1 /*-
2 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 3. Neither the name of the project nor the names of its contributors
14 * may be used to endorse or promote products derived from this software
15 * without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 * $KAME: ip6_output.c,v 1.279 2002/01/26 06:12:30 jinmei Exp $
30 */
31
32 /*-
33 * Copyright (c) 1982, 1986, 1988, 1990, 1993
34 * The Regents of the University of California. All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 4. Neither the name of the University nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 *
60 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94
61 */
62
63 #include <sys/cdefs.h>
64 __FBSDID("$FreeBSD: releng/8.4/sys/netinet6/ip6_output.c 239985 2012-09-01 10:39:01Z trociny $");
65
66 #include "opt_inet.h"
67 #include "opt_inet6.h"
68 #include "opt_ipsec.h"
69 #include "opt_sctp.h"
70
71 #include <sys/param.h>
72 #include <sys/kernel.h>
73 #include <sys/malloc.h>
74 #include <sys/mbuf.h>
75 #include <sys/errno.h>
76 #include <sys/priv.h>
77 #include <sys/proc.h>
78 #include <sys/protosw.h>
79 #include <sys/socket.h>
80 #include <sys/socketvar.h>
81 #include <sys/syslog.h>
82 #include <sys/ucred.h>
83
84 #include <net/if.h>
85 #include <net/netisr.h>
86 #include <net/route.h>
87 #include <net/pfil.h>
88 #include <net/vnet.h>
89
90 #include <netinet/in.h>
91 #include <netinet/in_var.h>
92 #include <netinet6/in6_var.h>
93 #include <netinet/ip6.h>
94 #include <netinet/icmp6.h>
95 #include <netinet6/ip6_var.h>
96 #include <netinet/in_pcb.h>
97 #include <netinet/tcp_var.h>
98 #include <netinet6/nd6.h>
99
100 #ifdef IPSEC
101 #include <netipsec/ipsec.h>
102 #include <netipsec/ipsec6.h>
103 #include <netipsec/key.h>
104 #include <netinet6/ip6_ipsec.h>
105 #endif /* IPSEC */
106 #ifdef SCTP
107 #include <netinet/sctp.h>
108 #include <netinet/sctp_crc32.h>
109 #endif
110
111 #include <netinet6/ip6protosw.h>
112 #include <netinet6/scope6_var.h>
113
114 extern int in6_mcast_loop;
115
116 struct ip6_exthdrs {
117 struct mbuf *ip6e_ip6;
118 struct mbuf *ip6e_hbh;
119 struct mbuf *ip6e_dest1;
120 struct mbuf *ip6e_rthdr;
121 struct mbuf *ip6e_dest2;
122 };
123
124 static int ip6_pcbopt __P((int, u_char *, int, struct ip6_pktopts **,
125 struct ucred *, int));
126 static int ip6_pcbopts __P((struct ip6_pktopts **, struct mbuf *,
127 struct socket *, struct sockopt *));
128 static int ip6_getpcbopt(struct ip6_pktopts *, int, struct sockopt *);
129 static int ip6_setpktopt __P((int, u_char *, int, struct ip6_pktopts *,
130 struct ucred *, int, int, int));
131
132 static int ip6_copyexthdr(struct mbuf **, caddr_t, int);
133 static int ip6_insertfraghdr __P((struct mbuf *, struct mbuf *, int,
134 struct ip6_frag **));
135 static int ip6_insert_jumboopt(struct ip6_exthdrs *, u_int32_t);
136 static int ip6_splithdr(struct mbuf *, struct ip6_exthdrs *);
137 static int ip6_getpmtu __P((struct route_in6 *, struct route_in6 *,
138 struct ifnet *, struct in6_addr *, u_long *, int *, u_int));
139 static int copypktopts(struct ip6_pktopts *, struct ip6_pktopts *, int);
140
141
142 /*
143 * Make an extension header from option data. hp is the source, and
144 * mp is the destination.
145 */
146 #define MAKE_EXTHDR(hp, mp) \
147 do { \
148 if (hp) { \
149 struct ip6_ext *eh = (struct ip6_ext *)(hp); \
150 error = ip6_copyexthdr((mp), (caddr_t)(hp), \
151 ((eh)->ip6e_len + 1) << 3); \
152 if (error) \
153 goto freehdrs; \
154 } \
155 } while (/*CONSTCOND*/ 0)
156
157 /*
158 * Form a chain of extension headers.
159 * m is the extension header mbuf
160 * mp is the previous mbuf in the chain
161 * p is the next header
162 * i is the type of option.
163 */
164 #define MAKE_CHAIN(m, mp, p, i)\
165 do {\
166 if (m) {\
167 if (!hdrsplit) \
168 panic("assumption failed: hdr not split"); \
169 *mtod((m), u_char *) = *(p);\
170 *(p) = (i);\
171 p = mtod((m), u_char *);\
172 (m)->m_next = (mp)->m_next;\
173 (mp)->m_next = (m);\
174 (mp) = (m);\
175 }\
176 } while (/*CONSTCOND*/ 0)
177
178 /*
179 * IP6 output. The packet in mbuf chain m contains a skeletal IP6
180 * header (with pri, len, nxt, hlim, src, dst).
181 * This function may modify ver and hlim only.
182 * The mbuf chain containing the packet will be freed.
183 * The mbuf opt, if present, will not be freed.
184 *
185 * type of "mtu": rt_rmx.rmx_mtu is u_long, ifnet.ifr_mtu is int, and
186 * nd_ifinfo.linkmtu is u_int32_t. so we use u_long to hold largest one,
187 * which is rt_rmx.rmx_mtu.
188 *
189 * ifpp - XXX: just for statistics
190 */
191 int
192 ip6_output(struct mbuf *m0, struct ip6_pktopts *opt,
193 struct route_in6 *ro, int flags, struct ip6_moptions *im6o,
194 struct ifnet **ifpp, struct inpcb *inp)
195 {
196 struct ip6_hdr *ip6, *mhip6;
197 struct ifnet *ifp, *origifp;
198 struct mbuf *m = m0;
199 struct mbuf *mprev = NULL;
200 int hlen, tlen, len, off;
201 struct route_in6 ip6route;
202 struct rtentry *rt = NULL;
203 struct sockaddr_in6 *dst, src_sa, dst_sa;
204 struct in6_addr odst;
205 int error = 0;
206 struct in6_ifaddr *ia = NULL;
207 u_long mtu;
208 int alwaysfrag, dontfrag;
209 u_int32_t optlen = 0, plen = 0, unfragpartlen = 0;
210 struct ip6_exthdrs exthdrs;
211 struct in6_addr finaldst, src0, dst0;
212 u_int32_t zone;
213 struct route_in6 *ro_pmtu = NULL;
214 int hdrsplit = 0;
215 int needipsec = 0;
216 #ifdef SCTP
217 int sw_csum;
218 #endif
219 #ifdef IPSEC
220 struct ipsec_output_state state;
221 struct ip6_rthdr *rh = NULL;
222 int needipsectun = 0;
223 int segleft_org = 0;
224 struct secpolicy *sp = NULL;
225 #endif /* IPSEC */
226
227 ip6 = mtod(m, struct ip6_hdr *);
228 if (ip6 == NULL) {
229 printf ("ip6 is NULL");
230 goto bad;
231 }
232
233 if (inp != NULL)
234 M_SETFIB(m, inp->inp_inc.inc_fibnum);
235
236 finaldst = ip6->ip6_dst;
237
238 bzero(&exthdrs, sizeof(exthdrs));
239
240 if (opt) {
241 /* Hop-by-Hop options header */
242 MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh);
243 /* Destination options header(1st part) */
244 if (opt->ip6po_rthdr) {
245 /*
246 * Destination options header(1st part)
247 * This only makes sense with a routing header.
248 * See Section 9.2 of RFC 3542.
249 * Disabling this part just for MIP6 convenience is
250 * a bad idea. We need to think carefully about a
251 * way to make the advanced API coexist with MIP6
252 * options, which might automatically be inserted in
253 * the kernel.
254 */
255 MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1);
256 }
257 /* Routing header */
258 MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr);
259 /* Destination options header(2nd part) */
260 MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2);
261 }
262
263 #ifdef IPSEC
264 /*
265 * IPSec checking which handles several cases.
266 * FAST IPSEC: We re-injected the packet.
267 */
268 switch(ip6_ipsec_output(&m, inp, &flags, &error, &ifp, &sp))
269 {
270 case 1: /* Bad packet */
271 goto freehdrs;
272 case -1: /* Do IPSec */
273 needipsec = 1;
274 case 0: /* No IPSec */
275 default:
276 break;
277 }
278 #endif /* IPSEC */
279
280 /*
281 * Calculate the total length of the extension header chain.
282 * Keep the length of the unfragmentable part for fragmentation.
283 */
284 optlen = 0;
285 if (exthdrs.ip6e_hbh)
286 optlen += exthdrs.ip6e_hbh->m_len;
287 if (exthdrs.ip6e_dest1)
288 optlen += exthdrs.ip6e_dest1->m_len;
289 if (exthdrs.ip6e_rthdr)
290 optlen += exthdrs.ip6e_rthdr->m_len;
291 unfragpartlen = optlen + sizeof(struct ip6_hdr);
292
293 /* NOTE: we don't add AH/ESP length here. do that later. */
294 if (exthdrs.ip6e_dest2)
295 optlen += exthdrs.ip6e_dest2->m_len;
296
297 /*
298 * If we need IPsec, or there is at least one extension header,
299 * separate IP6 header from the payload.
300 */
301 if ((needipsec || optlen) && !hdrsplit) {
302 if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
303 m = NULL;
304 goto freehdrs;
305 }
306 m = exthdrs.ip6e_ip6;
307 hdrsplit++;
308 }
309
310 /* adjust pointer */
311 ip6 = mtod(m, struct ip6_hdr *);
312
313 /* adjust mbuf packet header length */
314 m->m_pkthdr.len += optlen;
315 plen = m->m_pkthdr.len - sizeof(*ip6);
316
317 /* If this is a jumbo payload, insert a jumbo payload option. */
318 if (plen > IPV6_MAXPACKET) {
319 if (!hdrsplit) {
320 if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
321 m = NULL;
322 goto freehdrs;
323 }
324 m = exthdrs.ip6e_ip6;
325 hdrsplit++;
326 }
327 /* adjust pointer */
328 ip6 = mtod(m, struct ip6_hdr *);
329 if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0)
330 goto freehdrs;
331 ip6->ip6_plen = 0;
332 } else
333 ip6->ip6_plen = htons(plen);
334
335 /*
336 * Concatenate headers and fill in next header fields.
337 * Here we have, on "m"
338 * IPv6 payload
339 * and we insert headers accordingly. Finally, we should be getting:
340 * IPv6 hbh dest1 rthdr ah* [esp* dest2 payload]
341 *
342 * during the header composing process, "m" points to IPv6 header.
343 * "mprev" points to an extension header prior to esp.
344 */
345 u_char *nexthdrp = &ip6->ip6_nxt;
346 mprev = m;
347
348 /*
349 * we treat dest2 specially. this makes IPsec processing
350 * much easier. the goal here is to make mprev point the
351 * mbuf prior to dest2.
352 *
353 * result: IPv6 dest2 payload
354 * m and mprev will point to IPv6 header.
355 */
356 if (exthdrs.ip6e_dest2) {
357 if (!hdrsplit)
358 panic("assumption failed: hdr not split");
359 exthdrs.ip6e_dest2->m_next = m->m_next;
360 m->m_next = exthdrs.ip6e_dest2;
361 *mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt;
362 ip6->ip6_nxt = IPPROTO_DSTOPTS;
363 }
364
365 /*
366 * result: IPv6 hbh dest1 rthdr dest2 payload
367 * m will point to IPv6 header. mprev will point to the
368 * extension header prior to dest2 (rthdr in the above case).
369 */
370 MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS);
371 MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp,
372 IPPROTO_DSTOPTS);
373 MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp,
374 IPPROTO_ROUTING);
375
376 #ifdef IPSEC
377 if (!needipsec)
378 goto skip_ipsec2;
379
380 /*
381 * pointers after IPsec headers are not valid any more.
382 * other pointers need a great care too.
383 * (IPsec routines should not mangle mbufs prior to AH/ESP)
384 */
385 exthdrs.ip6e_dest2 = NULL;
386
387 if (exthdrs.ip6e_rthdr) {
388 rh = mtod(exthdrs.ip6e_rthdr, struct ip6_rthdr *);
389 segleft_org = rh->ip6r_segleft;
390 rh->ip6r_segleft = 0;
391 }
392
393 bzero(&state, sizeof(state));
394 state.m = m;
395 error = ipsec6_output_trans(&state, nexthdrp, mprev, sp, flags,
396 &needipsectun);
397 m = state.m;
398 if (error == EJUSTRETURN) {
399 /*
400 * We had a SP with a level of 'use' and no SA. We
401 * will just continue to process the packet without
402 * IPsec processing.
403 */
404 ;
405 } else if (error) {
406 /* mbuf is already reclaimed in ipsec6_output_trans. */
407 m = NULL;
408 switch (error) {
409 case EHOSTUNREACH:
410 case ENETUNREACH:
411 case EMSGSIZE:
412 case ENOBUFS:
413 case ENOMEM:
414 break;
415 default:
416 printf("[%s:%d] (ipsec): error code %d\n",
417 __func__, __LINE__, error);
418 /* FALLTHROUGH */
419 case ENOENT:
420 /* don't show these error codes to the user */
421 error = 0;
422 break;
423 }
424 goto bad;
425 } else if (!needipsectun) {
426 /*
427 * In the FAST IPSec case we have already
428 * re-injected the packet and it has been freed
429 * by the ipsec_done() function. So, just clean
430 * up after ourselves.
