FreeBSD/Linux Kernel Cross Reference
sys/netinet6/in6.c
1 /*-
2 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 3. Neither the name of the project nor the names of its contributors
14 * may be used to endorse or promote products derived from this software
15 * without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 * $KAME: in6.c,v 1.259 2002/01/21 11:37:50 keiichi Exp $
30 */
31
32 /*-
33 * Copyright (c) 1982, 1986, 1991, 1993
34 * The Regents of the University of California. All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 4. Neither the name of the University nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 *
60 * @(#)in.c 8.2 (Berkeley) 11/15/93
61 */
62
63 #include <sys/cdefs.h>
64 __FBSDID("$FreeBSD: releng/8.4/sys/netinet6/in6.c 255447 2013-09-10 10:14:19Z des $");
65
66 #include "opt_compat.h"
67 #include "opt_inet.h"
68 #include "opt_inet6.h"
69
70 #include <sys/param.h>
71 #include <sys/errno.h>
72 #include <sys/jail.h>
73 #include <sys/malloc.h>
74 #include <sys/socket.h>
75 #include <sys/socketvar.h>
76 #include <sys/sockio.h>
77 #include <sys/systm.h>
78 #include <sys/priv.h>
79 #include <sys/proc.h>
80 #include <sys/time.h>
81 #include <sys/kernel.h>
82 #include <sys/syslog.h>
83
84 #include <net/if.h>
85 #include <net/if_var.h>
86 #include <net/if_types.h>
87 #include <net/route.h>
88 #include <net/if_dl.h>
89 #include <net/vnet.h>
90
91 #include <netinet/in.h>
92 #include <netinet/in_var.h>
93 #include <net/if_llatbl.h>
94 #include <netinet/if_ether.h>
95 #include <netinet/in_systm.h>
96 #include <netinet/ip.h>
97 #include <netinet/in_pcb.h>
98
99 #include <netinet/ip6.h>
100 #include <netinet6/ip6_var.h>
101 #include <netinet6/nd6.h>
102 #include <netinet6/mld6_var.h>
103 #include <netinet6/ip6_mroute.h>
104 #include <netinet6/in6_ifattach.h>
105 #include <netinet6/scope6_var.h>
106 #include <netinet6/in6_pcb.h>
107
108 /*
109 * Definitions of some costant IP6 addresses.
110 */
111 const struct in6_addr in6addr_any = IN6ADDR_ANY_INIT;
112 const struct in6_addr in6addr_loopback = IN6ADDR_LOOPBACK_INIT;
113 const struct in6_addr in6addr_nodelocal_allnodes =
114 IN6ADDR_NODELOCAL_ALLNODES_INIT;
115 const struct in6_addr in6addr_linklocal_allnodes =
116 IN6ADDR_LINKLOCAL_ALLNODES_INIT;
117 const struct in6_addr in6addr_linklocal_allrouters =
118 IN6ADDR_LINKLOCAL_ALLROUTERS_INIT;
119 const struct in6_addr in6addr_linklocal_allv2routers =
120 IN6ADDR_LINKLOCAL_ALLV2ROUTERS_INIT;
121
122 const struct in6_addr in6mask0 = IN6MASK0;
123 const struct in6_addr in6mask32 = IN6MASK32;
124 const struct in6_addr in6mask64 = IN6MASK64;
125 const struct in6_addr in6mask96 = IN6MASK96;
126 const struct in6_addr in6mask128 = IN6MASK128;
127
128 const struct sockaddr_in6 sa6_any =
129 { sizeof(sa6_any), AF_INET6, 0, 0, IN6ADDR_ANY_INIT, 0 };
130
131 static int in6_lifaddr_ioctl __P((struct socket *, u_long, caddr_t,
132 struct ifnet *, struct thread *));
133 static int in6_ifinit __P((struct ifnet *, struct in6_ifaddr *,
134 struct sockaddr_in6 *, int));
135 static void in6_unlink_ifa(struct in6_ifaddr *, struct ifnet *);
136
137 int (*faithprefix_p)(struct in6_addr *);
138
139
140
141 int
142 in6_mask2len(struct in6_addr *mask, u_char *lim0)
143 {
144 int x = 0, y;
145 u_char *lim = lim0, *p;
146
147 /* ignore the scope_id part */
148 if (lim0 == NULL || lim0 - (u_char *)mask > sizeof(*mask))
149 lim = (u_char *)mask + sizeof(*mask);
150 for (p = (u_char *)mask; p < lim; x++, p++) {
151 if (*p != 0xff)
152 break;
153 }
154 y = 0;
155 if (p < lim) {
156 for (y = 0; y < 8; y++) {
157 if ((*p & (0x80 >> y)) == 0)
158 break;
159 }
160 }
161
162 /*
163 * when the limit pointer is given, do a stricter check on the
164 * remaining bits.
165 */
166 if (p < lim) {
167 if (y != 0 && (*p & (0x00ff >> y)) != 0)
168 return (-1);
169 for (p = p + 1; p < lim; p++)
170 if (*p != 0)
171 return (-1);
172 }
173
174 return x * 8 + y;
175 }
176
177 #define ifa2ia6(ifa) ((struct in6_ifaddr *)(ifa))
178 #define ia62ifa(ia6) (&((ia6)->ia_ifa))
179
180 #ifdef COMPAT_FREEBSD32
181 struct in6_ndifreq32 {
182 char ifname[IFNAMSIZ];
183 uint32_t ifindex;
184 };
185 #define SIOCGDEFIFACE32_IN6 _IOWR('i', 86, struct in6_ndifreq32)
186 #endif
187
188 int
189 in6_control(struct socket *so, u_long cmd, caddr_t data,
190 struct ifnet *ifp, struct thread *td)
191 {
192 struct in6_ifreq *ifr = (struct in6_ifreq *)data;
193 struct in6_ifaddr *ia = NULL;
194 struct in6_aliasreq *ifra = (struct in6_aliasreq *)data;
195 struct sockaddr_in6 *sa6;
196 int error;
197
198 switch (cmd) {
199 case SIOCGETSGCNT_IN6:
200 case SIOCGETMIFCNT_IN6:
201 /*
202 * XXX mrt_ioctl has a 3rd, unused, FIB argument in route.c.
203 * We cannot see how that would be needed, so do not adjust the
204 * KPI blindly; more likely should clean up the IPv4 variant.
205 */
206 return (mrt6_ioctl ? mrt6_ioctl(cmd, data) : EOPNOTSUPP);
207 }
208
209 switch(cmd) {
210 case SIOCAADDRCTL_POLICY:
211 case SIOCDADDRCTL_POLICY:
212 if (td != NULL) {
213 error = priv_check(td, PRIV_NETINET_ADDRCTRL6);
214 if (error)
215 return (error);
216 }
217 return (in6_src_ioctl(cmd, data));
218 }
219
220 if (ifp == NULL)
221 return (EOPNOTSUPP);
222
223 switch (cmd) {
224 case SIOCSNDFLUSH_IN6:
225 case SIOCSPFXFLUSH_IN6:
226 case SIOCSRTRFLUSH_IN6:
227 case SIOCSDEFIFACE_IN6:
228 case SIOCSIFINFO_FLAGS:
229 case SIOCSIFINFO_IN6:
230 if (td != NULL) {
231 error = priv_check(td, PRIV_NETINET_ND6);
232 if (error)
233 return (error);
234 }
235 /* FALLTHROUGH */
236 case OSIOCGIFINFO_IN6:
237 case SIOCGIFINFO_IN6:
238 case SIOCGDRLST_IN6:
239 case SIOCGPRLST_IN6:
240 case SIOCGNBRINFO_IN6:
241 case SIOCGDEFIFACE_IN6:
242 return (nd6_ioctl(cmd, data, ifp));
243
244 #ifdef COMPAT_FREEBSD32
245 case SIOCGDEFIFACE32_IN6:
246 {
247 struct in6_ndifreq ndif;
248 struct in6_ndifreq32 *ndif32;
249
250 error = nd6_ioctl(SIOCGDEFIFACE_IN6, (caddr_t)&ndif,
251 ifp);
252 if (error)
253 return (error);
254 ndif32 = (struct in6_ndifreq32 *)data;
255 ndif32->ifindex = ndif.ifindex;
256 return (0);
257 }
258 #endif
259 }
260
261 switch (cmd) {
262 case SIOCSIFPREFIX_IN6:
263 case SIOCDIFPREFIX_IN6:
264 case SIOCAIFPREFIX_IN6:
265 case SIOCCIFPREFIX_IN6:
266 case SIOCSGIFPREFIX_IN6:
267 case SIOCGIFPREFIX_IN6:
268 log(LOG_NOTICE,
269 "prefix ioctls are now invalidated. "
270 "please use ifconfig.\n");
271 return (EOPNOTSUPP);
272 }
273
274 switch (cmd) {
275 case SIOCSSCOPE6:
276 if (td != NULL) {
277 error = priv_check(td, PRIV_NETINET_SCOPE6);
278 if (error)
279 return (error);
280 }
281 return (scope6_set(ifp,
282 (struct scope6_id *)ifr->ifr_ifru.ifru_scope_id));
283 case SIOCGSCOPE6:
284 return (scope6_get(ifp,
285 (struct scope6_id *)ifr->ifr_ifru.ifru_scope_id));
286 case SIOCGSCOPE6DEF:
287 return (scope6_get_default((struct scope6_id *)
288 ifr->ifr_ifru.ifru_scope_id));
289 }
290
291 switch (cmd) {
292 case SIOCALIFADDR:
293 if (td != NULL) {
294 error = priv_check(td, PRIV_NET_ADDIFADDR);
295 if (error)
296 return (error);
297 }
298 return in6_lifaddr_ioctl(so, cmd, data, ifp, td);
299
300 case SIOCDLIFADDR:
301 if (td != NULL) {
302 error = priv_check(td, PRIV_NET_DELIFADDR);
303 if (error)
304 return (error);
305 }
306 /* FALLTHROUGH */
307 case SIOCGLIFADDR:
308 return in6_lifaddr_ioctl(so, cmd, data, ifp, td);
309 }
310
311 /*
312 * Find address for this interface, if it exists.
313 *
314 * In netinet code, we have checked ifra_addr in SIOCSIF*ADDR operation
315 * only, and used the first interface address as the target of other
316 * operations (without checking ifra_addr). This was because netinet
317 * code/API assumed at most 1 interface address per interface.
318 * Since IPv6 allows a node to assign multiple addresses
319 * on a single interface, we almost always look and check the
320 * presence of ifra_addr, and reject invalid ones here.
321 * It also decreases duplicated code among SIOC*_IN6 operations.
322 */
323 switch (cmd) {
324 case SIOCAIFADDR_IN6:
325 case SIOCSIFPHYADDR_IN6:
326 sa6 = &ifra->ifra_addr;
327 break;
328 case SIOCSIFADDR_IN6:
329 case SIOCGIFADDR_IN6:
330 case SIOCSIFDSTADDR_IN6:
331 case SIOCSIFNETMASK_IN6:
332 case SIOCGIFDSTADDR_IN6:
333 case SIOCGIFNETMASK_IN6:
334 case SIOCDIFADDR_IN6:
335 case SIOCGIFPSRCADDR_IN6:
336 case SIOCGIFPDSTADDR_IN6:
337 case SIOCGIFAFLAG_IN6:
338 case SIOCSNDFLUSH_IN6:
339 case SIOCSPFXFLUSH_IN6:
340 case SIOCSRTRFLUSH_IN6:
341 case SIOCGIFALIFETIME_IN6:
342 case SIOCSIFALIFETIME_IN6:
343 case SIOCGIFSTAT_IN6:
344 case SIOCGIFSTAT_ICMP6:
345 sa6 = &ifr->ifr_addr;
346 break;
347 case SIOCSIFADDR:
348 case SIOCSIFBRDADDR:
349 case SIOCSIFDSTADDR:
350 case SIOCSIFNETMASK:
351 /*
352 * Although we should pass any non-INET6 ioctl requests
353 * down to driver, we filter some legacy INET requests.
354 * Drivers trust SIOCSIFADDR et al to come from an already
355 * privileged layer, and do not perform any credentials
356 * checks or input validation.
357 */
358 return (EINVAL);
359 default:
360 sa6 = NULL;
361 break;
362 }
363 if (sa6 && sa6->sin6_family == AF_INET6) {
364 if (sa6->sin6_scope_id != 0)
365 error = sa6_embedscope(sa6, 0);
366 else
367 error = in6_setscope(&sa6->sin6_addr, ifp, NULL);
368 if (error != 0)
369 return (error);
370 if (td != NULL && (error = prison_check_ip6(td->td_ucred,
371 &sa6->sin6_addr)) != 0)
372 return (error);
373 ia = in6ifa_ifpwithaddr(ifp, &sa6->sin6_addr);
374 } else
375 ia = NULL;
376
377 switch (cmd) {
378 case SIOCSIFADDR_IN6:
379 case SIOCSIFDSTADDR_IN6:
380 case SIOCSIFNETMASK_IN6:
381 /*
382 * Since IPv6 allows a node to assign multiple addresses
383 * on a single interface, SIOCSIFxxx ioctls are deprecated.
384 */
385 /* we decided to obsolete this command (20000704) */
386 error = EINVAL;
387 goto out;
388
389 case SIOCDIFADDR_IN6:
390 /*
391 * for IPv4, we look for existing in_ifaddr here to allow
392 * "ifconfig if0 delete" to remove the first IPv4 address on
393 * the interface. For IPv6, as the spec allows multiple
394 * interface address from the day one, we consider "remove the
395 * first one" semantics to be not preferable.
