The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/netinet/udp_usrreq.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
    3  *      The Regents of the University of California.
    4  * Copyright (c) 2008 Robert N. M. Watson
    5  * Copyright (c) 2010-2011 Juniper Networks, Inc.
    6  * Copyright (c) 2014 Kevin Lo
    7  * All rights reserved.
    8  *
    9  * Portions of this software were developed by Robert N. M. Watson under
   10  * contract to Juniper Networks, Inc.
   11  *
   12  * Redistribution and use in source and binary forms, with or without
   13  * modification, are permitted provided that the following conditions
   14  * are met:
   15  * 1. Redistributions of source code must retain the above copyright
   16  *    notice, this list of conditions and the following disclaimer.
   17  * 2. Redistributions in binary form must reproduce the above copyright
   18  *    notice, this list of conditions and the following disclaimer in the
   19  *    documentation and/or other materials provided with the distribution.
   20  * 4. Neither the name of the University nor the names of its contributors
   21  *    may be used to endorse or promote products derived from this software
   22  *    without specific prior written permission.
   23  *
   24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   34  * SUCH DAMAGE.
   35  *
   36  *      @(#)udp_usrreq.c        8.6 (Berkeley) 5/23/95
   37  */
   38 
   39 #include <sys/cdefs.h>
   40 __FBSDID("$FreeBSD: releng/10.4/sys/netinet/udp_usrreq.c 313558 2017-02-10 16:11:11Z vangyzen $");
   41 
   42 #include "opt_ipfw.h"
   43 #include "opt_inet.h"
   44 #include "opt_inet6.h"
   45 #include "opt_ipsec.h"
   46 #include "opt_kdtrace.h"
   47 
   48 #include <sys/param.h>
   49 #include <sys/domain.h>
   50 #include <sys/eventhandler.h>
   51 #include <sys/jail.h>
   52 #include <sys/kernel.h>
   53 #include <sys/lock.h>
   54 #include <sys/malloc.h>
   55 #include <sys/mbuf.h>
   56 #include <sys/priv.h>
   57 #include <sys/proc.h>
   58 #include <sys/protosw.h>
   59 #include <sys/sdt.h>
   60 #include <sys/signalvar.h>
   61 #include <sys/socket.h>
   62 #include <sys/socketvar.h>
   63 #include <sys/sx.h>
   64 #include <sys/sysctl.h>
   65 #include <sys/syslog.h>
   66 #include <sys/systm.h>
   67 
   68 #include <vm/uma.h>
   69 
   70 #include <net/if.h>
   71 #include <net/route.h>
   72 
   73 #include <netinet/in.h>
   74 #include <netinet/in_kdtrace.h>
   75 #include <netinet/in_pcb.h>
   76 #include <netinet/in_systm.h>
   77 #include <netinet/in_var.h>
   78 #include <netinet/ip.h>
   79 #ifdef INET6
   80 #include <netinet/ip6.h>
   81 #endif
   82 #include <netinet/ip_icmp.h>
   83 #include <netinet/icmp_var.h>
   84 #include <netinet/ip_var.h>
   85 #include <netinet/ip_options.h>
   86 #ifdef INET6
   87 #include <netinet6/ip6_var.h>
   88 #endif
   89 #include <netinet/udp.h>
   90 #include <netinet/udp_var.h>
   91 #include <netinet/udplite.h>
   92 
   93 #ifdef IPSEC
   94 #include <netipsec/ipsec.h>
   95 #include <netipsec/esp.h>
   96 #endif
   97 
   98 #include <machine/in_cksum.h>
   99 
  100 #include <security/mac/mac_framework.h>
  101 
  102 /*
  103  * UDP and UDP-Lite protocols implementation.
  104  * Per RFC 768, August, 1980.
  105  * Per RFC 3828, July, 2004.
  106  */
  107 
  108 /*
  109  * BSD 4.2 defaulted the udp checksum to be off.  Turning off udp checksums
  110  * removes the only data integrity mechanism for packets and malformed
  111  * packets that would otherwise be discarded due to bad checksums, and may
  112  * cause problems (especially for NFS data blocks).
  113  */
  114 VNET_DEFINE(int, udp_cksum) = 1;
  115 SYSCTL_VNET_INT(_net_inet_udp, UDPCTL_CHECKSUM, checksum, CTLFLAG_RW,
  116     &VNET_NAME(udp_cksum), 0, "compute udp checksum");
  117 
  118 int     udp_log_in_vain = 0;
  119 SYSCTL_INT(_net_inet_udp, OID_AUTO, log_in_vain, CTLFLAG_RW,
  120     &udp_log_in_vain, 0, "Log all incoming UDP packets");
  121 
  122 VNET_DEFINE(int, udp_blackhole) = 0;
  123 SYSCTL_VNET_INT(_net_inet_udp, OID_AUTO, blackhole, CTLFLAG_RW,
  124     &VNET_NAME(udp_blackhole), 0,
  125     "Do not send port unreachables for refused connects");
  126 
  127 u_long  udp_sendspace = 9216;           /* really max datagram size */
  128                                         /* 40 1K datagrams */
  129 SYSCTL_ULONG(_net_inet_udp, UDPCTL_MAXDGRAM, maxdgram, CTLFLAG_RW,
  130     &udp_sendspace, 0, "Maximum outgoing UDP datagram size");
  131 
  132 u_long  udp_recvspace = 40 * (1024 +
  133 #ifdef INET6
  134                                       sizeof(struct sockaddr_in6)
  135 #else
  136                                       sizeof(struct sockaddr_in)
  137 #endif
  138                                       );
  139 
  140 SYSCTL_ULONG(_net_inet_udp, UDPCTL_RECVSPACE, recvspace, CTLFLAG_RW,
  141     &udp_recvspace, 0, "Maximum space for incoming UDP datagrams");
  142 
  143 VNET_DEFINE(struct inpcbhead, udb);             /* from udp_var.h */
  144 VNET_DEFINE(struct inpcbinfo, udbinfo);
  145 VNET_DEFINE(struct inpcbhead, ulitecb);
  146 VNET_DEFINE(struct inpcbinfo, ulitecbinfo);
  147 static VNET_DEFINE(uma_zone_t, udpcb_zone);
  148 #define V_udpcb_zone                    VNET(udpcb_zone)
  149 
  150 #ifndef UDBHASHSIZE
  151 #define UDBHASHSIZE     128
  152 #endif
  153 
  154 VNET_PCPUSTAT_DEFINE(struct udpstat, udpstat);          /* from udp_var.h */
  155 VNET_PCPUSTAT_SYSINIT(udpstat);
  156 SYSCTL_VNET_PCPUSTAT(_net_inet_udp, UDPCTL_STATS, stats, struct udpstat,
  157     udpstat, "UDP statistics (struct udpstat, netinet/udp_var.h)");
  158 
  159 #ifdef VIMAGE
  160 VNET_PCPUSTAT_SYSUNINIT(udpstat);
  161 #endif /* VIMAGE */
  162 #ifdef INET
  163 static void     udp_detach(struct socket *so);
  164 static int      udp_output(struct inpcb *, struct mbuf *, struct sockaddr *,
  165                     struct mbuf *, struct thread *);
  166 #endif
  167 
  168 #ifdef IPSEC
  169 #ifdef IPSEC_NAT_T
  170 #define UF_ESPINUDP_ALL (UF_ESPINUDP_NON_IKE|UF_ESPINUDP)
  171 #ifdef INET
  172 static struct mbuf *udp4_espdecap(struct inpcb *, struct mbuf *, int);
  173 #endif
  174 #endif /* IPSEC_NAT_T */
  175 #endif /* IPSEC */
  176 
  177 static void
  178 udp_zone_change(void *tag)
  179 {
  180 
  181         uma_zone_set_max(V_udbinfo.ipi_zone, maxsockets);
  182         uma_zone_set_max(V_udpcb_zone, maxsockets);
  183 }
  184 
  185 static int
  186 udp_inpcb_init(void *mem, int size, int flags)
  187 {
  188         struct inpcb *inp;
  189 
  190         inp = mem;
  191         INP_LOCK_INIT(inp, "inp", "udpinp");
  192         return (0);
  193 }
  194 
  195 static int
  196 udplite_inpcb_init(void *mem, int size, int flags)
  197 {
  198         struct inpcb *inp;
  199 
  200         inp = mem;
  201         INP_LOCK_INIT(inp, "inp", "udpliteinp");
  202         return (0);
  203 }
  204 
  205 void
  206 udp_init(void)
  207 {
  208 
  209         in_pcbinfo_init(&V_udbinfo, "udp", &V_udb, UDBHASHSIZE, UDBHASHSIZE,
  210             "udp_inpcb", udp_inpcb_init, NULL, UMA_ZONE_NOFREE,
  211             IPI_HASHFIELDS_2TUPLE);
  212         V_udpcb_zone = uma_zcreate("udpcb", sizeof(struct udpcb),
  213             NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
  214         uma_zone_set_max(V_udpcb_zone, maxsockets);
  215         uma_zone_set_warning(V_udpcb_zone, "kern.ipc.maxsockets limit reached");
  216         EVENTHANDLER_REGISTER(maxsockets_change, udp_zone_change, NULL,
  217             EVENTHANDLER_PRI_ANY);
  218 }
  219 
  220 void
  221 udplite_init(void)
  222 {
  223 
  224         in_pcbinfo_init(&V_ulitecbinfo, "udplite", &V_ulitecb, UDBHASHSIZE,
  225             UDBHASHSIZE, "udplite_inpcb", udplite_inpcb_init, NULL,
  226             UMA_ZONE_NOFREE, IPI_HASHFIELDS_2TUPLE);
  227 }
  228 
  229 /*
  230  * Kernel module interface for updating udpstat.  The argument is an index
  231  * into udpstat treated as an array of u_long.  While this encodes the
  232  * general layout of udpstat into the caller, it doesn't encode its location,
  233  * so that future changes to add, for example, per-CPU stats support won't
  234  * cause binary compatibility problems for kernel modules.
