The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/netinet6/frag6.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: BSD-3-Clause
    3  *
    4  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
    5  * All rights reserved.
    6  * Copyright (c) 2019 Netflix, Inc.
    7  *
    8  * Redistribution and use in source and binary forms, with or without
    9  * modification, are permitted provided that the following conditions
   10  * are met:
   11  * 1. Redistributions of source code must retain the above copyright
   12  *    notice, this list of conditions and the following disclaimer.
   13  * 2. Redistributions in binary form must reproduce the above copyright
   14  *    notice, this list of conditions and the following disclaimer in the
   15  *    documentation and/or other materials provided with the distribution.
   16  * 3. Neither the name of the project nor the names of its contributors
   17  *    may be used to endorse or promote products derived from this software
   18  *    without specific prior written permission.
   19  *
   20  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
   21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
   24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   30  * SUCH DAMAGE.
   31  *
   32  *      $KAME: frag6.c,v 1.33 2002/01/07 11:34:48 kjc Exp $
   33  */
   34 
   35 #include <sys/cdefs.h>
   36 __FBSDID("$FreeBSD$");
   37 
   38 #include "opt_rss.h"
   39 
   40 #include <sys/param.h>
   41 #include <sys/systm.h>
   42 #include <sys/domain.h>
   43 #include <sys/eventhandler.h>
   44 #include <sys/hash.h>
   45 #include <sys/kernel.h>
   46 #include <sys/malloc.h>
   47 #include <sys/mbuf.h>
   48 #include <sys/protosw.h>
   49 #include <sys/queue.h>
   50 #include <sys/socket.h>
   51 #include <sys/sysctl.h>
   52 #include <sys/syslog.h>
   53 
   54 #include <net/if.h>
   55 #include <net/if_var.h>
   56 #include <net/netisr.h>
   57 #include <net/route.h>
   58 #include <net/vnet.h>
   59 
   60 #include <netinet/in.h>
   61 #include <netinet/in_var.h>
   62 #include <netinet/ip6.h>
   63 #include <netinet6/ip6_var.h>
   64 #include <netinet/icmp6.h>
   65 #include <netinet/in_systm.h>   /* For ECN definitions. */
   66 #include <netinet/ip.h>         /* For ECN definitions. */
   67 
   68 #ifdef MAC
   69 #include <security/mac/mac_framework.h>
   70 #endif
   71 
   72 /*
   73  * A "big picture" of how IPv6 fragment queues are all linked together.
   74  *
   75  * struct ip6qbucket ip6qb[...];                        hashed buckets
   76  * ||||||||
   77  * |
   78  * +--- TAILQ(struct ip6q, packets) *q6;                tailq entries holding
   79  *      ||||||||                                        fragmented packets
   80  *      |                                               (1 per original packet)
   81  *      |
   82  *      +--- TAILQ(struct ip6asfrag, ip6q_frags) *af6;  tailq entries of IPv6
   83  *           |                                   *ip6af;fragment packets
   84  *           |                                          for one original packet
   85  *           + *mbuf
   86  */
   87 
   88 /* Reassembly headers are stored in hash buckets. */
   89 #define IP6REASS_NHASH_LOG2     10
   90 #define IP6REASS_NHASH          (1 << IP6REASS_NHASH_LOG2)
   91 #define IP6REASS_HMASK          (IP6REASS_NHASH - 1)
   92 
   93 TAILQ_HEAD(ip6qhead, ip6q);
   94 struct ip6qbucket {
   95         struct ip6qhead packets;
   96         struct mtx      lock;
   97         int             count;
   98 };
   99 
  100 struct ip6asfrag {
  101         TAILQ_ENTRY(ip6asfrag) ip6af_tq;
  102         struct mbuf     *ip6af_m;
  103         int             ip6af_offset;   /* Offset in ip6af_m to next header. */
  104         int             ip6af_frglen;   /* Fragmentable part length. */
  105         int             ip6af_off;      /* Fragment offset. */
  106         bool            ip6af_mff;      /* More fragment bit in frag off. */
  107 };
  108 
  109 static MALLOC_DEFINE(M_FRAG6, "frag6", "IPv6 fragment reassembly header");
  110 
  111 #ifdef VIMAGE
  112 /* A flag to indicate if IPv6 fragmentation is initialized. */
  113 VNET_DEFINE_STATIC(bool,                frag6_on);
  114 #define V_frag6_on                      VNET(frag6_on)
  115 #endif
  116 
  117 /* System wide (global) maximum and count of packets in reassembly queues. */
  118 static int ip6_maxfrags;
  119 static u_int __exclusive_cache_line frag6_nfrags;
  120 
  121 /* Maximum and current packets in per-VNET reassembly queue. */
  122 VNET_DEFINE_STATIC(int,                 ip6_maxfragpackets);
  123 VNET_DEFINE_STATIC(volatile u_int,      frag6_nfragpackets);
  124 #define V_ip6_maxfragpackets            VNET(ip6_maxfragpackets)
  125 #define V_frag6_nfragpackets            VNET(frag6_nfragpackets)
  126 
  127 /* Maximum per-VNET reassembly queues per bucket and fragments per packet. */
  128 VNET_DEFINE_STATIC(int,                 ip6_maxfragbucketsize);
  129 VNET_DEFINE_STATIC(int,                 ip6_maxfragsperpacket);
  130 #define V_ip6_maxfragbucketsize         VNET(ip6_maxfragbucketsize)
  131 #define V_ip6_maxfragsperpacket         VNET(ip6_maxfragsperpacket)
  132 
  133 /* Per-VNET reassembly queue buckets. */
  134 VNET_DEFINE_STATIC(struct ip6qbucket,   ip6qb[IP6REASS_NHASH]);
  135 VNET_DEFINE_STATIC(uint32_t,            ip6qb_hashseed);
  136 #define V_ip6qb                         VNET(ip6qb)
  137 #define V_ip6qb_hashseed                VNET(ip6qb_hashseed)
  138 
  139 #define IP6QB_LOCK(_b)          mtx_lock(&V_ip6qb[(_b)].lock)
  140 #define IP6QB_TRYLOCK(_b)       mtx_trylock(&V_ip6qb[(_b)].lock)
  141 #define IP6QB_LOCK_ASSERT(_b)   mtx_assert(&V_ip6qb[(_b)].lock, MA_OWNED)
  142 #define IP6QB_UNLOCK(_b)        mtx_unlock(&V_ip6qb[(_b)].lock)
  143 #define IP6QB_HEAD(_b)          (&V_ip6qb[(_b)].packets)
  144 
  145 /*
  146  * By default, limit the number of IP6 fragments across all reassembly
  147  * queues to  1/32 of the total number of mbuf clusters.
