1 /*
2 * Copyright (c) 2009 Bruce Simpson.
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 3. The name of the author may not be used to endorse or promote
14 * products derived from this software without specific prior written
15 * permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 */
29
30 /*
31 * IPv6 multicast socket, group, and socket option processing module.
32 * Normative references: RFC 2292, RFC 3492, RFC 3542, RFC 3678, RFC 3810.
33 */
34
35 #include <sys/cdefs.h>
36 __FBSDID("$FreeBSD: releng/8.4/sys/netinet6/in6_mcast.c 254632 2013-08-22 00:51:56Z delphij $");
37
38 #include "opt_inet6.h"
39
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/kernel.h>
43 #include <sys/malloc.h>
44 #include <sys/mbuf.h>
45 #include <sys/protosw.h>
46 #include <sys/socket.h>
47 #include <sys/socketvar.h>
48 #include <sys/protosw.h>
49 #include <sys/sysctl.h>
50 #include <sys/priv.h>
51 #include <sys/ktr.h>
52 #include <sys/tree.h>
53
54 #include <net/if.h>
55 #include <net/if_dl.h>
56 #include <net/route.h>
57 #include <net/vnet.h>
58
59 #include <netinet/in.h>
60 #include <netinet/in_var.h>
61 #include <netinet6/in6_var.h>
62 #include <netinet/ip6.h>
63 #include <netinet/icmp6.h>
64 #include <netinet6/ip6_var.h>
65 #include <netinet/in_pcb.h>
66 #include <netinet/tcp_var.h>
67 #include <netinet6/nd6.h>
68 #include <netinet6/mld6_var.h>
69 #include <netinet6/scope6_var.h>
70
71 #ifndef KTR_MLD
72 #define KTR_MLD KTR_INET6
73 #endif
74
75 #ifndef __SOCKUNION_DECLARED
76 union sockunion {
77 struct sockaddr_storage ss;
78 struct sockaddr sa;
79 struct sockaddr_dl sdl;
80 struct sockaddr_in6 sin6;
81 };
82 typedef union sockunion sockunion_t;
83 #define __SOCKUNION_DECLARED
84 #endif /* __SOCKUNION_DECLARED */
85
86 static MALLOC_DEFINE(M_IN6MFILTER, "in6_mfilter",
87 "IPv6 multicast PCB-layer source filter");
88 static MALLOC_DEFINE(M_IP6MADDR, "in6_multi", "IPv6 multicast group");
89 static MALLOC_DEFINE(M_IP6MOPTS, "ip6_moptions", "IPv6 multicast options");
90 static MALLOC_DEFINE(M_IP6MSOURCE, "ip6_msource",
91 "IPv6 multicast MLD-layer source filter");
92
93 RB_GENERATE(ip6_msource_tree, ip6_msource, im6s_link, ip6_msource_cmp);
94
95 /*
96 * Locking:
97 * - Lock order is: Giant, INP_WLOCK, IN6_MULTI_LOCK, MLD_LOCK, IF_ADDR_LOCK.
98 * - The IF_ADDR_LOCK is implicitly taken by in6m_lookup() earlier, however
99 * it can be taken by code in net/if.c also.
100 * - ip6_moptions and in6_mfilter are covered by the INP_WLOCK.
101 *
102 * struct in6_multi is covered by IN6_MULTI_LOCK. There isn't strictly
103 * any need for in6_multi itself to be virtualized -- it is bound to an ifp
104 * anyway no matter what happens.
105 */
106 struct mtx in6_multi_mtx;
107 MTX_SYSINIT(in6_multi_mtx, &in6_multi_mtx, "in6_multi_mtx", MTX_DEF);
108
109 static void im6f_commit(struct in6_mfilter *);
110 static int im6f_get_source(struct in6_mfilter *imf,
111 const struct sockaddr_in6 *psin,
112 struct in6_msource **);
113 static struct in6_msource *
114 im6f_graft(struct in6_mfilter *, const uint8_t,
115 const struct sockaddr_in6 *);
116 static void im6f_leave(struct in6_mfilter *);
117 static int im6f_prune(struct in6_mfilter *, const struct sockaddr_in6 *);
118 static void im6f_purge(struct in6_mfilter *);
119 static void im6f_rollback(struct in6_mfilter *);
120 static void im6f_reap(struct in6_mfilter *);
121 static int im6o_grow(struct ip6_moptions *);
122 static size_t im6o_match_group(const struct ip6_moptions *,
123 const struct ifnet *, const struct sockaddr *);
124 static struct in6_msource *
125 im6o_match_source(const struct ip6_moptions *, const size_t,
126 const struct sockaddr *);
127 static void im6s_merge(struct ip6_msource *ims,
128 const struct in6_msource *lims, const int rollback);
129 static int in6_mc_get(struct ifnet *, const struct in6_addr *,
130 struct in6_multi **);
131 static int in6m_get_source(struct in6_multi *inm,
132 const struct in6_addr *addr, const int noalloc,
133 struct ip6_msource **pims);
134 static int in6m_is_ifp_detached(const struct in6_multi *);
135 static int in6m_merge(struct in6_multi *, /*const*/ struct in6_mfilter *);
136 static void in6m_purge(struct in6_multi *);
137 static void in6m_reap(struct in6_multi *);
138 static struct ip6_moptions *
139 in6p_findmoptions(struct inpcb *);
140 static int in6p_get_source_filters(struct inpcb *, struct sockopt *);
141 static int in6p_join_group(struct inpcb *, struct sockopt *);
142 static int in6p_leave_group(struct inpcb *, struct sockopt *);
143 static struct ifnet *
144 in6p_lookup_mcast_ifp(const struct inpcb *,
145 const struct sockaddr_in6 *);
146 static int in6p_block_unblock_source(struct inpcb *, struct sockopt *);
147 static int in6p_set_multicast_if(struct inpcb *, struct sockopt *);
148 static int in6p_set_source_filters(struct inpcb *, struct sockopt *);
149 static int sysctl_ip6_mcast_filters(SYSCTL_HANDLER_ARGS);
150
151 SYSCTL_DECL(_net_inet6_ip6); /* XXX Not in any common header. */
152
153 SYSCTL_NODE(_net_inet6_ip6, OID_AUTO, mcast, CTLFLAG_RW, 0, "IPv6 multicast");
154
155 static u_long in6_mcast_maxgrpsrc = IPV6_MAX_GROUP_SRC_FILTER;
156 SYSCTL_ULONG(_net_inet6_ip6_mcast, OID_AUTO, maxgrpsrc,
157 CTLFLAG_RW | CTLFLAG_TUN, &in6_mcast_maxgrpsrc, 0,
158 "Max source filters per group");
159 TUNABLE_ULONG("net.inet6.ip6.mcast.maxgrpsrc", &in6_mcast_maxgrpsrc);
160
161 static u_long in6_mcast_maxsocksrc = IPV6_MAX_SOCK_SRC_FILTER;
162 SYSCTL_ULONG(_net_inet6_ip6_mcast, OID_AUTO, maxsocksrc,
163 CTLFLAG_RW | CTLFLAG_TUN, &in6_mcast_maxsocksrc, 0,
164 "Max source filters per socket");
165 TUNABLE_ULONG("net.inet6.ip6.mcast.maxsocksrc", &in6_mcast_maxsocksrc);
166
167 /* TODO Virtualize this switch. */
168 int in6_mcast_loop = IPV6_DEFAULT_MULTICAST_LOOP;
169 SYSCTL_INT(_net_inet6_ip6_mcast, OID_AUTO, loop, CTLFLAG_RW | CTLFLAG_TUN,
170 &in6_mcast_loop, 0, "Loopback multicast datagrams by default");
171 TUNABLE_INT("net.inet6.ip6.mcast.loop", &in6_mcast_loop);
172
173 SYSCTL_NODE(_net_inet6_ip6_mcast, OID_AUTO, filters,
174 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_ip6_mcast_filters,
175 "Per-interface stack-wide source filters");
176
177 /*
178 * Inline function which wraps assertions for a valid ifp.
179 * The ifnet layer will set the ifma's ifp pointer to NULL if the ifp
180 * is detached.
181 */
182 static int __inline
183 in6m_is_ifp_detached(const struct in6_multi *inm)
184 {
185 struct ifnet *ifp;
186
187 KASSERT(inm->in6m_ifma != NULL, ("%s: no ifma", __func__));
188 ifp = inm->in6m_ifma->ifma_ifp;
189 if (ifp != NULL) {
190 /*
191 * Sanity check that network-layer notion of ifp is the
192 * same as that of link-layer.
193 */
194 KASSERT(inm->in6m_ifp == ifp, ("%s: bad ifp", __func__));
195 }
196
197 return (ifp == NULL);
198 }
199
200 /*
201 * Initialize an in6_mfilter structure to a known state at t0, t1
202 * with an empty source filter list.
203 */
204 static __inline void
205 im6f_init(struct in6_mfilter *imf, const int st0, const int st1)
206 {
207 memset(imf, 0, sizeof(struct in6_mfilter));
208 RB_INIT(&imf->im6f_sources);
209 imf->im6f_st[0] = st0;
210 imf->im6f_st[1] = st1;
211 }
212
213 /*
214 * Resize the ip6_moptions vector to the next power-of-two minus 1.
215 * May be called with locks held; do not sleep.
216 */
217 static int
218 im6o_grow(struct ip6_moptions *imo)
219 {
220 struct in6_multi **nmships;
221 struct in6_multi **omships;
222 struct in6_mfilter *nmfilters;
223 struct in6_mfilter *omfilters;
224 size_t idx;
225 size_t newmax;
226 size_t oldmax;
227
228 nmships = NULL;
229 nmfilters = NULL;
230 omships = imo->im6o_membership;
231 omfilters = imo->im6o_mfilters;
232 oldmax = imo->im6o_max_memberships;
233 newmax = ((oldmax + 1) * 2) - 1;
234
235 if (newmax <= IPV6_MAX_MEMBERSHIPS) {
236 nmships = (struct in6_multi **)realloc(omships,
237 sizeof(struct in6_multi *) * newmax, M_IP6MOPTS, M_NOWAIT);
238 nmfilters = (struct in6_mfilter *)realloc(omfilters,
239 sizeof(struct in6_mfilter) * newmax, M_IN6MFILTER,
240 M_NOWAIT);
241 if (nmships != NULL && nmfilters != NULL) {
242 /* Initialize newly allocated source filter heads. */
243 for (idx = oldmax; idx < newmax; idx++) {
244 im6f_init(&nmfilters[idx], MCAST_UNDEFINED,
245 MCAST_EXCLUDE);
246 }
247 imo->im6o_max_memberships = newmax;
248 imo->im6o_membership = nmships;
249 imo->im6o_mfilters = nmfilters;
250 }
251 }
252
253 if (nmships == NULL || nmfilters == NULL) {
254 if (nmships != NULL)
255 free(nmships, M_IP6MOPTS);
256 if (nmfilters != NULL)
257 free(nmfilters, M_IN6MFILTER);
258 return (ETOOMANYREFS);
259 }
260
261 return (0);
262 }
263
264 /*
265 * Find an IPv6 multicast group entry for this ip6_moptions instance
266 * which matches the specified group, and optionally an interface.
267 * Return its index into the array, or -1 if not found.
268 */
269 static size_t
270 im6o_match_group(const struct ip6_moptions *imo, const struct ifnet *ifp,
271 const struct sockaddr *group)
272 {
273 const struct sockaddr_in6 *gsin6;
274 struct in6_multi **pinm;
275 int idx;
276 int nmships;
277
278 gsin6 = (const struct sockaddr_in6 *)group;
279
280 /* The im6o_membership array may be lazy allocated. */
281 if (imo->im6o_membership == NULL || imo->im6o_num_memberships == 0)
282 return (-1);
283
284 nmships = imo->im6o_num_memberships;
285 pinm = &imo->im6o_membership[0];
286 for (idx = 0; idx < nmships; idx++, pinm++) {
287 if (*pinm == NULL)
288 continue;
289 if ((ifp == NULL || ((*pinm)->in6m_ifp == ifp)) &&
290 IN6_ARE_ADDR_EQUAL(&(*pinm)->in6m_addr,
291 &gsin6->sin6_addr)) {
292 break;
293 }
294 }
295 if (idx >= nmships)
296 idx = -1;
297
298 return (idx);
299 }
300
301 /*
302 * Find an IPv6 multicast source entry for this imo which matches
303 * the given group index for this socket, and source address.
304 *
305 * XXX TODO: The scope ID, if present in src, is stripped before
306 * any comparison. We SHOULD enforce scope/zone checks where the source
307 * filter entry has a link scope.
308 *
309 * NOTE: This does not check if the entry is in-mode, merely if
310 * it exists, which may not be the desired behaviour.
311 */
312 static struct in6_msource *
313 im6o_match_source(const struct ip6_moptions *imo, const size_t gidx,
314 const struct sockaddr *src)
315 {
316 struct ip6_msource find;
317 struct in6_mfilter *imf;
318 struct ip6_msource *ims;
319 const sockunion_t *psa;
320
321 KASSERT(src->sa_family == AF_INET6, ("%s: !AF_INET6", __func__));
322 KASSERT(gidx != -1 && gidx < imo->im6o_num_memberships,
323 ("%s: invalid index %d\n", __func__, (int)gidx));
324
325 /* The im6o_mfilters array may be lazy allocated. */
326 if (imo->im6o_mfilters == NULL)
327 return (NULL);
328 imf = &imo->im6o_mfilters[gidx];
329
330 psa = (const sockunion_t *)src;
331 find.im6s_addr = psa->sin6.sin6_addr;
332 in6_clearscope(&find.im6s_addr); /* XXX */
333 ims = RB_FIND(ip6_msource_tree, &imf->im6f_sources, &find);
334
335 return ((struct in6_msource *)ims);
336 }
337
338 /*
339 * Perform filtering for multicast datagrams on a socket by group and source.