396 */
397 if (ia == NULL) {
398 error = EADDRNOTAVAIL;
399 goto out;
400 }
401 /* FALLTHROUGH */
402 case SIOCAIFADDR_IN6:
403 /*
404 * We always require users to specify a valid IPv6 address for
405 * the corresponding operation.
406 */
407 if (ifra->ifra_addr.sin6_family != AF_INET6 ||
408 ifra->ifra_addr.sin6_len != sizeof(struct sockaddr_in6)) {
409 error = EAFNOSUPPORT;
410 goto out;
411 }
412
413 if (td != NULL) {
414 error = priv_check(td, (cmd == SIOCDIFADDR_IN6) ?
415 PRIV_NET_DELIFADDR : PRIV_NET_ADDIFADDR);
416 if (error)
417 goto out;
418 }
419 break;
420
421 case SIOCGIFADDR_IN6:
422 /* This interface is basically deprecated. use SIOCGIFCONF. */
423 /* FALLTHROUGH */
424 case SIOCGIFAFLAG_IN6:
425 case SIOCGIFNETMASK_IN6:
426 case SIOCGIFDSTADDR_IN6:
427 case SIOCGIFALIFETIME_IN6:
428 /* must think again about its semantics */
429 if (ia == NULL) {
430 error = EADDRNOTAVAIL;
431 goto out;
432 }
433 break;
434
435 case SIOCSIFALIFETIME_IN6:
436 {
437 struct in6_addrlifetime *lt;
438
439 if (td != NULL) {
440 error = priv_check(td, PRIV_NETINET_ALIFETIME6);
441 if (error)
442 goto out;
443 }
444 if (ia == NULL) {
445 error = EADDRNOTAVAIL;
446 goto out;
447 }
448 /* sanity for overflow - beware unsigned */
449 lt = &ifr->ifr_ifru.ifru_lifetime;
450 if (lt->ia6t_vltime != ND6_INFINITE_LIFETIME &&
451 lt->ia6t_vltime + time_second < time_second) {
452 error = EINVAL;
453 goto out;
454 }
455 if (lt->ia6t_pltime != ND6_INFINITE_LIFETIME &&
456 lt->ia6t_pltime + time_second < time_second) {
457 error = EINVAL;
458 goto out;
459 }
460 break;
461 }
462 }
463
464 switch (cmd) {
465 case SIOCGIFADDR_IN6:
466 ifr->ifr_addr = ia->ia_addr;
467 if ((error = sa6_recoverscope(&ifr->ifr_addr)) != 0)
468 goto out;
469 break;
470
471 case SIOCGIFDSTADDR_IN6:
472 if ((ifp->if_flags & IFF_POINTOPOINT) == 0) {
473 error = EINVAL;
474 goto out;
475 }
476 /*
477 * XXX: should we check if ifa_dstaddr is NULL and return
478 * an error?
479 */
480 ifr->ifr_dstaddr = ia->ia_dstaddr;
481 if ((error = sa6_recoverscope(&ifr->ifr_dstaddr)) != 0)
482 goto out;
483 break;
484
485 case SIOCGIFNETMASK_IN6:
486 ifr->ifr_addr = ia->ia_prefixmask;
487 break;
488
489 case SIOCGIFAFLAG_IN6:
490 ifr->ifr_ifru.ifru_flags6 = ia->ia6_flags;
491 break;
492
493 case SIOCGIFSTAT_IN6:
494 if (ifp == NULL) {
495 error = EINVAL;
496 goto out;
497 }
498 bzero(&ifr->ifr_ifru.ifru_stat,
499 sizeof(ifr->ifr_ifru.ifru_stat));
500 ifr->ifr_ifru.ifru_stat =
501 *((struct in6_ifextra *)ifp->if_afdata[AF_INET6])->in6_ifstat;
502 break;
503
504 case SIOCGIFSTAT_ICMP6:
505 if (ifp == NULL) {
506 error = EINVAL;
507 goto out;
508 }
509 bzero(&ifr->ifr_ifru.ifru_icmp6stat,
510 sizeof(ifr->ifr_ifru.ifru_icmp6stat));
511 ifr->ifr_ifru.ifru_icmp6stat =
512 *((struct in6_ifextra *)ifp->if_afdata[AF_INET6])->icmp6_ifstat;
513 break;
514
515 case SIOCGIFALIFETIME_IN6:
516 ifr->ifr_ifru.ifru_lifetime = ia->ia6_lifetime;
517 if (ia->ia6_lifetime.ia6t_vltime != ND6_INFINITE_LIFETIME) {
518 time_t maxexpire;
519 struct in6_addrlifetime *retlt =
520 &ifr->ifr_ifru.ifru_lifetime;
521
522 /*
523 * XXX: adjust expiration time assuming time_t is
524 * signed.
525 */
526 maxexpire = (-1) &
527 ~((time_t)1 << ((sizeof(maxexpire) * 8) - 1));
528 if (ia->ia6_lifetime.ia6t_vltime <
529 maxexpire - ia->ia6_updatetime) {
530 retlt->ia6t_expire = ia->ia6_updatetime +
531 ia->ia6_lifetime.ia6t_vltime;
532 } else
533 retlt->ia6t_expire = maxexpire;
534 }
535 if (ia->ia6_lifetime.ia6t_pltime != ND6_INFINITE_LIFETIME) {
536 time_t maxexpire;
537 struct in6_addrlifetime *retlt =
538 &ifr->ifr_ifru.ifru_lifetime;
539
540 /*
541 * XXX: adjust expiration time assuming time_t is
542 * signed.
543 */
544 maxexpire = (-1) &
545 ~((time_t)1 << ((sizeof(maxexpire) * 8) - 1));
546 if (ia->ia6_lifetime.ia6t_pltime <
547 maxexpire - ia->ia6_updatetime) {
548 retlt->ia6t_preferred = ia->ia6_updatetime +
549 ia->ia6_lifetime.ia6t_pltime;
550 } else
551 retlt->ia6t_preferred = maxexpire;
552 }
553 break;
554
555 case SIOCSIFALIFETIME_IN6:
556 ia->ia6_lifetime = ifr->ifr_ifru.ifru_lifetime;
557 /* for sanity */
558 if (ia->ia6_lifetime.ia6t_vltime != ND6_INFINITE_LIFETIME) {
559 ia->ia6_lifetime.ia6t_expire =
560 time_second + ia->ia6_lifetime.ia6t_vltime;
561 } else
562 ia->ia6_lifetime.ia6t_expire = 0;
563 if (ia->ia6_lifetime.ia6t_pltime != ND6_INFINITE_LIFETIME) {
564 ia->ia6_lifetime.ia6t_preferred =
565 time_second + ia->ia6_lifetime.ia6t_pltime;
566 } else
567 ia->ia6_lifetime.ia6t_preferred = 0;
568 break;
569
570 case SIOCAIFADDR_IN6:
571 {
572 int i;
573 struct nd_prefixctl pr0;
574 struct nd_prefix *pr;
575
576 /*
577 * first, make or update the interface address structure,
578 * and link it to the list.
579 */
580 if ((error = in6_update_ifa(ifp, ifra, ia, 0)) != 0)
581 goto out;
582 if (ia != NULL)
583 ifa_free(&ia->ia_ifa);
584 if ((ia = in6ifa_ifpwithaddr(ifp, &ifra->ifra_addr.sin6_addr))
585 == NULL) {
586 /*
587 * this can happen when the user specify the 0 valid
588 * lifetime.
589 */
590 break;
591 }
592
593 /*
594 * then, make the prefix on-link on the interface.
595 * XXX: we'd rather create the prefix before the address, but
596 * we need at least one address to install the corresponding
597 * interface route, so we configure the address first.
598 */
599
600 /*
601 * convert mask to prefix length (prefixmask has already
602 * been validated in in6_update_ifa().
603 */
604 bzero(&pr0, sizeof(pr0));
605 pr0.ndpr_ifp = ifp;
606 pr0.ndpr_plen = in6_mask2len(&ifra->ifra_prefixmask.sin6_addr,
607 NULL);
608 if (pr0.ndpr_plen == 128) {
609 break; /* we don't need to install a host route. */
610 }
611 pr0.ndpr_prefix = ifra->ifra_addr;
612 /* apply the mask for safety. */
613 for (i = 0; i < 4; i++) {
614 pr0.ndpr_prefix.sin6_addr.s6_addr32[i] &=
615 ifra->ifra_prefixmask.sin6_addr.s6_addr32[i];
616 }
617 /*
618 * XXX: since we don't have an API to set prefix (not address)
619 * lifetimes, we just use the same lifetimes as addresses.
620 * The (temporarily) installed lifetimes can be overridden by
621 * later advertised RAs (when accept_rtadv is non 0), which is
622 * an intended behavior.
623 */
624 pr0.ndpr_raf_onlink = 1; /* should be configurable? */
625 pr0.ndpr_raf_auto =
626 ((ifra->ifra_flags & IN6_IFF_AUTOCONF) != 0);
627 pr0.ndpr_vltime = ifra->ifra_lifetime.ia6t_vltime;
628 pr0.ndpr_pltime = ifra->ifra_lifetime.ia6t_pltime;
629
630 /* add the prefix if not yet. */
631 if ((pr = nd6_prefix_lookup(&pr0)) == NULL) {
632 /*
633 * nd6_prelist_add will install the corresponding
634 * interface route.
635 */
636 if ((error = nd6_prelist_add(&pr0, NULL, &pr)) != 0)
637 goto out;
638 if (pr == NULL) {
639 log(LOG_ERR, "nd6_prelist_add succeeded but "
640 "no prefix\n");
641 error = EINVAL;
642 goto out;
643 }
644 }
645
646 /* relate the address to the prefix */
647 if (ia->ia6_ndpr == NULL) {
648 ia->ia6_ndpr = pr;
649 pr->ndpr_refcnt++;
650
651 /*
652 * If this is the first autoconf address from the
653 * prefix, create a temporary address as well
654 * (when required).
655 */
656 if ((ia->ia6_flags & IN6_IFF_AUTOCONF) &&
657 V_ip6_use_tempaddr && pr->ndpr_refcnt == 1) {
658 int e;
659 if ((e = in6_tmpifadd(ia, 1, 0)) != 0) {
660 log(LOG_NOTICE, "in6_control: failed "
661 "to create a temporary address, "
662 "errno=%d\n", e);
663 }
664 }
665 }
666
667 /*
668 * this might affect the status of autoconfigured addresses,
669 * that is, this address might make other addresses detached.
670 */
671 pfxlist_onlink_check();
672 if (error == 0 && ia)
673 EVENTHANDLER_INVOKE(ifaddr_event, ifp);
674 break;
675 }
676
677 case SIOCDIFADDR_IN6:
678 {
679 struct nd_prefix *pr;
680
681 /*
682 * If the address being deleted is the only one that owns
683 * the corresponding prefix, expire the prefix as well.
684 * XXX: theoretically, we don't have to worry about such
685 * relationship, since we separate the address management
686 * and the prefix management. We do this, however, to provide
687 * as much backward compatibility as possible in terms of
688 * the ioctl operation.
689 * Note that in6_purgeaddr() will decrement ndpr_refcnt.
690 */
691 pr = ia->ia6_ndpr;
692 in6_purgeaddr(&ia->ia_ifa);
693 if (pr && pr->ndpr_refcnt == 0)
694 prelist_remove(pr);
695 EVENTHANDLER_INVOKE(ifaddr_event, ifp);
696 break;
697 }
698
699 default:
700 if (ifp == NULL || ifp->if_ioctl == 0) {
701 error = EOPNOTSUPP;
702 goto out;
703 }
704 error = (*ifp->if_ioctl)(ifp, cmd, data);
705 goto out;
706 }
707
708 error = 0;
709 out:
710 if (ia != NULL)
711 ifa_free(&ia->ia_ifa);
712 return (error);
713 }
714
715 /*
716 * Join necessary multicast groups. Factored out from in6_update_ifa().
717 * This entire work should only be done once, for the default FIB.
718 */
719 static int
720 in6_update_ifa_join_mc(struct ifnet *ifp, struct in6_aliasreq *ifra,
721 struct in6_ifaddr *ia, int flags, struct in6_multi **in6m_sol)
722 {
723 char ip6buf[INET6_ADDRSTRLEN];
724 struct sockaddr_in6 mltaddr, mltmask;
725 struct in6_addr llsol;
726 struct in6_multi_mship *imm;
727 struct rtentry *rt;
728 int delay, error;
729
730 KASSERT(in6m_sol != NULL, ("%s: in6m_sol is NULL", __func__));
731
732 /* Join solicited multicast addr for new host id. */
733 bzero(&llsol, sizeof(struct in6_addr));
734 llsol.s6_addr32[0] = IPV6_ADDR_INT32_MLL;
735 llsol.s6_addr32[1] = 0;
736 llsol.s6_addr32[2] = htonl(1);
737 llsol.s6_addr32[3] = ifra->ifra_addr.sin6_addr.s6_addr32[3];
738 llsol.s6_addr8[12] = 0xff;
739 if ((error = in6_setscope(&llsol, ifp, NULL)) != 0) {
740 /* XXX: should not happen */
741 log(LOG_ERR, "%s: in6_setscope failed\n", __func__);
742 goto cleanup;
743 }
744 delay = 0;
745 if ((flags & IN6_IFAUPDATE_DADDELAY)) {
746 /*
747 * We need a random delay for DAD on the address being
748 * configured. It also means delaying transmission of the
749 * corresponding MLD report to avoid report collision.
