The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/netinet6/in6.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
    3  * All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice, this list of conditions and the following disclaimer.
   10  * 2. Redistributions in binary form must reproduce the above copyright
   11  *    notice, this list of conditions and the following disclaimer in the
   12  *    documentation and/or other materials provided with the distribution.
   13  * 3. Neither the name of the project nor the names of its contributors
   14  *    may be used to endorse or promote products derived from this software
   15  *    without specific prior written permission.
   16  *
   17  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
   18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
   21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   27  * SUCH DAMAGE.
   28  *
   29  *      $KAME: in6.c,v 1.259 2002/01/21 11:37:50 keiichi Exp $
   30  */
   31 
   32 /*-
   33  * Copyright (c) 1982, 1986, 1991, 1993
   34  *      The Regents of the University of California.  All rights reserved.
   35  *
   36  * Redistribution and use in source and binary forms, with or without
   37  * modification, are permitted provided that the following conditions
   38  * are met:
   39  * 1. Redistributions of source code must retain the above copyright
   40  *    notice, this list of conditions and the following disclaimer.
   41  * 2. Redistributions in binary form must reproduce the above copyright
   42  *    notice, this list of conditions and the following disclaimer in the
   43  *    documentation and/or other materials provided with the distribution.
   44  * 4. Neither the name of the University nor the names of its contributors
   45  *    may be used to endorse or promote products derived from this software
   46  *    without specific prior written permission.
   47  *
   48  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   49  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   50  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   51  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   52  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   53  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   54  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   55  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   56  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   57  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   58  * SUCH DAMAGE.
   59  *
   60  *      @(#)in.c        8.2 (Berkeley) 11/15/93
   61  */
   62 
   63 #include <sys/cdefs.h>
   64 __FBSDID("$FreeBSD: releng/6.4/sys/netinet6/in6.c 193893 2009-06-10 10:31:11Z cperciva $");
   65 
   66 #include "opt_inet.h"
   67 #include "opt_inet6.h"
   68 
   69 #include <sys/param.h>
   70 #include <sys/errno.h>
   71 #include <sys/malloc.h>
   72 #include <sys/socket.h>
   73 #include <sys/socketvar.h>
   74 #include <sys/sockio.h>
   75 #include <sys/systm.h>
   76 #include <sys/proc.h>
   77 #include <sys/time.h>
   78 #include <sys/kernel.h>
   79 #include <sys/syslog.h>
   80 
   81 #include <net/if.h>
   82 #include <net/if_types.h>
   83 #include <net/route.h>
   84 #include <net/if_dl.h>
   85 
   86 #include <netinet/in.h>
   87 #include <netinet/in_var.h>
   88 #include <netinet/if_ether.h>
   89 #include <netinet/in_systm.h>
   90 #include <netinet/ip.h>
   91 #include <netinet/in_pcb.h>
   92 
   93 #include <netinet/ip6.h>
   94 #include <netinet6/ip6_var.h>
   95 #include <netinet6/nd6.h>
   96 #include <netinet6/mld6_var.h>
   97 #include <netinet6/ip6_mroute.h>
   98 #include <netinet6/in6_ifattach.h>
   99 #include <netinet6/scope6_var.h>
  100 #include <netinet6/in6_pcb.h>
  101 
  102 #include <net/net_osdep.h>
  103 
  104 MALLOC_DEFINE(M_IP6MADDR, "in6_multi", "internet multicast address");
  105 
  106 /*
  107  * Definitions of some costant IP6 addresses.
  108  */
  109 const struct in6_addr in6addr_any = IN6ADDR_ANY_INIT;
  110 const struct in6_addr in6addr_loopback = IN6ADDR_LOOPBACK_INIT;
  111 const struct in6_addr in6addr_nodelocal_allnodes =
  112         IN6ADDR_NODELOCAL_ALLNODES_INIT;
  113 const struct in6_addr in6addr_linklocal_allnodes =
  114         IN6ADDR_LINKLOCAL_ALLNODES_INIT;
  115 const struct in6_addr in6addr_linklocal_allrouters =
  116         IN6ADDR_LINKLOCAL_ALLROUTERS_INIT;
  117 
  118 const struct in6_addr in6mask0 = IN6MASK0;
  119 const struct in6_addr in6mask32 = IN6MASK32;
  120 const struct in6_addr in6mask64 = IN6MASK64;
  121 const struct in6_addr in6mask96 = IN6MASK96;
  122 const struct in6_addr in6mask128 = IN6MASK128;
  123 
  124 const struct sockaddr_in6 sa6_any =
  125         { sizeof(sa6_any), AF_INET6, 0, 0, IN6ADDR_ANY_INIT, 0 };
  126 
  127 static int in6_lifaddr_ioctl __P((struct socket *, u_long, caddr_t,
  128         struct ifnet *, struct thread *));
  129 static int in6_ifinit __P((struct ifnet *, struct in6_ifaddr *,
  130         struct sockaddr_in6 *, int));
  131 static void in6_unlink_ifa(struct in6_ifaddr *, struct ifnet *);
  132 
  133 struct in6_multihead in6_multihead;     /* XXX BSS initialization */
  134 int     (*faithprefix_p)(struct in6_addr *);
  135 
  136 /*
  137  * Subroutine for in6_ifaddloop() and in6_ifremloop().
  138  * This routine does actual work.
  139  */
  140 static void
  141 in6_ifloop_request(int cmd, struct ifaddr *ifa)
  142 {
  143         struct sockaddr_in6 all1_sa;
  144         struct rtentry *nrt = NULL;
  145         int e;
  146 
  147         bzero(&all1_sa, sizeof(all1_sa));
  148         all1_sa.sin6_family = AF_INET6;
  149         all1_sa.sin6_len = sizeof(struct sockaddr_in6);
  150         all1_sa.sin6_addr = in6mask128;
  151 
  152         /*
  153          * We specify the address itself as the gateway, and set the
  154          * RTF_LLINFO flag, so that the corresponding host route would have
  155          * the flag, and thus applications that assume traditional behavior
  156          * would be happy.  Note that we assume the caller of the function
  157          * (probably implicitly) set nd6_rtrequest() to ifa->ifa_rtrequest,
  158          * which changes the outgoing interface to the loopback interface.
  159          */
  160         e = rtrequest(cmd, ifa->ifa_addr, ifa->ifa_addr,
  161             (struct sockaddr *)&all1_sa, RTF_UP|RTF_HOST|RTF_LLINFO, &nrt);
  162         if (e != 0) {
  163                 /* XXX need more descriptive message */
  164                 log(LOG_ERR, "in6_ifloop_request: "
  165                     "%s operation failed for %s (errno=%d)\n",
  166                     cmd == RTM_ADD ? "ADD" : "DELETE",
  167                     ip6_sprintf(&((struct in6_ifaddr *)ifa)->ia_addr.sin6_addr),
  168                     e);
  169         }
  170 
  171         /*
  172          * Report the addition/removal of the address to the routing socket.
  173          * XXX: since we called rtinit for a p2p interface with a destination,
  174          *      we end up reporting twice in such a case.  Should we rather
  175          *      omit the second report?
  176          */
  177         if (nrt) {
  178                 RT_LOCK(nrt);
  179                 /*
  180                  * Make sure rt_ifa be equal to IFA, the second argument of
  181                  * the function.  We need this because when we refer to
  182                  * rt_ifa->ia6_flags in ip6_input, we assume that the rt_ifa
  183                  * points to the address instead of the loopback address.
  184                  */
  185                 if (cmd == RTM_ADD && ifa != nrt->rt_ifa) {
  186                         IFAFREE(nrt->rt_ifa);
  187                         IFAREF(ifa);
  188                         nrt->rt_ifa = ifa;
  189                 }
  190 
  191                 rt_newaddrmsg(cmd, ifa, e, nrt);
  192                 if (cmd == RTM_DELETE) {
  193                         rtfree(nrt);
  194                 } else {
  195                         /* the cmd must be RTM_ADD here */
  196                         RT_REMREF(nrt);
  197                         RT_UNLOCK(nrt);
  198                 }
  199         }
  200 }
  201 
  202 /*
  203  * Add ownaddr as loopback rtentry.  We previously add the route only if
  204  * necessary (ex. on a p2p link).  However, since we now manage addresses
  205  * separately from prefixes, we should always add the route.  We can't
  206  * rely on the cloning mechanism from the corresponding interface route
  207  * any more.
  208  */
  209 void
  210 in6_ifaddloop(struct ifaddr *ifa)
  211 {
  212         struct rtentry *rt;
  213         int need_loop;
  214 
  215         /* If there is no loopback entry, allocate one. */
  216         rt = rtalloc1(ifa->ifa_addr, 0, 0);
  217         need_loop = (rt == NULL || (rt->rt_flags & RTF_HOST) == 0 ||
  218             (rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0);
  219         if (rt)
  220                 rtfree(rt);
  221         if (need_loop)
  222                 in6_ifloop_request(RTM_ADD, ifa);
  223 }
  224 
  225 /*
  226  * Remove loopback rtentry of ownaddr generated by in6_ifaddloop(),
  227  * if it exists.
  228  */
  229 void
  230 in6_ifremloop(struct ifaddr *ifa)
  231 {
  232         struct in6_ifaddr *ia;
  233         struct rtentry *rt;
  234         int ia_count = 0;
  235 
  236         /*
  237          * Some of BSD variants do not remove cloned routes
  238          * from an interface direct route, when removing the direct route
  239          * (see comments in net/net_osdep.h).  Even for variants that do remove
  240          * cloned routes, they could fail to remove the cloned routes when
  241          * we handle multple addresses that share a common prefix.
  242          * So, we should remove the route corresponding to the deleted address.
  243          */
  244 
  245         /*
  246          * Delete the entry only if exact one ifa exists.  More than one ifa
  247          * can exist if we assign a same single address to multiple
  248          * (probably p2p) interfaces.
  249          * XXX: we should avoid such a configuration in IPv6...
  250          */
  251         for (ia = in6_ifaddr; ia; ia = ia->ia_next) {
  252                 if (IN6_ARE_ADDR_EQUAL(IFA_IN6(ifa), &ia->ia_addr.sin6_addr)) {
  253                         ia_count++;
  254                         if (ia_count > 1)
  255                                 break;
  256                 }
  257         }
  258 
  259         if (ia_count == 1) {
  260                 /*
  261                  * Before deleting, check if a corresponding loopbacked host
  262                  * route surely exists.  With this check, we can avoid to
  263                  * delete an interface direct route whose destination is same
  264                  * as the address being removed.  This can happen when removing
  265                  * a subnet-router anycast address on an interface attahced
  266                  * to a shared medium.
  267                  */
  268                 rt = rtalloc1(ifa->ifa_addr, 0, 0);
  269                 if (rt != NULL) {
  270                         if ((rt->rt_flags & RTF_HOST) != 0 &&
  271                             (rt->rt_ifp->if_flags & IFF_LOOPBACK) != 0) {
  272                                 rtfree(rt);
  273                                 in6_ifloop_request(RTM_DELETE, ifa);
  274                         } else
  275                                 RT_UNLOCK(rt);
  276                 }
  277         }
  278 }
  279 
  280 int
  281 in6_mask2len(mask, lim0)
  282         struct in6_addr *mask;
  283         u_char *lim0;
  284 {
  285         int x = 0, y;
  286         u_char *lim = lim0, *p;
  287 
  288         /* ignore the scope_id part */
  289         if (lim0 == NULL || lim0 - (u_char *)mask > sizeof(*mask))
  290                 lim = (u_char *)mask + sizeof(*mask);
  291         for (p = (u_char *)mask; p < lim; x++, p++) {
  292                 if (*p != 0xff)
  293                         break;
  294         }
  295         y = 0;
  296         if (p < lim) {
  297                 for (y = 0; y < 8; y++) {
  298                         if ((*p & (0x80 >> y)) == 0)
  299                                 break;
  300                 }
  301         }
  302 
  303         /*
  304          * when the limit pointer is given, do a stricter check on the
  305          * remaining bits.