431 */
432 m = NULL;
433 goto done;
434 }
435 if (exthdrs.ip6e_rthdr) {
436 /* ah6_output doesn't modify mbuf chain */
437 rh->ip6r_segleft = segleft_org;
438 }
439 skip_ipsec2:;
440 #endif /* IPSEC */
441
442 /*
443 * If there is a routing header, discard the packet.
444 */
445 if (exthdrs.ip6e_rthdr) {
446 error = EINVAL;
447 goto bad;
448 }
449
450 /* Source address validation */
451 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) &&
452 (flags & IPV6_UNSPECSRC) == 0) {
453 error = EOPNOTSUPP;
454 V_ip6stat.ip6s_badscope++;
455 goto bad;
456 }
457 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) {
458 error = EOPNOTSUPP;
459 V_ip6stat.ip6s_badscope++;
460 goto bad;
461 }
462
463 V_ip6stat.ip6s_localout++;
464
465 /*
466 * Route packet.
467 */
468 if (ro == 0) {
469 ro = &ip6route;
470 bzero((caddr_t)ro, sizeof(*ro));
471 }
472 ro_pmtu = ro;
473 if (opt && opt->ip6po_rthdr)
474 ro = &opt->ip6po_route;
475 dst = (struct sockaddr_in6 *)&ro->ro_dst;
476
477 again:
478 /*
479 * if specified, try to fill in the traffic class field.
480 * do not override if a non-zero value is already set.
481 * we check the diffserv field and the ecn field separately.
482 */
483 if (opt && opt->ip6po_tclass >= 0) {
484 int mask = 0;
485
486 if ((ip6->ip6_flow & htonl(0xfc << 20)) == 0)
487 mask |= 0xfc;
488 if ((ip6->ip6_flow & htonl(0x03 << 20)) == 0)
489 mask |= 0x03;
490 if (mask != 0)
491 ip6->ip6_flow |= htonl((opt->ip6po_tclass & mask) << 20);
492 }
493
494 /* fill in or override the hop limit field, if necessary. */
495 if (opt && opt->ip6po_hlim != -1)
496 ip6->ip6_hlim = opt->ip6po_hlim & 0xff;
497 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
498 if (im6o != NULL)
499 ip6->ip6_hlim = im6o->im6o_multicast_hlim;
500 else
501 ip6->ip6_hlim = V_ip6_defmcasthlim;
502 }
503
504 #ifdef IPSEC
505 /*
506 * We may re-inject packets into the stack here.
507 */
508 if (needipsec && needipsectun) {
509 struct ipsec_output_state state;
510
511 /*
512 * All the extension headers will become inaccessible
513 * (since they can be encrypted).
514 * Don't panic, we need no more updates to extension headers
515 * on inner IPv6 packet (since they are now encapsulated).
516 *
517 * IPv6 [ESP|AH] IPv6 [extension headers] payload
518 */
519 bzero(&exthdrs, sizeof(exthdrs));
520 exthdrs.ip6e_ip6 = m;
521
522 bzero(&state, sizeof(state));
523 state.m = m;
524 state.ro = (struct route *)ro;
525 state.dst = (struct sockaddr *)dst;
526
527 error = ipsec6_output_tunnel(&state, sp, flags);
528
529 m = state.m;
530 ro = (struct route_in6 *)state.ro;
531 dst = (struct sockaddr_in6 *)state.dst;
532 if (error == EJUSTRETURN) {
533 /*
534 * We had a SP with a level of 'use' and no SA. We
535 * will just continue to process the packet without
536 * IPsec processing.
537 */
538 ;
539 } else if (error) {
540 /* mbuf is already reclaimed in ipsec6_output_tunnel. */
541 m0 = m = NULL;
542 m = NULL;
543 switch (error) {
544 case EHOSTUNREACH:
545 case ENETUNREACH:
546 case EMSGSIZE:
547 case ENOBUFS:
548 case ENOMEM:
549 break;
550 default:
551 printf("[%s:%d] (ipsec): error code %d\n",
552 __func__, __LINE__, error);
553 /* FALLTHROUGH */
554 case ENOENT:
555 /* don't show these error codes to the user */
556 error = 0;
557 break;
558 }
559 goto bad;
560 } else {
561 /*
562 * In the FAST IPSec case we have already
563 * re-injected the packet and it has been freed
564 * by the ipsec_done() function. So, just clean
565 * up after ourselves.
566 */
567 m = NULL;
568 goto done;
569 }
570
571 exthdrs.ip6e_ip6 = m;
572 }
573 #endif /* IPSEC */
574
575 /* adjust pointer */
576 ip6 = mtod(m, struct ip6_hdr *);
577
578 bzero(&dst_sa, sizeof(dst_sa));
579 dst_sa.sin6_family = AF_INET6;
580 dst_sa.sin6_len = sizeof(dst_sa);
581 dst_sa.sin6_addr = ip6->ip6_dst;
582 if ((error = in6_selectroute_fib(&dst_sa, opt, im6o, ro,
583 &ifp, &rt, inp ? inp->inp_inc.inc_fibnum : M_GETFIB(m))) != 0) {
584 switch (error) {
585 case EHOSTUNREACH:
586 V_ip6stat.ip6s_noroute++;
587 break;
588 case EADDRNOTAVAIL:
589 default:
590 break; /* XXX statistics? */
591 }
592 if (ifp != NULL)
593 in6_ifstat_inc(ifp, ifs6_out_discard);
594 goto bad;
595 }
596 if (rt == NULL) {
597 /*
598 * If in6_selectroute() does not return a route entry,
599 * dst may not have been updated.
600 */
601 *dst = dst_sa; /* XXX */
602 }
603
604 /*
605 * then rt (for unicast) and ifp must be non-NULL valid values.
606 */
607 if ((flags & IPV6_FORWARDING) == 0) {
608 /* XXX: the FORWARDING flag can be set for mrouting. */
609 in6_ifstat_inc(ifp, ifs6_out_request);
610 }
611 if (rt != NULL) {
612 ia = (struct in6_ifaddr *)(rt->rt_ifa);
613 rt->rt_use++;
614 }
615
616
617 /*
618 * The outgoing interface must be in the zone of source and
619 * destination addresses.
620 */
621 origifp = ifp;
622
623 src0 = ip6->ip6_src;
624 if (in6_setscope(&src0, origifp, &zone))
625 goto badscope;
626 bzero(&src_sa, sizeof(src_sa));
627 src_sa.sin6_family = AF_INET6;
628 src_sa.sin6_len = sizeof(src_sa);
629 src_sa.sin6_addr = ip6->ip6_src;
630 if (sa6_recoverscope(&src_sa) || zone != src_sa.sin6_scope_id)
631 goto badscope;
632
633 dst0 = ip6->ip6_dst;
634 if (in6_setscope(&dst0, origifp, &zone))
635 goto badscope;
636 /* re-initialize to be sure */
637 bzero(&dst_sa, sizeof(dst_sa));
638 dst_sa.sin6_family = AF_INET6;
639 dst_sa.sin6_len = sizeof(dst_sa);
640 dst_sa.sin6_addr = ip6->ip6_dst;
641 if (sa6_recoverscope(&dst_sa) || zone != dst_sa.sin6_scope_id) {
642 goto badscope;
643 }
644
645 /* We should use ia_ifp to support the case of
646 * sending packets to an address of our own.
647 */
648 if (ia != NULL && ia->ia_ifp)
649 ifp = ia->ia_ifp;
650
651 /* scope check is done. */
652 goto routefound;
653
654 badscope:
655 V_ip6stat.ip6s_badscope++;
656 in6_ifstat_inc(origifp, ifs6_out_discard);
657 if (error == 0)
658 error = EHOSTUNREACH; /* XXX */
659 goto bad;
660
661 routefound:
662 if (rt && !IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
663 if (opt && opt->ip6po_nextroute.ro_rt) {
664 /*
665 * The nexthop is explicitly specified by the
666 * application. We assume the next hop is an IPv6
667 * address.
668 */
669 dst = (struct sockaddr_in6 *)opt->ip6po_nexthop;
670 }
671 else if ((rt->rt_flags & RTF_GATEWAY))
672 dst = (struct sockaddr_in6 *)rt->rt_gateway;
673 }
674
675 if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
676 m->m_flags &= ~(M_BCAST | M_MCAST); /* just in case */
677 } else {
678 m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST;
679 in6_ifstat_inc(ifp, ifs6_out_mcast);
680 /*
681 * Confirm that the outgoing interface supports multicast.
682 */
683 if (!(ifp->if_flags & IFF_MULTICAST)) {
684 V_ip6stat.ip6s_noroute++;
685 in6_ifstat_inc(ifp, ifs6_out_discard);
686 error = ENETUNREACH;
687 goto bad;
688 }
689 if ((im6o == NULL && in6_mcast_loop) ||
690 (im6o && im6o->im6o_multicast_loop)) {
691 /*
692 * Loop back multicast datagram if not expressly
693 * forbidden to do so, even if we have not joined
694 * the address; protocols will filter it later,
695 * thus deferring a hash lookup and lock acquisition
696 * at the expense of an m_copym().
697 */
698 ip6_mloopback(ifp, m, dst);
699 } else {
700 /*
701 * If we are acting as a multicast router, perform
702 * multicast forwarding as if the packet had just
703 * arrived on the interface to which we are about
704 * to send. The multicast forwarding function
705 * recursively calls this function, using the
706 * IPV6_FORWARDING flag to prevent infinite recursion.
707 *
708 * Multicasts that are looped back by ip6_mloopback(),
709 * above, will be forwarded by the ip6_input() routine,
710 * if necessary.
711 */
712 if (V_ip6_mrouter && (flags & IPV6_FORWARDING) == 0) {
713 /*
714 * XXX: ip6_mforward expects that rcvif is NULL
715 * when it is called from the originating path.
716 * However, it is not always the case, since
717 * some versions of MGETHDR() does not
718 * initialize the field.
719 */
720 m->m_pkthdr.rcvif = NULL;
721 if (ip6_mforward(ip6, ifp, m) != 0) {
722 m_freem(m);
723 goto done;
724 }
725 }
726 }
727 /*
728 * Multicasts with a hoplimit of zero may be looped back,
729 * above, but must not be transmitted on a network.
730 * Also, multicasts addressed to the loopback interface
731 * are not sent -- the above call to ip6_mloopback() will
732 * loop back a copy if this host actually belongs to the
733 * destination group on the loopback interface.
734 */
735 if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK) ||
736 IN6_IS_ADDR_MC_INTFACELOCAL(&ip6->ip6_dst)) {
737 m_freem(m);
738 goto done;
739 }
740 }
741
742 /*
743 * Fill the outgoing inteface to tell the upper layer
744 * to increment per-interface statistics.
745 */
746 if (ifpp)
747 *ifpp = ifp;
748
749 /* Determine path MTU. */
750 if ((error = ip6_getpmtu(ro_pmtu, ro, ifp, &finaldst, &mtu,
751 &alwaysfrag, inp ? inp->inp_inc.inc_fibnum : M_GETFIB(m))) != 0)
752 goto bad;
753
754 /*
755 * The caller of this function may specify to use the minimum MTU
756 * in some cases.
757 * An advanced API option (IPV6_USE_MIN_MTU) can also override MTU
758 * setting. The logic is a bit complicated; by default, unicast
759 * packets will follow path MTU while multicast packets will be sent at
760 * the minimum MTU. If IP6PO_MINMTU_ALL is specified, all packets
761 * including unicast ones will be sent at the minimum MTU. Multicast
762 * packets will always be sent at the minimum MTU unless
763 * IP6PO_MINMTU_DISABLE is explicitly specified.
764 * See RFC 3542 for more details.
765 */
766 if (mtu > IPV6_MMTU) {
767 if ((flags & IPV6_MINMTU))
768 mtu = IPV6_MMTU;
769 else if (opt && opt->ip6po_minmtu == IP6PO_MINMTU_ALL)
770 mtu = IPV6_MMTU;
771 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) &&
772 (opt == NULL ||
773 opt->ip6po_minmtu != IP6PO_MINMTU_DISABLE)) {
774 mtu = IPV6_MMTU;
775 }
776 }
777
778 /*
779 * clear embedded scope identifiers if necessary.
780 * in6_clearscope will touch the addresses only when necessary.
781 */
782 in6_clearscope(&ip6->ip6_src);
783 in6_clearscope(&ip6->ip6_dst);
784
785 /*
786 * If the outgoing packet contains a hop-by-hop options header,
787 * it must be examined and processed even by the source node.
788 * (RFC 2460, section 4.)
789 */
790 if (exthdrs.ip6e_hbh) {
791 struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh, struct ip6_hbh *);
792 u_int32_t dummy; /* XXX unused */
793 u_int32_t plen = 0; /* XXX: ip6_process will check the value */
794
795 #ifdef DIAGNOSTIC
796 if ((hbh->ip6h_len + 1) << 3 > exthdrs.ip6e_hbh->m_len)
797 panic("ip6e_hbh is not continuous");
798 #endif
799 /*
800 * XXX: if we have to send an ICMPv6 error to the sender,
801 * we need the M_LOOP flag since icmp6_error() expects
802 * the IPv6 and the hop-by-hop options header are
803 * continuous unless the flag is set.