750 * [RFC 4861, Section 6.3.7]
751 */
752 delay = arc4random() % (MAX_RTR_SOLICITATION_DELAY * hz);
753 }
754 imm = in6_joingroup(ifp, &llsol, &error, delay);
755 if (imm == NULL) {
756 nd6log((LOG_WARNING, "%s: addmulti failed for %s on %s "
757 "(errno=%d)\n", __func__, ip6_sprintf(ip6buf, &llsol),
758 if_name(ifp), error));
759 goto cleanup;
760 }
761 LIST_INSERT_HEAD(&ia->ia6_memberships, imm, i6mm_chain);
762 *in6m_sol = imm->i6mm_maddr;
763
764 bzero(&mltmask, sizeof(mltmask));
765 mltmask.sin6_len = sizeof(struct sockaddr_in6);
766 mltmask.sin6_family = AF_INET6;
767 mltmask.sin6_addr = in6mask32;
768 #define MLTMASK_LEN 4 /* mltmask's masklen (=32bit=4octet) */
769
770 /*
771 * Join link-local all-nodes address.
772 */
773 bzero(&mltaddr, sizeof(mltaddr));
774 mltaddr.sin6_len = sizeof(struct sockaddr_in6);
775 mltaddr.sin6_family = AF_INET6;
776 mltaddr.sin6_addr = in6addr_linklocal_allnodes;
777 if ((error = in6_setscope(&mltaddr.sin6_addr, ifp, NULL)) != 0)
778 goto cleanup; /* XXX: should not fail */
779
780 /*
781 * XXX: do we really need this automatic routes? We should probably
782 * reconsider this stuff. Most applications actually do not need the
783 * routes, since they usually specify the outgoing interface.
784 */
785 rt = in6_rtalloc1((struct sockaddr *)&mltaddr, 0, 0UL, RT_DEFAULT_FIB);
786 if (rt != NULL) {
787 /* XXX: only works in !SCOPEDROUTING case. */
788 if (memcmp(&mltaddr.sin6_addr,
789 &((struct sockaddr_in6 *)rt_key(rt))->sin6_addr,
790 MLTMASK_LEN)) {
791 RTFREE_LOCKED(rt);
792 rt = NULL;
793 }
794 }
795 if (rt == NULL) {
796 error = in6_rtrequest(RTM_ADD, (struct sockaddr *)&mltaddr,
797 (struct sockaddr *)&ia->ia_addr,
798 (struct sockaddr *)&mltmask, RTF_UP,
799 (struct rtentry **)0, RT_DEFAULT_FIB);
800 if (error)
801 goto cleanup;
802 } else
803 RTFREE_LOCKED(rt);
804
805 imm = in6_joingroup(ifp, &mltaddr.sin6_addr, &error, 0);
806 if (imm == NULL) {
807 nd6log((LOG_WARNING, "%s: addmulti failed for %s on %s "
808 "(errno=%d)\n", __func__, ip6_sprintf(ip6buf,
809 &mltaddr.sin6_addr), if_name(ifp), error));
810 goto cleanup;
811 }
812 LIST_INSERT_HEAD(&ia->ia6_memberships, imm, i6mm_chain);
813
814 /*
815 * Join node information group address.
816 */
817 delay = 0;
818 if ((flags & IN6_IFAUPDATE_DADDELAY)) {
819 /*
820 * The spec does not say anything about delay for this group,
821 * but the same logic should apply.
822 */
823 delay = arc4random() % (MAX_RTR_SOLICITATION_DELAY * hz);
824 }
825 if (in6_nigroup(ifp, NULL, -1, &mltaddr.sin6_addr) == 0) {
826 /* XXX jinmei */
827 imm = in6_joingroup(ifp, &mltaddr.sin6_addr, &error, delay);
828 if (imm == NULL)
829 nd6log((LOG_WARNING, "%s: addmulti failed for %s on %s "
830 "(errno=%d)\n", __func__, ip6_sprintf(ip6buf,
831 &mltaddr.sin6_addr), if_name(ifp), error));
832 /* XXX not very fatal, go on... */
833 else
834 LIST_INSERT_HEAD(&ia->ia6_memberships, imm, i6mm_chain);
835 }
836
837 /*
838 * Join interface-local all-nodes address.
839 * (ff01::1%ifN, and ff01::%ifN/32)
840 */
841 mltaddr.sin6_addr = in6addr_nodelocal_allnodes;
842 if ((error = in6_setscope(&mltaddr.sin6_addr, ifp, NULL)) != 0)
843 goto cleanup; /* XXX: should not fail */
844 /* XXX: again, do we really need the route? */
845 rt = in6_rtalloc1((struct sockaddr *)&mltaddr, 0, 0UL, RT_DEFAULT_FIB);
846 if (rt != NULL) {
847 if (memcmp(&mltaddr.sin6_addr,
848 &((struct sockaddr_in6 *)rt_key(rt))->sin6_addr,
849 MLTMASK_LEN)) {
850 RTFREE_LOCKED(rt);
851 rt = NULL;
852 }
853 }
854 if (rt == NULL) {
855 error = in6_rtrequest(RTM_ADD, (struct sockaddr *)&mltaddr,
856 (struct sockaddr *)&ia->ia_addr,
857 (struct sockaddr *)&mltmask, RTF_UP,
858 (struct rtentry **)0, RT_DEFAULT_FIB);
859 if (error)
860 goto cleanup;
861 } else
862 RTFREE_LOCKED(rt);
863
864 imm = in6_joingroup(ifp, &mltaddr.sin6_addr, &error, 0);
865 if (imm == NULL) {
866 nd6log((LOG_WARNING, "%s: addmulti failed for %s on %s "
867 "(errno=%d)\n", __func__, ip6_sprintf(ip6buf,
868 &mltaddr.sin6_addr), if_name(ifp), error));
869 goto cleanup;
870 }
871 LIST_INSERT_HEAD(&ia->ia6_memberships, imm, i6mm_chain);
872 #undef MLTMASK_LEN
873
874 cleanup:
875 return (error);
876 }
877
878 /*
879 * Update parameters of an IPv6 interface address.
880 * If necessary, a new entry is created and linked into address chains.
881 * This function is separated from in6_control().
882 * XXX: should this be performed under splnet()?
883 */
884 int
885 in6_update_ifa(struct ifnet *ifp, struct in6_aliasreq *ifra,
886 struct in6_ifaddr *ia, int flags)
887 {
888 int error = 0, hostIsNew = 0, plen = -1;
889 struct sockaddr_in6 dst6;
890 struct in6_addrlifetime *lt;
891 struct in6_multi *in6m_sol;
892 int delay;
893 char ip6buf[INET6_ADDRSTRLEN];
894
895 /* Validate parameters */
896 if (ifp == NULL || ifra == NULL) /* this maybe redundant */
897 return (EINVAL);
898
899 /*
900 * The destination address for a p2p link must have a family
901 * of AF_UNSPEC or AF_INET6.
902 */
903 if ((ifp->if_flags & IFF_POINTOPOINT) != 0 &&
904 ifra->ifra_dstaddr.sin6_family != AF_INET6 &&
905 ifra->ifra_dstaddr.sin6_family != AF_UNSPEC)
906 return (EAFNOSUPPORT);
907 /*
908 * validate ifra_prefixmask. don't check sin6_family, netmask
909 * does not carry fields other than sin6_len.
910 */
911 if (ifra->ifra_prefixmask.sin6_len > sizeof(struct sockaddr_in6))
912 return (EINVAL);
913 /*
914 * Because the IPv6 address architecture is classless, we require
915 * users to specify a (non 0) prefix length (mask) for a new address.
916 * We also require the prefix (when specified) mask is valid, and thus
917 * reject a non-consecutive mask.
918 */
919 if (ia == NULL && ifra->ifra_prefixmask.sin6_len == 0)
920 return (EINVAL);
921 if (ifra->ifra_prefixmask.sin6_len != 0) {
922 plen = in6_mask2len(&ifra->ifra_prefixmask.sin6_addr,
923 (u_char *)&ifra->ifra_prefixmask +
924 ifra->ifra_prefixmask.sin6_len);
925 if (plen <= 0)
926 return (EINVAL);
927 } else {
928 /*
929 * In this case, ia must not be NULL. We just use its prefix
930 * length.
931 */
932 plen = in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL);
933 }
934 /*
935 * If the destination address on a p2p interface is specified,
936 * and the address is a scoped one, validate/set the scope
937 * zone identifier.
938 */
939 dst6 = ifra->ifra_dstaddr;
940 if ((ifp->if_flags & (IFF_POINTOPOINT|IFF_LOOPBACK)) != 0 &&
941 (dst6.sin6_family == AF_INET6)) {
942 struct in6_addr in6_tmp;
943 u_int32_t zoneid;
944
945 in6_tmp = dst6.sin6_addr;
946 if (in6_setscope(&in6_tmp, ifp, &zoneid))
947 return (EINVAL); /* XXX: should be impossible */
948
949 if (dst6.sin6_scope_id != 0) {
950 if (dst6.sin6_scope_id != zoneid)
951 return (EINVAL);
952 } else /* user omit to specify the ID. */
953 dst6.sin6_scope_id = zoneid;
954
955 /* convert into the internal form */
956 if (sa6_embedscope(&dst6, 0))
957 return (EINVAL); /* XXX: should be impossible */
958 }
959 /*
960 * The destination address can be specified only for a p2p or a
961 * loopback interface. If specified, the corresponding prefix length
962 * must be 128.
963 */
964 if (ifra->ifra_dstaddr.sin6_family == AF_INET6) {
965 if ((ifp->if_flags & (IFF_POINTOPOINT|IFF_LOOPBACK)) == 0) {
966 /* XXX: noisy message */
967 nd6log((LOG_INFO, "in6_update_ifa: a destination can "
968 "be specified for a p2p or a loopback IF only\n"));
969 return (EINVAL);
970 }
971 if (plen != 128) {
972 nd6log((LOG_INFO, "in6_update_ifa: prefixlen should "
973 "be 128 when dstaddr is specified\n"));
974 return (EINVAL);
975 }
976 }
977 /* lifetime consistency check */
978 lt = &ifra->ifra_lifetime;
979 if (lt->ia6t_pltime > lt->ia6t_vltime)
980 return (EINVAL);
981 if (lt->ia6t_vltime == 0) {
982 /*
983 * the following log might be noisy, but this is a typical
984 * configuration mistake or a tool's bug.
985 */
986 nd6log((LOG_INFO,
987 "in6_update_ifa: valid lifetime is 0 for %s\n",
988 ip6_sprintf(ip6buf, &ifra->ifra_addr.sin6_addr)));
989
990 if (ia == NULL)
991 return (0); /* there's nothing to do */
992 }
993
994 /*
995 * If this is a new address, allocate a new ifaddr and link it
996 * into chains.
997 */
998 if (ia == NULL) {
999 hostIsNew = 1;
1000 /*
1001 * When in6_update_ifa() is called in a process of a received
1002 * RA, it is called under an interrupt context. So, we should
1003 * call malloc with M_NOWAIT.
1004 */
1005 ia = (struct in6_ifaddr *) malloc(sizeof(*ia), M_IFADDR,
1006 M_NOWAIT);
1007 if (ia == NULL)
1008 return (ENOBUFS);
1009 bzero((caddr_t)ia, sizeof(*ia));
1010 ifa_init(&ia->ia_ifa);
1011 LIST_INIT(&ia->ia6_memberships);
1012 /* Initialize the address and masks, and put time stamp */
1013 ia->ia_ifa.ifa_addr = (struct sockaddr *)&ia->ia_addr;
1014 ia->ia_addr.sin6_family = AF_INET6;
1015 ia->ia_addr.sin6_len = sizeof(ia->ia_addr);
1016 ia->ia6_createtime = time_second;
1017 if ((ifp->if_flags & (IFF_POINTOPOINT | IFF_LOOPBACK)) != 0) {
1018 /*
1019 * XXX: some functions expect that ifa_dstaddr is not
1020 * NULL for p2p interfaces.
1021 */
1022 ia->ia_ifa.ifa_dstaddr =
1023 (struct sockaddr *)&ia->ia_dstaddr;
1024 } else {
1025 ia->ia_ifa.ifa_dstaddr = NULL;
1026 }
1027 ia->ia_ifa.ifa_netmask = (struct sockaddr *)&ia->ia_prefixmask;
1028 ia->ia_ifp = ifp;
1029 ifa_ref(&ia->ia_ifa); /* if_addrhead */
1030 IF_ADDR_WLOCK(ifp);
1031 TAILQ_INSERT_TAIL(&ifp->if_addrhead, &ia->ia_ifa, ifa_link);
1032 IF_ADDR_WUNLOCK(ifp);
1033
1034 ifa_ref(&ia->ia_ifa); /* in6_ifaddrhead */
1035 IN6_IFADDR_WLOCK();
1036 TAILQ_INSERT_TAIL(&V_in6_ifaddrhead, ia, ia_link);
1037 IN6_IFADDR_WUNLOCK();
1038 }
1039
1040 /* update timestamp */
1041 ia->ia6_updatetime = time_second;
1042
1043 /* set prefix mask */
1044 if (ifra->ifra_prefixmask.sin6_len) {
1045 /*
1046 * We prohibit changing the prefix length of an existing
1047 * address, because
1048 * + such an operation should be rare in IPv6, and
1049 * + the operation would confuse prefix management.
