The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/netinet6/mld6.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2009 Bruce Simpson.
    3  *
    4  * Redistribution and use in source and binary forms, with or without
    5  * modification, are permitted provided that the following conditions
    6  * are met:
    7  * 1. Redistributions of source code must retain the above copyright
    8  *    notice, this list of conditions and the following disclaimer.
    9  * 2. Redistributions in binary form must reproduce the above copyright
   10  *    notice, this list of conditions and the following disclaimer in the
   11  *    documentation and/or other materials provided with the distribution.
   12  * 3. The name of the author may not be used to endorse or promote
   13  *    products derived from this software without specific prior written
   14  *    permission.
   15  *
   16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   26  * SUCH DAMAGE.
   27  *
   28  *      $KAME: mld6.c,v 1.27 2001/04/04 05:17:30 itojun Exp $
   29  */
   30 
   31 /*-
   32  * Copyright (c) 1988 Stephen Deering.
   33  * Copyright (c) 1992, 1993
   34  *      The Regents of the University of California.  All rights reserved.
   35  *
   36  * This code is derived from software contributed to Berkeley by
   37  * Stephen Deering of Stanford University.
   38  *
   39  * Redistribution and use in source and binary forms, with or without
   40  * modification, are permitted provided that the following conditions
   41  * are met:
   42  * 1. Redistributions of source code must retain the above copyright
   43  *    notice, this list of conditions and the following disclaimer.
   44  * 2. Redistributions in binary form must reproduce the above copyright
   45  *    notice, this list of conditions and the following disclaimer in the
   46  *    documentation and/or other materials provided with the distribution.
   47  * 4. Neither the name of the University nor the names of its contributors
   48  *    may be used to endorse or promote products derived from this software
   49  *    without specific prior written permission.
   50  *
   51  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   52  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   53  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   54  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   55  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   56  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   57  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   58  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   59  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   60  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   61  * SUCH DAMAGE.
   62  *
   63  *      @(#)igmp.c      8.1 (Berkeley) 7/19/93
   64  */
   65 
   66 #include <sys/cdefs.h>
   67 __FBSDID("$FreeBSD: releng/9.0/sys/netinet6/mld6.c 225096 2011-08-22 23:39:40Z pluknet $");
   68 
   69 #include "opt_inet.h"
   70 #include "opt_inet6.h"
   71 
   72 #include <sys/param.h>
   73 #include <sys/systm.h>
   74 #include <sys/mbuf.h>
   75 #include <sys/socket.h>
   76 #include <sys/protosw.h>
   77 #include <sys/sysctl.h>
   78 #include <sys/kernel.h>
   79 #include <sys/callout.h>
   80 #include <sys/malloc.h>
   81 #include <sys/module.h>
   82 #include <sys/ktr.h>
   83 
   84 #include <net/if.h>
   85 #include <net/route.h>
   86 #include <net/vnet.h>
   87 
   88 #include <netinet/in.h>
   89 #include <netinet/in_var.h>
   90 #include <netinet6/in6_var.h>
   91 #include <netinet/ip6.h>
   92 #include <netinet6/ip6_var.h>
   93 #include <netinet6/scope6_var.h>
   94 #include <netinet/icmp6.h>
   95 #include <netinet6/mld6.h>
   96 #include <netinet6/mld6_var.h>
   97 
   98 #include <security/mac/mac_framework.h>
   99 
  100 #ifndef KTR_MLD
  101 #define KTR_MLD KTR_INET6
  102 #endif
  103 
  104 static struct mld_ifinfo *
  105                 mli_alloc_locked(struct ifnet *);
  106 static void     mli_delete_locked(const struct ifnet *);
  107 static void     mld_dispatch_packet(struct mbuf *);
  108 static void     mld_dispatch_queue(struct ifqueue *, int);
  109 static void     mld_final_leave(struct in6_multi *, struct mld_ifinfo *);
  110 static void     mld_fasttimo_vnet(void);
  111 static int      mld_handle_state_change(struct in6_multi *,
  112                     struct mld_ifinfo *);
  113 static int      mld_initial_join(struct in6_multi *, struct mld_ifinfo *,
  114                     const int);
  115 #ifdef KTR
  116 static char *   mld_rec_type_to_str(const int);
  117 #endif
  118 static void     mld_set_version(struct mld_ifinfo *, const int);
  119 static void     mld_slowtimo_vnet(void);
  120 static int      mld_v1_input_query(struct ifnet *, const struct ip6_hdr *,
  121                     /*const*/ struct mld_hdr *);
  122 static int      mld_v1_input_report(struct ifnet *, const struct ip6_hdr *,
  123                     /*const*/ struct mld_hdr *);
  124 static void     mld_v1_process_group_timer(struct in6_multi *, const int);
  125 static void     mld_v1_process_querier_timers(struct mld_ifinfo *);
  126 static int      mld_v1_transmit_report(struct in6_multi *, const int);
  127 static void     mld_v1_update_group(struct in6_multi *, const int);
  128 static void     mld_v2_cancel_link_timers(struct mld_ifinfo *);
  129 static void     mld_v2_dispatch_general_query(struct mld_ifinfo *);
  130 static struct mbuf *
  131                 mld_v2_encap_report(struct ifnet *, struct mbuf *);
  132 static int      mld_v2_enqueue_filter_change(struct ifqueue *,
  133                     struct in6_multi *);
  134 static int      mld_v2_enqueue_group_record(struct ifqueue *,
  135                     struct in6_multi *, const int, const int, const int,
  136                     const int);
  137 static int      mld_v2_input_query(struct ifnet *, const struct ip6_hdr *,
  138                     struct mbuf *, const int, const int);
  139 static int      mld_v2_merge_state_changes(struct in6_multi *,
  140                     struct ifqueue *);
  141 static void     mld_v2_process_group_timers(struct mld_ifinfo *,
  142                     struct ifqueue *, struct ifqueue *,
  143                     struct in6_multi *, const int);
  144 static int      mld_v2_process_group_query(struct in6_multi *,
  145                     struct mld_ifinfo *mli, int, struct mbuf *, const int);
  146 static int      sysctl_mld_gsr(SYSCTL_HANDLER_ARGS);
  147 static int      sysctl_mld_ifinfo(SYSCTL_HANDLER_ARGS);
  148 
  149 /*
  150  * Normative references: RFC 2710, RFC 3590, RFC 3810.
  151  *
  152  * Locking:
  153  *  * The MLD subsystem lock ends up being system-wide for the moment,
  154  *    but could be per-VIMAGE later on.
  155  *  * The permitted lock order is: IN6_MULTI_LOCK, MLD_LOCK, IF_ADDR_LOCK.
  156  *    Any may be taken independently; if any are held at the same
  157  *    time, the above lock order must be followed.
  158  *  * IN6_MULTI_LOCK covers in_multi.
  159  *  * MLD_LOCK covers per-link state and any global variables in this file.
  160  *  * IF_ADDR_LOCK covers if_multiaddrs, which is used for a variety of
  161  *    per-link state iterators.
  162  *
  163  *  XXX LOR PREVENTION
  164  *  A special case for IPv6 is the in6_setscope() routine. ip6_output()
  165  *  will not accept an ifp; it wants an embedded scope ID, unlike
  166  *  ip_output(), which happily takes the ifp given to it. The embedded
  167  *  scope ID is only used by MLD to select the outgoing interface.
  168  *
  169  *  During interface attach and detach, MLD will take MLD_LOCK *after*
  170  *  the IF_AFDATA_LOCK.
  171  *  As in6_setscope() takes IF_AFDATA_LOCK then SCOPE_LOCK, we can't call
  172  *  it with MLD_LOCK held without triggering an LOR. A netisr with indirect
  173  *  dispatch could work around this, but we'd rather not do that, as it
  174  *  can introduce other races.
  175  *
  176  *  As such, we exploit the fact that the scope ID is just the interface
  177  *  index, and embed it in the IPv6 destination address accordingly.
  178  *  This is potentially NOT VALID for MLDv1 reports, as they
  179  *  are always sent to the multicast group itself; as MLDv2
  180  *  reports are always sent to ff02::16, this is not an issue
  181  *  when MLDv2 is in use.
  182  *
  183  *  This does not however eliminate the LOR when ip6_output() itself
  184  *  calls in6_setscope() internally whilst MLD_LOCK is held. This will
  185  *  trigger a LOR warning in WITNESS when the ifnet is detached.
  186  *
  187  *  The right answer is probably to make IF_AFDATA_LOCK an rwlock, given
  188  *  how it's used across the network stack. Here we're simply exploiting
  189  *  the fact that MLD runs at a similar layer in the stack to scope6.c.
  190  *
  191  * VIMAGE:
  192  *  * Each in6_multi corresponds to an ifp, and each ifp corresponds
  193  *    to a vnet in ifp->if_vnet.
  194  */
  195 static struct mtx                mld_mtx;
  196 MALLOC_DEFINE(M_MLD, "mld", "mld state");
  197 
  198 #define MLD_EMBEDSCOPE(pin6, zoneid)                                    \
  199         if (IN6_IS_SCOPE_LINKLOCAL(pin6) ||                             \
  200             IN6_IS_ADDR_MC_INTFACELOCAL(pin6))                          \
  201                 (pin6)->s6_addr16[1] = htons((zoneid) & 0xFFFF)         \
  202 
  203 /*
  204  * VIMAGE-wide globals.
  205  */
  206 static VNET_DEFINE(struct timeval, mld_gsrdelay) = {10, 0};
  207 static VNET_DEFINE(LIST_HEAD(, mld_ifinfo), mli_head);
  208 static VNET_DEFINE(int, interface_timers_running6);
  209 static VNET_DEFINE(int, state_change_timers_running6);
  210 static VNET_DEFINE(int, current_state_timers_running6);
  211 
  212 #define V_mld_gsrdelay                  VNET(mld_gsrdelay)
  213 #define V_mli_head                      VNET(mli_head)
  214 #define V_interface_timers_running6     VNET(interface_timers_running6)
  215 #define V_state_change_timers_running6  VNET(state_change_timers_running6)
  216 #define V_current_state_timers_running6 VNET(current_state_timers_running6)
  217 
  218 SYSCTL_DECL(_net_inet6);        /* Note: Not in any common header. */
  219 
  220 SYSCTL_NODE(_net_inet6, OID_AUTO, mld, CTLFLAG_RW, 0,
  221     "IPv6 Multicast Listener Discovery");
  222 
  223 /*
  224  * Virtualized sysctls.
  225  */
  226 SYSCTL_VNET_PROC(_net_inet6_mld, OID_AUTO, gsrdelay,
  227     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE,
  228     &VNET_NAME(mld_gsrdelay.tv_sec), 0, sysctl_mld_gsr, "I",
  229     "Rate limit for MLDv2 Group-and-Source queries in seconds");
  230 
  231 /*
  232  * Non-virtualized sysctls.