  235  */
  236 void
  237 kmod_udpstat_inc(int statnum)
  238 {
  239 
  240         counter_u64_add(VNET(udpstat)[statnum], 1);
  241 }
  242 
  243 int
  244 udp_newudpcb(struct inpcb *inp)
  245 {
  246         struct udpcb *up;
  247 
  248         up = uma_zalloc(V_udpcb_zone, M_NOWAIT | M_ZERO);
  249         if (up == NULL)
  250                 return (ENOBUFS);
  251         inp->inp_ppcb = up;
  252         return (0);
  253 }
  254 
  255 void
  256 udp_discardcb(struct udpcb *up)
  257 {
  258 
  259         uma_zfree(V_udpcb_zone, up);
  260 }
  261 
  262 #ifdef VIMAGE
  263 void
  264 udp_destroy(void)
  265 {
  266 
  267         in_pcbinfo_destroy(&V_udbinfo);
  268         uma_zdestroy(V_udpcb_zone);
  269 }
  270 
  271 void
  272 udplite_destroy(void)
  273 {
  274 
  275         in_pcbinfo_destroy(&V_ulitecbinfo);
  276 }
  277 #endif
  278 
  279 #ifdef INET
  280 /*
  281  * Subroutine of udp_input(), which appends the provided mbuf chain to the
  282  * passed pcb/socket.  The caller must provide a sockaddr_in via udp_in that
  283  * contains the source address.  If the socket ends up being an IPv6 socket,
  284  * udp_append() will convert to a sockaddr_in6 before passing the address
  285  * into the socket code.
  286  */
  287 static void
  288 udp_append(struct inpcb *inp, struct ip *ip, struct mbuf *n, int off,
  289     struct sockaddr_in *udp_in)
  290 {
  291         struct sockaddr *append_sa;
  292         struct socket *so;
  293         struct mbuf *opts = 0;
  294 #ifdef INET6
  295         struct sockaddr_in6 udp_in6;
  296 #endif
  297         struct udpcb *up;
  298 
  299         INP_LOCK_ASSERT(inp);
  300 
  301         /*
  302          * Engage the tunneling protocol.
  303          */
  304         up = intoudpcb(inp);
  305         if (up->u_tun_func != NULL) {
  306                 (*up->u_tun_func)(n, off, inp, (struct sockaddr *)udp_in,
  307                     up->u_tun_ctx);
  308                 return;
  309         }
  310 
  311         off += sizeof(struct udphdr);
  312 
  313 #ifdef IPSEC
  314         /* Check AH/ESP integrity. */
  315         if (ipsec4_in_reject(n, inp)) {
  316                 m_freem(n);
  317                 IPSECSTAT_INC(ips_in_polvio);
  318                 return;
  319         }
  320 #ifdef IPSEC_NAT_T
  321         up = intoudpcb(inp);
  322         KASSERT(up != NULL, ("%s: udpcb NULL", __func__));
  323         if (up->u_flags & UF_ESPINUDP_ALL) {    /* IPSec UDP encaps. */
  324                 n = udp4_espdecap(inp, n, off);
  325                 if (n == NULL)                          /* Consumed. */
  326                         return;
  327         }
  328 #endif /* IPSEC_NAT_T */
  329 #endif /* IPSEC */
  330 #ifdef MAC
  331         if (mac_inpcb_check_deliver(inp, n) != 0) {
  332                 m_freem(n);
  333                 return;
  334         }
  335 #endif /* MAC */
  336         if (inp->inp_flags & INP_CONTROLOPTS ||
  337             inp->inp_socket->so_options & (SO_TIMESTAMP | SO_BINTIME)) {
  338 #ifdef INET6
  339                 if (inp->inp_vflag & INP_IPV6)
  340                         (void)ip6_savecontrol_v4(inp, n, &opts, NULL);
  341                 else
  342 #endif /* INET6 */
  343                         ip_savecontrol(inp, &opts, ip, n);
  344         }
  345 #ifdef INET6
  346         if (inp->inp_vflag & INP_IPV6) {
  347                 bzero(&udp_in6, sizeof(udp_in6));
  348                 udp_in6.sin6_len = sizeof(udp_in6);
  349                 udp_in6.sin6_family = AF_INET6;
  350                 in6_sin_2_v4mapsin6(udp_in, &udp_in6);
  351                 append_sa = (struct sockaddr *)&udp_in6;
  352         } else
  353 #endif /* INET6 */
  354                 append_sa = (struct sockaddr *)udp_in;
  355         m_adj(n, off);
  356 
  357         so = inp->inp_socket;
  358         SOCKBUF_LOCK(&so->so_rcv);
  359         if (sbappendaddr_locked(&so->so_rcv, append_sa, n, opts) == 0) {
  360                 SOCKBUF_UNLOCK(&so->so_rcv);
  361                 m_freem(n);
  362                 if (opts)
  363                         m_freem(opts);
  364                 UDPSTAT_INC(udps_fullsock);
  365         } else
  366                 sorwakeup_locked(so);
  367 }
  368 
  369 void
  370 udp_input(struct mbuf *m, int off)
  371 {
  372         int iphlen = off;
  373         struct ip *ip;
  374         struct udphdr *uh;
  375         struct ifnet *ifp;
  376         struct inpcb *inp;
  377         uint16_t len, ip_len;
  378         struct inpcbinfo *pcbinfo;
  379         struct ip save_ip;
  380         struct sockaddr_in udp_in;
  381         struct m_tag *fwd_tag;
  382         int cscov_partial;
  383         uint8_t pr;
  384 
  385         ifp = m->m_pkthdr.rcvif;
  386         UDPSTAT_INC(udps_ipackets);
  387 
  388         /*
  389          * Strip IP options, if any; should skip this, make available to
  390          * user, and use on returned packets, but we don't yet have a way to
  391          * check the checksum with options still present.
  392          */
  393         if (iphlen > sizeof (struct ip)) {
  394                 ip_stripoptions(m);
  395                 iphlen = sizeof(struct ip);
  396         }
  397 
  398         /*
  399          * Get IP and UDP header together in first mbuf.
  400          */
  401         ip = mtod(m, struct ip *);
  402         if (m->m_len < iphlen + sizeof(struct udphdr)) {
  403                 if ((m = m_pullup(m, iphlen + sizeof(struct udphdr))) == NULL) {
  404                         UDPSTAT_INC(udps_hdrops);
  405                         return;
  406                 }
  407                 ip = mtod(m, struct ip *);
  408         }
  409         uh = (struct udphdr *)((caddr_t)ip + iphlen);
  410         pr = ip->ip_p;
  411         cscov_partial = (pr == IPPROTO_UDPLITE) ? 1 : 0;
  412 
  413         /*
  414          * Destination port of 0 is illegal, based on RFC768.
  415          */
  416         if (uh->uh_dport == 0)
  417                 goto badunlocked;
  418 
  419         /*
  420          * Construct sockaddr format source address.  Stuff source address
  421          * and datagram in user buffer.
  422          */
  423         bzero(&udp_in, sizeof(udp_in));
  424         udp_in.sin_len = sizeof(udp_in);
  425         udp_in.sin_family = AF_INET;
  426         udp_in.sin_port = uh->uh_sport;
  427         udp_in.sin_addr = ip->ip_src;
  428 
  429         /*
  430          * Make mbuf data length reflect UDP length.  If not enough data to
  431          * reflect UDP length, drop.
  432          */
  433         len = ntohs((u_short)uh->uh_ulen);
  434         ip_len = ntohs(ip->ip_len) - iphlen;
  435         if (pr == IPPROTO_UDPLITE && (len == 0 || len == ip_len)) {
  436                 /* Zero means checksum over the complete packet. */
  437                 if (len == 0)
  438                         len = ip_len;
  439                 cscov_partial = 0;
  440         }
  441         if (ip_len != len) {
  442                 if (len > ip_len || len < sizeof(struct udphdr)) {
  443                         UDPSTAT_INC(udps_badlen);
  444                         goto badunlocked;
  445                 }
  446                 if (pr == IPPROTO_UDP)
  447                         m_adj(m, len - ip_len);
  448         }
  449 
  450         /*
  451          * Save a copy of the IP header in case we want restore it for
  452          * sending an ICMP error message in response.
  453          */
  454         if (!V_udp_blackhole)
  455                 save_ip = *ip;
  456         else
  457                 memset(&save_ip, 0, sizeof(save_ip));
  458 
  459         /*
  460          * Checksum extended UDP header and data.
  461          */
  462         if (uh->uh_sum) {
  463                 u_short uh_sum;
  464 
  465                 if ((m->m_pkthdr.csum_flags & CSUM_DATA_VALID) &&
  466                     !cscov_partial) {
  467                         if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
  468                                 uh_sum = m->m_pkthdr.csum_data;
  469                         else
  470                                 uh_sum = in_pseudo(ip->ip_src.s_addr,
  471                                     ip->ip_dst.s_addr, htonl((u_short)len +
  472                                     m->m_pkthdr.csum_data + pr));
  473                         uh_sum ^= 0xffff;
  474                 } else {
  475                         char b[9];
  476 
  477                         bcopy(((struct ipovly *)ip)->ih_x1, b, 9);
  478                         bzero(((struct ipovly *)ip)->ih_x1, 9);
  479                         ((struct ipovly *)ip)->ih_len = (pr == IPPROTO_UDP) ?
