inp_laddr.s_addr = INADDR_ANY;
  754                 inp->inp_lport = 0;
  755                 if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
  756                         log(LOG_DEBUG, "%s; %s: in_pcbinshash failed "
  757                             "with error %i\n",
  758                             s, __func__, error);
  759                         free(s, M_TCPLOG);
  760                 }
  761                 INP_HASH_WUNLOCK(&V_tcbinfo);
  762                 goto abort;
  763         }
  764 #ifdef INET6
  765         if (inp->inp_vflag & INP_IPV6PROTO) {
  766                 struct inpcb *oinp = sotoinpcb(lso);
  767 
  768                 /*
  769                  * Inherit socket options from the listening socket.
  770                  * Note that in6p_inputopts are not (and should not be)
  771                  * copied, since it stores previously received options and is
  772                  * used to detect if each new option is different than the
  773                  * previous one and hence should be passed to a user.
  774                  * If we copied in6p_inputopts, a user would not be able to
  775                  * receive options just after calling the accept system call.
  776                  */
  777                 inp->inp_flags |= oinp->inp_flags & INP_CONTROLOPTS;
  778                 if (oinp->in6p_outputopts)
  779                         inp->in6p_outputopts =
  780                             ip6_copypktopts(oinp->in6p_outputopts, M_NOWAIT);
  781         }
  782 
  783         if (sc->sc_inc.inc_flags & INC_ISIPV6) {
  784                 struct in6_addr laddr6;
  785                 struct sockaddr_in6 sin6;
  786 
  787                 sin6.sin6_family = AF_INET6;
  788                 sin6.sin6_len = sizeof(sin6);
  789                 sin6.sin6_addr = sc->sc_inc.inc6_faddr;
  790                 sin6.sin6_port = sc->sc_inc.inc_fport;
  791                 sin6.sin6_flowinfo = sin6.sin6_scope_id = 0;
  792                 laddr6 = inp->in6p_laddr;
  793                 if (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr))
  794                         inp->in6p_laddr = sc->sc_inc.inc6_laddr;
  795                 if ((error = in6_pcbconnect_mbuf(inp, (struct sockaddr *)&sin6,
  796                     thread0.td_ucred, m)) != 0) {
  797                         inp->in6p_laddr = laddr6;
  798                         if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
  799                                 log(LOG_DEBUG, "%s; %s: in6_pcbconnect failed "
  800                                     "with error %i\n",
  801                                     s, __func__, error);
  802                                 free(s, M_TCPLOG);
  803                         }
  804                         INP_HASH_WUNLOCK(&V_tcbinfo);
  805                         goto abort;
  806                 }
  807                 /* Override flowlabel from in6_pcbconnect. */
  808                 inp->inp_flow &= ~IPV6_FLOWLABEL_MASK;
  809                 inp->inp_flow |= sc->sc_flowlabel;
  810         }
  811 #endif /* INET6 */
  812 #if defined(INET) && defined(INET6)
  813         else
  814 #endif
  815 #ifdef INET
  816         {
  817                 struct in_addr laddr;
  818                 struct sockaddr_in sin;
  819 
  820                 inp->inp_options = (m) ? ip_srcroute(m) : NULL;
  821                 
  822                 if (inp->inp_options == NULL) {
  823                         inp->inp_options = sc->sc_ipopts;
  824                         sc->sc_ipopts = NULL;
  825                 }
  826 
  827                 sin.sin_family = AF_INET;
  828                 sin.sin_len = sizeof(sin);
  829                 sin.sin_addr = sc->sc_inc.inc_faddr;
  830                 sin.sin_port = sc->sc_inc.inc_fport;
  831                 bzero((caddr_t)sin.sin_zero, sizeof(sin.sin_zero));
  832                 laddr = inp->inp_laddr;
  833                 if (inp->inp_laddr.s_addr == INADDR_ANY)
  834                         inp->inp_laddr = sc->sc_inc.inc_laddr;
  835                 if ((error = in_pcbconnect_mbuf(inp, (struct sockaddr *)&sin,
  836                     thread0.td_ucred, m)) != 0) {
  837                         inp->inp_laddr = laddr;
  838                         if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
  839                                 log(LOG_DEBUG, "%s; %s: in_pcbconnect failed "
  840                                     "with error %i\n",
  841                                     s, __func__, error);
  842                                 free(s, M_TCPLOG);
  843                         }
  844                         INP_HASH_WUNLOCK(&V_tcbinfo);
  845                         goto abort;
  846                 }
  847         }
  848 #endif /* INET */
  849 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
  850         /* Copy old policy into new socket's. */
  851         if (ipsec_copy_pcbpolicy(sotoinpcb(lso), inp) != 0)
  852                 printf("syncache_socket: could not copy policy\n");
  853 #endif
  854         INP_HASH_WUNLOCK(&V_tcbinfo);
  855         tp = intotcpcb(inp);
  856         tcp_state_change(tp, TCPS_SYN_RECEIVED);
  857         tp->iss = sc->sc_iss;
  858         tp->irs = sc->sc_irs;
  859         tcp_rcvseqinit(tp);
  860         tcp_sendseqinit(tp);
  861         blk = sototcpcb(lso)->t_fb;
  862         if (blk != tp->t_fb) {
  863                 /*
  864                  * Our parents t_fb was not the default,
  865                  * we need to release our ref on tp->t_fb and 
  866                  * pickup one on the new entry.
  867                  */
  868                 struct tcp_function_block *rblk;
  869                 
  870                 rblk = find_and_ref_tcp_fb(blk);
  871                 KASSERT(rblk != NULL,
  872                     ("cannot find blk %p out of syncache?", blk));
  873                 if (tp->t_fb->tfb_tcp_fb_fini)
  874                         (*tp->t_fb->tfb_tcp_fb_fini)(tp);
  875                 refcount_release(&tp->t_fb->tfb_refcnt);
  876                 tp->t_fb = rblk;
  877                 if (tp->t_fb->tfb_tcp_fb_init) {
  878                         (*tp->t_fb->tfb_tcp_fb_init)(tp);
  879                 }
  880         }               
  881         tp->snd_wl1 = sc->sc_irs;
  882         tp->snd_max = tp->iss + 1;
  883         tp->snd_nxt = tp->iss + 1;
  884         tp->rcv_up = sc->sc_irs + 1;
  885         tp->rcv_wnd = sc->sc_wnd;
  886         tp->rcv_adv += tp->rcv_wnd;
  887         tp->last_ack_sent = tp->rcv_nxt;
  888 
  889         tp->t_flags = sototcpcb(lso)->t_flags & (TF_NOPUSH|TF_NODELAY);
  890         if (sc->sc_flags & SCF_NOOPT)
  891                 tp->t_flags |= TF_NOOPT;
  892         else {
  893                 if (sc->sc_flags & SCF_WINSCALE) {
  894                         tp->t_flags |= TF_REQ_SCALE|TF_RCVD_SCALE;
  895                         tp->snd_scale = sc->sc_requested_s_scale;
  896                         tp->request_r_scale = sc->sc_requested_r_scale;
  897                 }
  898                 if (sc->sc_flags & SCF_TIMESTAMP) {
  899                         tp->t_flags |= TF_REQ_TSTMP|TF_RCVD_TSTMP;
  900                         tp->ts_recent = sc->sc_tsreflect;
  901                         tp->ts_recent_age = tcp_ts_getticks();
  902                         tp->ts_offset = sc->sc_tsoff;
  903                 }
  904 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
  905                 if (sc->sc_flags & SCF_SIGNATURE)
  906                         tp->t_flags |= TF_SIGNATURE;
  907 #endif
  908                 if (sc->sc_flags & SCF_SACK)
  909                         tp->t_flags |= TF_SACK_PERMIT;
  910         }
  911 
  912         if (sc->sc_flags & SCF_ECN)
  913                 tp->t_flags |= TF_ECN_PERMIT;
  914 
  915         /*
  916          * Set up MSS and get cached values from tcp_hostcache.
  917          * This might overwrite some of the defaults we just set.
  918          */
  919         tcp_mss(tp, sc->sc_peer_mss);
  920 
  921         /*
  922          * If the SYN,ACK was retransmitted, indicate that CWND to be
  923          * limited to one segment in cc_conn_init().
  924          * NB: sc_rxmits counts all SYN,ACK transmits, not just retransmits.
  925          */
  926         if (sc->sc_rxmits > 1)
  927                 tp->snd_cwnd = 1;
  928 
  929 #ifdef TCP_OFFLOAD
  930         /*
  931          * Allow a TOE driver to install its hooks.  Note that we hold the
  932          * pcbinfo lock too and that prevents tcp_usr_accept from accepting a
  933          * new connection before the TOE driver has done its thing.
  934          */
  935         if (ADDED_BY_TOE(sc)) {
  936                 struct toedev *tod = sc->sc_tod;
  937 
  938                 tod->tod_offload_socket(tod, sc->sc_todctx, so);
  939         }
  940 #endif
  941         /*
  942          * Copy and activate timers.