340 *
341 * Returns 0 if a datagram should be allowed through, or various error codes
342 * if the socket was not a member of the group, or the source was muted, etc.
343 */
344 int
345 im6o_mc_filter(const struct ip6_moptions *imo, const struct ifnet *ifp,
346 const struct sockaddr *group, const struct sockaddr *src)
347 {
348 size_t gidx;
349 struct in6_msource *ims;
350 int mode;
351
352 KASSERT(ifp != NULL, ("%s: null ifp", __func__));
353
354 gidx = im6o_match_group(imo, ifp, group);
355 if (gidx == -1)
356 return (MCAST_NOTGMEMBER);
357
358 /*
359 * Check if the source was included in an (S,G) join.
360 * Allow reception on exclusive memberships by default,
361 * reject reception on inclusive memberships by default.
362 * Exclude source only if an in-mode exclude filter exists.
363 * Include source only if an in-mode include filter exists.
364 * NOTE: We are comparing group state here at MLD t1 (now)
365 * with socket-layer t0 (since last downcall).
366 */
367 mode = imo->im6o_mfilters[gidx].im6f_st[1];
368 ims = im6o_match_source(imo, gidx, src);
369
370 if ((ims == NULL && mode == MCAST_INCLUDE) ||
371 (ims != NULL && ims->im6sl_st[0] != mode))
372 return (MCAST_NOTSMEMBER);
373
374 return (MCAST_PASS);
375 }
376
377 /*
378 * Find and return a reference to an in6_multi record for (ifp, group),
379 * and bump its reference count.
380 * If one does not exist, try to allocate it, and update link-layer multicast
381 * filters on ifp to listen for group.
382 * Assumes the IN6_MULTI lock is held across the call.
383 * Return 0 if successful, otherwise return an appropriate error code.
384 */
385 static int
386 in6_mc_get(struct ifnet *ifp, const struct in6_addr *group,
387 struct in6_multi **pinm)
388 {
389 struct sockaddr_in6 gsin6;
390 struct ifmultiaddr *ifma;
391 struct in6_multi *inm;
392 int error;
393
394 error = 0;
395
396 /*
397 * XXX: Accesses to ifma_protospec must be covered by IF_ADDR_LOCK;
398 * if_addmulti() takes this mutex itself, so we must drop and
399 * re-acquire around the call.
400 */
401 IN6_MULTI_LOCK_ASSERT();
402 IF_ADDR_WLOCK(ifp);
403
404 inm = in6m_lookup_locked(ifp, group);
405 if (inm != NULL) {
406 /*
407 * If we already joined this group, just bump the
408 * refcount and return it.
409 */
410 KASSERT(inm->in6m_refcount >= 1,
411 ("%s: bad refcount %d", __func__, inm->in6m_refcount));
412 ++inm->in6m_refcount;
413 *pinm = inm;
414 goto out_locked;
415 }
416
417 memset(&gsin6, 0, sizeof(gsin6));
418 gsin6.sin6_family = AF_INET6;
419 gsin6.sin6_len = sizeof(struct sockaddr_in6);
420 gsin6.sin6_addr = *group;
421
422 /*
423 * Check if a link-layer group is already associated
424 * with this network-layer group on the given ifnet.
425 */
426 IF_ADDR_WUNLOCK(ifp);
427 error = if_addmulti(ifp, (struct sockaddr *)&gsin6, &ifma);
428 if (error != 0)
429 return (error);
430 IF_ADDR_WLOCK(ifp);
431
432 /*
433 * If something other than netinet6 is occupying the link-layer
434 * group, print a meaningful error message and back out of
435 * the allocation.
436 * Otherwise, bump the refcount on the existing network-layer
437 * group association and return it.
438 */
439 if (ifma->ifma_protospec != NULL) {
440 inm = (struct in6_multi *)ifma->ifma_protospec;
441 #ifdef INVARIANTS
442 KASSERT(ifma->ifma_addr != NULL, ("%s: no ifma_addr",
443 __func__));
444 KASSERT(ifma->ifma_addr->sa_family == AF_INET6,
445 ("%s: ifma not AF_INET6", __func__));
446 KASSERT(inm != NULL, ("%s: no ifma_protospec", __func__));
447 if (inm->in6m_ifma != ifma || inm->in6m_ifp != ifp ||
448 !IN6_ARE_ADDR_EQUAL(&inm->in6m_addr, group))
449 panic("%s: ifma %p is inconsistent with %p (%p)",
450 __func__, ifma, inm, group);
451 #endif
452 ++inm->in6m_refcount;
453 *pinm = inm;
454 goto out_locked;
455 }
456
457 IF_ADDR_WLOCK_ASSERT(ifp);
458
459 /*
460 * A new in6_multi record is needed; allocate and initialize it.
461 * We DO NOT perform an MLD join as the in6_ layer may need to
462 * push an initial source list down to MLD to support SSM.
463 *
464 * The initial source filter state is INCLUDE, {} as per the RFC.
465 * Pending state-changes per group are subject to a bounds check.
466 */
467 inm = malloc(sizeof(*inm), M_IP6MADDR, M_NOWAIT | M_ZERO);
468 if (inm == NULL) {
469 if_delmulti_ifma(ifma);
470 error = ENOMEM;
471 goto out_locked;
472 }
473 inm->in6m_addr = *group;
474 inm->in6m_ifp = ifp;
475 inm->in6m_mli = MLD_IFINFO(ifp);
476 inm->in6m_ifma = ifma;
477 inm->in6m_refcount = 1;
478 inm->in6m_state = MLD_NOT_MEMBER;
479 IFQ_SET_MAXLEN(&inm->in6m_scq, MLD_MAX_STATE_CHANGES);
480
481 inm->in6m_st[0].iss_fmode = MCAST_UNDEFINED;
482 inm->in6m_st[1].iss_fmode = MCAST_UNDEFINED;
483 RB_INIT(&inm->in6m_srcs);
484
485 ifma->ifma_protospec = inm;
486 *pinm = inm;
487
488 out_locked:
489 IF_ADDR_WUNLOCK(ifp);
490 return (error);
491 }
492
493 /*
494 * Drop a reference to an in6_multi record.
495 *
496 * If the refcount drops to 0, free the in6_multi record and
497 * delete the underlying link-layer membership.
498 */
499 void
500 in6m_release_locked(struct in6_multi *inm)
501 {
502 struct ifmultiaddr *ifma;
503
504 IN6_MULTI_LOCK_ASSERT();
505
506 CTR2(KTR_MLD, "%s: refcount is %d", __func__, inm->in6m_refcount);
507
508 if (--inm->in6m_refcount > 0) {
509 CTR2(KTR_MLD, "%s: refcount is now %d", __func__,
510 inm->in6m_refcount);
511 return;
512 }
513
514 CTR2(KTR_MLD, "%s: freeing inm %p", __func__, inm);
515
516 ifma = inm->in6m_ifma;
517
518 /* XXX this access is not covered by IF_ADDR_LOCK */
519 CTR2(KTR_MLD, "%s: purging ifma %p", __func__, ifma);
520 KASSERT(ifma->ifma_protospec == inm,
521 ("%s: ifma_protospec != inm", __func__));
522 ifma->ifma_protospec = NULL;
523
524 in6m_purge(inm);
525
526 free(inm, M_IP6MADDR);
527
528 if_delmulti_ifma(ifma);
529 }
530
531 /*
532 * Clear recorded source entries for a group.
533 * Used by the MLD code. Caller must hold the IN6_MULTI lock.
534 * FIXME: Should reap.
535 */
536 void
537 in6m_clear_recorded(struct in6_multi *inm)
538 {
539 struct ip6_msource *ims;
540
541 IN6_MULTI_LOCK_ASSERT();
542
543 RB_FOREACH(ims, ip6_msource_tree, &inm->in6m_srcs) {
544 if (ims->im6s_stp) {
545 ims->im6s_stp = 0;
546 --inm->in6m_st[1].iss_rec;
547 }
548 }
549 KASSERT(inm->in6m_st[1].iss_rec == 0,
550 ("%s: iss_rec %d not 0", __func__, inm->in6m_st[1].iss_rec));
551 }
552
553 /*
554 * Record a source as pending for a Source-Group MLDv2 query.
555 * This lives here as it modifies the shared tree.
556 *
557 * inm is the group descriptor.
558 * naddr is the address of the source to record in network-byte order.
559 *
560 * If the net.inet6.mld.sgalloc sysctl is non-zero, we will
561 * lazy-allocate a source node in response to an SG query.
562 * Otherwise, no allocation is performed. This saves some memory
563 * with the trade-off that the source will not be reported to the
564 * router if joined in the window between the query response and
565 * the group actually being joined on the local host.
566 *
567 * VIMAGE: XXX: Currently the mld_sgalloc feature has been removed.
568 * This turns off the allocation of a recorded source entry if
569 * the group has not been joined.
570 *
571 * Return 0 if the source didn't exist or was already marked as recorded.
572 * Return 1 if the source was marked as recorded by this function.
573 * Return <0 if any error occured (negated errno code).
574 */
575 int
576 in6m_record_source(struct in6_multi *inm, const struct in6_addr *addr)
577 {
578 struct ip6_msource find;
579 struct ip6_msource *ims, *nims;
580
581 IN6_MULTI_LOCK_ASSERT();
582
583 find.im6s_addr = *addr;
584 ims = RB_FIND(ip6_msource_tree, &inm->in6m_srcs, &find);
585 if (ims && ims->im6s_stp)
586 return (0);
587 if (ims == NULL) {
588 if (inm->in6m_nsrc == in6_mcast_maxgrpsrc)
589 return (-ENOSPC);
590 nims = malloc(sizeof(struct ip6_msource), M_IP6MSOURCE,
591 M_NOWAIT | M_ZERO);
592 if (nims == NULL)
593 return (-ENOMEM);
594 nims->im6s_addr = find.im6s_addr;
595 RB_INSERT(ip6_msource_tree, &inm->in6m_srcs, nims);
596 ++inm->in6m_nsrc;
597 ims = nims;
598 }
599
600 /*
601 * Mark the source as recorded and update the recorded
602 * source count.
603 */
604 ++ims->im6s_stp;
605 ++inm->in6m_st[1].iss_rec;
606
607 return (1);
608 }
609
610 /*
611 * Return a pointer to an in6_msource owned by an in6_mfilter,
612 * given its source address.
613 * Lazy-allocate if needed. If this is a new entry its filter state is
614 * undefined at t0.
615 *
616 * imf is the filter set being modified.
617 * addr is the source address.
618 *
619 * SMPng: May be called with locks held; malloc must not block.
620 */
621 static int
622 im6f_get_source(struct in6_mfilter *imf, const struct sockaddr_in6 *psin,
623 struct in6_msource **plims)
624 {
625 struct ip6_msource find;
626 struct ip6_msource *ims, *nims;
627 struct in6_msource *lims;
628 int error;
629
630 error = 0;
631 ims = NULL;
632 lims = NULL;
633
634 find.im6s_addr = psin->sin6_addr;
635 ims = RB_FIND(ip6_msource_tree, &imf->im6f_sources, &find);
636 lims = (struct in6_msource *)ims;
637 if (lims == NULL) {
638 if (imf->im6f_nsrc == in6_mcast_maxsocksrc)
639 return (ENOSPC);
640 nims = malloc(sizeof(struct in6_msource), M_IN6MFILTER,
641 M_NOWAIT | M_ZERO);
642 if (nims == NULL)
643 return (ENOMEM);
644 lims = (struct in6_msource *)nims;
645 lims->im6s_addr = find.im6s_addr;
646 lims->im6sl_st[0] = MCAST_UNDEFINED;
647 RB_INSERT(ip6_msource_tree, &imf->im6f_sources, nims);
648 ++imf->im6f_nsrc;
649 }
650
651 *plims = lims;
652
653 return (error);
654 }
655
656 /*
657 * Graft a source entry into an existing socket-layer filter set,
658 * maintaining any required invariants and checking allocations.
659 *
660 * The source is marked as being in the new filter mode at t1.
661 *
662 * Return the pointer to the new node, otherwise return NULL.
663 */
664 static struct in6_msource *
665 im6f_graft(struct in6_mfilter *imf, const uint8_t st1,
666 const struct sockaddr_in6 *psin)
667 {
668 struct ip6_msource *nims;
669 struct in6_msource *lims;
670
671 nims = malloc(sizeof(struct in6_msource), M_IN6MFILTER,
672 M_NOWAIT | M_ZERO);
673 if (nims == NULL)
674 return (NULL);
675 lims = (struct in6_msource *)nims;
676 lims->im6s_addr = psin->sin6_addr;
677 lims->im6sl_st[0] = MCAST_UNDEFINED;
678 lims->im6sl_st[1] = st1;
679 RB_INSERT(ip6_msource_tree, &imf->im6f_sources, nims);
680 ++imf->im6f_nsrc;
681
682 return (lims);
683 }
684
685 /*
686 * Prune a source entry from an existing socket-layer filter set,
687 * maintaining any required invariants and checking allocations.
688 *
689 * The source is marked as being left at t1, it is not freed.
690 *
691 * Return 0 if no error occurred, otherwise return an errno value.
692 */
693 static int
694 im6f_prune(struct in6_mfilter *imf, const struct sockaddr_in6 *psin)
695 {
696 struct ip6_msource find;
697 struct ip6_msource *ims;
698 struct in6_msource *lims;
699
700 find.im6s_addr = psin->sin6_addr;
701 ims = RB_FIND(ip6_msource_tree, &imf->im6f_sources, &find);
702 if (ims == NULL)
703 return (ENOENT);
704 lims = (struct in6_msource *)ims;
705 lims->im6sl_st[1] = MCAST_UNDEFINED;
706 return (0);
707 }
708
709 /*
710 * Revert socket-layer filter set deltas at t1 to t0 state.
