The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/netinet/tcp_syncache.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
    3  *
    4  * Copyright (c) 2001 McAfee, Inc.
    5  * Copyright (c) 2006,2013 Andre Oppermann, Internet Business Solutions AG
    6  * All rights reserved.
    7  *
    8  * This software was developed for the FreeBSD Project by Jonathan Lemon
    9  * and McAfee Research, the Security Research Division of McAfee, Inc. under
   10  * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the
   11  * DARPA CHATS research program. [2001 McAfee, Inc.]
   12  *
   13  * Redistribution and use in source and binary forms, with or without
   14  * modification, are permitted provided that the following conditions
   15  * are met:
   16  * 1. Redistributions of source code must retain the above copyright
   17  *    notice, this list of conditions and the following disclaimer.
   18  * 2. Redistributions in binary form must reproduce the above copyright
   19  *    notice, this list of conditions and the following disclaimer in the
   20  *    documentation and/or other materials provided with the distribution.
   21  *
   22  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   32  * SUCH DAMAGE.
   33  */
   34 
   35 #include <sys/cdefs.h>
   36 __FBSDID("$FreeBSD$");
   37 
   38 #include "opt_inet.h"
   39 #include "opt_inet6.h"
   40 #include "opt_ipsec.h"
   41 #include "opt_pcbgroup.h"
   42 
   43 #include <sys/param.h>
   44 #include <sys/systm.h>
   45 #include <sys/hash.h>
   46 #include <sys/refcount.h>
   47 #include <sys/kernel.h>
   48 #include <sys/sysctl.h>
   49 #include <sys/limits.h>
   50 #include <sys/lock.h>
   51 #include <sys/mutex.h>
   52 #include <sys/malloc.h>
   53 #include <sys/mbuf.h>
   54 #include <sys/proc.h>           /* for proc0 declaration */
   55 #include <sys/random.h>
   56 #include <sys/socket.h>
   57 #include <sys/socketvar.h>
   58 #include <sys/syslog.h>
   59 #include <sys/ucred.h>
   60 
   61 #include <sys/md5.h>
   62 #include <crypto/siphash/siphash.h>
   63 
   64 #include <vm/uma.h>
   65 
   66 #include <net/if.h>
   67 #include <net/if_var.h>
   68 #include <net/route.h>
   69 #include <net/vnet.h>
   70 
   71 #include <netinet/in.h>
   72 #include <netinet/in_kdtrace.h>
   73 #include <netinet/in_systm.h>
   74 #include <netinet/ip.h>
   75 #include <netinet/in_var.h>
   76 #include <netinet/in_pcb.h>
   77 #include <netinet/ip_var.h>
   78 #include <netinet/ip_options.h>
   79 #ifdef INET6
   80 #include <netinet/ip6.h>
   81 #include <netinet/icmp6.h>
   82 #include <netinet6/nd6.h>
   83 #include <netinet6/ip6_var.h>
   84 #include <netinet6/in6_pcb.h>
   85 #endif
   86 #include <netinet/tcp.h>
   87 #include <netinet/tcp_fastopen.h>
   88 #include <netinet/tcp_fsm.h>
   89 #include <netinet/tcp_seq.h>
   90 #include <netinet/tcp_timer.h>
   91 #include <netinet/tcp_var.h>
   92 #include <netinet/tcp_syncache.h>
   93 #ifdef INET6
   94 #include <netinet6/tcp6_var.h>
   95 #endif
   96 #ifdef TCP_OFFLOAD
   97 #include <netinet/toecore.h>
   98 #endif
   99 
  100 #include <netipsec/ipsec_support.h>
  101 
  102 #include <machine/in_cksum.h>
  103 
  104 #include <security/mac/mac_framework.h>
  105 
  106 VNET_DEFINE_STATIC(int, tcp_syncookies) = 1;
  107 #define V_tcp_syncookies                VNET(tcp_syncookies)
  108 SYSCTL_INT(_net_inet_tcp, OID_AUTO, syncookies, CTLFLAG_VNET | CTLFLAG_RW,
  109     &VNET_NAME(tcp_syncookies), 0,
  110     "Use TCP SYN cookies if the syncache overflows");
  111 
  112 VNET_DEFINE_STATIC(int, tcp_syncookiesonly) = 0;
  113 #define V_tcp_syncookiesonly            VNET(tcp_syncookiesonly)
  114 SYSCTL_INT(_net_inet_tcp, OID_AUTO, syncookies_only, CTLFLAG_VNET | CTLFLAG_RW,
  115     &VNET_NAME(tcp_syncookiesonly), 0,
  116     "Use only TCP SYN cookies");
  117 
  118 VNET_DEFINE_STATIC(int, functions_inherit_listen_socket_stack) = 1;
  119 #define V_functions_inherit_listen_socket_stack \
  120     VNET(functions_inherit_listen_socket_stack)
  121 SYSCTL_INT(_net_inet_tcp, OID_AUTO, functions_inherit_listen_socket_stack,
  122     CTLFLAG_VNET | CTLFLAG_RW,
  123     &VNET_NAME(functions_inherit_listen_socket_stack), 0,
  124     "Inherit listen socket's stack");
  125 
  126 #ifdef TCP_OFFLOAD
  127 #define ADDED_BY_TOE(sc) ((sc)->sc_tod != NULL)
  128 #endif
  129 
  130 static void      syncache_drop(struct syncache *, struct syncache_head *);
  131 static void      syncache_free(struct syncache *);
  132 static void      syncache_insert(struct syncache *, struct syncache_head *);
  133 static int       syncache_respond(struct syncache *, struct syncache_head *,
  134                     const struct mbuf *, int);
  135 static struct    socket *syncache_socket(struct syncache *, struct socket *,
  136                     struct mbuf *m);
  137 static void      syncache_timeout(struct syncache *sc, struct syncache_head *sch,
  138                     int docallout);
  139 static void      syncache_timer(void *);
  140 
  141 static uint32_t  syncookie_mac(struct in_conninfo *, tcp_seq, uint8_t,
  142                     uint8_t *, uintptr_t);
  143 static tcp_seq   syncookie_generate(struct syncache_head *, struct syncache *);
  144 static struct syncache
  145                 *syncookie_lookup(struct in_conninfo *, struct syncache_head *,
  146                     struct syncache *, struct tcphdr *, struct tcpopt *,
  147                     struct socket *);
  148 static void      syncookie_reseed(void *);
  149 #ifdef INVARIANTS
  150 static int       syncookie_cmp(struct in_conninfo *inc, struct syncache_head *sch,
  151                     struct syncache *sc, struct tcphdr *th, struct tcpopt *to,
  152                     struct socket *lso);
  153 #endif
  154 
  155 /*
  156  * Transmit the SYN,ACK fewer times than TCP_MAXRXTSHIFT specifies.
  157  * 3 retransmits corresponds to a timeout with default values of
  158  * tcp_rexmit_initial * (             1 +
  159  *                       tcp_backoff[1] +
  160  *                       tcp_backoff[2] +
  161  *                       tcp_backoff[3]) + 3 * tcp_rexmit_slop,
  162  * 1000 ms * (1 + 2 + 4 + 8) +  3 * 200 ms = 15600 ms,
  163  * the odds are that the user has given up attempting to connect by then.
  164  */
  165 #define SYNCACHE_MAXREXMTS              3
  166 
  167 /* Arbitrary values */
  168 #define TCP_SYNCACHE_HASHSIZE           512
  169 #define TCP_SYNCACHE_BUCKETLIMIT        30
  170 
  171 VNET_DEFINE_STATIC(struct tcp_syncache, tcp_syncache);
  172 #define V_tcp_syncache                  VNET(tcp_syncache)
  173 
  174 static SYSCTL_NODE(_net_inet_tcp, OID_AUTO, syncache, CTLFLAG_RW, 0,
  175     "TCP SYN cache");
  176 
  177 SYSCTL_UINT(_net_inet_tcp_syncache, OID_AUTO, bucketlimit, CTLFLAG_VNET | CTLFLAG_RDTUN,
  178     &VNET_NAME(tcp_syncache.bucket_limit), 0,
  179     "Per-bucket hash limit for syncache");
  180 
  181 SYSCTL_UINT(_net_inet_tcp_syncache, OID_AUTO, cachelimit, CTLFLAG_VNET | CTLFLAG_RDTUN,
  182     &VNET_NAME(tcp_syncache.cache_limit), 0,
  183     "Overall entry limit for syncache");
  184 
  185 SYSCTL_UMA_CUR(_net_inet_tcp_syncache, OID_AUTO, count, CTLFLAG_VNET,
  186     &VNET_NAME(tcp_syncache.zone), "Current number of entries in syncache");
  187 
  188 SYSCTL_UINT(_net_inet_tcp_syncache, OID_AUTO, hashsize, CTLFLAG_VNET | CTLFLAG_RDTUN,
  189     &VNET_NAME(tcp_syncache.hashsize), 0,
  190     "Size of TCP syncache hashtable");
  191 
  192 static int
  193 sysctl_net_inet_tcp_syncache_rexmtlimit_check(SYSCTL_HANDLER_ARGS)
  194 {
  195         int error;
  196         u_int new;
  197 
  198         new = V_tcp_syncache.rexmt_limit;
  199         error = sysctl_handle_int(oidp, &new, 0, req);
  200         if ((error == 0) && (req->newptr != NULL)) {
  201                 if (new > TCP_MAXRXTSHIFT)
  202                         error = EINVAL;
  203                 else
  204                         V_tcp_syncache.rexmt_limit = new;
  205         }
  206         return (error);
  207 }
  208 
  209 SYSCTL_PROC(_net_inet_tcp_syncache, OID_AUTO, rexmtlimit,
  210     CTLFLAG_VNET | CTLTYPE_UINT | CTLFLAG_RW,
  211     &VNET_NAME(tcp_syncache.rexmt_limit), 0,
  212     sysctl_net_inet_tcp_syncache_rexmtlimit_check, "UI",
  213     "Limit on SYN/ACK retransmissions");
  214 
  215 VNET_DEFINE(int, tcp_sc_rst_sock_fail) = 1;
  216 SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, rst_on_sock_fail,
  217     CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(tcp_sc_rst_sock_fail), 0,
  218     "Send reset on socket allocation failure");
  219 
  220 static MALLOC_DEFINE(M_SYNCACHE, "syncache", "TCP syncache");
  221 
  222 #define SCH_LOCK(sch)           mtx_lock(&(sch)->sch_mtx)
  223 #define SCH_UNLOCK(sch)         mtx_unlock(&(sch)->sch_mtx)
  224 #define SCH_LOCK_ASSERT(sch)    mtx_assert(&(sch)->sch_mtx, MA_OWNED)
  225 
  226 /*
  227  * Requires the syncache entry to be already removed from the bucket list.
  228  */
  229 static void
  230 syncache_free(struct syncache *sc)
  231 {
  232 
  233         if (sc->sc_ipopts)
  234                 (void) m_free(sc->sc_ipopts);
  235         if (sc->sc_cred)
  236                 crfree(sc->sc_cred);
  237 #ifdef MAC
  238         mac_syncache_destroy(&sc->sc_label);
  239 #endif
  240 
  241         uma_zfree(V_tcp_syncache.zone, sc);
  242 }
  243 
  244 void
  245 syncache_init(void)
  246 {
  247         int i;
  248 
  249         V_tcp_syncache.hashsize = TCP_SYNCACHE_HASHSIZE;
  250         V_tcp_syncache.bucket_limit = TCP_SYNCACHE_BUCKETLIMIT;
  251         V_tcp_syncache.rexmt_limit = SYNCACHE_MAXREXMTS;
  252         V_tcp_syncache.hash_secret = arc4random();
  253 
  254         TUNABLE_INT_FETCH("net.inet.tcp.syncache.hashsize",
  255             &V_tcp_syncache.hashsize);
  256         TUNABLE_INT_FETCH("net.inet.tcp.syncache.bucketlimit",
  257             &V_tcp_syncache.bucket_limit);
  258         if (!powerof2(V_tcp_syncache.hashsize) ||
  259             V_tcp_syncache.hashsize == 0) {
  260                 printf("WARNING: syncache hash size is not a power of 2.\n");
  261                 V_tcp_syncache.hashsize = TCP_SYNCACHE_HASHSIZE;
  262         }
  263         V_tcp_syncache.hashmask = V_tcp_syncache.hashsize - 1;
  264 
  265         /* Set limits. */
  266         V_tcp_syncache.cache_limit =
  267             V_tcp_syncache.hashsize * V_tcp_syncache.bucket_limit;
  268         TUNABLE_INT_FETCH("net.inet.tcp.syncache.cachelimit",
  269             &V_tcp_syncache.cache_limit);
  270 
  271         /* Allocate the hash table. */
  272         V_tcp_syncache.hashbase = malloc(V_tcp_syncache.hashsize *
  273             sizeof(struct syncache_head), M_SYNCACHE, M_WAITOK | M_ZERO);
  274 
  275 #ifdef VIMAGE
  276         V_tcp_syncache.vnet = curvnet;
  277 #endif
  278 
  279         /* Initialize the hash buckets. */
  280         for (i = 0; i < V_tcp_syncache.hashsize; i++) {
  281                 TAILQ_INIT(&V_tcp_syncache.hashbase[i].sch_bucket);
  282                 mtx_init(&V_tcp_syncache.hashbase[i].sch_mtx, "tcp_sc_head",
  283                          NULL, MTX_DEF);
  284                 callout_init_mtx(&V_tcp_syncache.hashbase[i].sch_timer,
  285                          &V_tcp_syncache.hashbase[i].sch_mtx, 0);
  286                 V_tcp_syncache.hashbase[i].sch_length = 0;
  287                 V_tcp_syncache.hashbase[i].sch_sc = &V_tcp_syncache;
  288                 V_tcp_syncache.hashbase[i].sch_last_overflow =
  289                     -(SYNCOOKIE_LIFETIME + 1);
  290         }
  291 
  292         /* Create the syncache entry zone. */
  293         V_tcp_syncache.zone = uma_zcreate("syncache", sizeof(struct syncache),
  294             NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
  295         V_tcp_syncache.cache_limit = uma_zone_set_max(V_tcp_syncache.zone,
  296             V_tcp_syncache.cache_limit);
  297 
  298         /* Start the SYN cookie reseeder callout. */
  299         callout_init(&V_tcp_syncache.secret.reseed, 1);
  300         arc4rand(V_tcp_syncache.secret.key[0], SYNCOOKIE_SECRET_SIZE, 0);
  301         arc4rand(V_tcp_syncache.secret.key[1], SYNCOOKIE_SECRET_SIZE, 0);
  302         callout_reset(&V_tcp_syncache.secret.reseed, SYNCOOKIE_LIFETIME * hz,
  303             syncookie_reseed, &V_tcp_syncache);
  304 }
  305 
  306 #ifdef VIMAGE
  307 void
  308 syncache_destroy(void)
  309 {
  310         struct syncache_head *sch;
  311         struct syncache *sc, *nsc;
  312         int i;
  313 
  314         /*
  315          * Stop the re-seed timer before freeing resources.  No need to
  316          * possibly schedule it another time.