1050 */
1051 if (ia->ia_prefixmask.sin6_len &&
1052 in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL) != plen) {
1053 nd6log((LOG_INFO, "in6_update_ifa: the prefix length of an"
1054 " existing (%s) address should not be changed\n",
1055 ip6_sprintf(ip6buf, &ia->ia_addr.sin6_addr)));
1056 error = EINVAL;
1057 goto unlink;
1058 }
1059 ia->ia_prefixmask = ifra->ifra_prefixmask;
1060 }
1061
1062 /*
1063 * If a new destination address is specified, scrub the old one and
1064 * install the new destination. Note that the interface must be
1065 * p2p or loopback (see the check above.)
1066 */
1067 if (dst6.sin6_family == AF_INET6 &&
1068 !IN6_ARE_ADDR_EQUAL(&dst6.sin6_addr, &ia->ia_dstaddr.sin6_addr)) {
1069 int e;
1070
1071 if ((ia->ia_flags & IFA_ROUTE) != 0 &&
1072 (e = rtinit(&(ia->ia_ifa), (int)RTM_DELETE, RTF_HOST)) != 0) {
1073 nd6log((LOG_ERR, "in6_update_ifa: failed to remove "
1074 "a route to the old destination: %s\n",
1075 ip6_sprintf(ip6buf, &ia->ia_addr.sin6_addr)));
1076 /* proceed anyway... */
1077 } else
1078 ia->ia_flags &= ~IFA_ROUTE;
1079 ia->ia_dstaddr = dst6;
1080 }
1081
1082 /*
1083 * Set lifetimes. We do not refer to ia6t_expire and ia6t_preferred
1084 * to see if the address is deprecated or invalidated, but initialize
1085 * these members for applications.
1086 */
1087 ia->ia6_lifetime = ifra->ifra_lifetime;
1088 if (ia->ia6_lifetime.ia6t_vltime != ND6_INFINITE_LIFETIME) {
1089 ia->ia6_lifetime.ia6t_expire =
1090 time_second + ia->ia6_lifetime.ia6t_vltime;
1091 } else
1092 ia->ia6_lifetime.ia6t_expire = 0;
1093 if (ia->ia6_lifetime.ia6t_pltime != ND6_INFINITE_LIFETIME) {
1094 ia->ia6_lifetime.ia6t_preferred =
1095 time_second + ia->ia6_lifetime.ia6t_pltime;
1096 } else
1097 ia->ia6_lifetime.ia6t_preferred = 0;
1098
1099 /* reset the interface and routing table appropriately. */
1100 if ((error = in6_ifinit(ifp, ia, &ifra->ifra_addr, hostIsNew)) != 0)
1101 goto unlink;
1102
1103 /*
1104 * configure address flags.
1105 */
1106 ia->ia6_flags = ifra->ifra_flags;
1107 /*
1108 * backward compatibility - if IN6_IFF_DEPRECATED is set from the
1109 * userland, make it deprecated.
1110 */
1111 if ((ifra->ifra_flags & IN6_IFF_DEPRECATED) != 0) {
1112 ia->ia6_lifetime.ia6t_pltime = 0;
1113 ia->ia6_lifetime.ia6t_preferred = time_second;
1114 }
1115 /*
1116 * Make the address tentative before joining multicast addresses,
1117 * so that corresponding MLD responses would not have a tentative
1118 * source address.
1119 */
1120 ia->ia6_flags &= ~IN6_IFF_DUPLICATED; /* safety */
1121 if (hostIsNew && in6if_do_dad(ifp))
1122 ia->ia6_flags |= IN6_IFF_TENTATIVE;
1123
1124 /*
1125 * We are done if we have simply modified an existing address.
1126 */
1127 if (!hostIsNew)
1128 return (error);
1129
1130 /*
1131 * Beyond this point, we should call in6_purgeaddr upon an error,
1132 * not just go to unlink.
1133 */
1134
1135 /* Join necessary multicast groups. */
1136 in6m_sol = NULL;
1137 if ((ifp->if_flags & IFF_MULTICAST) != 0) {
1138 error = in6_update_ifa_join_mc(ifp, ifra, ia, flags, &in6m_sol);
1139 if (error)
1140 goto cleanup;
1141 }
1142
1143 /*
1144 * Perform DAD, if needed.
1145 * XXX It may be of use, if we can administratively disable DAD.
1146 */
1147 if (in6if_do_dad(ifp) && ((ifra->ifra_flags & IN6_IFF_NODAD) == 0) &&
1148 (ia->ia6_flags & IN6_IFF_TENTATIVE))
1149 {
1150 int mindelay, maxdelay;
1151
1152 delay = 0;
1153 if ((flags & IN6_IFAUPDATE_DADDELAY)) {
1154 /*
1155 * We need to impose a delay before sending an NS
1156 * for DAD. Check if we also needed a delay for the
1157 * corresponding MLD message. If we did, the delay
1158 * should be larger than the MLD delay (this could be
1159 * relaxed a bit, but this simple logic is at least
1160 * safe).
1161 * XXX: Break data hiding guidelines and look at
1162 * state for the solicited multicast group.
1163 */
1164 mindelay = 0;
1165 if (in6m_sol != NULL &&
1166 in6m_sol->in6m_state == MLD_REPORTING_MEMBER) {
1167 mindelay = in6m_sol->in6m_timer;
1168 }
1169 maxdelay = MAX_RTR_SOLICITATION_DELAY * hz;
1170 if (maxdelay - mindelay == 0)
1171 delay = 0;
1172 else {
1173 delay =
1174 (arc4random() % (maxdelay - mindelay)) +
1175 mindelay;
1176 }
1177 }
1178 nd6_dad_start((struct ifaddr *)ia, delay);
1179 }
1180
1181 KASSERT(hostIsNew, ("in6_update_ifa: !hostIsNew"));
1182 ifa_free(&ia->ia_ifa);
1183 return (error);
1184
1185 unlink:
1186 /*
1187 * XXX: if a change of an existing address failed, keep the entry
1188 * anyway.
1189 */
1190 if (hostIsNew) {
1191 in6_unlink_ifa(ia, ifp);
1192 ifa_free(&ia->ia_ifa);
1193 }
1194 return (error);
1195
1196 cleanup:
1197 KASSERT(hostIsNew, ("in6_update_ifa: cleanup: !hostIsNew"));
1198 ifa_free(&ia->ia_ifa);
1199 in6_purgeaddr(&ia->ia_ifa);
1200 return error;
1201 }
1202
1203 /*
1204 * Leave multicast groups. Factored out from in6_purgeaddr().
1205 * This entire work should only be done once, for the default FIB.
1206 */
1207 static int
1208 in6_purgeaddr_mc(struct ifnet *ifp, struct in6_ifaddr *ia, struct ifaddr *ifa0)
1209 {
1210 struct sockaddr_in6 mltaddr, mltmask;
1211 struct in6_multi_mship *imm;
1212 struct rtentry *rt;
1213 struct sockaddr_in6 sin6;
1214 int error;
1215
1216 /*
1217 * Leave from multicast groups we have joined for the interface.
1218 */
1219 while ((imm = LIST_FIRST(&ia->ia6_memberships)) != NULL) {
1220 LIST_REMOVE(imm, i6mm_chain);
1221 in6_leavegroup(imm);
1222 }
1223
1224 /*
1225 * Remove the link-local all-nodes address.
1226 */
1227 bzero(&mltmask, sizeof(mltmask));
1228 mltmask.sin6_len = sizeof(struct sockaddr_in6);
1229 mltmask.sin6_family = AF_INET6;
1230 mltmask.sin6_addr = in6mask32;
1231
1232 bzero(&mltaddr, sizeof(mltaddr));
1233 mltaddr.sin6_len = sizeof(struct sockaddr_in6);
1234 mltaddr.sin6_family = AF_INET6;
1235 mltaddr.sin6_addr = in6addr_linklocal_allnodes;
1236
1237 if ((error = in6_setscope(&mltaddr.sin6_addr, ifp, NULL)) != 0)
1238 return (error);
1239
1240 /*
1241 * As for the mltaddr above, proactively prepare the sin6 to avoid
1242 * rtentry un- and re-locking.
1243 */
1244 if (ifa0 != NULL) {
1245 bzero(&sin6, sizeof(sin6));
1246 sin6.sin6_len = sizeof(sin6);
1247 sin6.sin6_family = AF_INET6;
1248 memcpy(&sin6.sin6_addr, &satosin6(ifa0->ifa_addr)->sin6_addr,
1249 sizeof(sin6.sin6_addr));
1250 error = in6_setscope(&sin6.sin6_addr, ifa0->ifa_ifp, NULL);
1251 if (error != 0)
1252 return (error);
1253 }
1254
1255 rt = in6_rtalloc1((struct sockaddr *)&mltaddr, 0, 0UL, RT_DEFAULT_FIB);
1256 if (rt != NULL && rt->rt_gateway != NULL &&
1257 (memcmp(&satosin6(rt->rt_gateway)->sin6_addr,
1258 &ia->ia_addr.sin6_addr,
1259 sizeof(ia->ia_addr.sin6_addr)) == 0)) {
1260 /*
1261 * If no more IPv6 address exists on this interface then
1262 * remove the multicast address route.
1263 */
1264 if (ifa0 == NULL) {
1265 memcpy(&mltaddr.sin6_addr, &satosin6(rt_key(rt))->sin6_addr,
1266 sizeof(mltaddr.sin6_addr));
1267 RTFREE_LOCKED(rt);
1268 error = in6_rtrequest(RTM_DELETE,
1269 (struct sockaddr *)&mltaddr,
1270 (struct sockaddr *)&ia->ia_addr,
1271 (struct sockaddr *)&mltmask, RTF_UP,
1272 (struct rtentry **)0, RT_DEFAULT_FIB);
1273 if (error)
1274 log(LOG_INFO, "%s: link-local all-nodes "
1275 "multicast address deletion error\n",
1276 __func__);
1277 } else {
1278 /*
1279 * Replace the gateway of the route.
1280 */
1281 memcpy(rt->rt_gateway, &sin6, sizeof(sin6));
1282 RTFREE_LOCKED(rt);
1283 }
1284 } else {
1285 if (rt != NULL)
1286 RTFREE_LOCKED(rt);
1287 }
1288
1289 /*
1290 * Remove the node-local all-nodes address.
1291 */
1292 mltaddr.sin6_addr = in6addr_nodelocal_allnodes;
1293 if ((error = in6_setscope(&mltaddr.sin6_addr, ifp, NULL)) != 0)
1294 return (error);
1295
1296 rt = in6_rtalloc1((struct sockaddr *)&mltaddr, 0, 0UL, RT_DEFAULT_FIB);
1297 if (rt != NULL && rt->rt_gateway != NULL &&
1298 (memcmp(&satosin6(rt->rt_gateway)->sin6_addr,
1299 &ia->ia_addr.sin6_addr,
1300 sizeof(ia->ia_addr.sin6_addr)) == 0)) {
1301 /*
1302 * If no more IPv6 address exists on this interface then
1303 * remove the multicast address route.
1304 */
1305 if (ifa0 == NULL) {
1306 memcpy(&mltaddr.sin6_addr, &satosin6(rt_key(rt))->sin6_addr,
1307 sizeof(mltaddr.sin6_addr));
1308
1309 RTFREE_LOCKED(rt);
1310 error = in6_rtrequest(RTM_DELETE,
1311 (struct sockaddr *)&mltaddr,
1312 (struct sockaddr *)&ia->ia_addr,
1313 (struct sockaddr *)&mltmask, RTF_UP,
1314 (struct rtentry **)0, RT_DEFAULT_FIB);
1315 if (error)
1316 log(LOG_INFO, "%s: node-local all-nodes"
1317 "multicast address deletion error\n",
1318 __func__);
1319 } else {
1320 /*
1321 * Replace the gateway of the route.
1322 */
1323 memcpy(rt->rt_gateway, &sin6, sizeof(sin6));
1324 RTFREE_LOCKED(rt);
1325 }
1326 } else {
1327 if (rt != NULL)
1328 RTFREE_LOCKED(rt);
1329 }
1330
1331 return (0);
1332 }
1333
1334 void
1335 in6_purgeaddr(struct ifaddr *ifa)
1336 {
1337 struct ifnet *ifp = ifa->ifa_ifp;
1338 struct in6_ifaddr *ia = (struct in6_ifaddr *) ifa;
1339 struct sockaddr_dl gateway;
1340 struct sockaddr_in6 mask, addr;
1341 struct rtentry rt0;
1342 int plen, error;
1343 struct ifaddr *ifa0;
1344
1345 /*
1346 * find another IPv6 address as the gateway for the
1347 * link-local and node-local all-nodes multicast
1348 * address routes
1349 */
1350 IF_ADDR_RLOCK(ifp);
1351 TAILQ_FOREACH(ifa0, &ifp->if_addrhead, ifa_link) {
1352 if ((ifa0->ifa_addr->sa_family != AF_INET6) ||
1353 memcmp(&satosin6(ifa0->ifa_addr)->sin6_addr,
1354 &ia->ia_addr.sin6_addr,
1355 sizeof(struct in6_addr)) == 0)
1356 continue;
1357 else
1358 break;
1359 }
1360 if (ifa0 != NULL)
1361 ifa_ref(ifa0);
1362 IF_ADDR_RUNLOCK(ifp);
1363
1364 /*
1365 * Remove the loopback route to the interface address.
1366 * The check for the current setting of "nd6_useloopback"
1367 * is not needed.