804 */
805 m->m_flags |= M_LOOP;
806 m->m_pkthdr.rcvif = ifp;
807 if (ip6_process_hopopts(m, (u_int8_t *)(hbh + 1),
808 ((hbh->ip6h_len + 1) << 3) - sizeof(struct ip6_hbh),
809 &dummy, &plen) < 0) {
810 /* m was already freed at this point */
811 error = EINVAL;/* better error? */
812 goto done;
813 }
814 m->m_flags &= ~M_LOOP; /* XXX */
815 m->m_pkthdr.rcvif = NULL;
816 }
817
818 /* Jump over all PFIL processing if hooks are not active. */
819 if (!PFIL_HOOKED(&V_inet6_pfil_hook))
820 goto passout;
821
822 odst = ip6->ip6_dst;
823 /* Run through list of hooks for output packets. */
824 error = pfil_run_hooks(&V_inet6_pfil_hook, &m, ifp, PFIL_OUT, inp);
825 if (error != 0 || m == NULL)
826 goto done;
827 ip6 = mtod(m, struct ip6_hdr *);
828
829 /* See if destination IP address was changed by packet filter. */
830 if (!IN6_ARE_ADDR_EQUAL(&odst, &ip6->ip6_dst)) {
831 m->m_flags |= M_SKIP_FIREWALL;
832 /* If destination is now ourself drop to ip6_input(). */
833 if (in6_localaddr(&ip6->ip6_dst)) {
834 if (m->m_pkthdr.rcvif == NULL)
835 m->m_pkthdr.rcvif = V_loif;
836 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
837 m->m_pkthdr.csum_flags |=
838 CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
839 m->m_pkthdr.csum_data = 0xffff;
840 }
841 m->m_pkthdr.csum_flags |=
842 CSUM_IP_CHECKED | CSUM_IP_VALID;
843 #ifdef SCTP
844 if (m->m_pkthdr.csum_flags & CSUM_SCTP)
845 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID;
846 #endif
847 error = netisr_queue(NETISR_IPV6, m);
848 goto done;
849 } else
850 goto again; /* Redo the routing table lookup. */
851 }
852
853 /* XXX: IPFIREWALL_FORWARD */
854
855 passout:
856 /*
857 * Send the packet to the outgoing interface.
858 * If necessary, do IPv6 fragmentation before sending.
859 *
860 * the logic here is rather complex:
861 * 1: normal case (dontfrag == 0, alwaysfrag == 0)
862 * 1-a: send as is if tlen <= path mtu
863 * 1-b: fragment if tlen > path mtu
864 *
865 * 2: if user asks us not to fragment (dontfrag == 1)
866 * 2-a: send as is if tlen <= interface mtu
867 * 2-b: error if tlen > interface mtu
868 *
869 * 3: if we always need to attach fragment header (alwaysfrag == 1)
870 * always fragment
871 *
872 * 4: if dontfrag == 1 && alwaysfrag == 1
873 * error, as we cannot handle this conflicting request
874 */
875 #ifdef SCTP
876 sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_hwassist;
877 if (sw_csum & CSUM_SCTP) {
878 sctp_delayed_cksum(m, sizeof(struct ip6_hdr));
879 sw_csum &= ~CSUM_SCTP;
880 }
881 #endif
882 tlen = m->m_pkthdr.len;
883
884 if (opt && (opt->ip6po_flags & IP6PO_DONTFRAG))
885 dontfrag = 1;
886 else
887 dontfrag = 0;
888 if (dontfrag && alwaysfrag) { /* case 4 */
889 /* conflicting request - can't transmit */
890 error = EMSGSIZE;
891 goto bad;
892 }
893 if (dontfrag && tlen > IN6_LINKMTU(ifp)) { /* case 2-b */
894 /*
895 * Even if the DONTFRAG option is specified, we cannot send the
896 * packet when the data length is larger than the MTU of the
897 * outgoing interface.
898 * Notify the error by sending IPV6_PATHMTU ancillary data as
899 * well as returning an error code (the latter is not described
900 * in the API spec.)
901 */
902 u_int32_t mtu32;
903 struct ip6ctlparam ip6cp;
904
905 mtu32 = (u_int32_t)mtu;
906 bzero(&ip6cp, sizeof(ip6cp));
907 ip6cp.ip6c_cmdarg = (void *)&mtu32;
908 pfctlinput2(PRC_MSGSIZE, (struct sockaddr *)&ro_pmtu->ro_dst,
909 (void *)&ip6cp);
910
911 error = EMSGSIZE;
912 goto bad;
913 }
914
915 /*
916 * transmit packet without fragmentation
917 */
918 if (dontfrag || (!alwaysfrag && tlen <= mtu)) { /* case 1-a and 2-a */
919 struct in6_ifaddr *ia6;
920
921 ip6 = mtod(m, struct ip6_hdr *);
922 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src);
923 if (ia6) {
924 /* Record statistics for this interface address. */
925 ia6->ia_ifa.if_opackets++;
926 ia6->ia_ifa.if_obytes += m->m_pkthdr.len;
927 ifa_free(&ia6->ia_ifa);
928 }
929 error = nd6_output(ifp, origifp, m, dst, ro->ro_rt);
930 goto done;
931 }
932
933 /*
934 * try to fragment the packet. case 1-b and 3
935 */
936 if (mtu < IPV6_MMTU) {
937 /* path MTU cannot be less than IPV6_MMTU */
938 error = EMSGSIZE;
939 in6_ifstat_inc(ifp, ifs6_out_fragfail);
940 goto bad;
941 } else if (ip6->ip6_plen == 0) {
942 /* jumbo payload cannot be fragmented */
943 error = EMSGSIZE;
944 in6_ifstat_inc(ifp, ifs6_out_fragfail);
945 goto bad;
946 } else {
947 struct mbuf **mnext, *m_frgpart;
948 struct ip6_frag *ip6f;
949 u_int32_t id = htonl(ip6_randomid());
950 u_char nextproto;
951
952 int qslots = ifp->if_snd.ifq_maxlen - ifp->if_snd.ifq_len;
953
954 /*
955 * Too large for the destination or interface;
956 * fragment if possible.
957 * Must be able to put at least 8 bytes per fragment.
958 */
959 hlen = unfragpartlen;
960 if (mtu > IPV6_MAXPACKET)
961 mtu = IPV6_MAXPACKET;
962
963 len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7;
964 if (len < 8) {
965 error = EMSGSIZE;
966 in6_ifstat_inc(ifp, ifs6_out_fragfail);
967 goto bad;
968 }
969
970 /*
971 * Verify that we have any chance at all of being able to queue
972 * the packet or packet fragments
973 */
974 if (qslots <= 0 || ((u_int)qslots * (mtu - hlen)
975 < tlen /* - hlen */)) {
976 error = ENOBUFS;
977 V_ip6stat.ip6s_odropped++;
978 goto bad;
979 }
980
981 mnext = &m->m_nextpkt;
982
983 /*
984 * Change the next header field of the last header in the
985 * unfragmentable part.
986 */
987 if (exthdrs.ip6e_rthdr) {
988 nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *);
989 *mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT;
990 } else if (exthdrs.ip6e_dest1) {
991 nextproto = *mtod(exthdrs.ip6e_dest1, u_char *);
992 *mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT;
993 } else if (exthdrs.ip6e_hbh) {
994 nextproto = *mtod(exthdrs.ip6e_hbh, u_char *);
995 *mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT;
996 } else {
997 nextproto = ip6->ip6_nxt;
998 ip6->ip6_nxt = IPPROTO_FRAGMENT;
999 }
1000
1001 /*
1002 * Loop through length of segment after first fragment,
1003 * make new header and copy data of each part and link onto
1004 * chain.
1005 */
1006 m0 = m;
1007 for (off = hlen; off < tlen; off += len) {
1008 MGETHDR(m, M_DONTWAIT, MT_HEADER);
1009 if (!m) {
1010 error = ENOBUFS;
1011 V_ip6stat.ip6s_odropped++;
1012 goto sendorfree;
1013 }
1014 m->m_pkthdr.rcvif = NULL;
1015 m->m_flags = m0->m_flags & M_COPYFLAGS; /* incl. FIB */
1016 *mnext = m;
1017 mnext = &m->m_nextpkt;
1018 m->m_data += max_linkhdr;
1019 mhip6 = mtod(m, struct ip6_hdr *);
1020 *mhip6 = *ip6;
1021 m->m_len = sizeof(*mhip6);
1022 error = ip6_insertfraghdr(m0, m, hlen, &ip6f);
1023 if (error) {
1024 V_ip6stat.ip6s_odropped++;
1025 goto sendorfree;
1026 }
1027 ip6f->ip6f_offlg = htons((u_short)((off - hlen) & ~7));
1028 if (off + len >= tlen)
1029 len = tlen - off;
1030 else
1031 ip6f->ip6f_offlg |= IP6F_MORE_FRAG;
1032 mhip6->ip6_plen = htons((u_short)(len + hlen +
1033 sizeof(*ip6f) - sizeof(struct ip6_hdr)));
1034 if ((m_frgpart = m_copy(m0, off, len)) == 0) {
1035 error = ENOBUFS;
1036 V_ip6stat.ip6s_odropped++;
1037 goto sendorfree;
1038 }
1039 m_cat(m, m_frgpart);
1040 m->m_pkthdr.len = len + hlen + sizeof(*ip6f);
1041 m->m_pkthdr.rcvif = NULL;
1042 ip6f->ip6f_reserved = 0;
1043 ip6f->ip6f_ident = id;
1044 ip6f->ip6f_nxt = nextproto;
1045 V_ip6stat.ip6s_ofragments++;
1046 in6_ifstat_inc(ifp, ifs6_out_fragcreat);
1047 }
1048
1049 in6_ifstat_inc(ifp, ifs6_out_fragok);
1050 }
1051
1052 /*
1053 * Remove leading garbages.
1054 */
1055 sendorfree:
1056 m = m0->m_nextpkt;
1057 m0->m_nextpkt = 0;
1058 m_freem(m0);
1059 for (m0 = m; m; m = m0) {
1060 m0 = m->m_nextpkt;
1061 m->m_nextpkt = 0;
1062 if (error == 0) {
1063 /* Record statistics for this interface address. */
1064 if (ia) {
1065 ia->ia_ifa.if_opackets++;
1066 ia->ia_ifa.if_obytes += m->m_pkthdr.len;
1067 }
1068 error = nd6_output(ifp, origifp, m, dst, ro->ro_rt);
1069 } else
1070 m_freem(m);
1071 }
1072
1073 if (error == 0)
1074 V_ip6stat.ip6s_fragmented++;
1075
1076 done:
1077 if (ro == &ip6route && ro->ro_rt) { /* brace necessary for RTFREE */
1078 RTFREE(ro->ro_rt);
1079 } else if (ro_pmtu == &ip6route && ro_pmtu->ro_rt) {
1080 RTFREE(ro_pmtu->ro_rt);
1081 }
1082 #ifdef IPSEC
1083 if (sp != NULL)
1084 KEY_FREESP(&sp);
1085 #endif
1086
1087 return (error);
1088
1089 freehdrs:
1090 m_freem(exthdrs.ip6e_hbh); /* m_freem will check if mbuf is 0 */
1091 m_freem(exthdrs.ip6e_dest1);
1092 m_freem(exthdrs.ip6e_rthdr);
1093 m_freem(exthdrs.ip6e_dest2);
1094 /* FALLTHROUGH */
1095 bad:
1096 if (m)
1097 m_freem(m);
1098 goto done;
1099 }
1100
1101 static int
1102 ip6_copyexthdr(struct mbuf **mp, caddr_t hdr, int hlen)
1103 {
1104 struct mbuf *m;
1105
1106 if (hlen > MCLBYTES)
1107 return (ENOBUFS); /* XXX */
1108
1109 MGET(m, M_DONTWAIT, MT_DATA);
1110 if (!m)
1111 return (ENOBUFS);
1112
1113 if (hlen > MLEN) {
1114 MCLGET(m, M_DONTWAIT);
1115 if ((m->m_flags & M_EXT) == 0) {
1116 m_free(m);
1117 return (ENOBUFS);
1118 }
1119 }
1120 m->m_len = hlen;
1121 if (hdr)
1122 bcopy(hdr, mtod(m, caddr_t), hlen);
1123
1124 *mp = m;
1125 return (0);
1126 }
1127
1128 /*
1129 * Insert jumbo payload option.
1130 */
1131 static int
1132 ip6_insert_jumboopt(struct ip6_exthdrs *exthdrs, u_int32_t plen)
1133 {
1134 struct mbuf *mopt;
1135 u_char *optbuf;
1136 u_int32_t v;
1137
1138 #define JUMBOOPTLEN 8 /* length of jumbo payload option and padding */
1139
1140 /*
1141 * If there is no hop-by-hop options header, allocate new one.
1142 * If there is one but it doesn't have enough space to store the
1143 * jumbo payload option, allocate a cluster to store the whole options.
1144 * Otherwise, use it to store the options.