  233  */
  234 SYSCTL_NODE(_net_inet6_mld, OID_AUTO, ifinfo, CTLFLAG_RD | CTLFLAG_MPSAFE,
  235     sysctl_mld_ifinfo, "Per-interface MLDv2 state");
  236 
  237 static int      mld_v1enable = 1;
  238 SYSCTL_INT(_net_inet6_mld, OID_AUTO, v1enable, CTLFLAG_RW,
  239     &mld_v1enable, 0, "Enable fallback to MLDv1");
  240 TUNABLE_INT("net.inet6.mld.v1enable", &mld_v1enable);
  241 
  242 static int      mld_use_allow = 1;
  243 SYSCTL_INT(_net_inet6_mld, OID_AUTO, use_allow, CTLFLAG_RW,
  244     &mld_use_allow, 0, "Use ALLOW/BLOCK for RFC 4604 SSM joins/leaves");
  245 TUNABLE_INT("net.inet6.mld.use_allow", &mld_use_allow);
  246 
  247 /*
  248  * Packed Router Alert option structure declaration.
  249  */
  250 struct mld_raopt {
  251         struct ip6_hbh          hbh;
  252         struct ip6_opt          pad;
  253         struct ip6_opt_router   ra;
  254 } __packed;
  255 
  256 /*
  257  * Router Alert hop-by-hop option header.
  258  */
  259 static struct mld_raopt mld_ra = {
  260         .hbh = { 0, 0 },
  261         .pad = { .ip6o_type = IP6OPT_PADN, 0 },
  262         .ra = {
  263             .ip6or_type = IP6OPT_ROUTER_ALERT,
  264             .ip6or_len = IP6OPT_RTALERT_LEN - 2,
  265             .ip6or_value[0] = ((IP6OPT_RTALERT_MLD >> 8) & 0xFF),
  266             .ip6or_value[1] = (IP6OPT_RTALERT_MLD & 0xFF)
  267         }
  268 };
  269 static struct ip6_pktopts mld_po;
  270 
  271 static __inline void
  272 mld_save_context(struct mbuf *m, struct ifnet *ifp)
  273 {
  274 
  275 #ifdef VIMAGE
  276         m->m_pkthdr.header = ifp->if_vnet;
  277 #endif /* VIMAGE */
  278         m->m_pkthdr.flowid = ifp->if_index;
  279 }
  280 
  281 static __inline void
  282 mld_scrub_context(struct mbuf *m)
  283 {
  284 
  285         m->m_pkthdr.header = NULL;
  286         m->m_pkthdr.flowid = 0;
  287 }
  288 
  289 /*
  290  * Restore context from a queued output chain.
  291  * Return saved ifindex.
  292  *
  293  * VIMAGE: The assertion is there to make sure that we
  294  * actually called CURVNET_SET() with what's in the mbuf chain.
  295  */
  296 static __inline uint32_t
  297 mld_restore_context(struct mbuf *m)
  298 {
  299 
  300 #if defined(VIMAGE) && defined(INVARIANTS)
  301         KASSERT(curvnet == m->m_pkthdr.header,
  302             ("%s: called when curvnet was not restored", __func__));
  303 #endif
  304         return (m->m_pkthdr.flowid);
  305 }
  306 
  307 /*
  308  * Retrieve or set threshold between group-source queries in seconds.
  309  *
  310  * VIMAGE: Assume curvnet set by caller.
  311  * SMPng: NOTE: Serialized by MLD lock.
  312  */
  313 static int
  314 sysctl_mld_gsr(SYSCTL_HANDLER_ARGS)
  315 {
  316         int error;
  317         int i;
  318 
  319         error = sysctl_wire_old_buffer(req, sizeof(int));
  320         if (error)
  321                 return (error);
  322 
  323         MLD_LOCK();
  324 
  325         i = V_mld_gsrdelay.tv_sec;
  326 
  327         error = sysctl_handle_int(oidp, &i, 0, req);
  328         if (error || !req->newptr)
  329                 goto out_locked;
  330 
  331         if (i < -1 || i >= 60) {
  332                 error = EINVAL;
  333                 goto out_locked;
  334         }
  335 
  336         CTR2(KTR_MLD, "change mld_gsrdelay from %d to %d",
  337              V_mld_gsrdelay.tv_sec, i);
  338         V_mld_gsrdelay.tv_sec = i;
  339 
  340 out_locked:
  341         MLD_UNLOCK();
  342         return (error);
  343 }
  344 
  345 /*
  346  * Expose struct mld_ifinfo to userland, keyed by ifindex.
  347  * For use by ifmcstat(8).
  348  *
  349  * SMPng: NOTE: Does an unlocked ifindex space read.
  350  * VIMAGE: Assume curvnet set by caller. The node handler itself
  351  * is not directly virtualized.
  352  */
  353 static int
  354 sysctl_mld_ifinfo(SYSCTL_HANDLER_ARGS)
  355 {
  356         int                     *name;
  357         int                      error;
  358         u_int                    namelen;
  359         struct ifnet            *ifp;
  360         struct mld_ifinfo       *mli;
  361 
  362         name = (int *)arg1;
  363         namelen = arg2;
  364 
  365         if (req->newptr != NULL)
  366                 return (EPERM);
  367 
  368         if (namelen != 1)
  369                 return (EINVAL);
  370 
  371         error = sysctl_wire_old_buffer(req, sizeof(struct mld_ifinfo));
  372         if (error)
  373                 return (error);
  374 
  375         IN6_MULTI_LOCK();
  376         MLD_LOCK();
  377 
  378         if (name[0] <= 0 || name[0] > V_if_index) {
  379                 error = ENOENT;
  380                 goto out_locked;
  381         }
  382 
  383         error = ENOENT;
  384 
  385         ifp = ifnet_byindex(name[0]);
  386         if (ifp == NULL)
  387                 goto out_locked;
  388 
  389         LIST_FOREACH(mli, &V_mli_head, mli_link) {
  390                 if (ifp == mli->mli_ifp) {
  391                         error = SYSCTL_OUT(req, mli,
  392                             sizeof(struct mld_ifinfo));
  393                         break;
  394                 }
  395         }
  396 
  397 out_locked:
  398         MLD_UNLOCK();
  399         IN6_MULTI_UNLOCK();
  400         return (error);
  401 }
  402 
  403 /*
  404  * Dispatch an entire queue of pending packet chains.
  405  * VIMAGE: Assumes the vnet pointer has been set.
  406  */
  407 static void
  408 mld_dispatch_queue(struct ifqueue *ifq, int limit)
  409 {
  410         struct mbuf *m;
  411 
  412         for (;;) {
  413                 _IF_DEQUEUE(ifq, m);
  414                 if (m == NULL)
  415                         break;
  416                 CTR3(KTR_MLD, "%s: dispatch %p from %p", __func__, ifq, m);
  417                 mld_dispatch_packet(m);
  418                 if (--limit == 0)
  419                         break;
  420         }
  421 }
  422 
  423 /*
  424  * Filter outgoing MLD report state by group.
  425  *
  426  * Reports are ALWAYS suppressed for ALL-HOSTS (ff02::1)
  427  * and node-local addresses. However, kernel and socket consumers
  428  * always embed the KAME scope ID in the address provided, so strip it
  429  * when performing comparison.
  430  * Note: This is not the same as the *multicast* scope.
  431  *
  432  * Return zero if the given group is one for which MLD reports
  433  * should be suppressed, or non-zero if reports should be issued.
  434  */
  435 static __inline int
  436 mld_is_addr_reported(const struct in6_addr *addr)
  437 {
  438 
  439         KASSERT(IN6_IS_ADDR_MULTICAST(addr), ("%s: not multicast", __func__));
  440 
  441         if (IPV6_ADDR_MC_SCOPE(addr) == IPV6_ADDR_SCOPE_NODELOCAL)
  442                 return (0);
  443 
  444         if (IPV6_ADDR_MC_SCOPE(addr) == IPV6_ADDR_SCOPE_LINKLOCAL) {
  445                 struct in6_addr tmp = *addr;
  446                 in6_clearscope(&tmp);
  447                 if (IN6_ARE_ADDR_EQUAL(&tmp, &in6addr_linklocal_allnodes))
  448                         return (0);
  449         }
  450 
  451         return (1);
  452 }
  453 
  454 /*
  455  * Attach MLD when PF_INET6 is attached to an interface.
  456  *
  457  * SMPng: Normally called with IF_AFDATA_LOCK held.
  458  */
  459 struct mld_ifinfo *
  460 mld_domifattach(struct ifnet *ifp)
  461 {
  462         struct mld_ifinfo *mli;
  463 
  464         CTR3(KTR_MLD, "%s: called for ifp %p(%s)",
  465             __func__, ifp, ifp->if_xname);
  466 
  467         MLD_LOCK();
  468 
  469         mli = mli_alloc_locked(ifp);
  470         if (!(ifp->if_flags & IFF_MULTICAST))
  471                 mli->mli_flags |= MLIF_SILENT;
  472         if (mld_use_allow)
  473                 mli->mli_flags |= MLIF_USEALLOW;
  474 
  475         MLD_UNLOCK();
  476 
  477         return (mli);
  478 }
  479 
  480 /*
  481  * VIMAGE: assume curvnet set by caller.
  482  */
  483 static struct mld_ifinfo *
  484 mli_alloc_locked(/*const*/ struct ifnet *ifp)
  485 {
  486         struct mld_ifinfo *mli;
  487 
  488         MLD_LOCK_ASSERT();
  489 
  490         mli = malloc(sizeof(struct mld_ifinfo), M_MLD, M_NOWAIT|M_ZERO);
  491         if (mli == NULL)
  492                 goto out;
  493 
  494         mli->mli_ifp = ifp;
  495         mli->mli_version = MLD_VERSION_2;
  496         mli->mli_flags = 0;
  497         mli->mli_rv = MLD_RV_INIT;
  498         mli->mli_qi = MLD_QI_INIT;
  499         mli->mli_qri = MLD_QRI_INIT;
  500         mli->mli_uri = MLD_URI_INIT;
  501 
  502         SLIST_INIT(&mli->mli_relinmhead);
  503 
  504         /*
  505          * Responses to general queries are subject to bounds.
  506          */
  507         IFQ_SET_MAXLEN(&mli->mli_gq, MLD_MAX_RESPONSE_PACKETS);
  508 
  509         LIST_INSERT_HEAD(&V_mli_head, mli, mli_link);
  510 
  511         CTR2(KTR_MLD, "allocate mld_ifinfo for ifp %p(%s)",
  512              ifp, ifp->if_xname);
  513 
  514 out:
  515         return (mli);
  516 }
  517 
  518 /*
  519  * Hook for ifdetach.
  520  *
  521  * NOTE: Some finalization tasks need to run before the protocol domain
  522  * is detached, but also before the link layer does its cleanup.
  523  * Run before link-layer cleanup; cleanup groups, but do not free MLD state.
  524  *
  525  * SMPng: Caller must hold IN6_MULTI_LOCK().
  526  * Must take IF_ADDR_LOCK() to cover if_multiaddrs iterator.
  527  * XXX This routine is also bitten by unlocked ifma_protospec access.