  148  *
  149  * Limit the total number of reassembly queues per VNET to the
  150  * IP6 fragment limit, but ensure the limit will not allow any bucket
  151  * to grow above 100 items. (The bucket limit is
  152  * IP_MAXFRAGPACKETS / (IPREASS_NHASH / 2), so the 50 is the correct
  153  * multiplier to reach a 100-item limit.)
  154  * The 100-item limit was chosen as brief testing seems to show that
  155  * this produces "reasonable" performance on some subset of systems
  156  * under DoS attack.
  157  */
  158 #define IP6_MAXFRAGS            (nmbclusters / 32)
  159 #define IP6_MAXFRAGPACKETS      (imin(IP6_MAXFRAGS, IP6REASS_NHASH * 50))
  160 
  161 
  162 /*
  163  * Sysctls and helper function.
  164  */
  165 SYSCTL_DECL(_net_inet6_ip6);
  166 
  167 SYSCTL_UINT(_net_inet6_ip6, OID_AUTO, frag6_nfrags,
  168         CTLFLAG_RD, &frag6_nfrags, 0,
  169         "Global number of IPv6 fragments across all reassembly queues.");
  170 
  171 static void
  172 frag6_set_bucketsize(void)
  173 {
  174         int i;
  175 
  176         if ((i = V_ip6_maxfragpackets) > 0)
  177                 V_ip6_maxfragbucketsize = imax(i / (IP6REASS_NHASH / 2), 1);
  178 }
  179 
  180 SYSCTL_INT(_net_inet6_ip6, IPV6CTL_MAXFRAGS, maxfrags,
  181         CTLFLAG_RW, &ip6_maxfrags, 0,
  182         "Maximum allowed number of outstanding IPv6 packet fragments. "
  183         "A value of 0 means no fragmented packets will be accepted, while "
  184         "a value of -1 means no limit");
  185 
  186 static int
  187 sysctl_ip6_maxfragpackets(SYSCTL_HANDLER_ARGS)
  188 {
  189         int error, val;
  190 
  191         val = V_ip6_maxfragpackets;
  192         error = sysctl_handle_int(oidp, &val, 0, req);
  193         if (error != 0 || !req->newptr)
  194                 return (error);
  195         V_ip6_maxfragpackets = val;
  196         frag6_set_bucketsize();
  197         return (0);
  198 }
  199 SYSCTL_PROC(_net_inet6_ip6, IPV6CTL_MAXFRAGPACKETS, maxfragpackets,
  200         CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, NULL, 0,
  201         sysctl_ip6_maxfragpackets, "I",
  202         "Default maximum number of outstanding fragmented IPv6 packets. "
  203         "A value of 0 means no fragmented packets will be accepted, while a "
  204         "a value of -1 means no limit");
  205 SYSCTL_UINT(_net_inet6_ip6, OID_AUTO, frag6_nfragpackets,
  206         CTLFLAG_VNET | CTLFLAG_RD,
  207         __DEVOLATILE(u_int *, &VNET_NAME(frag6_nfragpackets)), 0,
  208         "Per-VNET number of IPv6 fragments across all reassembly queues.");
  209 SYSCTL_INT(_net_inet6_ip6, IPV6CTL_MAXFRAGSPERPACKET, maxfragsperpacket,
  210         CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ip6_maxfragsperpacket), 0,
  211         "Maximum allowed number of fragments per packet");
  212 SYSCTL_INT(_net_inet6_ip6, IPV6CTL_MAXFRAGBUCKETSIZE, maxfragbucketsize,
  213         CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ip6_maxfragbucketsize), 0,
  214         "Maximum number of reassembly queues per hash bucket");
  215 
  216 
  217 /*
  218  * Remove the IPv6 fragmentation header from the mbuf.
  219  */
  220 int
  221 ip6_deletefraghdr(struct mbuf *m, int offset, int wait __unused)
  222 {
  223         struct ip6_hdr *ip6;
  224 
  225         KASSERT(m->m_len >= offset + sizeof(struct ip6_frag),
  226             ("%s: ext headers not contigous in mbuf %p m_len %d >= "
  227             "offset %d + %zu\n", __func__, m, m->m_len, offset,
  228             sizeof(struct ip6_frag)));
  229 
  230         /* Delete frag6 header. */
  231         ip6 = mtod(m, struct ip6_hdr *);
  232         bcopy(ip6, (char *)ip6 + sizeof(struct ip6_frag), offset);
  233         m->m_data += sizeof(struct ip6_frag);
  234         m->m_len -= sizeof(struct ip6_frag);
  235         m->m_flags |= M_FRAGMENTED;
  236 
  237         return (0);
  238 }
  239 
  240 /*
  241  * Free a fragment reassembly header and all associated datagrams.
  242  */
  243 static void
  244 frag6_freef(struct ip6q *q6, uint32_t bucket)
  245 {
  246         struct ip6_hdr *ip6;
  247         struct ip6asfrag *af6;
  248         struct mbuf *m;
  249 
  250         IP6QB_LOCK_ASSERT(bucket);
  251 
  252         while ((af6 = TAILQ_FIRST(&q6->ip6q_frags)) != NULL) {
  253 
  254                 m = af6->ip6af_m;
  255                 TAILQ_REMOVE(&q6->ip6q_frags, af6, ip6af_tq);
  256 
  257                 /*
  258                  * Return ICMP time exceeded error for the 1st fragment.
  259                  * Just free other fragments.