  306          */
  307         if (p < lim) {
  308                 if (y != 0 && (*p & (0x00ff >> y)) != 0)
  309                         return (-1);
  310                 for (p = p + 1; p < lim; p++)
  311                         if (*p != 0)
  312                                 return (-1);
  313         }
  314 
  315         return x * 8 + y;
  316 }
  317 
  318 #define ifa2ia6(ifa)    ((struct in6_ifaddr *)(ifa))
  319 #define ia62ifa(ia6)    (&((ia6)->ia_ifa))
  320 
  321 int
  322 in6_control(so, cmd, data, ifp, td)
  323         struct  socket *so;
  324         u_long cmd;
  325         caddr_t data;
  326         struct ifnet *ifp;
  327         struct thread *td;
  328 {
  329         struct  in6_ifreq *ifr = (struct in6_ifreq *)data;
  330         struct  in6_ifaddr *ia = NULL;
  331         struct  in6_aliasreq *ifra = (struct in6_aliasreq *)data;
  332         int error, privileged;
  333         struct sockaddr_in6 *sa6;
  334 
  335         privileged = 0;
  336         if (td == NULL || !suser(td))
  337                 privileged++;
  338 
  339         switch (cmd) {
  340         case SIOCGETSGCNT_IN6:
  341         case SIOCGETMIFCNT_IN6:
  342                 return (mrt6_ioctl(cmd, data));
  343         }
  344 
  345         switch(cmd) {
  346         case SIOCAADDRCTL_POLICY:
  347         case SIOCDADDRCTL_POLICY:
  348                 if (!privileged)
  349                         return (EPERM);
  350                 return (in6_src_ioctl(cmd, data));
  351         }
  352 
  353         if (ifp == NULL)
  354                 return (EOPNOTSUPP);
  355 
  356         switch (cmd) {
  357         case SIOCSNDFLUSH_IN6:
  358         case SIOCSPFXFLUSH_IN6:
  359         case SIOCSRTRFLUSH_IN6:
  360         case SIOCSDEFIFACE_IN6:
  361         case SIOCSIFINFO_FLAGS:
  362         case SIOCSIFINFO_IN6:
  363                 if (!privileged)
  364                         return (EPERM);
  365                 /* FALLTHROUGH */
  366         case OSIOCGIFINFO_IN6:
  367         case SIOCGIFINFO_IN6:
  368         case SIOCGDRLST_IN6:
  369         case SIOCGPRLST_IN6:
  370         case SIOCGNBRINFO_IN6:
  371         case SIOCGDEFIFACE_IN6:
  372                 return (nd6_ioctl(cmd, data, ifp));
  373         }
  374 
  375         switch (cmd) {
  376         case SIOCSIFPREFIX_IN6:
  377         case SIOCDIFPREFIX_IN6:
  378         case SIOCAIFPREFIX_IN6:
  379         case SIOCCIFPREFIX_IN6:
  380         case SIOCSGIFPREFIX_IN6:
  381         case SIOCGIFPREFIX_IN6:
  382                 log(LOG_NOTICE,
  383                     "prefix ioctls are now invalidated. "
  384                     "please use ifconfig.\n");
  385                 return (EOPNOTSUPP);
  386         }
  387 
  388         switch (cmd) {
  389         case SIOCSSCOPE6:
  390                 if (!privileged)
  391                         return (EPERM);
  392                 return (scope6_set(ifp,
  393                     (struct scope6_id *)ifr->ifr_ifru.ifru_scope_id));
  394         case SIOCGSCOPE6:
  395                 return (scope6_get(ifp,
  396                     (struct scope6_id *)ifr->ifr_ifru.ifru_scope_id));
  397         case SIOCGSCOPE6DEF:
  398                 return (scope6_get_default((struct scope6_id *)
  399                     ifr->ifr_ifru.ifru_scope_id));
  400         }
  401 
  402         switch (cmd) {
  403         case SIOCALIFADDR:
  404         case SIOCDLIFADDR:
  405                 if (!privileged)
  406                         return (EPERM);
  407                 /* FALLTHROUGH */
  408         case SIOCGLIFADDR:
  409                 return in6_lifaddr_ioctl(so, cmd, data, ifp, td);
  410         }
  411 
  412         /*
  413          * Find address for this interface, if it exists.
  414          *
  415          * In netinet code, we have checked ifra_addr in SIOCSIF*ADDR operation
  416          * only, and used the first interface address as the target of other
  417          * operations (without checking ifra_addr).  This was because netinet
  418          * code/API assumed at most 1 interface address per interface.
  419          * Since IPv6 allows a node to assign multiple addresses
  420          * on a single interface, we almost always look and check the
  421          * presence of ifra_addr, and reject invalid ones here.
  422          * It also decreases duplicated code among SIOC*_IN6 operations.
  423          */
  424         switch (cmd) {
  425         case SIOCAIFADDR_IN6:
  426         case SIOCSIFPHYADDR_IN6:
  427                 sa6 = &ifra->ifra_addr;
  428                 break;
  429         case SIOCSIFADDR_IN6:
  430         case SIOCGIFADDR_IN6:
  431         case SIOCSIFDSTADDR_IN6:
  432         case SIOCSIFNETMASK_IN6:
  433         case SIOCGIFDSTADDR_IN6:
  434         case SIOCGIFNETMASK_IN6:
  435         case SIOCDIFADDR_IN6:
  436         case SIOCGIFPSRCADDR_IN6:
  437         case SIOCGIFPDSTADDR_IN6:
  438         case SIOCGIFAFLAG_IN6:
  439         case SIOCSNDFLUSH_IN6:
  440         case SIOCSPFXFLUSH_IN6:
  441         case SIOCSRTRFLUSH_IN6:
  442         case SIOCGIFALIFETIME_IN6:
  443         case SIOCSIFALIFETIME_IN6:
  444         case SIOCGIFSTAT_IN6:
  445         case SIOCGIFSTAT_ICMP6:
  446                 sa6 = &ifr->ifr_addr;
  447                 break;
  448         default:
  449                 sa6 = NULL;
  450                 break;
  451         }
  452         if (sa6 && sa6->sin6_family == AF_INET6) {
  453                 int error = 0;
  454 
  455                 if (sa6->sin6_scope_id != 0)
  456                         error = sa6_embedscope(sa6, 0);
  457                 else
  458                         error = in6_setscope(&sa6->sin6_addr, ifp, NULL);
  459                 if (error != 0)
  460                         return (error);
  461                 ia = in6ifa_ifpwithaddr(ifp, &sa6->sin6_addr);
  462         } else
  463                 ia = NULL;
  464 
  465         switch (cmd) {
  466         case SIOCSIFADDR_IN6:
  467         case SIOCSIFDSTADDR_IN6:
  468         case SIOCSIFNETMASK_IN6:
  469                 /*
  470                  * Since IPv6 allows a node to assign multiple addresses
  471                  * on a single interface, SIOCSIFxxx ioctls are deprecated.
  472                  */
  473                 /* we decided to obsolete this command (20000704) */
  474                 return (EINVAL);
  475 
  476         case SIOCDIFADDR_IN6:
  477                 /*
  478                  * for IPv4, we look for existing in_ifaddr here to allow
  479                  * "ifconfig if0 delete" to remove the first IPv4 address on
  480                  * the interface.  For IPv6, as the spec allows multiple
  481                  * interface address from the day one, we consider "remove the
  482                  * first one" semantics to be not preferable.
  483                  */
  484                 if (ia == NULL)
  485                         return (EADDRNOTAVAIL);
  486                 /* FALLTHROUGH */
  487         case SIOCAIFADDR_IN6:
  488                 /*
  489                  * We always require users to specify a valid IPv6 address for
  490                  * the corresponding operation.
  491                  */
  492                 if (ifra->ifra_addr.sin6_family != AF_INET6 ||
  493                     ifra->ifra_addr.sin6_len != sizeof(struct sockaddr_in6))
  494                         return (EAFNOSUPPORT);
  495                 if (!privileged)
  496                         return (EPERM);
  497 
  498                 break;
  499 
  500         case SIOCGIFADDR_IN6:
  501                 /* This interface is basically deprecated. use SIOCGIFCONF. */
  502                 /* FALLTHROUGH */
  503         case SIOCGIFAFLAG_IN6:
  504         case SIOCGIFNETMASK_IN6:
  505         case SIOCGIFDSTADDR_IN6:
  506         case SIOCGIFALIFETIME_IN6:
  507                 /* must think again about its semantics */
  508                 if (ia == NULL)
  509                         return (EADDRNOTAVAIL);
  510                 break;
  511         case SIOCSIFALIFETIME_IN6:
  512             {
  513                 struct in6_addrlifetime *lt;
  514 
  515                 if (!privileged)
  516                         return (EPERM);
  517                 if (ia == NULL)
  518                         return (EADDRNOTAVAIL);
  519                 /* sanity for overflow - beware unsigned */
  520                 lt = &ifr->ifr_ifru.ifru_lifetime;
  521                 if (lt->ia6t_vltime != ND6_INFINITE_LIFETIME &&
  522                     lt->ia6t_vltime + time_second < time_second) {
  523                         return EINVAL;
  524                 }
  525                 if (lt->ia6t_pltime != ND6_INFINITE_LIFETIME &&
  526                     lt->ia6t_pltime + time_second < time_second) {
  527                         return EINVAL;
  528                 }
  529                 break;
  530             }
  531         }
  532 
  533         switch (cmd) {
  534 
  535         case SIOCGIFADDR_IN6:
  536                 ifr->ifr_addr = ia->ia_addr;
  537                 if ((error = sa6_recoverscope(&ifr->ifr_addr)) != 0)
  538                         return (error);
  539                 break;
  540 
  541         case SIOCGIFDSTADDR_IN6:
  542                 if ((ifp->if_flags & IFF_POINTOPOINT) == 0)
  543                         return (EINVAL);
  544                 /*
  545                  * XXX: should we check if ifa_dstaddr is NULL and return
  546                  * an error?
  547                  */
  548                 ifr->ifr_dstaddr = ia->ia_dstaddr;
  549                 if ((error = sa6_recoverscope(&ifr->ifr_dstaddr)) != 0)
  550                         return (error);
  551                 break;
  552 
  553         case SIOCGIFNETMASK_IN6:
  554                 ifr->ifr_addr = ia->ia_prefixmask;
  555                 break;
  556 
  557         case SIOCGIFAFLAG_IN6:
  558                 ifr->ifr_ifru.ifru_flags6 = ia->ia6_flags;
  559                 break;
  560 
  561         case SIOCGIFSTAT_IN6:
  562                 if (ifp == NULL)
  563                         return EINVAL;
  564                 bzero(&ifr->ifr_ifru.ifru_stat,
  565                     sizeof(ifr->ifr_ifru.ifru_stat));
  566                 ifr->ifr_ifru.ifru_stat =
  567                     *((struct in6_ifextra *)ifp->if_afdata[AF_INET6])->in6_ifstat;
  568                 break;
  569 
  570         case SIOCGIFSTAT_ICMP6:
  571                 if (ifp == NULL)
  572                         return EINVAL;
  573                 bzero(&ifr->ifr_ifru.ifru_icmp6stat,
  574                     sizeof(ifr->ifr_ifru.ifru_icmp6stat));
  575                 ifr->ifr_ifru.ifru_icmp6stat =
  576                     *((struct in6_ifextra *)ifp->if_afdata[AF_INET6])->icmp6_ifstat;
  577                 break;
  578 
  579         case SIOCGIFALIFETIME_IN6:
  580                 ifr->ifr_ifru.ifru_lifetime = ia->ia6_lifetime;
  581                 if (ia->ia6_lifetime.ia6t_vltime != ND6_INFINITE_LIFETIME) {
  582                         time_t maxexpire;
  583                         struct in6_addrlifetime *retlt =
  584                             &ifr->ifr_ifru.ifru_lifetime;
  585 
  586                         /*
  587                          * XXX: adjust expiration time assuming time_t is
  588                          * signed.
  589                          */
  590                         maxexpire = (-1) &
  591                             ~((time_t)1 << ((sizeof(maxexpire) * 8) - 1));
  592                         if (ia->ia6_lifetime.ia6t_vltime <
  593                             maxexpire - ia->ia6_updatetime) {
  594                                 retlt->ia6t_expire = ia->ia6_updatetime +
  595                                     ia->ia6_lifetime.ia6t_vltime;
  596                         } else
  597                                 retlt->ia6t_expire = maxexpire;
  598                 }
  599                 if (ia->ia6_lifetime.ia6t_pltime != ND6_INFINITE_LIFETIME) {
  600                         time_t maxexpire;
  601                         struct in6_addrlifetime *retlt =
  602                             &ifr->ifr_ifru.ifru_lifetime;
  603 
  604                         /*
  605                          * XXX: adjust expiration time assuming time_t is
  606                          * signed.