  528  */
  529 void
  530 mld_ifdetach(struct ifnet *ifp)
  531 {
  532         struct mld_ifinfo       *mli;
  533         struct ifmultiaddr      *ifma;
  534         struct in6_multi        *inm, *tinm;
  535 
  536         CTR3(KTR_MLD, "%s: called for ifp %p(%s)", __func__, ifp,
  537             ifp->if_xname);
  538 
  539         IN6_MULTI_LOCK_ASSERT();
  540         MLD_LOCK();
  541 
  542         mli = MLD_IFINFO(ifp);
  543         if (mli->mli_version == MLD_VERSION_2) {
  544                 IF_ADDR_LOCK(ifp);
  545                 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
  546                         if (ifma->ifma_addr->sa_family != AF_INET6 ||
  547                             ifma->ifma_protospec == NULL)
  548                                 continue;
  549                         inm = (struct in6_multi *)ifma->ifma_protospec;
  550                         if (inm->in6m_state == MLD_LEAVING_MEMBER) {
  551                                 SLIST_INSERT_HEAD(&mli->mli_relinmhead,
  552                                     inm, in6m_nrele);
  553                         }
  554                         in6m_clear_recorded(inm);
  555                 }
  556                 IF_ADDR_UNLOCK(ifp);
  557                 SLIST_FOREACH_SAFE(inm, &mli->mli_relinmhead, in6m_nrele,
  558                     tinm) {
  559                         SLIST_REMOVE_HEAD(&mli->mli_relinmhead, in6m_nrele);
  560                         in6m_release_locked(inm);
  561                 }
  562         }
  563 
  564         MLD_UNLOCK();
  565 }
  566 
  567 /*
  568  * Hook for domifdetach.
  569  * Runs after link-layer cleanup; free MLD state.
  570  *
  571  * SMPng: Normally called with IF_AFDATA_LOCK held.
  572  */
  573 void
  574 mld_domifdetach(struct ifnet *ifp)
  575 {
  576 
  577         CTR3(KTR_MLD, "%s: called for ifp %p(%s)",
  578             __func__, ifp, ifp->if_xname);
  579 
  580         MLD_LOCK();
  581         mli_delete_locked(ifp);
  582         MLD_UNLOCK();
  583 }
  584 
  585 static void
  586 mli_delete_locked(const struct ifnet *ifp)
  587 {
  588         struct mld_ifinfo *mli, *tmli;
  589 
  590         CTR3(KTR_MLD, "%s: freeing mld_ifinfo for ifp %p(%s)",
  591             __func__, ifp, ifp->if_xname);
  592 
  593         MLD_LOCK_ASSERT();
  594 
  595         LIST_FOREACH_SAFE(mli, &V_mli_head, mli_link, tmli) {
  596                 if (mli->mli_ifp == ifp) {
  597                         /*
  598                          * Free deferred General Query responses.
  599                          */
  600                         _IF_DRAIN(&mli->mli_gq);
  601 
  602                         LIST_REMOVE(mli, mli_link);
  603 
  604                         KASSERT(SLIST_EMPTY(&mli->mli_relinmhead),
  605                             ("%s: there are dangling in_multi references",
  606                             __func__));
  607 
  608                         free(mli, M_MLD);
  609                         return;
  610                 }
  611         }
  612 #ifdef INVARIANTS
  613         panic("%s: mld_ifinfo not found for ifp %p\n", __func__,  ifp);
  614 #endif
  615 }
  616 
  617 /*
  618  * Process a received MLDv1 general or address-specific query.
  619  * Assumes that the query header has been pulled up to sizeof(mld_hdr).
  620  *
  621  * NOTE: Can't be fully const correct as we temporarily embed scope ID in
  622  * mld_addr. This is OK as we own the mbuf chain.
  623  */
  624 static int
  625 mld_v1_input_query(struct ifnet *ifp, const struct ip6_hdr *ip6,
  626     /*const*/ struct mld_hdr *mld)
  627 {
  628         struct ifmultiaddr      *ifma;
  629         struct mld_ifinfo       *mli;
  630         struct in6_multi        *inm;
  631         int                      is_general_query;
  632         uint16_t                 timer;
  633 #ifdef KTR
  634         char                     ip6tbuf[INET6_ADDRSTRLEN];
  635 #endif
  636 
  637         is_general_query = 0;
  638 
  639         if (!mld_v1enable) {
  640                 CTR3(KTR_MLD, "ignore v1 query %s on ifp %p(%s)",
  641                     ip6_sprintf(ip6tbuf, &mld->mld_addr),
  642                     ifp, ifp->if_xname);
  643                 return (0);
  644         }
  645 
  646         /*
  647          * RFC3810 Section 6.2: MLD queries must originate from
  648          * a router's link-local address.
  649          */
  650         if (!IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src)) {
  651                 CTR3(KTR_MLD, "ignore v1 query src %s on ifp %p(%s)",
  652                     ip6_sprintf(ip6tbuf, &ip6->ip6_src),
  653                     ifp, ifp->if_xname);
  654                 return (0);
  655         }
  656 
  657         /*
  658          * Do address field validation upfront before we accept
  659          * the query.
  660          */
  661         if (IN6_IS_ADDR_UNSPECIFIED(&mld->mld_addr)) {
  662                 /*
  663                  * MLDv1 General Query.
  664                  * If this was not sent to the all-nodes group, ignore it.
  665                  */
  666                 struct in6_addr          dst;
  667 
  668                 dst = ip6->ip6_dst;
  669                 in6_clearscope(&dst);
  670                 if (!IN6_ARE_ADDR_EQUAL(&dst, &in6addr_linklocal_allnodes))
  671                         return (EINVAL);
  672                 is_general_query = 1;
  673         } else {
  674                 /*
  675                  * Embed scope ID of receiving interface in MLD query for
  676                  * lookup whilst we don't hold other locks.
  677                  */
  678                 in6_setscope(&mld->mld_addr, ifp, NULL);
  679         }
  680 
  681         IN6_MULTI_LOCK();
  682         MLD_LOCK();
  683 
  684         /*
  685          * Switch to MLDv1 host compatibility mode.
  686          */
  687         mli = MLD_IFINFO(ifp);
  688         KASSERT(mli != NULL, ("%s: no mld_ifinfo for ifp %p", __func__, ifp));
  689         mld_set_version(mli, MLD_VERSION_1);
  690 
  691         timer = (ntohs(mld->mld_maxdelay) * PR_FASTHZ) / MLD_TIMER_SCALE;
  692         if (timer == 0)
  693                 timer = 1;
  694 
  695         IF_ADDR_LOCK(ifp);
  696         if (is_general_query) {
  697                 /*
  698                  * For each reporting group joined on this
  699                  * interface, kick the report timer.
  700                  */
  701                 CTR2(KTR_MLD, "process v1 general query on ifp %p(%s)",
  702                     ifp, ifp->if_xname);
  703                 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
  704                         if (ifma->ifma_addr->sa_family != AF_INET6 ||
  705                             ifma->ifma_protospec == NULL)
  706                                 continue;
  707                         inm = (struct in6_multi *)ifma->ifma_protospec;
  708                         mld_v1_update_group(inm, timer);
  709                 }
  710         } else {
  711                 /*
  712                  * MLDv1 Group-Specific Query.
  713                  * If this is a group-specific MLDv1 query, we need only
  714                  * look up the single group to process it.
  715                  */
  716                 inm = in6m_lookup_locked(ifp, &mld->mld_addr);
  717                 if (inm != NULL) {
  718                         CTR3(KTR_MLD, "process v1 query %s on ifp %p(%s)",
  719                             ip6_sprintf(ip6tbuf, &mld->mld_addr),
  720                             ifp, ifp->if_xname);
  721                         mld_v1_update_group(inm, timer);
  722                 }
  723                 /* XXX Clear embedded scope ID as userland won't expect it. */
  724                 in6_clearscope(&mld->mld_addr);
  725         }
  726 
  727         IF_ADDR_UNLOCK(ifp);
  728         MLD_UNLOCK();
  729         IN6_MULTI_UNLOCK();
  730 
  731         return (0);
  732 }
  733 
  734 /*
  735  * Update the report timer on a group in response to an MLDv1 query.
  736  *
  737  * If we are becoming the reporting member for this group, start the timer.
  738  * If we already are the reporting member for this group, and timer is
  739  * below the threshold, reset it.
  740  *
  741  * We may be updating the group for the first time since we switched
  742  * to MLDv2. If we are, then we must clear any recorded source lists,
  743  * and transition to REPORTING state; the group timer is overloaded
  744  * for group and group-source query responses. 
  745  *
  746  * Unlike MLDv2, the delay per group should be jittered
  747  * to avoid bursts of MLDv1 reports.
  748  */
  749 static void
  750 mld_v1_update_group(struct in6_multi *inm, const int timer)
  751 {
  752 #ifdef KTR
  753         char                     ip6tbuf[INET6_ADDRSTRLEN];
  754 #endif
  755 
  756         CTR4(KTR_MLD, "%s: %s/%s timer=%d", __func__,
  757             ip6_sprintf(ip6tbuf, &inm->in6m_addr),
  758             inm->in6m_ifp->if_xname, timer);
  759 
  760         IN6_MULTI_LOCK_ASSERT();
  761 
  762         switch (inm->in6m_state) {
  763         case MLD_NOT_MEMBER:
  764         case MLD_SILENT_MEMBER:
  765                 break;
  766         case MLD_REPORTING_MEMBER:
  767                 if (inm->in6m_timer != 0 &&
  768                     inm->in6m_timer <= timer) {
  769                         CTR1(KTR_MLD, "%s: REPORTING and timer running, "
  770                             "skipping.", __func__);
  771                         break;
  772                 }
  773                 /* FALLTHROUGH */
  774         case MLD_SG_QUERY_PENDING_MEMBER:
  775         case MLD_G_QUERY_PENDING_MEMBER:
  776         case MLD_IDLE_MEMBER:
  777         case MLD_LAZY_MEMBER:
  778         case MLD_AWAKENING_MEMBER:
  779                 CTR1(KTR_MLD, "%s: ->REPORTING", __func__);
  780                 inm->in6m_state = MLD_REPORTING_MEMBER;
  781                 inm->in6m_timer = MLD_RANDOM_DELAY(timer);
  782                 V_current_state_timers_running6 = 1;
  783                 break;
  784         case MLD_SLEEPING_MEMBER:
  785                 CTR1(KTR_MLD, "%s: ->AWAKENING", __func__);
  786                 inm->in6m_state = MLD_AWAKENING_MEMBER;
  787                 break;
  788         case MLD_LEAVING_MEMBER:
  789                 break;
  790         }
  791 }
  792 
  793 /*
  794  * Process a received MLDv2 general, group-specific or
  795  * group-and-source-specific query.
  796  *
  797  * Assumes that the query header has been pulled up to sizeof(mldv2_query).
  798  *
  799  * Return 0 if successful, otherwise an appropriate error code is returned.
  800  */
  801 static int
  802 mld_v2_input_query(struct ifnet *ifp, const struct ip6_hdr *ip6,
  803     struct mbuf *m, const int off, const int icmp6len)
  804 {
  805         struct mld_ifinfo       *mli;
  806         struct mldv2_query      *mld;
  807         struct in6_multi        *inm;
  808         uint32_t                 maxdelay, nsrc, qqi;
  809         int                      is_general_query;
  810         uint16_t                 timer;
  811         uint8_t                  qrv;
  812 #ifdef KTR
  813         char                     ip6tbuf[INET6_ADDRSTRLEN];
  814 #endif
  815 
  816         is_general_query = 0;
  817 
  818         /*
  819          * RFC3810 Section 6.2: MLD queries must originate from
  820          * a router's link-local address.
