The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/netinet/udp_usrreq.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
    3  *      The Regents of the University of California.
    4  * Copyright (c) 2008 Robert N. M. Watson
    5  * Copyright (c) 2010-2011 Juniper Networks, Inc.
    6  * Copyright (c) 2014 Kevin Lo
    7  * All rights reserved.
    8  *
    9  * Portions of this software were developed by Robert N. M. Watson under
   10  * contract to Juniper Networks, Inc.
   11  *
   12  * Redistribution and use in source and binary forms, with or without
   13  * modification, are permitted provided that the following conditions
   14  * are met:
   15  * 1. Redistributions of source code must retain the above copyright
   16  *    notice, this list of conditions and the following disclaimer.
   17  * 2. Redistributions in binary form must reproduce the above copyright
   18  *    notice, this list of conditions and the following disclaimer in the
   19  *    documentation and/or other materials provided with the distribution.
   20  * 4. Neither the name of the University nor the names of its contributors
   21  *    may be used to endorse or promote products derived from this software
   22  *    without specific prior written permission.
   23  *
   24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   34  * SUCH DAMAGE.
   35  *
   36  *      @(#)udp_usrreq.c        8.6 (Berkeley) 5/23/95
   37  */
   38 
   39 #include <sys/cdefs.h>
   40 __FBSDID("$FreeBSD: releng/11.0/sys/netinet/udp_usrreq.c 301717 2016-06-09 05:48:34Z ae $");
   41 
   42 #include "opt_inet.h"
   43 #include "opt_inet6.h"
   44 #include "opt_ipsec.h"
   45 #include "opt_rss.h"
   46 
   47 #include <sys/param.h>
   48 #include <sys/domain.h>
   49 #include <sys/eventhandler.h>
   50 #include <sys/jail.h>
   51 #include <sys/kernel.h>
   52 #include <sys/lock.h>
   53 #include <sys/malloc.h>
   54 #include <sys/mbuf.h>
   55 #include <sys/priv.h>
   56 #include <sys/proc.h>
   57 #include <sys/protosw.h>
   58 #include <sys/sdt.h>
   59 #include <sys/signalvar.h>
   60 #include <sys/socket.h>
   61 #include <sys/socketvar.h>
   62 #include <sys/sx.h>
   63 #include <sys/sysctl.h>
   64 #include <sys/syslog.h>
   65 #include <sys/systm.h>
   66 
   67 #include <vm/uma.h>
   68 
   69 #include <net/if.h>
   70 #include <net/if_var.h>
   71 #include <net/route.h>
   72 #include <net/rss_config.h>
   73 
   74 #include <netinet/in.h>
   75 #include <netinet/in_kdtrace.h>
   76 #include <netinet/in_pcb.h>
   77 #include <netinet/in_systm.h>
   78 #include <netinet/in_var.h>
   79 #include <netinet/ip.h>
   80 #ifdef INET6
   81 #include <netinet/ip6.h>
   82 #endif
   83 #include <netinet/ip_icmp.h>
   84 #include <netinet/icmp_var.h>
   85 #include <netinet/ip_var.h>
   86 #include <netinet/ip_options.h>
   87 #ifdef INET6
   88 #include <netinet6/ip6_var.h>
   89 #endif
   90 #include <netinet/udp.h>
   91 #include <netinet/udp_var.h>
   92 #include <netinet/udplite.h>
   93 #include <netinet/in_rss.h>
   94 
   95 #ifdef IPSEC
   96 #include <netipsec/ipsec.h>
   97 #include <netipsec/esp.h>
   98 #endif
   99 
  100 #include <machine/in_cksum.h>
  101 
  102 #include <security/mac/mac_framework.h>
  103 
  104 /*
  105  * UDP and UDP-Lite protocols implementation.
  106  * Per RFC 768, August, 1980.
  107  * Per RFC 3828, July, 2004.
  108  */
  109 
  110 /*
  111  * BSD 4.2 defaulted the udp checksum to be off.  Turning off udp checksums
  112  * removes the only data integrity mechanism for packets and malformed
  113  * packets that would otherwise be discarded due to bad checksums, and may
  114  * cause problems (especially for NFS data blocks).
  115  */
  116 VNET_DEFINE(int, udp_cksum) = 1;
  117 SYSCTL_INT(_net_inet_udp, UDPCTL_CHECKSUM, checksum, CTLFLAG_VNET | CTLFLAG_RW,
  118     &VNET_NAME(udp_cksum), 0, "compute udp checksum");
  119 
  120 int     udp_log_in_vain = 0;
  121 SYSCTL_INT(_net_inet_udp, OID_AUTO, log_in_vain, CTLFLAG_RW,
  122     &udp_log_in_vain, 0, "Log all incoming UDP packets");
  123 
  124 VNET_DEFINE(int, udp_blackhole) = 0;
  125 SYSCTL_INT(_net_inet_udp, OID_AUTO, blackhole, CTLFLAG_VNET | CTLFLAG_RW,
  126     &VNET_NAME(udp_blackhole), 0,
  127     "Do not send port unreachables for refused connects");
  128 
  129 u_long  udp_sendspace = 9216;           /* really max datagram size */
  130 SYSCTL_ULONG(_net_inet_udp, UDPCTL_MAXDGRAM, maxdgram, CTLFLAG_RW,
  131     &udp_sendspace, 0, "Maximum outgoing UDP datagram size");
  132 
  133 u_long  udp_recvspace = 40 * (1024 +
  134 #ifdef INET6
  135                                       sizeof(struct sockaddr_in6)
  136 #else
  137                                       sizeof(struct sockaddr_in)
  138 #endif
  139                                       );        /* 40 1K datagrams */
  140 
  141 SYSCTL_ULONG(_net_inet_udp, UDPCTL_RECVSPACE, recvspace, CTLFLAG_RW,
  142     &udp_recvspace, 0, "Maximum space for incoming UDP datagrams");
  143 
  144 VNET_DEFINE(struct inpcbhead, udb);             /* from udp_var.h */
  145 VNET_DEFINE(struct inpcbinfo, udbinfo);
  146 VNET_DEFINE(struct inpcbhead, ulitecb);
  147 VNET_DEFINE(struct inpcbinfo, ulitecbinfo);
  148 static VNET_DEFINE(uma_zone_t, udpcb_zone);
  149 #define V_udpcb_zone                    VNET(udpcb_zone)
  150 
  151 #ifndef UDBHASHSIZE
  152 #define UDBHASHSIZE     128
  153 #endif
  154 
  155 VNET_PCPUSTAT_DEFINE(struct udpstat, udpstat);          /* from udp_var.h */
  156 VNET_PCPUSTAT_SYSINIT(udpstat);
  157 SYSCTL_VNET_PCPUSTAT(_net_inet_udp, UDPCTL_STATS, stats, struct udpstat,
  158     udpstat, "UDP statistics (struct udpstat, netinet/udp_var.h)");
  159 
  160 #ifdef VIMAGE
  161 VNET_PCPUSTAT_SYSUNINIT(udpstat);
  162 #endif /* VIMAGE */
  163 #ifdef INET
  164 static void     udp_detach(struct socket *so);
  165 static int      udp_output(struct inpcb *, struct mbuf *, struct sockaddr *,
  166                     struct mbuf *, struct thread *);
  167 #endif
  168 
  169 #ifdef IPSEC
  170 #ifdef IPSEC_NAT_T
  171 #define UF_ESPINUDP_ALL (UF_ESPINUDP_NON_IKE|UF_ESPINUDP)
  172 #ifdef INET
  173 static struct mbuf *udp4_espdecap(struct inpcb *, struct mbuf *, int);
  174 #endif
  175 #endif /* IPSEC_NAT_T */
  176 #endif /* IPSEC */
  177 
  178 static void
  179 udp_zone_change(void *tag)
  180 {
  181 
  182         uma_zone_set_max(V_udbinfo.ipi_zone, maxsockets);
  183         uma_zone_set_max(V_udpcb_zone, maxsockets);
  184 }
  185 
  186 static int
  187 udp_inpcb_init(void *mem, int size, int flags)
  188 {
  189         struct inpcb *inp;
  190 
  191         inp = mem;
  192         INP_LOCK_INIT(inp, "inp", "udpinp");
  193         return (0);
  194 }
  195 
  196 static int
  197 udplite_inpcb_init(void *mem, int size, int flags)
  198 {
  199         struct inpcb *inp;
  200 
  201         inp = mem;
  202         INP_LOCK_INIT(inp, "inp", "udpliteinp");
  203         return (0);
  204 }
  205 
  206 void
  207 udp_init(void)
  208 {
  209 
  210         /*
  211          * For now default to 2-tuple UDP hashing - until the fragment
  212          * reassembly code can also update the flowid.
  213          *
  214          * Once we can calculate the flowid that way and re-establish
  215          * a 4-tuple, flip this to 4-tuple.
  216          */
  217         in_pcbinfo_init(&V_udbinfo, "udp", &V_udb, UDBHASHSIZE, UDBHASHSIZE,
  218             "udp_inpcb", udp_inpcb_init, NULL, 0,
  219             IPI_HASHFIELDS_2TUPLE);
  220         V_udpcb_zone = uma_zcreate("udpcb", sizeof(struct udpcb),
  221             NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
  222         uma_zone_set_max(V_udpcb_zone, maxsockets);
  223         uma_zone_set_warning(V_udpcb_zone, "kern.ipc.maxsockets limit reached");
  224         EVENTHANDLER_REGISTER(maxsockets_change, udp_zone_change, NULL,
  225             EVENTHANDLER_PRI_ANY);
  226 }
  227 
  228 void
  229 udplite_init(void)
  230 {
  231 
  232         in_pcbinfo_init(&V_ulitecbinfo, "udplite", &V_ulitecb, UDBHASHSIZE,
  233             UDBHASHSIZE, "udplite_inpcb", udplite_inpcb_init, NULL,
  234             0, IPI_HASHFIELDS_2TUPLE);
  235 }
  236 
  237 /*
  238  * Kernel module interface for updating udpstat.  The argument is an index
  239  * into udpstat treated as an array of u_long.  While this encodes the
  240  * general layout of udpstat into the caller, it doesn't encode its location,
  241  * so that future changes to add, for example, per-CPU stats support won't
  242  * cause binary compatibility problems for kernel modules.