  480                             uh->uh_ulen : htons(ip_len);
  481                         uh_sum = in_cksum(m, len + sizeof (struct ip));
  482                         bcopy(b, ((struct ipovly *)ip)->ih_x1, 9);
  483                 }
  484                 if (uh_sum) {
  485                         UDPSTAT_INC(udps_badsum);
  486                         m_freem(m);
  487                         return;
  488                 }
  489         } else {
  490                 if (pr == IPPROTO_UDP) {
  491                         UDPSTAT_INC(udps_nosum);
  492                 } else {
  493                         /* UDPLite requires a checksum */
  494                         /* XXX: What is the right UDPLite MIB counter here? */
  495                         m_freem(m);
  496                         return;
  497                 }
  498         }
  499 
  500         pcbinfo = get_inpcbinfo(pr);
  501         if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
  502             in_broadcast(ip->ip_dst, ifp)) {
  503                 struct inpcb *last;
  504                 struct inpcbhead *pcblist;
  505                 struct ip_moptions *imo;
  506 
  507                 INP_INFO_RLOCK(pcbinfo);
  508                 pcblist = get_pcblist(pr);
  509                 last = NULL;
  510                 LIST_FOREACH(inp, pcblist, inp_list) {
  511                         if (inp->inp_lport != uh->uh_dport)
  512                                 continue;
  513 #ifdef INET6
  514                         if ((inp->inp_vflag & INP_IPV4) == 0)
  515                                 continue;
  516 #endif
  517                         if (inp->inp_laddr.s_addr != INADDR_ANY &&
  518                             inp->inp_laddr.s_addr != ip->ip_dst.s_addr)
  519                                 continue;
  520                         if (inp->inp_faddr.s_addr != INADDR_ANY &&
  521                             inp->inp_faddr.s_addr != ip->ip_src.s_addr)
  522                                 continue;
  523                         if (inp->inp_fport != 0 &&
  524                             inp->inp_fport != uh->uh_sport)
  525                                 continue;
  526 
  527                         INP_RLOCK(inp);
  528 
  529                         /*
  530                          * XXXRW: Because we weren't holding either the inpcb
  531                          * or the hash lock when we checked for a match
  532                          * before, we should probably recheck now that the
  533                          * inpcb lock is held.
  534                          */
  535 
  536                         /*
  537                          * Handle socket delivery policy for any-source
  538                          * and source-specific multicast. [RFC3678]
  539                          */
  540                         imo = inp->inp_moptions;
  541                         if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
  542                                 struct sockaddr_in       group;
  543                                 int                      blocked;
  544                                 if (imo == NULL) {
  545                                         INP_RUNLOCK(inp);
  546                                         continue;
  547                                 }
  548                                 bzero(&group, sizeof(struct sockaddr_in));
  549                                 group.sin_len = sizeof(struct sockaddr_in);
  550                                 group.sin_family = AF_INET;
  551                                 group.sin_addr = ip->ip_dst;
  552 
  553                                 blocked = imo_multi_filter(imo, ifp,
  554                                         (struct sockaddr *)&group,
  555                                         (struct sockaddr *)&udp_in);
  556                                 if (blocked != MCAST_PASS) {
  557                                         if (blocked == MCAST_NOTGMEMBER)
  558                                                 IPSTAT_INC(ips_notmember);
  559                                         if (blocked == MCAST_NOTSMEMBER ||
  560                                             blocked == MCAST_MUTED)
  561                                                 UDPSTAT_INC(udps_filtermcast);
  562                                         INP_RUNLOCK(inp);
  563                                         continue;
  564                                 }
  565                         }
  566                         if (last != NULL) {
  567                                 struct mbuf *n;
  568 
  569                                 if ((n = m_copy(m, 0, M_COPYALL)) != NULL) {
  570                                         UDP_PROBE(receive, NULL, last, ip,
  571                                             last, uh);
  572                                         udp_append(last, ip, n, iphlen,
  573                                             &udp_in);
  574                                 }
  575                                 INP_RUNLOCK(last);
  576                         }
  577                         last = inp;
  578                         /*
  579                          * Don't look for additional matches if this one does
  580                          * not have either the SO_REUSEPORT or SO_REUSEADDR
  581                          * socket options set.  This heuristic avoids
  582                          * searching through all pcbs in the common case of a
  583                          * non-shared port.  It assumes that an application
  584                          * will never clear these options after setting them.
  585                          */
  586                         if ((last->inp_socket->so_options &
  587                             (SO_REUSEPORT|SO_REUSEADDR)) == 0)
  588                                 break;
  589                 }
  590 
  591                 if (last == NULL) {
  592                         /*
  593                          * No matching pcb found; discard datagram.  (No need
  594                          * to send an ICMP Port Unreachable for a broadcast
  595                          * or multicast datgram.)
  596                          */
  597                         UDPSTAT_INC(udps_noportbcast);
  598                         if (inp)
  599                                 INP_RUNLOCK(inp);
  600                         INP_INFO_RUNLOCK(pcbinfo);
  601                         goto badunlocked;
  602                 }
  603                 UDP_PROBE(receive, NULL, last, ip, last, uh);
  604                 udp_append(last, ip, m, iphlen, &udp_in);
  605                 INP_RUNLOCK(last);
  606                 INP_INFO_RUNLOCK(pcbinfo);
  607                 return;
  608         }
  609 
  610         /*
  611          * Locate pcb for datagram.
  612          */
  613 
  614         /*
  615          * Grab info from PACKET_TAG_IPFORWARD tag prepended to the chain.
  616          */
  617         if ((m->m_flags & M_IP_NEXTHOP) &&
  618             (fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL) {
  619                 struct sockaddr_in *next_hop;
  620 
  621                 next_hop = (struct sockaddr_in *)(fwd_tag + 1);
  622 
  623                 /*
  624                  * Transparently forwarded. Pretend to be the destination.
  625                  * Already got one like this?
  626                  */
  627                 inp = in_pcblookup_mbuf(pcbinfo, ip->ip_src, uh->uh_sport,
  628                     ip->ip_dst, uh->uh_dport, INPLOOKUP_RLOCKPCB, ifp, m);
  629                 if (!inp) {
  630                         /*
  631                          * It's new.  Try to find the ambushing socket.
  632                          * Because we've rewritten the destination address,
  633                          * any hardware-generated hash is ignored.
  634                          */
  635                         inp = in_pcblookup(pcbinfo, ip->ip_src,
  636                             uh->uh_sport, next_hop->sin_addr,
  637                             next_hop->sin_port ? htons(next_hop->sin_port) :
  638                             uh->uh_dport, INPLOOKUP_WILDCARD |
  639                             INPLOOKUP_RLOCKPCB, ifp);
  640                 }
  641                 /* Remove the tag from the packet. We don't need it anymore. */
  642                 m_tag_delete(m, fwd_tag);
  643                 m->m_flags &= ~M_IP_NEXTHOP;
  644         } else
  645                 inp = in_pcblookup_mbuf(pcbinfo, ip->ip_src, uh->uh_sport,
  646                     ip->ip_dst, uh->uh_dport, INPLOOKUP_WILDCARD |
  647                     INPLOOKUP_RLOCKPCB, ifp, m);
  648         if (inp == NULL) {
  649                 if (udp_log_in_vain) {
  650                         char src[INET_ADDRSTRLEN];
  651                         char dst[INET_ADDRSTRLEN];
  652 
  653                         log(LOG_INFO,
  654                             "Connection attempt to UDP %s:%d from %s:%d\n",
  655                             inet_ntoa_r(ip->ip_dst, dst), ntohs(uh->uh_dport),
  656                             inet_ntoa_r(ip->ip_src, src), ntohs(uh->uh_sport));
  657                 }
  658                 UDPSTAT_INC(udps_noport);
  659                 if (m->m_flags & (M_BCAST | M_MCAST)) {
  660                         UDPSTAT_INC(udps_noportbcast);
  661                         goto badunlocked;
  662                 }
  663                 if (V_udp_blackhole)
  664                         goto badunlocked;
  665                 if (badport_bandlim(BANDLIM_ICMP_UNREACH) < 0)
  666                         goto badunlocked;
  667                 *ip = save_ip;
  668                 icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_PORT, 0, 0);
  669                 return;
  670         }
  671 
  672         /*
  673          * Check the minimum TTL for socket.
  674          */
  675         INP_RLOCK_ASSERT(inp);
  676         if (inp->inp_ip_minttl && inp->inp_ip_minttl > ip->ip_ttl) {
  677                 INP_RUNLOCK(inp);
  678                 m_freem(m);
  679                 return;
  680         }
  681         if (cscov_partial) {
  682                 struct udpcb *up;
  683 
  684                 up = intoudpcb(inp);
  685                 if (up->u_rxcslen == 0 || up->u_rxcslen > len) {
  686                         INP_RUNLOCK(inp);
  687                         m_freem(m);
  688                         return;
  689                 }
  690         }
  691 
  692         UDP_PROBE(receive, NULL, inp, ip, inp, uh);
  693         udp_append(inp, ip, m, iphlen, &udp_in);
  694         INP_RUNLOCK(inp);
  695         return;
  696 
  697 badunlocked:
  698         m_freem(m);
  699 }
  700 #endif /* INET */
  701 
  702 /*
  703  * Notify a udp user of an asynchronous error; just wake up so that they can
  704  * collect error status.