  821          */
  822         if (!IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src)) {
  823                 CTR3(KTR_MLD, "ignore v1 query src %s on ifp %p(%s)",
  824                     ip6_sprintf(ip6tbuf, &ip6->ip6_src),
  825                     ifp, ifp->if_xname);
  826                 return (0);
  827         }
  828 
  829         CTR2(KTR_MLD, "input v2 query on ifp %p(%s)", ifp, ifp->if_xname);
  830 
  831         mld = (struct mldv2_query *)(mtod(m, uint8_t *) + off);
  832 
  833         maxdelay = ntohs(mld->mld_maxdelay);    /* in 1/10ths of a second */
  834         if (maxdelay >= 32678) {
  835                 maxdelay = (MLD_MRC_MANT(maxdelay) | 0x1000) <<
  836                            (MLD_MRC_EXP(maxdelay) + 3);
  837         }
  838         timer = (maxdelay * PR_FASTHZ) / MLD_TIMER_SCALE;
  839         if (timer == 0)
  840                 timer = 1;
  841 
  842         qrv = MLD_QRV(mld->mld_misc);
  843         if (qrv < 2) {
  844                 CTR3(KTR_MLD, "%s: clamping qrv %d to %d", __func__,
  845                     qrv, MLD_RV_INIT);
  846                 qrv = MLD_RV_INIT;
  847         }
  848 
  849         qqi = mld->mld_qqi;
  850         if (qqi >= 128) {
  851                 qqi = MLD_QQIC_MANT(mld->mld_qqi) <<
  852                      (MLD_QQIC_EXP(mld->mld_qqi) + 3);
  853         }
  854 
  855         nsrc = ntohs(mld->mld_numsrc);
  856         if (nsrc > MLD_MAX_GS_SOURCES)
  857                 return (EMSGSIZE);
  858         if (icmp6len < sizeof(struct mldv2_query) +
  859             (nsrc * sizeof(struct in6_addr)))
  860                 return (EMSGSIZE);
  861 
  862         /*
  863          * Do further input validation upfront to avoid resetting timers
  864          * should we need to discard this query.
  865          */
  866         if (IN6_IS_ADDR_UNSPECIFIED(&mld->mld_addr)) {
  867                 /*
  868                  * General Queries SHOULD be directed to ff02::1.
  869                  * A general query with a source list has undefined
  870                  * behaviour; discard it.
  871                  */
  872                 struct in6_addr          dst;
  873 
  874                 dst = ip6->ip6_dst;
  875                 in6_clearscope(&dst);
  876                 if (!IN6_ARE_ADDR_EQUAL(&dst, &in6addr_linklocal_allnodes) ||
  877                     nsrc > 0)
  878                         return (EINVAL);
  879                 is_general_query = 1;
  880         } else {
  881                 /*
  882                  * Embed scope ID of receiving interface in MLD query for
  883                  * lookup whilst we don't hold other locks (due to KAME
  884                  * locking lameness). We own this mbuf chain just now.
  885                  */
  886                 in6_setscope(&mld->mld_addr, ifp, NULL);
  887         }
  888 
  889         IN6_MULTI_LOCK();
  890         MLD_LOCK();
  891 
  892         mli = MLD_IFINFO(ifp);
  893         KASSERT(mli != NULL, ("%s: no mld_ifinfo for ifp %p", __func__, ifp));
  894 
  895         /*
  896          * Discard the v2 query if we're in Compatibility Mode.
  897          * The RFC is pretty clear that hosts need to stay in MLDv1 mode
  898          * until the Old Version Querier Present timer expires.
  899          */
  900         if (mli->mli_version != MLD_VERSION_2)
  901                 goto out_locked;
  902 
  903         mld_set_version(mli, MLD_VERSION_2);
  904         mli->mli_rv = qrv;
  905         mli->mli_qi = qqi;
  906         mli->mli_qri = maxdelay;
  907 
  908         CTR4(KTR_MLD, "%s: qrv %d qi %d maxdelay %d", __func__, qrv, qqi,
  909             maxdelay);
  910 
  911         if (is_general_query) {
  912                 /*
  913                  * MLDv2 General Query.
  914                  *
  915                  * Schedule a current-state report on this ifp for
  916                  * all groups, possibly containing source lists.
  917                  *
  918                  * If there is a pending General Query response
  919                  * scheduled earlier than the selected delay, do
  920                  * not schedule any other reports.
  921                  * Otherwise, reset the interface timer.
  922                  */
  923                 CTR2(KTR_MLD, "process v2 general query on ifp %p(%s)",
  924                     ifp, ifp->if_xname);
  925                 if (mli->mli_v2_timer == 0 || mli->mli_v2_timer >= timer) {
  926                         mli->mli_v2_timer = MLD_RANDOM_DELAY(timer);
  927                         V_interface_timers_running6 = 1;
  928                 }
  929         } else {
  930                 /*
  931                  * MLDv2 Group-specific or Group-and-source-specific Query.
  932                  *
  933                  * Group-source-specific queries are throttled on
  934                  * a per-group basis to defeat denial-of-service attempts.
  935                  * Queries for groups we are not a member of on this
  936                  * link are simply ignored.
  937                  */
  938                 IF_ADDR_LOCK(ifp);
  939                 inm = in6m_lookup_locked(ifp, &mld->mld_addr);
  940                 if (inm == NULL) {
  941                         IF_ADDR_UNLOCK(ifp);
  942                         goto out_locked;
  943                 }
  944                 if (nsrc > 0) {
  945                         if (!ratecheck(&inm->in6m_lastgsrtv,
  946                             &V_mld_gsrdelay)) {
  947                                 CTR1(KTR_MLD, "%s: GS query throttled.",
  948                                     __func__);
  949                                 IF_ADDR_UNLOCK(ifp);
  950                                 goto out_locked;
  951                         }
  952                 }
  953                 CTR2(KTR_MLD, "process v2 group query on ifp %p(%s)",
  954                      ifp, ifp->if_xname);
  955                 /*
  956                  * If there is a pending General Query response
  957                  * scheduled sooner than the selected delay, no
  958                  * further report need be scheduled.
  959                  * Otherwise, prepare to respond to the
  960                  * group-specific or group-and-source query.
  961                  */
  962                 if (mli->mli_v2_timer == 0 || mli->mli_v2_timer >= timer)
  963                         mld_v2_process_group_query(inm, mli, timer, m, off);
  964 
  965                 /* XXX Clear embedded scope ID as userland won't expect it. */
  966                 in6_clearscope(&mld->mld_addr);
  967                 IF_ADDR_UNLOCK(ifp);
  968         }
  969 
  970 out_locked:
  971         MLD_UNLOCK();
  972         IN6_MULTI_UNLOCK();
  973 
  974         return (0);
  975 }
  976 
  977 /*
  978  * Process a recieved MLDv2 group-specific or group-and-source-specific
  979  * query.
  980  * Return <0 if any error occured. Currently this is ignored.
  981  */
  982 static int
  983 mld_v2_process_group_query(struct in6_multi *inm, struct mld_ifinfo *mli,
  984     int timer, struct mbuf *m0, const int off)
  985 {
  986         struct mldv2_query      *mld;
  987         int                      retval;
  988         uint16_t                 nsrc;
  989 
  990         IN6_MULTI_LOCK_ASSERT();
  991         MLD_LOCK_ASSERT();
  992 
  993         retval = 0;
  994         mld = (struct mldv2_query *)(mtod(m0, uint8_t *) + off);
  995 
  996         switch (inm->in6m_state) {
  997         case MLD_NOT_MEMBER:
  998         case MLD_SILENT_MEMBER:
  999         case MLD_SLEEPING_MEMBER:
 1000         case MLD_LAZY_MEMBER:
 1001         case MLD_AWAKENING_MEMBER:
 1002         case MLD_IDLE_MEMBER:
 1003         case MLD_LEAVING_MEMBER:
 1004                 return (retval);
 1005                 break;
 1006         case MLD_REPORTING_MEMBER:
 1007         case MLD_G_QUERY_PENDING_MEMBER:
 1008         case MLD_SG_QUERY_PENDING_MEMBER:
 1009                 break;
 1010         }
 1011 
 1012         nsrc = ntohs(mld->mld_numsrc);
 1013 
 1014         /*
 1015          * Deal with group-specific queries upfront.
 1016          * If any group query is already pending, purge any recorded
 1017          * source-list state if it exists, and schedule a query response
 1018          * for this group-specific query.
 1019          */
 1020         if (nsrc == 0) {
 1021                 if (inm->in6m_state == MLD_G_QUERY_PENDING_MEMBER ||
 1022                     inm->in6m_state == MLD_SG_QUERY_PENDING_MEMBER) {
 1023                         in6m_clear_recorded(inm);
 1024                         timer = min(inm->in6m_timer, timer);
 1025                 }
 1026                 inm->in6m_state = MLD_G_QUERY_PENDING_MEMBER;
 1027                 inm->in6m_timer = MLD_RANDOM_DELAY(timer);
 1028                 V_current_state_timers_running6 = 1;
 1029                 return (retval);
 1030         }
 1031 
 1032         /*
 1033          * Deal with the case where a group-and-source-specific query has
 1034          * been received but a group-specific query is already pending.
 1035          */
 1036         if (inm->in6m_state == MLD_G_QUERY_PENDING_MEMBER) {
 1037                 timer = min(inm->in6m_timer, timer);
 1038                 inm->in6m_timer = MLD_RANDOM_DELAY(timer);
 1039                 V_current_state_timers_running6 = 1;
 1040                 return (retval);
 1041         }
 1042 
 1043         /*
 1044          * Finally, deal with the case where a group-and-source-specific
 1045          * query has been received, where a response to a previous g-s-r
 1046          * query exists, or none exists.
 1047          * In this case, we need to parse the source-list which the Querier
 1048          * has provided us with and check if we have any source list filter
 1049          * entries at T1 for these sources. If we do not, there is no need
 1050          * schedule a report and the query may be dropped.
 1051          * If we do, we must record them and schedule a current-state
 1052          * report for those sources.
 1053          */
 1054         if (inm->in6m_nsrc > 0) {
 1055                 struct mbuf             *m;
 1056                 uint8_t                 *sp;
 1057                 int                      i, nrecorded;
 1058                 int                      soff;
 1059 
 1060                 m = m0;
 1061                 soff = off + sizeof(struct mldv2_query);
 1062                 nrecorded = 0;
 1063                 for (i = 0; i < nsrc; i++) {
 1064                         sp = mtod(m, uint8_t *) + soff;
 1065                         retval = in6m_record_source(inm,
 1066                             (const struct in6_addr *)sp);
 1067                         if (retval < 0)
 1068                                 break;
 1069                         nrecorded += retval;
 1070                         soff += sizeof(struct in6_addr);
 1071                         if (soff >= m->m_len) {
 1072                                 soff = soff - m->m_len;
 1073                                 m = m->m_next;
 1074                                 if (m == NULL)
 1075                                         break;
 1076                         }
 1077                 }
 1078                 if (nrecorded > 0) {
 1079                         CTR1(KTR_MLD,
 1080                             "%s: schedule response to SG query", __func__);
 1081                         inm->in6m_state = MLD_SG_QUERY_PENDING_MEMBER;
 1082                         inm->in6m_timer = MLD_RANDOM_DELAY(timer);
 1083                         V_current_state_timers_running6 = 1;
 1084                 }
 1085         }
 1086 
 1087         return (retval);
 1088 }
 1089 
 1090 /*
 1091  * Process a received MLDv1 host membership report.