  243  */
  244 void
  245 kmod_udpstat_inc(int statnum)
  246 {
  247 
  248         counter_u64_add(VNET(udpstat)[statnum], 1);
  249 }
  250 
  251 int
  252 udp_newudpcb(struct inpcb *inp)
  253 {
  254         struct udpcb *up;
  255 
  256         up = uma_zalloc(V_udpcb_zone, M_NOWAIT | M_ZERO);
  257         if (up == NULL)
  258                 return (ENOBUFS);
  259         inp->inp_ppcb = up;
  260         return (0);
  261 }
  262 
  263 void
  264 udp_discardcb(struct udpcb *up)
  265 {
  266 
  267         uma_zfree(V_udpcb_zone, up);
  268 }
  269 
  270 #ifdef VIMAGE
  271 static void
  272 udp_destroy(void *unused __unused)
  273 {
  274 
  275         in_pcbinfo_destroy(&V_udbinfo);
  276         uma_zdestroy(V_udpcb_zone);
  277 }
  278 VNET_SYSUNINIT(udp, SI_SUB_PROTO_DOMAIN, SI_ORDER_FOURTH, udp_destroy, NULL);
  279 
  280 static void
  281 udplite_destroy(void *unused __unused)
  282 {
  283 
  284         in_pcbinfo_destroy(&V_ulitecbinfo);
  285 }
  286 VNET_SYSUNINIT(udplite, SI_SUB_PROTO_DOMAIN, SI_ORDER_FOURTH, udplite_destroy,
  287     NULL);
  288 #endif
  289 
  290 #ifdef INET
  291 /*
  292  * Subroutine of udp_input(), which appends the provided mbuf chain to the
  293  * passed pcb/socket.  The caller must provide a sockaddr_in via udp_in that
  294  * contains the source address.  If the socket ends up being an IPv6 socket,
  295  * udp_append() will convert to a sockaddr_in6 before passing the address
  296  * into the socket code.
  297  *
  298  * In the normal case udp_append() will return 0, indicating that you
  299  * must unlock the inp. However if a tunneling protocol is in place we increment
  300  * the inpcb refcnt and unlock the inp, on return from the tunneling protocol we
  301  * then decrement the reference count. If the inp_rele returns 1, indicating the
  302  * inp is gone, we return that to the caller to tell them *not* to unlock
  303  * the inp. In the case of multi-cast this will cause the distribution
  304  * to stop (though most tunneling protocols known currently do *not* use
  305  * multicast).
  306  */
  307 static int
  308 udp_append(struct inpcb *inp, struct ip *ip, struct mbuf *n, int off,
  309     struct sockaddr_in *udp_in)
  310 {
  311         struct sockaddr *append_sa;
  312         struct socket *so;
  313         struct mbuf *opts = NULL;
  314 #ifdef INET6
  315         struct sockaddr_in6 udp_in6;
  316 #endif
  317         struct udpcb *up;
  318 
  319         INP_LOCK_ASSERT(inp);
  320 
  321         /*
  322          * Engage the tunneling protocol.
  323          */
  324         up = intoudpcb(inp);
  325         if (up->u_tun_func != NULL) {
  326                 in_pcbref(inp);
  327                 INP_RUNLOCK(inp);
  328                 (*up->u_tun_func)(n, off, inp, (struct sockaddr *)udp_in,
  329                     up->u_tun_ctx);
  330                 INP_RLOCK(inp);
  331                 return (in_pcbrele_rlocked(inp));
  332         }
  333 
  334         off += sizeof(struct udphdr);
  335 
  336 #ifdef IPSEC
  337         /* Check AH/ESP integrity. */
  338         if (ipsec4_in_reject(n, inp)) {
  339                 m_freem(n);
  340                 return (0);
  341         }
  342 #ifdef IPSEC_NAT_T
  343         up = intoudpcb(inp);
  344         KASSERT(up != NULL, ("%s: udpcb NULL", __func__));
  345         if (up->u_flags & UF_ESPINUDP_ALL) {    /* IPSec UDP encaps. */
  346                 n = udp4_espdecap(inp, n, off);
  347                 if (n == NULL)                          /* Consumed. */
  348                         return (0);
  349         }
  350 #endif /* IPSEC_NAT_T */
  351 #endif /* IPSEC */
  352 #ifdef MAC
  353         if (mac_inpcb_check_deliver(inp, n) != 0) {
  354                 m_freem(n);
  355                 return (0);
  356         }
  357 #endif /* MAC */
  358         if (inp->inp_flags & INP_CONTROLOPTS ||
  359             inp->inp_socket->so_options & (SO_TIMESTAMP | SO_BINTIME)) {
  360 #ifdef INET6
  361                 if (inp->inp_vflag & INP_IPV6)
  362                         (void)ip6_savecontrol_v4(inp, n, &opts, NULL);
  363                 else
  364 #endif /* INET6 */
  365                         ip_savecontrol(inp, &opts, ip, n);
  366         }
  367 #ifdef INET6
  368         if (inp->inp_vflag & INP_IPV6) {
  369                 bzero(&udp_in6, sizeof(udp_in6));
  370                 udp_in6.sin6_len = sizeof(udp_in6);
  371                 udp_in6.sin6_family = AF_INET6;
  372                 in6_sin_2_v4mapsin6(udp_in, &udp_in6);
  373                 append_sa = (struct sockaddr *)&udp_in6;
  374         } else
  375 #endif /* INET6 */
  376                 append_sa = (struct sockaddr *)udp_in;
  377         m_adj(n, off);
  378 
  379         so = inp->inp_socket;
  380         SOCKBUF_LOCK(&so->so_rcv);
  381         if (sbappendaddr_locked(&so->so_rcv, append_sa, n, opts) == 0) {
  382                 SOCKBUF_UNLOCK(&so->so_rcv);
  383                 m_freem(n);
  384                 if (opts)
  385                         m_freem(opts);
  386                 UDPSTAT_INC(udps_fullsock);
  387         } else
  388                 sorwakeup_locked(so);
  389         return (0);
  390 }
  391 
  392 int
  393 udp_input(struct mbuf **mp, int *offp, int proto)
  394 {
  395         struct ip *ip;
  396         struct udphdr *uh;
  397         struct ifnet *ifp;
  398         struct inpcb *inp;
  399         uint16_t len, ip_len;
  400         struct inpcbinfo *pcbinfo;
  401         struct ip save_ip;
  402         struct sockaddr_in udp_in;
  403         struct mbuf *m;
  404         struct m_tag *fwd_tag;
  405         int cscov_partial, iphlen;
  406 
  407         m = *mp;
  408         iphlen = *offp;
  409         ifp = m->m_pkthdr.rcvif;
  410         *mp = NULL;
  411         UDPSTAT_INC(udps_ipackets);
  412 
  413         /*
  414          * Strip IP options, if any; should skip this, make available to
  415          * user, and use on returned packets, but we don't yet have a way to
  416          * check the checksum with options still present.
  417          */
  418         if (iphlen > sizeof (struct ip)) {
  419                 ip_stripoptions(m);
  420                 iphlen = sizeof(struct ip);
  421         }
  422 
  423         /*
  424          * Get IP and UDP header together in first mbuf.
  425          */
  426         ip = mtod(m, struct ip *);
  427         if (m->m_len < iphlen + sizeof(struct udphdr)) {
  428                 if ((m = m_pullup(m, iphlen + sizeof(struct udphdr))) == NULL) {
  429                         UDPSTAT_INC(udps_hdrops);
  430                         return (IPPROTO_DONE);
  431                 }
  432                 ip = mtod(m, struct ip *);
  433         }
  434         uh = (struct udphdr *)((caddr_t)ip + iphlen);
  435         cscov_partial = (proto == IPPROTO_UDPLITE) ? 1 : 0;
  436 
  437         /*
  438          * Destination port of 0 is illegal, based on RFC768.
  439          */
  440         if (uh->uh_dport == 0)
  441                 goto badunlocked;
  442 
  443         /*
  444          * Construct sockaddr format source address.  Stuff source address
  445          * and datagram in user buffer.
  446          */
  447         bzero(&udp_in, sizeof(udp_in));
  448         udp_in.sin_len = sizeof(udp_in);
  449         udp_in.sin_family = AF_INET;
  450         udp_in.sin_port = uh->uh_sport;
  451         udp_in.sin_addr = ip->ip_src;
  452 
  453         /*
  454          * Make mbuf data length reflect UDP length.  If not enough data to
  455          * reflect UDP length, drop.
  456          */
  457         len = ntohs((u_short)uh->uh_ulen);
  458         ip_len = ntohs(ip->ip_len) - iphlen;
  459         if (proto == IPPROTO_UDPLITE && (len == 0 || len == ip_len)) {
  460                 /* Zero means checksum over the complete packet. */
  461                 if (len == 0)
  462                         len = ip_len;
  463                 cscov_partial = 0;
  464         }
  465         if (ip_len != len) {
  466                 if (len > ip_len || len < sizeof(struct udphdr)) {
  467                         UDPSTAT_INC(udps_badlen);
  468                         goto badunlocked;
  469                 }
  470                 if (proto == IPPROTO_UDP)
  471                         m_adj(m, len - ip_len);
  472         }
  473 
  474         /*
  475          * Save a copy of the IP header in case we want restore it for
  476          * sending an ICMP error message in response.
  477          */
  478         if (!V_udp_blackhole)
  479                 save_ip = *ip;
  480         else
  481                 memset(&save_ip, 0, sizeof(save_ip));
  482 
  483         /*
  484          * Checksum extended UDP header and data.
  485          */
  486         if (uh->uh_sum) {
  487                 u_short uh_sum;
  488 
  489                 if ((m->m_pkthdr.csum_flags & CSUM_DATA_VALID) &&
  490                     !cscov_partial) {
  491                         if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
  492                                 uh_sum = m->m_pkthdr.csum_data;
  493                         else
  494                                 uh_sum = in_pseudo(ip->ip_src.s_addr,
  495                                     ip->ip_dst.s_addr, htonl((u_short)len +
  496                                     m->m_pkthdr.csum_data + proto));
  497                         uh_sum ^= 0xffff;
  498                 } else {
  499                         char b[9];
  500 
  501                         bcopy(((struct ipovly *)ip)->ih_x1, b, 9);
  502                         bzero(((struct ipovly *)ip)->ih_x1, 9);
  503                         ((struct ipovly *)ip)->ih_len = (proto == IPPROTO_UDP) ?