  607                          */
  608                         maxexpire = (-1) &
  609                             ~((time_t)1 << ((sizeof(maxexpire) * 8) - 1));
  610                         if (ia->ia6_lifetime.ia6t_pltime <
  611                             maxexpire - ia->ia6_updatetime) {
  612                                 retlt->ia6t_preferred = ia->ia6_updatetime +
  613                                     ia->ia6_lifetime.ia6t_pltime;
  614                         } else
  615                                 retlt->ia6t_preferred = maxexpire;
  616                 }
  617                 break;
  618 
  619         case SIOCSIFALIFETIME_IN6:
  620                 ia->ia6_lifetime = ifr->ifr_ifru.ifru_lifetime;
  621                 /* for sanity */
  622                 if (ia->ia6_lifetime.ia6t_vltime != ND6_INFINITE_LIFETIME) {
  623                         ia->ia6_lifetime.ia6t_expire =
  624                                 time_second + ia->ia6_lifetime.ia6t_vltime;
  625                 } else
  626                         ia->ia6_lifetime.ia6t_expire = 0;
  627                 if (ia->ia6_lifetime.ia6t_pltime != ND6_INFINITE_LIFETIME) {
  628                         ia->ia6_lifetime.ia6t_preferred =
  629                                 time_second + ia->ia6_lifetime.ia6t_pltime;
  630                 } else
  631                         ia->ia6_lifetime.ia6t_preferred = 0;
  632                 break;
  633 
  634         case SIOCAIFADDR_IN6:
  635         {
  636                 int i, error = 0;
  637                 struct nd_prefixctl pr0;
  638                 struct nd_prefix *pr;
  639 
  640                 /*
  641                  * first, make or update the interface address structure,
  642                  * and link it to the list.
  643                  */
  644                 if ((error = in6_update_ifa(ifp, ifra, ia, 0)) != 0)
  645                         return (error);
  646                 if ((ia = in6ifa_ifpwithaddr(ifp, &ifra->ifra_addr.sin6_addr))
  647                     == NULL) {
  648                         /*
  649                          * this can happen when the user specify the 0 valid
  650                          * lifetime.
  651                          */
  652                         break;
  653                 }
  654 
  655                 /*
  656                  * then, make the prefix on-link on the interface.
  657                  * XXX: we'd rather create the prefix before the address, but
  658                  * we need at least one address to install the corresponding
  659                  * interface route, so we configure the address first.
  660                  */
  661 
  662                 /*
  663                  * convert mask to prefix length (prefixmask has already
  664                  * been validated in in6_update_ifa().
  665                  */
  666                 bzero(&pr0, sizeof(pr0));
  667                 pr0.ndpr_ifp = ifp;
  668                 pr0.ndpr_plen = in6_mask2len(&ifra->ifra_prefixmask.sin6_addr,
  669                     NULL);
  670                 if (pr0.ndpr_plen == 128) {
  671                         break;  /* we don't need to install a host route. */
  672                 }
  673                 pr0.ndpr_prefix = ifra->ifra_addr;
  674                 /* apply the mask for safety. */
  675                 for (i = 0; i < 4; i++) {
  676                         pr0.ndpr_prefix.sin6_addr.s6_addr32[i] &=
  677                             ifra->ifra_prefixmask.sin6_addr.s6_addr32[i];
  678                 }
  679                 /*
  680                  * XXX: since we don't have an API to set prefix (not address)
  681                  * lifetimes, we just use the same lifetimes as addresses.
  682                  * The (temporarily) installed lifetimes can be overridden by
  683                  * later advertised RAs (when accept_rtadv is non 0), which is
  684                  * an intended behavior.
  685                  */
  686                 pr0.ndpr_raf_onlink = 1; /* should be configurable? */
  687                 pr0.ndpr_raf_auto =
  688                     ((ifra->ifra_flags & IN6_IFF_AUTOCONF) != 0);
  689                 pr0.ndpr_vltime = ifra->ifra_lifetime.ia6t_vltime;
  690                 pr0.ndpr_pltime = ifra->ifra_lifetime.ia6t_pltime;
  691 
  692                 /* add the prefix if not yet. */
  693                 if ((pr = nd6_prefix_lookup(&pr0)) == NULL) {
  694                         /*
  695                          * nd6_prelist_add will install the corresponding
  696                          * interface route.
  697                          */
  698                         if ((error = nd6_prelist_add(&pr0, NULL, &pr)) != 0)
  699                                 return (error);
  700                         if (pr == NULL) {
  701                                 log(LOG_ERR, "nd6_prelist_add succeeded but "
  702                                     "no prefix\n");
  703                                 return (EINVAL); /* XXX panic here? */
  704                         }
  705                 }
  706 
  707                 /* relate the address to the prefix */
  708                 if (ia->ia6_ndpr == NULL) {
  709                         ia->ia6_ndpr = pr;
  710                         pr->ndpr_refcnt++;
  711 
  712                         /*
  713                          * If this is the first autoconf address from the
  714                          * prefix, create a temporary address as well
  715                          * (when required).
  716                          */
  717                         if ((ia->ia6_flags & IN6_IFF_AUTOCONF) &&
  718                             ip6_use_tempaddr && pr->ndpr_refcnt == 1) {
  719                                 int e;
  720                                 if ((e = in6_tmpifadd(ia, 1, 0)) != 0) {
  721                                         log(LOG_NOTICE, "in6_control: failed "
  722                                             "to create a temporary address, "
  723                                             "errno=%d\n", e);
  724                                 }
  725                         }
  726                 }
  727 
  728                 /*
  729                  * this might affect the status of autoconfigured addresses,
  730                  * that is, this address might make other addresses detached.
  731                  */
  732                 pfxlist_onlink_check();
  733                 if (error == 0 && ia)
  734                         EVENTHANDLER_INVOKE(ifaddr_event, ifp);
  735                 break;
  736         }
  737 
  738         case SIOCDIFADDR_IN6:
  739         {
  740                 struct nd_prefix *pr;
  741 
  742                 /*
  743                  * If the address being deleted is the only one that owns
  744                  * the corresponding prefix, expire the prefix as well.
  745                  * XXX: theoretically, we don't have to worry about such
  746                  * relationship, since we separate the address management
  747                  * and the prefix management.  We do this, however, to provide
  748                  * as much backward compatibility as possible in terms of
  749                  * the ioctl operation.
  750                  * Note that in6_purgeaddr() will decrement ndpr_refcnt.
  751                  */
  752                 pr = ia->ia6_ndpr;
  753                 in6_purgeaddr(&ia->ia_ifa);
  754                 if (pr && pr->ndpr_refcnt == 0)
  755                         prelist_remove(pr);
  756                 EVENTHANDLER_INVOKE(ifaddr_event, ifp);
  757                 break;
  758         }
  759 
  760         default:
  761                 if (ifp == NULL || ifp->if_ioctl == 0)
  762                         return (EOPNOTSUPP);
  763                 return ((*ifp->if_ioctl)(ifp, cmd, data));
  764         }
  765 
  766         return (0);
  767 }
  768 
  769 /*
  770  * Update parameters of an IPv6 interface address.
  771  * If necessary, a new entry is created and linked into address chains.
  772  * This function is separated from in6_control().
  773  * XXX: should this be performed under splnet()?
  774  */
  775 int
  776 in6_update_ifa(ifp, ifra, ia, flags)
  777         struct ifnet *ifp;
  778         struct in6_aliasreq *ifra;
  779         struct in6_ifaddr *ia;
  780         int flags;
  781 {
  782         int error = 0, hostIsNew = 0, plen = -1;
  783         struct in6_ifaddr *oia;
  784         struct sockaddr_in6 dst6;
  785         struct in6_addrlifetime *lt;
  786         struct in6_multi_mship *imm;
  787         struct in6_multi *in6m_sol;
  788         struct rtentry *rt;
  789         int delay;
  790 
  791         /* Validate parameters */
  792         if (ifp == NULL || ifra == NULL) /* this maybe redundant */
  793                 return (EINVAL);
  794 
  795         /*
  796          * The destination address for a p2p link must have a family
  797          * of AF_UNSPEC or AF_INET6.
  798          */
  799         if ((ifp->if_flags & IFF_POINTOPOINT) != 0 &&
  800             ifra->ifra_dstaddr.sin6_family != AF_INET6 &&
  801             ifra->ifra_dstaddr.sin6_family != AF_UNSPEC)
  802                 return (EAFNOSUPPORT);
  803         /*
  804          * validate ifra_prefixmask.  don't check sin6_family, netmask
  805          * does not carry fields other than sin6_len.
  806          */
  807         if (ifra->ifra_prefixmask.sin6_len > sizeof(struct sockaddr_in6))
  808                 return (EINVAL);
  809         /*
  810          * Because the IPv6 address architecture is classless, we require
  811          * users to specify a (non 0) prefix length (mask) for a new address.
  812          * We also require the prefix (when specified) mask is valid, and thus
  813          * reject a non-consecutive mask.
  814          */
  815         if (ia == NULL && ifra->ifra_prefixmask.sin6_len == 0)
  816                 return (EINVAL);
  817         if (ifra->ifra_prefixmask.sin6_len != 0) {
  818                 plen = in6_mask2len(&ifra->ifra_prefixmask.sin6_addr,
  819                     (u_char *)&ifra->ifra_prefixmask +
  820                     ifra->ifra_prefixmask.sin6_len);
  821                 if (plen <= 0)
  822                         return (EINVAL);
  823         } else {
  824                 /*
  825                  * In this case, ia must not be NULL.  We just use its prefix
  826                  * length.
  827                  */
  828                 plen = in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL);
  829         }
  830         /*
  831          * If the destination address on a p2p interface is specified,
  832          * and the address is a scoped one, validate/set the scope
  833          * zone identifier.
  834          */
  835         dst6 = ifra->ifra_dstaddr;
  836         if ((ifp->if_flags & (IFF_POINTOPOINT|IFF_LOOPBACK)) != 0 &&
  837             (dst6.sin6_family == AF_INET6)) {
  838                 struct in6_addr in6_tmp;
  839                 u_int32_t zoneid;
  840 
  841                 in6_tmp = dst6.sin6_addr;
  842                 if (in6_setscope(&in6_tmp, ifp, &zoneid))
  843                         return (EINVAL); /* XXX: should be impossible */
  844 
  845                 if (dst6.sin6_scope_id != 0) {
  846                         if (dst6.sin6_scope_id != zoneid)
  847                                 return (EINVAL);
  848                 } else          /* user omit to specify the ID. */
  849                         dst6.sin6_scope_id = zoneid;
  850 
  851                 /* convert into the internal form */
  852                 if (sa6_embedscope(&dst6, 0))
  853                         return (EINVAL); /* XXX: should be impossible */
  854         }
  855         /*
  856          * The destination address can be specified only for a p2p or a
  857          * loopback interface.  If specified, the corresponding prefix length
  858          * must be 128.
  859          */
  860         if (ifra->ifra_dstaddr.sin6_family == AF_INET6) {
  861                 if ((ifp->if_flags & (IFF_POINTOPOINT|IFF_LOOPBACK)) == 0) {
  862                         /* XXX: noisy message */
  863                         nd6log((LOG_INFO, "in6_update_ifa: a destination can "
  864                             "be specified for a p2p or a loopback IF only\n"));
  865                         return (EINVAL);
  866                 }
  867                 if (plen != 128) {
  868                         nd6log((LOG_INFO, "in6_update_ifa: prefixlen should "
  869                             "be 128 when dstaddr is specified\n"));
  870                         return (EINVAL);
  871                 }
  872         }
  873         /* lifetime consistency check */
  874         lt = &ifra->ifra_lifetime;
  875         if (lt->ia6t_pltime > lt->ia6t_vltime)
  876                 return (EINVAL);
  877         if (lt->ia6t_vltime == 0) {
  878                 /*
  879                  * the following log might be noisy, but this is a typical
  880                  * configuration mistake or a tool's bug.
  881                  */
  882                 nd6log((LOG_INFO,
  883                     "in6_update_ifa: valid lifetime is 0 for %s\n",
  884                     ip6_sprintf(&ifra->ifra_addr.sin6_addr)));
  885 
  886                 if (ia == NULL)
  887                         return (0); /* there's nothing to do */
  888         }
  889 
  890         /*
  891          * If this is a new address, allocate a new ifaddr and link it
  892          * into chains.
  893          */
  894         if (ia == NULL) {
  895                 hostIsNew = 1;
  896                 /*
  897                  * When in6_update_ifa() is called in a process of a received
  898                  * RA, it is called under an interrupt context.  So, we should
  899                  * call malloc with M_NOWAIT.