  317          */
  318         callout_drain(&V_tcp_syncache.secret.reseed);
  319 
  320         /* Cleanup hash buckets: stop timers, free entries, destroy locks. */
  321         for (i = 0; i < V_tcp_syncache.hashsize; i++) {
  322 
  323                 sch = &V_tcp_syncache.hashbase[i];
  324                 callout_drain(&sch->sch_timer);
  325 
  326                 SCH_LOCK(sch);
  327                 TAILQ_FOREACH_SAFE(sc, &sch->sch_bucket, sc_hash, nsc)
  328                         syncache_drop(sc, sch);
  329                 SCH_UNLOCK(sch);
  330                 KASSERT(TAILQ_EMPTY(&sch->sch_bucket),
  331                     ("%s: sch->sch_bucket not empty", __func__));
  332                 KASSERT(sch->sch_length == 0, ("%s: sch->sch_length %d not 0",
  333                     __func__, sch->sch_length));
  334                 mtx_destroy(&sch->sch_mtx);
  335         }
  336 
  337         KASSERT(uma_zone_get_cur(V_tcp_syncache.zone) == 0,
  338             ("%s: cache_count not 0", __func__));
  339 
  340         /* Free the allocated global resources. */
  341         uma_zdestroy(V_tcp_syncache.zone);
  342         free(V_tcp_syncache.hashbase, M_SYNCACHE);
  343 }
  344 #endif
  345 
  346 /*
  347  * Inserts a syncache entry into the specified bucket row.
  348  * Locks and unlocks the syncache_head autonomously.
  349  */
  350 static void
  351 syncache_insert(struct syncache *sc, struct syncache_head *sch)
  352 {
  353         struct syncache *sc2;
  354 
  355         SCH_LOCK(sch);
  356 
  357         /*
  358          * Make sure that we don't overflow the per-bucket limit.
  359          * If the bucket is full, toss the oldest element.
  360          */
  361         if (sch->sch_length >= V_tcp_syncache.bucket_limit) {
  362                 KASSERT(!TAILQ_EMPTY(&sch->sch_bucket),
  363                         ("sch->sch_length incorrect"));
  364                 sc2 = TAILQ_LAST(&sch->sch_bucket, sch_head);
  365                 sch->sch_last_overflow = time_uptime;
  366                 syncache_drop(sc2, sch);
  367                 TCPSTAT_INC(tcps_sc_bucketoverflow);
  368         }
  369 
  370         /* Put it into the bucket. */
  371         TAILQ_INSERT_HEAD(&sch->sch_bucket, sc, sc_hash);
  372         sch->sch_length++;
  373 
  374 #ifdef TCP_OFFLOAD
  375         if (ADDED_BY_TOE(sc)) {
  376                 struct toedev *tod = sc->sc_tod;
  377 
  378                 tod->tod_syncache_added(tod, sc->sc_todctx);
  379         }
  380 #endif
  381 
  382         /* Reinitialize the bucket row's timer. */
  383         if (sch->sch_length == 1)
  384                 sch->sch_nextc = ticks + INT_MAX;
  385         syncache_timeout(sc, sch, 1);
  386 
  387         SCH_UNLOCK(sch);
  388 
  389         TCPSTATES_INC(TCPS_SYN_RECEIVED);
  390         TCPSTAT_INC(tcps_sc_added);
  391 }
  392 
  393 /*
  394  * Remove and free entry from syncache bucket row.
  395  * Expects locked syncache head.
  396  */
  397 static void
  398 syncache_drop(struct syncache *sc, struct syncache_head *sch)
  399 {
  400 
  401         SCH_LOCK_ASSERT(sch);
  402 
  403         TCPSTATES_DEC(TCPS_SYN_RECEIVED);
  404         TAILQ_REMOVE(&sch->sch_bucket, sc, sc_hash);
  405         sch->sch_length--;
  406 
  407 #ifdef TCP_OFFLOAD
  408         if (ADDED_BY_TOE(sc)) {
  409                 struct toedev *tod = sc->sc_tod;
  410 
  411                 tod->tod_syncache_removed(tod, sc->sc_todctx);
  412         }
  413 #endif
  414 
  415         syncache_free(sc);
  416 }
  417 
  418 /*
  419  * Engage/reengage time on bucket row.
  420  */
  421 static void
  422 syncache_timeout(struct syncache *sc, struct syncache_head *sch, int docallout)
  423 {
  424         int rexmt;
  425 
  426         if (sc->sc_rxmits == 0)
  427                 rexmt = tcp_rexmit_initial;
  428         else
  429                 TCPT_RANGESET(rexmt,
  430                     tcp_rexmit_initial * tcp_backoff[sc->sc_rxmits],
  431                     tcp_rexmit_min, TCPTV_REXMTMAX);
  432         sc->sc_rxttime = ticks + rexmt;
  433         sc->sc_rxmits++;
  434         if (TSTMP_LT(sc->sc_rxttime, sch->sch_nextc)) {
  435                 sch->sch_nextc = sc->sc_rxttime;
  436                 if (docallout)
  437                         callout_reset(&sch->sch_timer, sch->sch_nextc - ticks,
  438                             syncache_timer, (void *)sch);
  439         }
  440 }
  441 
  442 /*
  443  * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
  444  * If we have retransmitted an entry the maximum number of times, expire it.
  445  * One separate timer for each bucket row.
  446  */
  447 static void
  448 syncache_timer(void *xsch)
  449 {
  450         struct syncache_head *sch = (struct syncache_head *)xsch;
  451         struct syncache *sc, *nsc;
  452         int tick = ticks;
  453         char *s;
  454 
  455         CURVNET_SET(sch->sch_sc->vnet);
  456 
  457         /* NB: syncache_head has already been locked by the callout. */
  458         SCH_LOCK_ASSERT(sch);
  459 
  460         /*
  461          * In the following cycle we may remove some entries and/or
  462          * advance some timeouts, so re-initialize the bucket timer.
  463          */
  464         sch->sch_nextc = tick + INT_MAX;
  465 
  466         TAILQ_FOREACH_SAFE(sc, &sch->sch_bucket, sc_hash, nsc) {
  467                 /*
  468                  * We do not check if the listen socket still exists
  469                  * and accept the case where the listen socket may be
  470                  * gone by the time we resend the SYN/ACK.  We do
  471                  * not expect this to happens often. If it does,
  472                  * then the RST will be sent by the time the remote
  473                  * host does the SYN/ACK->ACK.
  474                  */
  475                 if (TSTMP_GT(sc->sc_rxttime, tick)) {
  476                         if (TSTMP_LT(sc->sc_rxttime, sch->sch_nextc))
  477                                 sch->sch_nextc = sc->sc_rxttime;
  478                         continue;
  479                 }
  480                 if (sc->sc_rxmits > V_tcp_ecn_maxretries) {
  481                         sc->sc_flags &= ~SCF_ECN;
  482                 }
  483                 if (sc->sc_rxmits > V_tcp_syncache.rexmt_limit) {
  484                         if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
  485                                 log(LOG_DEBUG, "%s; %s: Retransmits exhausted, "
  486                                     "giving up and removing syncache entry\n",
  487                                     s, __func__);
  488                                 free(s, M_TCPLOG);
  489                         }
  490                         syncache_drop(sc, sch);
  491                         TCPSTAT_INC(tcps_sc_stale);
  492                         continue;
  493                 }
  494                 if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
  495                         log(LOG_DEBUG, "%s; %s: Response timeout, "
  496                             "retransmitting (%u) SYN|ACK\n",
  497                             s, __func__, sc->sc_rxmits);
  498                         free(s, M_TCPLOG);
  499                 }
  500 
  501                 syncache_respond(sc, sch, NULL, TH_SYN|TH_ACK);
  502                 TCPSTAT_INC(tcps_sc_retransmitted);
  503                 syncache_timeout(sc, sch, 0);
  504         }
  505         if (!TAILQ_EMPTY(&(sch)->sch_bucket))
  506                 callout_reset(&(sch)->sch_timer, (sch)->sch_nextc - tick,
  507                         syncache_timer, (void *)(sch));
  508         CURVNET_RESTORE();
  509 }
  510 
  511 /*
  512  * Find an entry in the syncache.
  513  * Returns always with locked syncache_head plus a matching entry or NULL.
  514  */
  515 static struct syncache *
  516 syncache_lookup(struct in_conninfo *inc, struct syncache_head **schp)
  517 {
  518         struct syncache *sc;
  519         struct syncache_head *sch;
  520         uint32_t hash;
  521 
  522         /*
  523          * The hash is built on foreign port + local port + foreign address.
  524          * We rely on the fact that struct in_conninfo starts with 16 bits
  525          * of foreign port, then 16 bits of local port then followed by 128
  526          * bits of foreign address.  In case of IPv4 address, the first 3
  527          * 32-bit words of the address always are zeroes.
  528          */
  529         hash = jenkins_hash32((uint32_t *)&inc->inc_ie, 5,
  530             V_tcp_syncache.hash_secret) & V_tcp_syncache.hashmask;
  531 
  532         sch = &V_tcp_syncache.hashbase[hash];
  533         *schp = sch;
  534         SCH_LOCK(sch);
  535 
  536         /* Circle through bucket row to find matching entry. */
  537         TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash)
  538                 if (bcmp(&inc->inc_ie, &sc->sc_inc.inc_ie,
  539                     sizeof(struct in_endpoints)) == 0)
  540                         break;
  541 
  542         return (sc);    /* Always returns with locked sch. */
  543 }
  544 
  545 /*
  546  * This function is called when we get a RST for a
  547  * non-existent connection, so that we can see if the
  548  * connection is in the syn cache.  If it is, zap it.
  549  * If required send a challenge ACK.
  550  */
  551 void
  552 syncache_chkrst(struct in_conninfo *inc, struct tcphdr *th, struct mbuf *m)
  553 {
  554         struct syncache *sc;
  555         struct syncache_head *sch;
  556         char *s = NULL;
  557 
  558         sc = syncache_lookup(inc, &sch);        /* returns locked sch */
  559         SCH_LOCK_ASSERT(sch);
  560 
  561         /*
  562          * Any RST to our SYN|ACK must not carry ACK, SYN or FIN flags.
  563          * See RFC 793 page 65, section SEGMENT ARRIVES.
  564          */
  565         if (th->th_flags & (TH_ACK|TH_SYN|TH_FIN)) {
  566                 if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
  567                         log(LOG_DEBUG, "%s; %s: Spurious RST with ACK, SYN or "
  568                             "FIN flag set, segment ignored\n", s, __func__);
  569                 TCPSTAT_INC(tcps_badrst);
  570                 goto done;
  571         }
  572 
  573         /*
  574          * No corresponding connection was found in syncache.
  575          * If syncookies are enabled and possibly exclusively
  576          * used, or we are under memory pressure, a valid RST
  577          * may not find a syncache entry.  In that case we're
  578          * done and no SYN|ACK retransmissions will happen.
  579          * Otherwise the RST was misdirected or spoofed.
  580          */
  581         if (sc == NULL) {
  582                 if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
  583                         log(LOG_DEBUG, "%s; %s: Spurious RST without matching "
  584                             "syncache entry (possibly syncookie only), "
  585                             "segment ignored\n", s, __func__);
  586                 TCPSTAT_INC(tcps_badrst);
  587                 goto done;
  588         }
  589 
  590         /*
  591          * If the RST bit is set, check the sequence number to see
  592          * if this is a valid reset segment.
  593          *
  594          * RFC 793 page 37:
  595          *   In all states except SYN-SENT, all reset (RST) segments
  596          *   are validated by checking their SEQ-fields.  A reset is
  597          *   valid if its sequence number is in the window.