  504                             uh->uh_ulen : htons(ip_len);
  505                         uh_sum = in_cksum(m, len + sizeof (struct ip));
  506                         bcopy(b, ((struct ipovly *)ip)->ih_x1, 9);
  507                 }
  508                 if (uh_sum) {
  509                         UDPSTAT_INC(udps_badsum);
  510                         m_freem(m);
  511                         return (IPPROTO_DONE);
  512                 }
  513         } else {
  514                 if (proto == IPPROTO_UDP) {
  515                         UDPSTAT_INC(udps_nosum);
  516                 } else {
  517                         /* UDPLite requires a checksum */
  518                         /* XXX: What is the right UDPLite MIB counter here? */
  519                         m_freem(m);
  520                         return (IPPROTO_DONE);
  521                 }
  522         }
  523 
  524         pcbinfo = udp_get_inpcbinfo(proto);
  525         if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
  526             in_broadcast(ip->ip_dst, ifp)) {
  527                 struct inpcb *last;
  528                 struct inpcbhead *pcblist;
  529                 struct ip_moptions *imo;
  530 
  531                 INP_INFO_RLOCK(pcbinfo);
  532                 pcblist = udp_get_pcblist(proto);
  533                 last = NULL;
  534                 LIST_FOREACH(inp, pcblist, inp_list) {
  535                         if (inp->inp_lport != uh->uh_dport)
  536                                 continue;
  537 #ifdef INET6
  538                         if ((inp->inp_vflag & INP_IPV4) == 0)
  539                                 continue;
  540 #endif
  541                         if (inp->inp_laddr.s_addr != INADDR_ANY &&
  542                             inp->inp_laddr.s_addr != ip->ip_dst.s_addr)
  543                                 continue;
  544                         if (inp->inp_faddr.s_addr != INADDR_ANY &&
  545                             inp->inp_faddr.s_addr != ip->ip_src.s_addr)
  546                                 continue;
  547                         if (inp->inp_fport != 0 &&
  548                             inp->inp_fport != uh->uh_sport)
  549                                 continue;
  550 
  551                         INP_RLOCK(inp);
  552 
  553                         /*
  554                          * XXXRW: Because we weren't holding either the inpcb
  555                          * or the hash lock when we checked for a match
  556                          * before, we should probably recheck now that the
  557                          * inpcb lock is held.
  558                          */
  559 
  560                         /*
  561                          * Handle socket delivery policy for any-source
  562                          * and source-specific multicast. [RFC3678]
  563                          */
  564                         imo = inp->inp_moptions;
  565                         if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
  566                                 struct sockaddr_in       group;
  567                                 int                      blocked;
  568                                 if (imo == NULL) {
  569                                         INP_RUNLOCK(inp);
  570                                         continue;
  571                                 }
  572                                 bzero(&group, sizeof(struct sockaddr_in));
  573                                 group.sin_len = sizeof(struct sockaddr_in);
  574                                 group.sin_family = AF_INET;
  575                                 group.sin_addr = ip->ip_dst;
  576 
  577                                 blocked = imo_multi_filter(imo, ifp,
  578                                         (struct sockaddr *)&group,
  579                                         (struct sockaddr *)&udp_in);
  580                                 if (blocked != MCAST_PASS) {
  581                                         if (blocked == MCAST_NOTGMEMBER)
  582                                                 IPSTAT_INC(ips_notmember);
  583                                         if (blocked == MCAST_NOTSMEMBER ||
  584                                             blocked == MCAST_MUTED)
  585                                                 UDPSTAT_INC(udps_filtermcast);
  586                                         INP_RUNLOCK(inp);
  587                                         continue;
  588                                 }
  589                         }
  590                         if (last != NULL) {
  591                                 struct mbuf *n;
  592 
  593                                 if ((n = m_copy(m, 0, M_COPYALL)) != NULL) {
  594                                         UDP_PROBE(receive, NULL, last, ip,
  595                                             last, uh);
  596                                         if (udp_append(last, ip, n, iphlen,
  597                                                 &udp_in)) {
  598                                                 goto inp_lost;
  599                                         }
  600                                 }
  601                                 INP_RUNLOCK(last);
  602                         }
  603                         last = inp;
  604                         /*
  605                          * Don't look for additional matches if this one does
  606                          * not have either the SO_REUSEPORT or SO_REUSEADDR
  607                          * socket options set.  This heuristic avoids
  608                          * searching through all pcbs in the common case of a
  609                          * non-shared port.  It assumes that an application
  610                          * will never clear these options after setting them.
  611                          */
  612                         if ((last->inp_socket->so_options &
  613                             (SO_REUSEPORT|SO_REUSEADDR)) == 0)
  614                                 break;
  615                 }
  616 
  617                 if (last == NULL) {
  618                         /*
  619                          * No matching pcb found; discard datagram.  (No need
  620                          * to send an ICMP Port Unreachable for a broadcast
  621                          * or multicast datgram.)
  622                          */
  623                         UDPSTAT_INC(udps_noportbcast);
  624                         if (inp)
  625                                 INP_RUNLOCK(inp);
  626                         INP_INFO_RUNLOCK(pcbinfo);
  627                         goto badunlocked;
  628                 }
  629                 UDP_PROBE(receive, NULL, last, ip, last, uh);
  630                 if (udp_append(last, ip, m, iphlen, &udp_in) == 0) 
  631                         INP_RUNLOCK(last);
  632         inp_lost:
  633                 INP_INFO_RUNLOCK(pcbinfo);
  634                 return (IPPROTO_DONE);
  635         }
  636 
  637         /*
  638          * Locate pcb for datagram.
  639          */
  640 
  641         /*
  642          * Grab info from PACKET_TAG_IPFORWARD tag prepended to the chain.
  643          */
  644         if ((m->m_flags & M_IP_NEXTHOP) &&
  645             (fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL) {
  646                 struct sockaddr_in *next_hop;
  647 
  648                 next_hop = (struct sockaddr_in *)(fwd_tag + 1);
  649 
  650                 /*
  651                  * Transparently forwarded. Pretend to be the destination.
  652                  * Already got one like this?
  653                  */
  654                 inp = in_pcblookup_mbuf(pcbinfo, ip->ip_src, uh->uh_sport,
  655                     ip->ip_dst, uh->uh_dport, INPLOOKUP_RLOCKPCB, ifp, m);
  656                 if (!inp) {
  657                         /*
  658                          * It's new.  Try to find the ambushing socket.
  659                          * Because we've rewritten the destination address,
  660                          * any hardware-generated hash is ignored.
  661                          */
  662                         inp = in_pcblookup(pcbinfo, ip->ip_src,
  663                             uh->uh_sport, next_hop->sin_addr,
  664                             next_hop->sin_port ? htons(next_hop->sin_port) :
  665                             uh->uh_dport, INPLOOKUP_WILDCARD |
  666                             INPLOOKUP_RLOCKPCB, ifp);
  667                 }
  668                 /* Remove the tag from the packet. We don't need it anymore. */
  669                 m_tag_delete(m, fwd_tag);
  670                 m->m_flags &= ~M_IP_NEXTHOP;
  671         } else
  672                 inp = in_pcblookup_mbuf(pcbinfo, ip->ip_src, uh->uh_sport,
  673                     ip->ip_dst, uh->uh_dport, INPLOOKUP_WILDCARD |
  674                     INPLOOKUP_RLOCKPCB, ifp, m);
  675         if (inp == NULL) {
  676                 if (udp_log_in_vain) {
  677                         char buf[4*sizeof "123"];
  678 
  679                         strcpy(buf, inet_ntoa(ip->ip_dst));
  680                         log(LOG_INFO,
  681                             "Connection attempt to UDP %s:%d from %s:%d\n",
  682                             buf, ntohs(uh->uh_dport), inet_ntoa(ip->ip_src),
  683                             ntohs(uh->uh_sport));
  684                 }
  685                 UDPSTAT_INC(udps_noport);
  686                 if (m->m_flags & (M_BCAST | M_MCAST)) {
  687                         UDPSTAT_INC(udps_noportbcast);
  688                         goto badunlocked;
  689                 }
  690                 if (V_udp_blackhole)
  691                         goto badunlocked;
  692                 if (badport_bandlim(BANDLIM_ICMP_UNREACH) < 0)
  693                         goto badunlocked;
  694                 *ip = save_ip;
  695                 icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_PORT, 0, 0);
  696                 return (IPPROTO_DONE);
  697         }
  698 
  699         /*
  700          * Check the minimum TTL for socket.
  701          */
  702         INP_RLOCK_ASSERT(inp);
  703         if (inp->inp_ip_minttl && inp->inp_ip_minttl > ip->ip_ttl) {
  704                 INP_RUNLOCK(inp);
  705                 m_freem(m);
  706                 return (IPPROTO_DONE);
  707         }
  708         if (cscov_partial) {
  709                 struct udpcb *up;
  710 
  711                 up = intoudpcb(inp);
  712                 if (up->u_rxcslen == 0 || up->u_rxcslen > len) {
  713                         INP_RUNLOCK(inp);
  714                         m_freem(m);
  715                         return (IPPROTO_DONE);
  716                 }
  717         }
  718 
  719         UDP_PROBE(receive, NULL, inp, ip, inp, uh);
  720         if (udp_append(inp, ip, m, iphlen, &udp_in) == 0) 
  721                 INP_RUNLOCK(inp);
  722         return (IPPROTO_DONE);
  723 
  724 badunlocked:
  725         m_freem(m);
  726         return (IPPROTO_DONE);
  727 }
  728 #endif /* INET */
  729 
  730 /*
  731  * Notify a udp user of an asynchronous error; just wake up so that they can
  732  * collect error status.
  733  */
  734 struct inpcb *
  735 udp_notify(struct inpcb *inp, int errno)
  736 {
  737 
  738         /*
  739          * While udp_ctlinput() always calls udp_notify() with a read lock
  740          * when invoking it directly, in_pcbnotifyall() currently uses write
  741          * locks due to sharing code with TCP.  For now, accept either a read
  742          * or a write lock, but a read lock is sufficient.