 1092  * Assumes mld points to mld_hdr in pulled up mbuf chain.
 1093  *
 1094  * NOTE: Can't be fully const correct as we temporarily embed scope ID in
 1095  * mld_addr. This is OK as we own the mbuf chain.
 1096  */
 1097 static int
 1098 mld_v1_input_report(struct ifnet *ifp, const struct ip6_hdr *ip6,
 1099     /*const*/ struct mld_hdr *mld)
 1100 {
 1101         struct in6_addr          src, dst;
 1102         struct in6_ifaddr       *ia;
 1103         struct in6_multi        *inm;
 1104 #ifdef KTR
 1105         char                     ip6tbuf[INET6_ADDRSTRLEN];
 1106 #endif
 1107 
 1108         if (!mld_v1enable) {
 1109                 CTR3(KTR_MLD, "ignore v1 report %s on ifp %p(%s)",
 1110                     ip6_sprintf(ip6tbuf, &mld->mld_addr),
 1111                     ifp, ifp->if_xname);
 1112                 return (0);
 1113         }
 1114 
 1115         if (ifp->if_flags & IFF_LOOPBACK)
 1116                 return (0);
 1117 
 1118         /*
 1119          * MLDv1 reports must originate from a host's link-local address,
 1120          * or the unspecified address (when booting).
 1121          */
 1122         src = ip6->ip6_src;
 1123         in6_clearscope(&src);
 1124         if (!IN6_IS_SCOPE_LINKLOCAL(&src) && !IN6_IS_ADDR_UNSPECIFIED(&src)) {
 1125                 CTR3(KTR_MLD, "ignore v1 query src %s on ifp %p(%s)",
 1126                     ip6_sprintf(ip6tbuf, &ip6->ip6_src),
 1127                     ifp, ifp->if_xname);
 1128                 return (EINVAL);
 1129         }
 1130 
 1131         /*
 1132          * RFC2710 Section 4: MLDv1 reports must pertain to a multicast
 1133          * group, and must be directed to the group itself.
 1134          */
 1135         dst = ip6->ip6_dst;
 1136         in6_clearscope(&dst);
 1137         if (!IN6_IS_ADDR_MULTICAST(&mld->mld_addr) ||
 1138             !IN6_ARE_ADDR_EQUAL(&mld->mld_addr, &dst)) {
 1139                 CTR3(KTR_MLD, "ignore v1 query dst %s on ifp %p(%s)",
 1140                     ip6_sprintf(ip6tbuf, &ip6->ip6_dst),
 1141                     ifp, ifp->if_xname);
 1142                 return (EINVAL);
 1143         }
 1144 
 1145         /*
 1146          * Make sure we don't hear our own membership report, as fast
 1147          * leave requires knowing that we are the only member of a
 1148          * group. Assume we used the link-local address if available,
 1149          * otherwise look for ::.
 1150          *
 1151          * XXX Note that scope ID comparison is needed for the address
 1152          * returned by in6ifa_ifpforlinklocal(), but SHOULD NOT be
 1153          * performed for the on-wire address.
 1154          */
 1155         ia = in6ifa_ifpforlinklocal(ifp, IN6_IFF_NOTREADY|IN6_IFF_ANYCAST);
 1156         if ((ia && IN6_ARE_ADDR_EQUAL(&ip6->ip6_src, IA6_IN6(ia))) ||
 1157             (ia == NULL && IN6_IS_ADDR_UNSPECIFIED(&src))) {
 1158                 if (ia != NULL)
 1159                         ifa_free(&ia->ia_ifa);
 1160                 return (0);
 1161         }
 1162         if (ia != NULL)
 1163                 ifa_free(&ia->ia_ifa);
 1164 
 1165         CTR3(KTR_MLD, "process v1 report %s on ifp %p(%s)",
 1166             ip6_sprintf(ip6tbuf, &mld->mld_addr), ifp, ifp->if_xname);
 1167 
 1168         /*
 1169          * Embed scope ID of receiving interface in MLD query for lookup
 1170          * whilst we don't hold other locks (due to KAME locking lameness).
 1171          */
 1172         if (!IN6_IS_ADDR_UNSPECIFIED(&mld->mld_addr))
 1173                 in6_setscope(&mld->mld_addr, ifp, NULL);
 1174 
 1175         IN6_MULTI_LOCK();
 1176         MLD_LOCK();
 1177         IF_ADDR_LOCK(ifp);
 1178 
 1179         /*
 1180          * MLDv1 report suppression.
 1181          * If we are a member of this group, and our membership should be
 1182          * reported, and our group timer is pending or about to be reset,
 1183          * stop our group timer by transitioning to the 'lazy' state.
 1184          */
 1185         inm = in6m_lookup_locked(ifp, &mld->mld_addr);
 1186         if (inm != NULL) {
 1187                 struct mld_ifinfo *mli;
 1188 
 1189                 mli = inm->in6m_mli;
 1190                 KASSERT(mli != NULL,
 1191                     ("%s: no mli for ifp %p", __func__, ifp));
 1192 
 1193                 /*
 1194                  * If we are in MLDv2 host mode, do not allow the
 1195                  * other host's MLDv1 report to suppress our reports.
 1196                  */
 1197                 if (mli->mli_version == MLD_VERSION_2)
 1198                         goto out_locked;
 1199 
 1200                 inm->in6m_timer = 0;
 1201 
 1202                 switch (inm->in6m_state) {
 1203                 case MLD_NOT_MEMBER:
 1204                 case MLD_SILENT_MEMBER:
 1205                 case MLD_SLEEPING_MEMBER:
 1206                         break;
 1207                 case MLD_REPORTING_MEMBER:
 1208                 case MLD_IDLE_MEMBER:
 1209                 case MLD_AWAKENING_MEMBER:
 1210                         CTR3(KTR_MLD,
 1211                             "report suppressed for %s on ifp %p(%s)",
 1212                             ip6_sprintf(ip6tbuf, &mld->mld_addr),
 1213                             ifp, ifp->if_xname);
 1214                 case MLD_LAZY_MEMBER:
 1215                         inm->in6m_state = MLD_LAZY_MEMBER;
 1216                         break;
 1217                 case MLD_G_QUERY_PENDING_MEMBER:
 1218                 case MLD_SG_QUERY_PENDING_MEMBER:
 1219                 case MLD_LEAVING_MEMBER:
 1220                         break;
 1221                 }
 1222         }
 1223 
 1224 out_locked:
 1225         MLD_UNLOCK();
 1226         IF_ADDR_UNLOCK(ifp);
 1227         IN6_MULTI_UNLOCK();
 1228 
 1229         /* XXX Clear embedded scope ID as userland won't expect it. */
 1230         in6_clearscope(&mld->mld_addr);
 1231 
 1232         return (0);
 1233 }
 1234 
 1235 /*
 1236  * MLD input path.
 1237  *
 1238  * Assume query messages which fit in a single ICMPv6 message header
 1239  * have been pulled up.
 1240  * Assume that userland will want to see the message, even if it
 1241  * otherwise fails kernel input validation; do not free it.
 1242  * Pullup may however free the mbuf chain m if it fails.
 1243  *
 1244  * Return IPPROTO_DONE if we freed m. Otherwise, return 0.
 1245  */
 1246 int
 1247 mld_input(struct mbuf *m, int off, int icmp6len)
 1248 {
 1249         struct ifnet    *ifp;
 1250         struct ip6_hdr  *ip6;
 1251         struct mld_hdr  *mld;
 1252         int              mldlen;
 1253 
 1254         CTR3(KTR_MLD, "%s: called w/mbuf (%p,%d)", __func__, m, off);
 1255 
 1256         ifp = m->m_pkthdr.rcvif;
 1257 
 1258         ip6 = mtod(m, struct ip6_hdr *);
 1259 
 1260         /* Pullup to appropriate size. */
 1261         mld = (struct mld_hdr *)(mtod(m, uint8_t *) + off);
 1262         if (mld->mld_type == MLD_LISTENER_QUERY &&
 1263             icmp6len >= sizeof(struct mldv2_query)) {
 1264                 mldlen = sizeof(struct mldv2_query);
 1265         } else {
 1266                 mldlen = sizeof(struct mld_hdr);
 1267         }
 1268         IP6_EXTHDR_GET(mld, struct mld_hdr *, m, off, mldlen);
 1269         if (mld == NULL) {
 1270                 ICMP6STAT_INC(icp6s_badlen);
 1271                 return (IPPROTO_DONE);
 1272         }
 1273 
 1274         /*
 1275          * Userland needs to see all of this traffic for implementing
 1276          * the endpoint discovery portion of multicast routing.
 1277          */
 1278         switch (mld->mld_type) {
 1279         case MLD_LISTENER_QUERY:
 1280                 icmp6_ifstat_inc(ifp, ifs6_in_mldquery);
 1281                 if (icmp6len == sizeof(struct mld_hdr)) {
 1282                         if (mld_v1_input_query(ifp, ip6, mld) != 0)
 1283                                 return (0);
 1284                 } else if (icmp6len >= sizeof(struct mldv2_query)) {
 1285                         if (mld_v2_input_query(ifp, ip6, m, off,
 1286                             icmp6len) != 0)
 1287                                 return (0);
 1288                 }
 1289                 break;
 1290         case MLD_LISTENER_REPORT:
 1291                 icmp6_ifstat_inc(ifp, ifs6_in_mldreport);
 1292                 if (mld_v1_input_report(ifp, ip6, mld) != 0)
 1293                         return (0);
 1294                 break;
 1295         case MLDV2_LISTENER_REPORT:
 1296                 icmp6_ifstat_inc(ifp, ifs6_in_mldreport);
 1297                 break;
 1298         case MLD_LISTENER_DONE:
 1299                 icmp6_ifstat_inc(ifp, ifs6_in_mlddone);
 1300                 break;
 1301         default:
 1302                 break;
 1303         }
 1304 
 1305         return (0);
 1306 }
 1307 
 1308 /*
 1309  * Fast timeout handler (global).
 1310  * VIMAGE: Timeout handlers are expected to service all vimages.
 1311  */
 1312 void
 1313 mld_fasttimo(void)
 1314 {
 1315         VNET_ITERATOR_DECL(vnet_iter);
 1316 
 1317         VNET_LIST_RLOCK_NOSLEEP();
 1318         VNET_FOREACH(vnet_iter) {
 1319                 CURVNET_SET(vnet_iter);
 1320                 mld_fasttimo_vnet();
 1321                 CURVNET_RESTORE();
 1322         }
 1323         VNET_LIST_RUNLOCK_NOSLEEP();
 1324 }
 1325 
 1326 /*
 1327  * Fast timeout handler (per-vnet).
 1328  *
 1329  * VIMAGE: Assume caller has set up our curvnet.