  943          */
  944         tp->t_keepinit = sototcpcb(lso)->t_keepinit;
  945         tp->t_keepidle = sototcpcb(lso)->t_keepidle;
  946         tp->t_keepintvl = sototcpcb(lso)->t_keepintvl;
  947         tp->t_keepcnt = sototcpcb(lso)->t_keepcnt;
  948         tcp_timer_activate(tp, TT_KEEP, TP_KEEPINIT(tp));
  949 
  950         TCPSTAT_INC(tcps_accepts);
  951         return (so);
  952 
  953 abort:
  954         INP_WUNLOCK(inp);
  955 abort2:
  956         if (so != NULL)
  957                 soabort(so);
  958         return (NULL);
  959 }
  960 
  961 /*
  962  * This function gets called when we receive an ACK for a
  963  * socket in the LISTEN state.  We look up the connection
  964  * in the syncache, and if its there, we pull it out of
  965  * the cache and turn it into a full-blown connection in
  966  * the SYN-RECEIVED state.
  967  *
  968  * On syncache_socket() success the newly created socket
  969  * has its underlying inp locked.
  970  */
  971 int
  972 syncache_expand(struct in_conninfo *inc, struct tcpopt *to, struct tcphdr *th,
  973     struct socket **lsop, struct mbuf *m)
  974 {
  975         struct syncache *sc;
  976         struct syncache_head *sch;
  977         struct syncache scs;
  978         char *s;
  979 
  980         /*
  981          * Global TCP locks are held because we manipulate the PCB lists
  982          * and create a new socket.
  983          */
  984         INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
  985         KASSERT((th->th_flags & (TH_RST|TH_ACK|TH_SYN)) == TH_ACK,
  986             ("%s: can handle only ACK", __func__));
  987 
  988         sc = syncache_lookup(inc, &sch);        /* returns locked sch */
  989         SCH_LOCK_ASSERT(sch);
  990 
  991 #ifdef INVARIANTS
  992         /*
  993          * Test code for syncookies comparing the syncache stored
  994          * values with the reconstructed values from the cookie.
  995          */
  996         if (sc != NULL)
  997                 syncookie_cmp(inc, sch, sc, th, to, *lsop);
  998 #endif
  999 
 1000         if (sc == NULL) {
 1001                 /*
 1002                  * There is no syncache entry, so see if this ACK is
 1003                  * a returning syncookie.  To do this, first:
 1004                  *  A. Check if syncookies are used in case of syncache
 1005                  *     overflows
 1006                  *  B. See if this socket has had a syncache entry dropped in
 1007                  *     the recent past. We don't want to accept a bogus
 1008                  *     syncookie if we've never received a SYN or accept it
 1009                  *     twice.
 1010                  *  C. check that the syncookie is valid.  If it is, then
 1011                  *     cobble up a fake syncache entry, and return.
 1012                  */
 1013                 if (!V_tcp_syncookies) {
 1014                         SCH_UNLOCK(sch);
 1015                         if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
 1016                                 log(LOG_DEBUG, "%s; %s: Spurious ACK, "
 1017                                     "segment rejected (syncookies disabled)\n",
 1018                                     s, __func__);
 1019                         goto failed;
 1020                 }
 1021                 if (!V_tcp_syncookiesonly &&
 1022                     sch->sch_last_overflow < time_uptime - SYNCOOKIE_LIFETIME) {
 1023                         SCH_UNLOCK(sch);
 1024                         if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
 1025                                 log(LOG_DEBUG, "%s; %s: Spurious ACK, "
 1026                                     "segment rejected (no syncache entry)\n",
 1027                                     s, __func__);
 1028                         goto failed;
 1029                 }
 1030                 bzero(&scs, sizeof(scs));
 1031                 sc = syncookie_lookup(inc, sch, &scs, th, to, *lsop);
 1032                 SCH_UNLOCK(sch);
 1033                 if (sc == NULL) {
 1034                         if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
 1035                                 log(LOG_DEBUG, "%s; %s: Segment failed "
 1036                                     "SYNCOOKIE authentication, segment rejected "
 1037                                     "(probably spoofed)\n", s, __func__);
 1038                         goto failed;
 1039                 }
 1040 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
 1041                 /* If received ACK has MD5 signature, check it. */
 1042                 if ((to->to_flags & TOF_SIGNATURE) != 0 &&
 1043                     (!TCPMD5_ENABLED() ||
 1044                     TCPMD5_INPUT(m, th, to->to_signature) != 0)) {
 1045                         /* Drop the ACK. */
 1046                         if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
 1047                                 log(LOG_DEBUG, "%s; %s: Segment rejected, "
 1048                                     "MD5 signature doesn't match.\n",
 1049                                     s, __func__);
 1050                                 free(s, M_TCPLOG);
 1051                         }
 1052                         TCPSTAT_INC(tcps_sig_err_sigopt);
 1053                         return (-1); /* Do not send RST */
 1054                 }
 1055 #endif /* TCP_SIGNATURE */
 1056         } else {
 1057 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
 1058                 /*
 1059                  * If listening socket requested TCP digests, check that
 1060                  * received ACK has signature and it is correct.
 1061                  * If not, drop the ACK and leave sc entry in th cache,
 1062                  * because SYN was received with correct signature.
 1063                  */
 1064                 if (sc->sc_flags & SCF_SIGNATURE) {
 1065                         if ((to->to_flags & TOF_SIGNATURE) == 0) {
 1066                                 /* No signature */
 1067                                 TCPSTAT_INC(tcps_sig_err_nosigopt);
 1068                                 SCH_UNLOCK(sch);
 1069                                 if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
 1070                                         log(LOG_DEBUG, "%s; %s: Segment "
 1071                                             "rejected, MD5 signature wasn't "
 1072                                             "provided.\n", s, __func__);
 1073                                         free(s, M_TCPLOG);
 1074                                 }
 1075                                 return (-1); /* Do not send RST */
 1076                         }
 1077                         if (!TCPMD5_ENABLED() ||
 1078                             TCPMD5_INPUT(m, th, to->to_signature) != 0) {
 1079                                 /* Doesn't match or no SA */
 1080                                 SCH_UNLOCK(sch);
 1081                                 if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
 1082                                         log(LOG_DEBUG, "%s; %s: Segment "
 1083                                             "rejected, MD5 signature doesn't "
 1084                                             "match.\n", s, __func__);
 1085                                         free(s, M_TCPLOG);
 1086                                 }
 1087                                 return (-1); /* Do not send RST */
 1088                         }
 1089                 }
 1090 #endif /* TCP_SIGNATURE */
 1091 
 1092                 /*
 1093                  * RFC 7323 PAWS: If we have a timestamp on this segment and
 1094                  * it's less than ts_recent, drop it.
 1095                  * XXXMT: RFC 7323 also requires to send an ACK.
 1096                  *        In tcp_input.c this is only done for TCP segments
 1097                  *        with user data, so be consistent here and just drop
 1098                  *        the segment.
 1099                  */
 1100                 if (sc->sc_flags & SCF_TIMESTAMP && to->to_flags & TOF_TS &&
 1101                     TSTMP_LT(to->to_tsval, sc->sc_tsreflect)) {
 1102                         SCH_UNLOCK(sch);
 1103                         if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
 1104                                 log(LOG_DEBUG,
 1105                                     "%s; %s: SEG.TSval %u < TS.Recent %u, "
 1106                                     "segment dropped\n", s, __func__,
 1107                                     to->to_tsval, sc->sc_tsreflect);
 1108                                 free(s, M_TCPLOG);
 1109                         }
 1110                         return (-1);  /* Do not send RST */
 1111                 }
 1112 
 1113                 /*
 1114                  * If timestamps were not negotiated during SYN/ACK and a
 1115                  * segment with a timestamp is received, ignore the
 1116                  * timestamp and process the packet normally.
 1117                  * See section 3.2 of RFC 7323.
 1118                  */
 1119                 if (!(sc->sc_flags & SCF_TIMESTAMP) &&
 1120                     (to->to_flags & TOF_TS)) {
 1121                         if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
 1122                                 log(LOG_DEBUG, "%s; %s: Timestamp not "
 1123                                     "expected, segment processed normally\n",
 1124                                     s, __func__);
 1125                                 free(s, M_TCPLOG);
 1126                                 s = NULL;
 1127                         }
 1128                 }
 1129 
 1130                 /*
 1131                  * If timestamps were negotiated during SYN/ACK and a
 1132                  * segment without a timestamp is received, silently drop
 1133                  * the segment.
 1134                  * See section 3.2 of RFC 7323.
 1135                  */
 1136                 if ((sc->sc_flags & SCF_TIMESTAMP) &&
 1137                     !(to->to_flags & TOF_TS)) {
 1138                         SCH_UNLOCK(sch);
 1139                         if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
 1140                                 log(LOG_DEBUG, "%s; %s: Timestamp missing, "
 1141                                     "segment silently dropped\n", s, __func__);
 1142                                 free(s, M_TCPLOG);
 1143                         }
 1144                         return (-1);  /* Do not send RST */
 1145                 }
 1146 
 1147                 /*
 1148                  * Pull out the entry to unlock the bucket row.