  900                  */
  901                 ia = (struct in6_ifaddr *) malloc(sizeof(*ia), M_IFADDR,
  902                     M_NOWAIT);
  903                 if (ia == NULL)
  904                         return (ENOBUFS);
  905                 bzero((caddr_t)ia, sizeof(*ia));
  906                 LIST_INIT(&ia->ia6_memberships);
  907                 /* Initialize the address and masks, and put time stamp */
  908                 IFA_LOCK_INIT(&ia->ia_ifa);
  909                 ia->ia_ifa.ifa_addr = (struct sockaddr *)&ia->ia_addr;
  910                 ia->ia_addr.sin6_family = AF_INET6;
  911                 ia->ia_addr.sin6_len = sizeof(ia->ia_addr);
  912                 ia->ia6_createtime = time_second;
  913                 if ((ifp->if_flags & (IFF_POINTOPOINT | IFF_LOOPBACK)) != 0) {
  914                         /*
  915                          * XXX: some functions expect that ifa_dstaddr is not
  916                          * NULL for p2p interfaces.
  917                          */
  918                         ia->ia_ifa.ifa_dstaddr =
  919                             (struct sockaddr *)&ia->ia_dstaddr;
  920                 } else {
  921                         ia->ia_ifa.ifa_dstaddr = NULL;
  922                 }
  923                 ia->ia_ifa.ifa_netmask = (struct sockaddr *)&ia->ia_prefixmask;
  924 
  925                 ia->ia_ifp = ifp;
  926                 if ((oia = in6_ifaddr) != NULL) {
  927                         for ( ; oia->ia_next; oia = oia->ia_next)
  928                                 continue;
  929                         oia->ia_next = ia;
  930                 } else
  931                         in6_ifaddr = ia;
  932 
  933                 ia->ia_ifa.ifa_refcnt = 1;
  934                 TAILQ_INSERT_TAIL(&ifp->if_addrlist, &ia->ia_ifa, ifa_list);
  935         }
  936 
  937         /* update timestamp */
  938         ia->ia6_updatetime = time_second;
  939 
  940         /* set prefix mask */
  941         if (ifra->ifra_prefixmask.sin6_len) {
  942                 /*
  943                  * We prohibit changing the prefix length of an existing
  944                  * address, because
  945                  * + such an operation should be rare in IPv6, and
  946                  * + the operation would confuse prefix management.
  947                  */
  948                 if (ia->ia_prefixmask.sin6_len &&
  949                     in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL) != plen) {
  950                         nd6log((LOG_INFO, "in6_update_ifa: the prefix length of an"
  951                             " existing (%s) address should not be changed\n",
  952                             ip6_sprintf(&ia->ia_addr.sin6_addr)));
  953                         error = EINVAL;
  954                         goto unlink;
  955                 }
  956                 ia->ia_prefixmask = ifra->ifra_prefixmask;
  957         }
  958 
  959         /*
  960          * If a new destination address is specified, scrub the old one and
  961          * install the new destination.  Note that the interface must be
  962          * p2p or loopback (see the check above.)
  963          */
  964         if (dst6.sin6_family == AF_INET6 &&
  965             !IN6_ARE_ADDR_EQUAL(&dst6.sin6_addr, &ia->ia_dstaddr.sin6_addr)) {
  966                 int e;
  967 
  968                 if ((ia->ia_flags & IFA_ROUTE) != 0 &&
  969                     (e = rtinit(&(ia->ia_ifa), (int)RTM_DELETE, RTF_HOST)) != 0) {
  970                         nd6log((LOG_ERR, "in6_update_ifa: failed to remove "
  971                             "a route to the old destination: %s\n",
  972                             ip6_sprintf(&ia->ia_addr.sin6_addr)));
  973                         /* proceed anyway... */
  974                 } else
  975                         ia->ia_flags &= ~IFA_ROUTE;
  976                 ia->ia_dstaddr = dst6;
  977         }
  978 
  979         /*
  980          * Set lifetimes.  We do not refer to ia6t_expire and ia6t_preferred
  981          * to see if the address is deprecated or invalidated, but initialize
  982          * these members for applications.
  983          */
  984         ia->ia6_lifetime = ifra->ifra_lifetime;
  985         if (ia->ia6_lifetime.ia6t_vltime != ND6_INFINITE_LIFETIME) {
  986                 ia->ia6_lifetime.ia6t_expire =
  987                     time_second + ia->ia6_lifetime.ia6t_vltime;
  988         } else
  989                 ia->ia6_lifetime.ia6t_expire = 0;
  990         if (ia->ia6_lifetime.ia6t_pltime != ND6_INFINITE_LIFETIME) {
  991                 ia->ia6_lifetime.ia6t_preferred =
  992                     time_second + ia->ia6_lifetime.ia6t_pltime;
  993         } else
  994                 ia->ia6_lifetime.ia6t_preferred = 0;
  995 
  996         /* reset the interface and routing table appropriately. */
  997         if ((error = in6_ifinit(ifp, ia, &ifra->ifra_addr, hostIsNew)) != 0)
  998                 goto unlink;
  999 
 1000         /*
 1001          * configure address flags.
 1002          */
 1003         ia->ia6_flags = ifra->ifra_flags;
 1004         /*
 1005          * backward compatibility - if IN6_IFF_DEPRECATED is set from the
 1006          * userland, make it deprecated.
 1007          */
 1008         if ((ifra->ifra_flags & IN6_IFF_DEPRECATED) != 0) {
 1009                 ia->ia6_lifetime.ia6t_pltime = 0;
 1010                 ia->ia6_lifetime.ia6t_preferred = time_second;
 1011         }
 1012         /*
 1013          * Make the address tentative before joining multicast addresses,
 1014          * so that corresponding MLD responses would not have a tentative
 1015          * source address.
 1016          */
 1017         ia->ia6_flags &= ~IN6_IFF_DUPLICATED;   /* safety */
 1018         if (hostIsNew && in6if_do_dad(ifp))
 1019                 ia->ia6_flags |= IN6_IFF_TENTATIVE;
 1020 
 1021         /*
 1022          * We are done if we have simply modified an existing address.
 1023          */
 1024         if (!hostIsNew)
 1025                 return (error);
 1026 
 1027         /*
 1028          * Beyond this point, we should call in6_purgeaddr upon an error,
 1029          * not just go to unlink.
 1030          */
 1031 
 1032         /* Join necessary multicast groups */
 1033         in6m_sol = NULL;
 1034         if ((ifp->if_flags & IFF_MULTICAST) != 0) {
 1035                 struct sockaddr_in6 mltaddr, mltmask;
 1036                 struct in6_addr llsol;
 1037 
 1038                 /* join solicited multicast addr for new host id */
 1039                 bzero(&llsol, sizeof(struct in6_addr));
 1040                 llsol.s6_addr32[0] = IPV6_ADDR_INT32_MLL;
 1041                 llsol.s6_addr32[1] = 0;
 1042                 llsol.s6_addr32[2] = htonl(1);
 1043                 llsol.s6_addr32[3] = ifra->ifra_addr.sin6_addr.s6_addr32[3];
 1044                 llsol.s6_addr8[12] = 0xff;
 1045                 if ((error = in6_setscope(&llsol, ifp, NULL)) != 0) {
 1046                         /* XXX: should not happen */
 1047                         log(LOG_ERR, "in6_update_ifa: "
 1048                             "in6_setscope failed\n");
 1049                         goto cleanup;
 1050                 }
 1051                 delay = 0;
 1052                 if ((flags & IN6_IFAUPDATE_DADDELAY)) {
 1053                         /*
 1054                          * We need a random delay for DAD on the address
 1055                          * being configured.  It also means delaying
 1056                          * transmission of the corresponding MLD report to
 1057                          * avoid report collision.
 1058                          * [draft-ietf-ipv6-rfc2462bis-02.txt]
 1059                          */
 1060                         delay = arc4random() %
 1061                             (MAX_RTR_SOLICITATION_DELAY * hz);
 1062                 }
 1063                 imm = in6_joingroup(ifp, &llsol, &error, delay);
 1064                 if (imm == NULL) {
 1065                         nd6log((LOG_WARNING,
 1066                             "in6_update_ifa: addmulti failed for "
 1067                             "%s on %s (errno=%d)\n",
 1068                             ip6_sprintf(&llsol), if_name(ifp),
 1069                             error));
 1070                         in6_purgeaddr((struct ifaddr *)ia);
 1071                         return (error);
 1072                 }
 1073                 LIST_INSERT_HEAD(&ia->ia6_memberships,
 1074                     imm, i6mm_chain);
 1075                 in6m_sol = imm->i6mm_maddr;
 1076 
 1077                 bzero(&mltmask, sizeof(mltmask));
 1078                 mltmask.sin6_len = sizeof(struct sockaddr_in6);
 1079                 mltmask.sin6_family = AF_INET6;
 1080                 mltmask.sin6_addr = in6mask32;
 1081 #define MLTMASK_LEN  4  /* mltmask's masklen (=32bit=4octet) */
 1082 
 1083                 /*
 1084                  * join link-local all-nodes address
 1085                  */
 1086                 bzero(&mltaddr, sizeof(mltaddr));
 1087                 mltaddr.sin6_len = sizeof(struct sockaddr_in6);
 1088                 mltaddr.sin6_family = AF_INET6;
 1089                 mltaddr.sin6_addr = in6addr_linklocal_allnodes;
 1090                 if ((error = in6_setscope(&mltaddr.sin6_addr, ifp, NULL)) !=
 1091                     0)
 1092                         goto cleanup; /* XXX: should not fail */
 1093 
 1094                 /*
 1095                  * XXX: do we really need this automatic routes?
 1096                  * We should probably reconsider this stuff.  Most applications
 1097                  * actually do not need the routes, since they usually specify
 1098                  * the outgoing interface.
 1099                  */
 1100                 rt = rtalloc1((struct sockaddr *)&mltaddr, 0, 0UL);
 1101                 if (rt) {
 1102                         if (memcmp(&mltaddr.sin6_addr,
 1103                             &((struct sockaddr_in6 *)rt_key(rt))->sin6_addr,
 1104                             MLTMASK_LEN)) {
 1105                                 RTFREE_LOCKED(rt);
 1106                                 rt = NULL;
 1107                         }
 1108                 }
 1109                 if (!rt) {
 1110                         /* XXX: we need RTF_CLONING to fake nd6_rtrequest */
 1111                         error = rtrequest(RTM_ADD, (struct sockaddr *)&mltaddr,
 1112                             (struct sockaddr *)&ia->ia_addr,
 1113                             (struct sockaddr *)&mltmask, RTF_UP | RTF_CLONING,
 1114                             (struct rtentry **)0);
 1115                         if (error)
 1116                                 goto cleanup;
 1117                 } else
 1118                         RTFREE_LOCKED(rt);
 1119 
 1120                 /*
 1121                  * XXX: do we really need this automatic routes?
 1122                  * We should probably reconsider this stuff.  Most applications
 1123                  * actually do not need the routes, since they usually specify
 1124                  * the outgoing interface.
 1125                  */
 1126                 rt = rtalloc1((struct sockaddr *)&mltaddr, 0, 0UL);
 1127                 if (rt) {
 1128                         /* XXX: only works in !SCOPEDROUTING case. */
 1129                         if (memcmp(&mltaddr.sin6_addr,
 1130                             &((struct sockaddr_in6 *)rt_key(rt))->sin6_addr,
 1131                             MLTMASK_LEN)) {
 1132                                 RTFREE_LOCKED(rt);
 1133                                 rt = NULL;
 1134                         }
 1135                 }
 1136                 if (!rt) {
 1137                         error = rtrequest(RTM_ADD, (struct sockaddr *)&mltaddr,
 1138                             (struct sockaddr *)&ia->ia_addr,
 1139                             (struct sockaddr *)&mltmask, RTF_UP | RTF_CLONING,
 1140                             (struct rtentry **)0);
 1141                         if (error)
 1142                                 goto cleanup;
 1143                 } else {
 1144                         RTFREE_LOCKED(rt);
 1145                 }
 1146 
 1147                 imm = in6_joingroup(ifp, &mltaddr.sin6_addr, &error, 0);
 1148                 if (!imm) {
 1149                         nd6log((LOG_WARNING,
 1150                             "in6_update_ifa: addmulti failed for "
 1151                             "%s on %s (errno=%d)\n",
 1152                             ip6_sprintf(&mltaddr.sin6_addr),
 1153                             if_name(ifp), error));
 1154                         goto cleanup;
 1155                 }
 1156                 LIST_INSERT_HEAD(&ia->ia6_memberships, imm, i6mm_chain);
 1157 
 1158                 /*
 1159                  * join node information group address
 1160                  */
 1161 #define hostnamelen     strlen(hostname)
 1162                 delay = 0;
 1163                 if ((flags & IN6_IFAUPDATE_DADDELAY)) {
 1164                         /*
 1165                          * The spec doesn't say anything about delay for this
 1166                          * group, but the same logic should apply.