  598          *
  599          * RFC 793 page 69:
  600          *   There are four cases for the acceptability test for an incoming
  601          *   segment:
  602          *
  603          * Segment Receive  Test
  604          * Length  Window
  605          * ------- -------  -------------------------------------------
  606          *    0       0     SEG.SEQ = RCV.NXT
  607          *    0      >0     RCV.NXT =< SEG.SEQ < RCV.NXT+RCV.WND
  608          *   >0       0     not acceptable
  609          *   >0      >0     RCV.NXT =< SEG.SEQ < RCV.NXT+RCV.WND
  610          *               or RCV.NXT =< SEG.SEQ+SEG.LEN-1 < RCV.NXT+RCV.WND
  611          *
  612          * Note that when receiving a SYN segment in the LISTEN state,
  613          * IRS is set to SEG.SEQ and RCV.NXT is set to SEG.SEQ+1, as
  614          * described in RFC 793, page 66.
  615          */
  616         if ((SEQ_GEQ(th->th_seq, sc->sc_irs + 1) &&
  617             SEQ_LT(th->th_seq, sc->sc_irs + 1 + sc->sc_wnd)) ||
  618             (sc->sc_wnd == 0 && th->th_seq == sc->sc_irs + 1)) {
  619                 if (V_tcp_insecure_rst ||
  620                     th->th_seq == sc->sc_irs + 1) {
  621                         syncache_drop(sc, sch);
  622                         if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
  623                                 log(LOG_DEBUG,
  624                                     "%s; %s: Our SYN|ACK was rejected, "
  625                                     "connection attempt aborted by remote "
  626                                     "endpoint\n",
  627                                     s, __func__);
  628                         TCPSTAT_INC(tcps_sc_reset);
  629                 } else {
  630                         TCPSTAT_INC(tcps_badrst);
  631                         /* Send challenge ACK. */
  632                         if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
  633                                 log(LOG_DEBUG, "%s; %s: RST with invalid "
  634                                     " SEQ %u != NXT %u (+WND %u), "
  635                                     "sending challenge ACK\n",
  636                                     s, __func__,
  637                                     th->th_seq, sc->sc_irs + 1, sc->sc_wnd);
  638                         syncache_respond(sc, sch, m, TH_ACK);
  639                 }
  640         } else {
  641                 if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
  642                         log(LOG_DEBUG, "%s; %s: RST with invalid SEQ %u != "
  643                             "NXT %u (+WND %u), segment ignored\n",
  644                             s, __func__,
  645                             th->th_seq, sc->sc_irs + 1, sc->sc_wnd);
  646                 TCPSTAT_INC(tcps_badrst);
  647         }
  648 
  649 done:
  650         if (s != NULL)
  651                 free(s, M_TCPLOG);
  652         SCH_UNLOCK(sch);
  653 }
  654 
  655 void
  656 syncache_badack(struct in_conninfo *inc)
  657 {
  658         struct syncache *sc;
  659         struct syncache_head *sch;
  660 
  661         sc = syncache_lookup(inc, &sch);        /* returns locked sch */
  662         SCH_LOCK_ASSERT(sch);
  663         if (sc != NULL) {
  664                 syncache_drop(sc, sch);
  665                 TCPSTAT_INC(tcps_sc_badack);
  666         }
  667         SCH_UNLOCK(sch);
  668 }
  669 
  670 void
  671 syncache_unreach(struct in_conninfo *inc, tcp_seq th_seq)
  672 {
  673         struct syncache *sc;
  674         struct syncache_head *sch;
  675 
  676         sc = syncache_lookup(inc, &sch);        /* returns locked sch */
  677         SCH_LOCK_ASSERT(sch);
  678         if (sc == NULL)
  679                 goto done;
  680 
  681         /* If the sequence number != sc_iss, then it's a bogus ICMP msg */
  682         if (ntohl(th_seq) != sc->sc_iss)
  683                 goto done;
  684 
  685         /*
  686          * If we've rertransmitted 3 times and this is our second error,
  687          * we remove the entry.  Otherwise, we allow it to continue on.
  688          * This prevents us from incorrectly nuking an entry during a
  689          * spurious network outage.
  690          *
  691          * See tcp_notify().
  692          */
  693         if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxmits < 3 + 1) {
  694                 sc->sc_flags |= SCF_UNREACH;
  695                 goto done;
  696         }
  697         syncache_drop(sc, sch);
  698         TCPSTAT_INC(tcps_sc_unreach);
  699 done:
  700         SCH_UNLOCK(sch);
  701 }
  702 
  703 /*
  704  * Build a new TCP socket structure from a syncache entry.
  705  *
  706  * On success return the newly created socket with its underlying inp locked.
  707  */
  708 static struct socket *
  709 syncache_socket(struct syncache *sc, struct socket *lso, struct mbuf *m)
  710 {
  711         struct tcp_function_block *blk;
  712         struct inpcb *inp = NULL;
  713         struct socket *so;
  714         struct tcpcb *tp;
  715         int error;
  716         char *s;
  717 
  718         INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
  719 
  720         /*
  721          * Ok, create the full blown connection, and set things up
  722          * as they would have been set up if we had created the
  723          * connection when the SYN arrived.  If we can't create
  724          * the connection, abort it.
  725          */
  726         so = sonewconn(lso, 0);
  727         if (so == NULL) {
  728                 /*
  729                  * Drop the connection; we will either send a RST or
  730                  * have the peer retransmit its SYN again after its
  731                  * RTO and try again.
  732                  */
  733                 TCPSTAT_INC(tcps_listendrop);
  734                 if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
  735                         log(LOG_DEBUG, "%s; %s: Socket create failed "
  736                             "due to limits or memory shortage\n",
  737                             s, __func__);
  738                         free(s, M_TCPLOG);
  739                 }
  740                 goto abort2;
  741         }
  742 #ifdef MAC
  743         mac_socketpeer_set_from_mbuf(m, so);
  744 #endif
  745 
  746         inp = sotoinpcb(so);
  747         inp->inp_inc.inc_fibnum = so->so_fibnum;
  748         INP_WLOCK(inp);
  749         /*
  750          * Exclusive pcbinfo lock is not required in syncache socket case even
  751          * if two inpcb locks can be acquired simultaneously:
  752          *  - the inpcb in LISTEN state,
  753          *  - the newly created inp.
  754          *
  755          * In this case, an inp cannot be at same time in LISTEN state and
  756          * just created by an accept() call.
  757          */
  758         INP_HASH_WLOCK(&V_tcbinfo);
  759 
  760         /* Insert new socket into PCB hash list. */
  761         inp->inp_inc.inc_flags = sc->sc_inc.inc_flags;
  762 #ifdef INET6
  763         if (sc->sc_inc.inc_flags & INC_ISIPV6) {
  764                 inp->inp_vflag &= ~INP_IPV4;
  765                 inp->inp_vflag |= INP_IPV6;
  766                 inp->in6p_laddr = sc->sc_inc.inc6_laddr;
  767         } else {
  768                 inp->inp_vflag &= ~INP_IPV6;
  769                 inp->inp_vflag |= INP_IPV4;
  770 #endif
  771                 inp->inp_ip_ttl = sc->sc_ip_ttl;
  772                 inp->inp_ip_tos = sc->sc_ip_tos;
  773                 inp->inp_laddr = sc->sc_inc.inc_laddr;
  774 #ifdef INET6
  775         }
  776 #endif
  777 
  778         /*
  779          * If there's an mbuf and it has a flowid, then let's initialise the
  780          * inp with that particular flowid.
  781          */
  782         if (m != NULL && M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) {
  783                 inp->inp_flowid = m->m_pkthdr.flowid;
  784                 inp->inp_flowtype = M_HASHTYPE_GET(m);
  785         }
  786 
  787         inp->inp_lport = sc->sc_inc.inc_lport;
  788 #ifdef INET6
  789         if (inp->inp_vflag & INP_IPV6PROTO) {
  790                 struct inpcb *oinp = sotoinpcb(lso);
  791 
  792                 /*
  793                  * Inherit socket options from the listening socket.
  794                  * Note that in6p_inputopts are not (and should not be)
  795                  * copied, since it stores previously received options and is
  796                  * used to detect if each new option is different than the
  797                  * previous one and hence should be passed to a user.
  798                  * If we copied in6p_inputopts, a user would not be able to
  799                  * receive options just after calling the accept system call.
  800                  */
  801                 inp->inp_flags |= oinp->inp_flags & INP_CONTROLOPTS;
  802                 if (oinp->in6p_outputopts)
  803                         inp->in6p_outputopts =
  804                             ip6_copypktopts(oinp->in6p_outputopts, M_NOWAIT);
  805                 inp->in6p_hops = oinp->in6p_hops;
  806         }
  807 
  808         if (sc->sc_inc.inc_flags & INC_ISIPV6) {
  809                 struct in6_addr laddr6;
  810                 struct sockaddr_in6 sin6;
  811 
  812                 sin6.sin6_family = AF_INET6;
  813                 sin6.sin6_len = sizeof(sin6);
  814                 sin6.sin6_addr = sc->sc_inc.inc6_faddr;
  815                 sin6.sin6_port = sc->sc_inc.inc_fport;
  816                 sin6.sin6_flowinfo = sin6.sin6_scope_id = 0;
  817                 laddr6 = inp->in6p_laddr;
  818                 if (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr))
  819                         inp->in6p_laddr = sc->sc_inc.inc6_laddr;
  820                 if ((error = in6_pcbconnect_mbuf(inp, (struct sockaddr *)&sin6,
  821                     thread0.td_ucred, m, false)) != 0) {
  822                         inp->in6p_laddr = laddr6;
  823                         if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
  824                                 log(LOG_DEBUG, "%s; %s: in6_pcbconnect failed "
  825                                     "with error %i\n",
  826                                     s, __func__, error);
  827                                 free(s, M_TCPLOG);
  828                         }
  829                         INP_HASH_WUNLOCK(&V_tcbinfo);
  830                         goto abort;
  831                 }
  832                 /* Override flowlabel from in6_pcbconnect. */
  833                 inp->inp_flow &= ~IPV6_FLOWLABEL_MASK;
  834                 inp->inp_flow |= sc->sc_flowlabel;
  835         }
  836 #endif /* INET6 */
  837 #if defined(INET) && defined(INET6)
  838         else
  839 #endif
  840 #ifdef INET
  841         {
  842                 struct in_addr laddr;
  843                 struct sockaddr_in sin;
  844 
  845                 inp->inp_options = (m) ? ip_srcroute(m) : NULL;
  846                 
  847                 if (inp->inp_options == NULL) {
  848                         inp->inp_options = sc->sc_ipopts;
  849                         sc->sc_ipopts = NULL;
  850                 }
  851 
  852                 sin.sin_family = AF_INET;
  853                 sin.sin_len = sizeof(sin);
  854                 sin.sin_addr = sc->sc_inc.inc_faddr;
  855                 sin.sin_port = sc->sc_inc.inc_fport;
  856                 bzero((caddr_t)sin.sin_zero, sizeof(sin.sin_zero));
  857                 laddr = inp->inp_laddr;
  858                 if (inp->inp_laddr.s_addr == INADDR_ANY)
  859                         inp->inp_laddr = sc->sc_inc.inc_laddr;
  860                 if ((error = in_pcbconnect_mbuf(inp, (struct sockaddr *)&sin,
  861                     thread0.td_ucred, m, false)) != 0) {
  862                         inp->inp_laddr = laddr;
  863                         if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
  864                                 log(LOG_DEBUG, "%s; %s: in_pcbconnect failed "
  865                                     "with error %i\n",
  866                                     s, __func__, error);
  867                                 free(s, M_TCPLOG);
  868                         }
  869                         INP_HASH_WUNLOCK(&V_tcbinfo);
  870                         goto abort;
  871                 }
  872         }
  873 #endif /* INET */
  874 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
  875         /* Copy old policy into new socket's. */
  876         if (ipsec_copy_pcbpolicy(sotoinpcb(lso), inp) != 0)
  877                 printf("syncache_socket: could not copy policy\n");
  878 #endif
  879         INP_HASH_WUNLOCK(&V_tcbinfo);
  880         tp = intotcpcb(inp);
  881         tcp_state_change(tp, TCPS_SYN_RECEIVED);
  882         tp->iss = sc->sc_iss;
  883         tp->irs = sc->sc_irs;
  884         tcp_rcvseqinit(tp);
  885         tcp_sendseqinit(tp);
  886         blk = sototcpcb(lso)->t_fb;
  887         if (V_functions_inherit_listen_socket_stack && blk != tp->t_fb) {
  888                 /*
  889                  * Our parents t_fb was not the default,
  890                  * we need to release our ref on tp->t_fb and 
  891                  * pickup one on the new entry.
  892                  */
  893                 struct tcp_function_block *rblk;
  894                 
  895                 rblk = find_and_ref_tcp_fb(blk);
  896                 KASSERT(rblk != NULL,
  897                     ("cannot find blk %p out of syncache?", blk));
  898                 if (tp->t_fb->tfb_tcp_fb_fini)
  899                         (*tp->t_fb->tfb_tcp_fb_fini)(tp, 0);
  900                 refcount_release(&tp->t_fb->tfb_refcnt);
  901                 tp->t_fb = rblk;
  902                 /*
  903                  * XXXrrs this is quite dangerous, it is possible
  904                  * for the new function to fail to init. We also
  905                  * are not asking if the handoff_is_ok though at
  906                  * the very start thats probalbly ok.