 1149                  * 
 1150                  * NOTE: We must decrease TCPS_SYN_RECEIVED count here, not
 1151                  * tcp_state_change().  The tcpcb is not existent at this
 1152                  * moment.  A new one will be allocated via syncache_socket->
 1153                  * sonewconn->tcp_usr_attach in TCPS_CLOSED state, then
 1154                  * syncache_socket() will change it to TCPS_SYN_RECEIVED.
 1155                  */
 1156                 TCPSTATES_DEC(TCPS_SYN_RECEIVED);
 1157                 TAILQ_REMOVE(&sch->sch_bucket, sc, sc_hash);
 1158                 sch->sch_length--;
 1159 #ifdef TCP_OFFLOAD
 1160                 if (ADDED_BY_TOE(sc)) {
 1161                         struct toedev *tod = sc->sc_tod;
 1162 
 1163                         tod->tod_syncache_removed(tod, sc->sc_todctx);
 1164                 }
 1165 #endif
 1166                 SCH_UNLOCK(sch);
 1167         }
 1168 
 1169         /*
 1170          * Segment validation:
 1171          * ACK must match our initial sequence number + 1 (the SYN|ACK).
 1172          */
 1173         if (th->th_ack != sc->sc_iss + 1) {
 1174                 if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
 1175                         log(LOG_DEBUG, "%s; %s: ACK %u != ISS+1 %u, segment "
 1176                             "rejected\n", s, __func__, th->th_ack, sc->sc_iss);
 1177                 goto failed;
 1178         }
 1179 
 1180         /*
 1181          * The SEQ must fall in the window starting at the received
 1182          * initial receive sequence number + 1 (the SYN).
 1183          */
 1184         if (SEQ_LEQ(th->th_seq, sc->sc_irs) ||
 1185             SEQ_GT(th->th_seq, sc->sc_irs + sc->sc_wnd)) {
 1186                 if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
 1187                         log(LOG_DEBUG, "%s; %s: SEQ %u != IRS+1 %u, segment "
 1188                             "rejected\n", s, __func__, th->th_seq, sc->sc_irs);
 1189                 goto failed;
 1190         }
 1191 
 1192         *lsop = syncache_socket(sc, *lsop, m);
 1193 
 1194         if (*lsop == NULL)
 1195                 TCPSTAT_INC(tcps_sc_aborted);
 1196         else
 1197                 TCPSTAT_INC(tcps_sc_completed);
 1198 
 1199 /* how do we find the inp for the new socket? */
 1200         if (sc != &scs)
 1201                 syncache_free(sc);
 1202         return (1);
 1203 failed:
 1204         if (sc != NULL && sc != &scs)
 1205                 syncache_free(sc);
 1206         if (s != NULL)
 1207                 free(s, M_TCPLOG);
 1208         *lsop = NULL;
 1209         return (0);
 1210 }
 1211 
 1212 #ifdef TCP_RFC7413
 1213 static void
 1214 syncache_tfo_expand(struct syncache *sc, struct socket **lsop, struct mbuf *m,
 1215     uint64_t response_cookie)
 1216 {
 1217         struct inpcb *inp;
 1218         struct tcpcb *tp;
 1219         unsigned int *pending_counter;
 1220 
 1221         /*
 1222          * Global TCP locks are held because we manipulate the PCB lists
 1223          * and create a new socket.
 1224          */
 1225         INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
 1226 
 1227         pending_counter = intotcpcb(sotoinpcb(*lsop))->t_tfo_pending;
 1228         *lsop = syncache_socket(sc, *lsop, m);
 1229         if (*lsop == NULL) {
 1230                 TCPSTAT_INC(tcps_sc_aborted);
 1231                 atomic_subtract_int(pending_counter, 1);
 1232         } else {
 1233                 inp = sotoinpcb(*lsop);
 1234                 tp = intotcpcb(inp);
 1235                 tp->t_flags |= TF_FASTOPEN;
 1236                 tp->t_tfo_cookie = response_cookie;
 1237                 tp->snd_max = tp->iss;
 1238                 tp->snd_nxt = tp->iss;
 1239                 tp->t_tfo_pending = pending_counter;
 1240                 TCPSTAT_INC(tcps_sc_completed);
 1241         }
 1242 }
 1243 #endif /* TCP_RFC7413 */
 1244 
 1245 /*
 1246  * Given a LISTEN socket and an inbound SYN request, add
 1247  * this to the syn cache, and send back a segment:
 1248  *      <SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
 1249  * to the source.
 1250  *
 1251  * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
 1252  * Doing so would require that we hold onto the data and deliver it
 1253  * to the application.  However, if we are the target of a SYN-flood
 1254  * DoS attack, an attacker could send data which would eventually
 1255  * consume all available buffer space if it were ACKed.  By not ACKing
 1256  * the data, we avoid this DoS scenario.
 1257  *
 1258  * The exception to the above is when a SYN with a valid TCP Fast Open (TFO)
 1259  * cookie is processed, V_tcp_fastopen_enabled set to true, and the
 1260  * TCP_FASTOPEN socket option is set.  In this case, a new socket is created
 1261  * and returned via lsop, the mbuf is not freed so that tcp_input() can
 1262  * queue its data to the socket, and 1 is returned to indicate the
 1263  * TFO-socket-creation path was taken.
 1264  */
 1265 int
 1266 syncache_add(struct in_conninfo *inc, struct tcpopt *to, struct tcphdr *th,
 1267     struct inpcb *inp, struct socket **lsop, struct mbuf *m, void *tod,
 1268     void *todctx)
 1269 {
 1270         struct tcpcb *tp;
 1271         struct socket *so;
 1272         struct syncache *sc = NULL;
 1273         struct syncache_head *sch;
 1274         struct mbuf *ipopts = NULL;
 1275         u_int ltflags;
 1276         int win, sb_hiwat, ip_ttl, ip_tos;
 1277         char *s;
 1278         int rv = 0;
 1279 #ifdef INET6
 1280         int autoflowlabel = 0;
 1281 #endif
 1282 #ifdef MAC
 1283         struct label *maclabel;
 1284 #endif
 1285         struct syncache scs;
 1286         struct ucred *cred;
 1287 #ifdef TCP_RFC7413
 1288         uint64_t tfo_response_cookie;
 1289         int tfo_cookie_valid = 0;
 1290         int tfo_response_cookie_valid = 0;
 1291 #endif
 1292 
 1293         INP_WLOCK_ASSERT(inp);                  /* listen socket */
 1294         KASSERT((th->th_flags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN,
 1295             ("%s: unexpected tcp flags", __func__));
 1296 
 1297         /*
 1298          * Combine all so/tp operations very early to drop the INP lock as
 1299          * soon as possible.
 1300          */
 1301         so = *lsop;
 1302         tp = sototcpcb(so);
 1303         cred = crhold(so->so_cred);
 1304 
 1305 #ifdef INET6
 1306         if ((inc->inc_flags & INC_ISIPV6) &&
 1307             (inp->inp_flags & IN6P_AUTOFLOWLABEL))
 1308                 autoflowlabel = 1;
 1309 #endif
 1310         ip_ttl = inp->inp_ip_ttl;
 1311         ip_tos = inp->inp_ip_tos;
 1312         win = sbspace(&so->so_rcv);
 1313         sb_hiwat = so->so_rcv.sb_hiwat;
 1314         ltflags = (tp->t_flags & (TF_NOOPT | TF_SIGNATURE));
 1315 
 1316 #ifdef TCP_RFC7413
 1317         if (V_tcp_fastopen_enabled && (tp->t_flags & TF_FASTOPEN) &&
 1318             (tp->t_tfo_pending != NULL) && (to->to_flags & TOF_FASTOPEN)) {
 1319                 /*
 1320                  * Limit the number of pending TFO connections to
 1321                  * approximately half of the queue limit.  This prevents TFO
 1322                  * SYN floods from starving the service by filling the
 1323                  * listen queue with bogus TFO connections.
 1324                  */
 1325                 if (atomic_fetchadd_int(tp->t_tfo_pending, 1) <=
 1326                     (so->so_qlimit / 2)) {
 1327                         int result;
 1328 
 1329                         result = tcp_fastopen_check_cookie(inc,
 1330                             to->to_tfo_cookie, to->to_tfo_len,
 1331                             &tfo_response_cookie);
 1332                         tfo_cookie_valid = (result > 0);
 1333                         tfo_response_cookie_valid = (result >= 0);
 1334                 } else
 1335                         atomic_subtract_int(tp->t_tfo_pending, 1);
 1336         }
 1337 #endif
 1338 
 1339         /* By the time we drop the lock these should no longer be used. */
 1340         so = NULL;
 1341         tp = NULL;
 1342 
 1343 #ifdef MAC
 1344         if (mac_syncache_init(&maclabel) != 0) {
 1345                 INP_WUNLOCK(inp);
 1346                 goto done;
 1347         } else
 1348                 mac_syncache_create(maclabel, inp);
 1349 #endif
 1350 #ifdef TCP_RFC7413
 1351         if (!tfo_cookie_valid)
 1352 #endif
 1353                 INP_WUNLOCK(inp);
 1354 
 1355         /*
 1356          * Remember the IP options, if any.