1145 */
1146 if (exthdrs->ip6e_hbh == 0) {
1147 MGET(mopt, M_DONTWAIT, MT_DATA);
1148 if (mopt == 0)
1149 return (ENOBUFS);
1150 mopt->m_len = JUMBOOPTLEN;
1151 optbuf = mtod(mopt, u_char *);
1152 optbuf[1] = 0; /* = ((JUMBOOPTLEN) >> 3) - 1 */
1153 exthdrs->ip6e_hbh = mopt;
1154 } else {
1155 struct ip6_hbh *hbh;
1156
1157 mopt = exthdrs->ip6e_hbh;
1158 if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) {
1159 /*
1160 * XXX assumption:
1161 * - exthdrs->ip6e_hbh is not referenced from places
1162 * other than exthdrs.
1163 * - exthdrs->ip6e_hbh is not an mbuf chain.
1164 */
1165 int oldoptlen = mopt->m_len;
1166 struct mbuf *n;
1167
1168 /*
1169 * XXX: give up if the whole (new) hbh header does
1170 * not fit even in an mbuf cluster.
1171 */
1172 if (oldoptlen + JUMBOOPTLEN > MCLBYTES)
1173 return (ENOBUFS);
1174
1175 /*
1176 * As a consequence, we must always prepare a cluster
1177 * at this point.
1178 */
1179 MGET(n, M_DONTWAIT, MT_DATA);
1180 if (n) {
1181 MCLGET(n, M_DONTWAIT);
1182 if ((n->m_flags & M_EXT) == 0) {
1183 m_freem(n);
1184 n = NULL;
1185 }
1186 }
1187 if (!n)
1188 return (ENOBUFS);
1189 n->m_len = oldoptlen + JUMBOOPTLEN;
1190 bcopy(mtod(mopt, caddr_t), mtod(n, caddr_t),
1191 oldoptlen);
1192 optbuf = mtod(n, caddr_t) + oldoptlen;
1193 m_freem(mopt);
1194 mopt = exthdrs->ip6e_hbh = n;
1195 } else {
1196 optbuf = mtod(mopt, u_char *) + mopt->m_len;
1197 mopt->m_len += JUMBOOPTLEN;
1198 }
1199 optbuf[0] = IP6OPT_PADN;
1200 optbuf[1] = 1;
1201
1202 /*
1203 * Adjust the header length according to the pad and
1204 * the jumbo payload option.
1205 */
1206 hbh = mtod(mopt, struct ip6_hbh *);
1207 hbh->ip6h_len += (JUMBOOPTLEN >> 3);
1208 }
1209
1210 /* fill in the option. */
1211 optbuf[2] = IP6OPT_JUMBO;
1212 optbuf[3] = 4;
1213 v = (u_int32_t)htonl(plen + JUMBOOPTLEN);
1214 bcopy(&v, &optbuf[4], sizeof(u_int32_t));
1215
1216 /* finally, adjust the packet header length */
1217 exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN;
1218
1219 return (0);
1220 #undef JUMBOOPTLEN
1221 }
1222
1223 /*
1224 * Insert fragment header and copy unfragmentable header portions.
1225 */
1226 static int
1227 ip6_insertfraghdr(struct mbuf *m0, struct mbuf *m, int hlen,
1228 struct ip6_frag **frghdrp)
1229 {
1230 struct mbuf *n, *mlast;
1231
1232 if (hlen > sizeof(struct ip6_hdr)) {
1233 n = m_copym(m0, sizeof(struct ip6_hdr),
1234 hlen - sizeof(struct ip6_hdr), M_DONTWAIT);
1235 if (n == 0)
1236 return (ENOBUFS);
1237 m->m_next = n;
1238 } else
1239 n = m;
1240
1241 /* Search for the last mbuf of unfragmentable part. */
1242 for (mlast = n; mlast->m_next; mlast = mlast->m_next)
1243 ;
1244
1245 if ((mlast->m_flags & M_EXT) == 0 &&
1246 M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) {
1247 /* use the trailing space of the last mbuf for the fragment hdr */
1248 *frghdrp = (struct ip6_frag *)(mtod(mlast, caddr_t) +
1249 mlast->m_len);
1250 mlast->m_len += sizeof(struct ip6_frag);
1251 m->m_pkthdr.len += sizeof(struct ip6_frag);
1252 } else {
1253 /* allocate a new mbuf for the fragment header */
1254 struct mbuf *mfrg;
1255
1256 MGET(mfrg, M_DONTWAIT, MT_DATA);
1257 if (mfrg == 0)
1258 return (ENOBUFS);
1259 mfrg->m_len = sizeof(struct ip6_frag);
1260 *frghdrp = mtod(mfrg, struct ip6_frag *);
1261 mlast->m_next = mfrg;
1262 }
1263
1264 return (0);
1265 }
1266
1267 static int
1268 ip6_getpmtu(struct route_in6 *ro_pmtu, struct route_in6 *ro,
1269 struct ifnet *ifp, struct in6_addr *dst, u_long *mtup,
1270 int *alwaysfragp, u_int fibnum)
1271 {
1272 u_int32_t mtu = 0;
1273 int alwaysfrag = 0;
1274 int error = 0;
1275
1276 if (ro_pmtu != ro) {
1277 /* The first hop and the final destination may differ. */
1278 struct sockaddr_in6 *sa6_dst =
1279 (struct sockaddr_in6 *)&ro_pmtu->ro_dst;
1280 if (ro_pmtu->ro_rt &&
1281 ((ro_pmtu->ro_rt->rt_flags & RTF_UP) == 0 ||
1282 !IN6_ARE_ADDR_EQUAL(&sa6_dst->sin6_addr, dst))) {
1283 RTFREE(ro_pmtu->ro_rt);
1284 ro_pmtu->ro_rt = (struct rtentry *)NULL;
1285 }
1286 if (ro_pmtu->ro_rt == NULL) {
1287 bzero(sa6_dst, sizeof(*sa6_dst));
1288 sa6_dst->sin6_family = AF_INET6;
1289 sa6_dst->sin6_len = sizeof(struct sockaddr_in6);
1290 sa6_dst->sin6_addr = *dst;
1291
1292 in6_rtalloc(ro_pmtu, fibnum);
1293 }
1294 }
1295 if (ro_pmtu->ro_rt) {
1296 u_int32_t ifmtu;
1297 struct in_conninfo inc;
1298
1299 bzero(&inc, sizeof(inc));
1300 inc.inc_flags |= INC_ISIPV6;
1301 inc.inc6_faddr = *dst;
1302
1303 if (ifp == NULL)
1304 ifp = ro_pmtu->ro_rt->rt_ifp;
1305 ifmtu = IN6_LINKMTU(ifp);
1306 mtu = tcp_hc_getmtu(&inc);
1307 if (mtu)
1308 mtu = min(mtu, ro_pmtu->ro_rt->rt_rmx.rmx_mtu);
1309 else
1310 mtu = ro_pmtu->ro_rt->rt_rmx.rmx_mtu;
1311 if (mtu == 0)
1312 mtu = ifmtu;
1313 else if (mtu < IPV6_MMTU) {
1314 /*
1315 * RFC2460 section 5, last paragraph:
1316 * if we record ICMPv6 too big message with
1317 * mtu < IPV6_MMTU, transmit packets sized IPV6_MMTU
1318 * or smaller, with framgent header attached.
1319 * (fragment header is needed regardless from the
1320 * packet size, for translators to identify packets)
1321 */
1322 alwaysfrag = 1;
1323 mtu = IPV6_MMTU;
1324 } else if (mtu > ifmtu) {
1325 /*
1326 * The MTU on the route is larger than the MTU on
1327 * the interface! This shouldn't happen, unless the
1328 * MTU of the interface has been changed after the
1329 * interface was brought up. Change the MTU in the
1330 * route to match the interface MTU (as long as the
1331 * field isn't locked).
1332 */
1333 mtu = ifmtu;
1334 ro_pmtu->ro_rt->rt_rmx.rmx_mtu = mtu;
1335 }
1336 } else if (ifp) {
1337 mtu = IN6_LINKMTU(ifp);
1338 } else
1339 error = EHOSTUNREACH; /* XXX */
1340
1341 *mtup = mtu;
1342 if (alwaysfragp)
1343 *alwaysfragp = alwaysfrag;
1344 return (error);
1345 }
1346
1347 /*
1348 * IP6 socket option processing.
1349 */
1350 int
1351 ip6_ctloutput(struct socket *so, struct sockopt *sopt)
1352 {
1353 int optdatalen, uproto;
1354 void *optdata;
1355 struct inpcb *in6p = sotoinpcb(so);
1356 int error, optval;
1357 int level, op, optname;
1358 int optlen;
1359 struct thread *td;
1360
1361 level = sopt->sopt_level;
1362 op = sopt->sopt_dir;
1363 optname = sopt->sopt_name;
1364 optlen = sopt->sopt_valsize;
1365 td = sopt->sopt_td;
1366 error = 0;
1367 optval = 0;
1368 uproto = (int)so->so_proto->pr_protocol;
1369
1370 if (level != IPPROTO_IPV6) {
1371 error = EINVAL;
1372
1373 if (sopt->sopt_level == SOL_SOCKET &&
1374 sopt->sopt_dir == SOPT_SET) {
1375 switch (sopt->sopt_name) {
1376 case SO_SETFIB:
1377 INP_WLOCK(in6p);
1378 in6p->inp_inc.inc_fibnum = so->so_fibnum;
1379 INP_WUNLOCK(in6p);
1380 error = 0;
1381 break;
1382 default:
1383 break;
1384 }
1385 }
1386 } else {
1387 switch (op) {
1388
1389 case SOPT_SET:
1390 switch (optname) {
1391 case IPV6_2292PKTOPTIONS:
1392 #ifdef IPV6_PKTOPTIONS
1393 case IPV6_PKTOPTIONS:
1394 #endif
1395 {
1396 struct mbuf *m;
1397
1398 error = soopt_getm(sopt, &m); /* XXX */
1399 if (error != 0)
1400 break;
1401 error = soopt_mcopyin(sopt, m); /* XXX */
1402 if (error != 0)
1403 break;
1404 error = ip6_pcbopts(&in6p->in6p_outputopts,
1405 m, so, sopt);
1406 m_freem(m); /* XXX */
1407 break;
1408 }
1409
1410 /*
1411 * Use of some Hop-by-Hop options or some
1412 * Destination options, might require special
1413 * privilege. That is, normal applications
1414 * (without special privilege) might be forbidden
1415 * from setting certain options in outgoing packets,
1416 * and might never see certain options in received
1417 * packets. [RFC 2292 Section 6]
1418 * KAME specific note:
1419 * KAME prevents non-privileged users from sending or
1420 * receiving ANY hbh/dst options in order to avoid
1421 * overhead of parsing options in the kernel.
1422 */
1423 case IPV6_RECVHOPOPTS:
1424 case IPV6_RECVDSTOPTS:
1425 case IPV6_RECVRTHDRDSTOPTS:
1426 if (td != NULL) {
1427 error = priv_check(td,
1428 PRIV_NETINET_SETHDROPTS);
1429 if (error)
1430 break;
1431 }
1432 /* FALLTHROUGH */
1433 case IPV6_UNICAST_HOPS:
1434 case IPV6_HOPLIMIT:
1435 case IPV6_FAITH:
1436
1437 case IPV6_RECVPKTINFO:
1438 case IPV6_RECVHOPLIMIT:
1439 case IPV6_RECVRTHDR:
1440 case IPV6_RECVPATHMTU:
1441 case IPV6_RECVTCLASS:
1442 case IPV6_V6ONLY:
1443 case IPV6_AUTOFLOWLABEL:
1444 case IPV6_BINDANY:
1445 if (optname == IPV6_BINDANY && td != NULL) {
1446 error = priv_check(td,
1447 PRIV_NETINET_BINDANY);
1448 if (error)
1449 break;
1450 }
1451
1452 if (optlen != sizeof(int)) {
1453 error = EINVAL;
1454 break;
1455 }
1456 error = sooptcopyin(sopt, &optval,
1457 sizeof optval, sizeof optval);
1458 if (error)
1459 break;
1460 switch (optname) {
1461
1462 case IPV6_UNICAST_HOPS:
1463 if (optval < -1 || optval >= 256)
1464 error = EINVAL;
1465 else {
1466 /* -1 = kernel default */
1467 in6p->in6p_hops = optval;
1468 if ((in6p->inp_vflag &
1469 INP_IPV4) != 0)
1470 in6p->inp_ip_ttl = optval;
1471 }
1472 break;
1473 #define OPTSET(bit) \
1474 do { \
1475 INP_WLOCK(in6p); \
1476 if (optval) \
1477 in6p->inp_flags |= (bit); \
1478 else \
1479 in6p->inp_flags &= ~(bit); \
1480 INP_WUNLOCK(in6p); \
1481 } while (/*CONSTCOND*/ 0)
1482 #define OPTSET2292(bit) \
1483 do { \
1484 INP_WLOCK(in6p); \
1485 in6p->inp_flags |= IN6P_RFC2292; \
1486 if (optval) \
1487 in6p->inp_flags |= (bit); \
1488 else \
1489 in6p->inp_flags &= ~(bit); \
1490 INP_WUNLOCK(in6p); \
1491 } while (/*CONSTCOND*/ 0)
1492 #define OPTBIT(bit) (in6p->inp_flags & (bit) ? 1 : 0)
1493
1494 case IPV6_RECVPKTINFO:
1495 /* cannot mix with RFC2292 */
1496 if (OPTBIT(IN6P_RFC2292)) {
1497 error = EINVAL;
1498 break;
1499 }
1500 OPTSET(IN6P_PKTINFO);
1501 break;
1502
1503 case IPV6_HOPLIMIT:
1504 {
1505 struct ip6_pktopts **optp;
1506
1507 /* cannot mix with RFC2292 */
1508 if (OPTBIT(IN6P_RFC2292)) {
1509 error = EINVAL;
1510 break;
1511 }
1512 optp = &in6p->in6p_outputopts;
1513 error = ip6_pcbopt(IPV6_HOPLIMIT,
1514 (u_char *)&optval, sizeof(optval),
1515 optp, (td != NULL) ? td->td_ucred :
1516 NULL, uproto);
1517 break;
1518 }
1519
1520 case IPV6_RECVHOPLIMIT:
1521 /* cannot mix with RFC2292 */
1522 if (OPTBIT(IN6P_RFC2292)) {
1523 error = EINVAL;
1524 break;
1525 }
1526 OPTSET(IN6P_HOPLIMIT);
1527 break;
1528
1529 case IPV6_RECVHOPOPTS:
1530 /* cannot mix with RFC2292 */
1531 if (OPTBIT(IN6P_RFC2292)) {
1532 error = EINVAL;
1533 break;
1534 }
1535 OPTSET(IN6P_HOPOPTS);
1536 break;
1537
1538 case IPV6_RECVDSTOPTS:
1539 /* cannot mix with RFC2292 */
1540 if (OPTBIT(IN6P_RFC2292)) {
1541 error = EINVAL;
1542 break;
1543 }
1544 OPTSET(IN6P_DSTOPTS);
1545 break;
1546
1547 case IPV6_RECVRTHDRDSTOPTS:
1548 /* cannot mix with RFC2292 */
1549 if (OPTBIT(IN6P_RFC2292)) {
1550 error = EINVAL;
1551 break;
1552 }
1553 OPTSET(IN6P_RTHDRDSTOPTS);
1554 break;
1555
1556 case IPV6_RECVRTHDR:
1557 /* cannot mix with RFC2292 */
1558 if (OPTBIT(IN6P_RFC2292)) {
1559 error = EINVAL;
1560 break;
1561 }
1562 OPTSET(IN6P_RTHDR);
1563 break;
1564
1565 case IPV6_FAITH:
1566 OPTSET(INP_FAITH);
1567 break;
1568
1569 case IPV6_RECVPATHMTU:
1570 /*
1571 * We ignore this option for TCP
1572 * sockets.