  705  */
  706 struct inpcb *
  707 udp_notify(struct inpcb *inp, int errno)
  708 {
  709 
  710         /*
  711          * While udp_ctlinput() always calls udp_notify() with a read lock
  712          * when invoking it directly, in_pcbnotifyall() currently uses write
  713          * locks due to sharing code with TCP.  For now, accept either a read
  714          * or a write lock, but a read lock is sufficient.
  715          */
  716         INP_LOCK_ASSERT(inp);
  717 
  718         inp->inp_socket->so_error = errno;
  719         sorwakeup(inp->inp_socket);
  720         sowwakeup(inp->inp_socket);
  721         return (inp);
  722 }
  723 
  724 #ifdef INET
  725 static void
  726 udp_common_ctlinput(int cmd, struct sockaddr *sa, void *vip,
  727     struct inpcbinfo *pcbinfo)
  728 {
  729         struct ip *ip = vip;
  730         struct udphdr *uh;
  731         struct in_addr faddr;
  732         struct inpcb *inp;
  733 
  734         faddr = ((struct sockaddr_in *)sa)->sin_addr;
  735         if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
  736                 return;
  737 
  738         /*
  739          * Redirects don't need to be handled up here.
  740          */
  741         if (PRC_IS_REDIRECT(cmd))
  742                 return;
  743 
  744         /*
  745          * Hostdead is ugly because it goes linearly through all PCBs.
  746          *
  747          * XXX: We never get this from ICMP, otherwise it makes an excellent
  748          * DoS attack on machines with many connections.
  749          */
  750         if (cmd == PRC_HOSTDEAD)
  751                 ip = NULL;
  752         else if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0)
  753                 return;
  754         if (ip != NULL) {
  755                 uh = (struct udphdr *)((caddr_t)ip + (ip->ip_hl << 2));
  756                 inp = in_pcblookup(pcbinfo, faddr, uh->uh_dport,
  757                     ip->ip_src, uh->uh_sport, INPLOOKUP_RLOCKPCB, NULL);
  758                 if (inp != NULL) {
  759                         INP_RLOCK_ASSERT(inp);
  760                         if (inp->inp_socket != NULL) {
  761                                 udp_notify(inp, inetctlerrmap[cmd]);
  762                         }
  763                         INP_RUNLOCK(inp);
  764                 }
  765         } else
  766                 in_pcbnotifyall(pcbinfo, faddr, inetctlerrmap[cmd],
  767                     udp_notify);
  768 }
  769 void
  770 udp_ctlinput(int cmd, struct sockaddr *sa, void *vip)
  771 {
  772 
  773         return (udp_common_ctlinput(cmd, sa, vip, &V_udbinfo));
  774 }
  775 
  776 void
  777 udplite_ctlinput(int cmd, struct sockaddr *sa, void *vip)
  778 {
  779 
  780         return (udp_common_ctlinput(cmd, sa, vip, &V_ulitecbinfo));
  781 }
  782 #endif /* INET */
  783 
  784 static int
  785 udp_pcblist(SYSCTL_HANDLER_ARGS)
  786 {
  787         int error, i, n;
  788         struct inpcb *inp, **inp_list;
  789         inp_gen_t gencnt;
  790         struct xinpgen xig;
  791 
  792         /*
  793          * The process of preparing the PCB list is too time-consuming and
  794          * resource-intensive to repeat twice on every request.
  795          */
  796         if (req->oldptr == 0) {
  797                 n = V_udbinfo.ipi_count;
  798                 n += imax(n / 8, 10);
  799                 req->oldidx = 2 * (sizeof xig) + n * sizeof(struct xinpcb);
  800                 return (0);
  801         }
  802 
  803         if (req->newptr != 0)
  804                 return (EPERM);
  805 
  806         /*
  807          * OK, now we're committed to doing something.
  808          */
  809         INP_INFO_RLOCK(&V_udbinfo);
  810         gencnt = V_udbinfo.ipi_gencnt;
  811         n = V_udbinfo.ipi_count;
  812         INP_INFO_RUNLOCK(&V_udbinfo);
  813 
  814         error = sysctl_wire_old_buffer(req, 2 * (sizeof xig)
  815                 + n * sizeof(struct xinpcb));
  816         if (error != 0)
  817                 return (error);
  818 
  819         xig.xig_len = sizeof xig;
  820         xig.xig_count = n;
  821         xig.xig_gen = gencnt;
  822         xig.xig_sogen = so_gencnt;
  823         error = SYSCTL_OUT(req, &xig, sizeof xig);
  824         if (error)
  825                 return (error);
  826 
  827         inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK);
  828         if (inp_list == 0)
  829                 return (ENOMEM);
  830 
  831         INP_INFO_RLOCK(&V_udbinfo);
  832         for (inp = LIST_FIRST(V_udbinfo.ipi_listhead), i = 0; inp && i < n;
  833              inp = LIST_NEXT(inp, inp_list)) {
  834                 INP_WLOCK(inp);
  835                 if (inp->inp_gencnt <= gencnt &&
  836                     cr_canseeinpcb(req->td->td_ucred, inp) == 0) {
  837                         in_pcbref(inp);
  838                         inp_list[i++] = inp;
  839                 }
  840                 INP_WUNLOCK(inp);
  841         }
  842         INP_INFO_RUNLOCK(&V_udbinfo);
  843         n = i;
  844 
  845         error = 0;
  846         for (i = 0; i < n; i++) {
  847                 inp = inp_list[i];
  848                 INP_RLOCK(inp);
  849                 if (inp->inp_gencnt <= gencnt) {
  850                         struct xinpcb xi;
  851 
  852                         bzero(&xi, sizeof(xi));
  853                         xi.xi_len = sizeof xi;
  854                         /* XXX should avoid extra copy */
  855                         bcopy(inp, &xi.xi_inp, sizeof *inp);
  856                         if (inp->inp_socket)
  857                                 sotoxsocket(inp->inp_socket, &xi.xi_socket);
  858                         xi.xi_inp.inp_gencnt = inp->inp_gencnt;
  859                         INP_RUNLOCK(inp);
  860                         error = SYSCTL_OUT(req, &xi, sizeof xi);
  861                 } else
  862                         INP_RUNLOCK(inp);
  863         }
  864         INP_INFO_WLOCK(&V_udbinfo);
  865         for (i = 0; i < n; i++) {
  866                 inp = inp_list[i];
  867                 INP_RLOCK(inp);
  868                 if (!in_pcbrele_rlocked(inp))
  869                         INP_RUNLOCK(inp);
  870         }
  871         INP_INFO_WUNLOCK(&V_udbinfo);
  872 
  873         if (!error) {
  874                 /*
  875                  * Give the user an updated idea of our state.  If the
  876                  * generation differs from what we told her before, she knows
  877                  * that something happened while we were processing this
  878                  * request, and it might be necessary to retry.