  743          */
  744         INP_LOCK_ASSERT(inp);
  745         if ((errno == EHOSTUNREACH || errno == ENETUNREACH ||
  746              errno == EHOSTDOWN) && inp->inp_route.ro_rt) {
  747                 RTFREE(inp->inp_route.ro_rt);
  748                 inp->inp_route.ro_rt = (struct rtentry *)NULL;
  749         }
  750 
  751         inp->inp_socket->so_error = errno;
  752         sorwakeup(inp->inp_socket);
  753         sowwakeup(inp->inp_socket);
  754         return (inp);
  755 }
  756 
  757 #ifdef INET
  758 static void
  759 udp_common_ctlinput(int cmd, struct sockaddr *sa, void *vip,
  760     struct inpcbinfo *pcbinfo)
  761 {
  762         struct ip *ip = vip;
  763         struct udphdr *uh;
  764         struct in_addr faddr;
  765         struct inpcb *inp;
  766 
  767         faddr = ((struct sockaddr_in *)sa)->sin_addr;
  768         if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
  769                 return;
  770 
  771         if (PRC_IS_REDIRECT(cmd)) {
  772                 /* signal EHOSTDOWN, as it flushes the cached route */
  773                 in_pcbnotifyall(&V_udbinfo, faddr, EHOSTDOWN, udp_notify);
  774                 return;
  775         }
  776 
  777         /*
  778          * Hostdead is ugly because it goes linearly through all PCBs.
  779          *
  780          * XXX: We never get this from ICMP, otherwise it makes an excellent
  781          * DoS attack on machines with many connections.
  782          */
  783         if (cmd == PRC_HOSTDEAD)
  784                 ip = NULL;
  785         else if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0)
  786                 return;
  787         if (ip != NULL) {
  788                 uh = (struct udphdr *)((caddr_t)ip + (ip->ip_hl << 2));
  789                 inp = in_pcblookup(pcbinfo, faddr, uh->uh_dport,
  790                     ip->ip_src, uh->uh_sport, INPLOOKUP_RLOCKPCB, NULL);
  791                 if (inp != NULL) {
  792                         INP_RLOCK_ASSERT(inp);
  793                         if (inp->inp_socket != NULL) {
  794                                 udp_notify(inp, inetctlerrmap[cmd]);
  795                         }
  796                         INP_RUNLOCK(inp);
  797                 } else {
  798                         inp = in_pcblookup(pcbinfo, faddr, uh->uh_dport,
  799                                            ip->ip_src, uh->uh_sport,
  800                                            INPLOOKUP_WILDCARD | INPLOOKUP_RLOCKPCB, NULL);
  801                         if (inp != NULL) {
  802                                 struct udpcb *up;
  803 
  804                                 up = intoudpcb(inp);
  805                                 if (up->u_icmp_func != NULL) {
  806                                         INP_RUNLOCK(inp);
  807                                         (*up->u_icmp_func)(cmd, sa, vip, up->u_tun_ctx);
  808                                 } else {
  809                                         INP_RUNLOCK(inp);
  810                                 }
  811                         }
  812                 }
  813         } else
  814                 in_pcbnotifyall(pcbinfo, faddr, inetctlerrmap[cmd],
  815                     udp_notify);
  816 }
  817 void
  818 udp_ctlinput(int cmd, struct sockaddr *sa, void *vip)
  819 {
  820 
  821         return (udp_common_ctlinput(cmd, sa, vip, &V_udbinfo));
  822 }
  823 
  824 void
  825 udplite_ctlinput(int cmd, struct sockaddr *sa, void *vip)
  826 {
  827 
  828         return (udp_common_ctlinput(cmd, sa, vip, &V_ulitecbinfo));
  829 }
  830 #endif /* INET */
  831 
  832 static int
  833 udp_pcblist(SYSCTL_HANDLER_ARGS)
  834 {
  835         int error, i, n;
  836         struct inpcb *inp, **inp_list;
  837         inp_gen_t gencnt;
  838         struct xinpgen xig;
  839 
  840         /*
  841          * The process of preparing the PCB list is too time-consuming and
  842          * resource-intensive to repeat twice on every request.
  843          */
  844         if (req->oldptr == 0) {
  845                 n = V_udbinfo.ipi_count;
  846                 n += imax(n / 8, 10);
  847                 req->oldidx = 2 * (sizeof xig) + n * sizeof(struct xinpcb);
  848                 return (0);
  849         }
  850 
  851         if (req->newptr != 0)
  852                 return (EPERM);
  853 
  854         /*
  855          * OK, now we're committed to doing something.
  856          */
  857         INP_INFO_RLOCK(&V_udbinfo);
  858         gencnt = V_udbinfo.ipi_gencnt;
  859         n = V_udbinfo.ipi_count;
  860         INP_INFO_RUNLOCK(&V_udbinfo);
  861 
  862         error = sysctl_wire_old_buffer(req, 2 * (sizeof xig)
  863                 + n * sizeof(struct xinpcb));
  864         if (error != 0)
  865                 return (error);
  866 
  867         xig.xig_len = sizeof xig;
  868         xig.xig_count = n;
  869         xig.xig_gen = gencnt;
  870         xig.xig_sogen = so_gencnt;
  871         error = SYSCTL_OUT(req, &xig, sizeof xig);
  872         if (error)
  873                 return (error);
  874 
  875         inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK);
  876         if (inp_list == NULL)
  877                 return (ENOMEM);
  878 
  879         INP_INFO_RLOCK(&V_udbinfo);
  880         for (inp = LIST_FIRST(V_udbinfo.ipi_listhead), i = 0; inp && i < n;
  881              inp = LIST_NEXT(inp, inp_list)) {
  882                 INP_WLOCK(inp);
  883                 if (inp->inp_gencnt <= gencnt &&
  884                     cr_canseeinpcb(req->td->td_ucred, inp) == 0) {
  885                         in_pcbref(inp);
  886                         inp_list[i++] = inp;
  887                 }
  888                 INP_WUNLOCK(inp);
  889         }
  890         INP_INFO_RUNLOCK(&V_udbinfo);
  891         n = i;
  892 
  893         error = 0;
  894         for (i = 0; i < n; i++) {
  895                 inp = inp_list[i];
  896                 INP_RLOCK(inp);
  897                 if (inp->inp_gencnt <= gencnt) {
  898                         struct xinpcb xi;
  899 
  900                         bzero(&xi, sizeof(xi));
  901                         xi.xi_len = sizeof xi;
  902                         /* XXX should avoid extra copy */
  903                         bcopy(inp, &xi.xi_inp, sizeof *inp);
  904                         if (inp->inp_socket)
  905                                 sotoxsocket(inp->inp_socket, &xi.xi_socket);
  906                         xi.xi_inp.inp_gencnt = inp->inp_gencnt;
  907                         INP_RUNLOCK(inp);
  908                         error = SYSCTL_OUT(req, &xi, sizeof xi);
  909                 } else
  910                         INP_RUNLOCK(inp);
  911         }
  912         INP_INFO_WLOCK(&V_udbinfo);
  913         for (i = 0; i < n; i++) {
  914                 inp = inp_list[i];
  915                 INP_RLOCK(inp);
  916                 if (!in_pcbrele_rlocked(inp))
  917                         INP_RUNLOCK(inp);
  918         }
  919         INP_INFO_WUNLOCK(&V_udbinfo);
  920 
  921         if (!error) {
  922                 /*
  923                  * Give the user an updated idea of our state.  If the
  924                  * generation differs from what we told her before, she knows
  925                  * that something happened while we were processing this
  926                  * request, and it might be necessary to retry.
  927                  */
  928                 INP_INFO_RLOCK(&V_udbinfo);
  929                 xig.xig_gen = V_udbinfo.ipi_gencnt;
  930                 xig.xig_sogen = so_gencnt;
  931                 xig.xig_count = V_udbinfo.ipi_count;
  932                 INP_INFO_RUNLOCK(&V_udbinfo);
  933                 error = SYSCTL_OUT(req, &xig, sizeof xig);
  934         }
  935         free(inp_list, M_TEMP);
  936         return (error);
  937 }
  938 
  939 SYSCTL_PROC(_net_inet_udp, UDPCTL_PCBLIST, pcblist,
  940     CTLTYPE_OPAQUE | CTLFLAG_RD, NULL, 0,
  941     udp_pcblist, "S,xinpcb", "List of active UDP sockets");
  942 
  943 #ifdef INET
  944 static int
  945 udp_getcred(SYSCTL_HANDLER_ARGS)
  946 {
  947         struct xucred xuc;
  948         struct sockaddr_in addrs[2];
  949         struct inpcb *inp;
  950         int error;
  951 
  952         error = priv_check(req->td, PRIV_NETINET_GETCRED);
  953         if (error)
  954                 return (error);
  955         error = SYSCTL_IN(req, addrs, sizeof(addrs));
  956         if (error)
  957                 return (error);
  958         inp = in_pcblookup(&V_udbinfo, addrs[1].sin_addr, addrs[1].sin_port,
  959             addrs[0].sin_addr, addrs[0].sin_port,
  960             INPLOOKUP_WILDCARD | INPLOOKUP_RLOCKPCB, NULL);
  961         if (inp != NULL) {
  962                 INP_RLOCK_ASSERT(inp);
  963                 if (inp->inp_socket == NULL)
  964                         error = ENOENT;
  965                 if (error == 0)
  966                         error = cr_canseeinpcb(req->td->td_ucred, inp);
  967                 if (error == 0)
  968                         cru2x(inp->inp_cred, &xuc);
  969                 INP_RUNLOCK(inp);
  970         } else
  971                 error = ENOENT;
  972         if (error == 0)
  973                 error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
  974         return (error);
  975 }
  976 
  977 SYSCTL_PROC(_net_inet_udp, OID_AUTO, getcred,
  978     CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
  979     udp_getcred, "S,xucred", "Get the xucred of a UDP connection");
  980 #endif /* INET */
  981 
  982 int
  983 udp_ctloutput(struct socket *so, struct sockopt *sopt)
  984 {
  985         struct inpcb *inp;
  986         struct udpcb *up;
  987         int isudplite, error, optval;
  988 
  989         error = 0;
  990         isudplite = (so->so_proto->pr_protocol == IPPROTO_UDPLITE) ? 1 : 0;
  991         inp = sotoinpcb(so);
  992         KASSERT(inp != NULL, ("%s: inp == NULL", __func__));
  993         INP_WLOCK(inp);
  994         if (sopt->sopt_level != so->so_proto->pr_protocol) {
  995 #ifdef INET6
  996                 if (INP_CHECK_SOCKAF(so, AF_INET6)) {
  997                         INP_WUNLOCK(inp);
  998                         error = ip6_ctloutput(so, sopt);
  999                 }
 1000 #endif
 1001 #if defined(INET) && defined(INET6)
 1002                 else
 1003 #endif
 1004 #ifdef INET
 1005                 {
 1006                         INP_WUNLOCK(inp);
 1007                         error = ip_ctloutput(so, sopt);
 1008                 }
 1009 #endif
 1010                 return (error);
 1011         }
 1012 
 1013         switch (sopt->sopt_dir) {
 1014         case SOPT_SET:
 1015                 switch (sopt->sopt_name) {
 1016                 case UDP_ENCAP:
 1017                         INP_WUNLOCK(inp);
 1018                         error = sooptcopyin(sopt, &optval, sizeof optval,
 1019                                             sizeof optval);
 1020                         if (error)
 1021                                 break;
 1022                         inp = sotoinpcb(so);
 1023                         KASSERT(inp != NULL, ("%s: inp == NULL", __func__));
 1024                         INP_WLOCK(inp);