  907                  */
  908                 if (tp->t_fb->tfb_tcp_fb_init) {
  909                         (*tp->t_fb->tfb_tcp_fb_init)(tp);
  910                 }
  911         }               
  912         tp->snd_wl1 = sc->sc_irs;
  913         tp->snd_max = tp->iss + 1;
  914         tp->snd_nxt = tp->iss + 1;
  915         tp->rcv_up = sc->sc_irs + 1;
  916         tp->rcv_wnd = sc->sc_wnd;
  917         tp->rcv_adv += tp->rcv_wnd;
  918         tp->last_ack_sent = tp->rcv_nxt;
  919 
  920         tp->t_flags = sototcpcb(lso)->t_flags & (TF_NOPUSH|TF_NODELAY);
  921         if (sc->sc_flags & SCF_NOOPT)
  922                 tp->t_flags |= TF_NOOPT;
  923         else {
  924                 if (sc->sc_flags & SCF_WINSCALE) {
  925                         tp->t_flags |= TF_REQ_SCALE|TF_RCVD_SCALE;
  926                         tp->snd_scale = sc->sc_requested_s_scale;
  927                         tp->request_r_scale = sc->sc_requested_r_scale;
  928                 }
  929                 if (sc->sc_flags & SCF_TIMESTAMP) {
  930                         tp->t_flags |= TF_REQ_TSTMP|TF_RCVD_TSTMP;
  931                         tp->ts_recent = sc->sc_tsreflect;
  932                         tp->ts_recent_age = tcp_ts_getticks();
  933                         tp->ts_offset = sc->sc_tsoff;
  934                 }
  935 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
  936                 if (sc->sc_flags & SCF_SIGNATURE)
  937                         tp->t_flags |= TF_SIGNATURE;
  938 #endif
  939                 if (sc->sc_flags & SCF_SACK)
  940                         tp->t_flags |= TF_SACK_PERMIT;
  941         }
  942 
  943         if (sc->sc_flags & SCF_ECN)
  944                 tp->t_flags |= TF_ECN_PERMIT;
  945 
  946         /*
  947          * Set up MSS and get cached values from tcp_hostcache.
  948          * This might overwrite some of the defaults we just set.
  949          */
  950         tcp_mss(tp, sc->sc_peer_mss);
  951 
  952         /*
  953          * If the SYN,ACK was retransmitted, indicate that CWND to be
  954          * limited to one segment in cc_conn_init().
  955          * NB: sc_rxmits counts all SYN,ACK transmits, not just retransmits.
  956          */
  957         if (sc->sc_rxmits > 1)
  958                 tp->snd_cwnd = 1;
  959 
  960 #ifdef TCP_OFFLOAD
  961         /*
  962          * Allow a TOE driver to install its hooks.  Note that we hold the
  963          * pcbinfo lock too and that prevents tcp_usr_accept from accepting a
  964          * new connection before the TOE driver has done its thing.
  965          */
  966         if (ADDED_BY_TOE(sc)) {
  967                 struct toedev *tod = sc->sc_tod;
  968 
  969                 tod->tod_offload_socket(tod, sc->sc_todctx, so);
  970         }
  971 #endif
  972         /*
  973          * Copy and activate timers.
  974          */
  975         tp->t_keepinit = sototcpcb(lso)->t_keepinit;
  976         tp->t_keepidle = sototcpcb(lso)->t_keepidle;
  977         tp->t_keepintvl = sototcpcb(lso)->t_keepintvl;
  978         tp->t_keepcnt = sototcpcb(lso)->t_keepcnt;
  979         tcp_timer_activate(tp, TT_KEEP, TP_KEEPINIT(tp));
  980 
  981         TCPSTAT_INC(tcps_accepts);
  982         return (so);
  983 
  984 abort:
  985         INP_WUNLOCK(inp);
  986 abort2:
  987         if (so != NULL)
  988                 soabort(so);
  989         return (NULL);
  990 }
  991 
  992 /*
  993  * This function gets called when we receive an ACK for a
  994  * socket in the LISTEN state.  We look up the connection
  995  * in the syncache, and if its there, we pull it out of
  996  * the cache and turn it into a full-blown connection in
  997  * the SYN-RECEIVED state.
  998  *
  999  * On syncache_socket() success the newly created socket
 1000  * has its underlying inp locked.
 1001  */
 1002 int
 1003 syncache_expand(struct in_conninfo *inc, struct tcpopt *to, struct tcphdr *th,
 1004     struct socket **lsop, struct mbuf *m)
 1005 {
 1006         struct syncache *sc;
 1007         struct syncache_head *sch;
 1008         struct syncache scs;
 1009         char *s;
 1010 
 1011         /*
 1012          * Global TCP locks are held because we manipulate the PCB lists
 1013          * and create a new socket.
 1014          */
 1015         INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
 1016         KASSERT((th->th_flags & (TH_RST|TH_ACK|TH_SYN)) == TH_ACK,
 1017             ("%s: can handle only ACK", __func__));
 1018 
 1019         sc = syncache_lookup(inc, &sch);        /* returns locked sch */
 1020         SCH_LOCK_ASSERT(sch);
 1021 
 1022 #ifdef INVARIANTS
 1023         /*
 1024          * Test code for syncookies comparing the syncache stored
 1025          * values with the reconstructed values from the cookie.
 1026          */
 1027         if (sc != NULL)
 1028                 syncookie_cmp(inc, sch, sc, th, to, *lsop);
 1029 #endif
 1030 
 1031         if (sc == NULL) {
 1032                 /*
 1033                  * There is no syncache entry, so see if this ACK is
 1034                  * a returning syncookie.  To do this, first:
 1035                  *  A. Check if syncookies are used in case of syncache
 1036                  *     overflows
 1037                  *  B. See if this socket has had a syncache entry dropped in
 1038                  *     the recent past. We don't want to accept a bogus
 1039                  *     syncookie if we've never received a SYN or accept it
 1040                  *     twice.
 1041                  *  C. check that the syncookie is valid.  If it is, then
 1042                  *     cobble up a fake syncache entry, and return.
 1043                  */
 1044                 if (!V_tcp_syncookies) {
 1045                         SCH_UNLOCK(sch);
 1046                         if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
 1047                                 log(LOG_DEBUG, "%s; %s: Spurious ACK, "
 1048                                     "segment rejected (syncookies disabled)\n",
 1049                                     s, __func__);
 1050                         goto failed;
 1051                 }
 1052                 if (!V_tcp_syncookiesonly &&
 1053                     sch->sch_last_overflow < time_uptime - SYNCOOKIE_LIFETIME) {
 1054                         SCH_UNLOCK(sch);
 1055                         if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
 1056                                 log(LOG_DEBUG, "%s; %s: Spurious ACK, "
 1057                                     "segment rejected (no syncache entry)\n",
 1058                                     s, __func__);
 1059                         goto failed;
 1060                 }
 1061                 bzero(&scs, sizeof(scs));
 1062                 sc = syncookie_lookup(inc, sch, &scs, th, to, *lsop);
 1063                 SCH_UNLOCK(sch);
 1064                 if (sc == NULL) {
 1065                         if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
 1066                                 log(LOG_DEBUG, "%s; %s: Segment failed "
 1067                                     "SYNCOOKIE authentication, segment rejected "
 1068                                     "(probably spoofed)\n", s, __func__);
 1069                         goto failed;
 1070                 }
 1071 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
 1072                 /* If received ACK has MD5 signature, check it. */
 1073                 if ((to->to_flags & TOF_SIGNATURE) != 0 &&
 1074                     (!TCPMD5_ENABLED() ||
 1075                     TCPMD5_INPUT(m, th, to->to_signature) != 0)) {
 1076                         /* Drop the ACK. */
 1077                         if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
 1078                                 log(LOG_DEBUG, "%s; %s: Segment rejected, "
 1079                                     "MD5 signature doesn't match.\n",
 1080                                     s, __func__);
 1081                                 free(s, M_TCPLOG);
 1082                         }
 1083                         TCPSTAT_INC(tcps_sig_err_sigopt);
 1084                         return (-1); /* Do not send RST */
 1085                 }
 1086 #endif /* TCP_SIGNATURE */
 1087         } else {
 1088 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
 1089                 /*
 1090                  * If listening socket requested TCP digests, check that
 1091                  * received ACK has signature and it is correct.
 1092                  * If not, drop the ACK and leave sc entry in th cache,
 1093                  * because SYN was received with correct signature.
 1094                  */
 1095                 if (sc->sc_flags & SCF_SIGNATURE) {
 1096                         if ((to->to_flags & TOF_SIGNATURE) == 0) {
 1097                                 /* No signature */
 1098                                 TCPSTAT_INC(tcps_sig_err_nosigopt);
 1099                                 SCH_UNLOCK(sch);
 1100                                 if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
 1101                                         log(LOG_DEBUG, "%s; %s: Segment "
 1102                                             "rejected, MD5 signature wasn't "
 1103                                             "provided.\n", s, __func__);
 1104                                         free(s, M_TCPLOG);
 1105                                 }
 1106                                 return (-1); /* Do not send RST */
 1107                         }
 1108                         if (!TCPMD5_ENABLED() ||
 1109                             TCPMD5_INPUT(m, th, to->to_signature) != 0) {
 1110                                 /* Doesn't match or no SA */
 1111                                 SCH_UNLOCK(sch);
 1112                                 if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
 1113                                         log(LOG_DEBUG, "%s; %s: Segment "
 1114                                             "rejected, MD5 signature doesn't "
 1115                                             "match.\n", s, __func__);
 1116                                         free(s, M_TCPLOG);
 1117                                 }
 1118                                 return (-1); /* Do not send RST */
 1119                         }
 1120                 }
 1121 #endif /* TCP_SIGNATURE */
 1122 
 1123                 /*
 1124                  * RFC 7323 PAWS: If we have a timestamp on this segment and
 1125                  * it's less than ts_recent, drop it.
 1126                  * XXXMT: RFC 7323 also requires to send an ACK.
 1127                  *        In tcp_input.c this is only done for TCP segments
 1128                  *        with user data, so be consistent here and just drop
 1129                  *        the segment.
 1130                  */
 1131                 if (sc->sc_flags & SCF_TIMESTAMP && to->to_flags & TOF_TS &&
 1132                     TSTMP_LT(to->to_tsval, sc->sc_tsreflect)) {
 1133                         SCH_UNLOCK(sch);
 1134                         if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
 1135                                 log(LOG_DEBUG,
 1136                                     "%s; %s: SEG.TSval %u < TS.Recent %u, "
 1137                                     "segment dropped\n", s, __func__,
 1138                                     to->to_tsval, sc->sc_tsreflect);
 1139                                 free(s, M_TCPLOG);
 1140                         }
 1141                         return (-1);  /* Do not send RST */
 1142                 }
 1143 
 1144                 /*
 1145                  * If timestamps were not negotiated during SYN/ACK and a
 1146                  * segment with a timestamp is received, ignore the
 1147                  * timestamp and process the packet normally.
 1148                  * See section 3.2 of RFC 7323.
 1149                  */
 1150                 if (!(sc->sc_flags & SCF_TIMESTAMP) &&
 1151                     (to->to_flags & TOF_TS)) {
 1152                         if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
 1153                                 log(LOG_DEBUG, "%s; %s: Timestamp not "
 1154                                     "expected, segment processed normally\n",
 1155                                     s, __func__);
 1156                                 free(s, M_TCPLOG);
 1157                                 s = NULL;
 1158                         }
 1159                 }
 1160 
 1161                 /*
 1162                  * If timestamps were negotiated during SYN/ACK and a
 1163                  * segment without a timestamp is received, silently drop
 1164                  * the segment, unless the missing timestamps are tolerated.
 1165                  * See section 3.2 of RFC 7323.
 1166                  */
 1167                 if ((sc->sc_flags & SCF_TIMESTAMP) &&
 1168                     !(to->to_flags & TOF_TS)) {
 1169                         if (V_tcp_tolerate_missing_ts) {
 1170                                 if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
 1171                                         log(LOG_DEBUG,
 1172                                             "%s; %s: Timestamp missing, "
 1173                                             "segment processed normally\n",
 1174                                             s, __func__);
 1175                                         free(s, M_TCPLOG);
 1176                                 }
 1177                         } else {
 1178                                 SCH_UNLOCK(sch);
 1179                                 if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
 1180                                         log(LOG_DEBUG,
 1181                                             "%s; %s: Timestamp missing, "
 1182                                             "segment silently dropped\n",
 1183                                             s, __func__);
 1184                                         free(s, M_TCPLOG);
 1185                                 }
 1186                                 return (-1);  /* Do not send RST */
 1187                         }
 1188                 }
 1189 
 1190                 /*
 1191                  * Pull out the entry to unlock the bucket row.
 1192                  * 
 1193                  * NOTE: We must decrease TCPS_SYN_RECEIVED count here, not
 1194                  * tcp_state_change().  The tcpcb is not existent at this
 1195                  * moment.  A new one will be allocated via syncache_socket->
 1196                  * sonewconn->tcp_usr_attach in TCPS_CLOSED state, then
 1197                  * syncache_socket() will change it to TCPS_SYN_RECEIVED.