  879                  */
  880                 INP_INFO_RLOCK(&V_udbinfo);
  881                 xig.xig_gen = V_udbinfo.ipi_gencnt;
  882                 xig.xig_sogen = so_gencnt;
  883                 xig.xig_count = V_udbinfo.ipi_count;
  884                 INP_INFO_RUNLOCK(&V_udbinfo);
  885                 error = SYSCTL_OUT(req, &xig, sizeof xig);
  886         }
  887         free(inp_list, M_TEMP);
  888         return (error);
  889 }
  890 
  891 SYSCTL_PROC(_net_inet_udp, UDPCTL_PCBLIST, pcblist,
  892     CTLTYPE_OPAQUE | CTLFLAG_RD, NULL, 0,
  893     udp_pcblist, "S,xinpcb", "List of active UDP sockets");
  894 
  895 #ifdef INET
  896 static int
  897 udp_getcred(SYSCTL_HANDLER_ARGS)
  898 {
  899         struct xucred xuc;
  900         struct sockaddr_in addrs[2];
  901         struct inpcb *inp;
  902         int error;
  903 
  904         error = priv_check(req->td, PRIV_NETINET_GETCRED);
  905         if (error)
  906                 return (error);
  907         error = SYSCTL_IN(req, addrs, sizeof(addrs));
  908         if (error)
  909                 return (error);
  910         inp = in_pcblookup(&V_udbinfo, addrs[1].sin_addr, addrs[1].sin_port,
  911             addrs[0].sin_addr, addrs[0].sin_port,
  912             INPLOOKUP_WILDCARD | INPLOOKUP_RLOCKPCB, NULL);
  913         if (inp != NULL) {
  914                 INP_RLOCK_ASSERT(inp);
  915                 if (inp->inp_socket == NULL)
  916                         error = ENOENT;
  917                 if (error == 0)
  918                         error = cr_canseeinpcb(req->td->td_ucred, inp);
  919                 if (error == 0)
  920                         cru2x(inp->inp_cred, &xuc);
  921                 INP_RUNLOCK(inp);
  922         } else
  923                 error = ENOENT;
  924         if (error == 0)
  925                 error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
  926         return (error);
  927 }
  928 
  929 SYSCTL_PROC(_net_inet_udp, OID_AUTO, getcred,
  930     CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
  931     udp_getcred, "S,xucred", "Get the xucred of a UDP connection");
  932 #endif /* INET */
  933 
  934 int
  935 udp_ctloutput(struct socket *so, struct sockopt *sopt)
  936 {
  937         struct inpcb *inp;
  938         struct udpcb *up;
  939         int isudplite, error, optval;
  940 
  941         error = 0;
  942         isudplite = (so->so_proto->pr_protocol == IPPROTO_UDPLITE) ? 1 : 0;
  943         inp = sotoinpcb(so);
  944         KASSERT(inp != NULL, ("%s: inp == NULL", __func__));
  945         INP_WLOCK(inp);
  946         if (sopt->sopt_level != so->so_proto->pr_protocol) {
  947 #ifdef INET6
  948                 if (INP_CHECK_SOCKAF(so, AF_INET6)) {
  949                         INP_WUNLOCK(inp);
  950                         error = ip6_ctloutput(so, sopt);
  951                 }
  952 #endif
  953 #if defined(INET) && defined(INET6)
  954                 else
  955 #endif
  956 #ifdef INET
  957                 {
  958                         INP_WUNLOCK(inp);
  959                         error = ip_ctloutput(so, sopt);
  960                 }
  961 #endif
  962                 return (error);
  963         }
  964 
  965         switch (sopt->sopt_dir) {
  966         case SOPT_SET:
  967                 switch (sopt->sopt_name) {
  968                 case UDP_ENCAP:
  969                         INP_WUNLOCK(inp);
  970                         error = sooptcopyin(sopt, &optval, sizeof optval,
  971                                             sizeof optval);
  972                         if (error)
  973                                 break;
  974                         inp = sotoinpcb(so);
  975                         KASSERT(inp != NULL, ("%s: inp == NULL", __func__));
  976                         INP_WLOCK(inp);
  977 #ifdef IPSEC_NAT_T
  978                         up = intoudpcb(inp);
  979                         KASSERT(up != NULL, ("%s: up == NULL", __func__));
  980 #endif
  981                         switch (optval) {
  982                         case 0:
  983                                 /* Clear all UDP encap. */
  984 #ifdef IPSEC_NAT_T
  985                                 up->u_flags &= ~UF_ESPINUDP_ALL;
  986 #endif
  987                                 break;
  988 #ifdef IPSEC_NAT_T
  989                         case UDP_ENCAP_ESPINUDP:
  990                         case UDP_ENCAP_ESPINUDP_NON_IKE:
  991                                 up->u_flags &= ~UF_ESPINUDP_ALL;
  992                                 if (optval == UDP_ENCAP_ESPINUDP)
  993                                         up->u_flags |= UF_ESPINUDP;
  994                                 else if (optval == UDP_ENCAP_ESPINUDP_NON_IKE)
  995                                         up->u_flags |= UF_ESPINUDP_NON_IKE;
  996                                 break;
  997 #endif
  998                         default:
  999                                 error = EINVAL;
 1000                                 break;
 1001                         }
 1002                         INP_WUNLOCK(inp);
 1003                         break;
 1004                 case UDPLITE_SEND_CSCOV:
 1005                 case UDPLITE_RECV_CSCOV:
 1006                         if (!isudplite) {
 1007                                 INP_WUNLOCK(inp);
 1008                                 error = ENOPROTOOPT;
 1009                                 break;
 1010                         }
 1011                         INP_WUNLOCK(inp);
 1012                         error = sooptcopyin(sopt, &optval, sizeof(optval),
 1013                             sizeof(optval));
 1014                         if (error != 0)
 1015                                 break;
 1016                         inp = sotoinpcb(so);
 1017                         KASSERT(inp != NULL, ("%s: inp == NULL", __func__));
 1018                         INP_WLOCK(inp);
 1019                         up = intoudpcb(inp);
 1020                         KASSERT(up != NULL, ("%s: up == NULL", __func__));
 1021                         if ((optval != 0 && optval < 8) || (optval > 65535)) {
 1022                                 INP_WUNLOCK(inp);
 1023                                 error = EINVAL;
 1024                                 break;
 1025                         }
 1026                         if (sopt->sopt_name == UDPLITE_SEND_CSCOV)
 1027                                 up->u_txcslen = optval;
 1028                         else
 1029                                 up->u_rxcslen = optval;
 1030                         INP_WUNLOCK(inp);
 1031                         break;
 1032                 default:
 1033                         INP_WUNLOCK(inp);
 1034                         error = ENOPROTOOPT;
 1035                         break;
 1036                 }
 1037                 break;
 1038         case SOPT_GET:
 1039                 switch (sopt->sopt_name) {
 1040 #ifdef IPSEC_NAT_T
 1041                 case UDP_ENCAP:
 1042                         up = intoudpcb(inp);
 1043                         KASSERT(up != NULL, ("%s: up == NULL", __func__));
 1044                         optval = up->u_flags & UF_ESPINUDP_ALL;
 1045                         INP_WUNLOCK(inp);
 1046                         error = sooptcopyout(sopt, &optval, sizeof optval);
 1047                         break;
 1048 #endif
 1049                 case UDPLITE_SEND_CSCOV:
 1050                 case UDPLITE_RECV_CSCOV:
 1051                         if (!isudplite) {
 1052                                 INP_WUNLOCK(inp);
 1053                                 error = ENOPROTOOPT;
 1054                                 break;
 1055                         }
 1056                         up = intoudpcb(inp);
 1057                         KASSERT(up != NULL, ("%s: up == NULL", __func__));
 1058                         if (sopt->sopt_name == UDPLITE_SEND_CSCOV)
 1059                                 optval = up->u_txcslen;
 1060                         else
 1061                                 optval = up->u_rxcslen;
 1062                         INP_WUNLOCK(inp);
 1063                         error = sooptcopyout(sopt, &optval, sizeof(optval));
 1064                         break;
 1065                 default:
 1066                         INP_WUNLOCK(inp);
 1067                         error = ENOPROTOOPT;
 1068                         break;
 1069                 }
 1070                 break;
 1071         }       
 1072         return (error);
 1073 }
 1074 
 1075 #ifdef INET
 1076 #define UH_WLOCKED      2
 1077 #define UH_RLOCKED      1
 1078 #define UH_UNLOCKED     0
 1079 static int
 1080 udp_output(struct inpcb *inp, struct mbuf *m, struct sockaddr *addr,
 1081     struct mbuf *control, struct thread *td)
 1082 {
 1083         struct udpiphdr *ui;
 1084         int len = m->m_pkthdr.len;
 1085         struct in_addr faddr, laddr;
 1086         struct cmsghdr *cm;
 1087         struct inpcbinfo *pcbinfo;
 1088         struct sockaddr_in *sin, src;
 1089         int cscov_partial = 0;
 1090         int error = 0;
 1091         int ipflags;
 1092         u_short fport, lport;
 1093         int unlock_udbinfo;
 1094         u_char tos;
 1095         uint8_t pr;
 1096         uint16_t cscov = 0;
 1097 
 1098         /*
 1099          * udp_output() may need to temporarily bind or connect the current
 1100          * inpcb.  As such, we don't know up front whether we will need the
 1101          * pcbinfo lock or not.  Do any work to decide what is needed up
 1102          * front before acquiring any locks.
 1103          */
 1104         if (len + sizeof(struct udpiphdr) > IP_MAXPACKET) {
 1105                 if (control)
 1106                         m_freem(control);
 1107                 m_freem(m);
 1108                 return (EMSGSIZE);
 1109         }
 1110 
 1111         src.sin_family = 0;
 1112         INP_RLOCK(inp);
 1113         tos = inp->inp_ip_tos;
 1114         if (control != NULL) {
 1115                 /*
 1116                  * XXX: Currently, we assume all the optional information is
 1117                  * stored in a single mbuf.
 1118                  */
 1119                 if (control->m_next) {
 1120                         INP_RUNLOCK(inp);
 1121                         m_freem(control);
 1122                         m_freem(m);
 1123                         return (EINVAL);
 1124                 }
 1125                 for (; control->m_len > 0;
 1126                     control->m_data += CMSG_ALIGN(cm->cmsg_len),
 1127                     control->m_len -= CMSG_ALIGN(cm->cmsg_len)) {
 1128                         cm = mtod(control, struct cmsghdr *);
 1129                         if (control->m_len < sizeof(*cm) || cm->cmsg_len == 0
 1130                             || cm->cmsg_len > control->m_len) {
 1131                                 error = EINVAL;
 1132                                 break;
 1133                         }
 1134                         if (cm->cmsg_level != IPPROTO_IP)
 1135                                 continue;
 1136 
 1137                         switch (cm->cmsg_type) {
 1138                         case IP_SENDSRCADDR:
 1139                                 if (cm->cmsg_len !=
 1140                                     CMSG_LEN(sizeof(struct in_addr))) {
 1141                                         error = EINVAL;
 1142                                         break;
 1143                                 }
 1144                                 bzero(&src, sizeof(src));
 1145                                 src.sin_family = AF_INET;
 1146                                 src.sin_len = sizeof(src);
 1147                                 src.sin_port = inp->inp_lport;
 1148                                 src.sin_addr =
 1149                                     *(struct in_addr *)CMSG_DATA(cm);
 1150                                 break;
 1151 
 1152                         case IP_TOS:
 1153                                 if (cm->cmsg_len != CMSG_LEN(sizeof(u_char))) {
 1154                                         error = EINVAL;
 1155                                         break;
 1156                                 }
 1157                                 tos = *(u_char *)CMSG_DATA(cm);
 1158                                 break;
 1159 
 1160                         default:
 1161                                 error = ENOPROTOOPT;
 1162                                 break;
 1163                         }
 1164                         if (error)
 1165                                 break;
 1166                 }
 1167                 m_freem(control);
 1168         }
 1169         if (error) {
 1170                 INP_RUNLOCK(inp);
 1171                 m_freem(m);
 1172                 return (error);
 1173         }
 1174 
 1175         /*
 1176          * Depending on whether or not the application has bound or connected
 1177          * the socket, we may have to do varying levels of work.  The optimal
 1178          * case is for a connected UDP socket, as a global lock isn't
 1179          * required at all.