 1357          */
 1358 #ifdef INET6
 1359         if (!(inc->inc_flags & INC_ISIPV6))
 1360 #endif
 1361 #ifdef INET
 1362                 ipopts = (m) ? ip_srcroute(m) : NULL;
 1363 #else
 1364                 ipopts = NULL;
 1365 #endif
 1366 
 1367 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
 1368         /*
 1369          * If listening socket requested TCP digests, check that received
 1370          * SYN has signature and it is correct. If signature doesn't match
 1371          * or TCP_SIGNATURE support isn't enabled, drop the packet.
 1372          */
 1373         if (ltflags & TF_SIGNATURE) {
 1374                 if ((to->to_flags & TOF_SIGNATURE) == 0) {
 1375                         TCPSTAT_INC(tcps_sig_err_nosigopt);
 1376                         goto done;
 1377                 }
 1378                 if (!TCPMD5_ENABLED() ||
 1379                     TCPMD5_INPUT(m, th, to->to_signature) != 0)
 1380                         goto done;
 1381         }
 1382 #endif  /* TCP_SIGNATURE */
 1383         /*
 1384          * See if we already have an entry for this connection.
 1385          * If we do, resend the SYN,ACK, and reset the retransmit timer.
 1386          *
 1387          * XXX: should the syncache be re-initialized with the contents
 1388          * of the new SYN here (which may have different options?)
 1389          *
 1390          * XXX: We do not check the sequence number to see if this is a
 1391          * real retransmit or a new connection attempt.  The question is
 1392          * how to handle such a case; either ignore it as spoofed, or
 1393          * drop the current entry and create a new one?
 1394          */
 1395         sc = syncache_lookup(inc, &sch);        /* returns locked entry */
 1396         SCH_LOCK_ASSERT(sch);
 1397         if (sc != NULL) {
 1398 #ifdef TCP_RFC7413
 1399                 if (tfo_cookie_valid)
 1400                         INP_WUNLOCK(inp);
 1401 #endif
 1402                 TCPSTAT_INC(tcps_sc_dupsyn);
 1403                 if (ipopts) {
 1404                         /*
 1405                          * If we were remembering a previous source route,
 1406                          * forget it and use the new one we've been given.
 1407                          */
 1408                         if (sc->sc_ipopts)
 1409                                 (void) m_free(sc->sc_ipopts);
 1410                         sc->sc_ipopts = ipopts;
 1411                 }
 1412                 /*
 1413                  * Update timestamp if present.
 1414                  */
 1415                 if ((sc->sc_flags & SCF_TIMESTAMP) && (to->to_flags & TOF_TS))
 1416                         sc->sc_tsreflect = to->to_tsval;
 1417                 else
 1418                         sc->sc_flags &= ~SCF_TIMESTAMP;
 1419 #ifdef MAC
 1420                 /*
 1421                  * Since we have already unconditionally allocated label
 1422                  * storage, free it up.  The syncache entry will already
 1423                  * have an initialized label we can use.
 1424                  */
 1425                 mac_syncache_destroy(&maclabel);
 1426 #endif
 1427                 TCP_PROBE5(receive, NULL, NULL, m, NULL, th);
 1428                 /* Retransmit SYN|ACK and reset retransmit count. */
 1429                 if ((s = tcp_log_addrs(&sc->sc_inc, th, NULL, NULL))) {
 1430                         log(LOG_DEBUG, "%s; %s: Received duplicate SYN, "
 1431                             "resetting timer and retransmitting SYN|ACK\n",
 1432                             s, __func__);
 1433                         free(s, M_TCPLOG);
 1434                 }
 1435                 if (syncache_respond(sc, sch, 1, m) == 0) {
 1436                         sc->sc_rxmits = 0;
 1437                         syncache_timeout(sc, sch, 1);
 1438                         TCPSTAT_INC(tcps_sndacks);
 1439                         TCPSTAT_INC(tcps_sndtotal);
 1440                 }
 1441                 SCH_UNLOCK(sch);
 1442                 goto donenoprobe;
 1443         }
 1444 
 1445 #ifdef TCP_RFC7413
 1446         if (tfo_cookie_valid) {
 1447                 bzero(&scs, sizeof(scs));
 1448                 sc = &scs;
 1449                 goto skip_alloc;
 1450         }
 1451 #endif
 1452 
 1453         sc = uma_zalloc(V_tcp_syncache.zone, M_NOWAIT | M_ZERO);
 1454         if (sc == NULL) {
 1455                 /*
 1456                  * The zone allocator couldn't provide more entries.
 1457                  * Treat this as if the cache was full; drop the oldest
 1458                  * entry and insert the new one.
 1459                  */
 1460                 TCPSTAT_INC(tcps_sc_zonefail);
 1461                 if ((sc = TAILQ_LAST(&sch->sch_bucket, sch_head)) != NULL) {
 1462                         sch->sch_last_overflow = time_uptime;
 1463                         syncache_drop(sc, sch);
 1464                 }
 1465                 sc = uma_zalloc(V_tcp_syncache.zone, M_NOWAIT | M_ZERO);
 1466                 if (sc == NULL) {
 1467                         if (V_tcp_syncookies) {
 1468                                 bzero(&scs, sizeof(scs));
 1469                                 sc = &scs;
 1470                         } else {
 1471                                 SCH_UNLOCK(sch);
 1472                                 if (ipopts)
 1473                                         (void) m_free(ipopts);
 1474                                 goto done;
 1475                         }
 1476                 }
 1477         }
 1478 
 1479 #ifdef TCP_RFC7413
 1480 skip_alloc:
 1481         if (!tfo_cookie_valid && tfo_response_cookie_valid)
 1482                 sc->sc_tfo_cookie = &tfo_response_cookie;
 1483 #endif
 1484 
 1485         /*
 1486          * Fill in the syncache values.
 1487          */
 1488 #ifdef MAC
 1489         sc->sc_label = maclabel;
 1490 #endif
 1491         sc->sc_cred = cred;
 1492         cred = NULL;
 1493         sc->sc_ipopts = ipopts;
 1494         bcopy(inc, &sc->sc_inc, sizeof(struct in_conninfo));
 1495 #ifdef INET6
 1496         if (!(inc->inc_flags & INC_ISIPV6))
 1497 #endif
 1498         {
 1499                 sc->sc_ip_tos = ip_tos;
 1500                 sc->sc_ip_ttl = ip_ttl;
 1501         }
 1502 #ifdef TCP_OFFLOAD
 1503         sc->sc_tod = tod;
 1504         sc->sc_todctx = todctx;
 1505 #endif
 1506         sc->sc_irs = th->th_seq;
 1507         sc->sc_iss = arc4random();
 1508         sc->sc_flags = 0;
 1509         sc->sc_flowlabel = 0;
 1510 
 1511         /*
 1512          * Initial receive window: clip sbspace to [0 .. TCP_MAXWIN].
 1513          * win was derived from socket earlier in the function.
 1514          */
 1515         win = imax(win, 0);
 1516         win = imin(win, TCP_MAXWIN);
 1517         sc->sc_wnd = win;
 1518 
 1519         if (V_tcp_do_rfc1323) {
 1520                 /*
 1521                  * A timestamp received in a SYN makes
 1522                  * it ok to send timestamp requests and replies.
 1523                  */
 1524                 if (to->to_flags & TOF_TS) {
 1525                         sc->sc_tsreflect = to->to_tsval;
 1526                         sc->sc_flags |= SCF_TIMESTAMP;
 1527                         sc->sc_tsoff = tcp_new_ts_offset(inc);
 1528                 }
 1529                 if (to->to_flags & TOF_SCALE) {
 1530                         int wscale = 0;
 1531 
 1532                         /*
 1533                          * Pick the smallest possible scaling factor that
 1534                          * will still allow us to scale up to sb_max, aka
 1535                          * kern.ipc.maxsockbuf.
 1536                          *
 1537                          * We do this because there are broken firewalls that
 1538                          * will corrupt the window scale option, leading to
 1539                          * the other endpoint believing that our advertised
 1540                          * window is unscaled.  At scale factors larger than
 1541                          * 5 the unscaled window will drop below 1500 bytes,
 1542                          * leading to serious problems when traversing these
 1543                          * broken firewalls.
 1544                          *
 1545                          * With the default maxsockbuf of 256K, a scale factor
 1546                          * of 3 will be chosen by this algorithm.  Those who
 1547                          * choose a larger maxsockbuf should watch out
 1548                          * for the compatibility problems mentioned above.