711 */
712 static void
713 im6f_rollback(struct in6_mfilter *imf)
714 {
715 struct ip6_msource *ims, *tims;
716 struct in6_msource *lims;
717
718 RB_FOREACH_SAFE(ims, ip6_msource_tree, &imf->im6f_sources, tims) {
719 lims = (struct in6_msource *)ims;
720 if (lims->im6sl_st[0] == lims->im6sl_st[1]) {
721 /* no change at t1 */
722 continue;
723 } else if (lims->im6sl_st[0] != MCAST_UNDEFINED) {
724 /* revert change to existing source at t1 */
725 lims->im6sl_st[1] = lims->im6sl_st[0];
726 } else {
727 /* revert source added t1 */
728 CTR2(KTR_MLD, "%s: free ims %p", __func__, ims);
729 RB_REMOVE(ip6_msource_tree, &imf->im6f_sources, ims);
730 free(ims, M_IN6MFILTER);
731 imf->im6f_nsrc--;
732 }
733 }
734 imf->im6f_st[1] = imf->im6f_st[0];
735 }
736
737 /*
738 * Mark socket-layer filter set as INCLUDE {} at t1.
739 */
740 static void
741 im6f_leave(struct in6_mfilter *imf)
742 {
743 struct ip6_msource *ims;
744 struct in6_msource *lims;
745
746 RB_FOREACH(ims, ip6_msource_tree, &imf->im6f_sources) {
747 lims = (struct in6_msource *)ims;
748 lims->im6sl_st[1] = MCAST_UNDEFINED;
749 }
750 imf->im6f_st[1] = MCAST_INCLUDE;
751 }
752
753 /*
754 * Mark socket-layer filter set deltas as committed.
755 */
756 static void
757 im6f_commit(struct in6_mfilter *imf)
758 {
759 struct ip6_msource *ims;
760 struct in6_msource *lims;
761
762 RB_FOREACH(ims, ip6_msource_tree, &imf->im6f_sources) {
763 lims = (struct in6_msource *)ims;
764 lims->im6sl_st[0] = lims->im6sl_st[1];
765 }
766 imf->im6f_st[0] = imf->im6f_st[1];
767 }
768
769 /*
770 * Reap unreferenced sources from socket-layer filter set.
771 */
772 static void
773 im6f_reap(struct in6_mfilter *imf)
774 {
775 struct ip6_msource *ims, *tims;
776 struct in6_msource *lims;
777
778 RB_FOREACH_SAFE(ims, ip6_msource_tree, &imf->im6f_sources, tims) {
779 lims = (struct in6_msource *)ims;
780 if ((lims->im6sl_st[0] == MCAST_UNDEFINED) &&
781 (lims->im6sl_st[1] == MCAST_UNDEFINED)) {
782 CTR2(KTR_MLD, "%s: free lims %p", __func__, ims);
783 RB_REMOVE(ip6_msource_tree, &imf->im6f_sources, ims);
784 free(ims, M_IN6MFILTER);
785 imf->im6f_nsrc--;
786 }
787 }
788 }
789
790 /*
791 * Purge socket-layer filter set.
792 */
793 static void
794 im6f_purge(struct in6_mfilter *imf)
795 {
796 struct ip6_msource *ims, *tims;
797
798 RB_FOREACH_SAFE(ims, ip6_msource_tree, &imf->im6f_sources, tims) {
799 CTR2(KTR_MLD, "%s: free ims %p", __func__, ims);
800 RB_REMOVE(ip6_msource_tree, &imf->im6f_sources, ims);
801 free(ims, M_IN6MFILTER);
802 imf->im6f_nsrc--;
803 }
804 imf->im6f_st[0] = imf->im6f_st[1] = MCAST_UNDEFINED;
805 KASSERT(RB_EMPTY(&imf->im6f_sources),
806 ("%s: im6f_sources not empty", __func__));
807 }
808
809 /*
810 * Look up a source filter entry for a multicast group.
811 *
812 * inm is the group descriptor to work with.
813 * addr is the IPv6 address to look up.
814 * noalloc may be non-zero to suppress allocation of sources.
815 * *pims will be set to the address of the retrieved or allocated source.
816 *
817 * SMPng: NOTE: may be called with locks held.
818 * Return 0 if successful, otherwise return a non-zero error code.
819 */
820 static int
821 in6m_get_source(struct in6_multi *inm, const struct in6_addr *addr,
822 const int noalloc, struct ip6_msource **pims)
823 {
824 struct ip6_msource find;
825 struct ip6_msource *ims, *nims;
826 #ifdef KTR
827 char ip6tbuf[INET6_ADDRSTRLEN];
828 #endif
829
830 find.im6s_addr = *addr;
831 ims = RB_FIND(ip6_msource_tree, &inm->in6m_srcs, &find);
832 if (ims == NULL && !noalloc) {
833 if (inm->in6m_nsrc == in6_mcast_maxgrpsrc)
834 return (ENOSPC);
835 nims = malloc(sizeof(struct ip6_msource), M_IP6MSOURCE,
836 M_NOWAIT | M_ZERO);
837 if (nims == NULL)
838 return (ENOMEM);
839 nims->im6s_addr = *addr;
840 RB_INSERT(ip6_msource_tree, &inm->in6m_srcs, nims);
841 ++inm->in6m_nsrc;
842 ims = nims;
843 CTR3(KTR_MLD, "%s: allocated %s as %p", __func__,
844 ip6_sprintf(ip6tbuf, addr), ims);
845 }
846
847 *pims = ims;
848 return (0);
849 }
850
851 /*
852 * Merge socket-layer source into MLD-layer source.
853 * If rollback is non-zero, perform the inverse of the merge.
854 */
855 static void
856 im6s_merge(struct ip6_msource *ims, const struct in6_msource *lims,
857 const int rollback)
858 {
859 int n = rollback ? -1 : 1;
860 #ifdef KTR
861 char ip6tbuf[INET6_ADDRSTRLEN];
862
863 ip6_sprintf(ip6tbuf, &lims->im6s_addr);
864 #endif
865
866 if (lims->im6sl_st[0] == MCAST_EXCLUDE) {
867 CTR3(KTR_MLD, "%s: t1 ex -= %d on %s", __func__, n, ip6tbuf);
868 ims->im6s_st[1].ex -= n;
869 } else if (lims->im6sl_st[0] == MCAST_INCLUDE) {
870 CTR3(KTR_MLD, "%s: t1 in -= %d on %s", __func__, n, ip6tbuf);
871 ims->im6s_st[1].in -= n;
872 }
873
874 if (lims->im6sl_st[1] == MCAST_EXCLUDE) {
875 CTR3(KTR_MLD, "%s: t1 ex += %d on %s", __func__, n, ip6tbuf);
876 ims->im6s_st[1].ex += n;
877 } else if (lims->im6sl_st[1] == MCAST_INCLUDE) {
878 CTR3(KTR_MLD, "%s: t1 in += %d on %s", __func__, n, ip6tbuf);
879 ims->im6s_st[1].in += n;
880 }
881 }
882
883 /*
884 * Atomically update the global in6_multi state, when a membership's
885 * filter list is being updated in any way.
886 *
887 * imf is the per-inpcb-membership group filter pointer.
888 * A fake imf may be passed for in-kernel consumers.
889 *
890 * XXX This is a candidate for a set-symmetric-difference style loop
891 * which would eliminate the repeated lookup from root of ims nodes,
892 * as they share the same key space.
893 *
894 * If any error occurred this function will back out of refcounts
895 * and return a non-zero value.
896 */
897 static int
898 in6m_merge(struct in6_multi *inm, /*const*/ struct in6_mfilter *imf)
899 {
900 struct ip6_msource *ims, *nims;
901 struct in6_msource *lims;
902 int schanged, error;
903 int nsrc0, nsrc1;
904
905 schanged = 0;
906 error = 0;
907 nsrc1 = nsrc0 = 0;
908
909 /*
910 * Update the source filters first, as this may fail.
911 * Maintain count of in-mode filters at t0, t1. These are
912 * used to work out if we transition into ASM mode or not.
913 * Maintain a count of source filters whose state was
914 * actually modified by this operation.
915 */
916 RB_FOREACH(ims, ip6_msource_tree, &imf->im6f_sources) {
917 lims = (struct in6_msource *)ims;
918 if (lims->im6sl_st[0] == imf->im6f_st[0]) nsrc0++;
919 if (lims->im6sl_st[1] == imf->im6f_st[1]) nsrc1++;
920 if (lims->im6sl_st[0] == lims->im6sl_st[1]) continue;
921 error = in6m_get_source(inm, &lims->im6s_addr, 0, &nims);
922 ++schanged;
923 if (error)
924 break;
925 im6s_merge(nims, lims, 0);
926 }
927 if (error) {
928 struct ip6_msource *bims;
929
930 RB_FOREACH_REVERSE_FROM(ims, ip6_msource_tree, nims) {
931 lims = (struct in6_msource *)ims;
932 if (lims->im6sl_st[0] == lims->im6sl_st[1])
933 continue;
934 (void)in6m_get_source(inm, &lims->im6s_addr, 1, &bims);
935 if (bims == NULL)
936 continue;
937 im6s_merge(bims, lims, 1);
938 }
939 goto out_reap;
940 }
941
942 CTR3(KTR_MLD, "%s: imf filters in-mode: %d at t0, %d at t1",
943 __func__, nsrc0, nsrc1);
944
945 /* Handle transition between INCLUDE {n} and INCLUDE {} on socket. */
946 if (imf->im6f_st[0] == imf->im6f_st[1] &&
947 imf->im6f_st[1] == MCAST_INCLUDE) {
948 if (nsrc1 == 0) {
949 CTR1(KTR_MLD, "%s: --in on inm at t1", __func__);
950 --inm->in6m_st[1].iss_in;
951 }
952 }
953
954 /* Handle filter mode transition on socket. */
955 if (imf->im6f_st[0] != imf->im6f_st[1]) {
956 CTR3(KTR_MLD, "%s: imf transition %d to %d",
957 __func__, imf->im6f_st[0], imf->im6f_st[1]);
958
959 if (imf->im6f_st[0] == MCAST_EXCLUDE) {
960 CTR1(KTR_MLD, "%s: --ex on inm at t1", __func__);
961 --inm->in6m_st[1].iss_ex;
962 } else if (imf->im6f_st[0] == MCAST_INCLUDE) {
963 CTR1(KTR_MLD, "%s: --in on inm at t1", __func__);
964 --inm->in6m_st[1].iss_in;
965 }
966
967 if (imf->im6f_st[1] == MCAST_EXCLUDE) {
968 CTR1(KTR_MLD, "%s: ex++ on inm at t1", __func__);
969 inm->in6m_st[1].iss_ex++;
970 } else if (imf->im6f_st[1] == MCAST_INCLUDE && nsrc1 > 0) {
971 CTR1(KTR_MLD, "%s: in++ on inm at t1", __func__);
972 inm->in6m_st[1].iss_in++;
973 }
974 }
975
976 /*
977 * Track inm filter state in terms of listener counts.
978 * If there are any exclusive listeners, stack-wide
979 * membership is exclusive.
980 * Otherwise, if only inclusive listeners, stack-wide is inclusive.
981 * If no listeners remain, state is undefined at t1,
982 * and the MLD lifecycle for this group should finish.
983 */
984 if (inm->in6m_st[1].iss_ex > 0) {
985 CTR1(KTR_MLD, "%s: transition to EX", __func__);
986 inm->in6m_st[1].iss_fmode = MCAST_EXCLUDE;
987 } else if (inm->in6m_st[1].iss_in > 0) {
988 CTR1(KTR_MLD, "%s: transition to IN", __func__);
989 inm->in6m_st[1].iss_fmode = MCAST_INCLUDE;
990 } else {
991 CTR1(KTR_MLD, "%s: transition to UNDEF", __func__);
992 inm->in6m_st[1].iss_fmode = MCAST_UNDEFINED;
993 }
994
995 /* Decrement ASM listener count on transition out of ASM mode. */
996 if (imf->im6f_st[0] == MCAST_EXCLUDE && nsrc0 == 0) {
997 if ((imf->im6f_st[1] != MCAST_EXCLUDE) ||
998 (imf->im6f_st[1] == MCAST_EXCLUDE && nsrc1 > 0))
999 CTR1(KTR_MLD, "%s: --asm on inm at t1", __func__);
1000 --inm->in6m_st[1].iss_asm;
1001 }
1002
1003 /* Increment ASM listener count on transition to ASM mode. */
1004 if (imf->im6f_st[1] == MCAST_EXCLUDE && nsrc1 == 0) {
1005 CTR1(KTR_MLD, "%s: asm++ on inm at t1", __func__);
1006 inm->in6m_st[1].iss_asm++;
1007 }
1008
1009 CTR3(KTR_MLD, "%s: merged imf %p to inm %p", __func__, imf, inm);
1010 in6m_print(inm);
1011
1012 out_reap:
1013 if (schanged > 0) {
1014 CTR1(KTR_MLD, "%s: sources changed; reaping", __func__);
1015 in6m_reap(inm);
1016 }
1017 return (error);
1018 }
1019
1020 /*
1021 * Mark an in6_multi's filter set deltas as committed.
1022 * Called by MLD after a state change has been enqueued.
1023 */
1024 void
1025 in6m_commit(struct in6_multi *inm)
1026 {
1027 struct ip6_msource *ims;
1028
1029 CTR2(KTR_MLD, "%s: commit inm %p", __func__, inm);
1030 CTR1(KTR_MLD, "%s: pre commit:", __func__);
1031 in6m_print(inm);
1032
1033 RB_FOREACH(ims, ip6_msource_tree, &inm->in6m_srcs) {
1034 ims->im6s_st[0] = ims->im6s_st[1];
1035 }
1036 inm->in6m_st[0] = inm->in6m_st[1];
1037 }
1038
1039 /*
1040 * Reap unreferenced nodes from an in6_multi's filter set.