1573 * (RFC3542 leaves this case
1574 * unspecified.)
1575 */
1576 if (uproto != IPPROTO_TCP)
1577 OPTSET(IN6P_MTU);
1578 break;
1579
1580 case IPV6_V6ONLY:
1581 /*
1582 * make setsockopt(IPV6_V6ONLY)
1583 * available only prior to bind(2).
1584 * see ipng mailing list, Jun 22 2001.
1585 */
1586 if (in6p->inp_lport ||
1587 !IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr)) {
1588 error = EINVAL;
1589 break;
1590 }
1591 OPTSET(IN6P_IPV6_V6ONLY);
1592 if (optval)
1593 in6p->inp_vflag &= ~INP_IPV4;
1594 else
1595 in6p->inp_vflag |= INP_IPV4;
1596 break;
1597 case IPV6_RECVTCLASS:
1598 /* cannot mix with RFC2292 XXX */
1599 if (OPTBIT(IN6P_RFC2292)) {
1600 error = EINVAL;
1601 break;
1602 }
1603 OPTSET(IN6P_TCLASS);
1604 break;
1605 case IPV6_AUTOFLOWLABEL:
1606 OPTSET(IN6P_AUTOFLOWLABEL);
1607 break;
1608
1609 case IPV6_BINDANY:
1610 OPTSET(INP_BINDANY);
1611 break;
1612 }
1613 break;
1614
1615 case IPV6_TCLASS:
1616 case IPV6_DONTFRAG:
1617 case IPV6_USE_MIN_MTU:
1618 case IPV6_PREFER_TEMPADDR:
1619 if (optlen != sizeof(optval)) {
1620 error = EINVAL;
1621 break;
1622 }
1623 error = sooptcopyin(sopt, &optval,
1624 sizeof optval, sizeof optval);
1625 if (error)
1626 break;
1627 {
1628 struct ip6_pktopts **optp;
1629 optp = &in6p->in6p_outputopts;
1630 error = ip6_pcbopt(optname,
1631 (u_char *)&optval, sizeof(optval),
1632 optp, (td != NULL) ? td->td_ucred :
1633 NULL, uproto);
1634 break;
1635 }
1636
1637 case IPV6_2292PKTINFO:
1638 case IPV6_2292HOPLIMIT:
1639 case IPV6_2292HOPOPTS:
1640 case IPV6_2292DSTOPTS:
1641 case IPV6_2292RTHDR:
1642 /* RFC 2292 */
1643 if (optlen != sizeof(int)) {
1644 error = EINVAL;
1645 break;
1646 }
1647 error = sooptcopyin(sopt, &optval,
1648 sizeof optval, sizeof optval);
1649 if (error)
1650 break;
1651 switch (optname) {
1652 case IPV6_2292PKTINFO:
1653 OPTSET2292(IN6P_PKTINFO);
1654 break;
1655 case IPV6_2292HOPLIMIT:
1656 OPTSET2292(IN6P_HOPLIMIT);
1657 break;
1658 case IPV6_2292HOPOPTS:
1659 /*
1660 * Check super-user privilege.
1661 * See comments for IPV6_RECVHOPOPTS.
1662 */
1663 if (td != NULL) {
1664 error = priv_check(td,
1665 PRIV_NETINET_SETHDROPTS);
1666 if (error)
1667 return (error);
1668 }
1669 OPTSET2292(IN6P_HOPOPTS);
1670 break;
1671 case IPV6_2292DSTOPTS:
1672 if (td != NULL) {
1673 error = priv_check(td,
1674 PRIV_NETINET_SETHDROPTS);
1675 if (error)
1676 return (error);
1677 }
1678 OPTSET2292(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); /* XXX */
1679 break;
1680 case IPV6_2292RTHDR:
1681 OPTSET2292(IN6P_RTHDR);
1682 break;
1683 }
1684 break;
1685 case IPV6_PKTINFO:
1686 case IPV6_HOPOPTS:
1687 case IPV6_RTHDR:
1688 case IPV6_DSTOPTS:
1689 case IPV6_RTHDRDSTOPTS:
1690 case IPV6_NEXTHOP:
1691 {
1692 /* new advanced API (RFC3542) */
1693 u_char *optbuf;
1694 u_char optbuf_storage[MCLBYTES];
1695 int optlen;
1696 struct ip6_pktopts **optp;
1697
1698 /* cannot mix with RFC2292 */
1699 if (OPTBIT(IN6P_RFC2292)) {
1700 error = EINVAL;
1701 break;
1702 }
1703
1704 /*
1705 * We only ensure valsize is not too large
1706 * here. Further validation will be done
1707 * later.
1708 */
1709 error = sooptcopyin(sopt, optbuf_storage,
1710 sizeof(optbuf_storage), 0);
1711 if (error)
1712 break;
1713 optlen = sopt->sopt_valsize;
1714 optbuf = optbuf_storage;
1715 optp = &in6p->in6p_outputopts;
1716 error = ip6_pcbopt(optname, optbuf, optlen,
1717 optp, (td != NULL) ? td->td_ucred : NULL,
1718 uproto);
1719 break;
1720 }
1721 #undef OPTSET
1722
1723 case IPV6_MULTICAST_IF:
1724 case IPV6_MULTICAST_HOPS:
1725 case IPV6_MULTICAST_LOOP:
1726 case IPV6_JOIN_GROUP:
1727 case IPV6_LEAVE_GROUP:
1728 case IPV6_MSFILTER:
1729 case MCAST_BLOCK_SOURCE:
1730 case MCAST_UNBLOCK_SOURCE:
1731 case MCAST_JOIN_GROUP:
1732 case MCAST_LEAVE_GROUP:
1733 case MCAST_JOIN_SOURCE_GROUP:
1734 case MCAST_LEAVE_SOURCE_GROUP:
1735 error = ip6_setmoptions(in6p, sopt);
1736 break;
1737
1738 case IPV6_PORTRANGE:
1739 error = sooptcopyin(sopt, &optval,
1740 sizeof optval, sizeof optval);
1741 if (error)
1742 break;
1743
1744 INP_WLOCK(in6p);
1745 switch (optval) {
1746 case IPV6_PORTRANGE_DEFAULT:
1747 in6p->inp_flags &= ~(INP_LOWPORT);
1748 in6p->inp_flags &= ~(INP_HIGHPORT);
1749 break;
1750
1751 case IPV6_PORTRANGE_HIGH:
1752 in6p->inp_flags &= ~(INP_LOWPORT);
1753 in6p->inp_flags |= INP_HIGHPORT;
1754 break;
1755
1756 case IPV6_PORTRANGE_LOW:
1757 in6p->inp_flags &= ~(INP_HIGHPORT);
1758 in6p->inp_flags |= INP_LOWPORT;
1759 break;
1760
1761 default:
1762 error = EINVAL;
1763 break;
1764 }
1765 INP_WUNLOCK(in6p);
1766 break;
1767
1768 #ifdef IPSEC
1769 case IPV6_IPSEC_POLICY:
1770 {
1771 caddr_t req;
1772 struct mbuf *m;
1773
1774 if ((error = soopt_getm(sopt, &m)) != 0) /* XXX */
1775 break;
1776 if ((error = soopt_mcopyin(sopt, m)) != 0) /* XXX */
1777 break;
1778 req = mtod(m, caddr_t);
1779 error = ipsec_set_policy(in6p, optname, req,
1780 m->m_len, (sopt->sopt_td != NULL) ?
1781 sopt->sopt_td->td_ucred : NULL);
1782 m_freem(m);
1783 break;
1784 }
1785 #endif /* IPSEC */
1786
1787 default:
1788 error = ENOPROTOOPT;
1789 break;
1790 }
1791 break;
1792
1793 case SOPT_GET:
1794 switch (optname) {
1795
1796 case IPV6_2292PKTOPTIONS:
1797 #ifdef IPV6_PKTOPTIONS
1798 case IPV6_PKTOPTIONS:
1799 #endif
1800 /*
1801 * RFC3542 (effectively) deprecated the
1802 * semantics of the 2292-style pktoptions.
1803 * Since it was not reliable in nature (i.e.,
1804 * applications had to expect the lack of some
1805 * information after all), it would make sense
1806 * to simplify this part by always returning
1807 * empty data.
1808 */
1809 sopt->sopt_valsize = 0;
1810 break;
1811
1812 case IPV6_RECVHOPOPTS:
1813 case IPV6_RECVDSTOPTS:
1814 case IPV6_RECVRTHDRDSTOPTS:
1815 case IPV6_UNICAST_HOPS:
1816 case IPV6_RECVPKTINFO:
1817 case IPV6_RECVHOPLIMIT:
1818 case IPV6_RECVRTHDR:
1819 case IPV6_RECVPATHMTU:
1820
1821 case IPV6_FAITH:
1822 case IPV6_V6ONLY:
1823 case IPV6_PORTRANGE:
1824 case IPV6_RECVTCLASS:
1825 case IPV6_AUTOFLOWLABEL:
1826 case IPV6_BINDANY:
1827 switch (optname) {
1828
1829 case IPV6_RECVHOPOPTS:
1830 optval = OPTBIT(IN6P_HOPOPTS);
1831 break;
1832
1833 case IPV6_RECVDSTOPTS:
1834 optval = OPTBIT(IN6P_DSTOPTS);
1835 break;
1836
1837 case IPV6_RECVRTHDRDSTOPTS:
1838 optval = OPTBIT(IN6P_RTHDRDSTOPTS);
1839 break;
1840
1841 case IPV6_UNICAST_HOPS:
1842 optval = in6p->in6p_hops;
1843 break;
1844
1845 case IPV6_RECVPKTINFO:
1846 optval = OPTBIT(IN6P_PKTINFO);
1847 break;
1848
1849 case IPV6_RECVHOPLIMIT:
1850 optval = OPTBIT(IN6P_HOPLIMIT);
1851 break;
1852
1853 case IPV6_RECVRTHDR:
1854 optval = OPTBIT(IN6P_RTHDR);
1855 break;
1856
1857 case IPV6_RECVPATHMTU:
1858 optval = OPTBIT(IN6P_MTU);
1859 break;
1860
1861 case IPV6_FAITH:
1862 optval = OPTBIT(INP_FAITH);
1863 break;
1864
1865 case IPV6_V6ONLY:
1866 optval = OPTBIT(IN6P_IPV6_V6ONLY);
1867 break;
1868
1869 case IPV6_PORTRANGE:
1870 {
1871 int flags;
1872 flags = in6p->inp_flags;
1873 if (flags & INP_HIGHPORT)
1874 optval = IPV6_PORTRANGE_HIGH;
1875 else if (flags & INP_LOWPORT)
1876 optval = IPV6_PORTRANGE_LOW;
1877 else
1878 optval = 0;
1879 break;
1880 }
1881 case IPV6_RECVTCLASS:
1882 optval = OPTBIT(IN6P_TCLASS);
1883 break;
1884
1885 case IPV6_AUTOFLOWLABEL:
1886 optval = OPTBIT(IN6P_AUTOFLOWLABEL);
1887 break;
1888
1889 case IPV6_BINDANY:
1890 optval = OPTBIT(INP_BINDANY);
1891 break;
1892 }
1893 if (error)
1894 break;
1895 error = sooptcopyout(sopt, &optval,
1896 sizeof optval);
1897 break;
1898
1899 case IPV6_PATHMTU:
1900 {
1901 u_long pmtu = 0;
1902 struct ip6_mtuinfo mtuinfo;
1903 struct route_in6 sro;
1904
1905 bzero(&sro, sizeof(sro));
1906
1907 if (!(so->so_state & SS_ISCONNECTED))
1908 return (ENOTCONN);
1909 /*
1910 * XXX: we dot not consider the case of source
1911 * routing, or optional information to specify
1912 * the outgoing interface.