1368 */
1369 if (ia->ia_flags & IFA_RTSELF) {
1370 error = ifa_del_loopback_route((struct ifaddr *)ia,
1371 (struct sockaddr *)&ia->ia_addr);
1372 if (error == 0)
1373 ia->ia_flags &= ~IFA_RTSELF;
1374 }
1375
1376 /* stop DAD processing */
1377 nd6_dad_stop(ifa);
1378
1379 /* Remove local address entry from lltable. */
1380 IF_AFDATA_LOCK(ifp);
1381 lla_lookup(LLTABLE6(ifp), (LLE_DELETE | LLE_IFADDR),
1382 (struct sockaddr *)&ia->ia_addr);
1383 IF_AFDATA_UNLOCK(ifp);
1384
1385 /*
1386 * initialize for rtmsg generation
1387 */
1388 bzero(&gateway, sizeof(gateway));
1389 gateway.sdl_len = sizeof(gateway);
1390 gateway.sdl_family = AF_LINK;
1391 gateway.sdl_nlen = 0;
1392 gateway.sdl_alen = ifp->if_addrlen;
1393 /* */
1394 bzero(&rt0, sizeof(rt0));
1395 rt0.rt_gateway = (struct sockaddr *)&gateway;
1396 memcpy(&mask, &ia->ia_prefixmask, sizeof(ia->ia_prefixmask));
1397 memcpy(&addr, &ia->ia_addr, sizeof(ia->ia_addr));
1398 rt_mask(&rt0) = (struct sockaddr *)&mask;
1399 rt_key(&rt0) = (struct sockaddr *)&addr;
1400 rt0.rt_flags = RTF_HOST | RTF_STATIC;
1401 rt_newaddrmsg(RTM_DELETE, ifa, 0, &rt0);
1402
1403 /* Leave multicast groups. */
1404 error = in6_purgeaddr_mc(ifp, ia, ifa0);
1405
1406 if (ifa0 != NULL)
1407 ifa_free(ifa0);
1408
1409 plen = in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL); /* XXX */
1410 if ((ia->ia_flags & IFA_ROUTE) && plen == 128) {
1411 error = rtinit(&(ia->ia_ifa), RTM_DELETE, ia->ia_flags |
1412 (ia->ia_dstaddr.sin6_family == AF_INET6) ? RTF_HOST : 0);
1413 if (error != 0)
1414 log(LOG_INFO, "%s: err=%d, destination address delete "
1415 "failed\n", __func__, error);
1416 ia->ia_flags &= ~IFA_ROUTE;
1417 }
1418
1419 in6_unlink_ifa(ia, ifp);
1420 }
1421
1422 static void
1423 in6_unlink_ifa(struct in6_ifaddr *ia, struct ifnet *ifp)
1424 {
1425 int s = splnet();
1426
1427 IF_ADDR_WLOCK(ifp);
1428 TAILQ_REMOVE(&ifp->if_addrhead, &ia->ia_ifa, ifa_link);
1429 IF_ADDR_WUNLOCK(ifp);
1430 ifa_free(&ia->ia_ifa); /* if_addrhead */
1431
1432 /*
1433 * Defer the release of what might be the last reference to the
1434 * in6_ifaddr so that it can't be freed before the remainder of the
1435 * cleanup.
1436 */
1437 IN6_IFADDR_WLOCK();
1438 TAILQ_REMOVE(&V_in6_ifaddrhead, ia, ia_link);
1439 IN6_IFADDR_WUNLOCK();
1440
1441 /*
1442 * Release the reference to the base prefix. There should be a
1443 * positive reference.
1444 */
1445 if (ia->ia6_ndpr == NULL) {
1446 nd6log((LOG_NOTICE,
1447 "in6_unlink_ifa: autoconf'ed address "
1448 "%p has no prefix\n", ia));
1449 } else {
1450 ia->ia6_ndpr->ndpr_refcnt--;
1451 ia->ia6_ndpr = NULL;
1452 }
1453
1454 /*
1455 * Also, if the address being removed is autoconf'ed, call
1456 * pfxlist_onlink_check() since the release might affect the status of
1457 * other (detached) addresses.
1458 */
1459 if ((ia->ia6_flags & IN6_IFF_AUTOCONF)) {
1460 pfxlist_onlink_check();
1461 }
1462 ifa_free(&ia->ia_ifa); /* in6_ifaddrhead */
1463 splx(s);
1464 }
1465
1466 void
1467 in6_purgeif(struct ifnet *ifp)
1468 {
1469 struct ifaddr *ifa, *nifa;
1470
1471 TAILQ_FOREACH_SAFE(ifa, &ifp->if_addrhead, ifa_link, nifa) {
1472 if (ifa->ifa_addr->sa_family != AF_INET6)
1473 continue;
1474 in6_purgeaddr(ifa);
1475 }
1476
1477 in6_ifdetach(ifp);
1478 }
1479
1480 /*
1481 * SIOC[GAD]LIFADDR.
1482 * SIOCGLIFADDR: get first address. (?)
1483 * SIOCGLIFADDR with IFLR_PREFIX:
1484 * get first address that matches the specified prefix.
1485 * SIOCALIFADDR: add the specified address.
1486 * SIOCALIFADDR with IFLR_PREFIX:
1487 * add the specified prefix, filling hostid part from
1488 * the first link-local address. prefixlen must be <= 64.
1489 * SIOCDLIFADDR: delete the specified address.
1490 * SIOCDLIFADDR with IFLR_PREFIX:
1491 * delete the first address that matches the specified prefix.
1492 * return values:
1493 * EINVAL on invalid parameters
1494 * EADDRNOTAVAIL on prefix match failed/specified address not found
1495 * other values may be returned from in6_ioctl()
1496 *
1497 * NOTE: SIOCALIFADDR(with IFLR_PREFIX set) allows prefixlen less than 64.
1498 * this is to accomodate address naming scheme other than RFC2374,
1499 * in the future.
1500 * RFC2373 defines interface id to be 64bit, but it allows non-RFC2374
1501 * address encoding scheme. (see figure on page 8)
1502 */
1503 static int
1504 in6_lifaddr_ioctl(struct socket *so, u_long cmd, caddr_t data,
1505 struct ifnet *ifp, struct thread *td)
1506 {
1507 struct if_laddrreq *iflr = (struct if_laddrreq *)data;
1508 struct ifaddr *ifa;
1509 struct sockaddr *sa;
1510
1511 /* sanity checks */
1512 if (!data || !ifp) {
1513 panic("invalid argument to in6_lifaddr_ioctl");
1514 /* NOTREACHED */
1515 }
1516
1517 switch (cmd) {
1518 case SIOCGLIFADDR:
1519 /* address must be specified on GET with IFLR_PREFIX */
1520 if ((iflr->flags & IFLR_PREFIX) == 0)
1521 break;
1522 /* FALLTHROUGH */
1523 case SIOCALIFADDR:
1524 case SIOCDLIFADDR:
1525 /* address must be specified on ADD and DELETE */
1526 sa = (struct sockaddr *)&iflr->addr;
1527 if (sa->sa_family != AF_INET6)
1528 return EINVAL;
1529 if (sa->sa_len != sizeof(struct sockaddr_in6))
1530 return EINVAL;
1531 /* XXX need improvement */
1532 sa = (struct sockaddr *)&iflr->dstaddr;
1533 if (sa->sa_family && sa->sa_family != AF_INET6)
1534 return EINVAL;
1535 if (sa->sa_len && sa->sa_len != sizeof(struct sockaddr_in6))
1536 return EINVAL;
1537 break;
1538 default: /* shouldn't happen */
1539 #if 0
1540 panic("invalid cmd to in6_lifaddr_ioctl");
1541 /* NOTREACHED */
1542 #else
1543 return EOPNOTSUPP;
1544 #endif
1545 }
1546 if (sizeof(struct in6_addr) * 8 < iflr->prefixlen)
1547 return EINVAL;
1548
1549 switch (cmd) {
1550 case SIOCALIFADDR:
1551 {
1552 struct in6_aliasreq ifra;
1553 struct in6_addr *hostid = NULL;
1554 int prefixlen;
1555
1556 ifa = NULL;
1557 if ((iflr->flags & IFLR_PREFIX) != 0) {
1558 struct sockaddr_in6 *sin6;
1559
1560 /*
1561 * hostid is to fill in the hostid part of the
1562 * address. hostid points to the first link-local
1563 * address attached to the interface.
1564 */
1565 ifa = (struct ifaddr *)in6ifa_ifpforlinklocal(ifp, 0);
1566 if (!ifa)
1567 return EADDRNOTAVAIL;
1568 hostid = IFA_IN6(ifa);
1569
1570 /* prefixlen must be <= 64. */
1571 if (64 < iflr->prefixlen) {
1572 if (ifa != NULL)
1573 ifa_free(ifa);
1574 return EINVAL;
1575 }
1576 prefixlen = iflr->prefixlen;
1577
1578 /* hostid part must be zero. */
1579 sin6 = (struct sockaddr_in6 *)&iflr->addr;
1580 if (sin6->sin6_addr.s6_addr32[2] != 0 ||
1581 sin6->sin6_addr.s6_addr32[3] != 0) {
1582 if (ifa != NULL)
1583 ifa_free(ifa);
1584 return EINVAL;
1585 }
1586 } else
1587 prefixlen = iflr->prefixlen;
1588
1589 /* copy args to in6_aliasreq, perform ioctl(SIOCAIFADDR_IN6). */
1590 bzero(&ifra, sizeof(ifra));
1591 bcopy(iflr->iflr_name, ifra.ifra_name, sizeof(ifra.ifra_name));
1592
1593 bcopy(&iflr->addr, &ifra.ifra_addr,
1594 ((struct sockaddr *)&iflr->addr)->sa_len);
1595 if (hostid) {
1596 /* fill in hostid part */
1597 ifra.ifra_addr.sin6_addr.s6_addr32[2] =
1598 hostid->s6_addr32[2];
1599 ifra.ifra_addr.sin6_addr.s6_addr32[3] =
1600 hostid->s6_addr32[3];
1601 }
1602
1603 if (((struct sockaddr *)&iflr->dstaddr)->sa_family) { /* XXX */
1604 bcopy(&iflr->dstaddr, &ifra.ifra_dstaddr,
1605 ((struct sockaddr *)&iflr->dstaddr)->sa_len);
1606 if (hostid) {
1607 ifra.ifra_dstaddr.sin6_addr.s6_addr32[2] =
1608 hostid->s6_addr32[2];
1609 ifra.ifra_dstaddr.sin6_addr.s6_addr32[3] =
1610 hostid->s6_addr32[3];
1611 }
1612 }
1613 if (ifa != NULL)
1614 ifa_free(ifa);
1615
1616 ifra.ifra_prefixmask.sin6_len = sizeof(struct sockaddr_in6);
1617 in6_prefixlen2mask(&ifra.ifra_prefixmask.sin6_addr, prefixlen);
1618
1619 ifra.ifra_flags = iflr->flags & ~IFLR_PREFIX;
1620 return in6_control(so, SIOCAIFADDR_IN6, (caddr_t)&ifra, ifp, td);
1621 }
1622 case SIOCGLIFADDR:
1623 case SIOCDLIFADDR:
1624 {
1625 struct in6_ifaddr *ia;
1626 struct in6_addr mask, candidate, match;
1627 struct sockaddr_in6 *sin6;
1628 int cmp;
1629
1630 bzero(&mask, sizeof(mask));
1631 if (iflr->flags & IFLR_PREFIX) {
1632 /* lookup a prefix rather than address. */
1633 in6_prefixlen2mask(&mask, iflr->prefixlen);
1634
1635 sin6 = (struct sockaddr_in6 *)&iflr->addr;
1636 bcopy(&sin6->sin6_addr, &match, sizeof(match));
1637 match.s6_addr32[0] &= mask.s6_addr32[0];
1638 match.s6_addr32[1] &= mask.s6_addr32[1];
1639 match.s6_addr32[2] &= mask.s6_addr32[2];
1640 match.s6_addr32[3] &= mask.s6_addr32[3];
1641
1642 /* if you set extra bits, that's wrong */
1643 if (bcmp(&match, &sin6->sin6_addr, sizeof(match)))
1644 return EINVAL;
1645
1646 cmp = 1;
1647 } else {
1648 if (cmd == SIOCGLIFADDR) {
1649 /* on getting an address, take the 1st match */
1650 cmp = 0; /* XXX */
1651 } else {
1652 /* on deleting an address, do exact match */
1653 in6_prefixlen2mask(&mask, 128);
1654 sin6 = (struct sockaddr_in6 *)&iflr->addr;
1655 bcopy(&sin6->sin6_addr, &match, sizeof(match));
1656
1657 cmp = 1;
1658 }
1659 }
1660
1661 IF_ADDR_RLOCK(ifp);
1662 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
1663 if (ifa->ifa_addr->sa_family != AF_INET6)
1664 continue;
1665 if (!cmp)
1666 break;
1667
1668 /*
1669 * XXX: this is adhoc, but is necessary to allow
1670 * a user to specify fe80::/64 (not /10) for a
1671 * link-local address.