 1198                  */
 1199                 TCPSTATES_DEC(TCPS_SYN_RECEIVED);
 1200                 TAILQ_REMOVE(&sch->sch_bucket, sc, sc_hash);
 1201                 sch->sch_length--;
 1202 #ifdef TCP_OFFLOAD
 1203                 if (ADDED_BY_TOE(sc)) {
 1204                         struct toedev *tod = sc->sc_tod;
 1205 
 1206                         tod->tod_syncache_removed(tod, sc->sc_todctx);
 1207                 }
 1208 #endif
 1209                 SCH_UNLOCK(sch);
 1210         }
 1211 
 1212         /*
 1213          * Segment validation:
 1214          * ACK must match our initial sequence number + 1 (the SYN|ACK).
 1215          */
 1216         if (th->th_ack != sc->sc_iss + 1) {
 1217                 if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
 1218                         log(LOG_DEBUG, "%s; %s: ACK %u != ISS+1 %u, segment "
 1219                             "rejected\n", s, __func__, th->th_ack, sc->sc_iss);
 1220                 goto failed;
 1221         }
 1222 
 1223         /*
 1224          * The SEQ must fall in the window starting at the received
 1225          * initial receive sequence number + 1 (the SYN).
 1226          */
 1227         if (SEQ_LEQ(th->th_seq, sc->sc_irs) ||
 1228             SEQ_GT(th->th_seq, sc->sc_irs + sc->sc_wnd)) {
 1229                 if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
 1230                         log(LOG_DEBUG, "%s; %s: SEQ %u != IRS+1 %u, segment "
 1231                             "rejected\n", s, __func__, th->th_seq, sc->sc_irs);
 1232                 goto failed;
 1233         }
 1234 
 1235         *lsop = syncache_socket(sc, *lsop, m);
 1236 
 1237         if (*lsop == NULL)
 1238                 TCPSTAT_INC(tcps_sc_aborted);
 1239         else
 1240                 TCPSTAT_INC(tcps_sc_completed);
 1241 
 1242 /* how do we find the inp for the new socket? */
 1243         if (sc != &scs)
 1244                 syncache_free(sc);
 1245         return (1);
 1246 failed:
 1247         if (sc != NULL && sc != &scs)
 1248                 syncache_free(sc);
 1249         if (s != NULL)
 1250                 free(s, M_TCPLOG);
 1251         *lsop = NULL;
 1252         return (0);
 1253 }
 1254 
 1255 static void
 1256 syncache_tfo_expand(struct syncache *sc, struct socket **lsop, struct mbuf *m,
 1257     uint64_t response_cookie)
 1258 {
 1259         struct inpcb *inp;
 1260         struct tcpcb *tp;
 1261         unsigned int *pending_counter;
 1262 
 1263         /*
 1264          * Global TCP locks are held because we manipulate the PCB lists
 1265          * and create a new socket.
 1266          */
 1267         INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
 1268 
 1269         pending_counter = intotcpcb(sotoinpcb(*lsop))->t_tfo_pending;
 1270         *lsop = syncache_socket(sc, *lsop, m);
 1271         if (*lsop == NULL) {
 1272                 TCPSTAT_INC(tcps_sc_aborted);
 1273                 atomic_subtract_int(pending_counter, 1);
 1274         } else {
 1275                 soisconnected(*lsop);
 1276                 inp = sotoinpcb(*lsop);
 1277                 tp = intotcpcb(inp);
 1278                 tp->t_flags |= TF_FASTOPEN;
 1279                 tp->t_tfo_cookie.server = response_cookie;
 1280                 tp->snd_max = tp->iss;
 1281                 tp->snd_nxt = tp->iss;
 1282                 tp->t_tfo_pending = pending_counter;
 1283                 TCPSTAT_INC(tcps_sc_completed);
 1284         }
 1285 }
 1286 
 1287 /*
 1288  * Given a LISTEN socket and an inbound SYN request, add
 1289  * this to the syn cache, and send back a segment:
 1290  *      <SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
 1291  * to the source.
 1292  *
 1293  * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
 1294  * Doing so would require that we hold onto the data and deliver it
 1295  * to the application.  However, if we are the target of a SYN-flood
 1296  * DoS attack, an attacker could send data which would eventually
 1297  * consume all available buffer space if it were ACKed.  By not ACKing
 1298  * the data, we avoid this DoS scenario.
 1299  *
 1300  * The exception to the above is when a SYN with a valid TCP Fast Open (TFO)
 1301  * cookie is processed and a new socket is created.  In this case, any data
 1302  * accompanying the SYN will be queued to the socket by tcp_input() and will
 1303  * be ACKed either when the application sends response data or the delayed
 1304  * ACK timer expires, whichever comes first.
 1305  */
 1306 int
 1307 syncache_add(struct in_conninfo *inc, struct tcpopt *to, struct tcphdr *th,
 1308     struct inpcb *inp, struct socket **lsop, struct mbuf *m, void *tod,
 1309     void *todctx, uint8_t iptos)
 1310 {
 1311         struct tcpcb *tp;
 1312         struct socket *so;
 1313         struct syncache *sc = NULL;
 1314         struct syncache_head *sch;
 1315         struct mbuf *ipopts = NULL;
 1316         u_int ltflags;
 1317         int win, ip_ttl, ip_tos;
 1318         char *s;
 1319         int rv = 0;
 1320 #ifdef INET6
 1321         int autoflowlabel = 0;
 1322 #endif
 1323 #ifdef MAC
 1324         struct label *maclabel;
 1325 #endif
 1326         struct syncache scs;
 1327         struct ucred *cred;
 1328         uint64_t tfo_response_cookie;
 1329         unsigned int *tfo_pending = NULL;
 1330         int tfo_cookie_valid = 0;
 1331         int tfo_response_cookie_valid = 0;
 1332 
 1333         INP_WLOCK_ASSERT(inp);                  /* listen socket */
 1334         KASSERT((th->th_flags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN,
 1335             ("%s: unexpected tcp flags", __func__));
 1336 
 1337         /*
 1338          * Combine all so/tp operations very early to drop the INP lock as
 1339          * soon as possible.
 1340          */
 1341         so = *lsop;
 1342         KASSERT(SOLISTENING(so), ("%s: %p not listening", __func__, so));
 1343         tp = sototcpcb(so);
 1344         cred = crhold(so->so_cred);
 1345 
 1346 #ifdef INET6
 1347         if (inc->inc_flags & INC_ISIPV6) {
 1348                 if (inp->inp_flags & IN6P_AUTOFLOWLABEL) {
 1349                         autoflowlabel = 1;
 1350                 }
 1351                 ip_ttl = in6_selecthlim(inp, NULL);
 1352                 if ((inp->in6p_outputopts == NULL) ||
 1353                     (inp->in6p_outputopts->ip6po_tclass == -1)) {
 1354                         ip_tos = 0;
 1355                 } else {
 1356                         ip_tos = inp->in6p_outputopts->ip6po_tclass;
 1357                 }
 1358         }
 1359 #endif
 1360 #if defined(INET6) && defined(INET)
 1361         else
 1362 #endif
 1363 #ifdef INET
 1364         {
 1365                 ip_ttl = inp->inp_ip_ttl;
 1366                 ip_tos = inp->inp_ip_tos;
 1367         }
 1368 #endif
 1369         win = so->sol_sbrcv_hiwat;
 1370         ltflags = (tp->t_flags & (TF_NOOPT | TF_SIGNATURE));
 1371 
 1372         if (V_tcp_fastopen_server_enable && IS_FASTOPEN(tp->t_flags) &&
 1373             (tp->t_tfo_pending != NULL) &&
 1374             (to->to_flags & TOF_FASTOPEN)) {
 1375                 /*
 1376                  * Limit the number of pending TFO connections to
 1377                  * approximately half of the queue limit.  This prevents TFO
 1378                  * SYN floods from starving the service by filling the
 1379                  * listen queue with bogus TFO connections.
 1380                  */
 1381                 if (atomic_fetchadd_int(tp->t_tfo_pending, 1) <=
 1382                     (so->sol_qlimit / 2)) {
 1383                         int result;
 1384 
 1385                         result = tcp_fastopen_check_cookie(inc,
 1386                             to->to_tfo_cookie, to->to_tfo_len,
 1387                             &tfo_response_cookie);
 1388                         tfo_cookie_valid = (result > 0);
 1389                         tfo_response_cookie_valid = (result >= 0);
 1390                 }
 1391 
 1392                 /*
 1393                  * Remember the TFO pending counter as it will have to be
 1394                  * decremented below if we don't make it to syncache_tfo_expand().
 1395                  */
 1396                 tfo_pending = tp->t_tfo_pending;
 1397         }
 1398 
 1399         /* By the time we drop the lock these should no longer be used. */
 1400         so = NULL;
 1401         tp = NULL;
 1402 
 1403 #ifdef MAC
 1404         if (mac_syncache_init(&maclabel) != 0) {
 1405                 INP_WUNLOCK(inp);
 1406                 goto done;
 1407         } else
 1408                 mac_syncache_create(maclabel, inp);
 1409 #endif
 1410         if (!tfo_cookie_valid)
 1411                 INP_WUNLOCK(inp);
 1412 
 1413         /*
 1414          * Remember the IP options, if any.
 1415          */
 1416 #ifdef INET6
 1417         if (!(inc->inc_flags & INC_ISIPV6))
 1418 #endif
 1419 #ifdef INET
 1420                 ipopts = (m) ? ip_srcroute(m) : NULL;
 1421 #else
 1422                 ipopts = NULL;
 1423 #endif
 1424 
 1425 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
 1426         /*
 1427          * If listening socket requested TCP digests, check that received
 1428          * SYN has signature and it is correct. If signature doesn't match
 1429          * or TCP_SIGNATURE support isn't enabled, drop the packet.
 1430          */
 1431         if (ltflags & TF_SIGNATURE) {
 1432                 if ((to->to_flags & TOF_SIGNATURE) == 0) {
 1433                         TCPSTAT_INC(tcps_sig_err_nosigopt);
 1434                         goto done;
 1435                 }
 1436                 if (!TCPMD5_ENABLED() ||
 1437                     TCPMD5_INPUT(m, th, to->to_signature) != 0)
 1438                         goto done;
 1439         }
 1440 #endif  /* TCP_SIGNATURE */
 1441         /*
 1442          * See if we already have an entry for this connection.
 1443          * If we do, resend the SYN,ACK, and reset the retransmit timer.
 1444          *
 1445          * XXX: should the syncache be re-initialized with the contents
 1446          * of the new SYN here (which may have different options?)
 1447          *
 1448          * XXX: We do not check the sequence number to see if this is a
 1449          * real retransmit or a new connection attempt.  The question is
 1450          * how to handle such a case; either ignore it as spoofed, or
 1451          * drop the current entry and create a new one?
 1452          */
 1453         sc = syncache_lookup(inc, &sch);        /* returns locked entry */
 1454         SCH_LOCK_ASSERT(sch);
 1455         if (sc != NULL) {
 1456                 if (tfo_cookie_valid)
 1457                         INP_WUNLOCK(inp);
 1458                 TCPSTAT_INC(tcps_sc_dupsyn);
 1459                 if (ipopts) {
 1460                         /*
 1461                          * If we were remembering a previous source route,
 1462                          * forget it and use the new one we've been given.
 1463                          */
 1464                         if (sc->sc_ipopts)
 1465                                 (void) m_free(sc->sc_ipopts);
 1466                         sc->sc_ipopts = ipopts;
 1467                 }
 1468                 /*
 1469                  * Update timestamp if present.
 1470                  */
 1471                 if ((sc->sc_flags & SCF_TIMESTAMP) && (to->to_flags & TOF_TS))
 1472                         sc->sc_tsreflect = to->to_tsval;
 1473                 else
 1474                         sc->sc_flags &= ~SCF_TIMESTAMP;
 1475                 /*
 1476                  * Disable ECN if needed.
 1477                  */
 1478                 if ((sc->sc_flags & SCF_ECN) &&
 1479                     ((th->th_flags & (TH_ECE|TH_CWR)) != (TH_ECE|TH_CWR))) {
 1480                         sc->sc_flags &= ~SCF_ECN;
 1481                 }
 1482 #ifdef MAC
 1483                 /*
 1484                  * Since we have already unconditionally allocated label
 1485                  * storage, free it up.  The syncache entry will already
 1486                  * have an initialized label we can use.
 1487                  */
 1488                 mac_syncache_destroy(&maclabel);
 1489 #endif
 1490                 TCP_PROBE5(receive, NULL, NULL, m, NULL, th);
 1491                 /* Retransmit SYN|ACK and reset retransmit count. */
 1492                 if ((s = tcp_log_addrs(&sc->sc_inc, th, NULL, NULL))) {
 1493                         log(LOG_DEBUG, "%s; %s: Received duplicate SYN, "
 1494                             "resetting timer and retransmitting SYN|ACK\n",
 1495                             s, __func__);
 1496                         free(s, M_TCPLOG);
 1497                 }
 1498                 if (syncache_respond(sc, sch, m, TH_SYN|TH_ACK) == 0) {
 1499                         sc->sc_rxmits = 0;
 1500                         syncache_timeout(sc, sch, 1);
 1501                         TCPSTAT_INC(tcps_sndacks);
 1502                         TCPSTAT_INC(tcps_sndtotal);
 1503                 }
 1504                 SCH_UNLOCK(sch);
 1505                 goto donenoprobe;
 1506         }
 1507 
 1508         if (tfo_cookie_valid) {
 1509                 bzero(&scs, sizeof(scs));
 1510                 sc = &scs;
 1511                 goto skip_alloc;
 1512         }
 1513 
 1514         sc = uma_zalloc(V_tcp_syncache.zone, M_NOWAIT | M_ZERO);
 1515         if (sc == NULL) {
 1516                 /*
 1517                  * The zone allocator couldn't provide more entries.