 1330  */
 1331 static void
 1332 mld_fasttimo_vnet(void)
 1333 {
 1334         struct ifqueue           scq;   /* State-change packets */
 1335         struct ifqueue           qrq;   /* Query response packets */
 1336         struct ifnet            *ifp;
 1337         struct mld_ifinfo       *mli;
 1338         struct ifmultiaddr      *ifma, *tifma;
 1339         struct in6_multi        *inm;
 1340         int                      uri_fasthz;
 1341 
 1342         uri_fasthz = 0;
 1343 
 1344         /*
 1345          * Quick check to see if any work needs to be done, in order to
 1346          * minimize the overhead of fasttimo processing.
 1347          * SMPng: XXX Unlocked reads.
 1348          */
 1349         if (!V_current_state_timers_running6 &&
 1350             !V_interface_timers_running6 &&
 1351             !V_state_change_timers_running6)
 1352                 return;
 1353 
 1354         IN6_MULTI_LOCK();
 1355         MLD_LOCK();
 1356 
 1357         /*
 1358          * MLDv2 General Query response timer processing.
 1359          */
 1360         if (V_interface_timers_running6) {
 1361                 CTR1(KTR_MLD, "%s: interface timers running", __func__);
 1362 
 1363                 V_interface_timers_running6 = 0;
 1364                 LIST_FOREACH(mli, &V_mli_head, mli_link) {
 1365                         if (mli->mli_v2_timer == 0) {
 1366                                 /* Do nothing. */
 1367                         } else if (--mli->mli_v2_timer == 0) {
 1368                                 mld_v2_dispatch_general_query(mli);
 1369                         } else {
 1370                                 V_interface_timers_running6 = 1;
 1371                         }
 1372                 }
 1373         }
 1374 
 1375         if (!V_current_state_timers_running6 &&
 1376             !V_state_change_timers_running6)
 1377                 goto out_locked;
 1378 
 1379         V_current_state_timers_running6 = 0;
 1380         V_state_change_timers_running6 = 0;
 1381 
 1382         CTR1(KTR_MLD, "%s: state change timers running", __func__);
 1383 
 1384         /*
 1385          * MLD host report and state-change timer processing.
 1386          * Note: Processing a v2 group timer may remove a node.
 1387          */
 1388         LIST_FOREACH(mli, &V_mli_head, mli_link) {
 1389                 ifp = mli->mli_ifp;
 1390 
 1391                 if (mli->mli_version == MLD_VERSION_2) {
 1392                         uri_fasthz = MLD_RANDOM_DELAY(mli->mli_uri *
 1393                             PR_FASTHZ);
 1394 
 1395                         memset(&qrq, 0, sizeof(struct ifqueue));
 1396                         IFQ_SET_MAXLEN(&qrq, MLD_MAX_G_GS_PACKETS);
 1397 
 1398                         memset(&scq, 0, sizeof(struct ifqueue));
 1399                         IFQ_SET_MAXLEN(&scq, MLD_MAX_STATE_CHANGE_PACKETS);
 1400                 }
 1401 
 1402                 IF_ADDR_LOCK(ifp);
 1403                 TAILQ_FOREACH_SAFE(ifma, &ifp->if_multiaddrs, ifma_link,
 1404                     tifma) {
 1405                         if (ifma->ifma_addr->sa_family != AF_INET6 ||
 1406                             ifma->ifma_protospec == NULL)
 1407                                 continue;
 1408                         inm = (struct in6_multi *)ifma->ifma_protospec;
 1409                         switch (mli->mli_version) {
 1410                         case MLD_VERSION_1:
 1411                                 /*
 1412                                  * XXX Drop IF_ADDR lock temporarily to
 1413                                  * avoid recursion caused by a potential
 1414                                  * call by in6ifa_ifpforlinklocal().
 1415                                  * rwlock candidate?
 1416                                  */
 1417                                 IF_ADDR_UNLOCK(ifp);
 1418                                 mld_v1_process_group_timer(inm,
 1419                                     mli->mli_version);
 1420                                 IF_ADDR_LOCK(ifp);
 1421                                 break;
 1422                         case MLD_VERSION_2:
 1423                                 mld_v2_process_group_timers(mli, &qrq,
 1424                                     &scq, inm, uri_fasthz);
 1425                                 break;
 1426                         }
 1427                 }
 1428                 IF_ADDR_UNLOCK(ifp);
 1429 
 1430                 if (mli->mli_version == MLD_VERSION_2) {
 1431                         struct in6_multi                *tinm;
 1432 
 1433                         mld_dispatch_queue(&qrq, 0);
 1434                         mld_dispatch_queue(&scq, 0);
 1435 
 1436                         /*
 1437                          * Free the in_multi reference(s) for
 1438                          * this lifecycle.
 1439                          */
 1440                         SLIST_FOREACH_SAFE(inm, &mli->mli_relinmhead,
 1441                             in6m_nrele, tinm) {
 1442                                 SLIST_REMOVE_HEAD(&mli->mli_relinmhead,
 1443                                     in6m_nrele);
 1444                                 in6m_release_locked(inm);
 1445                         }
 1446                 }
 1447         }
 1448 
 1449 out_locked:
 1450         MLD_UNLOCK();
 1451         IN6_MULTI_UNLOCK();
 1452 }
 1453 
 1454 /*
 1455  * Update host report group timer.
 1456  * Will update the global pending timer flags.
 1457  */
 1458 static void
 1459 mld_v1_process_group_timer(struct in6_multi *inm, const int version)
 1460 {
 1461         int report_timer_expired;
 1462 
 1463         IN6_MULTI_LOCK_ASSERT();
 1464         MLD_LOCK_ASSERT();
 1465 
 1466         if (inm->in6m_timer == 0) {
 1467                 report_timer_expired = 0;
 1468         } else if (--inm->in6m_timer == 0) {
 1469                 report_timer_expired = 1;
 1470         } else {
 1471                 V_current_state_timers_running6 = 1;
 1472                 return;
 1473         }
 1474 
 1475         switch (inm->in6m_state) {
 1476         case MLD_NOT_MEMBER:
 1477         case MLD_SILENT_MEMBER:
 1478         case MLD_IDLE_MEMBER:
 1479         case MLD_LAZY_MEMBER:
 1480         case MLD_SLEEPING_MEMBER:
 1481         case MLD_AWAKENING_MEMBER:
 1482                 break;
 1483         case MLD_REPORTING_MEMBER:
 1484                 if (report_timer_expired) {
 1485                         inm->in6m_state = MLD_IDLE_MEMBER;
 1486                         (void)mld_v1_transmit_report(inm,
 1487                              MLD_LISTENER_REPORT);
 1488                 }
 1489                 break;
 1490         case MLD_G_QUERY_PENDING_MEMBER:
 1491         case MLD_SG_QUERY_PENDING_MEMBER:
 1492         case MLD_LEAVING_MEMBER:
 1493                 break;
 1494         }
 1495 }
 1496 
 1497 /*
 1498  * Update a group's timers for MLDv2.
 1499  * Will update the global pending timer flags.
 1500  * Note: Unlocked read from mli.
 1501  */
 1502 static void
 1503 mld_v2_process_group_timers(struct mld_ifinfo *mli,
 1504     struct ifqueue *qrq, struct ifqueue *scq,
 1505     struct in6_multi *inm, const int uri_fasthz)
 1506 {
 1507         int query_response_timer_expired;
 1508         int state_change_retransmit_timer_expired;
 1509 #ifdef KTR
 1510         char ip6tbuf[INET6_ADDRSTRLEN];
 1511 #endif
 1512 
 1513         IN6_MULTI_LOCK_ASSERT();
 1514         MLD_LOCK_ASSERT();
 1515 
 1516         query_response_timer_expired = 0;
 1517         state_change_retransmit_timer_expired = 0;
 1518 
 1519         /*
 1520          * During a transition from compatibility mode back to MLDv2,
 1521          * a group record in REPORTING state may still have its group
 1522          * timer active. This is a no-op in this function; it is easier
 1523          * to deal with it here than to complicate the slow-timeout path.
 1524          */
 1525         if (inm->in6m_timer == 0) {
 1526                 query_response_timer_expired = 0;
 1527         } else if (--inm->in6m_timer == 0) {
 1528                 query_response_timer_expired = 1;
 1529         } else {
 1530                 V_current_state_timers_running6 = 1;
 1531         }
 1532 
 1533         if (inm->in6m_sctimer == 0) {
 1534                 state_change_retransmit_timer_expired = 0;
 1535         } else if (--inm->in6m_sctimer == 0) {
 1536                 state_change_retransmit_timer_expired = 1;
 1537         } else {
 1538                 V_state_change_timers_running6 = 1;
 1539         }
 1540 
 1541         /* We are in fasttimo, so be quick about it. */
 1542         if (!state_change_retransmit_timer_expired &&
 1543             !query_response_timer_expired)
 1544                 return;
 1545 
 1546         switch (inm->in6m_state) {
 1547         case MLD_NOT_MEMBER:
 1548         case MLD_SILENT_MEMBER:
 1549         case MLD_SLEEPING_MEMBER:
 1550         case MLD_LAZY_MEMBER:
 1551         case MLD_AWAKENING_MEMBER:
 1552         case MLD_IDLE_MEMBER:
 1553                 break;
 1554         case MLD_G_QUERY_PENDING_MEMBER:
 1555         case MLD_SG_QUERY_PENDING_MEMBER:
 1556                 /*
 1557                  * Respond to a previously pending Group-Specific
 1558                  * or Group-and-Source-Specific query by enqueueing
 1559                  * the appropriate Current-State report for
 1560                  * immediate transmission.
 1561                  */
 1562                 if (query_response_timer_expired) {
 1563                         int retval;
 1564 
 1565                         retval = mld_v2_enqueue_group_record(qrq, inm, 0, 1,
 1566                             (inm->in6m_state == MLD_SG_QUERY_PENDING_MEMBER),
 1567                             0);
 1568                         CTR2(KTR_MLD, "%s: enqueue record = %d",
 1569                             __func__, retval);
 1570                         inm->in6m_state = MLD_REPORTING_MEMBER;
 1571                         in6m_clear_recorded(inm);
 1572                 }
 1573                 /* FALLTHROUGH */
 1574         case MLD_REPORTING_MEMBER:
 1575         case MLD_LEAVING_MEMBER:
 1576                 if (state_change_retransmit_timer_expired) {
 1577                         /*
 1578                          * State-change retransmission timer fired.
 1579                          * If there are any further pending retransmissions,
 1580                          * set the global pending state-change flag, and
 1581                          * reset the timer.
 1582                          */
 1583                         if (--inm->in6m_scrv > 0) {
 1584                                 inm->in6m_sctimer = uri_fasthz;
 1585                                 V_state_change_timers_running6 = 1;
 1586                         }
 1587                         /*
 1588                          * Retransmit the previously computed state-change
 1589                          * report. If there are no further pending
 1590                          * retransmissions, the mbuf queue will be consumed.
 1591                          * Update T0 state to T1 as we have now sent
 1592                          * a state-change.
 1593                          */
 1594                         (void)mld_v2_merge_state_changes(inm, scq);
 1595 
 1596                         in6m_commit(inm);
 1597                         CTR3(KTR_MLD, "%s: T1 -> T0 for %s/%s", __func__,
 1598                             ip6_sprintf(ip6tbuf, &inm->in6m_addr),
 1599                             inm->in6m_ifp->if_xname);
 1600 
 1601                         /*
 1602                          * If we are leaving the group for good, make sure
 1603                          * we release MLD's reference to it.