 1549                          *
 1550                          * RFC1323: The Window field in a SYN (i.e., a <SYN>
 1551                          * or <SYN,ACK>) segment itself is never scaled.
 1552                          */
 1553                         while (wscale < TCP_MAX_WINSHIFT &&
 1554                             (TCP_MAXWIN << wscale) < sb_max)
 1555                                 wscale++;
 1556                         sc->sc_requested_r_scale = wscale;
 1557                         sc->sc_requested_s_scale = to->to_wscale;
 1558                         sc->sc_flags |= SCF_WINSCALE;
 1559                 }
 1560         }
 1561 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
 1562         /*
 1563          * If listening socket requested TCP digests, flag this in the
 1564          * syncache so that syncache_respond() will do the right thing
 1565          * with the SYN+ACK.
 1566          */
 1567         if (ltflags & TF_SIGNATURE)
 1568                 sc->sc_flags |= SCF_SIGNATURE;
 1569 #endif  /* TCP_SIGNATURE */
 1570         if (to->to_flags & TOF_SACKPERM)
 1571                 sc->sc_flags |= SCF_SACK;
 1572         if (to->to_flags & TOF_MSS)
 1573                 sc->sc_peer_mss = to->to_mss;   /* peer mss may be zero */
 1574         if (ltflags & TF_NOOPT)
 1575                 sc->sc_flags |= SCF_NOOPT;
 1576         if ((th->th_flags & (TH_ECE|TH_CWR)) && V_tcp_do_ecn)
 1577                 sc->sc_flags |= SCF_ECN;
 1578 
 1579         if (V_tcp_syncookies)
 1580                 sc->sc_iss = syncookie_generate(sch, sc);
 1581 #ifdef INET6
 1582         if (autoflowlabel) {
 1583                 if (V_tcp_syncookies)
 1584                         sc->sc_flowlabel = sc->sc_iss;
 1585                 else
 1586                         sc->sc_flowlabel = ip6_randomflowlabel();
 1587                 sc->sc_flowlabel = htonl(sc->sc_flowlabel) & IPV6_FLOWLABEL_MASK;
 1588         }
 1589 #endif
 1590         SCH_UNLOCK(sch);
 1591 
 1592 #ifdef TCP_RFC7413
 1593         if (tfo_cookie_valid) {
 1594                 syncache_tfo_expand(sc, lsop, m, tfo_response_cookie);
 1595                 /* INP_WUNLOCK(inp) will be performed by the called */
 1596                 rv = 1;
 1597                 goto tfo_done;
 1598         }
 1599 #endif
 1600 
 1601         TCP_PROBE5(receive, NULL, NULL, m, NULL, th);
 1602         /*
 1603          * Do a standard 3-way handshake.
 1604          */
 1605         if (syncache_respond(sc, sch, 0, m) == 0) {
 1606                 if (V_tcp_syncookies && V_tcp_syncookiesonly && sc != &scs)
 1607                         syncache_free(sc);
 1608                 else if (sc != &scs)
 1609                         syncache_insert(sc, sch);   /* locks and unlocks sch */
 1610                 TCPSTAT_INC(tcps_sndacks);
 1611                 TCPSTAT_INC(tcps_sndtotal);
 1612         } else {
 1613                 if (sc != &scs)
 1614                         syncache_free(sc);
 1615                 TCPSTAT_INC(tcps_sc_dropped);
 1616         }
 1617         goto donenoprobe;
 1618 
 1619 done:
 1620         TCP_PROBE5(receive, NULL, NULL, m, NULL, th);
 1621 donenoprobe:
 1622         if (m) {
 1623                 *lsop = NULL;
 1624                 m_freem(m);
 1625         }
 1626 #ifdef TCP_RFC7413
 1627 tfo_done:
 1628 #endif
 1629         if (cred != NULL)
 1630                 crfree(cred);
 1631 #ifdef MAC
 1632         if (sc == &scs)
 1633                 mac_syncache_destroy(&maclabel);
 1634 #endif
 1635         return (rv);
 1636 }
 1637 
 1638 /*
 1639  * Send SYN|ACK to the peer.  Either in response to the peer's SYN,
 1640  * i.e. m0 != NULL, or upon 3WHS ACK timeout, i.e. m0 == NULL.
 1641  */
 1642 static int
 1643 syncache_respond(struct syncache *sc, struct syncache_head *sch, int locked,
 1644     const struct mbuf *m0)
 1645 {
 1646         struct ip *ip = NULL;
 1647         struct mbuf *m;
 1648         struct tcphdr *th = NULL;
 1649         int optlen, error = 0;  /* Make compiler happy */
 1650         u_int16_t hlen, tlen, mssopt;
 1651         struct tcpopt to;
 1652 #ifdef INET6
 1653         struct ip6_hdr *ip6 = NULL;
 1654 #endif
 1655         hlen =
 1656 #ifdef INET6
 1657                (sc->sc_inc.inc_flags & INC_ISIPV6) ? sizeof(struct ip6_hdr) :
 1658 #endif
 1659                 sizeof(struct ip);
 1660         tlen = hlen + sizeof(struct tcphdr);
 1661 
 1662         /* Determine MSS we advertize to other end of connection. */
 1663         mssopt = max(tcp_mssopt(&sc->sc_inc), V_tcp_minmss);
 1664 
 1665         /* XXX: Assume that the entire packet will fit in a header mbuf. */
 1666         KASSERT(max_linkhdr + tlen + TCP_MAXOLEN <= MHLEN,
 1667             ("syncache: mbuf too small"));
 1668 
 1669         /* Create the IP+TCP header from scratch. */
 1670         m = m_gethdr(M_NOWAIT, MT_DATA);
 1671         if (m == NULL)
 1672                 return (ENOBUFS);
 1673 #ifdef MAC
 1674         mac_syncache_create_mbuf(sc->sc_label, m);
 1675 #endif
 1676         m->m_data += max_linkhdr;
 1677         m->m_len = tlen;
 1678         m->m_pkthdr.len = tlen;
 1679         m->m_pkthdr.rcvif = NULL;
 1680 
 1681 #ifdef INET6
 1682         if (sc->sc_inc.inc_flags & INC_ISIPV6) {
 1683                 ip6 = mtod(m, struct ip6_hdr *);
 1684                 ip6->ip6_vfc = IPV6_VERSION;
 1685                 ip6->ip6_nxt = IPPROTO_TCP;
 1686                 ip6->ip6_src = sc->sc_inc.inc6_laddr;
 1687                 ip6->ip6_dst = sc->sc_inc.inc6_faddr;
 1688                 ip6->ip6_plen = htons(tlen - hlen);
 1689                 /* ip6_hlim is set after checksum */
 1690                 /* Zero out traffic class and flow label. */
 1691                 ip6->ip6_flow &= ~IPV6_FLOWINFO_MASK;
 1692                 ip6->ip6_flow |= sc->sc_flowlabel;
 1693 
 1694                 th = (struct tcphdr *)(ip6 + 1);
 1695         }
 1696 #endif
 1697 #if defined(INET6) && defined(INET)
 1698         else
 1699 #endif
 1700 #ifdef INET
 1701         {
 1702                 ip = mtod(m, struct ip *);
 1703                 ip->ip_v = IPVERSION;
 1704                 ip->ip_hl = sizeof(struct ip) >> 2;
 1705                 ip->ip_len = htons(tlen);
 1706                 ip->ip_id = 0;
 1707                 ip->ip_off = 0;
 1708                 ip->ip_sum = 0;
 1709                 ip->ip_p = IPPROTO_TCP;
 1710                 ip->ip_src = sc->sc_inc.inc_laddr;
 1711                 ip->ip_dst = sc->sc_inc.inc_faddr;
 1712                 ip->ip_ttl = sc->sc_ip_ttl;
 1713                 ip->ip_tos = sc->sc_ip_tos;
 1714 
 1715                 /*
 1716                  * See if we should do MTU discovery.  Route lookups are
 1717                  * expensive, so we will only unset the DF bit if:
 1718                  *
 1719                  *      1) path_mtu_discovery is disabled
 1720                  *      2) the SCF_UNREACH flag has been set
 1721                  */
 1722                 if (V_path_mtu_discovery && ((sc->sc_flags & SCF_UNREACH) == 0))
 1723                        ip->ip_off |= htons(IP_DF);
 1724 
 1725                 th = (struct tcphdr *)(ip + 1);
 1726         }
 1727 #endif /* INET */
 1728         th->th_sport = sc->sc_inc.inc_lport;
 1729         th->th_dport = sc->sc_inc.inc_fport;
 1730 
 1731         th->th_seq = htonl(sc->sc_iss);
 1732         th->th_ack = htonl(sc->sc_irs + 1);
 1733         th->th_off = sizeof(struct tcphdr) >> 2;
 1734         th->th_x2 = 0;
 1735         th->th_flags = TH_SYN|TH_ACK;
 1736         th->th_win = htons(sc->sc_wnd);
 1737         th->th_urp = 0;
 1738 
 1739         if (sc->sc_flags & SCF_ECN) {
 1740                 th->th_flags |= TH_ECE;
 1741                 TCPSTAT_INC(tcps_ecn_shs);
 1742         }
 1743 
 1744         /* Tack on the TCP options. */
 1745         if ((sc->sc_flags & SCF_NOOPT) == 0) {
 1746                 to.to_flags = 0;
 1747 
 1748                 to.to_mss = mssopt;
 1749                 to.to_flags = TOF_MSS;
 1750                 if (sc->sc_flags & SCF_WINSCALE) {
 1751                         to.to_wscale = sc->sc_requested_r_scale;