1913 */
1914 error = ip6_getpmtu(&sro, NULL, NULL,
1915 &in6p->in6p_faddr, &pmtu, NULL,
1916 so->so_fibnum);
1917 if (sro.ro_rt)
1918 RTFREE(sro.ro_rt);
1919 if (error)
1920 break;
1921 if (pmtu > IPV6_MAXPACKET)
1922 pmtu = IPV6_MAXPACKET;
1923
1924 bzero(&mtuinfo, sizeof(mtuinfo));
1925 mtuinfo.ip6m_mtu = (u_int32_t)pmtu;
1926 optdata = (void *)&mtuinfo;
1927 optdatalen = sizeof(mtuinfo);
1928 error = sooptcopyout(sopt, optdata,
1929 optdatalen);
1930 break;
1931 }
1932
1933 case IPV6_2292PKTINFO:
1934 case IPV6_2292HOPLIMIT:
1935 case IPV6_2292HOPOPTS:
1936 case IPV6_2292RTHDR:
1937 case IPV6_2292DSTOPTS:
1938 switch (optname) {
1939 case IPV6_2292PKTINFO:
1940 optval = OPTBIT(IN6P_PKTINFO);
1941 break;
1942 case IPV6_2292HOPLIMIT:
1943 optval = OPTBIT(IN6P_HOPLIMIT);
1944 break;
1945 case IPV6_2292HOPOPTS:
1946 optval = OPTBIT(IN6P_HOPOPTS);
1947 break;
1948 case IPV6_2292RTHDR:
1949 optval = OPTBIT(IN6P_RTHDR);
1950 break;
1951 case IPV6_2292DSTOPTS:
1952 optval = OPTBIT(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS);
1953 break;
1954 }
1955 error = sooptcopyout(sopt, &optval,
1956 sizeof optval);
1957 break;
1958 case IPV6_PKTINFO:
1959 case IPV6_HOPOPTS:
1960 case IPV6_RTHDR:
1961 case IPV6_DSTOPTS:
1962 case IPV6_RTHDRDSTOPTS:
1963 case IPV6_NEXTHOP:
1964 case IPV6_TCLASS:
1965 case IPV6_DONTFRAG:
1966 case IPV6_USE_MIN_MTU:
1967 case IPV6_PREFER_TEMPADDR:
1968 error = ip6_getpcbopt(in6p->in6p_outputopts,
1969 optname, sopt);
1970 break;
1971
1972 case IPV6_MULTICAST_IF:
1973 case IPV6_MULTICAST_HOPS:
1974 case IPV6_MULTICAST_LOOP:
1975 case IPV6_MSFILTER:
1976 error = ip6_getmoptions(in6p, sopt);
1977 break;
1978
1979 #ifdef IPSEC
1980 case IPV6_IPSEC_POLICY:
1981 {
1982 caddr_t req = NULL;
1983 size_t len = 0;
1984 struct mbuf *m = NULL;
1985 struct mbuf **mp = &m;
1986 size_t ovalsize = sopt->sopt_valsize;
1987 caddr_t oval = (caddr_t)sopt->sopt_val;
1988
1989 error = soopt_getm(sopt, &m); /* XXX */
1990 if (error != 0)
1991 break;
1992 error = soopt_mcopyin(sopt, m); /* XXX */
1993 if (error != 0)
1994 break;
1995 sopt->sopt_valsize = ovalsize;
1996 sopt->sopt_val = oval;
1997 if (m) {
1998 req = mtod(m, caddr_t);
1999 len = m->m_len;
2000 }
2001 error = ipsec_get_policy(in6p, req, len, mp);
2002 if (error == 0)
2003 error = soopt_mcopyout(sopt, m); /* XXX */
2004 if (error == 0 && m)
2005 m_freem(m);
2006 break;
2007 }
2008 #endif /* IPSEC */
2009
2010 default:
2011 error = ENOPROTOOPT;
2012 break;
2013 }
2014 break;
2015 }
2016 }
2017 return (error);
2018 }
2019
2020 int
2021 ip6_raw_ctloutput(struct socket *so, struct sockopt *sopt)
2022 {
2023 int error = 0, optval, optlen;
2024 const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum);
2025 struct inpcb *in6p = sotoinpcb(so);
2026 int level, op, optname;
2027
2028 level = sopt->sopt_level;
2029 op = sopt->sopt_dir;
2030 optname = sopt->sopt_name;
2031 optlen = sopt->sopt_valsize;
2032
2033 if (level != IPPROTO_IPV6) {
2034 return (EINVAL);
2035 }
2036
2037 switch (optname) {
2038 case IPV6_CHECKSUM:
2039 /*
2040 * For ICMPv6 sockets, no modification allowed for checksum
2041 * offset, permit "no change" values to help existing apps.
2042 *
2043 * RFC3542 says: "An attempt to set IPV6_CHECKSUM
2044 * for an ICMPv6 socket will fail."
2045 * The current behavior does not meet RFC3542.
2046 */
2047 switch (op) {
2048 case SOPT_SET:
2049 if (optlen != sizeof(int)) {
2050 error = EINVAL;
2051 break;
2052 }
2053 error = sooptcopyin(sopt, &optval, sizeof(optval),
2054 sizeof(optval));
2055 if (error)
2056 break;
2057 if ((optval % 2) != 0) {
2058 /* the API assumes even offset values */
2059 error = EINVAL;
2060 } else if (so->so_proto->pr_protocol ==
2061 IPPROTO_ICMPV6) {
2062 if (optval != icmp6off)
2063 error = EINVAL;
2064 } else
2065 in6p->in6p_cksum = optval;
2066 break;
2067
2068 case SOPT_GET:
2069 if (so->so_proto->pr_protocol == IPPROTO_ICMPV6)
2070 optval = icmp6off;
2071 else
2072 optval = in6p->in6p_cksum;
2073
2074 error = sooptcopyout(sopt, &optval, sizeof(optval));
2075 break;
2076
2077 default:
2078 error = EINVAL;
2079 break;
2080 }
2081 break;
2082
2083 default:
2084 error = ENOPROTOOPT;
2085 break;
2086 }
2087
2088 return (error);
2089 }
2090
2091 /*
2092 * Set up IP6 options in pcb for insertion in output packets or
2093 * specifying behavior of outgoing packets.
2094 */
2095 static int
2096 ip6_pcbopts(struct ip6_pktopts **pktopt, struct mbuf *m,
2097 struct socket *so, struct sockopt *sopt)
2098 {
2099 struct ip6_pktopts *opt = *pktopt;
2100 int error = 0;
2101 struct thread *td = sopt->sopt_td;
2102
2103 /* turn off any old options. */
2104 if (opt) {
2105 #ifdef DIAGNOSTIC
2106 if (opt->ip6po_pktinfo || opt->ip6po_nexthop ||
2107 opt->ip6po_hbh || opt->ip6po_dest1 || opt->ip6po_dest2 ||
2108 opt->ip6po_rhinfo.ip6po_rhi_rthdr)
2109 printf("ip6_pcbopts: all specified options are cleared.\n");
2110 #endif
2111 ip6_clearpktopts(opt, -1);
2112 } else
2113 opt = malloc(sizeof(*opt), M_IP6OPT, M_WAITOK);
2114 *pktopt = NULL;
2115
2116 if (!m || m->m_len == 0) {
2117 /*
2118 * Only turning off any previous options, regardless of
2119 * whether the opt is just created or given.
2120 */
2121 free(opt, M_IP6OPT);
2122 return (0);
2123 }
2124
2125 /* set options specified by user. */
2126 if ((error = ip6_setpktopts(m, opt, NULL, (td != NULL) ?
2127 td->td_ucred : NULL, so->so_proto->pr_protocol)) != 0) {
2128 ip6_clearpktopts(opt, -1); /* XXX: discard all options */
2129 free(opt, M_IP6OPT);
2130 return (error);
2131 }
2132 *pktopt = opt;
2133 return (0);
2134 }
2135
2136 /*
2137 * initialize ip6_pktopts. beware that there are non-zero default values in
2138 * the struct.
2139 */
2140 void
2141 ip6_initpktopts(struct ip6_pktopts *opt)
2142 {
2143
2144 bzero(opt, sizeof(*opt));
2145 opt->ip6po_hlim = -1; /* -1 means default hop limit */
2146 opt->ip6po_tclass = -1; /* -1 means default traffic class */
2147 opt->ip6po_minmtu = IP6PO_MINMTU_MCASTONLY;
2148 opt->ip6po_prefer_tempaddr = IP6PO_TEMPADDR_SYSTEM;
2149 }
2150
2151 static int
2152 ip6_pcbopt(int optname, u_char *buf, int len, struct ip6_pktopts **pktopt,
2153 struct ucred *cred, int uproto)
2154 {
2155 struct ip6_pktopts *opt;
2156
2157 if (*pktopt == NULL) {
2158 *pktopt = malloc(sizeof(struct ip6_pktopts), M_IP6OPT,
2159 M_WAITOK);
2160 ip6_initpktopts(*pktopt);
2161 }
2162 opt = *pktopt;
2163
2164 return (ip6_setpktopt(optname, buf, len, opt, cred, 1, 0, uproto));
2165 }
2166
2167 static int
2168 ip6_getpcbopt(struct ip6_pktopts *pktopt, int optname, struct sockopt *sopt)
2169 {
2170 void *optdata = NULL;
2171 int optdatalen = 0;
2172 struct ip6_ext *ip6e;
2173 int error = 0;
2174 struct in6_pktinfo null_pktinfo;
2175 int deftclass = 0, on;
2176 int defminmtu = IP6PO_MINMTU_MCASTONLY;
2177 int defpreftemp = IP6PO_TEMPADDR_SYSTEM;
2178
2179 switch (optname) {
2180 case IPV6_PKTINFO:
2181 if (pktopt && pktopt->ip6po_pktinfo)
2182 optdata = (void *)pktopt->ip6po_pktinfo;
2183 else {
2184 /* XXX: we don't have to do this every time... */
2185 bzero(&null_pktinfo, sizeof(null_pktinfo));
2186 optdata = (void *)&null_pktinfo;
2187 }
2188 optdatalen = sizeof(struct in6_pktinfo);
2189 break;
2190 case IPV6_TCLASS:
2191 if (pktopt && pktopt->ip6po_tclass >= 0)
2192 optdata = (void *)&pktopt->ip6po_tclass;
2193 else
2194 optdata = (void *)&deftclass;
2195 optdatalen = sizeof(int);
2196 break;
2197 case IPV6_HOPOPTS:
2198 if (pktopt && pktopt->ip6po_hbh) {
2199 optdata = (void *)pktopt->ip6po_hbh;
2200 ip6e = (struct ip6_ext *)pktopt->ip6po_hbh;
2201 optdatalen = (ip6e->ip6e_len + 1) << 3;
2202 }
2203 break;
2204 case IPV6_RTHDR:
2205 if (pktopt && pktopt->ip6po_rthdr) {
2206 optdata = (void *)pktopt->ip6po_rthdr;
2207 ip6e = (struct ip6_ext *)pktopt->ip6po_rthdr;
2208 optdatalen = (ip6e->ip6e_len + 1) << 3;
2209 }
2210 break;
2211 case IPV6_RTHDRDSTOPTS:
2212 if (pktopt && pktopt->ip6po_dest1) {
2213 optdata = (void *)pktopt->ip6po_dest1;
2214 ip6e = (struct ip6_ext *)pktopt->ip6po_dest1;
2215 optdatalen = (ip6e->ip6e_len + 1) << 3;
2216 }
2217 break;
2218 case IPV6_DSTOPTS:
2219 if (pktopt && pktopt->ip6po_dest2) {
2220 optdata = (void *)pktopt->ip6po_dest2;
2221 ip6e = (struct ip6_ext *)pktopt->ip6po_dest2;
2222 optdatalen = (ip6e->ip6e_len + 1) << 3;
2223 }
2224 break;
2225 case IPV6_NEXTHOP:
2226 if (pktopt && pktopt->ip6po_nexthop) {
2227 optdata = (void *)pktopt->ip6po_nexthop;
2228 optdatalen = pktopt->ip6po_nexthop->sa_len;
2229 }
2230 break;
2231 case IPV6_USE_MIN_MTU:
2232 if (pktopt)
2233 optdata = (void *)&pktopt->ip6po_minmtu;
2234 else
2235 optdata = (void *)&defminmtu;
2236 optdatalen = sizeof(int);
2237 break;
2238 case IPV6_DONTFRAG:
2239 if (pktopt && ((pktopt->ip6po_flags) & IP6PO_DONTFRAG))
2240 on = 1;
2241 else
2242 on = 0;
2243 optdata = (void *)&on;
2244 optdatalen = sizeof(on);
2245 break;
2246 case IPV6_PREFER_TEMPADDR:
2247 if (pktopt)
2248 optdata = (void *)&pktopt->ip6po_prefer_tempaddr;
2249 else
2250 optdata = (void *)&defpreftemp;
2251 optdatalen = sizeof(int);
2252 break;
2253 default: /* should not happen */
2254 #ifdef DIAGNOSTIC
2255 panic("ip6_getpcbopt: unexpected option\n");
2256 #endif
2257 return (ENOPROTOOPT);
2258 }
2259
2260 error = sooptcopyout(sopt, optdata, optdatalen);
2261
2262 return (error);
2263 }
2264