1672 */
1673 bcopy(IFA_IN6(ifa), &candidate, sizeof(candidate));
1674 in6_clearscope(&candidate);
1675 candidate.s6_addr32[0] &= mask.s6_addr32[0];
1676 candidate.s6_addr32[1] &= mask.s6_addr32[1];
1677 candidate.s6_addr32[2] &= mask.s6_addr32[2];
1678 candidate.s6_addr32[3] &= mask.s6_addr32[3];
1679 if (IN6_ARE_ADDR_EQUAL(&candidate, &match))
1680 break;
1681 }
1682 if (ifa != NULL)
1683 ifa_ref(ifa);
1684 IF_ADDR_RUNLOCK(ifp);
1685 if (!ifa)
1686 return EADDRNOTAVAIL;
1687 ia = ifa2ia6(ifa);
1688
1689 if (cmd == SIOCGLIFADDR) {
1690 int error;
1691
1692 /* fill in the if_laddrreq structure */
1693 bcopy(&ia->ia_addr, &iflr->addr, ia->ia_addr.sin6_len);
1694 error = sa6_recoverscope(
1695 (struct sockaddr_in6 *)&iflr->addr);
1696 if (error != 0) {
1697 ifa_free(ifa);
1698 return (error);
1699 }
1700
1701 if ((ifp->if_flags & IFF_POINTOPOINT) != 0) {
1702 bcopy(&ia->ia_dstaddr, &iflr->dstaddr,
1703 ia->ia_dstaddr.sin6_len);
1704 error = sa6_recoverscope(
1705 (struct sockaddr_in6 *)&iflr->dstaddr);
1706 if (error != 0) {
1707 ifa_free(ifa);
1708 return (error);
1709 }
1710 } else
1711 bzero(&iflr->dstaddr, sizeof(iflr->dstaddr));
1712
1713 iflr->prefixlen =
1714 in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL);
1715
1716 iflr->flags = ia->ia6_flags; /* XXX */
1717 ifa_free(ifa);
1718
1719 return 0;
1720 } else {
1721 struct in6_aliasreq ifra;
1722
1723 /* fill in6_aliasreq and do ioctl(SIOCDIFADDR_IN6) */
1724 bzero(&ifra, sizeof(ifra));
1725 bcopy(iflr->iflr_name, ifra.ifra_name,
1726 sizeof(ifra.ifra_name));
1727
1728 bcopy(&ia->ia_addr, &ifra.ifra_addr,
1729 ia->ia_addr.sin6_len);
1730 if ((ifp->if_flags & IFF_POINTOPOINT) != 0) {
1731 bcopy(&ia->ia_dstaddr, &ifra.ifra_dstaddr,
1732 ia->ia_dstaddr.sin6_len);
1733 } else {
1734 bzero(&ifra.ifra_dstaddr,
1735 sizeof(ifra.ifra_dstaddr));
1736 }
1737 bcopy(&ia->ia_prefixmask, &ifra.ifra_dstaddr,
1738 ia->ia_prefixmask.sin6_len);
1739
1740 ifra.ifra_flags = ia->ia6_flags;
1741 ifa_free(ifa);
1742 return in6_control(so, SIOCDIFADDR_IN6, (caddr_t)&ifra,
1743 ifp, td);
1744 }
1745 }
1746 }
1747
1748 return EOPNOTSUPP; /* just for safety */
1749 }
1750
1751 /*
1752 * Initialize an interface's IPv6 address and routing table entry.
1753 */
1754 static int
1755 in6_ifinit(struct ifnet *ifp, struct in6_ifaddr *ia,
1756 struct sockaddr_in6 *sin6, int newhost)
1757 {
1758 int error = 0, plen, ifacount = 0;
1759 int s = splimp();
1760 struct ifaddr *ifa;
1761
1762 /*
1763 * Give the interface a chance to initialize
1764 * if this is its first address,
1765 * and to validate the address if necessary.
1766 */
1767 IF_ADDR_RLOCK(ifp);
1768 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
1769 if (ifa->ifa_addr->sa_family != AF_INET6)
1770 continue;
1771 ifacount++;
1772 }
1773 IF_ADDR_RUNLOCK(ifp);
1774
1775 ia->ia_addr = *sin6;
1776
1777 if (ifacount <= 1 && ifp->if_ioctl) {
1778 error = (*ifp->if_ioctl)(ifp, SIOCSIFADDR, (caddr_t)ia);
1779 if (error) {
1780 splx(s);
1781 return (error);
1782 }
1783 }
1784 splx(s);
1785
1786 ia->ia_ifa.ifa_metric = ifp->if_metric;
1787
1788 /* we could do in(6)_socktrim here, but just omit it at this moment. */
1789
1790 /*
1791 * Special case:
1792 * If a new destination address is specified for a point-to-point
1793 * interface, install a route to the destination as an interface
1794 * direct route.
1795 * XXX: the logic below rejects assigning multiple addresses on a p2p
1796 * interface that share the same destination.
1797 */
1798 plen = in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL); /* XXX */
1799 if (!(ia->ia_flags & IFA_ROUTE) && plen == 128 &&
1800 ia->ia_dstaddr.sin6_family == AF_INET6) {
1801 int rtflags = RTF_UP | RTF_HOST;
1802 error = rtinit(&ia->ia_ifa, RTM_ADD, ia->ia_flags | rtflags);
1803 if (error)
1804 return (error);
1805 ia->ia_flags |= IFA_ROUTE;
1806 /*
1807 * Handle the case for ::1 .
1808 */
1809 if (ifp->if_flags & IFF_LOOPBACK)
1810 ia->ia_flags |= IFA_RTSELF;
1811 }
1812
1813 /*
1814 * add a loopback route to self
1815 */
1816 if (!(ia->ia_flags & IFA_RTSELF) && V_nd6_useloopback) {
1817 error = ifa_add_loopback_route((struct ifaddr *)ia,
1818 (struct sockaddr *)&ia->ia_addr);
1819 if (error == 0)
1820 ia->ia_flags |= IFA_RTSELF;
1821 }
1822
1823 /* Add local address to lltable, if necessary (ex. on p2p link). */
1824 if (newhost) {
1825 struct llentry *ln;
1826 struct rtentry rt;
1827 struct sockaddr_dl gateway;
1828 struct sockaddr_in6 mask, addr;
1829
1830 IF_AFDATA_LOCK(ifp);
1831 ia->ia_ifa.ifa_rtrequest = nd6_rtrequest;
1832 ln = lla_lookup(LLTABLE6(ifp), (LLE_CREATE | LLE_IFADDR | LLE_EXCLUSIVE),
1833 (struct sockaddr *)&ia->ia_addr);
1834 IF_AFDATA_UNLOCK(ifp);
1835 if (ln != NULL) {
1836 ln->la_expire = 0; /* for IPv6 this means permanent */
1837 ln->ln_state = ND6_LLINFO_REACHABLE;
1838 /*
1839 * initialize for rtmsg generation
1840 */
1841 bzero(&gateway, sizeof(gateway));
1842 gateway.sdl_len = sizeof(gateway);
1843 gateway.sdl_family = AF_LINK;
1844 gateway.sdl_nlen = 0;
1845 gateway.sdl_alen = 6;
1846 memcpy(gateway.sdl_data, &ln->ll_addr.mac_aligned, sizeof(ln->ll_addr));
1847 /* */
1848 LLE_WUNLOCK(ln);
1849 }
1850
1851 bzero(&rt, sizeof(rt));
1852 rt.rt_gateway = (struct sockaddr *)&gateway;
1853 memcpy(&mask, &ia->ia_prefixmask, sizeof(ia->ia_prefixmask));
1854 memcpy(&addr, &ia->ia_addr, sizeof(ia->ia_addr));
1855 rt_mask(&rt) = (struct sockaddr *)&mask;
1856 rt_key(&rt) = (struct sockaddr *)&addr;
1857 rt.rt_flags = RTF_UP | RTF_HOST | RTF_STATIC;
1858 /* Announce arrival of local address to all FIBs. */
1859 rt_newaddrmsg(RTM_ADD, &ia->ia_ifa, 0, &rt);
1860 }
1861
1862 return (error);
1863 }
1864
1865 /*
1866 * Find an IPv6 interface link-local address specific to an interface.
1867 * ifaddr is returned referenced.
1868 */
1869 struct in6_ifaddr *
1870 in6ifa_ifpforlinklocal(struct ifnet *ifp, int ignoreflags)
1871 {
1872 struct ifaddr *ifa;
1873
1874 IF_ADDR_RLOCK(ifp);
1875 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
1876 if (ifa->ifa_addr->sa_family != AF_INET6)
1877 continue;
1878 if (IN6_IS_ADDR_LINKLOCAL(IFA_IN6(ifa))) {
1879 if ((((struct in6_ifaddr *)ifa)->ia6_flags &
1880 ignoreflags) != 0)
1881 continue;
1882 ifa_ref(ifa);
1883 break;
1884 }
1885 }
1886 IF_ADDR_RUNLOCK(ifp);
1887
1888 return ((struct in6_ifaddr *)ifa);
1889 }
1890
1891
1892 /*
1893 * find the internet address corresponding to a given interface and address.
1894 * ifaddr is returned referenced.
1895 */
1896 struct in6_ifaddr *
1897 in6ifa_ifpwithaddr(struct ifnet *ifp, struct in6_addr *addr)
1898 {
1899 struct ifaddr *ifa;
1900
1901 IF_ADDR_RLOCK(ifp);
1902 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
1903 if (ifa->ifa_addr->sa_family != AF_INET6)
1904 continue;
1905 if (IN6_ARE_ADDR_EQUAL(addr, IFA_IN6(ifa))) {
1906 ifa_ref(ifa);
1907 break;
1908 }
1909 }
1910 IF_ADDR_RUNLOCK(ifp);
1911
1912 return ((struct in6_ifaddr *)ifa);
1913 }
1914
1915 /*
1916 * Convert IP6 address to printable (loggable) representation. Caller
1917 * has to make sure that ip6buf is at least INET6_ADDRSTRLEN long.
1918 */
1919 static char digits[] = "0123456789abcdef";
1920 char *
1921 ip6_sprintf(char *ip6buf, const struct in6_addr *addr)
1922 {
1923 int i;
1924 char *cp;
1925 const u_int16_t *a = (const u_int16_t *)addr;
1926 const u_int8_t *d;
1927 int dcolon = 0, zero = 0;
1928
1929 cp = ip6buf;
1930
1931 for (i = 0; i < 8; i++) {
1932 if (dcolon == 1) {
1933 if (*a == 0) {
1934 if (i == 7)
1935 *cp++ = ':';
1936 a++;
1937 continue;
1938 } else
1939 dcolon = 2;
1940 }
1941 if (*a == 0) {
1942 if (dcolon == 0 && *(a + 1) == 0) {
1943 if (i == 0)
1944 *cp++ = ':';
1945 *cp++ = ':';
1946 dcolon = 1;
1947 } else {
1948 *cp++ = '';
1949 *cp++ = ':';
1950 }
1951 a++;
1952 continue;
1953 }
1954 d = (const u_char *)a;
1955 /* Try to eliminate leading zeros in printout like in :0001. */
1956 zero = 1;
1957 *cp = digits[*d >> 4];
1958 if (*cp != '') {
1959 zero = 0;
1960 cp++;
1961 }
1962 *cp = digits[*d++ & 0xf];
1963 if (zero == 0 || (*cp != '')) {
1964 zero = 0;
1965 cp++;
1966 }
1967 *cp = digits[*d >> 4];
1968 if (zero == 0 || (*cp != '')) {
1969 zero = 0;
1970 cp++;
1971 }
1972 *cp++ = digits[*d & 0xf];
1973 *cp++ = ':';
1974 a++;
1975 }
1976 *--cp = '\0';
1977 return (ip6buf);
1978 }
1979
1980 int
1981 in6_localaddr(struct in6_addr *in6)
1982 {
1983 struct in6_ifaddr *ia;
1984
1985 if (IN6_IS_ADDR_LOOPBACK(in6) || IN6_IS_ADDR_LINKLOCAL(in6))
1986 return 1;
1987
1988 IN6_IFADDR_RLOCK();
1989 TAILQ_FOREACH(ia, &V_in6_ifaddrhead, ia_link) {
1990 if (IN6_ARE_MASKED_ADDR_EQUAL(in6, &ia->ia_addr.sin6_addr,
1991 &ia->ia_prefixmask.sin6_addr)) {
1992 IN6_IFADDR_RUNLOCK();
1993 return 1;
1994 }
1995 }
1996 IN6_IFADDR_RUNLOCK();
1997
1998 return (0);
1999 }
2000
2001 int
2002 in6_is_addr_deprecated(struct sockaddr_in6 *sa6)
2003 {
2004 struct in6_ifaddr *ia;
2005
2006 IN6_IFADDR_RLOCK();
2007 TAILQ_FOREACH(ia, &V_in6_ifaddrhead, ia_link) {
2008 if (IN6_ARE_ADDR_EQUAL(&ia->ia_addr.sin6_addr,
2009 &sa6->sin6_addr) &&
2010 (ia->ia6_flags & IN6_IFF_DEPRECATED) != 0) {
2011 IN6_IFADDR_RUNLOCK();
2012 return (1); /* true */
2013 }
2014
2015 /* XXX: do we still have to go thru the rest of the list? */
2016 }
2017 IN6_IFADDR_RUNLOCK();
2018
2019 return (0); /* false */
2020 }
2021
2022 /*
2023 * return length of part which dst and src are equal
2024 * hard coding...