 1752                         to.to_flags |= TOF_SCALE;
 1753                 }
 1754                 if (sc->sc_flags & SCF_TIMESTAMP) {
 1755                         to.to_tsval = sc->sc_tsoff + tcp_ts_getticks();
 1756                         to.to_tsecr = sc->sc_tsreflect;
 1757                         to.to_flags |= TOF_TS;
 1758                 }
 1759                 if (sc->sc_flags & SCF_SACK)
 1760                         to.to_flags |= TOF_SACKPERM;
 1761 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
 1762                 if (sc->sc_flags & SCF_SIGNATURE)
 1763                         to.to_flags |= TOF_SIGNATURE;
 1764 #endif
 1765 #ifdef TCP_RFC7413
 1766                 if (sc->sc_tfo_cookie) {
 1767                         to.to_flags |= TOF_FASTOPEN;
 1768                         to.to_tfo_len = TCP_FASTOPEN_COOKIE_LEN;
 1769                         to.to_tfo_cookie = sc->sc_tfo_cookie;
 1770                         /* don't send cookie again when retransmitting response */
 1771                         sc->sc_tfo_cookie = NULL;
 1772                 }
 1773 #endif
 1774                 optlen = tcp_addoptions(&to, (u_char *)(th + 1));
 1775 
 1776                 /* Adjust headers by option size. */
 1777                 th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
 1778                 m->m_len += optlen;
 1779                 m->m_pkthdr.len += optlen;
 1780 #ifdef INET6
 1781                 if (sc->sc_inc.inc_flags & INC_ISIPV6)
 1782                         ip6->ip6_plen = htons(ntohs(ip6->ip6_plen) + optlen);
 1783                 else
 1784 #endif
 1785                         ip->ip_len = htons(ntohs(ip->ip_len) + optlen);
 1786 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
 1787                 if (sc->sc_flags & SCF_SIGNATURE) {
 1788                         KASSERT(to.to_flags & TOF_SIGNATURE,
 1789                             ("tcp_addoptions() didn't set tcp_signature"));
 1790 
 1791                         /* NOTE: to.to_signature is inside of mbuf */
 1792                         if (!TCPMD5_ENABLED() ||
 1793                             TCPMD5_OUTPUT(m, th, to.to_signature) != 0) {
 1794                                 m_freem(m);
 1795                                 return (EACCES);
 1796                         }
 1797                 }
 1798 #endif
 1799         } else
 1800                 optlen = 0;
 1801 
 1802         M_SETFIB(m, sc->sc_inc.inc_fibnum);
 1803         m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
 1804         /*
 1805          * If we have peer's SYN and it has a flowid, then let's assign it to
 1806          * our SYN|ACK.  ip6_output() and ip_output() will not assign flowid
 1807          * to SYN|ACK due to lack of inp here.
 1808          */
 1809         if (m0 != NULL && M_HASHTYPE_GET(m0) != M_HASHTYPE_NONE) {
 1810                 m->m_pkthdr.flowid = m0->m_pkthdr.flowid;
 1811                 M_HASHTYPE_SET(m, M_HASHTYPE_GET(m0));
 1812         }
 1813 #ifdef INET6
 1814         if (sc->sc_inc.inc_flags & INC_ISIPV6) {
 1815                 m->m_pkthdr.csum_flags = CSUM_TCP_IPV6;
 1816                 th->th_sum = in6_cksum_pseudo(ip6, tlen + optlen - hlen,
 1817                     IPPROTO_TCP, 0);
 1818                 ip6->ip6_hlim = in6_selecthlim(NULL, NULL);
 1819 #ifdef TCP_OFFLOAD
 1820                 if (ADDED_BY_TOE(sc)) {
 1821                         struct toedev *tod = sc->sc_tod;
 1822 
 1823                         error = tod->tod_syncache_respond(tod, sc->sc_todctx, m);
 1824 
 1825                         return (error);
 1826                 }
 1827 #endif
 1828                 TCP_PROBE5(send, NULL, NULL, ip6, NULL, th);
 1829                 error = ip6_output(m, NULL, NULL, 0, NULL, NULL, NULL);
 1830         }
 1831 #endif
 1832 #if defined(INET6) && defined(INET)
 1833         else
 1834 #endif
 1835 #ifdef INET
 1836         {
 1837                 m->m_pkthdr.csum_flags = CSUM_TCP;
 1838                 th->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
 1839                     htons(tlen + optlen - hlen + IPPROTO_TCP));
 1840 #ifdef TCP_OFFLOAD
 1841                 if (ADDED_BY_TOE(sc)) {
 1842                         struct toedev *tod = sc->sc_tod;
 1843 
 1844                         error = tod->tod_syncache_respond(tod, sc->sc_todctx, m);
 1845 
 1846                         return (error);
 1847                 }
 1848 #endif
 1849                 TCP_PROBE5(send, NULL, NULL, ip, NULL, th);
 1850                 error = ip_output(m, sc->sc_ipopts, NULL, 0, NULL, NULL);
 1851         }
 1852 #endif
 1853         return (error);
 1854 }
 1855 
 1856 /*
 1857  * The purpose of syncookies is to handle spoofed SYN flooding DoS attacks
 1858  * that exceed the capacity of the syncache by avoiding the storage of any
 1859  * of the SYNs we receive.  Syncookies defend against blind SYN flooding
 1860  * attacks where the attacker does not have access to our responses.
 1861  *
 1862  * Syncookies encode and include all necessary information about the
 1863  * connection setup within the SYN|ACK that we send back.  That way we
 1864  * can avoid keeping any local state until the ACK to our SYN|ACK returns
 1865  * (if ever).  Normally the syncache and syncookies are running in parallel
 1866  * with the latter taking over when the former is exhausted.  When matching
 1867  * syncache entry is found the syncookie is ignored.
 1868  *
 1869  * The only reliable information persisting the 3WHS is our initial sequence
 1870  * number ISS of 32 bits.  Syncookies embed a cryptographically sufficient
 1871  * strong hash (MAC) value and a few bits of TCP SYN options in the ISS
 1872  * of our SYN|ACK.  The MAC can be recomputed when the ACK to our SYN|ACK
 1873  * returns and signifies a legitimate connection if it matches the ACK.
 1874  *
 1875  * The available space of 32 bits to store the hash and to encode the SYN
 1876  * option information is very tight and we should have at least 24 bits for
 1877  * the MAC to keep the number of guesses by blind spoofing reasonably high.
 1878  *
 1879  * SYN option information we have to encode to fully restore a connection:
 1880  * MSS: is imporant to chose an optimal segment size to avoid IP level
 1881  *   fragmentation along the path.  The common MSS values can be encoded
 1882  *   in a 3-bit table.  Uncommon values are captured by the next lower value
 1883  *   in the table leading to a slight increase in packetization overhead.
 1884  * WSCALE: is necessary to allow large windows to be used for high delay-
 1885  *   bandwidth product links.  Not scaling the window when it was initially
 1886  *   negotiated is bad for performance as lack of scaling further decreases
 1887  *   the apparent available send window.  We only need to encode the WSCALE
 1888  *   we received from the remote end.  Our end can be recalculated at any
 1889  *   time.  The common WSCALE values can be encoded in a 3-bit table.
 1890  *   Uncommon values are captured by the next lower value in the table
 1891  *   making us under-estimate the available window size halving our
 1892  *   theoretically possible maximum throughput for that connection.
 1893  * SACK: Greatly assists in packet loss recovery and requires 1 bit.
 1894  * TIMESTAMP and SIGNATURE is not encoded because they are permanent options
 1895  *   that are included in all segments on a connection.  We enable them when
 1896  *   the ACK has them.
 1897  *
 1898  * Security of syncookies and attack vectors:
 1899  *
 1900  * The MAC is computed over (faddr||laddr||fport||lport||irs||flags||secmod)
 1901  * together with the gloabl secret to make it unique per connection attempt.
 1902  * Thus any change of any of those parameters results in a different MAC output
 1903  * in an unpredictable way unless a collision is encountered.  24 bits of the
 1904  * MAC are embedded into the ISS.
 1905  *
 1906  * To prevent replay attacks two rotating global secrets are updated with a
 1907  * new random value every 15 seconds.  The life-time of a syncookie is thus
 1908  * 15-30 seconds.