 1167                          */
 1168                         delay = arc4random() %
 1169                             (MAX_RTR_SOLICITATION_DELAY * hz);
 1170                 }
 1171                 if (in6_nigroup(ifp, hostname, hostnamelen, &mltaddr.sin6_addr)
 1172                     == 0) {
 1173                         imm = in6_joingroup(ifp, &mltaddr.sin6_addr, &error,
 1174                             delay); /* XXX jinmei */
 1175                         if (!imm) {
 1176                                 nd6log((LOG_WARNING, "in6_update_ifa: "
 1177                                     "addmulti failed for %s on %s "
 1178                                     "(errno=%d)\n",
 1179                                     ip6_sprintf(&mltaddr.sin6_addr),
 1180                                     if_name(ifp), error));
 1181                                 /* XXX not very fatal, go on... */
 1182                         } else {
 1183                                 LIST_INSERT_HEAD(&ia->ia6_memberships,
 1184                                     imm, i6mm_chain);
 1185                         }
 1186                 }
 1187 #undef hostnamelen
 1188 
 1189                 /*
 1190                  * join interface-local all-nodes address.
 1191                  * (ff01::1%ifN, and ff01::%ifN/32)
 1192                  */
 1193                 mltaddr.sin6_addr = in6addr_nodelocal_allnodes;
 1194                 if ((error = in6_setscope(&mltaddr.sin6_addr, ifp, NULL))
 1195                     != 0)
 1196                         goto cleanup; /* XXX: should not fail */
 1197                 /* XXX: again, do we really need the route? */
 1198                 rt = rtalloc1((struct sockaddr *)&mltaddr, 0, 0UL);
 1199                 if (rt) {
 1200                         if (memcmp(&mltaddr.sin6_addr,
 1201                             &((struct sockaddr_in6 *)rt_key(rt))->sin6_addr,
 1202                             MLTMASK_LEN)) {
 1203                                 RTFREE_LOCKED(rt);
 1204                                 rt = NULL;
 1205                         }
 1206                 }
 1207                 if (!rt) {
 1208                         error = rtrequest(RTM_ADD, (struct sockaddr *)&mltaddr,
 1209                             (struct sockaddr *)&ia->ia_addr,
 1210                             (struct sockaddr *)&mltmask, RTF_UP | RTF_CLONING,
 1211                             (struct rtentry **)0);
 1212                         if (error)
 1213                                 goto cleanup;
 1214                 } else
 1215                         RTFREE_LOCKED(rt);
 1216 
 1217                 /* XXX: again, do we really need the route? */
 1218                 rt = rtalloc1((struct sockaddr *)&mltaddr, 0, 0UL);
 1219                 if (rt) {
 1220                         if (memcmp(&mltaddr.sin6_addr,
 1221                             &((struct sockaddr_in6 *)rt_key(rt))->sin6_addr,
 1222                             MLTMASK_LEN)) {
 1223                                 RTFREE_LOCKED(rt);
 1224                                 rt = NULL;
 1225                         }
 1226                 }
 1227                 if (!rt) {
 1228                         error = rtrequest(RTM_ADD, (struct sockaddr *)&mltaddr,
 1229                             (struct sockaddr *)&ia->ia_addr,
 1230                             (struct sockaddr *)&mltmask, RTF_UP | RTF_CLONING,
 1231                             (struct rtentry **)0);
 1232                         if (error)
 1233                                 goto cleanup;
 1234                 } else {
 1235                         RTFREE_LOCKED(rt);
 1236                 }
 1237 
 1238                 imm = in6_joingroup(ifp, &mltaddr.sin6_addr, &error, 0);
 1239                 if (!imm) {
 1240                         nd6log((LOG_WARNING, "in6_update_ifa: "
 1241                             "addmulti failed for %s on %s "
 1242                             "(errno=%d)\n",
 1243                             ip6_sprintf(&mltaddr.sin6_addr),
 1244                             if_name(ifp), error));
 1245                         goto cleanup;
 1246                 }
 1247                 LIST_INSERT_HEAD(&ia->ia6_memberships, imm, i6mm_chain);
 1248 #undef  MLTMASK_LEN
 1249         }
 1250 
 1251         /*
 1252          * Perform DAD, if needed.
 1253          * XXX It may be of use, if we can administratively
 1254          * disable DAD.
 1255          */
 1256         if (hostIsNew && in6if_do_dad(ifp) &&
 1257             ((ifra->ifra_flags & IN6_IFF_NODAD) == 0) &&
 1258             (ia->ia6_flags & IN6_IFF_TENTATIVE))
 1259         {
 1260                 int mindelay, maxdelay;
 1261 
 1262                 delay = 0;
 1263                 if ((flags & IN6_IFAUPDATE_DADDELAY)) {
 1264                         /*
 1265                          * We need to impose a delay before sending an NS
 1266                          * for DAD.  Check if we also needed a delay for the
 1267                          * corresponding MLD message.  If we did, the delay
 1268                          * should be larger than the MLD delay (this could be
 1269                          * relaxed a bit, but this simple logic is at least
 1270                          * safe).
 1271                          */
 1272                         mindelay = 0;
 1273                         if (in6m_sol != NULL &&
 1274                             in6m_sol->in6m_state == MLD_REPORTPENDING) {
 1275                                 mindelay = in6m_sol->in6m_timer;
 1276                         }
 1277                         maxdelay = MAX_RTR_SOLICITATION_DELAY * hz;
 1278                         if (maxdelay - mindelay == 0)
 1279                                 delay = 0;
 1280                         else {
 1281                                 delay =
 1282                                     (arc4random() % (maxdelay - mindelay)) +
 1283                                     mindelay;
 1284                         }
 1285                 }
 1286                 nd6_dad_start((struct ifaddr *)ia, delay);
 1287         }
 1288 
 1289         return (error);
 1290 
 1291   unlink:
 1292         /*
 1293          * XXX: if a change of an existing address failed, keep the entry
 1294          * anyway.
 1295          */
 1296         if (hostIsNew)
 1297                 in6_unlink_ifa(ia, ifp);
 1298         return (error);
 1299 
 1300   cleanup:
 1301         in6_purgeaddr(&ia->ia_ifa);
 1302         return error;
 1303 }
 1304 
 1305 void
 1306 in6_purgeaddr(ifa)
 1307         struct ifaddr *ifa;
 1308 {
 1309         struct ifnet *ifp = ifa->ifa_ifp;
 1310         struct in6_ifaddr *ia = (struct in6_ifaddr *) ifa;
 1311         struct in6_multi_mship *imm;
 1312 
 1313         /* stop DAD processing */
 1314         nd6_dad_stop(ifa);
 1315 
 1316         /*
 1317          * delete route to the destination of the address being purged.
 1318          * The interface must be p2p or loopback in this case.
 1319          */
 1320         if ((ia->ia_flags & IFA_ROUTE) != 0 && ia->ia_dstaddr.sin6_len != 0) {
 1321                 int e;
 1322 
 1323                 if ((e = rtinit(&(ia->ia_ifa), (int)RTM_DELETE, RTF_HOST))
 1324                     != 0) {
 1325                         log(LOG_ERR, "in6_purgeaddr: failed to remove "
 1326                             "a route to the p2p destination: %s on %s, "
 1327                             "errno=%d\n",
 1328                             ip6_sprintf(&ia->ia_addr.sin6_addr), if_name(ifp),
 1329                             e);
 1330                         /* proceed anyway... */
 1331                 } else
 1332                         ia->ia_flags &= ~IFA_ROUTE;
 1333         }
 1334 
 1335         /* Remove ownaddr's loopback rtentry, if it exists. */
 1336         in6_ifremloop(&(ia->ia_ifa));
 1337 
 1338         /*
 1339          * leave from multicast groups we have joined for the interface
 1340          */
 1341         while ((imm = ia->ia6_memberships.lh_first) != NULL) {
 1342                 LIST_REMOVE(imm, i6mm_chain);
 1343                 in6_leavegroup(imm);
 1344         }
 1345 
 1346         in6_unlink_ifa(ia, ifp);
 1347 }
 1348 
 1349 static void
 1350 in6_unlink_ifa(ia, ifp)
 1351         struct in6_ifaddr *ia;
 1352         struct ifnet *ifp;
 1353 {
 1354         struct in6_ifaddr *oia;
 1355         int     s = splnet();
 1356 
 1357         TAILQ_REMOVE(&ifp->if_addrlist, &ia->ia_ifa, ifa_list);
 1358 
 1359         oia = ia;
 1360         if (oia == (ia = in6_ifaddr))
 1361                 in6_ifaddr = ia->ia_next;
 1362         else {
 1363                 while (ia->ia_next && (ia->ia_next != oia))
 1364                         ia = ia->ia_next;
 1365                 if (ia->ia_next)
 1366                         ia->ia_next = oia->ia_next;
 1367                 else {
 1368                         /* search failed */
 1369                         printf("Couldn't unlink in6_ifaddr from in6_ifaddr\n");
 1370                 }
 1371         }
 1372 
 1373         /*
 1374          * Release the reference to the base prefix.  There should be a
 1375          * positive reference.
 1376          */
 1377         if (oia->ia6_ndpr == NULL) {
 1378                 nd6log((LOG_NOTICE,
 1379                     "in6_unlink_ifa: autoconf'ed address "
 1380                     "%p has no prefix\n", oia));
 1381         } else {
 1382                 oia->ia6_ndpr->ndpr_refcnt--;
 1383                 oia->ia6_ndpr = NULL;
 1384         }
 1385 
 1386         /*
 1387          * Also, if the address being removed is autoconf'ed, call
 1388          * pfxlist_onlink_check() since the release might affect the status of
 1389          * other (detached) addresses. 
 1390          */
 1391         if ((oia->ia6_flags & IN6_IFF_AUTOCONF)) {
 1392                 pfxlist_onlink_check();
 1393         }
 1394 
 1395         /*
 1396          * release another refcnt for the link from in6_ifaddr.
 1397          * Note that we should decrement the refcnt at least once for all *BSD.
 1398          */
 1399         IFAFREE(&oia->ia_ifa);
 1400 
 1401         splx(s);
 1402 }
 1403 
 1404 void
 1405 in6_purgeif(ifp)
 1406         struct ifnet *ifp;
 1407 {
 1408         struct ifaddr *ifa, *nifa;
 1409 
 1410         for (ifa = TAILQ_FIRST(&ifp->if_addrlist); ifa != NULL; ifa = nifa) {
 1411                 nifa = TAILQ_NEXT(ifa, ifa_list);
 1412                 if (ifa->ifa_addr->sa_family != AF_INET6)
 1413                         continue;
 1414                 in6_purgeaddr(ifa);
 1415         }
 1416 
 1417         in6_ifdetach(ifp);
 1418 }
 1419 
 1420 /*
 1421  * SIOC[GAD]LIFADDR.
 1422  *      SIOCGLIFADDR: get first address. (?)
 1423  *      SIOCGLIFADDR with IFLR_PREFIX:
 1424  *              get first address that matches the specified prefix.
 1425  *      SIOCALIFADDR: add the specified address.
 1426  *      SIOCALIFADDR with IFLR_PREFIX:
 1427  *              add the specified prefix, filling hostid part from
 1428  *              the first link-local address.  prefixlen must be <= 64.
 1429  *      SIOCDLIFADDR: delete the specified address.
 1430  *      SIOCDLIFADDR with IFLR_PREFIX:
 1431  *              delete the first address that matches the specified prefix.
 1432  * return values:
 1433  *      EINVAL on invalid parameters
 1434  *      EADDRNOTAVAIL on prefix match failed/specified address not found
 1435  *      other values may be returned from in6_ioctl()
 1436  *
 1437  * NOTE: SIOCALIFADDR(with IFLR_PREFIX set) allows prefixlen less than 64.
 1438  * this is to accomodate address naming scheme other than RFC2374,
 1439  * in the future.