 1604                          * This release must be deferred using a SLIST,
 1605                          * as we are called from a loop which traverses
 1606                          * the in_ifmultiaddr TAILQ.
 1607                          */
 1608                         if (inm->in6m_state == MLD_LEAVING_MEMBER &&
 1609                             inm->in6m_scrv == 0) {
 1610                                 inm->in6m_state = MLD_NOT_MEMBER;
 1611                                 SLIST_INSERT_HEAD(&mli->mli_relinmhead,
 1612                                     inm, in6m_nrele);
 1613                         }
 1614                 }
 1615                 break;
 1616         }
 1617 }
 1618 
 1619 /*
 1620  * Switch to a different version on the given interface,
 1621  * as per Section 9.12.
 1622  */
 1623 static void
 1624 mld_set_version(struct mld_ifinfo *mli, const int version)
 1625 {
 1626         int old_version_timer;
 1627 
 1628         MLD_LOCK_ASSERT();
 1629 
 1630         CTR4(KTR_MLD, "%s: switching to v%d on ifp %p(%s)", __func__,
 1631             version, mli->mli_ifp, mli->mli_ifp->if_xname);
 1632 
 1633         if (version == MLD_VERSION_1) {
 1634                 /*
 1635                  * Compute the "Older Version Querier Present" timer as per
 1636                  * Section 9.12.
 1637                  */
 1638                 old_version_timer = (mli->mli_rv * mli->mli_qi) + mli->mli_qri;
 1639                 old_version_timer *= PR_SLOWHZ;
 1640                 mli->mli_v1_timer = old_version_timer;
 1641         }
 1642 
 1643         if (mli->mli_v1_timer > 0 && mli->mli_version != MLD_VERSION_1) {
 1644                 mli->mli_version = MLD_VERSION_1;
 1645                 mld_v2_cancel_link_timers(mli);
 1646         }
 1647 }
 1648 
 1649 /*
 1650  * Cancel pending MLDv2 timers for the given link and all groups
 1651  * joined on it; state-change, general-query, and group-query timers.
 1652  */
 1653 static void
 1654 mld_v2_cancel_link_timers(struct mld_ifinfo *mli)
 1655 {
 1656         struct ifmultiaddr      *ifma;
 1657         struct ifnet            *ifp;
 1658         struct in6_multi                *inm;
 1659 
 1660         CTR3(KTR_MLD, "%s: cancel v2 timers on ifp %p(%s)", __func__,
 1661             mli->mli_ifp, mli->mli_ifp->if_xname);
 1662 
 1663         IN6_MULTI_LOCK_ASSERT();
 1664         MLD_LOCK_ASSERT();
 1665 
 1666         /*
 1667          * Fast-track this potentially expensive operation
 1668          * by checking all the global 'timer pending' flags.
 1669          */
 1670         if (!V_interface_timers_running6 &&
 1671             !V_state_change_timers_running6 &&
 1672             !V_current_state_timers_running6)
 1673                 return;
 1674 
 1675         mli->mli_v2_timer = 0;
 1676 
 1677         ifp = mli->mli_ifp;
 1678 
 1679         IF_ADDR_LOCK(ifp);
 1680         TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
 1681                 if (ifma->ifma_addr->sa_family != AF_INET6)
 1682                         continue;
 1683                 inm = (struct in6_multi *)ifma->ifma_protospec;
 1684                 switch (inm->in6m_state) {
 1685                 case MLD_NOT_MEMBER:
 1686                 case MLD_SILENT_MEMBER:
 1687                 case MLD_IDLE_MEMBER:
 1688                 case MLD_LAZY_MEMBER:
 1689                 case MLD_SLEEPING_MEMBER:
 1690                 case MLD_AWAKENING_MEMBER:
 1691                         break;
 1692                 case MLD_LEAVING_MEMBER:
 1693                         /*
 1694                          * If we are leaving the group and switching
 1695                          * version, we need to release the final
 1696                          * reference held for issuing the INCLUDE {}.
 1697                          *
 1698                          * SMPNG: Must drop and re-acquire IF_ADDR_LOCK
 1699                          * around in6m_release_locked(), as it is not
 1700                          * a recursive mutex.
 1701                          */
 1702                         IF_ADDR_UNLOCK(ifp);
 1703                         in6m_release_locked(inm);
 1704                         IF_ADDR_LOCK(ifp);
 1705                         /* FALLTHROUGH */
 1706                 case MLD_G_QUERY_PENDING_MEMBER:
 1707                 case MLD_SG_QUERY_PENDING_MEMBER:
 1708                         in6m_clear_recorded(inm);
 1709                         /* FALLTHROUGH */
 1710                 case MLD_REPORTING_MEMBER:
 1711                         inm->in6m_sctimer = 0;
 1712                         inm->in6m_timer = 0;
 1713                         inm->in6m_state = MLD_REPORTING_MEMBER;
 1714                         /*
 1715                          * Free any pending MLDv2 state-change records.
 1716                          */
 1717                         _IF_DRAIN(&inm->in6m_scq);
 1718                         break;
 1719                 }
 1720         }
 1721         IF_ADDR_UNLOCK(ifp);
 1722 }
 1723 
 1724 /*
 1725  * Global slowtimo handler.
 1726  * VIMAGE: Timeout handlers are expected to service all vimages.
 1727  */
 1728 void
 1729 mld_slowtimo(void)
 1730 {
 1731         VNET_ITERATOR_DECL(vnet_iter);
 1732 
 1733         VNET_LIST_RLOCK_NOSLEEP();
 1734         VNET_FOREACH(vnet_iter) {
 1735                 CURVNET_SET(vnet_iter);
 1736                 mld_slowtimo_vnet();
 1737                 CURVNET_RESTORE();
 1738         }
 1739         VNET_LIST_RUNLOCK_NOSLEEP();
 1740 }
 1741 
 1742 /*
 1743  * Per-vnet slowtimo handler.
 1744  */
 1745 static void
 1746 mld_slowtimo_vnet(void)
 1747 {
 1748         struct mld_ifinfo *mli;
 1749 
 1750         MLD_LOCK();
 1751 
 1752         LIST_FOREACH(mli, &V_mli_head, mli_link) {
 1753                 mld_v1_process_querier_timers(mli);
 1754         }
 1755 
 1756         MLD_UNLOCK();
 1757 }
 1758 
 1759 /*
 1760  * Update the Older Version Querier Present timers for a link.
 1761  * See Section 9.12 of RFC 3810.
 1762  */
 1763 static void
 1764 mld_v1_process_querier_timers(struct mld_ifinfo *mli)
 1765 {
 1766 
 1767         MLD_LOCK_ASSERT();
 1768 
 1769         if (mli->mli_version != MLD_VERSION_2 && --mli->mli_v1_timer == 0) {
 1770                 /*
 1771                  * MLDv1 Querier Present timer expired; revert to MLDv2.
 1772                  */
 1773                 CTR5(KTR_MLD,
 1774                     "%s: transition from v%d -> v%d on %p(%s)",
 1775                     __func__, mli->mli_version, MLD_VERSION_2,
 1776                     mli->mli_ifp, mli->mli_ifp->if_xname);
 1777                 mli->mli_version = MLD_VERSION_2;
 1778         }
 1779 }
 1780 
 1781 /*
 1782  * Transmit an MLDv1 report immediately.
 1783  */
 1784 static int
 1785 mld_v1_transmit_report(struct in6_multi *in6m, const int type)
 1786 {
 1787         struct ifnet            *ifp;
 1788         struct in6_ifaddr       *ia;
 1789         struct ip6_hdr          *ip6;
 1790         struct mbuf             *mh, *md;
 1791         struct mld_hdr          *mld;
 1792 
 1793         IN6_MULTI_LOCK_ASSERT();
 1794         MLD_LOCK_ASSERT();
 1795 
 1796         ifp = in6m->in6m_ifp;
 1797         ia = in6ifa_ifpforlinklocal(ifp, IN6_IFF_NOTREADY|IN6_IFF_ANYCAST);
 1798         /* ia may be NULL if link-local address is tentative. */
 1799 
 1800         MGETHDR(mh, M_DONTWAIT, MT_HEADER);
 1801         if (mh == NULL) {
 1802                 if (ia != NULL)
 1803                         ifa_free(&ia->ia_ifa);
 1804                 return (ENOMEM);
 1805         }
 1806         MGET(md, M_DONTWAIT, MT_DATA);
 1807         if (md == NULL) {
 1808                 m_free(mh);
 1809                 if (ia != NULL)
 1810                         ifa_free(&ia->ia_ifa);
 1811                 return (ENOMEM);
 1812         }
 1813         mh->m_next = md;
 1814 
 1815         /*
 1816          * FUTURE: Consider increasing alignment by ETHER_HDR_LEN, so
 1817          * that ether_output() does not need to allocate another mbuf
 1818          * for the header in the most common case.
 1819          */
 1820         MH_ALIGN(mh, sizeof(struct ip6_hdr));
 1821         mh->m_pkthdr.len = sizeof(struct ip6_hdr) + sizeof(struct mld_hdr);
 1822         mh->m_len = sizeof(struct ip6_hdr);
 1823 
 1824         ip6 = mtod(mh, struct ip6_hdr *);
 1825         ip6->ip6_flow = 0;
 1826         ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
 1827         ip6->ip6_vfc |= IPV6_VERSION;
 1828         ip6->ip6_nxt = IPPROTO_ICMPV6;
 1829         ip6->ip6_src = ia ? ia->ia_addr.sin6_addr : in6addr_any;
 1830         ip6->ip6_dst = in6m->in6m_addr;
 1831 
 1832         md->m_len = sizeof(struct mld_hdr);
 1833         mld = mtod(md, struct mld_hdr *);
 1834         mld->mld_type = type;
 1835         mld->mld_code = 0;
 1836         mld->mld_cksum = 0;
 1837         mld->mld_maxdelay = 0;
 1838         mld->mld_reserved = 0;
 1839         mld->mld_addr = in6m->in6m_addr;
 1840         in6_clearscope(&mld->mld_addr);
 1841         mld->mld_cksum = in6_cksum(mh, IPPROTO_ICMPV6,
 1842             sizeof(struct ip6_hdr), sizeof(struct mld_hdr));
 1843 
 1844         mld_save_context(mh, ifp);
 1845         mh->m_flags |= M_MLDV1;
 1846 
 1847         mld_dispatch_packet(mh);
 1848 
 1849         if (ia != NULL)
 1850                 ifa_free(&ia->ia_ifa);
 1851         return (0);
 1852 }
 1853 
 1854 /*
 1855  * Process a state change from the upper layer for the given IPv6 group.
 1856  *
 1857  * Each socket holds a reference on the in_multi in its own ip_moptions.
 1858  * The socket layer will have made the necessary updates to.the group
 1859  * state, it is now up to MLD to issue a state change report if there
 1860  * has been any change between T0 (when the last state-change was issued)
 1861  * and T1 (now).
 1862  *
 1863  * We use the MLDv2 state machine at group level. The MLd module
 1864  * however makes the decision as to which MLD protocol version to speak.
 1865  * A state change *from* INCLUDE {} always means an initial join.