  260                  */
  261                 if (af6->ip6af_off == 0 && m->m_pkthdr.rcvif != NULL) {
  262 
  263                         /* Adjust pointer. */
  264                         ip6 = mtod(m, struct ip6_hdr *);
  265 
  266                         /* Restore source and destination addresses. */
  267                         ip6->ip6_src = q6->ip6q_src;
  268                         ip6->ip6_dst = q6->ip6q_dst;
  269 
  270                         icmp6_error(m, ICMP6_TIME_EXCEEDED,
  271                             ICMP6_TIME_EXCEED_REASSEMBLY, 0);
  272                 } else
  273                         m_freem(m);
  274 
  275                 free(af6, M_FRAG6);
  276         }
  277 
  278         TAILQ_REMOVE(IP6QB_HEAD(bucket), q6, ip6q_tq);
  279         V_ip6qb[bucket].count--;
  280         atomic_subtract_int(&frag6_nfrags, q6->ip6q_nfrag);
  281 #ifdef MAC
  282         mac_ip6q_destroy(q6);
  283 #endif
  284         free(q6, M_FRAG6);
  285         atomic_subtract_int(&V_frag6_nfragpackets, 1);
  286 }
  287 
  288 /*
  289  * Drain off all datagram fragments belonging to
  290  * the given network interface.
  291  */
  292 static void
  293 frag6_cleanup(void *arg __unused, struct ifnet *ifp)
  294 {
  295         struct ip6qhead *head;
  296         struct ip6q *q6;
  297         struct ip6asfrag *af6;
  298         uint32_t bucket;
  299 
  300         KASSERT(ifp != NULL, ("%s: ifp is NULL", __func__));
  301 
  302         CURVNET_SET_QUIET(ifp->if_vnet);
  303 #ifdef VIMAGE
  304         /*
  305          * Skip processing if IPv6 reassembly is not initialised or
  306          * torn down by frag6_destroy().
  307          */
  308         if (!V_frag6_on) {
  309                 CURVNET_RESTORE();
  310                 return;
  311         }
  312 #endif
  313 
  314         for (bucket = 0; bucket < IP6REASS_NHASH; bucket++) {
  315                 IP6QB_LOCK(bucket);
  316                 head = IP6QB_HEAD(bucket);
  317                 /* Scan fragment list. */
  318                 TAILQ_FOREACH(q6, head, ip6q_tq) {
  319                         TAILQ_FOREACH(af6, &q6->ip6q_frags, ip6af_tq) {
  320 
  321                                 /* Clear no longer valid rcvif pointer. */
  322                                 if (af6->ip6af_m->m_pkthdr.rcvif == ifp)
  323                                         af6->ip6af_m->m_pkthdr.rcvif = NULL;
  324                         }
  325                 }
  326                 IP6QB_UNLOCK(bucket);
  327         }
  328         CURVNET_RESTORE();
  329 }
  330 EVENTHANDLER_DEFINE(ifnet_departure_event, frag6_cleanup, NULL, 0);
  331 
  332 /*
  333  * Like in RFC2460, in RFC8200, fragment and reassembly rules do not agree with
  334  * each other, in terms of next header field handling in fragment header.
  335  * While the sender will use the same value for all of the fragmented packets,
  336  * receiver is suggested not to check for consistency.
  337  *
  338  * Fragment rules (p18,p19):
  339  *      (2)  A Fragment header containing:
  340  *      The Next Header value that identifies the first header
  341  *      after the Per-Fragment headers of the original packet.
  342  *              -> next header field is same for all fragments
  343  *
  344  * Reassembly rule (p20):
  345  *      The Next Header field of the last header of the Per-Fragment
  346  *      headers is obtained from the Next Header field of the first
  347  *      fragment's Fragment header.
  348  *              -> should grab it from the first fragment only
  349  *
  350  * The following note also contradicts with fragment rule - no one is going to
  351  * send different fragment with different next header field.
  352  *
  353  * Additional note (p22) [not an error]:
  354  *      The Next Header values in the Fragment headers of different
  355  *      fragments of the same original packet may differ.  Only the value
  356  *      from the Offset zero fragment packet is used for reassembly.
  357  *              -> should grab it from the first fragment only
  358  *
  359  * There is no explicit reason given in the RFC.  Historical reason maybe?
  360  */
  361 /*
  362  * Fragment input.
  363  */
  364 int
  365 frag6_input(struct mbuf **mp, int *offp, int proto)
  366 {
  367         struct mbuf *m, *t;
  368         struct ip6_hdr *ip6;
  369         struct ip6_frag *ip6f;
  370         struct ip6qhead *head;
  371         struct ip6q *q6;
  372         struct ip6asfrag *af6, *ip6af, *af6tmp;
  373         struct in6_ifaddr *ia6;
  374         struct ifnet *dstifp, *srcifp;
  375         uint32_t hashkey[(sizeof(struct in6_addr) * 2 +
  376                     sizeof(ip6f->ip6f_ident)) / sizeof(uint32_t)];
  377         uint32_t bucket, *hashkeyp;
  378         int fragoff, frgpartlen;        /* Must be larger than uint16_t. */
  379         int nxt, offset, plen;
  380         uint8_t ecn, ecn0;
  381         bool only_frag;
  382 #ifdef RSS
  383         struct ip6_direct_ctx *ip6dc;
  384         struct m_tag *mtag;
  385 #endif
  386 
  387         m = *mp;
  388         offset = *offp;
  389 
  390         M_ASSERTPKTHDR(m);
  391 
  392         if (m->m_len < offset + sizeof(struct ip6_frag)) {
  393                 m = m_pullup(m, offset + sizeof(struct ip6_frag));
  394                 if (m == NULL) {
  395                         IP6STAT_INC(ip6s_exthdrtoolong);
  396                         *mp = NULL;
  397                         return (IPPROTO_DONE);
  398                 }
  399         }
  400         ip6 = mtod(m, struct ip6_hdr *);
  401 
  402         dstifp = NULL;
  403         /* Find the destination interface of the packet. */
  404         ia6 = in6ifa_ifwithaddr(&ip6->ip6_dst, 0 /* XXX */);
  405         if (ia6 != NULL) {
  406                 dstifp = ia6->ia_ifp;
  407                 ifa_free(&ia6->ia_ifa);
  408         }
  409 
  410         /* Jumbo payload cannot contain a fragment header. */
  411         if (ip6->ip6_plen == 0) {
  412                 icmp6_error(m, ICMP6_PARAM_PROB, ICMP6_PARAMPROB_HEADER, offset);
  413                 in6_ifstat_inc(dstifp, ifs6_reass_fail);
  414                 *mp = NULL;
  415                 return (IPPROTO_DONE);
  416         }
  417 
  418         /*
  419          * Check whether fragment packet's fragment length is a
  420          * multiple of 8 octets (unless it is the last one).