 1025 #ifdef IPSEC_NAT_T
 1026                         up = intoudpcb(inp);
 1027                         KASSERT(up != NULL, ("%s: up == NULL", __func__));
 1028 #endif
 1029                         switch (optval) {
 1030                         case 0:
 1031                                 /* Clear all UDP encap. */
 1032 #ifdef IPSEC_NAT_T
 1033                                 up->u_flags &= ~UF_ESPINUDP_ALL;
 1034 #endif
 1035                                 break;
 1036 #ifdef IPSEC_NAT_T
 1037                         case UDP_ENCAP_ESPINUDP:
 1038                         case UDP_ENCAP_ESPINUDP_NON_IKE:
 1039                                 up->u_flags &= ~UF_ESPINUDP_ALL;
 1040                                 if (optval == UDP_ENCAP_ESPINUDP)
 1041                                         up->u_flags |= UF_ESPINUDP;
 1042                                 else if (optval == UDP_ENCAP_ESPINUDP_NON_IKE)
 1043                                         up->u_flags |= UF_ESPINUDP_NON_IKE;
 1044                                 break;
 1045 #endif
 1046                         default:
 1047                                 error = EINVAL;
 1048                                 break;
 1049                         }
 1050                         INP_WUNLOCK(inp);
 1051                         break;
 1052                 case UDPLITE_SEND_CSCOV:
 1053                 case UDPLITE_RECV_CSCOV:
 1054                         if (!isudplite) {
 1055                                 INP_WUNLOCK(inp);
 1056                                 error = ENOPROTOOPT;
 1057                                 break;
 1058                         }
 1059                         INP_WUNLOCK(inp);
 1060                         error = sooptcopyin(sopt, &optval, sizeof(optval),
 1061                             sizeof(optval));
 1062                         if (error != 0)
 1063                                 break;
 1064                         inp = sotoinpcb(so);
 1065                         KASSERT(inp != NULL, ("%s: inp == NULL", __func__));
 1066                         INP_WLOCK(inp);
 1067                         up = intoudpcb(inp);
 1068                         KASSERT(up != NULL, ("%s: up == NULL", __func__));
 1069                         if ((optval != 0 && optval < 8) || (optval > 65535)) {
 1070                                 INP_WUNLOCK(inp);
 1071                                 error = EINVAL;
 1072                                 break;
 1073                         }
 1074                         if (sopt->sopt_name == UDPLITE_SEND_CSCOV)
 1075                                 up->u_txcslen = optval;
 1076                         else
 1077                                 up->u_rxcslen = optval;
 1078                         INP_WUNLOCK(inp);
 1079                         break;
 1080                 default:
 1081                         INP_WUNLOCK(inp);
 1082                         error = ENOPROTOOPT;
 1083                         break;
 1084                 }
 1085                 break;
 1086         case SOPT_GET:
 1087                 switch (sopt->sopt_name) {
 1088 #ifdef IPSEC_NAT_T
 1089                 case UDP_ENCAP:
 1090                         up = intoudpcb(inp);
 1091                         KASSERT(up != NULL, ("%s: up == NULL", __func__));
 1092                         optval = up->u_flags & UF_ESPINUDP_ALL;
 1093                         INP_WUNLOCK(inp);
 1094                         error = sooptcopyout(sopt, &optval, sizeof optval);
 1095                         break;
 1096 #endif
 1097                 case UDPLITE_SEND_CSCOV:
 1098                 case UDPLITE_RECV_CSCOV:
 1099                         if (!isudplite) {
 1100                                 INP_WUNLOCK(inp);
 1101                                 error = ENOPROTOOPT;
 1102                                 break;
 1103                         }
 1104                         up = intoudpcb(inp);
 1105                         KASSERT(up != NULL, ("%s: up == NULL", __func__));
 1106                         if (sopt->sopt_name == UDPLITE_SEND_CSCOV)
 1107                                 optval = up->u_txcslen;
 1108                         else
 1109                                 optval = up->u_rxcslen;
 1110                         INP_WUNLOCK(inp);
 1111                         error = sooptcopyout(sopt, &optval, sizeof(optval));
 1112                         break;
 1113                 default:
 1114                         INP_WUNLOCK(inp);
 1115                         error = ENOPROTOOPT;
 1116                         break;
 1117                 }
 1118                 break;
 1119         }       
 1120         return (error);
 1121 }
 1122 
 1123 #ifdef INET
 1124 #define UH_WLOCKED      2
 1125 #define UH_RLOCKED      1
 1126 #define UH_UNLOCKED     0
 1127 static int
 1128 udp_output(struct inpcb *inp, struct mbuf *m, struct sockaddr *addr,
 1129     struct mbuf *control, struct thread *td)
 1130 {
 1131         struct udpiphdr *ui;
 1132         int len = m->m_pkthdr.len;
 1133         struct in_addr faddr, laddr;
 1134         struct cmsghdr *cm;
 1135         struct inpcbinfo *pcbinfo;
 1136         struct sockaddr_in *sin, src;
 1137         int cscov_partial = 0;
 1138         int error = 0;
 1139         int ipflags;
 1140         u_short fport, lport;
 1141         int unlock_udbinfo, unlock_inp;
 1142         u_char tos;
 1143         uint8_t pr;
 1144         uint16_t cscov = 0;
 1145         uint32_t flowid = 0;
 1146         uint8_t flowtype = M_HASHTYPE_NONE;
 1147 
 1148         /*
 1149          * udp_output() may need to temporarily bind or connect the current
 1150          * inpcb.  As such, we don't know up front whether we will need the
 1151          * pcbinfo lock or not.  Do any work to decide what is needed up
 1152          * front before acquiring any locks.
 1153          */
 1154         if (len + sizeof(struct udpiphdr) > IP_MAXPACKET) {
 1155                 if (control)
 1156                         m_freem(control);
 1157                 m_freem(m);
 1158                 return (EMSGSIZE);
 1159         }
 1160 
 1161         src.sin_family = 0;
 1162         sin = (struct sockaddr_in *)addr;
 1163         if (sin == NULL ||
 1164             (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0)) {
 1165                 INP_WLOCK(inp);
 1166                 unlock_inp = UH_WLOCKED;
 1167         } else {
 1168                 INP_RLOCK(inp);
 1169                 unlock_inp = UH_RLOCKED;
 1170         }
 1171         tos = inp->inp_ip_tos;
 1172         if (control != NULL) {
 1173                 /*
 1174                  * XXX: Currently, we assume all the optional information is
 1175                  * stored in a single mbuf.
 1176                  */
 1177                 if (control->m_next) {
 1178                         if (unlock_inp == UH_WLOCKED)
 1179                                 INP_WUNLOCK(inp);
 1180                         else
 1181                                 INP_RUNLOCK(inp);
 1182                         m_freem(control);
 1183                         m_freem(m);
 1184                         return (EINVAL);
 1185                 }
 1186                 for (; control->m_len > 0;
 1187                     control->m_data += CMSG_ALIGN(cm->cmsg_len),
 1188                     control->m_len -= CMSG_ALIGN(cm->cmsg_len)) {
 1189                         cm = mtod(control, struct cmsghdr *);
 1190                         if (control->m_len < sizeof(*cm) || cm->cmsg_len == 0
 1191                             || cm->cmsg_len > control->m_len) {
 1192                                 error = EINVAL;
 1193                                 break;
 1194                         }
 1195                         if (cm->cmsg_level != IPPROTO_IP)
 1196                                 continue;
 1197 
 1198                         switch (cm->cmsg_type) {
 1199                         case IP_SENDSRCADDR:
 1200                                 if (cm->cmsg_len !=
 1201                                     CMSG_LEN(sizeof(struct in_addr))) {
 1202                                         error = EINVAL;
 1203                                         break;
 1204                                 }
 1205                                 bzero(&src, sizeof(src));
 1206                                 src.sin_family = AF_INET;
 1207                                 src.sin_len = sizeof(src);
 1208                                 src.sin_port = inp->inp_lport;
 1209                                 src.sin_addr =
 1210                                     *(struct in_addr *)CMSG_DATA(cm);
 1211                                 break;
 1212 
 1213                         case IP_TOS:
 1214                                 if (cm->cmsg_len != CMSG_LEN(sizeof(u_char))) {
 1215                                         error = EINVAL;
 1216                                         break;
 1217                                 }
 1218                                 tos = *(u_char *)CMSG_DATA(cm);
 1219                                 break;
 1220 
 1221                         case IP_FLOWID:
 1222                                 if (cm->cmsg_len != CMSG_LEN(sizeof(uint32_t))) {
 1223                                         error = EINVAL;
 1224                                         break;
 1225                                 }
 1226                                 flowid = *(uint32_t *) CMSG_DATA(cm);
 1227                                 break;
 1228 
 1229                         case IP_FLOWTYPE:
 1230                                 if (cm->cmsg_len != CMSG_LEN(sizeof(uint32_t))) {
 1231                                         error = EINVAL;
 1232                                         break;
 1233                                 }
 1234                                 flowtype = *(uint32_t *) CMSG_DATA(cm);
 1235                                 break;
 1236 
 1237 #ifdef  RSS
 1238                         case IP_RSSBUCKETID:
 1239                                 if (cm->cmsg_len != CMSG_LEN(sizeof(uint32_t))) {
 1240                                         error = EINVAL;
 1241                                         break;
 1242                                 }
 1243                                 /* This is just a placeholder for now */
 1244                                 break;
 1245 #endif  /* RSS */
 1246                         default:
 1247                                 error = ENOPROTOOPT;
 1248                                 break;
 1249                         }
 1250                         if (error)
 1251                                 break;
 1252                 }
 1253                 m_freem(control);
 1254         }
 1255         if (error) {
 1256                 if (unlock_inp == UH_WLOCKED)
 1257                         INP_WUNLOCK(inp);
 1258                 else
 1259                         INP_RUNLOCK(inp);
 1260                 m_freem(m);
 1261                 return (error);
 1262         }
 1263 
 1264         /*
 1265          * Depending on whether or not the application has bound or connected
 1266          * the socket, we may have to do varying levels of work.  The optimal
 1267          * case is for a connected UDP socket, as a global lock isn't
 1268          * required at all.