2265 void
2266 ip6_clearpktopts(struct ip6_pktopts *pktopt, int optname)
2267 {
2268 if (pktopt == NULL)
2269 return;
2270
2271 if (optname == -1 || optname == IPV6_PKTINFO) {
2272 if (pktopt->ip6po_pktinfo)
2273 free(pktopt->ip6po_pktinfo, M_IP6OPT);
2274 pktopt->ip6po_pktinfo = NULL;
2275 }
2276 if (optname == -1 || optname == IPV6_HOPLIMIT)
2277 pktopt->ip6po_hlim = -1;
2278 if (optname == -1 || optname == IPV6_TCLASS)
2279 pktopt->ip6po_tclass = -1;
2280 if (optname == -1 || optname == IPV6_NEXTHOP) {
2281 if (pktopt->ip6po_nextroute.ro_rt) {
2282 RTFREE(pktopt->ip6po_nextroute.ro_rt);
2283 pktopt->ip6po_nextroute.ro_rt = NULL;
2284 }
2285 if (pktopt->ip6po_nexthop)
2286 free(pktopt->ip6po_nexthop, M_IP6OPT);
2287 pktopt->ip6po_nexthop = NULL;
2288 }
2289 if (optname == -1 || optname == IPV6_HOPOPTS) {
2290 if (pktopt->ip6po_hbh)
2291 free(pktopt->ip6po_hbh, M_IP6OPT);
2292 pktopt->ip6po_hbh = NULL;
2293 }
2294 if (optname == -1 || optname == IPV6_RTHDRDSTOPTS) {
2295 if (pktopt->ip6po_dest1)
2296 free(pktopt->ip6po_dest1, M_IP6OPT);
2297 pktopt->ip6po_dest1 = NULL;
2298 }
2299 if (optname == -1 || optname == IPV6_RTHDR) {
2300 if (pktopt->ip6po_rhinfo.ip6po_rhi_rthdr)
2301 free(pktopt->ip6po_rhinfo.ip6po_rhi_rthdr, M_IP6OPT);
2302 pktopt->ip6po_rhinfo.ip6po_rhi_rthdr = NULL;
2303 if (pktopt->ip6po_route.ro_rt) {
2304 RTFREE(pktopt->ip6po_route.ro_rt);
2305 pktopt->ip6po_route.ro_rt = NULL;
2306 }
2307 }
2308 if (optname == -1 || optname == IPV6_DSTOPTS) {
2309 if (pktopt->ip6po_dest2)
2310 free(pktopt->ip6po_dest2, M_IP6OPT);
2311 pktopt->ip6po_dest2 = NULL;
2312 }
2313 }
2314
2315 #define PKTOPT_EXTHDRCPY(type) \
2316 do {\
2317 if (src->type) {\
2318 int hlen = (((struct ip6_ext *)src->type)->ip6e_len + 1) << 3;\
2319 dst->type = malloc(hlen, M_IP6OPT, canwait);\
2320 if (dst->type == NULL && canwait == M_NOWAIT)\
2321 goto bad;\
2322 bcopy(src->type, dst->type, hlen);\
2323 }\
2324 } while (/*CONSTCOND*/ 0)
2325
2326 static int
2327 copypktopts(struct ip6_pktopts *dst, struct ip6_pktopts *src, int canwait)
2328 {
2329 if (dst == NULL || src == NULL) {
2330 printf("ip6_clearpktopts: invalid argument\n");
2331 return (EINVAL);
2332 }
2333
2334 dst->ip6po_hlim = src->ip6po_hlim;
2335 dst->ip6po_tclass = src->ip6po_tclass;
2336 dst->ip6po_flags = src->ip6po_flags;
2337 dst->ip6po_minmtu = src->ip6po_minmtu;
2338 dst->ip6po_prefer_tempaddr = src->ip6po_prefer_tempaddr;
2339 if (src->ip6po_pktinfo) {
2340 dst->ip6po_pktinfo = malloc(sizeof(*dst->ip6po_pktinfo),
2341 M_IP6OPT, canwait);
2342 if (dst->ip6po_pktinfo == NULL)
2343 goto bad;
2344 *dst->ip6po_pktinfo = *src->ip6po_pktinfo;
2345 }
2346 if (src->ip6po_nexthop) {
2347 dst->ip6po_nexthop = malloc(src->ip6po_nexthop->sa_len,
2348 M_IP6OPT, canwait);
2349 if (dst->ip6po_nexthop == NULL)
2350 goto bad;
2351 bcopy(src->ip6po_nexthop, dst->ip6po_nexthop,
2352 src->ip6po_nexthop->sa_len);
2353 }
2354 PKTOPT_EXTHDRCPY(ip6po_hbh);
2355 PKTOPT_EXTHDRCPY(ip6po_dest1);
2356 PKTOPT_EXTHDRCPY(ip6po_dest2);
2357 PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */
2358 return (0);
2359
2360 bad:
2361 ip6_clearpktopts(dst, -1);
2362 return (ENOBUFS);
2363 }
2364 #undef PKTOPT_EXTHDRCPY
2365
2366 struct ip6_pktopts *
2367 ip6_copypktopts(struct ip6_pktopts *src, int canwait)
2368 {
2369 int error;
2370 struct ip6_pktopts *dst;
2371
2372 dst = malloc(sizeof(*dst), M_IP6OPT, canwait);
2373 if (dst == NULL)
2374 return (NULL);
2375 ip6_initpktopts(dst);
2376
2377 if ((error = copypktopts(dst, src, canwait)) != 0) {
2378 free(dst, M_IP6OPT);
2379 return (NULL);
2380 }
2381
2382 return (dst);
2383 }
2384
2385 void
2386 ip6_freepcbopts(struct ip6_pktopts *pktopt)
2387 {
2388 if (pktopt == NULL)
2389 return;
2390
2391 ip6_clearpktopts(pktopt, -1);
2392
2393 free(pktopt, M_IP6OPT);
2394 }
2395
2396 /*
2397 * Set IPv6 outgoing packet options based on advanced API.
2398 */
2399 int
2400 ip6_setpktopts(struct mbuf *control, struct ip6_pktopts *opt,
2401 struct ip6_pktopts *stickyopt, struct ucred *cred, int uproto)
2402 {
2403 struct cmsghdr *cm = 0;
2404
2405 if (control == NULL || opt == NULL)
2406 return (EINVAL);
2407
2408 ip6_initpktopts(opt);
2409 if (stickyopt) {
2410 int error;
2411
2412 /*
2413 * If stickyopt is provided, make a local copy of the options
2414 * for this particular packet, then override them by ancillary
2415 * objects.
2416 * XXX: copypktopts() does not copy the cached route to a next
2417 * hop (if any). This is not very good in terms of efficiency,
2418 * but we can allow this since this option should be rarely
2419 * used.
2420 */
2421 if ((error = copypktopts(opt, stickyopt, M_NOWAIT)) != 0)
2422 return (error);
2423 }
2424
2425 /*
2426 * XXX: Currently, we assume all the optional information is stored
2427 * in a single mbuf.
2428 */
2429 if (control->m_next)
2430 return (EINVAL);
2431
2432 for (; control->m_len > 0; control->m_data += CMSG_ALIGN(cm->cmsg_len),
2433 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) {
2434 int error;
2435
2436 if (control->m_len < CMSG_LEN(0))
2437 return (EINVAL);
2438
2439 cm = mtod(control, struct cmsghdr *);
2440 if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len)
2441 return (EINVAL);
2442 if (cm->cmsg_level != IPPROTO_IPV6)
2443 continue;
2444
2445 error = ip6_setpktopt(cm->cmsg_type, CMSG_DATA(cm),
2446 cm->cmsg_len - CMSG_LEN(0), opt, cred, 0, 1, uproto);
2447 if (error)
2448 return (error);
2449 }
2450
2451 return (0);
2452 }
2453
2454 /*
2455 * Set a particular packet option, as a sticky option or an ancillary data
2456 * item. "len" can be 0 only when it's a sticky option.
2457 * We have 4 cases of combination of "sticky" and "cmsg":
2458 * "sticky=0, cmsg=0": impossible
2459 * "sticky=0, cmsg=1": RFC2292 or RFC3542 ancillary data
2460 * "sticky=1, cmsg=0": RFC3542 socket option
2461 * "sticky=1, cmsg=1": RFC2292 socket option
2462 */
2463 static int
2464 ip6_setpktopt(int optname, u_char *buf, int len, struct ip6_pktopts *opt,
2465 struct ucred *cred, int sticky, int cmsg, int uproto)
2466 {
2467 int minmtupolicy, preftemp;
2468 int error;
2469
2470 if (!sticky && !cmsg) {
2471 #ifdef DIAGNOSTIC
2472 printf("ip6_setpktopt: impossible case\n");
2473 #endif
2474 return (EINVAL);
2475 }
2476
2477 /*
2478 * IPV6_2292xxx is for backward compatibility to RFC2292, and should
2479 * not be specified in the context of RFC3542. Conversely,
2480 * RFC3542 types should not be specified in the context of RFC2292.
2481 */
2482 if (!cmsg) {
2483 switch (optname) {
2484 case IPV6_2292PKTINFO:
2485 case IPV6_2292HOPLIMIT:
2486 case IPV6_2292NEXTHOP:
2487 case IPV6_2292HOPOPTS:
2488 case IPV6_2292DSTOPTS:
2489 case IPV6_2292RTHDR:
2490 case IPV6_2292PKTOPTIONS:
2491 return (ENOPROTOOPT);
2492 }
2493 }
2494 if (sticky && cmsg) {
2495 switch (optname) {
2496 case IPV6_PKTINFO:
2497 case IPV6_HOPLIMIT:
2498 case IPV6_NEXTHOP:
2499 case IPV6_HOPOPTS:
2500 case IPV6_DSTOPTS:
2501 case IPV6_RTHDRDSTOPTS:
2502 case IPV6_RTHDR:
2503 case IPV6_USE_MIN_MTU:
2504 case IPV6_DONTFRAG:
2505 case IPV6_TCLASS:
2506 case IPV6_PREFER_TEMPADDR: /* XXX: not an RFC3542 option */
2507 return (ENOPROTOOPT);
2508 }
2509 }
2510
2511 switch (optname) {
2512 case IPV6_2292PKTINFO:
2513 case IPV6_PKTINFO:
2514 {
2515 struct ifnet *ifp = NULL;
2516 struct in6_pktinfo *pktinfo;
2517
2518 if (len != sizeof(struct in6_pktinfo))
2519 return (EINVAL);
2520
2521 pktinfo = (struct in6_pktinfo *)buf;
2522
2523 /*
2524 * An application can clear any sticky IPV6_PKTINFO option by
2525 * doing a "regular" setsockopt with ipi6_addr being
2526 * in6addr_any and ipi6_ifindex being zero.
2527 * [RFC 3542, Section 6]
2528 */
2529 if (optname == IPV6_PKTINFO && opt->ip6po_pktinfo &&
2530 pktinfo->ipi6_ifindex == 0 &&
2531 IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) {
2532 ip6_clearpktopts(opt, optname);
2533 break;
2534 }
2535
2536 if (uproto == IPPROTO_TCP && optname == IPV6_PKTINFO &&
2537 sticky && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) {
2538 return (EINVAL);
2539 }
2540
2541 /* validate the interface index if specified. */
2542 if (pktinfo->ipi6_ifindex > V_if_index ||
2543 pktinfo->ipi6_ifindex < 0) {
2544 return (ENXIO);
2545 }
2546 if (pktinfo->ipi6_ifindex) {
2547 ifp = ifnet_byindex(pktinfo->ipi6_ifindex);
2548 if (ifp == NULL)
2549 return (ENXIO);
2550 }
2551
2552 /*
2553 * We store the address anyway, and let in6_selectsrc()
2554 * validate the specified address. This is because ipi6_addr
2555 * may not have enough information about its scope zone, and
2556 * we may need additional information (such as outgoing
2557 * interface or the scope zone of a destination address) to
2558 * disambiguate the scope.
2559 * XXX: the delay of the validation may confuse the
2560 * application when it is used as a sticky option.
2561 */
2562 if (opt->ip6po_pktinfo == NULL) {
2563 opt->ip6po_pktinfo = malloc(sizeof(*pktinfo),
2564 M_IP6OPT, M_NOWAIT);
2565 if (opt->ip6po_pktinfo == NULL)
2566 return (ENOBUFS);
2567 }
2568 bcopy(pktinfo, opt->ip6po_pktinfo, sizeof(*pktinfo));
2569 break;
2570 }
2571
2572 case IPV6_2292HOPLIMIT:
2573 case IPV6_HOPLIMIT:
2574 {
2575 int *hlimp;
2576
2577 /*
2578 * RFC 3542 deprecated the usage of sticky IPV6_HOPLIMIT
2579 * to simplify the ordering among hoplimit options.