 1909  *
 1910  * Vector 1: Attacking the secret.  This requires finding a weakness in the
 1911  * MAC itself or the way it is used here.  The attacker can do a chosen plain
 1912  * text attack by varying and testing the all parameters under his control.
 1913  * The strength depends on the size and randomness of the secret, and the
 1914  * cryptographic security of the MAC function.  Due to the constant updating
 1915  * of the secret the attacker has at most 29.999 seconds to find the secret
 1916  * and launch spoofed connections.  After that he has to start all over again.
 1917  *
 1918  * Vector 2: Collision attack on the MAC of a single ACK.  With a 24 bit MAC
 1919  * size an average of 4,823 attempts are required for a 50% chance of success
 1920  * to spoof a single syncookie (birthday collision paradox).  However the
 1921  * attacker is blind and doesn't know if one of his attempts succeeded unless
 1922  * he has a side channel to interfere success from.  A single connection setup
 1923  * success average of 90% requires 8,790 packets, 99.99% requires 17,578 packets.
 1924  * This many attempts are required for each one blind spoofed connection.  For
 1925  * every additional spoofed connection he has to launch another N attempts.
 1926  * Thus for a sustained rate 100 spoofed connections per second approximately
 1927  * 1,800,000 packets per second would have to be sent.
 1928  *
 1929  * NB: The MAC function should be fast so that it doesn't become a CPU
 1930  * exhaustion attack vector itself.
 1931  *
 1932  * References:
 1933  *  RFC4987 TCP SYN Flooding Attacks and Common Mitigations
 1934  *  SYN cookies were first proposed by cryptographer Dan J. Bernstein in 1996
 1935  *   http://cr.yp.to/syncookies.html    (overview)
 1936  *   http://cr.yp.to/syncookies/archive (details)
 1937  *
 1938  *
 1939  * Schematic construction of a syncookie enabled Initial Sequence Number:
 1940  *  0        1         2         3
 1941  *  12345678901234567890123456789012
 1942  * |xxxxxxxxxxxxxxxxxxxxxxxxWWWMMMSP|
 1943  *
 1944  *  x 24 MAC (truncated)
 1945  *  W  3 Send Window Scale index
 1946  *  M  3 MSS index
 1947  *  S  1 SACK permitted
 1948  *  P  1 Odd/even secret
 1949  */
 1950 
 1951 /*
 1952  * Distribution and probability of certain MSS values.  Those in between are
 1953  * rounded down to the next lower one.
 1954  * [An Analysis of TCP Maximum Segment Sizes, S. Alcock and R. Nelson, 2011]
 1955  *                            .2%  .3%   5%    7%    7%    20%   15%   45%
 1956  */
 1957 static int tcp_sc_msstab[] = { 216, 536, 1200, 1360, 1400, 1440, 1452, 1460 };
 1958 
 1959 /*
 1960  * Distribution and probability of certain WSCALE values.  We have to map the
 1961  * (send) window scale (shift) option with a range of 0-14 from 4 bits into 3
 1962  * bits based on prevalence of certain values.  Where we don't have an exact
 1963  * match for are rounded down to the next lower one letting us under-estimate
 1964  * the true available window.  At the moment this would happen only for the
 1965  * very uncommon values 3, 5 and those above 8 (more than 16MB socket buffer
 1966  * and window size).  The absence of the WSCALE option (no scaling in either
 1967  * direction) is encoded with index zero.
 1968  * [WSCALE values histograms, Allman, 2012]
 1969  *                            X 10 10 35  5  6 14 10%   by host
 1970  *                            X 11  4  5  5 18 49  3%   by connections
 1971  */
 1972 static int tcp_sc_wstab[] = { 0, 0, 1, 2, 4, 6, 7, 8 };
 1973 
 1974 /*
 1975  * Compute the MAC for the SYN cookie.  SIPHASH-2-4 is chosen for its speed
 1976  * and good cryptographic properties.
 1977  */
 1978 static uint32_t
 1979 syncookie_mac(struct in_conninfo *inc, tcp_seq irs, uint8_t flags,
 1980     uint8_t *secbits, uintptr_t secmod)
 1981 {
 1982         SIPHASH_CTX ctx;
 1983         uint32_t siphash[2];
 1984 
 1985         SipHash24_Init(&ctx);
 1986         SipHash_SetKey(&ctx, secbits);
 1987         switch (inc->inc_flags & INC_ISIPV6) {
 1988 #ifdef INET
 1989         case 0:
 1990                 SipHash_Update(&ctx, &inc->inc_faddr, sizeof(inc->inc_faddr));
 1991                 SipHash_Update(&ctx, &inc->inc_laddr, sizeof(inc->inc_laddr));
 1992                 break;
 1993 #endif
 1994 #ifdef INET6
 1995         case INC_ISIPV6:
 1996                 SipHash_Update(&ctx, &inc->inc6_faddr, sizeof(inc->inc6_faddr));
 1997                 SipHash_Update(&ctx, &inc->inc6_laddr, sizeof(inc->inc6_laddr));
 1998                 break;
 1999 #endif
 2000         }
 2001         SipHash_Update(&ctx, &inc->inc_fport, sizeof(inc->inc_fport));
 2002         SipHash_Update(&ctx, &inc->inc_lport, sizeof(inc->inc_lport));
 2003         SipHash_Update(&ctx, &irs, sizeof(irs));
 2004         SipHash_Update(&ctx, &flags, sizeof(flags));
 2005         SipHash_Update(&ctx, &secmod, sizeof(secmod));
 2006         SipHash_Final((u_int8_t *)&siphash, &ctx);
 2007 
 2008         return (siphash[0] ^ siphash[1]);
 2009 }
 2010 
 2011 static tcp_seq
 2012 syncookie_generate(struct syncache_head *sch, struct syncache *sc)
 2013 {
 2014         u_int i, secbit, wscale;
 2015         uint32_t iss, hash;
 2016         uint8_t *secbits;
 2017         union syncookie cookie;
 2018 
 2019         SCH_LOCK_ASSERT(sch);
 2020 
 2021         cookie.cookie = 0;
 2022 
 2023         /* Map our computed MSS into the 3-bit index. */
 2024         for (i = nitems(tcp_sc_msstab) - 1;
 2025              tcp_sc_msstab[i] > sc->sc_peer_mss && i > 0;
 2026              i--)
 2027                 ;
 2028         cookie.flags.mss_idx = i;
 2029 
 2030         /*
 2031          * Map the send window scale into the 3-bit index but only if
 2032          * the wscale option was received.
 2033          */
 2034         if (sc->sc_flags & SCF_WINSCALE) {
 2035                 wscale = sc->sc_requested_s_scale;
 2036                 for (i = nitems(tcp_sc_wstab) - 1;
 2037                     tcp_sc_wstab[i] > wscale && i > 0;
 2038                      i--)
 2039                         ;
 2040                 cookie.flags.wscale_idx = i;
 2041         }
 2042 
 2043         /* Can we do SACK? */
 2044         if (sc->sc_flags & SCF_SACK)
 2045                 cookie.flags.sack_ok = 1;
 2046 
 2047         /* Which of the two secrets to use. */
 2048         secbit = sch->sch_sc->secret.oddeven & 0x1;
 2049         cookie.flags.odd_even = secbit;
 2050 
 2051         secbits = sch->sch_sc->secret.key[secbit];
 2052         hash = syncookie_mac(&sc->sc_inc, sc->sc_irs, cookie.cookie, secbits,
 2053             (uintptr_t)sch);
 2054 
 2055         /*
 2056          * Put the flags into the hash and XOR them to get better ISS number
 2057          * variance.  This doesn't enhance the cryptographic strength and is
 2058          * done to prevent the 8 cookie bits from showing up directly on the
 2059          * wire.
 2060          */
 2061         iss = hash & ~0xff;
 2062         iss |= cookie.cookie ^ (hash >> 24);
 2063 
 2064         TCPSTAT_INC(tcps_sc_sendcookie);
 2065         return (iss);
 2066 }
 2067 
 2068 static struct syncache *
 2069 syncookie_lookup(struct in_conninfo *inc, struct syncache_head *sch, 
 2070     struct syncache *sc, struct tcphdr *th, struct tcpopt *to,
 2071     struct socket *lso)
 2072 {
 2073         uint32_t hash;
 2074         uint8_t *secbits;
 2075         tcp_seq ack, seq;
 2076         int wnd, wscale = 0;
 2077         union syncookie cookie;
 2078 
 2079         SCH_LOCK_ASSERT(sch);
 2080 
 2081         /*
 2082          * Pull information out of SYN-ACK/ACK and revert sequence number
 2083          * advances.
 2084          */
 2085         ack = th->th_ack - 1;
 2086         seq = th->th_seq - 1;
 2087 
 2088         /*
 2089          * Unpack the flags containing enough information to restore the
 2090          * connection.