1041 */
1042 static void
1043 in6m_reap(struct in6_multi *inm)
1044 {
1045 struct ip6_msource *ims, *tims;
1046
1047 RB_FOREACH_SAFE(ims, ip6_msource_tree, &inm->in6m_srcs, tims) {
1048 if (ims->im6s_st[0].ex > 0 || ims->im6s_st[0].in > 0 ||
1049 ims->im6s_st[1].ex > 0 || ims->im6s_st[1].in > 0 ||
1050 ims->im6s_stp != 0)
1051 continue;
1052 CTR2(KTR_MLD, "%s: free ims %p", __func__, ims);
1053 RB_REMOVE(ip6_msource_tree, &inm->in6m_srcs, ims);
1054 free(ims, M_IP6MSOURCE);
1055 inm->in6m_nsrc--;
1056 }
1057 }
1058
1059 /*
1060 * Purge all source nodes from an in6_multi's filter set.
1061 */
1062 static void
1063 in6m_purge(struct in6_multi *inm)
1064 {
1065 struct ip6_msource *ims, *tims;
1066
1067 RB_FOREACH_SAFE(ims, ip6_msource_tree, &inm->in6m_srcs, tims) {
1068 CTR2(KTR_MLD, "%s: free ims %p", __func__, ims);
1069 RB_REMOVE(ip6_msource_tree, &inm->in6m_srcs, ims);
1070 free(ims, M_IP6MSOURCE);
1071 inm->in6m_nsrc--;
1072 }
1073 }
1074
1075 /*
1076 * Join a multicast address w/o sources.
1077 * KAME compatibility entry point.
1078 *
1079 * SMPng: Assume no mc locks held by caller.
1080 */
1081 struct in6_multi_mship *
1082 in6_joingroup(struct ifnet *ifp, struct in6_addr *mcaddr,
1083 int *errorp, int delay)
1084 {
1085 struct in6_multi_mship *imm;
1086 int error;
1087
1088 imm = malloc(sizeof(*imm), M_IP6MADDR, M_NOWAIT);
1089 if (imm == NULL) {
1090 *errorp = ENOBUFS;
1091 return (NULL);
1092 }
1093
1094 delay = (delay * PR_FASTHZ) / hz;
1095
1096 error = in6_mc_join(ifp, mcaddr, NULL, &imm->i6mm_maddr, delay);
1097 if (error) {
1098 *errorp = error;
1099 free(imm, M_IP6MADDR);
1100 return (NULL);
1101 }
1102
1103 return (imm);
1104 }
1105
1106 /*
1107 * Leave a multicast address w/o sources.
1108 * KAME compatibility entry point.
1109 *
1110 * SMPng: Assume no mc locks held by caller.
1111 */
1112 int
1113 in6_leavegroup(struct in6_multi_mship *imm)
1114 {
1115
1116 if (imm->i6mm_maddr != NULL)
1117 in6_mc_leave(imm->i6mm_maddr, NULL);
1118 free(imm, M_IP6MADDR);
1119 return 0;
1120 }
1121
1122 /*
1123 * Join a multicast group; unlocked entry point.
1124 *
1125 * SMPng: XXX: in6_mc_join() is called from in6_control() when upper
1126 * locks are not held. Fortunately, ifp is unlikely to have been detached
1127 * at this point, so we assume it's OK to recurse.
1128 */
1129 int
1130 in6_mc_join(struct ifnet *ifp, const struct in6_addr *mcaddr,
1131 /*const*/ struct in6_mfilter *imf, struct in6_multi **pinm,
1132 const int delay)
1133 {
1134 int error;
1135
1136 IN6_MULTI_LOCK();
1137 error = in6_mc_join_locked(ifp, mcaddr, imf, pinm, delay);
1138 IN6_MULTI_UNLOCK();
1139
1140 return (error);
1141 }
1142
1143 /*
1144 * Join a multicast group; real entry point.
1145 *
1146 * Only preserves atomicity at inm level.
1147 * NOTE: imf argument cannot be const due to sys/tree.h limitations.
1148 *
1149 * If the MLD downcall fails, the group is not joined, and an error
1150 * code is returned.
1151 */
1152 int
1153 in6_mc_join_locked(struct ifnet *ifp, const struct in6_addr *mcaddr,
1154 /*const*/ struct in6_mfilter *imf, struct in6_multi **pinm,
1155 const int delay)
1156 {
1157 struct in6_mfilter timf;
1158 struct in6_multi *inm;
1159 int error;
1160 #ifdef KTR
1161 char ip6tbuf[INET6_ADDRSTRLEN];
1162 #endif
1163
1164 #ifdef INVARIANTS
1165 /*
1166 * Sanity: Check scope zone ID was set for ifp, if and
1167 * only if group is scoped to an interface.
1168 */
1169 KASSERT(IN6_IS_ADDR_MULTICAST(mcaddr),
1170 ("%s: not a multicast address", __func__));
1171 if (IN6_IS_ADDR_MC_LINKLOCAL(mcaddr) ||
1172 IN6_IS_ADDR_MC_INTFACELOCAL(mcaddr)) {
1173 KASSERT(mcaddr->s6_addr16[1] != 0,
1174 ("%s: scope zone ID not set", __func__));
1175 }
1176 #endif
1177
1178 IN6_MULTI_LOCK_ASSERT();
1179
1180 CTR4(KTR_MLD, "%s: join %s on %p(%s))", __func__,
1181 ip6_sprintf(ip6tbuf, mcaddr), ifp, ifp->if_xname);
1182
1183 error = 0;
1184 inm = NULL;
1185
1186 /*
1187 * If no imf was specified (i.e. kernel consumer),
1188 * fake one up and assume it is an ASM join.
1189 */
1190 if (imf == NULL) {
1191 im6f_init(&timf, MCAST_UNDEFINED, MCAST_EXCLUDE);
1192 imf = &timf;
1193 }
1194
1195 error = in6_mc_get(ifp, mcaddr, &inm);
1196 if (error) {
1197 CTR1(KTR_MLD, "%s: in6_mc_get() failure", __func__);
1198 return (error);
1199 }
1200
1201 CTR1(KTR_MLD, "%s: merge inm state", __func__);
1202 error = in6m_merge(inm, imf);
1203 if (error) {
1204 CTR1(KTR_MLD, "%s: failed to merge inm state", __func__);
1205 goto out_in6m_release;
1206 }
1207
1208 CTR1(KTR_MLD, "%s: doing mld downcall", __func__);
1209 error = mld_change_state(inm, delay);
1210 if (error) {
1211 CTR1(KTR_MLD, "%s: failed to update source", __func__);
1212 goto out_in6m_release;
1213 }
1214
1215 out_in6m_release:
1216 if (error) {
1217 CTR2(KTR_MLD, "%s: dropping ref on %p", __func__, inm);
1218 in6m_release_locked(inm);
1219 } else {
1220 *pinm = inm;
1221 }
1222
1223 return (error);
1224 }
1225
1226 /*
1227 * Leave a multicast group; unlocked entry point.
1228 */
1229 int
1230 in6_mc_leave(struct in6_multi *inm, /*const*/ struct in6_mfilter *imf)
1231 {
1232 struct ifnet *ifp;
1233 int error;
1234
1235 ifp = inm->in6m_ifp;
1236
1237 IN6_MULTI_LOCK();
1238 error = in6_mc_leave_locked(inm, imf);
1239 IN6_MULTI_UNLOCK();
1240
1241 return (error);
1242 }
1243
1244 /*
1245 * Leave a multicast group; real entry point.
1246 * All source filters will be expunged.
1247 *
1248 * Only preserves atomicity at inm level.
1249 *
1250 * Holding the write lock for the INP which contains imf
1251 * is highly advisable. We can't assert for it as imf does not
1252 * contain a back-pointer to the owning inp.
1253 *
1254 * Note: This is not the same as in6m_release(*) as this function also
1255 * makes a state change downcall into MLD.
1256 */
1257 int
1258 in6_mc_leave_locked(struct in6_multi *inm, /*const*/ struct in6_mfilter *imf)
1259 {
1260 struct in6_mfilter timf;
1261 int error;
1262 #ifdef KTR
1263 char ip6tbuf[INET6_ADDRSTRLEN];
1264 #endif
1265
1266 error = 0;
1267
1268 IN6_MULTI_LOCK_ASSERT();
1269
1270 CTR5(KTR_MLD, "%s: leave inm %p, %s/%s, imf %p", __func__,
1271 inm, ip6_sprintf(ip6tbuf, &inm->in6m_addr),
1272 (in6m_is_ifp_detached(inm) ? "null" : inm->in6m_ifp->if_xname),
1273 imf);
1274
1275 /*
1276 * If no imf was specified (i.e. kernel consumer),
1277 * fake one up and assume it is an ASM join.
1278 */
1279 if (imf == NULL) {
1280 im6f_init(&timf, MCAST_EXCLUDE, MCAST_UNDEFINED);
1281 imf = &timf;
1282 }
1283
1284 /*
1285 * Begin state merge transaction at MLD layer.
1286 *
1287 * As this particular invocation should not cause any memory
1288 * to be allocated, and there is no opportunity to roll back
1289 * the transaction, it MUST NOT fail.
1290 */
1291 CTR1(KTR_MLD, "%s: merge inm state", __func__);
1292 error = in6m_merge(inm, imf);
1293 KASSERT(error == 0, ("%s: failed to merge inm state", __func__));
1294
1295 CTR1(KTR_MLD, "%s: doing mld downcall", __func__);
1296 error = mld_change_state(inm, 0);
1297 if (error)
1298 CTR1(KTR_MLD, "%s: failed mld downcall", __func__);
1299
1300 CTR2(KTR_MLD, "%s: dropping ref on %p", __func__, inm);
1301 in6m_release_locked(inm);
1302
1303 return (error);
1304 }
1305
1306 /*
1307 * Block or unblock an ASM multicast source on an inpcb.
1308 * This implements the delta-based API described in RFC 3678.
1309 *
1310 * The delta-based API applies only to exclusive-mode memberships.
1311 * An MLD downcall will be performed.
1312 *
1313 * SMPng: NOTE: Must take Giant as a join may create a new ifma.
1314 *
1315 * Return 0 if successful, otherwise return an appropriate error code.
1316 */
1317 static int
1318 in6p_block_unblock_source(struct inpcb *inp, struct sockopt *sopt)
1319 {
1320 struct group_source_req gsr;
1321 sockunion_t *gsa, *ssa;
1322 struct ifnet *ifp;
1323 struct in6_mfilter *imf;
1324 struct ip6_moptions *imo;
1325 struct in6_msource *ims;
1326 struct in6_multi *inm;
1327 size_t idx;
1328 uint16_t fmode;
1329 int error, doblock;
1330 #ifdef KTR
1331 char ip6tbuf[INET6_ADDRSTRLEN];
1332 #endif
1333
1334 ifp = NULL;
1335 error = 0;
1336 doblock = 0;
1337
1338 memset(&gsr, 0, sizeof(struct group_source_req));
1339 gsa = (sockunion_t *)&gsr.gsr_group;
1340 ssa = (sockunion_t *)&gsr.gsr_source;
1341
1342 switch (sopt->sopt_name) {
1343 case MCAST_BLOCK_SOURCE:
1344 case MCAST_UNBLOCK_SOURCE:
1345 error = sooptcopyin(sopt, &gsr,
1346 sizeof(struct group_source_req),
1347 sizeof(struct group_source_req));
1348 if (error)
1349 return (error);
1350
1351 if (gsa->sin6.sin6_family != AF_INET6 ||
1352 gsa->sin6.sin6_len != sizeof(struct sockaddr_in6))
1353 return (EINVAL);
1354
1355 if (ssa->sin6.sin6_family != AF_INET6 ||
1356 ssa->sin6.sin6_len != sizeof(struct sockaddr_in6))
1357 return (EINVAL);
1358
1359 if (gsr.gsr_interface == 0 || V_if_index < gsr.gsr_interface)
1360 return (EADDRNOTAVAIL);
1361
1362 ifp = ifnet_byindex(gsr.gsr_interface);
1363
1364 if (sopt->sopt_name == MCAST_BLOCK_SOURCE)
1365 doblock = 1;
1366 break;
1367
1368 default:
1369 CTR2(KTR_MLD, "%s: unknown sopt_name %d",
1370 __func__, sopt->sopt_name);
1371 return (EOPNOTSUPP);
1372 break;
1373 }
1374
1375 if (!IN6_IS_ADDR_MULTICAST(&gsa->sin6.sin6_addr))
1376 return (EINVAL);
1377
1378 (void)in6_setscope(&gsa->sin6.sin6_addr, ifp, NULL);
1379
1380 /*
1381 * Check if we are actually a member of this group.
1382 */
1383 imo = in6p_findmoptions(inp);
1384 idx = im6o_match_group(imo, ifp, &gsa->sa);
1385 if (idx == -1 || imo->im6o_mfilters == NULL) {
1386 error = EADDRNOTAVAIL;
1387 goto out_in6p_locked;
1388 }
1389
1390 KASSERT(imo->im6o_mfilters != NULL,
1391 ("%s: im6o_mfilters not allocated", __func__));
1392 imf = &imo->im6o_mfilters[idx];
1393 inm = imo->im6o_membership[idx];
1394
1395 /*
1396 * Attempting to use the delta-based API on an
1397 * non exclusive-mode membership is an error.
1398 */
1399 fmode = imf->im6f_st[0];
1400 if (fmode != MCAST_EXCLUDE) {
1401 error = EINVAL;
1402 goto out_in6p_locked;
1403 }
1404
1405 /*
1406 * Deal with error cases up-front:
1407 * Asked to block, but already blocked; or
1408 * Asked to unblock, but nothing to unblock.