  421          * sizeof(struct ip6_frag) == 8
  422          * sizeof(struct ip6_hdr) = 40
  423          */
  424         ip6f = (struct ip6_frag *)((caddr_t)ip6 + offset);
  425         if ((ip6f->ip6f_offlg & IP6F_MORE_FRAG) &&
  426             (((ntohs(ip6->ip6_plen) - offset) & 0x7) != 0)) {
  427                 icmp6_error(m, ICMP6_PARAM_PROB, ICMP6_PARAMPROB_HEADER,
  428                     offsetof(struct ip6_hdr, ip6_plen));
  429                 in6_ifstat_inc(dstifp, ifs6_reass_fail);
  430                 *mp = NULL;
  431                 return (IPPROTO_DONE);
  432         }
  433 
  434         IP6STAT_INC(ip6s_fragments);
  435         in6_ifstat_inc(dstifp, ifs6_reass_reqd);
  436 
  437         /*
  438          * Handle "atomic" fragments (offset and m bit set to 0) upfront,
  439          * unrelated to any reassembly.  We need to remove the frag hdr
  440          * which is ugly.
  441          * See RFC 6946 and section 4.5 of RFC 8200.
  442          */
  443         if ((ip6f->ip6f_offlg & ~IP6F_RESERVED_MASK) == 0) {
  444                 IP6STAT_INC(ip6s_atomicfrags);
  445                 nxt = ip6f->ip6f_nxt;
  446                 /*
  447                  * Set nxt(-hdr field value) to the original value.
  448                  * We cannot just set ip6->ip6_nxt as there might be
  449                  * an unfragmentable part with extension headers and
  450                  * we must update the last one.
  451                  */
  452                 m_copyback(m, ip6_get_prevhdr(m, offset), sizeof(uint8_t),
  453                     (caddr_t)&nxt);
  454                 ip6->ip6_plen = htons(ntohs(ip6->ip6_plen) -
  455                     sizeof(struct ip6_frag));
  456                 if (ip6_deletefraghdr(m, offset, M_NOWAIT) != 0)
  457                         goto dropfrag2;
  458                 m->m_pkthdr.len -= sizeof(struct ip6_frag);
  459                 in6_ifstat_inc(dstifp, ifs6_reass_ok);
  460                 *mp = m;
  461                 return (nxt);
  462         }
  463 
  464         /* Offset now points to data portion. */
  465         offset += sizeof(struct ip6_frag);
  466 
  467         /* Get fragment length and discard 0-byte fragments. */
  468         frgpartlen = sizeof(struct ip6_hdr) + ntohs(ip6->ip6_plen) - offset;
  469         if (frgpartlen == 0) {
  470                 icmp6_error(m, ICMP6_PARAM_PROB, ICMP6_PARAMPROB_HEADER,
  471                     offsetof(struct ip6_hdr, ip6_plen));
  472                 in6_ifstat_inc(dstifp, ifs6_reass_fail);
  473                 IP6STAT_INC(ip6s_fragdropped);
  474                 *mp = NULL;
  475                 return (IPPROTO_DONE);
  476         }
  477 
  478         /*
  479          * Enforce upper bound on number of fragments for the entire system.
  480          * If maxfrag is 0, never accept fragments.
  481          * If maxfrag is -1, accept all fragments without limitation.
  482          */
  483         if (ip6_maxfrags < 0)
  484                 ;
  485         else if (atomic_load_int(&frag6_nfrags) >= (u_int)ip6_maxfrags)
  486                 goto dropfrag2;
  487 
  488         /*
  489          * Validate that a full header chain to the ULP is present in the
  490          * packet containing the first fragment as per RFC RFC7112 and
  491          * RFC 8200 pages 18,19:
  492          * The first fragment packet is composed of:
  493          * (3)  Extension headers, if any, and the Upper-Layer header.  These
  494          *      headers must be in the first fragment.  ...
  495          */
  496         fragoff = ntohs(ip6f->ip6f_offlg & IP6F_OFF_MASK);
  497         /* XXX TODO.  thj has D16851 open for this. */
  498         /* Send ICMPv6 4,3 in case of violation. */
  499 
  500         /* Store receive network interface pointer for later. */
  501         srcifp = m->m_pkthdr.rcvif;
  502 
  503         /* Generate a hash value for fragment bucket selection. */
  504         hashkeyp = hashkey;
  505         memcpy(hashkeyp, &ip6->ip6_src, sizeof(struct in6_addr));
  506         hashkeyp += sizeof(struct in6_addr) / sizeof(*hashkeyp);
  507         memcpy(hashkeyp, &ip6->ip6_dst, sizeof(struct in6_addr));
  508         hashkeyp += sizeof(struct in6_addr) / sizeof(*hashkeyp);
  509         *hashkeyp = ip6f->ip6f_ident;
  510         bucket = jenkins_hash32(hashkey, nitems(hashkey), V_ip6qb_hashseed);
  511         bucket &= IP6REASS_HMASK;
  512         IP6QB_LOCK(bucket);
  513         head = IP6QB_HEAD(bucket);
  514 
  515         TAILQ_FOREACH(q6, head, ip6q_tq)
  516                 if (ip6f->ip6f_ident == q6->ip6q_ident &&
  517                     IN6_ARE_ADDR_EQUAL(&ip6->ip6_src, &q6->ip6q_src) &&
  518                     IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst, &q6->ip6q_dst)
  519 #ifdef MAC
  520                     && mac_ip6q_match(m, q6)
  521 #endif
  522                     )
  523                         break;
  524 
  525         only_frag = false;
  526         if (q6 == NULL) {
  527 
  528                 /* A first fragment to arrive creates a reassembly queue. */
  529                 only_frag = true;
  530 
  531                 /*
  532                  * Enforce upper bound on number of fragmented packets
  533                  * for which we attempt reassembly;
  534                  * If maxfragpackets is 0, never accept fragments.
  535                  * If maxfragpackets is -1, accept all fragments without
  536                  * limitation.