 1518                  * Treat this as if the cache was full; drop the oldest
 1519                  * entry and insert the new one.
 1520                  */
 1521                 TCPSTAT_INC(tcps_sc_zonefail);
 1522                 if ((sc = TAILQ_LAST(&sch->sch_bucket, sch_head)) != NULL) {
 1523                         sch->sch_last_overflow = time_uptime;
 1524                         syncache_drop(sc, sch);
 1525                 }
 1526                 sc = uma_zalloc(V_tcp_syncache.zone, M_NOWAIT | M_ZERO);
 1527                 if (sc == NULL) {
 1528                         if (V_tcp_syncookies) {
 1529                                 bzero(&scs, sizeof(scs));
 1530                                 sc = &scs;
 1531                         } else {
 1532                                 SCH_UNLOCK(sch);
 1533                                 if (ipopts)
 1534                                         (void) m_free(ipopts);
 1535                                 goto done;
 1536                         }
 1537                 }
 1538         }
 1539 
 1540 skip_alloc:
 1541         if (!tfo_cookie_valid && tfo_response_cookie_valid)
 1542                 sc->sc_tfo_cookie = &tfo_response_cookie;
 1543 
 1544         /*
 1545          * Fill in the syncache values.
 1546          */
 1547 #ifdef MAC
 1548         sc->sc_label = maclabel;
 1549 #endif
 1550         sc->sc_cred = cred;
 1551         cred = NULL;
 1552         sc->sc_ipopts = ipopts;
 1553         bcopy(inc, &sc->sc_inc, sizeof(struct in_conninfo));
 1554         sc->sc_ip_tos = ip_tos;
 1555         sc->sc_ip_ttl = ip_ttl;
 1556 #ifdef TCP_OFFLOAD
 1557         sc->sc_tod = tod;
 1558         sc->sc_todctx = todctx;
 1559 #endif
 1560         sc->sc_irs = th->th_seq;
 1561         sc->sc_iss = arc4random();
 1562         sc->sc_flags = 0;
 1563         sc->sc_flowlabel = 0;
 1564 
 1565         /*
 1566          * Initial receive window: clip sbspace to [0 .. TCP_MAXWIN].
 1567          * win was derived from socket earlier in the function.
 1568          */
 1569         win = imax(win, 0);
 1570         win = imin(win, TCP_MAXWIN);
 1571         sc->sc_wnd = win;
 1572 
 1573         if (V_tcp_do_rfc1323) {
 1574                 /*
 1575                  * A timestamp received in a SYN makes
 1576                  * it ok to send timestamp requests and replies.
 1577                  */
 1578                 if (to->to_flags & TOF_TS) {
 1579                         sc->sc_tsreflect = to->to_tsval;
 1580                         sc->sc_flags |= SCF_TIMESTAMP;
 1581                         sc->sc_tsoff = tcp_new_ts_offset(inc);
 1582                 }
 1583                 if (to->to_flags & TOF_SCALE) {
 1584                         int wscale = 0;
 1585 
 1586                         /*
 1587                          * Pick the smallest possible scaling factor that
 1588                          * will still allow us to scale up to sb_max, aka
 1589                          * kern.ipc.maxsockbuf.
 1590                          *
 1591                          * We do this because there are broken firewalls that
 1592                          * will corrupt the window scale option, leading to
 1593                          * the other endpoint believing that our advertised
 1594                          * window is unscaled.  At scale factors larger than
 1595                          * 5 the unscaled window will drop below 1500 bytes,
 1596                          * leading to serious problems when traversing these
 1597                          * broken firewalls.
 1598                          *
 1599                          * With the default maxsockbuf of 256K, a scale factor
 1600                          * of 3 will be chosen by this algorithm.  Those who
 1601                          * choose a larger maxsockbuf should watch out
 1602                          * for the compatibility problems mentioned above.
 1603                          *
 1604                          * RFC1323: The Window field in a SYN (i.e., a <SYN>
 1605                          * or <SYN,ACK>) segment itself is never scaled.
 1606                          */
 1607                         while (wscale < TCP_MAX_WINSHIFT &&
 1608                             (TCP_MAXWIN << wscale) < sb_max)
 1609                                 wscale++;
 1610                         sc->sc_requested_r_scale = wscale;
 1611                         sc->sc_requested_s_scale = to->to_wscale;
 1612                         sc->sc_flags |= SCF_WINSCALE;
 1613                 }
 1614         }
 1615 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
 1616         /*
 1617          * If listening socket requested TCP digests, flag this in the
 1618          * syncache so that syncache_respond() will do the right thing
 1619          * with the SYN+ACK.
 1620          */
 1621         if (ltflags & TF_SIGNATURE)
 1622                 sc->sc_flags |= SCF_SIGNATURE;
 1623 #endif  /* TCP_SIGNATURE */
 1624         if (to->to_flags & TOF_SACKPERM)
 1625                 sc->sc_flags |= SCF_SACK;
 1626         if (to->to_flags & TOF_MSS)
 1627                 sc->sc_peer_mss = to->to_mss;   /* peer mss may be zero */
 1628         if (ltflags & TF_NOOPT)
 1629                 sc->sc_flags |= SCF_NOOPT;
 1630         if (((th->th_flags & (TH_ECE|TH_CWR)) == (TH_ECE|TH_CWR)) &&
 1631             V_tcp_do_ecn)
 1632                 sc->sc_flags |= SCF_ECN;
 1633 
 1634         if (V_tcp_syncookies)
 1635                 sc->sc_iss = syncookie_generate(sch, sc);
 1636 #ifdef INET6
 1637         if (autoflowlabel) {
 1638                 if (V_tcp_syncookies)
 1639                         sc->sc_flowlabel = sc->sc_iss;
 1640                 else
 1641                         sc->sc_flowlabel = ip6_randomflowlabel();
 1642                 sc->sc_flowlabel = htonl(sc->sc_flowlabel) & IPV6_FLOWLABEL_MASK;
 1643         }
 1644 #endif
 1645         SCH_UNLOCK(sch);
 1646 
 1647         if (tfo_cookie_valid) {
 1648                 syncache_tfo_expand(sc, lsop, m, tfo_response_cookie);
 1649                 /* INP_WUNLOCK(inp) will be performed by the caller */
 1650                 rv = 1;
 1651                 goto tfo_expanded;
 1652         }
 1653 
 1654         TCP_PROBE5(receive, NULL, NULL, m, NULL, th);
 1655         /*
 1656          * Do a standard 3-way handshake.
 1657          */
 1658         if (syncache_respond(sc, sch, m, TH_SYN|TH_ACK) == 0) {
 1659                 if (V_tcp_syncookies && V_tcp_syncookiesonly && sc != &scs)
 1660                         syncache_free(sc);
 1661                 else if (sc != &scs)
 1662                         syncache_insert(sc, sch);   /* locks and unlocks sch */
 1663                 TCPSTAT_INC(tcps_sndacks);
 1664                 TCPSTAT_INC(tcps_sndtotal);
 1665         } else {
 1666                 if (sc != &scs)
 1667                         syncache_free(sc);
 1668                 TCPSTAT_INC(tcps_sc_dropped);
 1669         }
 1670         goto donenoprobe;
 1671 
 1672 done:
 1673         TCP_PROBE5(receive, NULL, NULL, m, NULL, th);
 1674 donenoprobe:
 1675         if (m) {
 1676                 *lsop = NULL;
 1677                 m_freem(m);
 1678         }
 1679         /*
 1680          * If tfo_pending is not NULL here, then a TFO SYN that did not
 1681          * result in a new socket was processed and the associated pending
 1682          * counter has not yet been decremented.  All such TFO processing paths
 1683          * transit this point.
 1684          */
 1685         if (tfo_pending != NULL)
 1686                 tcp_fastopen_decrement_counter(tfo_pending);
 1687 
 1688 tfo_expanded:
 1689         if (cred != NULL)
 1690                 crfree(cred);
 1691 #ifdef MAC
 1692         if (sc == &scs)
 1693                 mac_syncache_destroy(&maclabel);
 1694 #endif
 1695         return (rv);
 1696 }
 1697 
 1698 /*
 1699  * Send SYN|ACK or ACK to the peer.  Either in response to a peer's segment,
 1700  * i.e. m0 != NULL, or upon 3WHS ACK timeout, i.e. m0 == NULL.
 1701  */
 1702 static int
 1703 syncache_respond(struct syncache *sc, struct syncache_head *sch,
 1704     const struct mbuf *m0, int flags)
 1705 {
 1706         struct ip *ip = NULL;
 1707         struct mbuf *m;
 1708         struct tcphdr *th = NULL;
 1709         int optlen, error = 0;  /* Make compiler happy */
 1710         u_int16_t hlen, tlen, mssopt;
 1711         struct tcpopt to;
 1712 #ifdef INET6
 1713         struct ip6_hdr *ip6 = NULL;
 1714 #endif
 1715         hlen =
 1716 #ifdef INET6
 1717                (sc->sc_inc.inc_flags & INC_ISIPV6) ? sizeof(struct ip6_hdr) :
 1718 #endif
 1719                 sizeof(struct ip);
 1720         tlen = hlen + sizeof(struct tcphdr);
 1721 
 1722         /* Determine MSS we advertize to other end of connection. */
 1723         mssopt = max(tcp_mssopt(&sc->sc_inc), V_tcp_minmss);
 1724 
 1725         /* XXX: Assume that the entire packet will fit in a header mbuf. */
 1726         KASSERT(max_linkhdr + tlen + TCP_MAXOLEN <= MHLEN,
 1727             ("syncache: mbuf too small"));
 1728 
 1729         /* Create the IP+TCP header from scratch. */
 1730         m = m_gethdr(M_NOWAIT, MT_DATA);
 1731         if (m == NULL)
 1732                 return (ENOBUFS);
 1733 #ifdef MAC
 1734         mac_syncache_create_mbuf(sc->sc_label, m);
 1735 #endif
 1736         m->m_data += max_linkhdr;
 1737         m->m_len = tlen;
 1738         m->m_pkthdr.len = tlen;
 1739         m->m_pkthdr.rcvif = NULL;
 1740 
 1741 #ifdef INET6
 1742         if (sc->sc_inc.inc_flags & INC_ISIPV6) {
 1743                 ip6 = mtod(m, struct ip6_hdr *);
 1744                 ip6->ip6_vfc = IPV6_VERSION;
 1745                 ip6->ip6_nxt = IPPROTO_TCP;
 1746                 ip6->ip6_src = sc->sc_inc.inc6_laddr;
 1747                 ip6->ip6_dst = sc->sc_inc.inc6_faddr;
 1748                 ip6->ip6_plen = htons(tlen - hlen);
 1749                 /* ip6_hlim is set after checksum */
 1750                 /* Zero out traffic class and flow label. */
 1751                 ip6->ip6_flow &= ~IPV6_FLOWINFO_MASK;
 1752                 ip6->ip6_flow |= sc->sc_flowlabel;
 1753                 ip6->ip6_flow |= htonl(sc->sc_ip_tos << 20);
 1754 
 1755                 th = (struct tcphdr *)(ip6 + 1);
 1756         }
 1757 #endif
 1758 #if defined(INET6) && defined(INET)
 1759         else
 1760 #endif
 1761 #ifdef INET
 1762         {
 1763                 ip = mtod(m, struct ip *);
 1764                 ip->ip_v = IPVERSION;
 1765                 ip->ip_hl = sizeof(struct ip) >> 2;
 1766                 ip->ip_len = htons(tlen);
 1767                 ip->ip_id = 0;
 1768                 ip->ip_off = 0;
 1769                 ip->ip_sum = 0;
 1770                 ip->ip_p = IPPROTO_TCP;
 1771                 ip->ip_src = sc->sc_inc.inc_laddr;
 1772                 ip->ip_dst = sc->sc_inc.inc_faddr;
 1773                 ip->ip_ttl = sc->sc_ip_ttl;
 1774                 ip->ip_tos = sc->sc_ip_tos;
 1775 
 1776                 /*
 1777                  * See if we should do MTU discovery.  Route lookups are
 1778                  * expensive, so we will only unset the DF bit if:
 1779                  *
 1780                  *      1) path_mtu_discovery is disabled
 1781                  *      2) the SCF_UNREACH flag has been set
 1782                  */
 1783                 if (V_path_mtu_discovery && ((sc->sc_flags & SCF_UNREACH) == 0))
 1784                        ip->ip_off |= htons(IP_DF);
 1785 
 1786                 th = (struct tcphdr *)(ip + 1);
 1787         }
 1788 #endif /* INET */
 1789         th->th_sport = sc->sc_inc.inc_lport;
 1790         th->th_dport = sc->sc_inc.inc_fport;
 1791 
 1792         if (flags & TH_SYN)
 1793                 th->th_seq = htonl(sc->sc_iss);
 1794         else
 1795                 th->th_seq = htonl(sc->sc_iss + 1);
 1796         th->th_ack = htonl(sc->sc_irs + 1);
 1797         th->th_off = sizeof(struct tcphdr) >> 2;
 1798         th->th_x2 = 0;
 1799         th->th_flags = flags;
 1800         th->th_win = htons(sc->sc_wnd);
 1801         th->th_urp = 0;
 1802 
 1803         if ((flags & TH_SYN) && (sc->sc_flags & SCF_ECN)) {
 1804                 th->th_flags |= TH_ECE;
 1805                 TCPSTAT_INC(tcps_ecn_shs);
 1806         }
 1807 
 1808         /* Tack on the TCP options. */
 1809         if ((sc->sc_flags & SCF_NOOPT) == 0) {
 1810                 to.to_flags = 0;
 1811 
 1812                 if (flags & TH_SYN) {
 1813                         to.to_mss = mssopt;
 1814                         to.to_flags = TOF_MSS;
 1815                         if (sc->sc_flags & SCF_WINSCALE) {
 1816                                 to.to_wscale = sc->sc_requested_r_scale;
 1817                                 to.to_flags |= TOF_SCALE;
 1818                         }
 1819                         if (sc->sc_flags & SCF_SACK)
 1820                                 to.to_flags |= TOF_SACKPERM;
 1821 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
 1822                         if (sc->sc_flags & SCF_SIGNATURE)
 1823                                 to.to_flags |= TOF_SIGNATURE;
 1824 #endif
 1825                         if (sc->sc_tfo_cookie) {
 1826                                 to.to_flags |= TOF_FASTOPEN;
 1827                                 to.to_tfo_len = TCP_FASTOPEN_COOKIE_LEN;
 1828                                 to.to_tfo_cookie = sc->sc_tfo_cookie;
 1829                                 /* don't send cookie again when retransmitting response */
 1830                                 sc->sc_tfo_cookie = NULL;
 1831                         }
 1832                 }
 1833                 if (sc->sc_flags & SCF_TIMESTAMP) {
 1834                         to.to_tsval = sc->sc_tsoff + tcp_ts_getticks();
 1835                         to.to_tsecr = sc->sc_tsreflect;
 1836                         to.to_flags |= TOF_TS;
 1837                 }
 1838                 optlen = tcp_addoptions(&to, (u_char *)(th + 1));
 1839 
 1840                 /* Adjust headers by option size. */
 1841                 th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
 1842                 m->m_len += optlen;
 1843                 m->m_pkthdr.len += optlen;
 1844 #ifdef INET6
 1845                 if (sc->sc_inc.inc_flags & INC_ISIPV6)
 1846                         ip6->ip6_plen = htons(ntohs(ip6->ip6_plen) + optlen);
 1847                 else
 1848 #endif
 1849                         ip->ip_len = htons(ntohs(ip->ip_len) + optlen);
 1850 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
 1851                 if (sc->sc_flags & SCF_SIGNATURE) {
 1852                         KASSERT(to.to_flags & TOF_SIGNATURE,
 1853                             ("tcp_addoptions() didn't set tcp_signature"));
 1854 
 1855                         /* NOTE: to.to_signature is inside of mbuf */
 1856                         if (!TCPMD5_ENABLED() ||
 1857                             TCPMD5_OUTPUT(m, th, to.to_signature) != 0) {
 1858                                 m_freem(m);
 1859                                 return (EACCES);
 1860                         }
 1861                 }
 1862 #endif
 1863         } else
 1864                 optlen = 0;
 1865 
 1866         M_SETFIB(m, sc->sc_inc.inc_fibnum);
 1867         m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
 1868         /*
 1869          * If we have peer's SYN and it has a flowid, then let's assign it to
 1870          * our SYN|ACK.  ip6_output() and ip_output() will not assign flowid
 1871          * to SYN|ACK due to lack of inp here.