1409 * If adding a new block entry, allocate it.
1410 */
1411 ims = im6o_match_source(imo, idx, &ssa->sa);
1412 if ((ims != NULL && doblock) || (ims == NULL && !doblock)) {
1413 CTR3(KTR_MLD, "%s: source %s %spresent", __func__,
1414 ip6_sprintf(ip6tbuf, &ssa->sin6.sin6_addr),
1415 doblock ? "" : "not ");
1416 error = EADDRNOTAVAIL;
1417 goto out_in6p_locked;
1418 }
1419
1420 INP_WLOCK_ASSERT(inp);
1421
1422 /*
1423 * Begin state merge transaction at socket layer.
1424 */
1425 if (doblock) {
1426 CTR2(KTR_MLD, "%s: %s source", __func__, "block");
1427 ims = im6f_graft(imf, fmode, &ssa->sin6);
1428 if (ims == NULL)
1429 error = ENOMEM;
1430 } else {
1431 CTR2(KTR_MLD, "%s: %s source", __func__, "allow");
1432 error = im6f_prune(imf, &ssa->sin6);
1433 }
1434
1435 if (error) {
1436 CTR1(KTR_MLD, "%s: merge imf state failed", __func__);
1437 goto out_im6f_rollback;
1438 }
1439
1440 /*
1441 * Begin state merge transaction at MLD layer.
1442 */
1443 IN6_MULTI_LOCK();
1444
1445 CTR1(KTR_MLD, "%s: merge inm state", __func__);
1446 error = in6m_merge(inm, imf);
1447 if (error) {
1448 CTR1(KTR_MLD, "%s: failed to merge inm state", __func__);
1449 goto out_im6f_rollback;
1450 }
1451
1452 CTR1(KTR_MLD, "%s: doing mld downcall", __func__);
1453 error = mld_change_state(inm, 0);
1454 if (error)
1455 CTR1(KTR_MLD, "%s: failed mld downcall", __func__);
1456
1457 IN6_MULTI_UNLOCK();
1458
1459 out_im6f_rollback:
1460 if (error)
1461 im6f_rollback(imf);
1462 else
1463 im6f_commit(imf);
1464
1465 im6f_reap(imf);
1466
1467 out_in6p_locked:
1468 INP_WUNLOCK(inp);
1469 return (error);
1470 }
1471
1472 /*
1473 * Given an inpcb, return its multicast options structure pointer. Accepts
1474 * an unlocked inpcb pointer, but will return it locked. May sleep.
1475 *
1476 * SMPng: NOTE: Potentially calls malloc(M_WAITOK) with Giant held.
1477 * SMPng: NOTE: Returns with the INP write lock held.
1478 */
1479 static struct ip6_moptions *
1480 in6p_findmoptions(struct inpcb *inp)
1481 {
1482 struct ip6_moptions *imo;
1483 struct in6_multi **immp;
1484 struct in6_mfilter *imfp;
1485 size_t idx;
1486
1487 INP_WLOCK(inp);
1488 if (inp->in6p_moptions != NULL)
1489 return (inp->in6p_moptions);
1490
1491 INP_WUNLOCK(inp);
1492
1493 imo = malloc(sizeof(*imo), M_IP6MOPTS, M_WAITOK);
1494 immp = malloc(sizeof(*immp) * IPV6_MIN_MEMBERSHIPS, M_IP6MOPTS,
1495 M_WAITOK | M_ZERO);
1496 imfp = malloc(sizeof(struct in6_mfilter) * IPV6_MIN_MEMBERSHIPS,
1497 M_IN6MFILTER, M_WAITOK);
1498
1499 imo->im6o_multicast_ifp = NULL;
1500 imo->im6o_multicast_hlim = V_ip6_defmcasthlim;
1501 imo->im6o_multicast_loop = in6_mcast_loop;
1502 imo->im6o_num_memberships = 0;
1503 imo->im6o_max_memberships = IPV6_MIN_MEMBERSHIPS;
1504 imo->im6o_membership = immp;
1505
1506 /* Initialize per-group source filters. */
1507 for (idx = 0; idx < IPV6_MIN_MEMBERSHIPS; idx++)
1508 im6f_init(&imfp[idx], MCAST_UNDEFINED, MCAST_EXCLUDE);
1509 imo->im6o_mfilters = imfp;
1510
1511 INP_WLOCK(inp);
1512 if (inp->in6p_moptions != NULL) {
1513 free(imfp, M_IN6MFILTER);
1514 free(immp, M_IP6MOPTS);
1515 free(imo, M_IP6MOPTS);
1516 return (inp->in6p_moptions);
1517 }
1518 inp->in6p_moptions = imo;
1519 return (imo);
1520 }
1521
1522 /*
1523 * Discard the IPv6 multicast options (and source filters).
1524 *
1525 * SMPng: NOTE: assumes INP write lock is held.
1526 */
1527 void
1528 ip6_freemoptions(struct ip6_moptions *imo)
1529 {
1530 struct in6_mfilter *imf;
1531 size_t idx, nmships;
1532
1533 KASSERT(imo != NULL, ("%s: ip6_moptions is NULL", __func__));
1534
1535 nmships = imo->im6o_num_memberships;
1536 for (idx = 0; idx < nmships; ++idx) {
1537 imf = imo->im6o_mfilters ? &imo->im6o_mfilters[idx] : NULL;
1538 if (imf)
1539 im6f_leave(imf);
1540 /* XXX this will thrash the lock(s) */
1541 (void)in6_mc_leave(imo->im6o_membership[idx], imf);
1542 if (imf)
1543 im6f_purge(imf);
1544 }
1545
1546 if (imo->im6o_mfilters)
1547 free(imo->im6o_mfilters, M_IN6MFILTER);
1548 free(imo->im6o_membership, M_IP6MOPTS);
1549 free(imo, M_IP6MOPTS);
1550 }
1551
1552 /*
1553 * Atomically get source filters on a socket for an IPv6 multicast group.
1554 * Called with INP lock held; returns with lock released.
1555 */
1556 static int
1557 in6p_get_source_filters(struct inpcb *inp, struct sockopt *sopt)
1558 {
1559 struct __msfilterreq msfr;
1560 sockunion_t *gsa;
1561 struct ifnet *ifp;
1562 struct ip6_moptions *imo;
1563 struct in6_mfilter *imf;
1564 struct ip6_msource *ims;
1565 struct in6_msource *lims;
1566 struct sockaddr_in6 *psin;
1567 struct sockaddr_storage *ptss;
1568 struct sockaddr_storage *tss;
1569 int error;
1570 size_t idx, nsrcs, ncsrcs;
1571
1572 INP_WLOCK_ASSERT(inp);
1573
1574 imo = inp->in6p_moptions;
1575 KASSERT(imo != NULL, ("%s: null ip6_moptions", __func__));
1576
1577 INP_WUNLOCK(inp);
1578
1579 error = sooptcopyin(sopt, &msfr, sizeof(struct __msfilterreq),
1580 sizeof(struct __msfilterreq));
1581 if (error)
1582 return (error);
1583
1584 if (msfr.msfr_group.ss_family != AF_INET6 ||
1585 msfr.msfr_group.ss_len != sizeof(struct sockaddr_in6))
1586 return (EINVAL);
1587
1588 gsa = (sockunion_t *)&msfr.msfr_group;
1589 if (!IN6_IS_ADDR_MULTICAST(&gsa->sin6.sin6_addr))
1590 return (EINVAL);
1591
1592 if (msfr.msfr_ifindex == 0 || V_if_index < msfr.msfr_ifindex)
1593 return (EADDRNOTAVAIL);
1594 ifp = ifnet_byindex(msfr.msfr_ifindex);
1595 if (ifp == NULL)
1596 return (EADDRNOTAVAIL);
1597 (void)in6_setscope(&gsa->sin6.sin6_addr, ifp, NULL);
1598
1599 INP_WLOCK(inp);
1600
1601 /*
1602 * Lookup group on the socket.
1603 */
1604 idx = im6o_match_group(imo, ifp, &gsa->sa);
1605 if (idx == -1 || imo->im6o_mfilters == NULL) {
1606 INP_WUNLOCK(inp);
1607 return (EADDRNOTAVAIL);
1608 }
1609 imf = &imo->im6o_mfilters[idx];
1610
1611 /*
1612 * Ignore memberships which are in limbo.
1613 */
1614 if (imf->im6f_st[1] == MCAST_UNDEFINED) {
1615 INP_WUNLOCK(inp);
1616 return (EAGAIN);
1617 }
1618 msfr.msfr_fmode = imf->im6f_st[1];
1619
1620 /*
1621 * If the user specified a buffer, copy out the source filter
1622 * entries to userland gracefully.
1623 * We only copy out the number of entries which userland
1624 * has asked for, but we always tell userland how big the
1625 * buffer really needs to be.
1626 */
1627 if (msfr.msfr_nsrcs > in6_mcast_maxsocksrc)
1628 msfr.msfr_nsrcs = in6_mcast_maxsocksrc;
1629 tss = NULL;
1630 if (msfr.msfr_srcs != NULL && msfr.msfr_nsrcs > 0) {
1631 tss = malloc(sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs,
1632 M_TEMP, M_NOWAIT | M_ZERO);
1633 if (tss == NULL) {
1634 INP_WUNLOCK(inp);
1635 return (ENOBUFS);
1636 }
1637 }
1638
1639 /*
1640 * Count number of sources in-mode at t0.
1641 * If buffer space exists and remains, copy out source entries.
1642 */
1643 nsrcs = msfr.msfr_nsrcs;
1644 ncsrcs = 0;
1645 ptss = tss;
1646 RB_FOREACH(ims, ip6_msource_tree, &imf->im6f_sources) {
1647 lims = (struct in6_msource *)ims;
1648 if (lims->im6sl_st[0] == MCAST_UNDEFINED ||
1649 lims->im6sl_st[0] != imf->im6f_st[0])
1650 continue;
1651 ++ncsrcs;
1652 if (tss != NULL && nsrcs > 0) {
1653 psin = (struct sockaddr_in6 *)ptss;
1654 psin->sin6_family = AF_INET6;
1655 psin->sin6_len = sizeof(struct sockaddr_in6);
1656 psin->sin6_addr = lims->im6s_addr;
1657 psin->sin6_port = 0;
1658 --nsrcs;
1659 ++ptss;
1660 }
1661 }
1662
1663 INP_WUNLOCK(inp);
1664
1665 if (tss != NULL) {
1666 error = copyout(tss, msfr.msfr_srcs,
1667 sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs);
1668 free(tss, M_TEMP);
1669 if (error)
1670 return (error);
1671 }
1672
1673 msfr.msfr_nsrcs = ncsrcs;
1674 error = sooptcopyout(sopt, &msfr, sizeof(struct __msfilterreq));
1675
1676 return (error);
1677 }
1678
1679 /*
1680 * Return the IP multicast options in response to user getsockopt().
1681 */
1682 int
1683 ip6_getmoptions(struct inpcb *inp, struct sockopt *sopt)
1684 {
1685 struct ip6_moptions *im6o;
1686 int error;
1687 u_int optval;
1688
1689 INP_WLOCK(inp);
1690 im6o = inp->in6p_moptions;
1691 /*
1692 * If socket is neither of type SOCK_RAW or SOCK_DGRAM,
1693 * or is a divert socket, reject it.
1694 */
1695 if (inp->inp_socket->so_proto->pr_protocol == IPPROTO_DIVERT ||
1696 (inp->inp_socket->so_proto->pr_type != SOCK_RAW &&
1697 inp->inp_socket->so_proto->pr_type != SOCK_DGRAM)) {
1698 INP_WUNLOCK(inp);
1699 return (EOPNOTSUPP);
1700 }
1701
1702 error = 0;
1703 switch (sopt->sopt_name) {
1704 case IPV6_MULTICAST_IF:
1705 if (im6o == NULL || im6o->im6o_multicast_ifp == NULL) {
1706 optval = 0;
1707 } else {
1708 optval = im6o->im6o_multicast_ifp->if_index;
1709 }
1710 INP_WUNLOCK(inp);
1711 error = sooptcopyout(sopt, &optval, sizeof(u_int));
1712 break;
1713
1714 case IPV6_MULTICAST_HOPS:
1715 if (im6o == NULL)
1716 optval = V_ip6_defmcasthlim;
1717 else
1718 optval = im6o->im6o_multicast_hlim;
1719 INP_WUNLOCK(inp);
1720 error = sooptcopyout(sopt, &optval, sizeof(u_int));
1721 break;
1722
1723 case IPV6_MULTICAST_LOOP:
1724 if (im6o == NULL)
1725 optval = in6_mcast_loop; /* XXX VIMAGE */
1726 else
1727 optval = im6o->im6o_multicast_loop;
1728 INP_WUNLOCK(inp);
1729 error = sooptcopyout(sopt, &optval, sizeof(u_int));
1730 break;
1731
1732 case IPV6_MSFILTER:
1733 if (im6o == NULL) {
1734 error = EADDRNOTAVAIL;
1735 INP_WUNLOCK(inp);
1736 } else {
1737 error = in6p_get_source_filters(inp, sopt);
1738 }
1739 break;
1740
1741 default:
1742 INP_WUNLOCK(inp);
1743 error = ENOPROTOOPT;
1744 break;
1745 }
1746
1747 INP_UNLOCK_ASSERT(inp);
1748
1749 return (error);
1750 }
1751
1752 /*
1753 * Look up the ifnet to use for a multicast group membership,
1754 * given the address of an IPv6 group.
1755 *
1756 * This routine exists to support legacy IPv6 multicast applications.
1757 *
1758 * If inp is non-NULL, use this socket's current FIB number for any
1759 * required FIB lookup. Look up the group address in the unicast FIB,
1760 * and use its ifp; usually, this points to the default next-hop.