  537                  */
  538                 if (V_ip6_maxfragpackets < 0)
  539                         ;
  540                 else if (V_ip6qb[bucket].count >= V_ip6_maxfragbucketsize ||
  541                     atomic_load_int(&V_frag6_nfragpackets) >=
  542                     (u_int)V_ip6_maxfragpackets)
  543                         goto dropfrag;
  544 
  545                 /* Allocate IPv6 fragement packet queue entry. */
  546                 q6 = (struct ip6q *)malloc(sizeof(struct ip6q), M_FRAG6,
  547                     M_NOWAIT | M_ZERO);
  548                 if (q6 == NULL)
  549                         goto dropfrag;
  550 #ifdef MAC
  551                 if (mac_ip6q_init(q6, M_NOWAIT) != 0) {
  552                         free(q6, M_FRAG6);
  553                         goto dropfrag;
  554                 }
  555                 mac_ip6q_create(m, q6);
  556 #endif
  557                 atomic_add_int(&V_frag6_nfragpackets, 1);
  558 
  559                 /* ip6q_nxt will be filled afterwards, from 1st fragment. */
  560                 TAILQ_INIT(&q6->ip6q_frags);
  561                 q6->ip6q_ident  = ip6f->ip6f_ident;
  562                 q6->ip6q_ttl    = IPV6_FRAGTTL;
  563                 q6->ip6q_src    = ip6->ip6_src;
  564                 q6->ip6q_dst    = ip6->ip6_dst;
  565                 q6->ip6q_ecn    =
  566                     (ntohl(ip6->ip6_flow) >> 20) & IPTOS_ECN_MASK;
  567                 q6->ip6q_unfrglen = -1; /* The 1st fragment has not arrived. */
  568 
  569                 /* Add the fragemented packet to the bucket. */
  570                 TAILQ_INSERT_HEAD(head, q6, ip6q_tq);
  571                 V_ip6qb[bucket].count++;
  572         }
  573 
  574         /*
  575          * If it is the 1st fragment, record the length of the
  576          * unfragmentable part and the next header of the fragment header.
  577          * Assume the first 1st fragement to arrive will be correct.
  578          * We do not have any duplicate checks here yet so another packet
  579          * with fragoff == 0 could come and overwrite the ip6q_unfrglen
  580          * and worse, the next header, at any time.
  581          */
  582         if (fragoff == 0 && q6->ip6q_unfrglen == -1) {
  583                 q6->ip6q_unfrglen = offset - sizeof(struct ip6_hdr) -
  584                     sizeof(struct ip6_frag);
  585                 q6->ip6q_nxt = ip6f->ip6f_nxt;
  586                 /* XXX ECN? */
  587         }
  588 
  589         /*
  590          * Check that the reassembled packet would not exceed 65535 bytes
  591          * in size.
  592          * If it would exceed, discard the fragment and return an ICMP error.
  593          */
  594         if (q6->ip6q_unfrglen >= 0) {
  595                 /* The 1st fragment has already arrived. */
  596                 if (q6->ip6q_unfrglen + fragoff + frgpartlen > IPV6_MAXPACKET) {
  597                         if (only_frag) {
  598                                 TAILQ_REMOVE(head, q6, ip6q_tq);
  599                                 V_ip6qb[bucket].count--;
  600                                 atomic_subtract_int(&V_frag6_nfragpackets, 1);
  601 #ifdef MAC
  602                                 mac_ip6q_destroy(q6);
  603 #endif
  604                                 free(q6, M_FRAG6);
  605                         }
  606                         IP6QB_UNLOCK(bucket);
  607                         icmp6_error(m, ICMP6_PARAM_PROB, ICMP6_PARAMPROB_HEADER,
  608                             offset - sizeof(struct ip6_frag) +
  609                             offsetof(struct ip6_frag, ip6f_offlg));
  610                         *mp = NULL;
  611                         return (IPPROTO_DONE);
  612                 }
  613         } else if (fragoff + frgpartlen > IPV6_MAXPACKET) {
  614                 if (only_frag) {
  615                         TAILQ_REMOVE(head, q6, ip6q_tq);
  616                         V_ip6qb[bucket].count--;
  617                         atomic_subtract_int(&V_frag6_nfragpackets, 1);
  618 #ifdef MAC
  619                         mac_ip6q_destroy(q6);
  620 #endif
  621                         free(q6, M_FRAG6);
  622                 }
  623                 IP6QB_UNLOCK(bucket);
  624                 icmp6_error(m, ICMP6_PARAM_PROB, ICMP6_PARAMPROB_HEADER,
  625                     offset - sizeof(struct ip6_frag) +
  626                     offsetof(struct ip6_frag, ip6f_offlg));
  627                 *mp = NULL;
  628                 return (IPPROTO_DONE);
  629         }
  630 
  631         /*
  632          * If it is the first fragment, do the above check for each
  633          * fragment already stored in the reassembly queue.
  634          */
  635         if (fragoff == 0 && !only_frag) {
  636                 TAILQ_FOREACH_SAFE(af6, &q6->ip6q_frags, ip6af_tq, af6tmp) {
  637 
  638                         if (q6->ip6q_unfrglen + af6->ip6af_off +
  639                             af6->ip6af_frglen > IPV6_MAXPACKET) {
  640                                 struct ip6_hdr *ip6err;
  641                                 struct mbuf *merr;
  642                                 int erroff;
  643 
  644                                 merr = af6->ip6af_m;
  645                                 erroff = af6->ip6af_offset;
  646 
  647                                 /* Dequeue the fragment. */
  648                                 TAILQ_REMOVE(&q6->ip6q_frags, af6, ip6af_tq);
  649                                 q6->ip6q_nfrag--;
  650                                 atomic_subtract_int(&frag6_nfrags, 1);
  651                                 free(af6, M_FRAG6);
  652 
  653                                 /* Set a valid receive interface pointer. */
  654                                 merr->m_pkthdr.rcvif = srcifp;
  655 
  656                                 /* Adjust pointer. */
  657                                 ip6err = mtod(merr, struct ip6_hdr *);
  658 
  659                                 /*
  660                                  * Restore source and destination addresses
  661                                  * in the erroneous IPv6 header.