2025 */
2026 int
2027 in6_matchlen(struct in6_addr *src, struct in6_addr *dst)
2028 {
2029 int match = 0;
2030 u_char *s = (u_char *)src, *d = (u_char *)dst;
2031 u_char *lim = s + 16, r;
2032
2033 while (s < lim)
2034 if ((r = (*d++ ^ *s++)) != 0) {
2035 while (r < 128) {
2036 match++;
2037 r <<= 1;
2038 }
2039 break;
2040 } else
2041 match += 8;
2042 return match;
2043 }
2044
2045 /* XXX: to be scope conscious */
2046 int
2047 in6_are_prefix_equal(struct in6_addr *p1, struct in6_addr *p2, int len)
2048 {
2049 int bytelen, bitlen;
2050
2051 /* sanity check */
2052 if (0 > len || len > 128) {
2053 log(LOG_ERR, "in6_are_prefix_equal: invalid prefix length(%d)\n",
2054 len);
2055 return (0);
2056 }
2057
2058 bytelen = len / 8;
2059 bitlen = len % 8;
2060
2061 if (bcmp(&p1->s6_addr, &p2->s6_addr, bytelen))
2062 return (0);
2063 if (bitlen != 0 &&
2064 p1->s6_addr[bytelen] >> (8 - bitlen) !=
2065 p2->s6_addr[bytelen] >> (8 - bitlen))
2066 return (0);
2067
2068 return (1);
2069 }
2070
2071 void
2072 in6_prefixlen2mask(struct in6_addr *maskp, int len)
2073 {
2074 u_char maskarray[8] = {0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, 0xff};
2075 int bytelen, bitlen, i;
2076
2077 /* sanity check */
2078 if (0 > len || len > 128) {
2079 log(LOG_ERR, "in6_prefixlen2mask: invalid prefix length(%d)\n",
2080 len);
2081 return;
2082 }
2083
2084 bzero(maskp, sizeof(*maskp));
2085 bytelen = len / 8;
2086 bitlen = len % 8;
2087 for (i = 0; i < bytelen; i++)
2088 maskp->s6_addr[i] = 0xff;
2089 if (bitlen)
2090 maskp->s6_addr[bytelen] = maskarray[bitlen - 1];
2091 }
2092
2093 /*
2094 * return the best address out of the same scope. if no address was
2095 * found, return the first valid address from designated IF.
2096 */
2097 struct in6_ifaddr *
2098 in6_ifawithifp(struct ifnet *ifp, struct in6_addr *dst)
2099 {
2100 int dst_scope = in6_addrscope(dst), blen = -1, tlen;
2101 struct ifaddr *ifa;
2102 struct in6_ifaddr *besta = 0;
2103 struct in6_ifaddr *dep[2]; /* last-resort: deprecated */
2104
2105 dep[0] = dep[1] = NULL;
2106
2107 /*
2108 * We first look for addresses in the same scope.
2109 * If there is one, return it.
2110 * If two or more, return one which matches the dst longest.
2111 * If none, return one of global addresses assigned other ifs.
2112 */
2113 IF_ADDR_RLOCK(ifp);
2114 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
2115 if (ifa->ifa_addr->sa_family != AF_INET6)
2116 continue;
2117 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_ANYCAST)
2118 continue; /* XXX: is there any case to allow anycast? */
2119 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_NOTREADY)
2120 continue; /* don't use this interface */
2121 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DETACHED)
2122 continue;
2123 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DEPRECATED) {
2124 if (V_ip6_use_deprecated)
2125 dep[0] = (struct in6_ifaddr *)ifa;
2126 continue;
2127 }
2128
2129 if (dst_scope == in6_addrscope(IFA_IN6(ifa))) {
2130 /*
2131 * call in6_matchlen() as few as possible
2132 */
2133 if (besta) {
2134 if (blen == -1)
2135 blen = in6_matchlen(&besta->ia_addr.sin6_addr, dst);
2136 tlen = in6_matchlen(IFA_IN6(ifa), dst);
2137 if (tlen > blen) {
2138 blen = tlen;
2139 besta = (struct in6_ifaddr *)ifa;
2140 }
2141 } else
2142 besta = (struct in6_ifaddr *)ifa;
2143 }
2144 }
2145 if (besta) {
2146 ifa_ref(&besta->ia_ifa);
2147 IF_ADDR_RUNLOCK(ifp);
2148 return (besta);
2149 }
2150
2151 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
2152 if (ifa->ifa_addr->sa_family != AF_INET6)
2153 continue;
2154 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_ANYCAST)
2155 continue; /* XXX: is there any case to allow anycast? */
2156 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_NOTREADY)
2157 continue; /* don't use this interface */
2158 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DETACHED)
2159 continue;
2160 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DEPRECATED) {
2161 if (V_ip6_use_deprecated)
2162 dep[1] = (struct in6_ifaddr *)ifa;
2163 continue;
2164 }
2165
2166 if (ifa != NULL)
2167 ifa_ref(ifa);
2168 IF_ADDR_RUNLOCK(ifp);
2169 return (struct in6_ifaddr *)ifa;
2170 }
2171
2172 /* use the last-resort values, that are, deprecated addresses */
2173 if (dep[0]) {
2174 ifa_ref((struct ifaddr *)dep[0]);
2175 IF_ADDR_RUNLOCK(ifp);
2176 return dep[0];
2177 }
2178 if (dep[1]) {
2179 ifa_ref((struct ifaddr *)dep[1]);
2180 IF_ADDR_RUNLOCK(ifp);
2181 return dep[1];
2182 }
2183
2184 IF_ADDR_RUNLOCK(ifp);
2185 return NULL;
2186 }
2187
2188 /*
2189 * perform DAD when interface becomes IFF_UP.
2190 */
2191 void
2192 in6_if_up(struct ifnet *ifp)
2193 {
2194 struct ifaddr *ifa;
2195 struct in6_ifaddr *ia;
2196
2197 IF_ADDR_RLOCK(ifp);
2198 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
2199 if (ifa->ifa_addr->sa_family != AF_INET6)
2200 continue;
2201 ia = (struct in6_ifaddr *)ifa;
2202 if (ia->ia6_flags & IN6_IFF_TENTATIVE) {
2203 /*
2204 * The TENTATIVE flag was likely set by hand
2205 * beforehand, implicitly indicating the need for DAD.
2206 * We may be able to skip the random delay in this
2207 * case, but we impose delays just in case.
2208 */
2209 nd6_dad_start(ifa,
2210 arc4random() % (MAX_RTR_SOLICITATION_DELAY * hz));
2211 }
2212 }
2213 IF_ADDR_RUNLOCK(ifp);
2214
2215 /*
2216 * special cases, like 6to4, are handled in in6_ifattach
2217 */
2218 in6_ifattach(ifp, NULL);
2219 }
2220
2221 int
2222 in6if_do_dad(struct ifnet *ifp)
2223 {
2224 if ((ifp->if_flags & IFF_LOOPBACK) != 0)
2225 return (0);
2226
2227 switch (ifp->if_type) {
2228 #ifdef IFT_DUMMY
2229 case IFT_DUMMY:
2230 #endif
2231 case IFT_FAITH:
2232 /*
2233 * These interfaces do not have the IFF_LOOPBACK flag,
2234 * but loop packets back. We do not have to do DAD on such
2235 * interfaces. We should even omit it, because loop-backed
2236 * NS would confuse the DAD procedure.
2237 */
2238 return (0);
2239 default:
2240 /*
2241 * Our DAD routine requires the interface up and running.
2242 * However, some interfaces can be up before the RUNNING
2243 * status. Additionaly, users may try to assign addresses
2244 * before the interface becomes up (or running).
2245 * We simply skip DAD in such a case as a work around.
2246 * XXX: we should rather mark "tentative" on such addresses,
2247 * and do DAD after the interface becomes ready.
2248 */
2249 if (!((ifp->if_flags & IFF_UP) &&
2250 (ifp->if_drv_flags & IFF_DRV_RUNNING)))
2251 return (0);
2252
2253 return (1);
2254 }
2255 }
2256
2257 /*
2258 * Calculate max IPv6 MTU through all the interfaces and store it
2259 * to in6_maxmtu.
2260 */
2261 void
2262 in6_setmaxmtu(void)
2263 {
2264 unsigned long maxmtu = 0;
2265 struct ifnet *ifp;
2266
2267 IFNET_RLOCK_NOSLEEP();
2268 TAILQ_FOREACH(ifp, &V_ifnet, if_list) {
2269 /* this function can be called during ifnet initialization */
2270 if (!ifp->if_afdata[AF_INET6])
2271 continue;
2272 if ((ifp->if_flags & IFF_LOOPBACK) == 0 &&
2273 IN6_LINKMTU(ifp) > maxmtu)
2274 maxmtu = IN6_LINKMTU(ifp);
2275 }
2276 IFNET_RUNLOCK_NOSLEEP();
2277 if (maxmtu) /* update only when maxmtu is positive */
2278 V_in6_maxmtu = maxmtu;
2279 }
2280
2281 /*
2282 * Provide the length of interface identifiers to be used for the link attached
2283 * to the given interface. The length should be defined in "IPv6 over
2284 * xxx-link" document. Note that address architecture might also define
2285 * the length for a particular set of address prefixes, regardless of the
2286 * link type. As clarified in rfc2462bis, those two definitions should be
2287 * consistent, and those really are as of August 2004.
2288 */
2289 int
2290 in6_if2idlen(struct ifnet *ifp)
2291 {
2292 switch (ifp->if_type) {
2293 case IFT_ETHER: /* RFC2464 */
2294 #ifdef IFT_PROPVIRTUAL
2295 case IFT_PROPVIRTUAL: /* XXX: no RFC. treat it as ether */
2296 #endif
2297 #ifdef IFT_L2VLAN
2298 case IFT_L2VLAN: /* ditto */
2299 #endif
2300 #ifdef IFT_IEEE80211
2301 case IFT_IEEE80211: /* ditto */
2302 #endif
2303 #ifdef IFT_MIP
2304 case IFT_MIP: /* ditto */
2305 #endif
2306 return (64);
2307 case IFT_FDDI: /* RFC2467 */
2308 return (64);
2309 case IFT_ISO88025: /* RFC2470 (IPv6 over Token Ring) */
2310 return (64);
2311 case IFT_PPP: /* RFC2472 */
2312 return (64);
2313 case IFT_ARCNET: /* RFC2497 */
2314 return (64);
2315 case IFT_FRELAY: /* RFC2590 */
2316 return (64);
2317 case IFT_IEEE1394: /* RFC3146 */
2318 return (64);
2319 case IFT_GIF:
2320 return (64); /* draft-ietf-v6ops-mech-v2-07 */
2321 case IFT_LOOP:
2322 return (64); /* XXX: is this really correct? */
2323 default:
2324 /*
2325 * Unknown link type:
2326 * It might be controversial to use the today's common constant
2327 * of 64 for these cases unconditionally. For full compliance,
2328 * we should return an error in this case. On the other hand,
2329 * if we simply miss the standard for the link type or a new
2330 * standard is defined for a new link type, the IFID length
2331 * is very likely to be the common constant. As a compromise,
2332 * we always use the constant, but make an explicit notice
2333 * indicating the "unknown" case.
2334 */
2335 printf("in6_if2idlen: unknown link type (%d)\n", ifp->if_type);
2336 return (64);
2337 }
2338 }
2339
2340 #include <sys/sysctl.h>
2341
2342 struct in6_llentry {
2343 struct llentry base;
2344 struct sockaddr_in6 l3_addr6;
2345 };
2346
2347 static struct llentry *
2348 in6_lltable_new(const struct sockaddr *l3addr, u_int flags)
2349 {
2350 struct in6_llentry *lle;
2351
2352 lle = malloc(sizeof(struct in6_llentry), M_LLTABLE,
2353 M_DONTWAIT | M_ZERO);
2354 if (lle == NULL) /* NB: caller generates msg */
2355 return NULL;
2356
2357 lle->l3_addr6 = *(const struct sockaddr_in6 *)l3addr;
2358 lle->base.lle_refcnt = 1;
2359 LLE_LOCK_INIT(&lle->base);
2360 callout_init_rw(&lle->base.ln_timer_ch, &lle->base.lle_lock,
2361 CALLOUT_RETURNUNLOCKED);
2362
2363 return &lle->base;
2364 }
2365
2366 /*
2367 * Deletes an address from the address table.
2368 * This function is called by the timer functions
2369 * such as arptimer() and nd6_llinfo_timer(), and
2370 * the caller does the locking.
2371 */
2372 static void
2373 in6_lltable_free(struct lltable *llt, struct llentry *lle)
2374 {
2375 LLE_WUNLOCK(lle);
2376 LLE_LOCK_DESTROY(lle);
2377 free(lle, M_LLTABLE);
2378 }
2379
2380 static void
2381 in6_lltable_prefix_free(struct lltable *llt,
2382 const struct sockaddr *prefix,
2383 const struct sockaddr *mask,
2384 u_int flags)
2385 {
2386 const struct sockaddr_in6 *pfx = (const struct sockaddr_in6 *)prefix;
2387 const struct sockaddr_in6 *msk = (const struct sockaddr_in6 *)mask;
2388 struct llentry *lle, *next;
2389 register int i;
2390
2391 /*
2392 * (flags & LLE_STATIC) means deleting all entries
2393 * including static ND6 entries
2394 */
2395 for (i=0; i < LLTBL_HASHTBL_SIZE; i++) {
2396 LIST_FOREACH_SAFE(lle, &llt->lle_head[i], lle_next, next) {
2397 if (IN6_ARE_MASKED_ADDR_EQUAL(
2398 &((struct sockaddr_in6 *)L3_ADDR(lle))->sin6_addr,
2399 &pfx->sin6_addr,
2400 &msk->sin6_addr) &&
2401 ((flags & LLE_STATIC) || !(lle->la_flags & LLE_STATIC))) {
2402 int canceled;
2403
2404 canceled = callout_drain(&lle->la_timer);
2405 LLE_WLOCK(lle);
2406 if (canceled)
2407 LLE_REMREF(lle);
2408 llentry_free(lle);
2409 }
2410 }
2411 }
2412 }
2413
2414 static int
2415 in6_lltable_rtcheck(struct ifnet *ifp,
2416 u_int flags,
2417 const struct sockaddr *l3addr)
2418 {
2419 struct rtentry *rt;
2420 char ip6buf[INET6_ADDRSTRLEN];
2421
2422 KASSERT(l3addr->sa_family == AF_INET6,
2423 ("sin_family %d", l3addr->sa_family));
2424
2425 /* Our local addresses are always only installed on the default FIB. */
2426 /* XXX rtalloc1 should take a const param */
2427 rt = in6_rtalloc1(__DECONST(struct sockaddr *, l3addr), 0, 0,
2428 RT_DEFAULT_FIB);
2429 if (rt == NULL || (rt->rt_flags & RTF_GATEWAY) || rt->rt_ifp != ifp) {
2430 struct ifaddr *ifa;
2431 /*
2432 * Create an ND6 cache for an IPv6 neighbor
2433 * that is not covered by our own prefix.