 1180          *
 1181          * In order to decide which we need, we require stability of the
 1182          * inpcb binding, which we ensure by acquiring a read lock on the
 1183          * inpcb.  This doesn't strictly follow the lock order, so we play
 1184          * the trylock and retry game; note that we may end up with more
 1185          * conservative locks than required the second time around, so later
 1186          * assertions have to accept that.  Further analysis of the number of
 1187          * misses under contention is required.
 1188          *
 1189          * XXXRW: Check that hash locking update here is correct.
 1190          */
 1191         pr = inp->inp_socket->so_proto->pr_protocol;
 1192         pcbinfo = get_inpcbinfo(pr);
 1193         sin = (struct sockaddr_in *)addr;
 1194         if (sin != NULL &&
 1195             (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0)) {
 1196                 INP_RUNLOCK(inp);
 1197                 INP_WLOCK(inp);
 1198                 INP_HASH_WLOCK(pcbinfo);
 1199                 unlock_udbinfo = UH_WLOCKED;
 1200         } else if ((sin != NULL && (
 1201             (sin->sin_addr.s_addr == INADDR_ANY) ||
 1202             (sin->sin_addr.s_addr == INADDR_BROADCAST) ||
 1203             (inp->inp_laddr.s_addr == INADDR_ANY) ||
 1204             (inp->inp_lport == 0))) ||
 1205             (src.sin_family == AF_INET)) {
 1206                 INP_HASH_RLOCK(pcbinfo);
 1207                 unlock_udbinfo = UH_RLOCKED;
 1208         } else
 1209                 unlock_udbinfo = UH_UNLOCKED;
 1210 
 1211         /*
 1212          * If the IP_SENDSRCADDR control message was specified, override the
 1213          * source address for this datagram.  Its use is invalidated if the
 1214          * address thus specified is incomplete or clobbers other inpcbs.
 1215          */
 1216         laddr = inp->inp_laddr;
 1217         lport = inp->inp_lport;
 1218         if (src.sin_family == AF_INET) {
 1219                 INP_HASH_LOCK_ASSERT(pcbinfo);
 1220                 if ((lport == 0) ||
 1221                     (laddr.s_addr == INADDR_ANY &&
 1222                      src.sin_addr.s_addr == INADDR_ANY)) {
 1223                         error = EINVAL;
 1224                         goto release;
 1225                 }
 1226                 error = in_pcbbind_setup(inp, (struct sockaddr *)&src,
 1227                     &laddr.s_addr, &lport, td->td_ucred);
 1228                 if (error)
 1229                         goto release;
 1230         }
 1231 
 1232         /*
 1233          * If a UDP socket has been connected, then a local address/port will
 1234          * have been selected and bound.
 1235          *
 1236          * If a UDP socket has not been connected to, then an explicit
 1237          * destination address must be used, in which case a local
 1238          * address/port may not have been selected and bound.
 1239          */
 1240         if (sin != NULL) {
 1241                 INP_LOCK_ASSERT(inp);
 1242                 if (inp->inp_faddr.s_addr != INADDR_ANY) {
 1243                         error = EISCONN;
 1244                         goto release;
 1245                 }
 1246 
 1247                 /*
 1248                  * Jail may rewrite the destination address, so let it do
 1249                  * that before we use it.
 1250                  */
 1251                 error = prison_remote_ip4(td->td_ucred, &sin->sin_addr);
 1252                 if (error)
 1253                         goto release;
 1254 
 1255                 /*
 1256                  * If a local address or port hasn't yet been selected, or if
 1257                  * the destination address needs to be rewritten due to using
 1258                  * a special INADDR_ constant, invoke in_pcbconnect_setup()
 1259                  * to do the heavy lifting.  Once a port is selected, we
 1260                  * commit the binding back to the socket; we also commit the
 1261                  * binding of the address if in jail.
 1262                  *
 1263                  * If we already have a valid binding and we're not
 1264                  * requesting a destination address rewrite, use a fast path.
 1265                  */
 1266                 if (inp->inp_laddr.s_addr == INADDR_ANY ||
 1267                     inp->inp_lport == 0 ||
 1268                     sin->sin_addr.s_addr == INADDR_ANY ||
 1269                     sin->sin_addr.s_addr == INADDR_BROADCAST) {
 1270                         INP_HASH_LOCK_ASSERT(pcbinfo);
 1271                         error = in_pcbconnect_setup(inp, addr, &laddr.s_addr,
 1272                             &lport, &faddr.s_addr, &fport, NULL,
 1273                             td->td_ucred);
 1274                         if (error)
 1275                                 goto release;
 1276 
 1277                         /*
 1278                          * XXXRW: Why not commit the port if the address is
 1279                          * !INADDR_ANY?
 1280                          */
 1281                         /* Commit the local port if newly assigned. */
 1282                         if (inp->inp_laddr.s_addr == INADDR_ANY &&
 1283                             inp->inp_lport == 0) {
 1284                                 INP_WLOCK_ASSERT(inp);
 1285                                 INP_HASH_WLOCK_ASSERT(pcbinfo);
 1286                                 /*
 1287                                  * Remember addr if jailed, to prevent
 1288                                  * rebinding.
 1289                                  */
 1290                                 if (prison_flag(td->td_ucred, PR_IP4))
 1291                                         inp->inp_laddr = laddr;
 1292                                 inp->inp_lport = lport;
 1293                                 if (in_pcbinshash(inp) != 0) {
 1294                                         inp->inp_lport = 0;
 1295                                         error = EAGAIN;
 1296                                         goto release;
 1297                                 }
 1298                                 inp->inp_flags |= INP_ANONPORT;
 1299                         }
 1300                 } else {
 1301                         faddr = sin->sin_addr;
 1302                         fport = sin->sin_port;
 1303                 }
 1304         } else {
 1305                 INP_LOCK_ASSERT(inp);
 1306                 faddr = inp->inp_faddr;
 1307                 fport = inp->inp_fport;
 1308                 if (faddr.s_addr == INADDR_ANY) {
 1309                         error = ENOTCONN;
 1310                         goto release;
 1311                 }
 1312         }
 1313 
 1314         /*
 1315          * Calculate data length and get a mbuf for UDP, IP, and possible
 1316          * link-layer headers.  Immediate slide the data pointer back forward
 1317          * since we won't use that space at this layer.
 1318          */
 1319         M_PREPEND(m, sizeof(struct udpiphdr) + max_linkhdr, M_NOWAIT);
 1320         if (m == NULL) {
 1321                 error = ENOBUFS;
 1322                 goto release;
 1323         }
 1324         m->m_data += max_linkhdr;
 1325         m->m_len -= max_linkhdr;
 1326         m->m_pkthdr.len -= max_linkhdr;
 1327 
 1328         /*
 1329          * Fill in mbuf with extended UDP header and addresses and length put
 1330          * into network format.
 1331          */
 1332         ui = mtod(m, struct udpiphdr *);
 1333         bzero(ui->ui_x1, sizeof(ui->ui_x1));    /* XXX still needed? */
 1334         ui->ui_pr = pr;
 1335         ui->ui_src = laddr;
 1336         ui->ui_dst = faddr;
 1337         ui->ui_sport = lport;
 1338         ui->ui_dport = fport;
 1339         ui->ui_ulen = htons((u_short)len + sizeof(struct udphdr));
 1340         if (pr == IPPROTO_UDPLITE) {
 1341                 struct udpcb *up;
 1342                 uint16_t plen;
 1343 
 1344                 up = intoudpcb(inp);
 1345                 cscov = up->u_txcslen;
 1346                 plen = (u_short)len + sizeof(struct udphdr);
 1347                 if (cscov >= plen)
 1348                         cscov = 0;
 1349                 ui->ui_len = htons(plen);
 1350                 ui->ui_ulen = htons(cscov);
 1351                 /*
 1352                  * For UDP-Lite, checksum coverage length of zero means
 1353                  * the entire UDPLite packet is covered by the checksum.
 1354                  */
 1355                 cscov_partial = (cscov == 0) ? 0 : 1;
 1356         } else
 1357                 ui->ui_v = IPVERSION << 4;
 1358 
 1359         /*
 1360          * Set the Don't Fragment bit in the IP header.
 1361          */
 1362         if (inp->inp_flags & INP_DONTFRAG) {
 1363                 struct ip *ip;
 1364 
 1365                 ip = (struct ip *)&ui->ui_i;
 1366                 ip->ip_off |= htons(IP_DF);
 1367         }
 1368 
 1369         ipflags = 0;
 1370         if (inp->inp_socket->so_options & SO_DONTROUTE)
 1371                 ipflags |= IP_ROUTETOIF;
 1372         if (inp->inp_socket->so_options & SO_BROADCAST)
 1373                 ipflags |= IP_ALLOWBROADCAST;
 1374         if (inp->inp_flags & INP_ONESBCAST)
 1375                 ipflags |= IP_SENDONES;
 1376 
 1377 #ifdef MAC
 1378         mac_inpcb_create_mbuf(inp, m);
 1379 #endif
 1380 
 1381         /*
 1382          * Set up checksum and output datagram.