  662                                  */
  663                                 ip6err->ip6_src = q6->ip6q_src;
  664                                 ip6err->ip6_dst = q6->ip6q_dst;
  665 
  666                                 icmp6_error(merr, ICMP6_PARAM_PROB,
  667                                     ICMP6_PARAMPROB_HEADER,
  668                                     erroff - sizeof(struct ip6_frag) +
  669                                     offsetof(struct ip6_frag, ip6f_offlg));
  670                         }
  671                 }
  672         }
  673 
  674         /* Allocate an IPv6 fragement queue entry for this fragmented part. */
  675         ip6af = (struct ip6asfrag *)malloc(sizeof(struct ip6asfrag), M_FRAG6,
  676             M_NOWAIT | M_ZERO);
  677         if (ip6af == NULL)
  678                 goto dropfrag;
  679         ip6af->ip6af_mff = (ip6f->ip6f_offlg & IP6F_MORE_FRAG) ? true : false;
  680         ip6af->ip6af_off = fragoff;
  681         ip6af->ip6af_frglen = frgpartlen;
  682         ip6af->ip6af_offset = offset;
  683         ip6af->ip6af_m = m;
  684 
  685         if (only_frag) {
  686                 /*
  687                  * Do a manual insert rather than a hard-to-understand cast
  688                  * to a different type relying on data structure order to work.
  689                  */
  690                 TAILQ_INSERT_HEAD(&q6->ip6q_frags, ip6af, ip6af_tq);
  691                 goto postinsert;
  692         }
  693 
  694         /* Do duplicate, condition, and boundry checks. */
  695         /*
  696          * Handle ECN by comparing this segment with the first one;
  697          * if CE is set, do not lose CE.
  698          * Drop if CE and not-ECT are mixed for the same packet.
  699          */
  700         ecn = (ntohl(ip6->ip6_flow) >> 20) & IPTOS_ECN_MASK;
  701         ecn0 = q6->ip6q_ecn;
  702         if (ecn == IPTOS_ECN_CE) {
  703                 if (ecn0 == IPTOS_ECN_NOTECT) {
  704                         free(ip6af, M_FRAG6);
  705                         goto dropfrag;
  706                 }
  707                 if (ecn0 != IPTOS_ECN_CE)
  708                         q6->ip6q_ecn = IPTOS_ECN_CE;
  709         }
  710         if (ecn == IPTOS_ECN_NOTECT && ecn0 != IPTOS_ECN_NOTECT) {
  711                 free(ip6af, M_FRAG6);
  712                 goto dropfrag;
  713         }
  714 
  715         /* Find a fragmented part which begins after this one does. */
  716         TAILQ_FOREACH(af6, &q6->ip6q_frags, ip6af_tq)
  717                 if (af6->ip6af_off > ip6af->ip6af_off)
  718                         break;
  719 
  720         /*
  721          * If the incoming framgent overlaps some existing fragments in
  722          * the reassembly queue, drop both the new fragment and the
  723          * entire reassembly queue.  However, if the new fragment
  724          * is an exact duplicate of an existing fragment, only silently
  725          * drop the existing fragment and leave the fragmentation queue
  726          * unchanged, as allowed by the RFC.  (RFC 8200, 4.5)
  727          */
  728         if (af6 != NULL)
  729                 af6tmp = TAILQ_PREV(af6, ip6fraghead, ip6af_tq);
  730         else
  731                 af6tmp = TAILQ_LAST(&q6->ip6q_frags, ip6fraghead);
  732         if (af6tmp != NULL) {
  733                 if (af6tmp->ip6af_off + af6tmp->ip6af_frglen -
  734                     ip6af->ip6af_off > 0) {
  735                         if (af6tmp->ip6af_off != ip6af->ip6af_off ||
  736                             af6tmp->ip6af_frglen != ip6af->ip6af_frglen)
  737                                 frag6_freef(q6, bucket);
  738                         free(ip6af, M_FRAG6);
  739                         goto dropfrag;
  740                 }
  741         }
  742         if (af6 != NULL) {
  743                 if (ip6af->ip6af_off + ip6af->ip6af_frglen -
  744                     af6->ip6af_off > 0) {
  745                         if (af6->ip6af_off != ip6af->ip6af_off ||
  746                             af6->ip6af_frglen != ip6af->ip6af_frglen)
  747                                 frag6_freef(q6, bucket);
  748                         free(ip6af, M_FRAG6);
  749                         goto dropfrag;
  750                 }
  751         }
  752 
  753 #ifdef MAC
  754         mac_ip6q_update(m, q6);
  755 #endif
  756 
  757         /*
  758          * Stick new segment in its place; check for complete reassembly.
  759          * If not complete, check fragment limit.  Move to front of packet
  760          * queue, as we are the most recently active fragmented packet.