1761 * If the FIB lookup fails, return NULL.
1762 *
1763 * FUTURE: Support multiple forwarding tables for IPv6.
1764 *
1765 * Returns NULL if no ifp could be found.
1766 */
1767 static struct ifnet *
1768 in6p_lookup_mcast_ifp(const struct inpcb *in6p,
1769 const struct sockaddr_in6 *gsin6)
1770 {
1771 struct route_in6 ro6;
1772 struct ifnet *ifp;
1773
1774 KASSERT(in6p->inp_vflag & INP_IPV6,
1775 ("%s: not INP_IPV6 inpcb", __func__));
1776 KASSERT(gsin6->sin6_family == AF_INET6,
1777 ("%s: not AF_INET6 group", __func__));
1778 KASSERT(IN6_IS_ADDR_MULTICAST(&gsin6->sin6_addr),
1779 ("%s: not multicast", __func__));
1780
1781 ifp = NULL;
1782 memset(&ro6, 0, sizeof(struct route_in6));
1783 memcpy(&ro6.ro_dst, gsin6, sizeof(struct sockaddr_in6));
1784 rtalloc_ign_fib((struct route *)&ro6, 0,
1785 in6p ? in6p->inp_inc.inc_fibnum : RT_DEFAULT_FIB);
1786 if (ro6.ro_rt != NULL) {
1787 ifp = ro6.ro_rt->rt_ifp;
1788 KASSERT(ifp != NULL, ("%s: null ifp", __func__));
1789 RTFREE(ro6.ro_rt);
1790 }
1791
1792 return (ifp);
1793 }
1794
1795 /*
1796 * Join an IPv6 multicast group, possibly with a source.
1797 *
1798 * FIXME: The KAME use of the unspecified address (::)
1799 * to join *all* multicast groups is currently unsupported.
1800 */
1801 static int
1802 in6p_join_group(struct inpcb *inp, struct sockopt *sopt)
1803 {
1804 struct group_source_req gsr;
1805 sockunion_t *gsa, *ssa;
1806 struct ifnet *ifp;
1807 struct in6_mfilter *imf;
1808 struct ip6_moptions *imo;
1809 struct in6_multi *inm;
1810 struct in6_msource *lims;
1811 size_t idx;
1812 int error, is_new;
1813
1814 ifp = NULL;
1815 imf = NULL;
1816 lims = NULL;
1817 error = 0;
1818 is_new = 0;
1819
1820 memset(&gsr, 0, sizeof(struct group_source_req));
1821 gsa = (sockunion_t *)&gsr.gsr_group;
1822 gsa->ss.ss_family = AF_UNSPEC;
1823 ssa = (sockunion_t *)&gsr.gsr_source;
1824 ssa->ss.ss_family = AF_UNSPEC;
1825
1826 /*
1827 * Chew everything into struct group_source_req.
1828 * Overwrite the port field if present, as the sockaddr
1829 * being copied in may be matched with a binary comparison.
1830 * Ignore passed-in scope ID.
1831 */
1832 switch (sopt->sopt_name) {
1833 case IPV6_JOIN_GROUP: {
1834 struct ipv6_mreq mreq;
1835
1836 error = sooptcopyin(sopt, &mreq, sizeof(struct ipv6_mreq),
1837 sizeof(struct ipv6_mreq));
1838 if (error)
1839 return (error);
1840
1841 gsa->sin6.sin6_family = AF_INET6;
1842 gsa->sin6.sin6_len = sizeof(struct sockaddr_in6);
1843 gsa->sin6.sin6_addr = mreq.ipv6mr_multiaddr;
1844
1845 if (mreq.ipv6mr_interface == 0) {
1846 ifp = in6p_lookup_mcast_ifp(inp, &gsa->sin6);
1847 } else {
1848 if (mreq.ipv6mr_interface < 0 ||
1849 V_if_index < mreq.ipv6mr_interface)
1850 return (EADDRNOTAVAIL);
1851 ifp = ifnet_byindex(mreq.ipv6mr_interface);
1852 }
1853 CTR3(KTR_MLD, "%s: ipv6mr_interface = %d, ifp = %p",
1854 __func__, mreq.ipv6mr_interface, ifp);
1855 } break;
1856
1857 case MCAST_JOIN_GROUP:
1858 case MCAST_JOIN_SOURCE_GROUP:
1859 if (sopt->sopt_name == MCAST_JOIN_GROUP) {
1860 error = sooptcopyin(sopt, &gsr,
1861 sizeof(struct group_req),
1862 sizeof(struct group_req));
1863 } else if (sopt->sopt_name == MCAST_JOIN_SOURCE_GROUP) {
1864 error = sooptcopyin(sopt, &gsr,
1865 sizeof(struct group_source_req),
1866 sizeof(struct group_source_req));
1867 }
1868 if (error)
1869 return (error);
1870
1871 if (gsa->sin6.sin6_family != AF_INET6 ||
1872 gsa->sin6.sin6_len != sizeof(struct sockaddr_in6))
1873 return (EINVAL);
1874
1875 if (sopt->sopt_name == MCAST_JOIN_SOURCE_GROUP) {
1876 if (ssa->sin6.sin6_family != AF_INET6 ||
1877 ssa->sin6.sin6_len != sizeof(struct sockaddr_in6))
1878 return (EINVAL);
1879 if (IN6_IS_ADDR_MULTICAST(&ssa->sin6.sin6_addr))
1880 return (EINVAL);
1881 /*
1882 * TODO: Validate embedded scope ID in source
1883 * list entry against passed-in ifp, if and only
1884 * if source list filter entry is iface or node local.
1885 */
1886 in6_clearscope(&ssa->sin6.sin6_addr);
1887 ssa->sin6.sin6_port = 0;
1888 ssa->sin6.sin6_scope_id = 0;
1889 }
1890
1891 if (gsr.gsr_interface == 0 || V_if_index < gsr.gsr_interface)
1892 return (EADDRNOTAVAIL);
1893 ifp = ifnet_byindex(gsr.gsr_interface);
1894 break;
1895
1896 default:
1897 CTR2(KTR_MLD, "%s: unknown sopt_name %d",
1898 __func__, sopt->sopt_name);
1899 return (EOPNOTSUPP);
1900 break;
1901 }
1902
1903 if (!IN6_IS_ADDR_MULTICAST(&gsa->sin6.sin6_addr))
1904 return (EINVAL);
1905
1906 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0)
1907 return (EADDRNOTAVAIL);
1908
1909 gsa->sin6.sin6_port = 0;
1910 gsa->sin6.sin6_scope_id = 0;
1911
1912 /*
1913 * Always set the scope zone ID on memberships created from userland.
1914 * Use the passed-in ifp to do this.
1915 * XXX The in6_setscope() return value is meaningless.
1916 * XXX SCOPE6_LOCK() is taken by in6_setscope().
1917 */
1918 (void)in6_setscope(&gsa->sin6.sin6_addr, ifp, NULL);
1919
1920 imo = in6p_findmoptions(inp);
1921 idx = im6o_match_group(imo, ifp, &gsa->sa);
1922 if (idx == -1) {
1923 is_new = 1;
1924 } else {
1925 inm = imo->im6o_membership[idx];
1926 imf = &imo->im6o_mfilters[idx];
1927 if (ssa->ss.ss_family != AF_UNSPEC) {
1928 /*
1929 * MCAST_JOIN_SOURCE_GROUP on an exclusive membership
1930 * is an error. On an existing inclusive membership,
1931 * it just adds the source to the filter list.
1932 */
1933 if (imf->im6f_st[1] != MCAST_INCLUDE) {
1934 error = EINVAL;
1935 goto out_in6p_locked;
1936 }
1937 /*
1938 * Throw out duplicates.
1939 *
1940 * XXX FIXME: This makes a naive assumption that
1941 * even if entries exist for *ssa in this imf,
1942 * they will be rejected as dupes, even if they
1943 * are not valid in the current mode (in-mode).
1944 *
1945 * in6_msource is transactioned just as for anything
1946 * else in SSM -- but note naive use of in6m_graft()
1947 * below for allocating new filter entries.
1948 *
1949 * This is only an issue if someone mixes the
1950 * full-state SSM API with the delta-based API,
1951 * which is discouraged in the relevant RFCs.
1952 */
1953 lims = im6o_match_source(imo, idx, &ssa->sa);
1954 if (lims != NULL /*&&
1955 lims->im6sl_st[1] == MCAST_INCLUDE*/) {
1956 error = EADDRNOTAVAIL;
1957 goto out_in6p_locked;
1958 }
1959 } else {
1960 /*
1961 * MCAST_JOIN_GROUP alone, on any existing membership,
1962 * is rejected, to stop the same inpcb tying up
1963 * multiple refs to the in_multi.
1964 * On an existing inclusive membership, this is also
1965 * an error; if you want to change filter mode,
1966 * you must use the userland API setsourcefilter().
1967 * XXX We don't reject this for imf in UNDEFINED
1968 * state at t1, because allocation of a filter
1969 * is atomic with allocation of a membership.
1970 */
1971 error = EINVAL;
1972 goto out_in6p_locked;
1973 }
1974 }
1975
1976 /*
1977 * Begin state merge transaction at socket layer.
1978 */
1979 INP_WLOCK_ASSERT(inp);
1980
1981 if (is_new) {
1982 if (imo->im6o_num_memberships == imo->im6o_max_memberships) {
1983 error = im6o_grow(imo);
1984 if (error)
1985 goto out_in6p_locked;
1986 }
1987 /*
1988 * Allocate the new slot upfront so we can deal with
1989 * grafting the new source filter in same code path
1990 * as for join-source on existing membership.
1991 */
1992 idx = imo->im6o_num_memberships;
1993 imo->im6o_membership[idx] = NULL;
1994 imo->im6o_num_memberships++;
1995 KASSERT(imo->im6o_mfilters != NULL,
1996 ("%s: im6f_mfilters vector was not allocated", __func__));
1997 imf = &imo->im6o_mfilters[idx];
1998 KASSERT(RB_EMPTY(&imf->im6f_sources),
1999 ("%s: im6f_sources not empty", __func__));
2000 }
2001
2002 /*
2003 * Graft new source into filter list for this inpcb's
2004 * membership of the group. The in6_multi may not have
2005 * been allocated yet if this is a new membership, however,
2006 * the in_mfilter slot will be allocated and must be initialized.
2007 *
2008 * Note: Grafting of exclusive mode filters doesn't happen
2009 * in this path.
2010 * XXX: Should check for non-NULL lims (node exists but may
2011 * not be in-mode) for interop with full-state API.
2012 */
2013 if (ssa->ss.ss_family != AF_UNSPEC) {
2014 /* Membership starts in IN mode */
2015 if (is_new) {
2016 CTR1(KTR_MLD, "%s: new join w/source", __func__);
2017 im6f_init(imf, MCAST_UNDEFINED, MCAST_INCLUDE);
2018 } else {
2019 CTR2(KTR_MLD, "%s: %s source", __func__, "allow");
2020 }
2021 lims = im6f_graft(imf, MCAST_INCLUDE, &ssa->sin6);
2022 if (lims == NULL) {
2023 CTR1(KTR_MLD, "%s: merge imf state failed",
2024 __func__);
2025 error = ENOMEM;
2026 goto out_im6o_free;
2027 }
2028 } else {
2029 /* No address specified; Membership starts in EX mode */
2030 if (is_new) {
2031 CTR1(KTR_MLD, "%s: new join w/o source", __func__);
2032 im6f_init(imf, MCAST_UNDEFINED, MCAST_EXCLUDE);
2033 }
2034 }
2035
2036 /*
2037 * Begin state merge transaction at MLD layer.
2038 */
2039 IN6_MULTI_LOCK();
2040
2041 if (is_new) {
2042 error = in6_mc_join_locked(ifp, &gsa->sin6.sin6_addr, imf,
2043 &inm, 0);
2044 if (error)
2045 goto out_im6o_free;
2046 imo->im6o_membership[idx] = inm;
2047 } else {
2048 CTR1(KTR_MLD, "%s: merge inm state", __func__);
2049 error = in6m_merge(inm, imf);
2050 if (error) {
2051 CTR1(KTR_MLD, "%s: failed to merge inm state",
2052 __func__);
2053 goto out_im6f_rollback;
2054 }
2055 CTR1(KTR_MLD, "%s: doing mld downcall", __func__);
2056 error = mld_change_state(inm, 0);
2057 if (error) {
2058 CTR1(KTR_MLD, "%s: failed mld downcall",
2059 __func__);
2060 goto out_im6f_rollback;
2061 }
2062 }
2063
2064 IN6_MULTI_UNLOCK();
2065
2066 out_im6f_rollback:
2067 INP_WLOCK_ASSERT(inp);
2068 if (error) {
2069 im6f_rollback(imf);
2070 if (is_new)
2071 im6f_purge(imf);
2072 else
2073 im6f_reap(imf);
2074 } else {
2075 im6f_commit(imf);
2076 }
2077
2078 out_im6o_free:
2079 if (error && is_new) {
2080 imo->im6o_membership[idx] = NULL;
2081 --imo->im6o_num_memberships;
2082 }
2083
2084 out_in6p_locked:
2085 INP_WUNLOCK(inp);
2086 return (error);
2087 }
2088
2089 /*
2090 * Leave an IPv6 multicast group on an inpcb, possibly with a source.