 1440  * RFC2373 defines interface id to be 64bit, but it allows non-RFC2374
 1441  * address encoding scheme. (see figure on page 8)
 1442  */
 1443 static int
 1444 in6_lifaddr_ioctl(so, cmd, data, ifp, td)
 1445         struct socket *so;
 1446         u_long cmd;
 1447         caddr_t data;
 1448         struct ifnet *ifp;
 1449         struct thread *td;
 1450 {
 1451         struct if_laddrreq *iflr = (struct if_laddrreq *)data;
 1452         struct ifaddr *ifa;
 1453         struct sockaddr *sa;
 1454 
 1455         /* sanity checks */
 1456         if (!data || !ifp) {
 1457                 panic("invalid argument to in6_lifaddr_ioctl");
 1458                 /* NOTREACHED */
 1459         }
 1460 
 1461         switch (cmd) {
 1462         case SIOCGLIFADDR:
 1463                 /* address must be specified on GET with IFLR_PREFIX */
 1464                 if ((iflr->flags & IFLR_PREFIX) == 0)
 1465                         break;
 1466                 /* FALLTHROUGH */
 1467         case SIOCALIFADDR:
 1468         case SIOCDLIFADDR:
 1469                 /* address must be specified on ADD and DELETE */
 1470                 sa = (struct sockaddr *)&iflr->addr;
 1471                 if (sa->sa_family != AF_INET6)
 1472                         return EINVAL;
 1473                 if (sa->sa_len != sizeof(struct sockaddr_in6))
 1474                         return EINVAL;
 1475                 /* XXX need improvement */
 1476                 sa = (struct sockaddr *)&iflr->dstaddr;
 1477                 if (sa->sa_family && sa->sa_family != AF_INET6)
 1478                         return EINVAL;
 1479                 if (sa->sa_len && sa->sa_len != sizeof(struct sockaddr_in6))
 1480                         return EINVAL;
 1481                 break;
 1482         default: /* shouldn't happen */
 1483 #if 0
 1484                 panic("invalid cmd to in6_lifaddr_ioctl");
 1485                 /* NOTREACHED */
 1486 #else
 1487                 return EOPNOTSUPP;
 1488 #endif
 1489         }
 1490         if (sizeof(struct in6_addr) * 8 < iflr->prefixlen)
 1491                 return EINVAL;
 1492 
 1493         switch (cmd) {
 1494         case SIOCALIFADDR:
 1495             {
 1496                 struct in6_aliasreq ifra;
 1497                 struct in6_addr *hostid = NULL;
 1498                 int prefixlen;
 1499 
 1500                 if ((iflr->flags & IFLR_PREFIX) != 0) {
 1501                         struct sockaddr_in6 *sin6;
 1502 
 1503                         /*
 1504                          * hostid is to fill in the hostid part of the
 1505                          * address.  hostid points to the first link-local
 1506                          * address attached to the interface.
 1507                          */
 1508                         ifa = (struct ifaddr *)in6ifa_ifpforlinklocal(ifp, 0);
 1509                         if (!ifa)
 1510                                 return EADDRNOTAVAIL;
 1511                         hostid = IFA_IN6(ifa);
 1512 
 1513                         /* prefixlen must be <= 64. */
 1514                         if (64 < iflr->prefixlen)
 1515                                 return EINVAL;
 1516                         prefixlen = iflr->prefixlen;
 1517 
 1518                         /* hostid part must be zero. */
 1519                         sin6 = (struct sockaddr_in6 *)&iflr->addr;
 1520                         if (sin6->sin6_addr.s6_addr32[2] != 0 ||
 1521                             sin6->sin6_addr.s6_addr32[3] != 0) {
 1522                                 return EINVAL;
 1523                         }
 1524                 } else
 1525                         prefixlen = iflr->prefixlen;
 1526 
 1527                 /* copy args to in6_aliasreq, perform ioctl(SIOCAIFADDR_IN6). */
 1528                 bzero(&ifra, sizeof(ifra));
 1529                 bcopy(iflr->iflr_name, ifra.ifra_name, sizeof(ifra.ifra_name));
 1530 
 1531                 bcopy(&iflr->addr, &ifra.ifra_addr,
 1532                     ((struct sockaddr *)&iflr->addr)->sa_len);
 1533                 if (hostid) {
 1534                         /* fill in hostid part */
 1535                         ifra.ifra_addr.sin6_addr.s6_addr32[2] =
 1536                             hostid->s6_addr32[2];
 1537                         ifra.ifra_addr.sin6_addr.s6_addr32[3] =
 1538                             hostid->s6_addr32[3];
 1539                 }
 1540 
 1541                 if (((struct sockaddr *)&iflr->dstaddr)->sa_family) { /* XXX */
 1542                         bcopy(&iflr->dstaddr, &ifra.ifra_dstaddr,
 1543                             ((struct sockaddr *)&iflr->dstaddr)->sa_len);
 1544                         if (hostid) {
 1545                                 ifra.ifra_dstaddr.sin6_addr.s6_addr32[2] =
 1546                                     hostid->s6_addr32[2];
 1547                                 ifra.ifra_dstaddr.sin6_addr.s6_addr32[3] =
 1548                                     hostid->s6_addr32[3];
 1549                         }
 1550                 }
 1551 
 1552                 ifra.ifra_prefixmask.sin6_len = sizeof(struct sockaddr_in6);
 1553                 in6_prefixlen2mask(&ifra.ifra_prefixmask.sin6_addr, prefixlen);
 1554 
 1555                 ifra.ifra_flags = iflr->flags & ~IFLR_PREFIX;
 1556                 return in6_control(so, SIOCAIFADDR_IN6, (caddr_t)&ifra, ifp, td);
 1557             }
 1558         case SIOCGLIFADDR:
 1559         case SIOCDLIFADDR:
 1560             {
 1561                 struct in6_ifaddr *ia;
 1562                 struct in6_addr mask, candidate, match;
 1563                 struct sockaddr_in6 *sin6;
 1564                 int cmp;
 1565 
 1566                 bzero(&mask, sizeof(mask));
 1567                 if (iflr->flags & IFLR_PREFIX) {
 1568                         /* lookup a prefix rather than address. */
 1569                         in6_prefixlen2mask(&mask, iflr->prefixlen);
 1570 
 1571                         sin6 = (struct sockaddr_in6 *)&iflr->addr;
 1572                         bcopy(&sin6->sin6_addr, &match, sizeof(match));
 1573                         match.s6_addr32[0] &= mask.s6_addr32[0];
 1574                         match.s6_addr32[1] &= mask.s6_addr32[1];
 1575                         match.s6_addr32[2] &= mask.s6_addr32[2];
 1576                         match.s6_addr32[3] &= mask.s6_addr32[3];
 1577 
 1578                         /* if you set extra bits, that's wrong */
 1579                         if (bcmp(&match, &sin6->sin6_addr, sizeof(match)))
 1580                                 return EINVAL;
 1581 
 1582                         cmp = 1;
 1583                 } else {
 1584                         if (cmd == SIOCGLIFADDR) {
 1585                                 /* on getting an address, take the 1st match */
 1586                                 cmp = 0;        /* XXX */
 1587                         } else {
 1588                                 /* on deleting an address, do exact match */
 1589                                 in6_prefixlen2mask(&mask, 128);
 1590                                 sin6 = (struct sockaddr_in6 *)&iflr->addr;
 1591                                 bcopy(&sin6->sin6_addr, &match, sizeof(match));
 1592 
 1593                                 cmp = 1;
 1594                         }
 1595                 }
 1596 
 1597                 TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) {
 1598                         if (ifa->ifa_addr->sa_family != AF_INET6)
 1599                                 continue;
 1600                         if (!cmp)
 1601                                 break;
 1602 
 1603                         /*
 1604                          * XXX: this is adhoc, but is necessary to allow
 1605                          * a user to specify fe80::/64 (not /10) for a
 1606                          * link-local address.
 1607                          */
 1608                         bcopy(IFA_IN6(ifa), &candidate, sizeof(candidate));
 1609                         in6_clearscope(&candidate);
 1610                         candidate.s6_addr32[0] &= mask.s6_addr32[0];
 1611                         candidate.s6_addr32[1] &= mask.s6_addr32[1];
 1612                         candidate.s6_addr32[2] &= mask.s6_addr32[2];
 1613                         candidate.s6_addr32[3] &= mask.s6_addr32[3];
 1614                         if (IN6_ARE_ADDR_EQUAL(&candidate, &match))
 1615                                 break;
 1616                 }
 1617                 if (!ifa)
 1618                         return EADDRNOTAVAIL;
 1619                 ia = ifa2ia6(ifa);
 1620 
 1621                 if (cmd == SIOCGLIFADDR) {
 1622                         int error;
 1623 
 1624                         /* fill in the if_laddrreq structure */
 1625                         bcopy(&ia->ia_addr, &iflr->addr, ia->ia_addr.sin6_len);
 1626                         error = sa6_recoverscope(
 1627                             (struct sockaddr_in6 *)&iflr->addr);
 1628                         if (error != 0)
 1629                                 return (error);
 1630 
 1631                         if ((ifp->if_flags & IFF_POINTOPOINT) != 0) {
 1632                                 bcopy(&ia->ia_dstaddr, &iflr->dstaddr,
 1633                                     ia->ia_dstaddr.sin6_len);
 1634                                 error = sa6_recoverscope(
 1635                                     (struct sockaddr_in6 *)&iflr->dstaddr);
 1636                                 if (error != 0)
 1637                                         return (error);
 1638                         } else
 1639                                 bzero(&iflr->dstaddr, sizeof(iflr->dstaddr));
 1640 
 1641                         iflr->prefixlen =
 1642                             in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL);
 1643 
 1644                         iflr->flags = ia->ia6_flags;    /* XXX */
 1645 
 1646                         return 0;
 1647                 } else {
 1648                         struct in6_aliasreq ifra;
 1649 
 1650                         /* fill in6_aliasreq and do ioctl(SIOCDIFADDR_IN6) */
 1651                         bzero(&ifra, sizeof(ifra));
 1652                         bcopy(iflr->iflr_name, ifra.ifra_name,
 1653                             sizeof(ifra.ifra_name));
 1654 
 1655                         bcopy(&ia->ia_addr, &ifra.ifra_addr,
 1656                             ia->ia_addr.sin6_len);
 1657                         if ((ifp->if_flags & IFF_POINTOPOINT) != 0) {
 1658                                 bcopy(&ia->ia_dstaddr, &ifra.ifra_dstaddr,
 1659                                     ia->ia_dstaddr.sin6_len);
 1660                         } else {
 1661                                 bzero(&ifra.ifra_dstaddr,
 1662                                     sizeof(ifra.ifra_dstaddr));
 1663                         }
 1664                         bcopy(&ia->ia_prefixmask, &ifra.ifra_dstaddr,
 1665                             ia->ia_prefixmask.sin6_len);
 1666 
 1667                         ifra.ifra_flags = ia->ia6_flags;
 1668                         return in6_control(so, SIOCDIFADDR_IN6, (caddr_t)&ifra,
 1669                             ifp, td);
 1670                 }
 1671             }
 1672         }
 1673 
 1674         return EOPNOTSUPP;      /* just for safety */
 1675 }
 1676 
 1677 /*
 1678  * Initialize an interface's intetnet6 address
 1679  * and routing table entry.
 1680  */
 1681 static int
 1682 in6_ifinit(ifp, ia, sin6, newhost)
 1683         struct ifnet *ifp;
 1684         struct in6_ifaddr *ia;
 1685         struct sockaddr_in6 *sin6;
 1686         int newhost;
 1687 {
 1688         int     error = 0, plen, ifacount = 0;
 1689         int     s = splimp();
 1690         struct ifaddr *ifa;
 1691 
 1692         /*
 1693          * Give the interface a chance to initialize
 1694          * if this is its first address,
 1695          * and to validate the address if necessary.
 1696          */
 1697         TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) {
 1698                 if (ifa->ifa_addr == NULL)
 1699                         continue;       /* just for safety */
 1700                 if (ifa->ifa_addr->sa_family != AF_INET6)
 1701                         continue;
 1702                 ifacount++;
 1703         }
 1704 
 1705         ia->ia_addr = *sin6;
 1706 
 1707         if (ifacount <= 1 && ifp->if_ioctl) {
 1708                 IFF_LOCKGIANT(ifp);
 1709                 error = (*ifp->if_ioctl)(ifp, SIOCSIFADDR, (caddr_t)ia);
 1710                 IFF_UNLOCKGIANT(ifp);
 1711                 if (error) {
 1712                         splx(s);
 1713                         return (error);
 1714                 }
 1715         }
 1716         splx(s);
 1717 
 1718         ia->ia_ifa.ifa_metric = ifp->if_metric;
 1719 
 1720         /* we could do in(6)_socktrim here, but just omit it at this moment. */
 1721 
 1722         if (newhost) {
 1723                 /*
 1724                  * set the rtrequest function to create llinfo.  It also
 1725                  * adjust outgoing interface of the route for the local
 1726                  * address when called via in6_ifaddloop() below.
 1727                  */
 1728                 ia->ia_ifa.ifa_rtrequest = nd6_rtrequest;
 1729         }
 1730 
 1731         /*
 1732          * Special case:
 1733          * If a new destination address is specified for a point-to-point
 1734          * interface, install a route to the destination as an interface
 1735          * direct route.  In addition, if the link is expected to have neighbor
 1736          * cache entries, specify RTF_LLINFO so that a cache entry for the
 1737          * destination address will be created.
 1738          * created
 1739          * XXX: the logic below rejects assigning multiple addresses on a p2p
 1740          * interface that share the same destination.