  761          */
  762         if (af6 != NULL)
  763                 TAILQ_INSERT_BEFORE(af6, ip6af, ip6af_tq);
  764         else
  765                 TAILQ_INSERT_TAIL(&q6->ip6q_frags, ip6af, ip6af_tq);
  766 postinsert:
  767         atomic_add_int(&frag6_nfrags, 1);
  768         q6->ip6q_nfrag++;
  769 
  770         plen = 0;
  771         TAILQ_FOREACH(af6, &q6->ip6q_frags, ip6af_tq) {
  772                 if (af6->ip6af_off != plen) {
  773                         if (q6->ip6q_nfrag > V_ip6_maxfragsperpacket) {
  774                                 IP6STAT_ADD(ip6s_fragdropped, q6->ip6q_nfrag);
  775                                 frag6_freef(q6, bucket);
  776                         }
  777                         IP6QB_UNLOCK(bucket);
  778                         *mp = NULL;
  779                         return (IPPROTO_DONE);
  780                 }
  781                 plen += af6->ip6af_frglen;
  782         }
  783         af6 = TAILQ_LAST(&q6->ip6q_frags, ip6fraghead);
  784         if (af6->ip6af_mff) {
  785                 if (q6->ip6q_nfrag > V_ip6_maxfragsperpacket) {
  786                         IP6STAT_ADD(ip6s_fragdropped, q6->ip6q_nfrag);
  787                         frag6_freef(q6, bucket);
  788                 }
  789                 IP6QB_UNLOCK(bucket);
  790                 *mp = NULL;
  791                 return (IPPROTO_DONE);
  792         }
  793 
  794         /* Reassembly is complete; concatenate fragments. */
  795         ip6af = TAILQ_FIRST(&q6->ip6q_frags);
  796         t = m = ip6af->ip6af_m;
  797         TAILQ_REMOVE(&q6->ip6q_frags, ip6af, ip6af_tq);
  798         while ((af6 = TAILQ_FIRST(&q6->ip6q_frags)) != NULL) {
  799                 m->m_pkthdr.csum_flags &=
  800                     af6->ip6af_m->m_pkthdr.csum_flags;
  801                 m->m_pkthdr.csum_data +=
  802                     af6->ip6af_m->m_pkthdr.csum_data;
  803 
  804                 TAILQ_REMOVE(&q6->ip6q_frags, af6, ip6af_tq);
  805                 t = m_last(t);
  806                 m_adj(af6->ip6af_m, af6->ip6af_offset);
  807                 m_demote_pkthdr(af6->ip6af_m);
  808                 m_cat(t, af6->ip6af_m);
  809                 free(af6, M_FRAG6);
  810         }
  811 
  812         while (m->m_pkthdr.csum_data & 0xffff0000)
  813                 m->m_pkthdr.csum_data = (m->m_pkthdr.csum_data & 0xffff) +
  814                     (m->m_pkthdr.csum_data >> 16);
  815 
  816         /* Adjust offset to point where the original next header starts. */
  817         offset = ip6af->ip6af_offset - sizeof(struct ip6_frag);
  818         free(ip6af, M_FRAG6);
  819         ip6 = mtod(m, struct ip6_hdr *);
  820         ip6->ip6_plen = htons((u_short)plen + offset - sizeof(struct ip6_hdr));
  821         if (q6->ip6q_ecn == IPTOS_ECN_CE)
  822                 ip6->ip6_flow |= htonl(IPTOS_ECN_CE << 20);
  823         nxt = q6->ip6q_nxt;
  824 
  825         TAILQ_REMOVE(head, q6, ip6q_tq);
  826         V_ip6qb[bucket].count--;
  827         atomic_subtract_int(&frag6_nfrags, q6->ip6q_nfrag);
  828 
  829         ip6_deletefraghdr(m, offset, M_NOWAIT);
  830 
  831         /* Set nxt(-hdr field value) to the original value. */
  832         m_copyback(m, ip6_get_prevhdr(m, offset), sizeof(uint8_t),
  833             (caddr_t)&nxt);
  834 
  835 #ifdef MAC
  836         mac_ip6q_reassemble(q6, m);
  837         mac_ip6q_destroy(q6);
  838 #endif
  839         free(q6, M_FRAG6);
  840         atomic_subtract_int(&V_frag6_nfragpackets, 1);
  841 
  842         if (m->m_flags & M_PKTHDR) { /* Isn't it always true? */
  843 
  844                 plen = 0;
  845                 for (t = m; t; t = t->m_next)
  846                         plen += t->m_len;
  847                 m->m_pkthdr.len = plen;
  848                 /* Set a valid receive interface pointer. */
  849                 m->m_pkthdr.rcvif = srcifp;
  850         }
  851 
  852 #ifdef RSS
  853         mtag = m_tag_alloc(MTAG_ABI_IPV6, IPV6_TAG_DIRECT, sizeof(*ip6dc),
  854             M_NOWAIT);
  855         if (mtag == NULL)
  856                 goto dropfrag;
  857 
  858         ip6dc = (struct ip6_direct_ctx *)(mtag + 1);
  859         ip6dc->ip6dc_nxt = nxt;
  860         ip6dc->ip6dc_off = offset;
  861 
  862         m_tag_prepend(m, mtag);
  863 #endif
  864 
  865         IP6QB_UNLOCK(bucket);
  866         IP6STAT_INC(ip6s_reassembled);
  867         in6_ifstat_inc(dstifp, ifs6_reass_ok);
  868 
  869 #ifdef RSS
  870         /* Queue/dispatch for reprocessing. */
  871         netisr_dispatch(NETISR_IPV6_DIRECT, m);
  872         *mp = NULL;
  873         return (IPPROTO_DONE);
  874 #endif
  875 
  876         /* Tell launch routine the next header. */
  877         *mp = m;
  878         *offp = offset;
  879 
  880         return (nxt);
  881 
  882 dropfrag:
  883         IP6QB_UNLOCK(bucket);
  884 dropfrag2:
  885         in6_ifstat_inc(dstifp, ifs6_reass_fail);
  886         IP6STAT_INC(ip6s_fragdropped);
  887         m_freem(m);
  888         *mp = NULL;
  889         return (IPPROTO_DONE);
  890 }
  891 
  892 /*
  893  * IPv6 reassembling timer processing;
  894  * if a timer expires on a reassembly queue, discard it.
  895  */
  896 void
  897 frag6_slowtimo(void)
  898 {
  899         VNET_ITERATOR_DECL(vnet_iter);
  900         struct ip6qhead *head;
  901         struct ip6q *q6, *q6tmp;
  902         uint32_t bucket;
  903 
  904         if (atomic_load_int(&frag6_nfrags) == 0)
  905                 return;
  906 
  907         VNET_LIST_RLOCK_NOSLEEP();
  908         VNET_FOREACH(vnet_iter) {
  909                 CURVNET_SET(vnet_iter);
  910                 for (bucket = 0; bucket < IP6REASS_NHASH; bucket++) {
  911                         if (V_ip6qb[bucket].count == 0)
  912                                 continue;
  913                         IP6QB_LOCK(bucket);
  914                         head = IP6QB_HEAD(bucket);
  915                         TAILQ_FOREACH_SAFE(q6, head, ip6q_tq, q6tmp)
  916                                 if (--q6->ip6q_ttl == 0) {
  917                                         IP6STAT_ADD(ip6s_fragtimeout,
  918                                                 q6->ip6q_nfrag);
  919                                         /* XXX in6_ifstat_inc(ifp, ifs6_reass_fail) */
  920                                         frag6_freef(q6, bucket);
  921                                 }
  922                         /*
  923                          * If we are over the maximum number of fragments
  924                          * (due to the limit being lowered), drain off
  925                          * enough to get down to the new limit.