2434 */
2435 /* XXX ifaof_ifpforaddr should take a const param */
2436 ifa = ifaof_ifpforaddr(__DECONST(struct sockaddr *, l3addr), ifp);
2437 if (ifa != NULL) {
2438 ifa_free(ifa);
2439 if (rt != NULL)
2440 RTFREE_LOCKED(rt);
2441 return 0;
2442 }
2443 log(LOG_INFO, "IPv6 address: \"%s\" is not on the network\n",
2444 ip6_sprintf(ip6buf, &((const struct sockaddr_in6 *)l3addr)->sin6_addr));
2445 if (rt != NULL)
2446 RTFREE_LOCKED(rt);
2447 return EINVAL;
2448 }
2449 RTFREE_LOCKED(rt);
2450 return 0;
2451 }
2452
2453 static struct llentry *
2454 in6_lltable_lookup(struct lltable *llt, u_int flags,
2455 const struct sockaddr *l3addr)
2456 {
2457 const struct sockaddr_in6 *sin6 = (const struct sockaddr_in6 *)l3addr;
2458 struct ifnet *ifp = llt->llt_ifp;
2459 struct llentry *lle;
2460 struct llentries *lleh;
2461 u_int hashkey;
2462
2463 IF_AFDATA_LOCK_ASSERT(ifp);
2464 KASSERT(l3addr->sa_family == AF_INET6,
2465 ("sin_family %d", l3addr->sa_family));
2466
2467 hashkey = sin6->sin6_addr.s6_addr32[3];
2468 lleh = &llt->lle_head[LLATBL_HASH(hashkey, LLTBL_HASHMASK)];
2469 LIST_FOREACH(lle, lleh, lle_next) {
2470 struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)L3_ADDR(lle);
2471 if (lle->la_flags & LLE_DELETED)
2472 continue;
2473 if (bcmp(&sa6->sin6_addr, &sin6->sin6_addr,
2474 sizeof(struct in6_addr)) == 0)
2475 break;
2476 }
2477
2478 if (lle == NULL) {
2479 if (!(flags & LLE_CREATE))
2480 return (NULL);
2481 /*
2482 * A route that covers the given address must have
2483 * been installed 1st because we are doing a resolution,
2484 * verify this.
2485 */
2486 if (!(flags & LLE_IFADDR) &&
2487 in6_lltable_rtcheck(ifp, flags, l3addr) != 0)
2488 return NULL;
2489
2490 lle = in6_lltable_new(l3addr, flags);
2491 if (lle == NULL) {
2492 log(LOG_INFO, "lla_lookup: new lle malloc failed\n");
2493 return NULL;
2494 }
2495 lle->la_flags = flags & ~LLE_CREATE;
2496 if ((flags & (LLE_CREATE | LLE_IFADDR)) == (LLE_CREATE | LLE_IFADDR)) {
2497 bcopy(IF_LLADDR(ifp), &lle->ll_addr, ifp->if_addrlen);
2498 lle->la_flags |= (LLE_VALID | LLE_STATIC);
2499 }
2500
2501 lle->lle_tbl = llt;
2502 lle->lle_head = lleh;
2503 LIST_INSERT_HEAD(lleh, lle, lle_next);
2504 } else if (flags & LLE_DELETE) {
2505 if (!(lle->la_flags & LLE_IFADDR) || (flags & LLE_IFADDR)) {
2506 LLE_WLOCK(lle);
2507 lle->la_flags = LLE_DELETED;
2508 LLE_WUNLOCK(lle);
2509 #ifdef DIAGNOSTIC
2510 log(LOG_INFO, "ifaddr cache = %p is deleted\n", lle);
2511 #endif
2512 }
2513 lle = (void *)-1;
2514 }
2515 if (LLE_IS_VALID(lle)) {
2516 if (flags & LLE_EXCLUSIVE)
2517 LLE_WLOCK(lle);
2518 else
2519 LLE_RLOCK(lle);
2520 }
2521 return (lle);
2522 }
2523
2524 static int
2525 in6_lltable_dump(struct lltable *llt, struct sysctl_req *wr)
2526 {
2527 struct ifnet *ifp = llt->llt_ifp;
2528 struct llentry *lle;
2529 /* XXX stack use */
2530 struct {
2531 struct rt_msghdr rtm;
2532 struct sockaddr_in6 sin6;
2533 /*
2534 * ndp.c assumes that sdl is word aligned
2535 */
2536 #ifdef __LP64__
2537 uint32_t pad;
2538 #endif
2539 struct sockaddr_dl sdl;
2540 } ndpc;
2541 int i, error;
2542
2543 if (ifp->if_flags & IFF_LOOPBACK)
2544 return 0;
2545
2546 LLTABLE_LOCK_ASSERT();
2547
2548 error = 0;
2549 for (i = 0; i < LLTBL_HASHTBL_SIZE; i++) {
2550 LIST_FOREACH(lle, &llt->lle_head[i], lle_next) {
2551 struct sockaddr_dl *sdl;
2552
2553 /* skip deleted or invalid entries */
2554 if ((lle->la_flags & (LLE_DELETED|LLE_VALID)) != LLE_VALID)
2555 continue;
2556 /* Skip if jailed and not a valid IP of the prison. */
2557 if (prison_if(wr->td->td_ucred, L3_ADDR(lle)) != 0)
2558 continue;
2559 /*
2560 * produce a msg made of:
2561 * struct rt_msghdr;
2562 * struct sockaddr_in6 (IPv6)
2563 * struct sockaddr_dl;
2564 */
2565 bzero(&ndpc, sizeof(ndpc));
2566 ndpc.rtm.rtm_msglen = sizeof(ndpc);
2567 ndpc.rtm.rtm_version = RTM_VERSION;
2568 ndpc.rtm.rtm_type = RTM_GET;
2569 ndpc.rtm.rtm_flags = RTF_UP;
2570 ndpc.rtm.rtm_addrs = RTA_DST | RTA_GATEWAY;
2571 ndpc.sin6.sin6_family = AF_INET6;
2572 ndpc.sin6.sin6_len = sizeof(ndpc.sin6);
2573 bcopy(L3_ADDR(lle), &ndpc.sin6, L3_ADDR_LEN(lle));
2574
2575 /* publish */
2576 if (lle->la_flags & LLE_PUB)
2577 ndpc.rtm.rtm_flags |= RTF_ANNOUNCE;
2578
2579 sdl = &ndpc.sdl;
2580 sdl->sdl_family = AF_LINK;
2581 sdl->sdl_len = sizeof(*sdl);
2582 sdl->sdl_alen = ifp->if_addrlen;
2583 sdl->sdl_index = ifp->if_index;
2584 sdl->sdl_type = ifp->if_type;
2585 bcopy(&lle->ll_addr, LLADDR(sdl), ifp->if_addrlen);
2586 ndpc.rtm.rtm_rmx.rmx_expire =
2587 lle->la_flags & LLE_STATIC ? 0 : lle->la_expire;
2588 ndpc.rtm.rtm_flags |= (RTF_HOST | RTF_LLDATA);
2589 if (lle->la_flags & LLE_STATIC)
2590 ndpc.rtm.rtm_flags |= RTF_STATIC;
2591 ndpc.rtm.rtm_index = ifp->if_index;
2592 error = SYSCTL_OUT(wr, &ndpc, sizeof(ndpc));
2593 if (error)
2594 break;
2595 }
2596 }
2597 return error;
2598 }
2599
2600 void *
2601 in6_domifattach(struct ifnet *ifp)
2602 {
2603 struct in6_ifextra *ext;
2604
2605 ext = (struct in6_ifextra *)malloc(sizeof(*ext), M_IFADDR, M_WAITOK);
2606 bzero(ext, sizeof(*ext));
2607
2608 ext->in6_ifstat = (struct in6_ifstat *)malloc(sizeof(struct in6_ifstat),
2609 M_IFADDR, M_WAITOK);
2610 bzero(ext->in6_ifstat, sizeof(*ext->in6_ifstat));
2611
2612 ext->icmp6_ifstat =
2613 (struct icmp6_ifstat *)malloc(sizeof(struct icmp6_ifstat),
2614 M_IFADDR, M_WAITOK);
2615 bzero(ext->icmp6_ifstat, sizeof(*ext->icmp6_ifstat));
2616
2617 ext->nd_ifinfo = nd6_ifattach(ifp);
2618 ext->scope6_id = scope6_ifattach(ifp);
2619 ext->lltable = lltable_init(ifp, AF_INET6);
2620 if (ext->lltable != NULL) {
2621 ext->lltable->llt_free = in6_lltable_free;
2622 ext->lltable->llt_prefix_free = in6_lltable_prefix_free;
2623 ext->lltable->llt_lookup = in6_lltable_lookup;
2624 ext->lltable->llt_dump = in6_lltable_dump;
2625 }
2626
2627 ext->mld_ifinfo = mld_domifattach(ifp);
2628
2629 return ext;
2630 }
2631
2632 void
2633 in6_domifdetach(struct ifnet *ifp, void *aux)
2634 {
2635 struct in6_ifextra *ext = (struct in6_ifextra *)aux;
2636
2637 mld_domifdetach(ifp);
2638 scope6_ifdetach(ext->scope6_id);
2639 nd6_ifdetach(ext->nd_ifinfo);
2640 lltable_free(ext->lltable);
2641 free(ext->in6_ifstat, M_IFADDR);
2642 free(ext->icmp6_ifstat, M_IFADDR);
2643 free(ext, M_IFADDR);
2644 }
2645
2646 /*
2647 * Convert sockaddr_in6 to sockaddr_in. Original sockaddr_in6 must be
2648 * v4 mapped addr or v4 compat addr
2649 */
2650 void
2651 in6_sin6_2_sin(struct sockaddr_in *sin, struct sockaddr_in6 *sin6)
2652 {
2653
2654 bzero(sin, sizeof(*sin));
2655 sin->sin_len = sizeof(struct sockaddr_in);
2656 sin->sin_family = AF_INET;
2657 sin->sin_port = sin6->sin6_port;
2658 sin->sin_addr.s_addr = sin6->sin6_addr.s6_addr32[3];
2659 }
2660
2661 /* Convert sockaddr_in to sockaddr_in6 in v4 mapped addr format. */
2662 void
2663 in6_sin_2_v4mapsin6(struct sockaddr_in *sin, struct sockaddr_in6 *sin6)
2664 {
2665 bzero(sin6, sizeof(*sin6));
2666 sin6->sin6_len = sizeof(struct sockaddr_in6);
2667 sin6->sin6_family = AF_INET6;
2668 sin6->sin6_port = sin->sin_port;
2669 sin6->sin6_addr.s6_addr32[0] = 0;
2670 sin6->sin6_addr.s6_addr32[1] = 0;
2671 sin6->sin6_addr.s6_addr32[2] = IPV6_ADDR_INT32_SMP;
2672 sin6->sin6_addr.s6_addr32[3] = sin->sin_addr.s_addr;
2673 }
2674
2675 /* Convert sockaddr_in6 into sockaddr_in. */
2676 void
2677 in6_sin6_2_sin_in_sock(struct sockaddr *nam)
2678 {
2679 struct sockaddr_in *sin_p;
2680 struct sockaddr_in6 sin6;
2681
2682 /*
2683 * Save original sockaddr_in6 addr and convert it
2684 * to sockaddr_in.
2685 */
2686 sin6 = *(struct sockaddr_in6 *)nam;
2687 sin_p = (struct sockaddr_in *)nam;
2688 in6_sin6_2_sin(sin_p, &sin6);
2689 }
2690
2691 /* Convert sockaddr_in into sockaddr_in6 in v4 mapped addr format. */
2692 void
2693 in6_sin_2_v4mapsin6_in_sock(struct sockaddr **nam)
2694 {
2695 struct sockaddr_in *sin_p;
2696 struct sockaddr_in6 *sin6_p;
2697
2698 sin6_p = malloc(sizeof *sin6_p, M_SONAME,
2699 M_WAITOK);
2700 sin_p = (struct sockaddr_in *)*nam;
2701 in6_sin_2_v4mapsin6(sin_p, sin6_p);
2702 free(*nam, M_SONAME);
2703 *nam = (struct sockaddr *)sin6_p;
2704 }
Cache object: 42179bd85db760686bb07fd47813c0b0
|