2091 */
2092 static int
2093 in6p_leave_group(struct inpcb *inp, struct sockopt *sopt)
2094 {
2095 struct ipv6_mreq mreq;
2096 struct group_source_req gsr;
2097 sockunion_t *gsa, *ssa;
2098 struct ifnet *ifp;
2099 struct in6_mfilter *imf;
2100 struct ip6_moptions *imo;
2101 struct in6_msource *ims;
2102 struct in6_multi *inm;
2103 uint32_t ifindex;
2104 size_t idx;
2105 int error, is_final;
2106 #ifdef KTR
2107 char ip6tbuf[INET6_ADDRSTRLEN];
2108 #endif
2109
2110 ifp = NULL;
2111 ifindex = 0;
2112 error = 0;
2113 is_final = 1;
2114
2115 memset(&gsr, 0, sizeof(struct group_source_req));
2116 gsa = (sockunion_t *)&gsr.gsr_group;
2117 gsa->ss.ss_family = AF_UNSPEC;
2118 ssa = (sockunion_t *)&gsr.gsr_source;
2119 ssa->ss.ss_family = AF_UNSPEC;
2120
2121 /*
2122 * Chew everything passed in up into a struct group_source_req
2123 * as that is easier to process.
2124 * Note: Any embedded scope ID in the multicast group passed
2125 * in by userland is ignored, the interface index is the recommended
2126 * mechanism to specify an interface; see below.
2127 */
2128 switch (sopt->sopt_name) {
2129 case IPV6_LEAVE_GROUP:
2130 error = sooptcopyin(sopt, &mreq, sizeof(struct ipv6_mreq),
2131 sizeof(struct ipv6_mreq));
2132 if (error)
2133 return (error);
2134 gsa->sin6.sin6_family = AF_INET6;
2135 gsa->sin6.sin6_len = sizeof(struct sockaddr_in6);
2136 gsa->sin6.sin6_addr = mreq.ipv6mr_multiaddr;
2137 gsa->sin6.sin6_port = 0;
2138 gsa->sin6.sin6_scope_id = 0;
2139 ifindex = mreq.ipv6mr_interface;
2140 break;
2141
2142 case MCAST_LEAVE_GROUP:
2143 case MCAST_LEAVE_SOURCE_GROUP:
2144 if (sopt->sopt_name == MCAST_LEAVE_GROUP) {
2145 error = sooptcopyin(sopt, &gsr,
2146 sizeof(struct group_req),
2147 sizeof(struct group_req));
2148 } else if (sopt->sopt_name == MCAST_LEAVE_SOURCE_GROUP) {
2149 error = sooptcopyin(sopt, &gsr,
2150 sizeof(struct group_source_req),
2151 sizeof(struct group_source_req));
2152 }
2153 if (error)
2154 return (error);
2155
2156 if (gsa->sin6.sin6_family != AF_INET6 ||
2157 gsa->sin6.sin6_len != sizeof(struct sockaddr_in6))
2158 return (EINVAL);
2159 if (sopt->sopt_name == MCAST_LEAVE_SOURCE_GROUP) {
2160 if (ssa->sin6.sin6_family != AF_INET6 ||
2161 ssa->sin6.sin6_len != sizeof(struct sockaddr_in6))
2162 return (EINVAL);
2163 if (IN6_IS_ADDR_MULTICAST(&ssa->sin6.sin6_addr))
2164 return (EINVAL);
2165 /*
2166 * TODO: Validate embedded scope ID in source
2167 * list entry against passed-in ifp, if and only
2168 * if source list filter entry is iface or node local.
2169 */
2170 in6_clearscope(&ssa->sin6.sin6_addr);
2171 }
2172 gsa->sin6.sin6_port = 0;
2173 gsa->sin6.sin6_scope_id = 0;
2174 ifindex = gsr.gsr_interface;
2175 break;
2176
2177 default:
2178 CTR2(KTR_MLD, "%s: unknown sopt_name %d",
2179 __func__, sopt->sopt_name);
2180 return (EOPNOTSUPP);
2181 break;
2182 }
2183
2184 if (!IN6_IS_ADDR_MULTICAST(&gsa->sin6.sin6_addr))
2185 return (EINVAL);
2186
2187 /*
2188 * Validate interface index if provided. If no interface index
2189 * was provided separately, attempt to look the membership up
2190 * from the default scope as a last resort to disambiguate
2191 * the membership we are being asked to leave.
2192 * XXX SCOPE6 lock potentially taken here.
2193 */
2194 if (ifindex != 0) {
2195 if (ifindex < 0 || V_if_index < ifindex)
2196 return (EADDRNOTAVAIL);
2197 ifp = ifnet_byindex(ifindex);
2198 if (ifp == NULL)
2199 return (EADDRNOTAVAIL);
2200 (void)in6_setscope(&gsa->sin6.sin6_addr, ifp, NULL);
2201 } else {
2202 error = sa6_embedscope(&gsa->sin6, V_ip6_use_defzone);
2203 if (error)
2204 return (EADDRNOTAVAIL);
2205 /*
2206 * Some badly behaved applications don't pass an ifindex
2207 * or a scope ID, which is an API violation. In this case,
2208 * perform a lookup as per a v6 join.
2209 *
2210 * XXX For now, stomp on zone ID for the corner case.
2211 * This is not the 'KAME way', but we need to see the ifp
2212 * directly until such time as this implementation is
2213 * refactored, assuming the scope IDs are the way to go.
2214 */
2215 ifindex = ntohs(gsa->sin6.sin6_addr.s6_addr16[1]);
2216 if (ifindex == 0) {
2217 CTR2(KTR_MLD, "%s: warning: no ifindex, looking up "
2218 "ifp for group %s.", __func__,
2219 ip6_sprintf(ip6tbuf, &gsa->sin6.sin6_addr));
2220 ifp = in6p_lookup_mcast_ifp(inp, &gsa->sin6);
2221 } else {
2222 ifp = ifnet_byindex(ifindex);
2223 }
2224 if (ifp == NULL)
2225 return (EADDRNOTAVAIL);
2226 }
2227
2228 CTR2(KTR_MLD, "%s: ifp = %p", __func__, ifp);
2229 KASSERT(ifp != NULL, ("%s: ifp did not resolve", __func__));
2230
2231 /*
2232 * Find the membership in the membership array.
2233 */
2234 imo = in6p_findmoptions(inp);
2235 idx = im6o_match_group(imo, ifp, &gsa->sa);
2236 if (idx == -1) {
2237 error = EADDRNOTAVAIL;
2238 goto out_in6p_locked;
2239 }
2240 inm = imo->im6o_membership[idx];
2241 imf = &imo->im6o_mfilters[idx];
2242
2243 if (ssa->ss.ss_family != AF_UNSPEC)
2244 is_final = 0;
2245
2246 /*
2247 * Begin state merge transaction at socket layer.
2248 */
2249 INP_WLOCK_ASSERT(inp);
2250
2251 /*
2252 * If we were instructed only to leave a given source, do so.
2253 * MCAST_LEAVE_SOURCE_GROUP is only valid for inclusive memberships.
2254 */
2255 if (is_final) {
2256 im6f_leave(imf);
2257 } else {
2258 if (imf->im6f_st[0] == MCAST_EXCLUDE) {
2259 error = EADDRNOTAVAIL;
2260 goto out_in6p_locked;
2261 }
2262 ims = im6o_match_source(imo, idx, &ssa->sa);
2263 if (ims == NULL) {
2264 CTR3(KTR_MLD, "%s: source %p %spresent", __func__,
2265 ip6_sprintf(ip6tbuf, &ssa->sin6.sin6_addr),
2266 "not ");
2267 error = EADDRNOTAVAIL;
2268 goto out_in6p_locked;
2269 }
2270 CTR2(KTR_MLD, "%s: %s source", __func__, "block");
2271 error = im6f_prune(imf, &ssa->sin6);
2272 if (error) {
2273 CTR1(KTR_MLD, "%s: merge imf state failed",
2274 __func__);
2275 goto out_in6p_locked;
2276 }
2277 }
2278
2279 /*
2280 * Begin state merge transaction at MLD layer.
2281 */
2282 IN6_MULTI_LOCK();
2283
2284 if (is_final) {
2285 /*
2286 * Give up the multicast address record to which
2287 * the membership points.
2288 */
2289 (void)in6_mc_leave_locked(inm, imf);
2290 } else {
2291 CTR1(KTR_MLD, "%s: merge inm state", __func__);
2292 error = in6m_merge(inm, imf);
2293 if (error) {
2294 CTR1(KTR_MLD, "%s: failed to merge inm state",
2295 __func__);
2296 goto out_im6f_rollback;
2297 }
2298
2299 CTR1(KTR_MLD, "%s: doing mld downcall", __func__);
2300 error = mld_change_state(inm, 0);
2301 if (error) {
2302 CTR1(KTR_MLD, "%s: failed mld downcall",
2303 __func__);
2304 }
2305 }
2306
2307 IN6_MULTI_UNLOCK();
2308
2309 out_im6f_rollback:
2310 if (error)
2311 im6f_rollback(imf);
2312 else
2313 im6f_commit(imf);
2314
2315 im6f_reap(imf);
2316
2317 if (is_final) {
2318 /* Remove the gap in the membership array. */
2319 for (++idx; idx < imo->im6o_num_memberships; ++idx) {
2320 imo->im6o_membership[idx-1] = imo->im6o_membership[idx];
2321 imo->im6o_mfilters[idx-1] = imo->im6o_mfilters[idx];
2322 }
2323 imo->im6o_num_memberships--;
2324 }
2325
2326 out_in6p_locked:
2327 INP_WUNLOCK(inp);
2328 return (error);
2329 }
2330
2331 /*
2332 * Select the interface for transmitting IPv6 multicast datagrams.
2333 *
2334 * Either an instance of struct in6_addr or an instance of struct ipv6_mreqn
2335 * may be passed to this socket option. An address of in6addr_any or an
2336 * interface index of 0 is used to remove a previous selection.
2337 * When no interface is selected, one is chosen for every send.
2338 */
2339 static int
2340 in6p_set_multicast_if(struct inpcb *inp, struct sockopt *sopt)
2341 {
2342 struct ifnet *ifp;
2343 struct ip6_moptions *imo;
2344 u_int ifindex;
2345 int error;
2346
2347 if (sopt->sopt_valsize != sizeof(u_int))
2348 return (EINVAL);
2349
2350 error = sooptcopyin(sopt, &ifindex, sizeof(u_int), sizeof(u_int));
2351 if (error)
2352 return (error);
2353 if (ifindex < 0 || V_if_index < ifindex)
2354 return (EINVAL);
2355
2356 ifp = ifnet_byindex(ifindex);
2357 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0)
2358 return (EADDRNOTAVAIL);
2359
2360 imo = in6p_findmoptions(inp);
2361 imo->im6o_multicast_ifp = ifp;
2362 INP_WUNLOCK(inp);
2363
2364 return (0);
2365 }
2366
2367 /*
2368 * Atomically set source filters on a socket for an IPv6 multicast group.
2369 *
2370 * SMPng: NOTE: Potentially calls malloc(M_WAITOK) with Giant held.
2371 */
2372 static int
2373 in6p_set_source_filters(struct inpcb *inp, struct sockopt *sopt)
2374 {
2375 struct __msfilterreq msfr;
2376 sockunion_t *gsa;
2377 struct ifnet *ifp;
2378 struct in6_mfilter *imf;
2379 struct ip6_moptions *imo;
2380 struct in6_multi *inm;
2381 size_t idx;
2382 int error;
2383
2384 error = sooptcopyin(sopt, &msfr, sizeof(struct __msfilterreq),
2385 sizeof(struct __msfilterreq));
2386 if (error)
2387 return (error);
2388
2389 if (msfr.msfr_nsrcs > in6_mcast_maxsocksrc)
2390 return (ENOBUFS);
2391
2392 if (msfr.msfr_fmode != MCAST_EXCLUDE &&
2393 msfr.msfr_fmode != MCAST_INCLUDE)
2394 return (EINVAL);
2395
2396 if (msfr.msfr_group.ss_family != AF_INET6 ||
2397 msfr.msfr_group.ss_len != sizeof(struct sockaddr_in6))
2398 return (EINVAL);
2399
2400 gsa = (sockunion_t *)&msfr.msfr_group;
2401 if (!IN6_IS_ADDR_MULTICAST(&gsa->sin6.sin6_addr))
2402 return (EINVAL);
2403
2404 gsa->sin6.sin6_port = 0; /* ignore port */
2405
2406 if (msfr.msfr_ifindex == 0 || V_if_index < msfr.msfr_ifindex)
2407 return (EADDRNOTAVAIL);
2408 ifp = ifnet_byindex(msfr.msfr_ifindex);
2409 if (ifp == NULL)
2410 return (EADDRNOTAVAIL);
2411 (void)in6_setscope(&gsa->sin6.sin6_addr, ifp, NULL);
2412
2413 /*
2414 * Take the INP write lock.
2415 * Check if this socket is a member of this group.
2416 */
2417 imo = in6p_findmoptions(inp);
2418 idx = im6o_match_group(imo, ifp, &gsa->sa);
2419 if (idx == -1 || imo->im6o_mfilters == NULL) {
2420 error = EADDRNOTAVAIL;
2421 goto out_in6p_locked;
2422 }
2423 inm = imo->im6o_membership[idx];
2424 imf = &imo->im6o_mfilters[idx];
2425
2426 /*
2427 * Begin state merge transaction at socket layer.
2428 */
2429 INP_WLOCK_ASSERT(inp);
2430
2431 imf->im6f_st[1] = msfr.msfr_fmode;
2432
2433 /*
2434 * Apply any new source filters, if present.
2435 * Make a copy of the user-space source vector so
2436 * that we may copy them with a single copyin. This
2437 * allows us to deal with page faults up-front.
2438 */
2439 if (msfr.msfr_nsrcs > 0) {
2440 struct in6_msource *lims;
2441 struct sockaddr_in6 *psin;
2442 struct sockaddr_storage *kss, *pkss;
2443 int i;
2444
2445 INP_WUNLOCK(inp);
2446
2447 CTR2(KTR_MLD, "%s: loading %lu source list entries",
2448 __func__, (unsigned long)msfr.msfr_nsrcs);
2449 kss = malloc(sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs,
2450 M_TEMP, M_WAITOK);
2451 error = copyin(msfr.msfr_srcs, kss,
2452 sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs);
2453 if (error) {
2454 free(kss, M_TEMP);
2455 return (error);
2456 }
2457
2458 INP_WLOCK(inp);
2459
2460 /*
2461 * Mark all source filters as UNDEFINED at t1.