 2091          */
 2092         cookie.cookie = (ack & 0xff) ^ (ack >> 24);
 2093 
 2094         /* Which of the two secrets to use. */
 2095         secbits = sch->sch_sc->secret.key[cookie.flags.odd_even];
 2096 
 2097         hash = syncookie_mac(inc, seq, cookie.cookie, secbits, (uintptr_t)sch);
 2098 
 2099         /* The recomputed hash matches the ACK if this was a genuine cookie. */
 2100         if ((ack & ~0xff) != (hash & ~0xff))
 2101                 return (NULL);
 2102 
 2103         /* Fill in the syncache values. */
 2104         sc->sc_flags = 0;
 2105         bcopy(inc, &sc->sc_inc, sizeof(struct in_conninfo));
 2106         sc->sc_ipopts = NULL;
 2107         
 2108         sc->sc_irs = seq;
 2109         sc->sc_iss = ack;
 2110 
 2111         switch (inc->inc_flags & INC_ISIPV6) {
 2112 #ifdef INET
 2113         case 0:
 2114                 sc->sc_ip_ttl = sotoinpcb(lso)->inp_ip_ttl;
 2115                 sc->sc_ip_tos = sotoinpcb(lso)->inp_ip_tos;
 2116                 break;
 2117 #endif
 2118 #ifdef INET6
 2119         case INC_ISIPV6:
 2120                 if (sotoinpcb(lso)->inp_flags & IN6P_AUTOFLOWLABEL)
 2121                         sc->sc_flowlabel =
 2122                             htonl(sc->sc_iss) & IPV6_FLOWLABEL_MASK;
 2123                 break;
 2124 #endif
 2125         }
 2126 
 2127         sc->sc_peer_mss = tcp_sc_msstab[cookie.flags.mss_idx];
 2128 
 2129         /* We can simply recompute receive window scale we sent earlier. */
 2130         while (wscale < TCP_MAX_WINSHIFT && (TCP_MAXWIN << wscale) < sb_max)
 2131                 wscale++;
 2132 
 2133         /* Only use wscale if it was enabled in the orignal SYN. */
 2134         if (cookie.flags.wscale_idx > 0) {
 2135                 sc->sc_requested_r_scale = wscale;
 2136                 sc->sc_requested_s_scale = tcp_sc_wstab[cookie.flags.wscale_idx];
 2137                 sc->sc_flags |= SCF_WINSCALE;
 2138         }
 2139 
 2140         wnd = sbspace(&lso->so_rcv);
 2141         wnd = imax(wnd, 0);
 2142         wnd = imin(wnd, TCP_MAXWIN);
 2143         sc->sc_wnd = wnd;
 2144 
 2145         if (cookie.flags.sack_ok)
 2146                 sc->sc_flags |= SCF_SACK;
 2147 
 2148         if (to->to_flags & TOF_TS) {
 2149                 sc->sc_flags |= SCF_TIMESTAMP;
 2150                 sc->sc_tsreflect = to->to_tsval;
 2151                 sc->sc_tsoff = tcp_new_ts_offset(inc);
 2152         }
 2153 
 2154         if (to->to_flags & TOF_SIGNATURE)
 2155                 sc->sc_flags |= SCF_SIGNATURE;
 2156 
 2157         sc->sc_rxmits = 0;
 2158 
 2159         TCPSTAT_INC(tcps_sc_recvcookie);
 2160         return (sc);
 2161 }
 2162 
 2163 #ifdef INVARIANTS
 2164 static int
 2165 syncookie_cmp(struct in_conninfo *inc, struct syncache_head *sch,
 2166     struct syncache *sc, struct tcphdr *th, struct tcpopt *to,
 2167     struct socket *lso)
 2168 {
 2169         struct syncache scs, *scx;
 2170         char *s;
 2171 
 2172         bzero(&scs, sizeof(scs));
 2173         scx = syncookie_lookup(inc, sch, &scs, th, to, lso);
 2174 
 2175         if ((s = tcp_log_addrs(inc, th, NULL, NULL)) == NULL)
 2176                 return (0);
 2177 
 2178         if (scx != NULL) {
 2179                 if (sc->sc_peer_mss != scx->sc_peer_mss)
 2180                         log(LOG_DEBUG, "%s; %s: mss different %i vs %i\n",
 2181                             s, __func__, sc->sc_peer_mss, scx->sc_peer_mss);
 2182 
 2183                 if (sc->sc_requested_r_scale != scx->sc_requested_r_scale)
 2184                         log(LOG_DEBUG, "%s; %s: rwscale different %i vs %i\n",
 2185                             s, __func__, sc->sc_requested_r_scale,
 2186                             scx->sc_requested_r_scale);
 2187 
 2188                 if (sc->sc_requested_s_scale != scx->sc_requested_s_scale)
 2189                         log(LOG_DEBUG, "%s; %s: swscale different %i vs %i\n",
 2190                             s, __func__, sc->sc_requested_s_scale,
 2191                             scx->sc_requested_s_scale);
 2192 
 2193                 if ((sc->sc_flags & SCF_SACK) != (scx->sc_flags & SCF_SACK))
 2194                         log(LOG_DEBUG, "%s; %s: SACK different\n", s, __func__);
 2195         }
 2196 
 2197         if (s != NULL)
 2198                 free(s, M_TCPLOG);
 2199         return (0);
 2200 }
 2201 #endif /* INVARIANTS */
 2202 
 2203 static void
 2204 syncookie_reseed(void *arg)
 2205 {
 2206         struct tcp_syncache *sc = arg;
 2207         uint8_t *secbits;
 2208         int secbit;
 2209 
 2210         /*
 2211          * Reseeding the secret doesn't have to be protected by a lock.
 2212          * It only must be ensured that the new random values are visible
 2213          * to all CPUs in a SMP environment.  The atomic with release
 2214          * semantics ensures that.
 2215          */
 2216         secbit = (sc->secret.oddeven & 0x1) ? 0 : 1;
 2217         secbits = sc->secret.key[secbit];
 2218         arc4rand(secbits, SYNCOOKIE_SECRET_SIZE, 0);
 2219         atomic_add_rel_int(&sc->secret.oddeven, 1);
 2220 
 2221         /* Reschedule ourself. */
 2222         callout_schedule(&sc->secret.reseed, SYNCOOKIE_LIFETIME * hz);
 2223 }
 2224 
 2225 /*
 2226  * Exports the syncache entries to userland so that netstat can display
 2227  * them alongside the other sockets.  This function is intended to be
 2228  * called only from tcp_pcblist.
 2229  *
 2230  * Due to concurrency on an active system, the number of pcbs exported
 2231  * may have no relation to max_pcbs.  max_pcbs merely indicates the
 2232  * amount of space the caller allocated for this function to use.
 2233  */
 2234 int
 2235 syncache_pcblist(struct sysctl_req *req, int max_pcbs, int *pcbs_exported)
 2236 {
 2237         struct xtcpcb xt;
 2238         struct syncache *sc;
 2239         struct syncache_head *sch;
 2240         int count, error, i;
 2241 
 2242         for (count = 0, error = 0, i = 0; i < V_tcp_syncache.hashsize; i++) {
 2243                 sch = &V_tcp_syncache.hashbase[i];
 2244                 SCH_LOCK(sch);
 2245                 TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash) {
 2246                         if (count >= max_pcbs) {
 2247                                 SCH_UNLOCK(sch);
 2248                                 goto exit;
 2249                         }
 2250                         if (cr_cansee(req->td->td_ucred, sc->sc_cred) != 0)
 2251                                 continue;
 2252                         bzero(&xt, sizeof(xt));
 2253                         xt.xt_len = sizeof(xt);
 2254                         if (sc->sc_inc.inc_flags & INC_ISIPV6)
 2255                                 xt.xt_inp.inp_vflag = INP_IPV6;
 2256                         else
 2257                                 xt.xt_inp.inp_vflag = INP_IPV4;
 2258                         bcopy(&sc->sc_inc, &xt.xt_inp.inp_inc, sizeof (struct in_conninfo));
 2259                         xt.xt_tp.t_inpcb = &xt.xt_inp;
 2260                         xt.xt_tp.t_state = TCPS_SYN_RECEIVED;
 2261                         xt.xt_socket.xso_protocol = IPPROTO_TCP;
 2262                         xt.xt_socket.xso_len = sizeof (struct xsocket);
 2263                         xt.xt_socket.so_type = SOCK_STREAM;
 2264                         xt.xt_socket.so_state = SS_ISCONNECTING;
 2265                         error = SYSCTL_OUT(req, &xt, sizeof xt);
 2266                         if (error) {
 2267                                 SCH_UNLOCK(sch);
 2268                                 goto exit;
 2269                         }
 2270                         count++;
 2271                 }
 2272                 SCH_UNLOCK(sch);
 2273         }
 2274 exit:
 2275         *pcbs_exported = count;
 2276         return error;
 2277 }

Cache object: 6895f90818cbe2771a5458cfcc463978


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.