 1872          */
 1873         if (m0 != NULL && M_HASHTYPE_GET(m0) != M_HASHTYPE_NONE) {
 1874                 m->m_pkthdr.flowid = m0->m_pkthdr.flowid;
 1875                 M_HASHTYPE_SET(m, M_HASHTYPE_GET(m0));
 1876         }
 1877 #ifdef INET6
 1878         if (sc->sc_inc.inc_flags & INC_ISIPV6) {
 1879                 m->m_pkthdr.csum_flags = CSUM_TCP_IPV6;
 1880                 th->th_sum = in6_cksum_pseudo(ip6, tlen + optlen - hlen,
 1881                     IPPROTO_TCP, 0);
 1882                 ip6->ip6_hlim = sc->sc_ip_ttl;
 1883 #ifdef TCP_OFFLOAD
 1884                 if (ADDED_BY_TOE(sc)) {
 1885                         struct toedev *tod = sc->sc_tod;
 1886 
 1887                         error = tod->tod_syncache_respond(tod, sc->sc_todctx, m);
 1888 
 1889                         return (error);
 1890                 }
 1891 #endif
 1892                 TCP_PROBE5(send, NULL, NULL, ip6, NULL, th);
 1893                 error = ip6_output(m, NULL, NULL, 0, NULL, NULL, NULL);
 1894         }
 1895 #endif
 1896 #if defined(INET6) && defined(INET)
 1897         else
 1898 #endif
 1899 #ifdef INET
 1900         {
 1901                 m->m_pkthdr.csum_flags = CSUM_TCP;
 1902                 th->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
 1903                     htons(tlen + optlen - hlen + IPPROTO_TCP));
 1904 #ifdef TCP_OFFLOAD
 1905                 if (ADDED_BY_TOE(sc)) {
 1906                         struct toedev *tod = sc->sc_tod;
 1907 
 1908                         error = tod->tod_syncache_respond(tod, sc->sc_todctx, m);
 1909 
 1910                         return (error);
 1911                 }
 1912 #endif
 1913                 TCP_PROBE5(send, NULL, NULL, ip, NULL, th);
 1914                 error = ip_output(m, sc->sc_ipopts, NULL, 0, NULL, NULL);
 1915         }
 1916 #endif
 1917         return (error);
 1918 }
 1919 
 1920 /*
 1921  * The purpose of syncookies is to handle spoofed SYN flooding DoS attacks
 1922  * that exceed the capacity of the syncache by avoiding the storage of any
 1923  * of the SYNs we receive.  Syncookies defend against blind SYN flooding
 1924  * attacks where the attacker does not have access to our responses.
 1925  *
 1926  * Syncookies encode and include all necessary information about the
 1927  * connection setup within the SYN|ACK that we send back.  That way we
 1928  * can avoid keeping any local state until the ACK to our SYN|ACK returns
 1929  * (if ever).  Normally the syncache and syncookies are running in parallel
 1930  * with the latter taking over when the former is exhausted.  When matching
 1931  * syncache entry is found the syncookie is ignored.
 1932  *
 1933  * The only reliable information persisting the 3WHS is our initial sequence
 1934  * number ISS of 32 bits.  Syncookies embed a cryptographically sufficient
 1935  * strong hash (MAC) value and a few bits of TCP SYN options in the ISS
 1936  * of our SYN|ACK.  The MAC can be recomputed when the ACK to our SYN|ACK
 1937  * returns and signifies a legitimate connection if it matches the ACK.
 1938  *
 1939  * The available space of 32 bits to store the hash and to encode the SYN
 1940  * option information is very tight and we should have at least 24 bits for
 1941  * the MAC to keep the number of guesses by blind spoofing reasonably high.
 1942  *
 1943  * SYN option information we have to encode to fully restore a connection:
 1944  * MSS: is imporant to chose an optimal segment size to avoid IP level
 1945  *   fragmentation along the path.  The common MSS values can be encoded
 1946  *   in a 3-bit table.  Uncommon values are captured by the next lower value
 1947  *   in the table leading to a slight increase in packetization overhead.
 1948  * WSCALE: is necessary to allow large windows to be used for high delay-
 1949  *   bandwidth product links.  Not scaling the window when it was initially
 1950  *   negotiated is bad for performance as lack of scaling further decreases
 1951  *   the apparent available send window.  We only need to encode the WSCALE
 1952  *   we received from the remote end.  Our end can be recalculated at any
 1953  *   time.  The common WSCALE values can be encoded in a 3-bit table.
 1954  *   Uncommon values are captured by the next lower value in the table
 1955  *   making us under-estimate the available window size halving our
 1956  *   theoretically possible maximum throughput for that connection.
 1957  * SACK: Greatly assists in packet loss recovery and requires 1 bit.
 1958  * TIMESTAMP and SIGNATURE is not encoded because they are permanent options
 1959  *   that are included in all segments on a connection.  We enable them when
 1960  *   the ACK has them.
 1961  *
 1962  * Security of syncookies and attack vectors:
 1963  *
 1964  * The MAC is computed over (faddr||laddr||fport||lport||irs||flags||secmod)
 1965  * together with the gloabl secret to make it unique per connection attempt.
 1966  * Thus any change of any of those parameters results in a different MAC output
 1967  * in an unpredictable way unless a collision is encountered.  24 bits of the
 1968  * MAC are embedded into the ISS.
 1969  *
 1970  * To prevent replay attacks two rotating global secrets are updated with a
 1971  * new random value every 15 seconds.  The life-time of a syncookie is thus
 1972  * 15-30 seconds.
 1973  *
 1974  * Vector 1: Attacking the secret.  This requires finding a weakness in the
 1975  * MAC itself or the way it is used here.  The attacker can do a chosen plain
 1976  * text attack by varying and testing the all parameters under his control.
 1977  * The strength depends on the size and randomness of the secret, and the
 1978  * cryptographic security of the MAC function.  Due to the constant updating
 1979  * of the secret the attacker has at most 29.999 seconds to find the secret
 1980  * and launch spoofed connections.  After that he has to start all over again.
 1981  *
 1982  * Vector 2: Collision attack on the MAC of a single ACK.  With a 24 bit MAC
 1983  * size an average of 4,823 attempts are required for a 50% chance of success
 1984  * to spoof a single syncookie (birthday collision paradox).  However the
 1985  * attacker is blind and doesn't know if one of his attempts succeeded unless
 1986  * he has a side channel to interfere success from.  A single connection setup
 1987  * success average of 90% requires 8,790 packets, 99.99% requires 17,578 packets.
 1988  * This many attempts are required for each one blind spoofed connection.  For
 1989  * every additional spoofed connection he has to launch another N attempts.
 1990  * Thus for a sustained rate 100 spoofed connections per second approximately
 1991  * 1,800,000 packets per second would have to be sent.
 1992  *
 1993  * NB: The MAC function should be fast so that it doesn't become a CPU
 1994  * exhaustion attack vector itself.
 1995  *
 1996  * References:
 1997  *  RFC4987 TCP SYN Flooding Attacks and Common Mitigations
 1998  *  SYN cookies were first proposed by cryptographer Dan J. Bernstein in 1996
 1999  *   http://cr.yp.to/syncookies.html    (overview)
 2000  *   http://cr.yp.to/syncookies/archive (details)
 2001  *
 2002  *
 2003  * Schematic construction of a syncookie enabled Initial Sequence Number:
 2004  *  0        1         2         3
 2005  *  12345678901234567890123456789012
 2006  * |xxxxxxxxxxxxxxxxxxxxxxxxWWWMMMSP|
 2007  *
 2008  *  x 24 MAC (truncated)
 2009  *  W  3 Send Window Scale index
 2010  *  M  3 MSS index
 2011  *  S  1 SACK permitted
 2012  *  P  1 Odd/even secret
 2013  */
 2014 
 2015 /*
 2016  * Distribution and probability of certain MSS values.  Those in between are
 2017  * rounded down to the next lower one.
 2018  * [An Analysis of TCP Maximum Segment Sizes, S. Alcock and R. Nelson, 2011]
 2019  *                            .2%  .3%   5%    7%    7%    20%   15%   45%
 2020  */
 2021 static int tcp_sc_msstab[] = { 216, 536, 1200, 1360, 1400, 1440, 1452, 1460 };
 2022 
 2023 /*
 2024  * Distribution and probability of certain WSCALE values.  We have to map the
 2025  * (send) window scale (shift) option with a range of 0-14 from 4 bits into 3
 2026  * bits based on prevalence of certain values.  Where we don't have an exact
 2027  * match for are rounded down to the next lower one letting us under-estimate
 2028  * the true available window.  At the moment this would happen only for the
 2029  * very uncommon values 3, 5 and those above 8 (more than 16MB socket buffer
 2030  * and window size).  The absence of the WSCALE option (no scaling in either
 2031  * direction) is encoded with index zero.
 2032  * [WSCALE values histograms, Allman, 2012]
 2033  *                            X 10 10 35  5  6 14 10%   by host
 2034  *                            X 11  4  5  5 18 49  3%   by connections
 2035  */
 2036 static int tcp_sc_wstab[] = { 0, 0, 1, 2, 4, 6, 7, 8 };
 2037 
 2038 /*
 2039  * Compute the MAC for the SYN cookie.  SIPHASH-2-4 is chosen for its speed
 2040  * and good cryptographic properties.