 1383          */
 1384         ui->ui_sum = 0;
 1385         if (pr == IPPROTO_UDPLITE) {
 1386                 if (inp->inp_flags & INP_ONESBCAST)
 1387                         faddr.s_addr = INADDR_BROADCAST;
 1388                 if (cscov_partial) {
 1389                         if ((ui->ui_sum = in_cksum(m, sizeof(struct ip) + cscov)) == 0)
 1390                                 ui->ui_sum = 0xffff;
 1391                 } else {
 1392                         if ((ui->ui_sum = in_cksum(m, sizeof(struct udpiphdr) + len)) == 0)
 1393                                 ui->ui_sum = 0xffff;
 1394                 }
 1395         } else if (V_udp_cksum) {
 1396                 if (inp->inp_flags & INP_ONESBCAST)
 1397                         faddr.s_addr = INADDR_BROADCAST;
 1398                 ui->ui_sum = in_pseudo(ui->ui_src.s_addr, faddr.s_addr,
 1399                     htons((u_short)len + sizeof(struct udphdr) + pr));
 1400                 m->m_pkthdr.csum_flags = CSUM_UDP;
 1401                 m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum);
 1402         }
 1403         ((struct ip *)ui)->ip_len = htons(sizeof(struct udpiphdr) + len);
 1404         ((struct ip *)ui)->ip_ttl = inp->inp_ip_ttl;    /* XXX */
 1405         ((struct ip *)ui)->ip_tos = tos;                /* XXX */
 1406         UDPSTAT_INC(udps_opackets);
 1407 
 1408         if (unlock_udbinfo == UH_WLOCKED)
 1409                 INP_HASH_WUNLOCK(pcbinfo);
 1410         else if (unlock_udbinfo == UH_RLOCKED)
 1411                 INP_HASH_RUNLOCK(pcbinfo);
 1412         UDP_PROBE(send, NULL, inp, &ui->ui_i, inp, &ui->ui_u);
 1413         error = ip_output(m, inp->inp_options, NULL, ipflags,
 1414             inp->inp_moptions, inp);
 1415         if (unlock_udbinfo == UH_WLOCKED)
 1416                 INP_WUNLOCK(inp);
 1417         else
 1418                 INP_RUNLOCK(inp);
 1419         return (error);
 1420 
 1421 release:
 1422         if (unlock_udbinfo == UH_WLOCKED) {
 1423                 INP_HASH_WUNLOCK(pcbinfo);
 1424                 INP_WUNLOCK(inp);
 1425         } else if (unlock_udbinfo == UH_RLOCKED) {
 1426                 INP_HASH_RUNLOCK(pcbinfo);
 1427                 INP_RUNLOCK(inp);
 1428         } else
 1429                 INP_RUNLOCK(inp);
 1430         m_freem(m);
 1431         return (error);
 1432 }
 1433 
 1434 
 1435 #if defined(IPSEC) && defined(IPSEC_NAT_T)
 1436 /*
 1437  * Potentially decap ESP in UDP frame.  Check for an ESP header
 1438  * and optional marker; if present, strip the UDP header and
 1439  * push the result through IPSec.
 1440  *
 1441  * Returns mbuf to be processed (potentially re-allocated) or
 1442  * NULL if consumed and/or processed.
 1443  */
 1444 static struct mbuf *
 1445 udp4_espdecap(struct inpcb *inp, struct mbuf *m, int off)
 1446 {
 1447         size_t minlen, payload, skip, iphlen;
 1448         caddr_t data;
 1449         struct udpcb *up;
 1450         struct m_tag *tag;
 1451         struct udphdr *udphdr;
 1452         struct ip *ip;
 1453 
 1454         INP_RLOCK_ASSERT(inp);
 1455 
 1456         /* 
 1457          * Pull up data so the longest case is contiguous:
 1458          *    IP/UDP hdr + non ESP marker + ESP hdr.
 1459          */
 1460         minlen = off + sizeof(uint64_t) + sizeof(struct esp);
 1461         if (minlen > m->m_pkthdr.len)
 1462                 minlen = m->m_pkthdr.len;
 1463         if ((m = m_pullup(m, minlen)) == NULL) {
 1464                 IPSECSTAT_INC(ips_in_inval);
 1465                 return (NULL);          /* Bypass caller processing. */
 1466         }
 1467         data = mtod(m, caddr_t);        /* Points to ip header. */
 1468         payload = m->m_len - off;       /* Size of payload. */
 1469 
 1470         if (payload == 1 && data[off] == '\xff')
 1471                 return (m);             /* NB: keepalive packet, no decap. */
 1472 
 1473         up = intoudpcb(inp);
 1474         KASSERT(up != NULL, ("%s: udpcb NULL", __func__));
 1475         KASSERT((up->u_flags & UF_ESPINUDP_ALL) != 0,
 1476             ("u_flags 0x%x", up->u_flags));
 1477 
 1478         /* 
 1479          * Check that the payload is large enough to hold an
 1480          * ESP header and compute the amount of data to remove.
 1481          *
 1482          * NB: the caller has already done a pullup for us.
 1483          * XXX can we assume alignment and eliminate bcopys?
 1484          */
 1485         if (up->u_flags & UF_ESPINUDP_NON_IKE) {
 1486                 /*
 1487                  * draft-ietf-ipsec-nat-t-ike-0[01].txt and
 1488                  * draft-ietf-ipsec-udp-encaps-(00/)01.txt, ignoring
 1489                  * possible AH mode non-IKE marker+non-ESP marker
 1490                  * from draft-ietf-ipsec-udp-encaps-00.txt.
 1491                  */
 1492                 uint64_t marker;
 1493 
 1494                 if (payload <= sizeof(uint64_t) + sizeof(struct esp))
 1495                         return (m);     /* NB: no decap. */
 1496                 bcopy(data + off, &marker, sizeof(uint64_t));
 1497                 if (marker != 0)        /* Non-IKE marker. */
 1498                         return (m);     /* NB: no decap. */
 1499                 skip = sizeof(uint64_t) + sizeof(struct udphdr);
 1500         } else {
 1501                 uint32_t spi;
 1502 
 1503                 if (payload <= sizeof(struct esp)) {
 1504                         IPSECSTAT_INC(ips_in_inval);
 1505                         m_freem(m);
 1506                         return (NULL);  /* Discard. */
 1507                 }
 1508                 bcopy(data + off, &spi, sizeof(uint32_t));
 1509                 if (spi == 0)           /* Non-ESP marker. */
 1510                         return (m);     /* NB: no decap. */
 1511                 skip = sizeof(struct udphdr);
 1512         }
 1513 
 1514         /*
 1515          * Setup a PACKET_TAG_IPSEC_NAT_T_PORT tag to remember
 1516          * the UDP ports. This is required if we want to select
 1517          * the right SPD for multiple hosts behind same NAT.
 1518          *
 1519          * NB: ports are maintained in network byte order everywhere
 1520          *     in the NAT-T code.
 1521          */
 1522         tag = m_tag_get(PACKET_TAG_IPSEC_NAT_T_PORTS,
 1523                 2 * sizeof(uint16_t), M_NOWAIT);
 1524         if (tag == NULL) {
 1525                 IPSECSTAT_INC(ips_in_nomem);
 1526                 m_freem(m);
 1527                 return (NULL);          /* Discard. */
 1528         }
 1529         iphlen = off - sizeof(struct udphdr);
 1530         udphdr = (struct udphdr *)(data + iphlen);
 1531         ((uint16_t *)(tag + 1))[0] = udphdr->uh_sport;
 1532         ((uint16_t *)(tag + 1))[1] = udphdr->uh_dport;
 1533         m_tag_prepend(m, tag);
 1534 
 1535         /*
 1536          * Remove the UDP header (and possibly the non ESP marker)
 1537          * IP header length is iphlen
 1538          * Before:
 1539          *   <--- off --->
 1540          *   +----+------+-----+
 1541          *   | IP |  UDP | ESP |
 1542          *   +----+------+-----+
 1543          *        <-skip->
 1544          * After:
 1545          *          +----+-----+
 1546          *          | IP | ESP |
 1547          *          +----+-----+
 1548          *   <-skip->
 1549          */
 1550         ovbcopy(data, data + skip, iphlen);
 1551         m_adj(m, skip);
 1552 
 1553         ip = mtod(m, struct ip *);
 1554         ip->ip_len = htons(ntohs(ip->ip_len) - skip);
 1555         ip->ip_p = IPPROTO_ESP;
 1556 
 1557         /*
 1558          * We cannot yet update the cksums so clear any
 1559          * h/w cksum flags as they are no longer valid.