 1741          */
 1742         plen = in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL); /* XXX */
 1743         if (!(ia->ia_flags & IFA_ROUTE) && plen == 128 &&
 1744             ia->ia_dstaddr.sin6_family == AF_INET6) {
 1745                 int rtflags = RTF_UP | RTF_HOST;
 1746                 struct rtentry *rt = NULL, **rtp = NULL;
 1747 
 1748                 if (nd6_need_cache(ifp) != 0) {
 1749                         rtflags |= RTF_LLINFO;
 1750                         rtp = &rt;
 1751                 }
 1752 
 1753                 error = rtrequest(RTM_ADD, (struct sockaddr *)&ia->ia_dstaddr,
 1754                     (struct sockaddr *)&ia->ia_addr,
 1755                     (struct sockaddr *)&ia->ia_prefixmask,
 1756                     ia->ia_flags | rtflags, rtp);
 1757                 if (error != 0)
 1758                         return (error);
 1759                 if (rt != NULL) {
 1760                         struct llinfo_nd6 *ln;
 1761 
 1762                         RT_LOCK(rt);
 1763                         ln = (struct llinfo_nd6 *)rt->rt_llinfo;
 1764                         if (ln != NULL) {
 1765                                 /*
 1766                                  * Set the state to STALE because we don't
 1767                                  * have to perform address resolution on this
 1768                                  * link.
 1769                                  */
 1770                                 ln->ln_state = ND6_LLINFO_STALE;
 1771                         }
 1772                         RT_REMREF(rt);
 1773                         RT_UNLOCK(rt);
 1774                 }
 1775                 ia->ia_flags |= IFA_ROUTE;
 1776         }
 1777         if (plen < 128) {
 1778                 /*
 1779                  * The RTF_CLONING flag is necessary for in6_is_ifloop_auto().
 1780                  */
 1781                 ia->ia_ifa.ifa_flags |= RTF_CLONING;
 1782         }
 1783 
 1784         /* Add ownaddr as loopback rtentry, if necessary (ex. on p2p link). */
 1785         if (newhost)
 1786                 in6_ifaddloop(&(ia->ia_ifa));
 1787 
 1788         return (error);
 1789 }
 1790 
 1791 struct in6_multi_mship *
 1792 in6_joingroup(ifp, addr, errorp, delay)
 1793         struct ifnet *ifp;
 1794         struct in6_addr *addr;
 1795         int *errorp;
 1796         int delay;
 1797 {
 1798         struct in6_multi_mship *imm;
 1799 
 1800         imm = malloc(sizeof(*imm), M_IP6MADDR, M_NOWAIT);
 1801         if (!imm) {
 1802                 *errorp = ENOBUFS;
 1803                 return NULL;
 1804         }
 1805         imm->i6mm_maddr = in6_addmulti(addr, ifp, errorp, delay);
 1806         if (!imm->i6mm_maddr) {
 1807                 /* *errorp is alrady set */
 1808                 free(imm, M_IP6MADDR);
 1809                 return NULL;
 1810         }
 1811         return imm;
 1812 }
 1813 
 1814 int
 1815 in6_leavegroup(imm)
 1816         struct in6_multi_mship *imm;
 1817 {
 1818 
 1819         if (imm->i6mm_maddr)
 1820                 in6_delmulti(imm->i6mm_maddr);
 1821         free(imm,  M_IP6MADDR);
 1822         return 0;
 1823 }
 1824 
 1825 /*
 1826  * Find an IPv6 interface link-local address specific to an interface.
 1827  */
 1828 struct in6_ifaddr *
 1829 in6ifa_ifpforlinklocal(ifp, ignoreflags)
 1830         struct ifnet *ifp;
 1831         int ignoreflags;
 1832 {
 1833         struct ifaddr *ifa;
 1834 
 1835         TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) {
 1836                 if (ifa->ifa_addr == NULL)
 1837                         continue;       /* just for safety */
 1838                 if (ifa->ifa_addr->sa_family != AF_INET6)
 1839                         continue;
 1840                 if (IN6_IS_ADDR_LINKLOCAL(IFA_IN6(ifa))) {
 1841                         if ((((struct in6_ifaddr *)ifa)->ia6_flags &
 1842                              ignoreflags) != 0)
 1843                                 continue;
 1844                         break;
 1845                 }
 1846         }
 1847 
 1848         return ((struct in6_ifaddr *)ifa);
 1849 }
 1850 
 1851 
 1852 /*
 1853  * find the internet address corresponding to a given interface and address.
 1854  */
 1855 struct in6_ifaddr *
 1856 in6ifa_ifpwithaddr(ifp, addr)
 1857         struct ifnet *ifp;
 1858         struct in6_addr *addr;
 1859 {
 1860         struct ifaddr *ifa;
 1861 
 1862         TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) {
 1863                 if (ifa->ifa_addr == NULL)
 1864                         continue;       /* just for safety */
 1865                 if (ifa->ifa_addr->sa_family != AF_INET6)
 1866                         continue;
 1867                 if (IN6_ARE_ADDR_EQUAL(addr, IFA_IN6(ifa)))
 1868                         break;
 1869         }
 1870 
 1871         return ((struct in6_ifaddr *)ifa);
 1872 }
 1873 
 1874 /*
 1875  * Convert IP6 address to printable (loggable) representation.
 1876  */
 1877 static char digits[] = "0123456789abcdef";
 1878 static int ip6round = 0;
 1879 char *
 1880 ip6_sprintf(addr)
 1881         const struct in6_addr *addr;
 1882 {
 1883         static char ip6buf[8][48];
 1884         int i;
 1885         char *cp;
 1886         const u_int16_t *a = (const u_int16_t *)addr;
 1887         const u_int8_t *d;
 1888         int dcolon = 0;
 1889 
 1890         ip6round = (ip6round + 1) & 7;
 1891         cp = ip6buf[ip6round];
 1892 
 1893         for (i = 0; i < 8; i++) {
 1894                 if (dcolon == 1) {
 1895                         if (*a == 0) {
 1896                                 if (i == 7)
 1897                                         *cp++ = ':';
 1898                                 a++;
 1899                                 continue;
 1900                         } else
 1901                                 dcolon = 2;
 1902                 }
 1903                 if (*a == 0) {
 1904                         if (dcolon == 0 && *(a + 1) == 0) {
 1905                                 if (i == 0)
 1906                                         *cp++ = ':';
 1907                                 *cp++ = ':';
 1908                                 dcolon = 1;
 1909                         } else {
 1910                                 *cp++ = '';
 1911                                 *cp++ = ':';
 1912                         }
 1913                         a++;
 1914                         continue;
 1915                 }
 1916                 d = (const u_char *)a;
 1917                 *cp++ = digits[*d >> 4];
 1918                 *cp++ = digits[*d++ & 0xf];
 1919                 *cp++ = digits[*d >> 4];
 1920                 *cp++ = digits[*d & 0xf];
 1921                 *cp++ = ':';
 1922                 a++;
 1923         }
 1924         *--cp = 0;
 1925         return (ip6buf[ip6round]);
 1926 }
 1927 
 1928 int
 1929 in6_localaddr(in6)
 1930         struct in6_addr *in6;
 1931 {
 1932         struct in6_ifaddr *ia;
 1933 
 1934         if (IN6_IS_ADDR_LOOPBACK(in6) || IN6_IS_ADDR_LINKLOCAL(in6))
 1935                 return 1;
 1936 
 1937         for (ia = in6_ifaddr; ia; ia = ia->ia_next) {
 1938                 if (IN6_ARE_MASKED_ADDR_EQUAL(in6, &ia->ia_addr.sin6_addr,
 1939                     &ia->ia_prefixmask.sin6_addr)) {
 1940                         return 1;
 1941                 }
 1942         }
 1943 
 1944         return (0);
 1945 }
 1946 
 1947 int
 1948 in6_is_addr_deprecated(sa6)
 1949         struct sockaddr_in6 *sa6;
 1950 {
 1951         struct in6_ifaddr *ia;
 1952 
 1953         for (ia = in6_ifaddr; ia; ia = ia->ia_next) {
 1954                 if (IN6_ARE_ADDR_EQUAL(&ia->ia_addr.sin6_addr,
 1955                                        &sa6->sin6_addr) &&
 1956                     (ia->ia6_flags & IN6_IFF_DEPRECATED) != 0)
 1957                         return (1); /* true */
 1958 
 1959                 /* XXX: do we still have to go thru the rest of the list? */
 1960         }
 1961 
 1962         return (0);             /* false */
 1963 }
 1964 
 1965 /*
 1966  * return length of part which dst and src are equal
 1967  * hard coding...
 1968  */
 1969 int
 1970 in6_matchlen(src, dst)
 1971 struct in6_addr *src, *dst;
 1972 {
 1973         int match = 0;
 1974         u_char *s = (u_char *)src, *d = (u_char *)dst;
 1975         u_char *lim = s + 16, r;
 1976 
 1977         while (s < lim)
 1978                 if ((r = (*d++ ^ *s++)) != 0) {
 1979                         while (r < 128) {
 1980                                 match++;
 1981                                 r <<= 1;
 1982                         }
 1983                         break;
 1984                 } else
 1985                         match += 8;
 1986         return match;
 1987 }
 1988 
 1989 /* XXX: to be scope conscious */
 1990 int
 1991 in6_are_prefix_equal(p1, p2, len)
 1992         struct in6_addr *p1, *p2;
 1993         int len;
 1994 {
 1995         int bytelen, bitlen;
 1996 
 1997         /* sanity check */
 1998         if (0 > len || len > 128) {
 1999                 log(LOG_ERR, "in6_are_prefix_equal: invalid prefix length(%d)\n",
 2000                     len);
 2001                 return (0);
 2002         }
 2003 
 2004         bytelen = len / 8;
 2005         bitlen = len % 8;
 2006 
 2007         if (bcmp(&p1->s6_addr, &p2->s6_addr, bytelen))
 2008                 return (0);
 2009         if (bitlen != 0 &&
 2010             p1->s6_addr[bytelen] >> (8 - bitlen) !=
 2011             p2->s6_addr[bytelen] >> (8 - bitlen))
 2012                 return (0);
 2013 
 2014         return (1);
 2015 }
 2016 
 2017 void
 2018 in6_prefixlen2mask(maskp, len)
 2019         struct in6_addr *maskp;
 2020         int len;
 2021 {
 2022         u_char maskarray[8] = {0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, 0xff};
 2023         int bytelen, bitlen, i;
 2024 
 2025         /* sanity check */
 2026         if (0 > len || len > 128) {
 2027                 log(LOG_ERR, "in6_prefixlen2mask: invalid prefix length(%d)\n",
 2028                     len);
 2029                 return;
 2030         }
 2031 
 2032         bzero(maskp, sizeof(*maskp));
 2033         bytelen = len / 8;
 2034         bitlen = len % 8;
 2035         for (i = 0; i < bytelen; i++)
 2036                 maskp->s6_addr[i] = 0xff;
 2037         if (bitlen)
 2038                 maskp->s6_addr[bytelen] = maskarray[bitlen - 1];
 2039 }
 2040 
 2041 /*
 2042  * return the best address out of the same scope. if no address was
 2043  * found, return the first valid address from designated IF.
 2044  */
 2045 struct in6_ifaddr *
 2046 in6_ifawithifp(ifp, dst)
 2047         struct ifnet *ifp;
 2048         struct in6_addr *dst;
 2049 {
 2050         int dst_scope = in6_addrscope(dst), blen = -1, tlen;
 2051         struct ifaddr *ifa;
 2052         struct in6_ifaddr *besta = 0;
 2053         struct in6_ifaddr *dep[2];      /* last-resort: deprecated */
 2054 
 2055         dep[0] = dep[1] = NULL;
 2056 
 2057         /*
 2058          * We first look for addresses in the same scope.
 2059          * If there is one, return it.
 2060          * If two or more, return one which matches the dst longest.
 2061          * If none, return one of global addresses assigned other ifs.