2580 */
2581 if (optname == IPV6_HOPLIMIT && sticky)
2582 return (ENOPROTOOPT);
2583
2584 if (len != sizeof(int))
2585 return (EINVAL);
2586 hlimp = (int *)buf;
2587 if (*hlimp < -1 || *hlimp > 255)
2588 return (EINVAL);
2589
2590 opt->ip6po_hlim = *hlimp;
2591 break;
2592 }
2593
2594 case IPV6_TCLASS:
2595 {
2596 int tclass;
2597
2598 if (len != sizeof(int))
2599 return (EINVAL);
2600 tclass = *(int *)buf;
2601 if (tclass < -1 || tclass > 255)
2602 return (EINVAL);
2603
2604 opt->ip6po_tclass = tclass;
2605 break;
2606 }
2607
2608 case IPV6_2292NEXTHOP:
2609 case IPV6_NEXTHOP:
2610 if (cred != NULL) {
2611 error = priv_check_cred(cred,
2612 PRIV_NETINET_SETHDROPTS, 0);
2613 if (error)
2614 return (error);
2615 }
2616
2617 if (len == 0) { /* just remove the option */
2618 ip6_clearpktopts(opt, IPV6_NEXTHOP);
2619 break;
2620 }
2621
2622 /* check if cmsg_len is large enough for sa_len */
2623 if (len < sizeof(struct sockaddr) || len < *buf)
2624 return (EINVAL);
2625
2626 switch (((struct sockaddr *)buf)->sa_family) {
2627 case AF_INET6:
2628 {
2629 struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)buf;
2630 int error;
2631
2632 if (sa6->sin6_len != sizeof(struct sockaddr_in6))
2633 return (EINVAL);
2634
2635 if (IN6_IS_ADDR_UNSPECIFIED(&sa6->sin6_addr) ||
2636 IN6_IS_ADDR_MULTICAST(&sa6->sin6_addr)) {
2637 return (EINVAL);
2638 }
2639 if ((error = sa6_embedscope(sa6, V_ip6_use_defzone))
2640 != 0) {
2641 return (error);
2642 }
2643 break;
2644 }
2645 case AF_LINK: /* should eventually be supported */
2646 default:
2647 return (EAFNOSUPPORT);
2648 }
2649
2650 /* turn off the previous option, then set the new option. */
2651 ip6_clearpktopts(opt, IPV6_NEXTHOP);
2652 opt->ip6po_nexthop = malloc(*buf, M_IP6OPT, M_NOWAIT);
2653 if (opt->ip6po_nexthop == NULL)
2654 return (ENOBUFS);
2655 bcopy(buf, opt->ip6po_nexthop, *buf);
2656 break;
2657
2658 case IPV6_2292HOPOPTS:
2659 case IPV6_HOPOPTS:
2660 {
2661 struct ip6_hbh *hbh;
2662 int hbhlen;
2663
2664 /*
2665 * XXX: We don't allow a non-privileged user to set ANY HbH
2666 * options, since per-option restriction has too much
2667 * overhead.
2668 */
2669 if (cred != NULL) {
2670 error = priv_check_cred(cred,
2671 PRIV_NETINET_SETHDROPTS, 0);
2672 if (error)
2673 return (error);
2674 }
2675
2676 if (len == 0) {
2677 ip6_clearpktopts(opt, IPV6_HOPOPTS);
2678 break; /* just remove the option */
2679 }
2680
2681 /* message length validation */
2682 if (len < sizeof(struct ip6_hbh))
2683 return (EINVAL);
2684 hbh = (struct ip6_hbh *)buf;
2685 hbhlen = (hbh->ip6h_len + 1) << 3;
2686 if (len != hbhlen)
2687 return (EINVAL);
2688
2689 /* turn off the previous option, then set the new option. */
2690 ip6_clearpktopts(opt, IPV6_HOPOPTS);
2691 opt->ip6po_hbh = malloc(hbhlen, M_IP6OPT, M_NOWAIT);
2692 if (opt->ip6po_hbh == NULL)
2693 return (ENOBUFS);
2694 bcopy(hbh, opt->ip6po_hbh, hbhlen);
2695
2696 break;
2697 }
2698
2699 case IPV6_2292DSTOPTS:
2700 case IPV6_DSTOPTS:
2701 case IPV6_RTHDRDSTOPTS:
2702 {
2703 struct ip6_dest *dest, **newdest = NULL;
2704 int destlen;
2705
2706 if (cred != NULL) { /* XXX: see the comment for IPV6_HOPOPTS */
2707 error = priv_check_cred(cred,
2708 PRIV_NETINET_SETHDROPTS, 0);
2709 if (error)
2710 return (error);
2711 }
2712
2713 if (len == 0) {
2714 ip6_clearpktopts(opt, optname);
2715 break; /* just remove the option */
2716 }
2717
2718 /* message length validation */
2719 if (len < sizeof(struct ip6_dest))
2720 return (EINVAL);
2721 dest = (struct ip6_dest *)buf;
2722 destlen = (dest->ip6d_len + 1) << 3;
2723 if (len != destlen)
2724 return (EINVAL);
2725
2726 /*
2727 * Determine the position that the destination options header
2728 * should be inserted; before or after the routing header.
2729 */
2730 switch (optname) {
2731 case IPV6_2292DSTOPTS:
2732 /*
2733 * The old advacned API is ambiguous on this point.
2734 * Our approach is to determine the position based
2735 * according to the existence of a routing header.
2736 * Note, however, that this depends on the order of the
2737 * extension headers in the ancillary data; the 1st
2738 * part of the destination options header must appear
2739 * before the routing header in the ancillary data,
2740 * too.
2741 * RFC3542 solved the ambiguity by introducing
2742 * separate ancillary data or option types.
2743 */
2744 if (opt->ip6po_rthdr == NULL)
2745 newdest = &opt->ip6po_dest1;
2746 else
2747 newdest = &opt->ip6po_dest2;
2748 break;
2749 case IPV6_RTHDRDSTOPTS:
2750 newdest = &opt->ip6po_dest1;
2751 break;
2752 case IPV6_DSTOPTS:
2753 newdest = &opt->ip6po_dest2;
2754 break;
2755 }
2756
2757 /* turn off the previous option, then set the new option. */
2758 ip6_clearpktopts(opt, optname);
2759 *newdest = malloc(destlen, M_IP6OPT, M_NOWAIT);
2760 if (*newdest == NULL)
2761 return (ENOBUFS);
2762 bcopy(dest, *newdest, destlen);
2763
2764 break;
2765 }
2766
2767 case IPV6_2292RTHDR:
2768 case IPV6_RTHDR:
2769 {
2770 struct ip6_rthdr *rth;
2771 int rthlen;
2772
2773 if (len == 0) {
2774 ip6_clearpktopts(opt, IPV6_RTHDR);
2775 break; /* just remove the option */
2776 }
2777
2778 /* message length validation */
2779 if (len < sizeof(struct ip6_rthdr))
2780 return (EINVAL);
2781 rth = (struct ip6_rthdr *)buf;
2782 rthlen = (rth->ip6r_len + 1) << 3;
2783 if (len != rthlen)
2784 return (EINVAL);
2785
2786 switch (rth->ip6r_type) {
2787 case IPV6_RTHDR_TYPE_0:
2788 if (rth->ip6r_len == 0) /* must contain one addr */
2789 return (EINVAL);
2790 if (rth->ip6r_len % 2) /* length must be even */
2791 return (EINVAL);
2792 if (rth->ip6r_len / 2 != rth->ip6r_segleft)
2793 return (EINVAL);
2794 break;
2795 default:
2796 return (EINVAL); /* not supported */
2797 }
2798
2799 /* turn off the previous option */
2800 ip6_clearpktopts(opt, IPV6_RTHDR);
2801 opt->ip6po_rthdr = malloc(rthlen, M_IP6OPT, M_NOWAIT);
2802 if (opt->ip6po_rthdr == NULL)
2803 return (ENOBUFS);
2804 bcopy(rth, opt->ip6po_rthdr, rthlen);
2805
2806 break;
2807 }
2808
2809 case IPV6_USE_MIN_MTU:
2810 if (len != sizeof(int))
2811 return (EINVAL);
2812 minmtupolicy = *(int *)buf;
2813 if (minmtupolicy != IP6PO_MINMTU_MCASTONLY &&
2814 minmtupolicy != IP6PO_MINMTU_DISABLE &&
2815 minmtupolicy != IP6PO_MINMTU_ALL) {
2816 return (EINVAL);
2817 }
2818 opt->ip6po_minmtu = minmtupolicy;
2819 break;
2820
2821 case IPV6_DONTFRAG:
2822 if (len != sizeof(int))
2823 return (EINVAL);
2824
2825 if (uproto == IPPROTO_TCP || *(int *)buf == 0) {
2826 /*
2827 * we ignore this option for TCP sockets.
2828 * (RFC3542 leaves this case unspecified.)
2829 */
2830 opt->ip6po_flags &= ~IP6PO_DONTFRAG;
2831 } else
2832 opt->ip6po_flags |= IP6PO_DONTFRAG;
2833 break;
2834
2835 case IPV6_PREFER_TEMPADDR:
2836 if (len != sizeof(int))
2837 return (EINVAL);
2838 preftemp = *(int *)buf;
2839 if (preftemp != IP6PO_TEMPADDR_SYSTEM &&
2840 preftemp != IP6PO_TEMPADDR_NOTPREFER &&
2841 preftemp != IP6PO_TEMPADDR_PREFER) {
2842 return (EINVAL);
2843 }
2844 opt->ip6po_prefer_tempaddr = preftemp;
2845 break;
2846
2847 default:
2848 return (ENOPROTOOPT);
2849 } /* end of switch */
2850
2851 return (0);
2852 }
2853
2854 /*
2855 * Routine called from ip6_output() to loop back a copy of an IP6 multicast
2856 * packet to the input queue of a specified interface. Note that this
2857 * calls the output routine of the loopback "driver", but with an interface
2858 * pointer that might NOT be &loif -- easier than replicating that code here.
2859 */
2860 void
2861 ip6_mloopback(struct ifnet *ifp, struct mbuf *m, struct sockaddr_in6 *dst)
2862 {
2863 struct mbuf *copym;
2864 struct ip6_hdr *ip6;
2865
2866 copym = m_copy(m, 0, M_COPYALL);
2867 if (copym == NULL)
2868 return;
2869
2870 /*
2871 * Make sure to deep-copy IPv6 header portion in case the data
2872 * is in an mbuf cluster, so that we can safely override the IPv6
2873 * header portion later.
2874 */
2875 if ((copym->m_flags & M_EXT) != 0 ||
2876 copym->m_len < sizeof(struct ip6_hdr)) {
2877 copym = m_pullup(copym, sizeof(struct ip6_hdr));
2878 if (copym == NULL)
2879 return;
2880 }
2881
2882 #ifdef DIAGNOSTIC
2883 if (copym->m_len < sizeof(*ip6)) {
2884 m_freem(copym);
2885 return;
2886 }
2887 #endif
2888
2889 ip6 = mtod(copym, struct ip6_hdr *);
2890 /*
2891 * clear embedded scope identifiers if necessary.
2892 * in6_clearscope will touch the addresses only when necessary.
2893 */
2894 in6_clearscope(&ip6->ip6_src);
2895 in6_clearscope(&ip6->ip6_dst);
2896
2897 (void)if_simloop(ifp, copym, dst->sin6_family, 0);
2898 }
2899
2900 /*
2901 * Chop IPv6 header off from the payload.
2902 */
2903 static int
2904 ip6_splithdr(struct mbuf *m, struct ip6_exthdrs *exthdrs)
2905 {
2906 struct mbuf *mh;
2907 struct ip6_hdr *ip6;
2908
2909 ip6 = mtod(m, struct ip6_hdr *);
2910 if (m->m_len > sizeof(*ip6)) {
2911 MGETHDR(mh, M_DONTWAIT, MT_HEADER);
2912 if (mh == 0) {
2913 m_freem(m);
2914 return ENOBUFS;
2915 }
2916 M_MOVE_PKTHDR(mh, m);
2917 MH_ALIGN(mh, sizeof(*ip6));
2918 m->m_len -= sizeof(*ip6);
2919 m->m_data += sizeof(*ip6);
2920 mh->m_next = m;
2921 m = mh;
2922 m->m_len = sizeof(*ip6);
2923 bcopy((caddr_t)ip6, mtod(m, caddr_t), sizeof(*ip6));
2924 }
2925 exthdrs->ip6e_ip6 = m;
2926 return 0;
2927 }
2928
2929 /*
2930 * Compute IPv6 extension header length.
2931 */
2932 int
2933 ip6_optlen(struct inpcb *in6p)
2934 {
2935 int len;
2936
2937 if (!in6p->in6p_outputopts)
2938 return 0;
2939
2940 len = 0;
2941 #define elen(x) \
2942 (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0)
2943
2944 len += elen(in6p->in6p_outputopts->ip6po_hbh);
2945 if (in6p->in6p_outputopts->ip6po_rthdr)
2946 /* dest1 is valid with rthdr only */
2947 len += elen(in6p->in6p_outputopts->ip6po_dest1);
2948 len += elen(in6p->in6p_outputopts->ip6po_rthdr);
2949 len += elen(in6p->in6p_outputopts->ip6po_dest2);
2950 return len;
2951 #undef elen
2952 }
Cache object: 568369d401a3ea182f550a2df6b237c5
|