 1560          */
 1561         if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID)
 1562                 m->m_pkthdr.csum_flags &= ~(CSUM_DATA_VALID|CSUM_PSEUDO_HDR);
 1563 
 1564         (void) ipsec4_common_input(m, iphlen, ip->ip_p);
 1565         return (NULL);                  /* NB: consumed, bypass processing. */
 1566 }
 1567 #endif /* defined(IPSEC) && defined(IPSEC_NAT_T) */
 1568 
 1569 static void
 1570 udp_abort(struct socket *so)
 1571 {
 1572         struct inpcb *inp;
 1573         struct inpcbinfo *pcbinfo;
 1574 
 1575         pcbinfo = get_inpcbinfo(so->so_proto->pr_protocol);
 1576         inp = sotoinpcb(so);
 1577         KASSERT(inp != NULL, ("udp_abort: inp == NULL"));
 1578         INP_WLOCK(inp);
 1579         if (inp->inp_faddr.s_addr != INADDR_ANY) {
 1580                 INP_HASH_WLOCK(pcbinfo);
 1581                 in_pcbdisconnect(inp);
 1582                 inp->inp_laddr.s_addr = INADDR_ANY;
 1583                 INP_HASH_WUNLOCK(pcbinfo);
 1584                 soisdisconnected(so);
 1585         }
 1586         INP_WUNLOCK(inp);
 1587 }
 1588 
 1589 static int
 1590 udp_attach(struct socket *so, int proto, struct thread *td)
 1591 {
 1592         struct inpcb *inp;
 1593         struct inpcbinfo *pcbinfo;
 1594         int error;
 1595 
 1596         pcbinfo = get_inpcbinfo(so->so_proto->pr_protocol);
 1597         inp = sotoinpcb(so);
 1598         KASSERT(inp == NULL, ("udp_attach: inp != NULL"));
 1599         error = soreserve(so, udp_sendspace, udp_recvspace);
 1600         if (error)
 1601                 return (error);
 1602         INP_INFO_WLOCK(pcbinfo);
 1603         error = in_pcballoc(so, pcbinfo);
 1604         if (error) {
 1605                 INP_INFO_WUNLOCK(pcbinfo);
 1606                 return (error);
 1607         }
 1608 
 1609         inp = sotoinpcb(so);
 1610         inp->inp_vflag |= INP_IPV4;
 1611         inp->inp_ip_ttl = V_ip_defttl;
 1612 
 1613         error = udp_newudpcb(inp);
 1614         if (error) {
 1615                 in_pcbdetach(inp);
 1616                 in_pcbfree(inp);
 1617                 INP_INFO_WUNLOCK(pcbinfo);
 1618                 return (error);
 1619         }
 1620 
 1621         INP_WUNLOCK(inp);
 1622         INP_INFO_WUNLOCK(pcbinfo);
 1623         return (0);
 1624 }
 1625 #endif /* INET */
 1626 
 1627 int
 1628 udp_set_kernel_tunneling(struct socket *so, udp_tun_func_t f, void *ctx)
 1629 {
 1630         struct inpcb *inp;
 1631         struct udpcb *up;
 1632 
 1633         KASSERT(so->so_type == SOCK_DGRAM,
 1634             ("udp_set_kernel_tunneling: !dgram"));
 1635         inp = sotoinpcb(so);
 1636         KASSERT(inp != NULL, ("udp_set_kernel_tunneling: inp == NULL"));
 1637         INP_WLOCK(inp);
 1638         up = intoudpcb(inp);
 1639         if (up->u_tun_func != NULL) {
 1640                 INP_WUNLOCK(inp);
 1641                 return (EBUSY);
 1642         }
 1643         up->u_tun_func = f;
 1644         up->u_tun_ctx = ctx;
 1645         INP_WUNLOCK(inp);
 1646         return (0);
 1647 }
 1648 
 1649 #ifdef INET
 1650 static int
 1651 udp_bind(struct socket *so, struct sockaddr *nam, struct thread *td)
 1652 {
 1653         struct inpcb *inp;
 1654         struct inpcbinfo *pcbinfo;
 1655         int error;
 1656 
 1657         pcbinfo = get_inpcbinfo(so->so_proto->pr_protocol);
 1658         inp = sotoinpcb(so);
 1659         KASSERT(inp != NULL, ("udp_bind: inp == NULL"));
 1660         INP_WLOCK(inp);
 1661         INP_HASH_WLOCK(pcbinfo);
 1662         error = in_pcbbind(inp, nam, td->td_ucred);
 1663         INP_HASH_WUNLOCK(pcbinfo);
 1664         INP_WUNLOCK(inp);
 1665         return (error);
 1666 }
 1667 
 1668 static void
 1669 udp_close(struct socket *so)
 1670 {
 1671         struct inpcb *inp;
 1672         struct inpcbinfo *pcbinfo;
 1673 
 1674         pcbinfo = get_inpcbinfo(so->so_proto->pr_protocol);
 1675         inp = sotoinpcb(so);
 1676         KASSERT(inp != NULL, ("udp_close: inp == NULL"));
 1677         INP_WLOCK(inp);
 1678         if (inp->inp_faddr.s_addr != INADDR_ANY) {
 1679                 INP_HASH_WLOCK(pcbinfo);
 1680                 in_pcbdisconnect(inp);
 1681                 inp->inp_laddr.s_addr = INADDR_ANY;
 1682                 INP_HASH_WUNLOCK(pcbinfo);
 1683                 soisdisconnected(so);
 1684         }
 1685         INP_WUNLOCK(inp);
 1686 }
 1687 
 1688 static int
 1689 udp_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
 1690 {
 1691         struct inpcb *inp;
 1692         struct inpcbinfo *pcbinfo;
 1693         struct sockaddr_in *sin;
 1694         int error;
 1695 
 1696         pcbinfo = get_inpcbinfo(so->so_proto->pr_protocol);
 1697         inp = sotoinpcb(so);
 1698         KASSERT(inp != NULL, ("udp_connect: inp == NULL"));
 1699         INP_WLOCK(inp);
 1700         if (inp->inp_faddr.s_addr != INADDR_ANY) {
 1701                 INP_WUNLOCK(inp);
 1702                 return (EISCONN);
 1703         }
 1704         sin = (struct sockaddr_in *)nam;
 1705         error = prison_remote_ip4(td->td_ucred, &sin->sin_addr);
 1706         if (error != 0) {
 1707                 INP_WUNLOCK(inp);
 1708                 return (error);
 1709         }
 1710         INP_HASH_WLOCK(pcbinfo);
 1711         error = in_pcbconnect(inp, nam, td->td_ucred);
 1712         INP_HASH_WUNLOCK(pcbinfo);
 1713         if (error == 0)
 1714                 soisconnected(so);
 1715         INP_WUNLOCK(inp);
 1716         return (error);
 1717 }
 1718 
 1719 static void
 1720 udp_detach(struct socket *so)
 1721 {
 1722         struct inpcb *inp;
 1723         struct inpcbinfo *pcbinfo;
 1724         struct udpcb *up;
 1725 
 1726         pcbinfo = get_inpcbinfo(so->so_proto->pr_protocol);
 1727         inp = sotoinpcb(so);
 1728         KASSERT(inp != NULL, ("udp_detach: inp == NULL"));
 1729         KASSERT(inp->inp_faddr.s_addr == INADDR_ANY,
 1730             ("udp_detach: not disconnected"));
 1731         INP_INFO_WLOCK(pcbinfo);
 1732         INP_WLOCK(inp);
 1733         up = intoudpcb(inp);
 1734         KASSERT(up != NULL, ("%s: up == NULL", __func__));
 1735         inp->inp_ppcb = NULL;
 1736         in_pcbdetach(inp);
 1737         in_pcbfree(inp);
 1738         INP_INFO_WUNLOCK(pcbinfo);
 1739         udp_discardcb(up);
 1740 }
 1741 
 1742 static int
 1743 udp_disconnect(struct socket *so)
 1744 {
 1745         struct inpcb *inp;
 1746         struct inpcbinfo *pcbinfo;
 1747 
 1748         pcbinfo = get_inpcbinfo(so->so_proto->pr_protocol);
 1749         inp = sotoinpcb(so);
 1750         KASSERT(inp != NULL, ("udp_disconnect: inp == NULL"));
 1751         INP_WLOCK(inp);
 1752         if (inp->inp_faddr.s_addr == INADDR_ANY) {
 1753                 INP_WUNLOCK(inp);
 1754                 return (ENOTCONN);
 1755         }
 1756         INP_HASH_WLOCK(pcbinfo);
 1757         in_pcbdisconnect(inp);
 1758         inp->inp_laddr.s_addr = INADDR_ANY;
 1759         INP_HASH_WUNLOCK(pcbinfo);
 1760         SOCK_LOCK(so);
 1761         so->so_state &= ~SS_ISCONNECTED;                /* XXX */
 1762         SOCK_UNLOCK(so);
 1763         INP_WUNLOCK(inp);
 1764         return (0);
 1765 }
 1766 
 1767 static int
 1768 udp_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *addr,
 1769     struct mbuf *control, struct thread *td)
 1770 {
 1771         struct inpcb *inp;
 1772 
 1773         inp = sotoinpcb(so);
 1774         KASSERT(inp != NULL, ("udp_send: inp == NULL"));
 1775         return (udp_output(inp, m, addr, control, td));
 1776 }
 1777 #endif /* INET */
 1778 
 1779 int
 1780 udp_shutdown(struct socket *so)
 1781 {
 1782         struct inpcb *inp;
 1783 
 1784         inp = sotoinpcb(so);
 1785         KASSERT(inp != NULL, ("udp_shutdown: inp == NULL"));
 1786         INP_WLOCK(inp);
 1787         socantsendmore(so);
 1788         INP_WUNLOCK(inp);
 1789         return (0);
 1790 }
 1791 
 1792 #ifdef INET
 1793 struct pr_usrreqs udp_usrreqs = {
 1794         .pru_abort =            udp_abort,
 1795         .pru_attach =           udp_attach,
 1796         .pru_bind =             udp_bind,
 1797         .pru_connect =          udp_connect,
 1798         .pru_control =          in_control,
 1799         .pru_detach =           udp_detach,
 1800         .pru_disconnect =       udp_disconnect,
 1801         .pru_peeraddr =         in_getpeeraddr,
 1802         .pru_send =             udp_send,
 1803         .pru_soreceive =        soreceive_dgram,
 1804         .pru_sosend =           sosend_dgram,
 1805         .pru_shutdown =         udp_shutdown,
 1806         .pru_sockaddr =         in_getsockaddr,
 1807         .pru_sosetlabel =       in_pcbsosetlabel,
 1808         .pru_close =            udp_close,
 1809 };
 1810 #endif /* INET */

Cache object: cb8e360c3f9ecee936d88ab114802113


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.