 2041  */
 2042 static uint32_t
 2043 syncookie_mac(struct in_conninfo *inc, tcp_seq irs, uint8_t flags,
 2044     uint8_t *secbits, uintptr_t secmod)
 2045 {
 2046         SIPHASH_CTX ctx;
 2047         uint32_t siphash[2];
 2048 
 2049         SipHash24_Init(&ctx);
 2050         SipHash_SetKey(&ctx, secbits);
 2051         switch (inc->inc_flags & INC_ISIPV6) {
 2052 #ifdef INET
 2053         case 0:
 2054                 SipHash_Update(&ctx, &inc->inc_faddr, sizeof(inc->inc_faddr));
 2055                 SipHash_Update(&ctx, &inc->inc_laddr, sizeof(inc->inc_laddr));
 2056                 break;
 2057 #endif
 2058 #ifdef INET6
 2059         case INC_ISIPV6:
 2060                 SipHash_Update(&ctx, &inc->inc6_faddr, sizeof(inc->inc6_faddr));
 2061                 SipHash_Update(&ctx, &inc->inc6_laddr, sizeof(inc->inc6_laddr));
 2062                 break;
 2063 #endif
 2064         }
 2065         SipHash_Update(&ctx, &inc->inc_fport, sizeof(inc->inc_fport));
 2066         SipHash_Update(&ctx, &inc->inc_lport, sizeof(inc->inc_lport));
 2067         SipHash_Update(&ctx, &irs, sizeof(irs));
 2068         SipHash_Update(&ctx, &flags, sizeof(flags));
 2069         SipHash_Update(&ctx, &secmod, sizeof(secmod));
 2070         SipHash_Final((u_int8_t *)&siphash, &ctx);
 2071 
 2072         return (siphash[0] ^ siphash[1]);
 2073 }
 2074 
 2075 static tcp_seq
 2076 syncookie_generate(struct syncache_head *sch, struct syncache *sc)
 2077 {
 2078         u_int i, secbit, wscale;
 2079         uint32_t iss, hash;
 2080         uint8_t *secbits;
 2081         union syncookie cookie;
 2082 
 2083         SCH_LOCK_ASSERT(sch);
 2084 
 2085         cookie.cookie = 0;
 2086 
 2087         /* Map our computed MSS into the 3-bit index. */
 2088         for (i = nitems(tcp_sc_msstab) - 1;
 2089              tcp_sc_msstab[i] > sc->sc_peer_mss && i > 0;
 2090              i--)
 2091                 ;
 2092         cookie.flags.mss_idx = i;
 2093 
 2094         /*
 2095          * Map the send window scale into the 3-bit index but only if
 2096          * the wscale option was received.
 2097          */
 2098         if (sc->sc_flags & SCF_WINSCALE) {
 2099                 wscale = sc->sc_requested_s_scale;
 2100                 for (i = nitems(tcp_sc_wstab) - 1;
 2101                     tcp_sc_wstab[i] > wscale && i > 0;
 2102                      i--)
 2103                         ;
 2104                 cookie.flags.wscale_idx = i;
 2105         }
 2106 
 2107         /* Can we do SACK? */
 2108         if (sc->sc_flags & SCF_SACK)
 2109                 cookie.flags.sack_ok = 1;
 2110 
 2111         /* Which of the two secrets to use. */
 2112         secbit = sch->sch_sc->secret.oddeven & 0x1;
 2113         cookie.flags.odd_even = secbit;
 2114 
 2115         secbits = sch->sch_sc->secret.key[secbit];
 2116         hash = syncookie_mac(&sc->sc_inc, sc->sc_irs, cookie.cookie, secbits,
 2117             (uintptr_t)sch);
 2118 
 2119         /*
 2120          * Put the flags into the hash and XOR them to get better ISS number
 2121          * variance.  This doesn't enhance the cryptographic strength and is
 2122          * done to prevent the 8 cookie bits from showing up directly on the
 2123          * wire.
 2124          */
 2125         iss = hash & ~0xff;
 2126         iss |= cookie.cookie ^ (hash >> 24);
 2127 
 2128         TCPSTAT_INC(tcps_sc_sendcookie);
 2129         return (iss);
 2130 }
 2131 
 2132 static struct syncache *
 2133 syncookie_lookup(struct in_conninfo *inc, struct syncache_head *sch, 
 2134     struct syncache *sc, struct tcphdr *th, struct tcpopt *to,
 2135     struct socket *lso)
 2136 {
 2137         uint32_t hash;
 2138         uint8_t *secbits;
 2139         tcp_seq ack, seq;
 2140         int wnd, wscale = 0;
 2141         union syncookie cookie;
 2142 
 2143         SCH_LOCK_ASSERT(sch);
 2144 
 2145         /*
 2146          * Pull information out of SYN-ACK/ACK and revert sequence number
 2147          * advances.
 2148          */
 2149         ack = th->th_ack - 1;
 2150         seq = th->th_seq - 1;
 2151 
 2152         /*
 2153          * Unpack the flags containing enough information to restore the
 2154          * connection.
 2155          */
 2156         cookie.cookie = (ack & 0xff) ^ (ack >> 24);
 2157 
 2158         /* Which of the two secrets to use. */
 2159         secbits = sch->sch_sc->secret.key[cookie.flags.odd_even];
 2160 
 2161         hash = syncookie_mac(inc, seq, cookie.cookie, secbits, (uintptr_t)sch);
 2162 
 2163         /* The recomputed hash matches the ACK if this was a genuine cookie. */
 2164         if ((ack & ~0xff) != (hash & ~0xff))
 2165                 return (NULL);
 2166 
 2167         /* Fill in the syncache values. */
 2168         sc->sc_flags = 0;
 2169         bcopy(inc, &sc->sc_inc, sizeof(struct in_conninfo));
 2170         sc->sc_ipopts = NULL;
 2171         
 2172         sc->sc_irs = seq;
 2173         sc->sc_iss = ack;
 2174 
 2175         switch (inc->inc_flags & INC_ISIPV6) {
 2176 #ifdef INET
 2177         case 0:
 2178                 sc->sc_ip_ttl = sotoinpcb(lso)->inp_ip_ttl;
 2179                 sc->sc_ip_tos = sotoinpcb(lso)->inp_ip_tos;
 2180                 break;
 2181 #endif
 2182 #ifdef INET6
 2183         case INC_ISIPV6:
 2184                 if (sotoinpcb(lso)->inp_flags & IN6P_AUTOFLOWLABEL)
 2185                         sc->sc_flowlabel =
 2186                             htonl(sc->sc_iss) & IPV6_FLOWLABEL_MASK;
 2187                 break;
 2188 #endif
 2189         }
 2190 
 2191         sc->sc_peer_mss = tcp_sc_msstab[cookie.flags.mss_idx];
 2192 
 2193         /* We can simply recompute receive window scale we sent earlier. */
 2194         while (wscale < TCP_MAX_WINSHIFT && (TCP_MAXWIN << wscale) < sb_max)
 2195                 wscale++;
 2196 
 2197         /* Only use wscale if it was enabled in the orignal SYN. */
 2198         if (cookie.flags.wscale_idx > 0) {
 2199                 sc->sc_requested_r_scale = wscale;
 2200                 sc->sc_requested_s_scale = tcp_sc_wstab[cookie.flags.wscale_idx];
 2201                 sc->sc_flags |= SCF_WINSCALE;
 2202         }
 2203 
 2204         wnd = lso->sol_sbrcv_hiwat;
 2205         wnd = imax(wnd, 0);
 2206         wnd = imin(wnd, TCP_MAXWIN);
 2207         sc->sc_wnd = wnd;
 2208 
 2209         if (cookie.flags.sack_ok)
 2210                 sc->sc_flags |= SCF_SACK;
 2211 
 2212         if (to->to_flags & TOF_TS) {
 2213                 sc->sc_flags |= SCF_TIMESTAMP;
 2214                 sc->sc_tsreflect = to->to_tsval;
 2215                 sc->sc_tsoff = tcp_new_ts_offset(inc);
 2216         }
 2217 
 2218         if (to->to_flags & TOF_SIGNATURE)
 2219                 sc->sc_flags |= SCF_SIGNATURE;
 2220 
 2221         sc->sc_rxmits = 0;
 2222 
 2223         TCPSTAT_INC(tcps_sc_recvcookie);
 2224         return (sc);
 2225 }
 2226 
 2227 #ifdef INVARIANTS
 2228 static int
 2229 syncookie_cmp(struct in_conninfo *inc, struct syncache_head *sch,
 2230     struct syncache *sc, struct tcphdr *th, struct tcpopt *to,
 2231     struct socket *lso)
 2232 {
 2233         struct syncache scs, *scx;
 2234         char *s;
 2235 
 2236         bzero(&scs, sizeof(scs));
 2237         scx = syncookie_lookup(inc, sch, &scs, th, to, lso);
 2238 
 2239         if ((s = tcp_log_addrs(inc, th, NULL, NULL)) == NULL)
 2240                 return (0);
 2241 
 2242         if (scx != NULL) {
 2243                 if (sc->sc_peer_mss != scx->sc_peer_mss)
 2244                         log(LOG_DEBUG, "%s; %s: mss different %i vs %i\n",
 2245                             s, __func__, sc->sc_peer_mss, scx->sc_peer_mss);
 2246 
 2247                 if (sc->sc_requested_r_scale != scx->sc_requested_r_scale)
 2248                         log(LOG_DEBUG, "%s; %s: rwscale different %i vs %i\n",
 2249                             s, __func__, sc->sc_requested_r_scale,
 2250                             scx->sc_requested_r_scale);
 2251 
 2252                 if (sc->sc_requested_s_scale != scx->sc_requested_s_scale)
 2253                         log(LOG_DEBUG, "%s; %s: swscale different %i vs %i\n",
 2254                             s, __func__, sc->sc_requested_s_scale,
 2255                             scx->sc_requested_s_scale);
 2256 
 2257                 if ((sc->sc_flags & SCF_SACK) != (scx->sc_flags & SCF_SACK))
 2258                         log(LOG_DEBUG, "%s; %s: SACK different\n", s, __func__);
 2259         }
 2260 
 2261         if (s != NULL)
 2262                 free(s, M_TCPLOG);
 2263         return (0);
 2264 }
 2265 #endif /* INVARIANTS */
 2266 
 2267 static void
 2268 syncookie_reseed(void *arg)
 2269 {
 2270         struct tcp_syncache *sc = arg;
 2271         uint8_t *secbits;
 2272         int secbit;
 2273 
 2274         /*
 2275          * Reseeding the secret doesn't have to be protected by a lock.
 2276          * It only must be ensured that the new random values are visible
 2277          * to all CPUs in a SMP environment.  The atomic with release
 2278          * semantics ensures that.
 2279          */
 2280         secbit = (sc->secret.oddeven & 0x1) ? 0 : 1;
 2281         secbits = sc->secret.key[secbit];
 2282         arc4rand(secbits, SYNCOOKIE_SECRET_SIZE, 0);
 2283         atomic_add_rel_int(&sc->secret.oddeven, 1);
 2284 
 2285         /* Reschedule ourself. */
 2286         callout_schedule(&sc->secret.reseed, SYNCOOKIE_LIFETIME * hz);
 2287 }
 2288 
 2289 /*
 2290  * Exports the syncache entries to userland so that netstat can display
 2291  * them alongside the other sockets.  This function is intended to be
 2292  * called only from tcp_pcblist.
 2293  *
 2294  * Due to concurrency on an active system, the number of pcbs exported
 2295  * may have no relation to max_pcbs.  max_pcbs merely indicates the
 2296  * amount of space the caller allocated for this function to use.
 2297  */
 2298 int
 2299 syncache_pcblist(struct sysctl_req *req, int max_pcbs, int *pcbs_exported)
 2300 {
 2301         struct xtcpcb xt;
 2302         struct syncache *sc;
 2303         struct syncache_head *sch;
 2304         int count, error, i;
 2305 
 2306         for (count = 0, error = 0, i = 0; i < V_tcp_syncache.hashsize; i++) {
 2307                 sch = &V_tcp_syncache.hashbase[i];
 2308                 SCH_LOCK(sch);
 2309                 TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash) {
 2310                         if (count >= max_pcbs) {
 2311                                 SCH_UNLOCK(sch);
 2312                                 goto exit;
 2313                         }
 2314                         if (cr_cansee(req->td->td_ucred, sc->sc_cred) != 0)
 2315                                 continue;
 2316                         bzero(&xt, sizeof(xt));
 2317                         xt.xt_len = sizeof(xt);
 2318                         if (sc->sc_inc.inc_flags & INC_ISIPV6)
 2319                                 xt.xt_inp.inp_vflag = INP_IPV6;
 2320                         else
 2321                                 xt.xt_inp.inp_vflag = INP_IPV4;
 2322                         bcopy(&sc->sc_inc, &xt.xt_inp.inp_inc,
 2323                             sizeof (struct in_conninfo));
 2324                         xt.t_state = TCPS_SYN_RECEIVED;
 2325                         xt.xt_inp.xi_socket.xso_protocol = IPPROTO_TCP;
 2326                         xt.xt_inp.xi_socket.xso_len = sizeof (struct xsocket);
 2327                         xt.xt_inp.xi_socket.so_type = SOCK_STREAM;
 2328                         xt.xt_inp.xi_socket.so_state = SS_ISCONNECTING;
 2329                         error = SYSCTL_OUT(req, &xt, sizeof xt);
 2330                         if (error) {
 2331                                 SCH_UNLOCK(sch);
 2332                                 goto exit;
 2333                         }
 2334                         count++;
 2335                 }
 2336                 SCH_UNLOCK(sch);
 2337         }
 2338 exit:
 2339         *pcbs_exported = count;
 2340         return error;
 2341 }

Cache object: 0c1ca7c7c3fbd1cabc93ebdd2f1ac65b


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.