  926                          * Note that we drain all reassembly queues if
  927                          * maxfragpackets is 0 (fragmentation is disabled),
  928                          * and do not enforce a limit when maxfragpackets
  929                          * is negative.
  930                          */
  931                         while ((V_ip6_maxfragpackets == 0 ||
  932                             (V_ip6_maxfragpackets > 0 &&
  933                             V_ip6qb[bucket].count > V_ip6_maxfragbucketsize)) &&
  934                             (q6 = TAILQ_LAST(head, ip6qhead)) != NULL) {
  935                                 IP6STAT_ADD(ip6s_fragoverflow, q6->ip6q_nfrag);
  936                                 /* XXX in6_ifstat_inc(ifp, ifs6_reass_fail) */
  937                                 frag6_freef(q6, bucket);
  938                         }
  939                         IP6QB_UNLOCK(bucket);
  940                 }
  941                 /*
  942                  * If we are still over the maximum number of fragmented
  943                  * packets, drain off enough to get down to the new limit.
  944                  */
  945                 bucket = 0;
  946                 while (V_ip6_maxfragpackets >= 0 &&
  947                     atomic_load_int(&V_frag6_nfragpackets) >
  948                     (u_int)V_ip6_maxfragpackets) {
  949                         IP6QB_LOCK(bucket);
  950                         q6 = TAILQ_LAST(IP6QB_HEAD(bucket), ip6qhead);
  951                         if (q6 != NULL) {
  952                                 IP6STAT_ADD(ip6s_fragoverflow, q6->ip6q_nfrag);
  953                                 /* XXX in6_ifstat_inc(ifp, ifs6_reass_fail) */
  954                                 frag6_freef(q6, bucket);
  955                         }
  956                         IP6QB_UNLOCK(bucket);
  957                         bucket = (bucket + 1) % IP6REASS_NHASH;
  958                 }
  959                 CURVNET_RESTORE();
  960         }
  961         VNET_LIST_RUNLOCK_NOSLEEP();
  962 }
  963 
  964 /*
  965  * Eventhandler to adjust limits in case nmbclusters change.
  966  */
  967 static void
  968 frag6_change(void *tag)
  969 {
  970         VNET_ITERATOR_DECL(vnet_iter);
  971 
  972         ip6_maxfrags = IP6_MAXFRAGS;
  973         VNET_LIST_RLOCK_NOSLEEP();
  974         VNET_FOREACH(vnet_iter) {
  975                 CURVNET_SET(vnet_iter);
  976                 V_ip6_maxfragpackets = IP6_MAXFRAGPACKETS;
  977                 frag6_set_bucketsize();
  978                 CURVNET_RESTORE();
  979         }
  980         VNET_LIST_RUNLOCK_NOSLEEP();
  981 }
  982 
  983 /*
  984  * Initialise reassembly queue and fragment identifier.
  985  */
  986 void
  987 frag6_init(void)
  988 {
  989         uint32_t bucket;
  990 
  991         V_ip6_maxfragpackets = IP6_MAXFRAGPACKETS;
  992         frag6_set_bucketsize();
  993         for (bucket = 0; bucket < IP6REASS_NHASH; bucket++) {
  994                 TAILQ_INIT(IP6QB_HEAD(bucket));
  995                 mtx_init(&V_ip6qb[bucket].lock, "ip6qb", NULL, MTX_DEF);
  996                 V_ip6qb[bucket].count = 0;
  997         }
  998         V_ip6qb_hashseed = arc4random();
  999         V_ip6_maxfragsperpacket = 64;
 1000 #ifdef VIMAGE
 1001         V_frag6_on = true;
 1002 #endif
 1003         if (!IS_DEFAULT_VNET(curvnet))
 1004                 return;
 1005 
 1006         ip6_maxfrags = IP6_MAXFRAGS;
 1007         EVENTHANDLER_REGISTER(nmbclusters_change,
 1008             frag6_change, NULL, EVENTHANDLER_PRI_ANY);
 1009 }
 1010 
 1011 /*
 1012  * Drain off all datagram fragments.
 1013  */
 1014 static void
 1015 frag6_drain_one(void)
 1016 {
 1017         struct ip6q *q6;
 1018         uint32_t bucket;
 1019 
 1020         for (bucket = 0; bucket < IP6REASS_NHASH; bucket++) {
 1021                 IP6QB_LOCK(bucket);
 1022                 while ((q6 = TAILQ_FIRST(IP6QB_HEAD(bucket))) != NULL) {
 1023                         IP6STAT_INC(ip6s_fragdropped);
 1024                         /* XXX in6_ifstat_inc(ifp, ifs6_reass_fail) */
 1025                         frag6_freef(q6, bucket);
 1026                 }
 1027                 IP6QB_UNLOCK(bucket);
 1028         }
 1029 }
 1030 
 1031 void
 1032 frag6_drain(void)
 1033 {
 1034         VNET_ITERATOR_DECL(vnet_iter);
 1035 
 1036         VNET_LIST_RLOCK_NOSLEEP();
 1037         VNET_FOREACH(vnet_iter) {
 1038                 CURVNET_SET(vnet_iter);
 1039                 frag6_drain_one();
 1040                 CURVNET_RESTORE();
 1041         }
 1042         VNET_LIST_RUNLOCK_NOSLEEP();
 1043 }
 1044 
 1045 #ifdef VIMAGE
 1046 /*
 1047  * Clear up IPv6 reassembly structures.
 1048  */
 1049 void
 1050 frag6_destroy(void)
 1051 {
 1052         uint32_t bucket;
 1053 
 1054         frag6_drain_one();
 1055         V_frag6_on = false;
 1056         for (bucket = 0; bucket < IP6REASS_NHASH; bucket++) {
 1057                 KASSERT(V_ip6qb[bucket].count == 0,
 1058                     ("%s: V_ip6qb[%d] (%p) count not 0 (%d)", __func__,
 1059                     bucket, &V_ip6qb[bucket], V_ip6qb[bucket].count));
 1060                 mtx_destroy(&V_ip6qb[bucket].lock);
 1061         }
 1062 }
 1063 #endif

Cache object: 018f050a140e5678ee6033585d25ef67


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.