 1269          *
 1270          * In order to decide which we need, we require stability of the
 1271          * inpcb binding, which we ensure by acquiring a read lock on the
 1272          * inpcb.  This doesn't strictly follow the lock order, so we play
 1273          * the trylock and retry game; note that we may end up with more
 1274          * conservative locks than required the second time around, so later
 1275          * assertions have to accept that.  Further analysis of the number of
 1276          * misses under contention is required.
 1277          *
 1278          * XXXRW: Check that hash locking update here is correct.
 1279          */
 1280         pr = inp->inp_socket->so_proto->pr_protocol;
 1281         pcbinfo = udp_get_inpcbinfo(pr);
 1282         sin = (struct sockaddr_in *)addr;
 1283         if (sin != NULL &&
 1284             (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0)) {
 1285                 INP_HASH_WLOCK(pcbinfo);
 1286                 unlock_udbinfo = UH_WLOCKED;
 1287         } else if ((sin != NULL && (
 1288             (sin->sin_addr.s_addr == INADDR_ANY) ||
 1289             (sin->sin_addr.s_addr == INADDR_BROADCAST) ||
 1290             (inp->inp_laddr.s_addr == INADDR_ANY) ||
 1291             (inp->inp_lport == 0))) ||
 1292             (src.sin_family == AF_INET)) {
 1293                 INP_HASH_RLOCK(pcbinfo);
 1294                 unlock_udbinfo = UH_RLOCKED;
 1295         } else
 1296                 unlock_udbinfo = UH_UNLOCKED;
 1297 
 1298         /*
 1299          * If the IP_SENDSRCADDR control message was specified, override the
 1300          * source address for this datagram.  Its use is invalidated if the
 1301          * address thus specified is incomplete or clobbers other inpcbs.
 1302          */
 1303         laddr = inp->inp_laddr;
 1304         lport = inp->inp_lport;
 1305         if (src.sin_family == AF_INET) {
 1306                 INP_HASH_LOCK_ASSERT(pcbinfo);
 1307                 if ((lport == 0) ||
 1308                     (laddr.s_addr == INADDR_ANY &&
 1309                      src.sin_addr.s_addr == INADDR_ANY)) {
 1310                         error = EINVAL;
 1311                         goto release;
 1312                 }
 1313                 error = in_pcbbind_setup(inp, (struct sockaddr *)&src,
 1314                     &laddr.s_addr, &lport, td->td_ucred);
 1315                 if (error)
 1316                         goto release;
 1317         }
 1318 
 1319         /*
 1320          * If a UDP socket has been connected, then a local address/port will
 1321          * have been selected and bound.
 1322          *
 1323          * If a UDP socket has not been connected to, then an explicit
 1324          * destination address must be used, in which case a local
 1325          * address/port may not have been selected and bound.
 1326          */
 1327         if (sin != NULL) {
 1328                 INP_LOCK_ASSERT(inp);
 1329                 if (inp->inp_faddr.s_addr != INADDR_ANY) {
 1330                         error = EISCONN;
 1331                         goto release;
 1332                 }
 1333 
 1334                 /*
 1335                  * Jail may rewrite the destination address, so let it do
 1336                  * that before we use it.
 1337                  */
 1338                 error = prison_remote_ip4(td->td_ucred, &sin->sin_addr);
 1339                 if (error)
 1340                         goto release;
 1341 
 1342                 /*
 1343                  * If a local address or port hasn't yet been selected, or if
 1344                  * the destination address needs to be rewritten due to using
 1345                  * a special INADDR_ constant, invoke in_pcbconnect_setup()
 1346                  * to do the heavy lifting.  Once a port is selected, we
 1347                  * commit the binding back to the socket; we also commit the
 1348                  * binding of the address if in jail.
 1349                  *
 1350                  * If we already have a valid binding and we're not
 1351                  * requesting a destination address rewrite, use a fast path.
 1352                  */
 1353                 if (inp->inp_laddr.s_addr == INADDR_ANY ||
 1354                     inp->inp_lport == 0 ||
 1355                     sin->sin_addr.s_addr == INADDR_ANY ||
 1356                     sin->sin_addr.s_addr == INADDR_BROADCAST) {
 1357                         INP_HASH_LOCK_ASSERT(pcbinfo);
 1358                         error = in_pcbconnect_setup(inp, addr, &laddr.s_addr,
 1359                             &lport, &faddr.s_addr, &fport, NULL,
 1360                             td->td_ucred);
 1361                         if (error)
 1362                                 goto release;
 1363 
 1364                         /*
 1365                          * XXXRW: Why not commit the port if the address is
 1366                          * !INADDR_ANY?
 1367                          */
 1368                         /* Commit the local port if newly assigned. */
 1369                         if (inp->inp_laddr.s_addr == INADDR_ANY &&
 1370                             inp->inp_lport == 0) {
 1371                                 INP_WLOCK_ASSERT(inp);
 1372                                 INP_HASH_WLOCK_ASSERT(pcbinfo);
 1373                                 /*
 1374                                  * Remember addr if jailed, to prevent
 1375                                  * rebinding.
 1376                                  */
 1377                                 if (prison_flag(td->td_ucred, PR_IP4))
 1378                                         inp->inp_laddr = laddr;
 1379                                 inp->inp_lport = lport;
 1380                                 if (in_pcbinshash(inp) != 0) {
 1381                                         inp->inp_lport = 0;
 1382                                         error = EAGAIN;
 1383                                         goto release;
 1384                                 }
 1385                                 inp->inp_flags |= INP_ANONPORT;
 1386                         }
 1387                 } else {
 1388                         faddr = sin->sin_addr;
 1389                         fport = sin->sin_port;
 1390                 }
 1391         } else {
 1392                 INP_LOCK_ASSERT(inp);
 1393                 faddr = inp->inp_faddr;
 1394                 fport = inp->inp_fport;
 1395                 if (faddr.s_addr == INADDR_ANY) {
 1396                         error = ENOTCONN;
 1397                         goto release;
 1398                 }
 1399         }
 1400 
 1401         /*
 1402          * Calculate data length and get a mbuf for UDP, IP, and possible
 1403          * link-layer headers.  Immediate slide the data pointer back forward
 1404          * since we won't use that space at this layer.
 1405          */
 1406         M_PREPEND(m, sizeof(struct udpiphdr) + max_linkhdr, M_NOWAIT);
 1407         if (m == NULL) {
 1408                 error = ENOBUFS;
 1409                 goto release;
 1410         }
 1411         m->m_data += max_linkhdr;
 1412         m->m_len -= max_linkhdr;
 1413         m->m_pkthdr.len -= max_linkhdr;
 1414 
 1415         /*
 1416          * Fill in mbuf with extended UDP header and addresses and length put
 1417          * into network format.
 1418          */
 1419         ui = mtod(m, struct udpiphdr *);
 1420         bzero(ui->ui_x1, sizeof(ui->ui_x1));    /* XXX still needed? */
 1421         ui->ui_pr = pr;
 1422         ui->ui_src = laddr;
 1423         ui->ui_dst = faddr;
 1424         ui->ui_sport = lport;
 1425         ui->ui_dport = fport;
 1426         ui->ui_ulen = htons((u_short)len + sizeof(struct udphdr));
 1427         if (pr == IPPROTO_UDPLITE) {
 1428                 struct udpcb *up;
 1429                 uint16_t plen;
 1430 
 1431                 up = intoudpcb(inp);
 1432                 cscov = up->u_txcslen;
 1433                 plen = (u_short)len + sizeof(struct udphdr);
 1434                 if (cscov >= plen)
 1435                         cscov = 0;
 1436                 ui->ui_len = htons(plen);
 1437                 ui->ui_ulen = htons(cscov);
 1438                 /*
 1439                  * For UDP-Lite, checksum coverage length of zero means
 1440                  * the entire UDPLite packet is covered by the checksum.
 1441                  */
 1442                 cscov_partial = (cscov == 0) ? 0 : 1;
 1443         } else
 1444                 ui->ui_v = IPVERSION << 4;
 1445 
 1446         /*
 1447          * Set the Don't Fragment bit in the IP header.
 1448          */
 1449         if (inp->inp_flags & INP_DONTFRAG) {
 1450                 struct ip *ip;
 1451 
 1452                 ip = (struct ip *)&ui->ui_i;
 1453                 ip->ip_off |= htons(IP_DF);
 1454         }
 1455 
 1456         ipflags = 0;
 1457         if (inp->inp_socket->so_options & SO_DONTROUTE)
 1458                 ipflags |= IP_ROUTETOIF;
 1459         if (inp->inp_socket->so_options & SO_BROADCAST)
 1460                 ipflags |= IP_ALLOWBROADCAST;
 1461         if (inp->inp_flags & INP_ONESBCAST)
 1462                 ipflags |= IP_SENDONES;
 1463 
 1464 #ifdef MAC
 1465         mac_inpcb_create_mbuf(inp, m);
 1466 #endif
 1467 
 1468         /*
 1469          * Set up checksum and output datagram.