2462 * Restore new group filter mode, as im6f_leave()
2463 * will set it to INCLUDE.
2464 */
2465 im6f_leave(imf);
2466 imf->im6f_st[1] = msfr.msfr_fmode;
2467
2468 /*
2469 * Update socket layer filters at t1, lazy-allocating
2470 * new entries. This saves a bunch of memory at the
2471 * cost of one RB_FIND() per source entry; duplicate
2472 * entries in the msfr_nsrcs vector are ignored.
2473 * If we encounter an error, rollback transaction.
2474 *
2475 * XXX This too could be replaced with a set-symmetric
2476 * difference like loop to avoid walking from root
2477 * every time, as the key space is common.
2478 */
2479 for (i = 0, pkss = kss; i < msfr.msfr_nsrcs; i++, pkss++) {
2480 psin = (struct sockaddr_in6 *)pkss;
2481 if (psin->sin6_family != AF_INET6) {
2482 error = EAFNOSUPPORT;
2483 break;
2484 }
2485 if (psin->sin6_len != sizeof(struct sockaddr_in6)) {
2486 error = EINVAL;
2487 break;
2488 }
2489 if (IN6_IS_ADDR_MULTICAST(&psin->sin6_addr)) {
2490 error = EINVAL;
2491 break;
2492 }
2493 /*
2494 * TODO: Validate embedded scope ID in source
2495 * list entry against passed-in ifp, if and only
2496 * if source list filter entry is iface or node local.
2497 */
2498 in6_clearscope(&psin->sin6_addr);
2499 error = im6f_get_source(imf, psin, &lims);
2500 if (error)
2501 break;
2502 lims->im6sl_st[1] = imf->im6f_st[1];
2503 }
2504 free(kss, M_TEMP);
2505 }
2506
2507 if (error)
2508 goto out_im6f_rollback;
2509
2510 INP_WLOCK_ASSERT(inp);
2511 IN6_MULTI_LOCK();
2512
2513 /*
2514 * Begin state merge transaction at MLD layer.
2515 */
2516 CTR1(KTR_MLD, "%s: merge inm state", __func__);
2517 error = in6m_merge(inm, imf);
2518 if (error) {
2519 CTR1(KTR_MLD, "%s: failed to merge inm state", __func__);
2520 goto out_im6f_rollback;
2521 }
2522
2523 CTR1(KTR_MLD, "%s: doing mld downcall", __func__);
2524 error = mld_change_state(inm, 0);
2525 if (error)
2526 CTR1(KTR_MLD, "%s: failed mld downcall", __func__);
2527
2528 IN6_MULTI_UNLOCK();
2529
2530 out_im6f_rollback:
2531 if (error)
2532 im6f_rollback(imf);
2533 else
2534 im6f_commit(imf);
2535
2536 im6f_reap(imf);
2537
2538 out_in6p_locked:
2539 INP_WUNLOCK(inp);
2540 return (error);
2541 }
2542
2543 /*
2544 * Set the IP multicast options in response to user setsockopt().
2545 *
2546 * Many of the socket options handled in this function duplicate the
2547 * functionality of socket options in the regular unicast API. However,
2548 * it is not possible to merge the duplicate code, because the idempotence
2549 * of the IPv6 multicast part of the BSD Sockets API must be preserved;
2550 * the effects of these options must be treated as separate and distinct.
2551 *
2552 * SMPng: XXX: Unlocked read of inp_socket believed OK.
2553 */
2554 int
2555 ip6_setmoptions(struct inpcb *inp, struct sockopt *sopt)
2556 {
2557 struct ip6_moptions *im6o;
2558 int error;
2559
2560 error = 0;
2561
2562 /*
2563 * If socket is neither of type SOCK_RAW or SOCK_DGRAM,
2564 * or is a divert socket, reject it.
2565 */
2566 if (inp->inp_socket->so_proto->pr_protocol == IPPROTO_DIVERT ||
2567 (inp->inp_socket->so_proto->pr_type != SOCK_RAW &&
2568 inp->inp_socket->so_proto->pr_type != SOCK_DGRAM))
2569 return (EOPNOTSUPP);
2570
2571 switch (sopt->sopt_name) {
2572 case IPV6_MULTICAST_IF:
2573 error = in6p_set_multicast_if(inp, sopt);
2574 break;
2575
2576 case IPV6_MULTICAST_HOPS: {
2577 int hlim;
2578
2579 if (sopt->sopt_valsize != sizeof(int)) {
2580 error = EINVAL;
2581 break;
2582 }
2583 error = sooptcopyin(sopt, &hlim, sizeof(hlim), sizeof(int));
2584 if (error)
2585 break;
2586 if (hlim < -1 || hlim > 255) {
2587 error = EINVAL;
2588 break;
2589 } else if (hlim == -1) {
2590 hlim = V_ip6_defmcasthlim;
2591 }
2592 im6o = in6p_findmoptions(inp);
2593 im6o->im6o_multicast_hlim = hlim;
2594 INP_WUNLOCK(inp);
2595 break;
2596 }
2597
2598 case IPV6_MULTICAST_LOOP: {
2599 u_int loop;
2600
2601 /*
2602 * Set the loopback flag for outgoing multicast packets.
2603 * Must be zero or one.
2604 */
2605 if (sopt->sopt_valsize != sizeof(u_int)) {
2606 error = EINVAL;
2607 break;
2608 }
2609 error = sooptcopyin(sopt, &loop, sizeof(u_int), sizeof(u_int));
2610 if (error)
2611 break;
2612 if (loop > 1) {
2613 error = EINVAL;
2614 break;
2615 }
2616 im6o = in6p_findmoptions(inp);
2617 im6o->im6o_multicast_loop = loop;
2618 INP_WUNLOCK(inp);
2619 break;
2620 }
2621
2622 case IPV6_JOIN_GROUP:
2623 case MCAST_JOIN_GROUP:
2624 case MCAST_JOIN_SOURCE_GROUP:
2625 error = in6p_join_group(inp, sopt);
2626 break;
2627
2628 case IPV6_LEAVE_GROUP:
2629 case MCAST_LEAVE_GROUP:
2630 case MCAST_LEAVE_SOURCE_GROUP:
2631 error = in6p_leave_group(inp, sopt);
2632 break;
2633
2634 case MCAST_BLOCK_SOURCE:
2635 case MCAST_UNBLOCK_SOURCE:
2636 error = in6p_block_unblock_source(inp, sopt);
2637 break;
2638
2639 case IPV6_MSFILTER:
2640 error = in6p_set_source_filters(inp, sopt);
2641 break;
2642
2643 default:
2644 error = EOPNOTSUPP;
2645 break;
2646 }
2647
2648 INP_UNLOCK_ASSERT(inp);
2649
2650 return (error);
2651 }
2652
2653 /*
2654 * Expose MLD's multicast filter mode and source list(s) to userland,
2655 * keyed by (ifindex, group).
2656 * The filter mode is written out as a uint32_t, followed by
2657 * 0..n of struct in6_addr.
2658 * For use by ifmcstat(8).
2659 * SMPng: NOTE: unlocked read of ifindex space.
2660 */
2661 static int
2662 sysctl_ip6_mcast_filters(SYSCTL_HANDLER_ARGS)
2663 {
2664 struct in6_addr mcaddr;
2665 struct in6_addr src;
2666 struct ifnet *ifp;
2667 struct ifmultiaddr *ifma;
2668 struct in6_multi *inm;
2669 struct ip6_msource *ims;
2670 int *name;
2671 int retval;
2672 u_int namelen;
2673 uint32_t fmode, ifindex;
2674 #ifdef KTR
2675 char ip6tbuf[INET6_ADDRSTRLEN];
2676 #endif
2677
2678 name = (int *)arg1;
2679 namelen = arg2;
2680
2681 if (req->newptr != NULL)
2682 return (EPERM);
2683
2684 /* int: ifindex + 4 * 32 bits of IPv6 address */
2685 if (namelen != 5)
2686 return (EINVAL);
2687
2688 ifindex = name[0];
2689 if (ifindex <= 0 || ifindex > V_if_index) {
2690 CTR2(KTR_MLD, "%s: ifindex %u out of range",
2691 __func__, ifindex);
2692 return (ENOENT);
2693 }
2694
2695 memcpy(&mcaddr, &name[1], sizeof(struct in6_addr));
2696 if (!IN6_IS_ADDR_MULTICAST(&mcaddr)) {
2697 CTR2(KTR_MLD, "%s: group %s is not multicast",
2698 __func__, ip6_sprintf(ip6tbuf, &mcaddr));
2699 return (EINVAL);
2700 }
2701
2702 ifp = ifnet_byindex(ifindex);
2703 if (ifp == NULL) {
2704 CTR2(KTR_MLD, "%s: no ifp for ifindex %u",
2705 __func__, ifindex);
2706 return (ENOENT);
2707 }
2708 /*
2709 * Internal MLD lookups require that scope/zone ID is set.
2710 */
2711 (void)in6_setscope(&mcaddr, ifp, NULL);
2712
2713 retval = sysctl_wire_old_buffer(req,
2714 sizeof(uint32_t) + (in6_mcast_maxgrpsrc * sizeof(struct in6_addr)));
2715 if (retval)
2716 return (retval);
2717
2718 IN6_MULTI_LOCK();
2719
2720 IF_ADDR_RLOCK(ifp);
2721 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2722 if (ifma->ifma_addr->sa_family != AF_INET6 ||
2723 ifma->ifma_protospec == NULL)
2724 continue;
2725 inm = (struct in6_multi *)ifma->ifma_protospec;
2726 if (!IN6_ARE_ADDR_EQUAL(&inm->in6m_addr, &mcaddr))
2727 continue;
2728 fmode = inm->in6m_st[1].iss_fmode;
2729 retval = SYSCTL_OUT(req, &fmode, sizeof(uint32_t));
2730 if (retval != 0)
2731 break;
2732 RB_FOREACH(ims, ip6_msource_tree, &inm->in6m_srcs) {
2733 CTR2(KTR_MLD, "%s: visit node %p", __func__, ims);
2734 /*
2735 * Only copy-out sources which are in-mode.
2736 */
2737 if (fmode != im6s_get_mode(inm, ims, 1)) {
2738 CTR1(KTR_MLD, "%s: skip non-in-mode",
2739 __func__);
2740 continue;
2741 }
2742 src = ims->im6s_addr;
2743 retval = SYSCTL_OUT(req, &src,
2744 sizeof(struct in6_addr));
2745 if (retval != 0)
2746 break;
2747 }
2748 }
2749 IF_ADDR_RUNLOCK(ifp);
2750
2751 IN6_MULTI_UNLOCK();
2752
2753 return (retval);
2754 }
2755
2756 #ifdef KTR
2757
2758 static const char *in6m_modestrs[] = { "un", "in", "ex" };
2759
2760 static const char *
2761 in6m_mode_str(const int mode)
2762 {
2763
2764 if (mode >= MCAST_UNDEFINED && mode <= MCAST_EXCLUDE)
2765 return (in6m_modestrs[mode]);
2766 return ("??");
2767 }
2768
2769 static const char *in6m_statestrs[] = {
2770 "not-member",
2771 "silent",
2772 "idle",
2773 "lazy",
2774 "sleeping",
2775 "awakening",
2776 "query-pending",
2777 "sg-query-pending",
2778 "leaving"
2779 };
2780
2781 static const char *
2782 in6m_state_str(const int state)
2783 {
2784
2785 if (state >= MLD_NOT_MEMBER && state <= MLD_LEAVING_MEMBER)
2786 return (in6m_statestrs[state]);
2787 return ("??");
2788 }
2789
2790 /*
2791 * Dump an in6_multi structure to the console.
2792 */
2793 void
2794 in6m_print(const struct in6_multi *inm)
2795 {
2796 int t;
2797 char ip6tbuf[INET6_ADDRSTRLEN];
2798
2799 if ((ktr_mask & KTR_MLD) == 0)
2800 return;
2801
2802 printf("%s: --- begin in6m %p ---\n", __func__, inm);
2803 printf("addr %s ifp %p(%s) ifma %p\n",
2804 ip6_sprintf(ip6tbuf, &inm->in6m_addr),
2805 inm->in6m_ifp,
2806 inm->in6m_ifp->if_xname,
2807 inm->in6m_ifma);
2808 printf("timer %u state %s refcount %u scq.len %u\n",
2809 inm->in6m_timer,
2810 in6m_state_str(inm->in6m_state),
2811 inm->in6m_refcount,
2812 inm->in6m_scq.ifq_len);
2813 printf("mli %p nsrc %lu sctimer %u scrv %u\n",
2814 inm->in6m_mli,
2815 inm->in6m_nsrc,
2816 inm->in6m_sctimer,
2817 inm->in6m_scrv);
2818 for (t = 0; t < 2; t++) {
2819 printf("t%d: fmode %s asm %u ex %u in %u rec %u\n", t,
2820 in6m_mode_str(inm->in6m_st[t].iss_fmode),
2821 inm->in6m_st[t].iss_asm,
2822 inm->in6m_st[t].iss_ex,
2823 inm->in6m_st[t].iss_in,
2824 inm->in6m_st[t].iss_rec);
2825 }
2826 printf("%s: --- end in6m %p ---\n", __func__, inm);
2827 }
2828
2829 #else /* !KTR */
2830
2831 void
2832 in6m_print(const struct in6_multi *inm)
2833 {
2834
2835 }
2836
2837 #endif /* KTR */
Cache object: 02fc18f0b6ac03415a89e484abd724dd
|