 2062          */
 2063         TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) {
 2064                 if (ifa->ifa_addr->sa_family != AF_INET6)
 2065                         continue;
 2066                 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_ANYCAST)
 2067                         continue; /* XXX: is there any case to allow anycast? */
 2068                 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_NOTREADY)
 2069                         continue; /* don't use this interface */
 2070                 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DETACHED)
 2071                         continue;
 2072                 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DEPRECATED) {
 2073                         if (ip6_use_deprecated)
 2074                                 dep[0] = (struct in6_ifaddr *)ifa;
 2075                         continue;
 2076                 }
 2077 
 2078                 if (dst_scope == in6_addrscope(IFA_IN6(ifa))) {
 2079                         /*
 2080                          * call in6_matchlen() as few as possible
 2081                          */
 2082                         if (besta) {
 2083                                 if (blen == -1)
 2084                                         blen = in6_matchlen(&besta->ia_addr.sin6_addr, dst);
 2085                                 tlen = in6_matchlen(IFA_IN6(ifa), dst);
 2086                                 if (tlen > blen) {
 2087                                         blen = tlen;
 2088                                         besta = (struct in6_ifaddr *)ifa;
 2089                                 }
 2090                         } else
 2091                                 besta = (struct in6_ifaddr *)ifa;
 2092                 }
 2093         }
 2094         if (besta)
 2095                 return (besta);
 2096 
 2097         TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) {
 2098                 if (ifa->ifa_addr->sa_family != AF_INET6)
 2099                         continue;
 2100                 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_ANYCAST)
 2101                         continue; /* XXX: is there any case to allow anycast? */
 2102                 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_NOTREADY)
 2103                         continue; /* don't use this interface */
 2104                 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DETACHED)
 2105                         continue;
 2106                 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DEPRECATED) {
 2107                         if (ip6_use_deprecated)
 2108                                 dep[1] = (struct in6_ifaddr *)ifa;
 2109                         continue;
 2110                 }
 2111 
 2112                 return (struct in6_ifaddr *)ifa;
 2113         }
 2114 
 2115         /* use the last-resort values, that are, deprecated addresses */
 2116         if (dep[0])
 2117                 return dep[0];
 2118         if (dep[1])
 2119                 return dep[1];
 2120 
 2121         return NULL;
 2122 }
 2123 
 2124 /*
 2125  * perform DAD when interface becomes IFF_UP.
 2126  */
 2127 void
 2128 in6_if_up(ifp)
 2129         struct ifnet *ifp;
 2130 {
 2131         struct ifaddr *ifa;
 2132         struct in6_ifaddr *ia;
 2133 
 2134         TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) {
 2135                 if (ifa->ifa_addr->sa_family != AF_INET6)
 2136                         continue;
 2137                 ia = (struct in6_ifaddr *)ifa;
 2138                 if (ia->ia6_flags & IN6_IFF_TENTATIVE) {
 2139                         /*
 2140                          * The TENTATIVE flag was likely set by hand
 2141                          * beforehand, implicitly indicating the need for DAD.
 2142                          * We may be able to skip the random delay in this
 2143                          * case, but we impose delays just in case.
 2144                          */
 2145                         nd6_dad_start(ifa,
 2146                             arc4random() % (MAX_RTR_SOLICITATION_DELAY * hz));
 2147                 }
 2148         }
 2149 
 2150         /*
 2151          * special cases, like 6to4, are handled in in6_ifattach
 2152          */
 2153         in6_ifattach(ifp, NULL);
 2154 }
 2155 
 2156 int
 2157 in6if_do_dad(ifp)
 2158         struct ifnet *ifp;
 2159 {
 2160         if ((ifp->if_flags & IFF_LOOPBACK) != 0)
 2161                 return (0);
 2162 
 2163         switch (ifp->if_type) {
 2164 #ifdef IFT_DUMMY
 2165         case IFT_DUMMY:
 2166 #endif
 2167         case IFT_FAITH:
 2168                 /*
 2169                  * These interfaces do not have the IFF_LOOPBACK flag,
 2170                  * but loop packets back.  We do not have to do DAD on such
 2171                  * interfaces.  We should even omit it, because loop-backed
 2172                  * NS would confuse the DAD procedure.
 2173                  */
 2174                 return (0);
 2175         default:
 2176                 /*
 2177                  * Our DAD routine requires the interface up and running.
 2178                  * However, some interfaces can be up before the RUNNING
 2179                  * status.  Additionaly, users may try to assign addresses
 2180                  * before the interface becomes up (or running).
 2181                  * We simply skip DAD in such a case as a work around.
 2182                  * XXX: we should rather mark "tentative" on such addresses,
 2183                  * and do DAD after the interface becomes ready.
 2184                  */
 2185                 if (!((ifp->if_flags & IFF_UP) &&
 2186                     (ifp->if_drv_flags & IFF_DRV_RUNNING)))
 2187                         return (0);
 2188 
 2189                 return (1);
 2190         }
 2191 }
 2192 
 2193 /*
 2194  * Calculate max IPv6 MTU through all the interfaces and store it
 2195  * to in6_maxmtu.
 2196  */
 2197 void
 2198 in6_setmaxmtu()
 2199 {
 2200         unsigned long maxmtu = 0;
 2201         struct ifnet *ifp;
 2202 
 2203         IFNET_RLOCK();
 2204         for (ifp = TAILQ_FIRST(&ifnet); ifp; ifp = TAILQ_NEXT(ifp, if_list)) {
 2205                 /* this function can be called during ifnet initialization */
 2206                 if (!ifp->if_afdata[AF_INET6])
 2207                         continue;
 2208                 if ((ifp->if_flags & IFF_LOOPBACK) == 0 &&
 2209                     IN6_LINKMTU(ifp) > maxmtu)
 2210                         maxmtu = IN6_LINKMTU(ifp);
 2211         }
 2212         IFNET_RUNLOCK();
 2213         if (maxmtu)          /* update only when maxmtu is positive */
 2214                 in6_maxmtu = maxmtu;
 2215 }
 2216 
 2217 /*
 2218  * Provide the length of interface identifiers to be used for the link attached
 2219  * to the given interface.  The length should be defined in "IPv6 over
 2220  * xxx-link" document.  Note that address architecture might also define
 2221  * the length for a particular set of address prefixes, regardless of the
 2222  * link type.  As clarified in rfc2462bis, those two definitions should be
 2223  * consistent, and those really are as of August 2004.
 2224  */
 2225 int
 2226 in6_if2idlen(ifp)
 2227         struct ifnet *ifp;
 2228 {
 2229         switch (ifp->if_type) {
 2230         case IFT_ETHER:         /* RFC2464 */
 2231 #ifdef IFT_PROPVIRTUAL
 2232         case IFT_PROPVIRTUAL:   /* XXX: no RFC. treat it as ether */
 2233 #endif
 2234 #ifdef IFT_L2VLAN
 2235         case IFT_L2VLAN:        /* ditto */
 2236 #endif
 2237 #ifdef IFT_IEEE80211
 2238         case IFT_IEEE80211:     /* ditto */
 2239 #endif
 2240 #ifdef IFT_MIP
 2241         case IFT_MIP:   /* ditto */
 2242 #endif
 2243                 return (64);
 2244         case IFT_FDDI:          /* RFC2467 */
 2245                 return (64);
 2246         case IFT_ISO88025:      /* RFC2470 (IPv6 over Token Ring) */
 2247                 return (64);
 2248         case IFT_PPP:           /* RFC2472 */
 2249                 return (64);
 2250         case IFT_ARCNET:        /* RFC2497 */
 2251                 return (64);
 2252         case IFT_FRELAY:        /* RFC2590 */
 2253                 return (64);
 2254         case IFT_IEEE1394:      /* RFC3146 */
 2255                 return (64);
 2256         case IFT_GIF:
 2257                 return (64);    /* draft-ietf-v6ops-mech-v2-07 */
 2258         case IFT_LOOP:
 2259                 return (64);    /* XXX: is this really correct? */
 2260         default:
 2261                 /*
 2262                  * Unknown link type:
 2263                  * It might be controversial to use the today's common constant
 2264                  * of 64 for these cases unconditionally.  For full compliance,
 2265                  * we should return an error in this case.  On the other hand,
 2266                  * if we simply miss the standard for the link type or a new
 2267                  * standard is defined for a new link type, the IFID length
 2268                  * is very likely to be the common constant.  As a compromise,
 2269                  * we always use the constant, but make an explicit notice
 2270                  * indicating the "unknown" case.
 2271                  */
 2272                 printf("in6_if2idlen: unknown link type (%d)\n", ifp->if_type);
 2273                 return (64);
 2274         }
 2275 }
 2276 
 2277 void *
 2278 in6_domifattach(ifp)
 2279         struct ifnet *ifp;
 2280 {
 2281         struct in6_ifextra *ext;
 2282 
 2283         ext = (struct in6_ifextra *)malloc(sizeof(*ext), M_IFADDR, M_WAITOK);
 2284         bzero(ext, sizeof(*ext));
 2285 
 2286         ext->in6_ifstat = (struct in6_ifstat *)malloc(sizeof(struct in6_ifstat),
 2287             M_IFADDR, M_WAITOK);
 2288         bzero(ext->in6_ifstat, sizeof(*ext->in6_ifstat));
 2289 
 2290         ext->icmp6_ifstat =
 2291             (struct icmp6_ifstat *)malloc(sizeof(struct icmp6_ifstat),
 2292             M_IFADDR, M_WAITOK);
 2293         bzero(ext->icmp6_ifstat, sizeof(*ext->icmp6_ifstat));
 2294 
 2295         ext->nd_ifinfo = nd6_ifattach(ifp);
 2296         ext->scope6_id = scope6_ifattach(ifp);
 2297         return ext;
 2298 }
 2299 
 2300 void
 2301 in6_domifdetach(ifp, aux)
 2302         struct ifnet *ifp;
 2303         void *aux;
 2304 {
 2305         struct in6_ifextra *ext = (struct in6_ifextra *)aux;
 2306 
 2307         scope6_ifdetach(ext->scope6_id);
 2308         nd6_ifdetach(ext->nd_ifinfo);
 2309         free(ext->in6_ifstat, M_IFADDR);
 2310         free(ext->icmp6_ifstat, M_IFADDR);
 2311         free(ext, M_IFADDR);
 2312 }
 2313 
 2314 /*
 2315  * Convert sockaddr_in6 to sockaddr_in.  Original sockaddr_in6 must be
 2316  * v4 mapped addr or v4 compat addr
 2317  */
 2318 void
 2319 in6_sin6_2_sin(struct sockaddr_in *sin, struct sockaddr_in6 *sin6)
 2320 {
 2321         bzero(sin, sizeof(*sin));
 2322         sin->sin_len = sizeof(struct sockaddr_in);
 2323         sin->sin_family = AF_INET;
 2324         sin->sin_port = sin6->sin6_port;
 2325         sin->sin_addr.s_addr = sin6->sin6_addr.s6_addr32[3];
 2326 }
 2327 
 2328 /* Convert sockaddr_in to sockaddr_in6 in v4 mapped addr format. */
 2329 void
 2330 in6_sin_2_v4mapsin6(struct sockaddr_in *sin, struct sockaddr_in6 *sin6)
 2331 {
 2332         bzero(sin6, sizeof(*sin6));
 2333         sin6->sin6_len = sizeof(struct sockaddr_in6);
 2334         sin6->sin6_family = AF_INET6;
 2335         sin6->sin6_port = sin->sin_port;
 2336         sin6->sin6_addr.s6_addr32[0] = 0;
 2337         sin6->sin6_addr.s6_addr32[1] = 0;
 2338         sin6->sin6_addr.s6_addr32[2] = IPV6_ADDR_INT32_SMP;
 2339         sin6->sin6_addr.s6_addr32[3] = sin->sin_addr.s_addr;
 2340 }
 2341 
 2342 /* Convert sockaddr_in6 into sockaddr_in. */
 2343 void
 2344 in6_sin6_2_sin_in_sock(struct sockaddr *nam)
 2345 {
 2346         struct sockaddr_in *sin_p;
 2347         struct sockaddr_in6 sin6;
 2348 
 2349         /*
 2350          * Save original sockaddr_in6 addr and convert it
 2351          * to sockaddr_in.
 2352          */
 2353         sin6 = *(struct sockaddr_in6 *)nam;
 2354         sin_p = (struct sockaddr_in *)nam;
 2355         in6_sin6_2_sin(sin_p, &sin6);
 2356 }
 2357 
 2358 /* Convert sockaddr_in into sockaddr_in6 in v4 mapped addr format. */
 2359 void
 2360 in6_sin_2_v4mapsin6_in_sock(struct sockaddr **nam)
 2361 {
 2362         struct sockaddr_in *sin_p;
 2363         struct sockaddr_in6 *sin6_p;
 2364 
 2365         MALLOC(sin6_p, struct sockaddr_in6 *, sizeof *sin6_p, M_SONAME,
 2366                M_WAITOK);
 2367         sin_p = (struct sockaddr_in *)*nam;
 2368         in6_sin_2_v4mapsin6(sin_p, sin6_p);
 2369         FREE(*nam, M_SONAME);
 2370         *nam = (struct sockaddr *)sin6_p;
 2371 }

Cache object: 99f45fedeb939d83958e33895fc30808


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.