 1470          */
 1471         ui->ui_sum = 0;
 1472         if (pr == IPPROTO_UDPLITE) {
 1473                 if (inp->inp_flags & INP_ONESBCAST)
 1474                         faddr.s_addr = INADDR_BROADCAST;
 1475                 if (cscov_partial) {
 1476                         if ((ui->ui_sum = in_cksum(m, sizeof(struct ip) + cscov)) == 0)
 1477                                 ui->ui_sum = 0xffff;
 1478                 } else {
 1479                         if ((ui->ui_sum = in_cksum(m, sizeof(struct udpiphdr) + len)) == 0)
 1480                                 ui->ui_sum = 0xffff;
 1481                 }
 1482         } else if (V_udp_cksum) {
 1483                 if (inp->inp_flags & INP_ONESBCAST)
 1484                         faddr.s_addr = INADDR_BROADCAST;
 1485                 ui->ui_sum = in_pseudo(ui->ui_src.s_addr, faddr.s_addr,
 1486                     htons((u_short)len + sizeof(struct udphdr) + pr));
 1487                 m->m_pkthdr.csum_flags = CSUM_UDP;
 1488                 m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum);
 1489         }
 1490         ((struct ip *)ui)->ip_len = htons(sizeof(struct udpiphdr) + len);
 1491         ((struct ip *)ui)->ip_ttl = inp->inp_ip_ttl;    /* XXX */
 1492         ((struct ip *)ui)->ip_tos = tos;                /* XXX */
 1493         UDPSTAT_INC(udps_opackets);
 1494 
 1495         /*
 1496          * Setup flowid / RSS information for outbound socket.
 1497          *
 1498          * Once the UDP code decides to set a flowid some other way,
 1499          * this allows the flowid to be overridden by userland.
 1500          */
 1501         if (flowtype != M_HASHTYPE_NONE) {
 1502                 m->m_pkthdr.flowid = flowid;
 1503                 M_HASHTYPE_SET(m, flowtype);
 1504 #ifdef  RSS
 1505         } else {
 1506                 uint32_t hash_val, hash_type;
 1507                 /*
 1508                  * Calculate an appropriate RSS hash for UDP and
 1509                  * UDP Lite.
 1510                  *
 1511                  * The called function will take care of figuring out
 1512                  * whether a 2-tuple or 4-tuple hash is required based
 1513                  * on the currently configured scheme.
 1514                  *
 1515                  * Later later on connected socket values should be
 1516                  * cached in the inpcb and reused, rather than constantly
 1517                  * re-calculating it.
 1518                  *
 1519                  * UDP Lite is a different protocol number and will
 1520                  * likely end up being hashed as a 2-tuple until
 1521                  * RSS / NICs grow UDP Lite protocol awareness.
 1522                  */
 1523                 if (rss_proto_software_hash_v4(faddr, laddr, fport, lport,
 1524                     pr, &hash_val, &hash_type) == 0) {
 1525                         m->m_pkthdr.flowid = hash_val;
 1526                         M_HASHTYPE_SET(m, hash_type);
 1527                 }
 1528 #endif
 1529         }
 1530 
 1531 #ifdef  RSS
 1532         /*
 1533          * Don't override with the inp cached flowid value.
 1534          *
 1535          * Depending upon the kind of send being done, the inp
 1536          * flowid/flowtype values may actually not be appropriate
 1537          * for this particular socket send.
 1538          *
 1539          * We should either leave the flowid at zero (which is what is
 1540          * currently done) or set it to some software generated
 1541          * hash value based on the packet contents.
 1542          */
 1543         ipflags |= IP_NODEFAULTFLOWID;
 1544 #endif  /* RSS */
 1545 
 1546         if (unlock_udbinfo == UH_WLOCKED)
 1547                 INP_HASH_WUNLOCK(pcbinfo);
 1548         else if (unlock_udbinfo == UH_RLOCKED)
 1549                 INP_HASH_RUNLOCK(pcbinfo);
 1550         UDP_PROBE(send, NULL, inp, &ui->ui_i, inp, &ui->ui_u);
 1551         error = ip_output(m, inp->inp_options,
 1552             (unlock_inp == UH_WLOCKED ? &inp->inp_route : NULL), ipflags,
 1553             inp->inp_moptions, inp);
 1554         if (unlock_inp == UH_WLOCKED)
 1555                 INP_WUNLOCK(inp);
 1556         else
 1557                 INP_RUNLOCK(inp);
 1558         return (error);
 1559 
 1560 release:
 1561         if (unlock_udbinfo == UH_WLOCKED) {
 1562                 INP_HASH_WUNLOCK(pcbinfo);
 1563                 INP_WUNLOCK(inp);
 1564         } else if (unlock_udbinfo == UH_RLOCKED) {
 1565                 INP_HASH_RUNLOCK(pcbinfo);
 1566                 INP_RUNLOCK(inp);
 1567         } else
 1568                 INP_RUNLOCK(inp);
 1569         m_freem(m);
 1570         return (error);
 1571 }
 1572 
 1573 
 1574 #if defined(IPSEC) && defined(IPSEC_NAT_T)
 1575 /*
 1576  * Potentially decap ESP in UDP frame.  Check for an ESP header
 1577  * and optional marker; if present, strip the UDP header and
 1578  * push the result through IPSec.
 1579  *
 1580  * Returns mbuf to be processed (potentially re-allocated) or
 1581  * NULL if consumed and/or processed.
 1582  */
 1583 static struct mbuf *
 1584 udp4_espdecap(struct inpcb *inp, struct mbuf *m, int off)
 1585 {
 1586         size_t minlen, payload, skip, iphlen;
 1587         caddr_t data;
 1588         struct udpcb *up;
 1589         struct m_tag *tag;
 1590         struct udphdr *udphdr;
 1591         struct ip *ip;
 1592 
 1593         INP_RLOCK_ASSERT(inp);
 1594 
 1595         /* 
 1596          * Pull up data so the longest case is contiguous:
 1597          *    IP/UDP hdr + non ESP marker + ESP hdr.
 1598          */
 1599         minlen = off + sizeof(uint64_t) + sizeof(struct esp);
 1600         if (minlen > m->m_pkthdr.len)
 1601                 minlen = m->m_pkthdr.len;
 1602         if ((m = m_pullup(m, minlen)) == NULL) {
 1603                 IPSECSTAT_INC(ips_in_inval);
 1604                 return (NULL);          /* Bypass caller processing. */
 1605         }
 1606         data = mtod(m, caddr_t);        /* Points to ip header. */
 1607         payload = m->m_len - off;       /* Size of payload. */
 1608 
 1609         if (payload == 1 && data[off] == '\xff')
 1610                 return (m);             /* NB: keepalive packet, no decap. */
 1611 
 1612         up = intoudpcb(inp);
 1613         KASSERT(up != NULL, ("%s: udpcb NULL", __func__));
 1614         KASSERT((up->u_flags & UF_ESPINUDP_ALL) != 0,
 1615             ("u_flags 0x%x", up->u_flags));
 1616 
 1617         /* 
 1618          * Check that the payload is large enough to hold an
 1619          * ESP header and compute the amount of data to remove.
 1620          *
 1621          * NB: the caller has already done a pullup for us.
 1622          * XXX can we assume alignment and eliminate bcopys?
 1623          */
 1624         if (up->u_flags & UF_ESPINUDP_NON_IKE) {
 1625                 /*
 1626                  * draft-ietf-ipsec-nat-t-ike-0[01].txt and
 1627                  * draft-ietf-ipsec-udp-encaps-(00/)01.txt, ignoring
 1628                  * possible AH mode non-IKE marker+non-ESP marker
 1629                  * from draft-ietf-ipsec-udp-encaps-00.txt.
 1630                  */
 1631                 uint64_t marker;
 1632 
 1633                 if (payload <= sizeof(uint64_t) + sizeof(struct esp))
 1634                         return (m);     /* NB: no decap. */
 1635                 bcopy(data + off, &marker, sizeof(uint64_t));
 1636                 if (marker != 0)        /* Non-IKE marker. */
 1637                         return (m);     /* NB: no decap. */
 1638                 skip = sizeof(uint64_t) + sizeof(struct udphdr);
 1639         } else {
 1640                 uint32_t spi;
 1641 
 1642                 if (payload <= sizeof(struct esp)) {
 1643                         IPSECSTAT_INC(ips_in_inval);
 1644                         m_freem(m);
 1645                         return (NULL);  /* Discard. */
 1646                 }
 1647                 bcopy(data + off, &spi, sizeof(uint32_t));
 1648                 if (spi == 0)           /* Non-ESP marker. */
 1649                         return (m);     /* NB: no decap. */
 1650                 skip = sizeof(struct udphdr);
 1651         }
 1652 
 1653         /*
 1654          * Setup a PACKET_TAG_IPSEC_NAT_T_PORT tag to remember
 1655          * the UDP ports. This is required if we want to select
 1656          * the right SPD for multiple hosts behind same NAT.
 1657          *
 1658          * NB: ports are maintained in network byte order everywhere
 1659          *     in the NAT-T code.
 1660          */
 1661         tag = m_tag_get(PACKET_TAG_IPSEC_NAT_T_PORTS,
 1662                 2 * sizeof(uint16_t), M_NOWAIT);
 1663         if (tag == NULL) {
 1664                 IPSECSTAT_INC(ips_in_nomem);
 1665                 m_freem(m);
 1666                 return (NULL);          /* Discard. */
 1667         }
 1668         iphlen = off - sizeof(struct udphdr);
 1669         udphdr = (struct udphdr *)(data + iphlen);
 1670         ((uint16_t *)(tag + 1))[0] = udphdr->uh_sport;
 1671         ((uint16_t *)(tag + 1))[1] = udphdr->uh_dport;
 1672         m_tag_prepend(m, tag);
 1673 
 1674         /*
 1675          * Remove the UDP header (and possibly the non ESP marker)
 1676          * IP header length is iphlen
 1677          * Before:
 1678          *   <--- off --->
 1679          *   +----+------+-----+
 1680          *   | IP |  UDP | ESP |
 1681          *   +----+------+-----+
 1682          *        <-skip->
 1683          * After:
 1684          *          +----+-----+
 1685          *          | IP | ESP |
 1686          *          +----+-----+
 1687          *   <-skip->
 1688          */
 1689         ovbcopy(data, data + skip, iphlen);
 1690         m_adj(m, skip);
 1691 
 1692         ip = mtod(m, struct ip *);
 1693         ip->ip_len = htons(ntohs(ip->ip_len) - skip);
 1694         ip->ip_p = IPPROTO_ESP;
 1695 
 1696         /*
 1697          * We cannot yet update the cksums so clear any
 1698          * h/w cksum flags as they are no longer valid.
 1699          */
 1700         if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID)
 1701                 m->m_pkthdr.csum_flags &= ~(CSUM_DATA_VALID|CSUM_PSEUDO_HDR);
 1702 
 1703         (void) ipsec_common_input(m, iphlen, offsetof(struct ip, ip_p),
 1704                                 AF_INET, ip->ip_p);
 1705         return (NULL);                  /* NB: consumed, bypass processing. */
 1706 }
 1707 #endif /* defined(IPSEC) && defined(IPSEC_NAT_T) */
 1708 
 1709 static void
 1710 udp_abort(struct socket *so)
 1711 {
 1712         struct inpcb *inp;
 1713         struct inpcbinfo *pcbinfo;
 1714 
 1715         pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol);
 1716         inp = sotoinpcb(so);
 1717         KASSERT(inp != NULL, ("udp_abort: inp == NULL"));
 1718         INP_WLOCK(inp);
 1719         if (inp->inp_faddr.s_addr != INADDR_ANY) {
 1720                 INP_HASH_WLOCK(pcbinfo);
 1721                 in_pcbdisconnect(inp);
 1722                 inp->inp_laddr.s_addr = INADDR_ANY;
 1723                 INP_HASH_WUNLOCK(pcbinfo);
 1724                 soisdisconnected(so);
 1725         }
 1726         INP_WUNLOCK(inp);
 1727 }
 1728 
 1729 static int
 1730 udp_attach(struct socket *so, int proto, struct thread *td)
 1731 {
 1732         struct inpcb *inp;
 1733         struct inpcbinfo *pcbinfo;
 1734         int error;
 1735 
 1736         pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol);
 1737         inp = sotoinpcb(so);
 1738         KASSERT(inp == NULL, ("udp_attach: inp != NULL"));
 1739         error = soreserve(so, udp_sendspace, udp_recvspace);
 1740         if (error)
 1741                 return (error);
 1742         INP_INFO_WLOCK(pcbinfo);
 1743         error = in_pcballoc(so, pcbinfo);
 1744         if (error) {
 1745                 INP_INFO_WUNLOCK(pcbinfo);
 1746                 return (error);
 1747         }
 1748 
 1749         inp = sotoinpcb(so);
 1750         inp->inp_vflag |= INP_IPV4;
 1751         inp->inp_ip_ttl = V_ip_defttl;
 1752 
 1753         error = udp_newudpcb(inp);
 1754         if (error) {
 1755                 in_pcbdetach(inp);
 1756                 in_pcbfree(inp);
 1757                 INP_INFO_WUNLOCK(pcbinfo);
 1758                 return (error);
 1759         }
 1760 
 1761         INP_WUNLOCK(inp);
 1762         INP_INFO_WUNLOCK(pcbinfo);
 1763         return (0);
 1764 }
 1765 #endif /* INET */
 1766 
 1767 int
 1768 udp_set_kernel_tunneling(struct socket *so, udp_tun_func_t f, udp_tun_icmp_t i, void *ctx)
 1769 {
 1770         struct inpcb *inp;
 1771         struct udpcb *up;
 1772 
 1773         KASSERT(so->so_type == SOCK_DGRAM,
 1774             ("udp_set_kernel_tunneling: !dgram"));
 1775         inp = sotoinpcb(so);
 1776         KASSERT(inp != NULL, ("udp_set_kernel_tunneling: inp == NULL"));
 1777         INP_WLOCK(inp);
 1778         up = intoudpcb(inp);
 1779         if ((up->u_tun_func != NULL) ||
 1780             (up->u_icmp_func != NULL)) {
 1781                 INP_WUNLOCK(inp);
 1782                 return (EBUSY);
 1783         }
 1784         up->u_tun_func = f;
 1785         up->u_icmp_func = i;
 1786         up->u_tun_ctx = ctx;
 1787         INP_WUNLOCK(inp);
 1788         return (0);
 1789 }
 1790 
 1791 #ifdef INET
 1792 static int
 1793 udp_bind(struct socket *so, struct sockaddr *nam, struct thread *td)
 1794 {
 1795         struct inpcb *inp;
 1796         struct inpcbinfo *pcbinfo;
 1797         int error;
 1798 
 1799         pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol);
 1800         inp = sotoinpcb(so);
 1801         KASSERT(inp != NULL, ("udp_bind: inp == NULL"));
 1802         INP_WLOCK(inp);
 1803         INP_HASH_WLOCK(pcbinfo);
 1804         error = in_pcbbind(inp, nam, td->td_ucred);
 1805         INP_HASH_WUNLOCK(pcbinfo);
 1806         INP_WUNLOCK(inp);
 1807         return (error);
 1808 }
 1809 
 1810 static void
 1811 udp_close(struct socket *so)
 1812 {
 1813         struct inpcb *inp;
 1814         struct inpcbinfo *pcbinfo;
 1815 
 1816         pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol);
 1817         inp = sotoinpcb(so);
 1818         KASSERT(inp != NULL, ("udp_close: inp == NULL"));
 1819         INP_WLOCK(inp);
 1820         if (inp->inp_faddr.s_addr != INADDR_ANY) {
 1821                 INP_HASH_WLOCK(pcbinfo);
 1822                 in_pcbdisconnect(inp);
 1823                 inp->inp_laddr.s_addr = INADDR_ANY;
 1824                 INP_HASH_WUNLOCK(pcbinfo);
 1825                 soisdisconnected(so);
 1826         }
 1827         INP_WUNLOCK(inp);
 1828 }
 1829 
 1830 static int
 1831 udp_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
 1832 {
 1833         struct inpcb *inp;
 1834         struct inpcbinfo *pcbinfo;
 1835         struct sockaddr_in *sin;
 1836         int error;
 1837 
 1838         pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol);
 1839         inp = sotoinpcb(so);
 1840         KASSERT(inp != NULL, ("udp_connect: inp == NULL"));
 1841         INP_WLOCK(inp);
 1842         if (inp->inp_faddr.s_addr != INADDR_ANY) {
 1843                 INP_WUNLOCK(inp);
 1844                 return (EISCONN);
 1845         }
 1846         sin = (struct sockaddr_in *)nam;
 1847         error = prison_remote_ip4(td->td_ucred, &sin->sin_addr);
 1848         if (error != 0) {
 1849                 INP_WUNLOCK(inp);
 1850                 return (error);
 1851         }
 1852         INP_HASH_WLOCK(pcbinfo);
 1853         error = in_pcbconnect(inp, nam, td->td_ucred);
 1854         INP_HASH_WUNLOCK(pcbinfo);
 1855         if (error == 0)
 1856                 soisconnected(so);
 1857         INP_WUNLOCK(inp);
 1858         return (error);
 1859 }
 1860 
 1861 static void
 1862 udp_detach(struct socket *so)
 1863 {
 1864         struct inpcb *inp;
 1865         struct inpcbinfo *pcbinfo;
 1866         struct udpcb *up;
 1867 
 1868         pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol);
 1869         inp = sotoinpcb(so);
 1870         KASSERT(inp != NULL, ("udp_detach: inp == NULL"));
 1871         KASSERT(inp->inp_faddr.s_addr == INADDR_ANY,
 1872             ("udp_detach: not disconnected"));
 1873         INP_INFO_WLOCK(pcbinfo);
 1874         INP_WLOCK(inp);
 1875         up = intoudpcb(inp);
 1876         KASSERT(up != NULL, ("%s: up == NULL", __func__));
 1877         inp->inp_ppcb = NULL;
 1878         in_pcbdetach(inp);
 1879         in_pcbfree(inp);
 1880         INP_INFO_WUNLOCK(pcbinfo);
 1881         udp_discardcb(up);
 1882 }
 1883 
 1884 static int
 1885 udp_disconnect(struct socket *so)
 1886 {
 1887         struct inpcb *inp;
 1888         struct inpcbinfo *pcbinfo;
 1889 
 1890         pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol);
 1891         inp = sotoinpcb(so);
 1892         KASSERT(inp != NULL, ("udp_disconnect: inp == NULL"));
 1893         INP_WLOCK(inp);
 1894         if (inp->inp_faddr.s_addr == INADDR_ANY) {
 1895                 INP_WUNLOCK(inp);
 1896                 return (ENOTCONN);
 1897         }
 1898         INP_HASH_WLOCK(pcbinfo);
 1899         in_pcbdisconnect(inp);
 1900         inp->inp_laddr.s_addr = INADDR_ANY;
 1901         INP_HASH_WUNLOCK(pcbinfo);
 1902         SOCK_LOCK(so);
 1903         so->so_state &= ~SS_ISCONNECTED;                /* XXX */
 1904         SOCK_UNLOCK(so);
 1905         INP_WUNLOCK(inp);
 1906         return (0);
 1907 }
 1908 
 1909 static int
 1910 udp_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *addr,
 1911     struct mbuf *control, struct thread *td)
 1912 {
 1913         struct inpcb *inp;
 1914 
 1915         inp = sotoinpcb(so);
 1916         KASSERT(inp != NULL, ("udp_send: inp == NULL"));
 1917         return (udp_output(inp, m, addr, control, td));
 1918 }
 1919 #endif /* INET */
 1920 
 1921 int
 1922 udp_shutdown(struct socket *so)
 1923 {
 1924         struct inpcb *inp;
 1925 
 1926         inp = sotoinpcb(so);
 1927         KASSERT(inp != NULL, ("udp_shutdown: inp == NULL"));
 1928         INP_WLOCK(inp);
 1929         socantsendmore(so);
 1930         INP_WUNLOCK(inp);
 1931         return (0);
 1932 }
 1933 
 1934 #ifdef INET
 1935 struct pr_usrreqs udp_usrreqs = {
 1936         .pru_abort =            udp_abort,
 1937         .pru_attach =           udp_attach,
 1938         .pru_bind =             udp_bind,
 1939         .pru_connect =          udp_connect,
 1940         .pru_control =          in_control,
 1941         .pru_detach =           udp_detach,
 1942         .pru_disconnect =       udp_disconnect,
 1943         .pru_peeraddr =         in_getpeeraddr,
 1944         .pru_send =             udp_send,
 1945         .pru_soreceive =        soreceive_dgram,
 1946         .pru_sosend =           sosend_dgram,
 1947         .pru_shutdown =         udp_shutdown,
 1948         .pru_sockaddr =         in_getsockaddr,
 1949         .pru_sosetlabel =       in_pcbsosetlabel,
 1950         .pru_close =            udp_close,
 1951 };
 1952 #endif /* INET */

Cache object: 4f44cf1047d83270eaf950f79670c262


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.