 1866  * A state change *to* INCLUDE {} always means a final leave.
 1867  *
 1868  * If delay is non-zero, and the state change is an initial multicast
 1869  * join, the state change report will be delayed by 'delay' ticks
 1870  * in units of PR_FASTHZ if MLDv1 is active on the link; otherwise
 1871  * the initial MLDv2 state change report will be delayed by whichever
 1872  * is sooner, a pending state-change timer or delay itself.
 1873  *
 1874  * VIMAGE: curvnet should have been set by caller, as this routine
 1875  * is called from the socket option handlers.
 1876  */
 1877 int
 1878 mld_change_state(struct in6_multi *inm, const int delay)
 1879 {
 1880         struct mld_ifinfo *mli;
 1881         struct ifnet *ifp;
 1882         int error;
 1883 
 1884         IN6_MULTI_LOCK_ASSERT();
 1885 
 1886         error = 0;
 1887 
 1888         /*
 1889          * Try to detect if the upper layer just asked us to change state
 1890          * for an interface which has now gone away.
 1891          */
 1892         KASSERT(inm->in6m_ifma != NULL, ("%s: no ifma", __func__));
 1893         ifp = inm->in6m_ifma->ifma_ifp;
 1894         if (ifp != NULL) {
 1895                 /*
 1896                  * Sanity check that netinet6's notion of ifp is the
 1897                  * same as net's.
 1898                  */
 1899                 KASSERT(inm->in6m_ifp == ifp, ("%s: bad ifp", __func__));
 1900         }
 1901 
 1902         MLD_LOCK();
 1903 
 1904         mli = MLD_IFINFO(ifp);
 1905         KASSERT(mli != NULL, ("%s: no mld_ifinfo for ifp %p", __func__, ifp));
 1906 
 1907         /*
 1908          * If we detect a state transition to or from MCAST_UNDEFINED
 1909          * for this group, then we are starting or finishing an MLD
 1910          * life cycle for this group.
 1911          */
 1912         if (inm->in6m_st[1].iss_fmode != inm->in6m_st[0].iss_fmode) {
 1913                 CTR3(KTR_MLD, "%s: inm transition %d -> %d", __func__,
 1914                     inm->in6m_st[0].iss_fmode, inm->in6m_st[1].iss_fmode);
 1915                 if (inm->in6m_st[0].iss_fmode == MCAST_UNDEFINED) {
 1916                         CTR1(KTR_MLD, "%s: initial join", __func__);
 1917                         error = mld_initial_join(inm, mli, delay);
 1918                         goto out_locked;
 1919                 } else if (inm->in6m_st[1].iss_fmode == MCAST_UNDEFINED) {
 1920                         CTR1(KTR_MLD, "%s: final leave", __func__);
 1921                         mld_final_leave(inm, mli);
 1922                         goto out_locked;
 1923                 }
 1924         } else {
 1925                 CTR1(KTR_MLD, "%s: filter set change", __func__);
 1926         }
 1927 
 1928         error = mld_handle_state_change(inm, mli);
 1929 
 1930 out_locked:
 1931         MLD_UNLOCK();
 1932         return (error);
 1933 }
 1934 
 1935 /*
 1936  * Perform the initial join for an MLD group.
 1937  *
 1938  * When joining a group:
 1939  *  If the group should have its MLD traffic suppressed, do nothing.
 1940  *  MLDv1 starts sending MLDv1 host membership reports.
 1941  *  MLDv2 will schedule an MLDv2 state-change report containing the
 1942  *  initial state of the membership.
 1943  *
 1944  * If the delay argument is non-zero, then we must delay sending the
 1945  * initial state change for delay ticks (in units of PR_FASTHZ).
 1946  */
 1947 static int
 1948 mld_initial_join(struct in6_multi *inm, struct mld_ifinfo *mli,
 1949     const int delay)
 1950 {
 1951         struct ifnet            *ifp;
 1952         struct ifqueue          *ifq;
 1953         int                      error, retval, syncstates;
 1954         int                      odelay;
 1955 #ifdef KTR
 1956         char                     ip6tbuf[INET6_ADDRSTRLEN];
 1957 #endif
 1958 
 1959         CTR4(KTR_MLD, "%s: initial join %s on ifp %p(%s)",
 1960             __func__, ip6_sprintf(ip6tbuf, &inm->in6m_addr),
 1961             inm->in6m_ifp, inm->in6m_ifp->if_xname);
 1962 
 1963         error = 0;
 1964         syncstates = 1;
 1965 
 1966         ifp = inm->in6m_ifp;
 1967 
 1968         IN6_MULTI_LOCK_ASSERT();
 1969         MLD_LOCK_ASSERT();
 1970 
 1971         KASSERT(mli && mli->mli_ifp == ifp, ("%s: inconsistent ifp", __func__));
 1972 
 1973         /*
 1974          * Groups joined on loopback or marked as 'not reported',
 1975          * enter the MLD_SILENT_MEMBER state and
 1976          * are never reported in any protocol exchanges.
 1977          * All other groups enter the appropriate state machine
 1978          * for the version in use on this link.
 1979          * A link marked as MLIF_SILENT causes MLD to be completely
 1980          * disabled for the link.
 1981          */
 1982         if ((ifp->if_flags & IFF_LOOPBACK) ||
 1983             (mli->mli_flags & MLIF_SILENT) ||
 1984             !mld_is_addr_reported(&inm->in6m_addr)) {
 1985                 CTR1(KTR_MLD,
 1986 "%s: not kicking state machine for silent group", __func__);
 1987                 inm->in6m_state = MLD_SILENT_MEMBER;
 1988                 inm->in6m_timer = 0;
 1989         } else {
 1990                 /*
 1991                  * Deal with overlapping in_multi lifecycle.
 1992                  * If this group was LEAVING, then make sure
 1993                  * we drop the reference we picked up to keep the
 1994                  * group around for the final INCLUDE {} enqueue.
 1995                  */
 1996                 if (mli->mli_version == MLD_VERSION_2 &&
 1997                     inm->in6m_state == MLD_LEAVING_MEMBER)
 1998                         in6m_release_locked(inm);
 1999 
 2000                 inm->in6m_state = MLD_REPORTING_MEMBER;
 2001 
 2002                 switch (mli->mli_version) {
 2003                 case MLD_VERSION_1:
 2004                         /*
 2005                          * If a delay was provided, only use it if
 2006                          * it is greater than the delay normally
 2007                          * used for an MLDv1 state change report,
 2008                          * and delay sending the initial MLDv1 report
 2009                          * by not transitioning to the IDLE state.
 2010                          */
 2011                         odelay = MLD_RANDOM_DELAY(MLD_V1_MAX_RI * PR_FASTHZ);
 2012                         if (delay) {
 2013                                 inm->in6m_timer = max(delay, odelay);
 2014                                 V_current_state_timers_running6 = 1;
 2015                         } else {
 2016                                 inm->in6m_state = MLD_IDLE_MEMBER;
 2017                                 error = mld_v1_transmit_report(inm,
 2018                                      MLD_LISTENER_REPORT);
 2019                                 if (error == 0) {
 2020                                         inm->in6m_timer = odelay;
 2021                                         V_current_state_timers_running6 = 1;
 2022                                 }
 2023                         }
 2024                         break;
 2025 
 2026                 case MLD_VERSION_2:
 2027                         /*
 2028                          * Defer update of T0 to T1, until the first copy
 2029                          * of the state change has been transmitted.
 2030                          */
 2031                         syncstates = 0;
 2032 
 2033                         /*
 2034                          * Immediately enqueue a State-Change Report for
 2035                          * this interface, freeing any previous reports.
 2036                          * Don't kick the timers if there is nothing to do,
 2037                          * or if an error occurred.
 2038                          */
 2039                         ifq = &inm->in6m_scq;
 2040                         _IF_DRAIN(ifq);
 2041                         retval = mld_v2_enqueue_group_record(ifq, inm, 1,
 2042                             0, 0, (mli->mli_flags & MLIF_USEALLOW));
 2043                         CTR2(KTR_MLD, "%s: enqueue record = %d",
 2044                             __func__, retval);
 2045                         if (retval <= 0) {
 2046                                 error = retval * -1;
 2047                                 break;
 2048                         }
 2049 
 2050                         /*
 2051                          * Schedule transmission of pending state-change
 2052                          * report up to RV times for this link. The timer
 2053                          * will fire at the next mld_fasttimo (~200ms),
 2054                          * giving us an opportunity to merge the reports.
 2055                          *
 2056                          * If a delay was provided to this function, only
 2057                          * use this delay if sooner than the existing one.
 2058                          */
 2059                         KASSERT(mli->mli_rv > 1,
 2060                            ("%s: invalid robustness %d", __func__,
 2061                             mli->mli_rv));
 2062                         inm->in6m_scrv = mli->mli_rv;
 2063                         if (delay) {
 2064                                 if (inm->in6m_sctimer > 1) {
 2065                                         inm->in6m_sctimer =
 2066                                             min(inm->in6m_sctimer, delay);
 2067                                 } else
 2068                                         inm->in6m_sctimer = delay;
 2069                         } else
 2070                                 inm->in6m_sctimer = 1;
 2071                         V_state_change_timers_running6 = 1;
 2072 
 2073                         error = 0;
 2074                         break;
 2075                 }
 2076         }
 2077 
 2078         /*
 2079          * Only update the T0 state if state change is atomic,
 2080          * i.e. we don't need to wait for a timer to fire before we
 2081          * can consider the state change to have been communicated.
 2082          */
 2083         if (syncstates) {
 2084                 in6m_commit(inm);
 2085                 CTR3(KTR_MLD, "%s: T1 -> T0 for %s/%s", __func__,
 2086                     ip6_sprintf(ip6tbuf, &inm->in6m_addr),
 2087                     inm->in6m_ifp->if_xname);
 2088         }
 2089 
 2090         return (error);
 2091 }
 2092 
 2093 /*
 2094  * Issue an intermediate state change during the life-cycle.
 2095  */
 2096 static int
 2097 mld_handle_state_change(struct in6_multi *inm, struct mld_ifinfo *mli)
 2098 {
 2099         struct ifnet            *ifp;
 2100         int                      retval;
 2101 #ifdef KTR
 2102         char                     ip6tbuf[INET6_ADDRSTRLEN];
 2103 #endif
 2104 
 2105         CTR4(KTR_MLD, "%s: state change for %s on ifp %p(%s)",
 2106             __func__, ip6_sprintf(ip6tbuf, &inm->in6m_addr),
 2107             inm->in6m_ifp, inm->in6m_ifp->if_xname);
 2108 
 2109         ifp = inm->in6m_ifp;
 2110 
 2111         IN6_MULTI_LOCK_ASSERT();
 2112         MLD_LOCK_ASSERT();
 2113 
 2114         KASSERT(mli && mli->mli_ifp == ifp,
 2115             ("%s: inconsistent ifp", __func__));
 2116 
 2117         if ((ifp->if_flags & IFF_LOOPBACK) ||
 2118             (mli->mli_flags & MLIF_SILENT) ||
 2119             !mld_is_addr_reported(&inm->in6m_addr) ||
 2120             (mli->mli_version != MLD_VERSION_2)) {
 2121                 if (!mld_is_addr_reported(&inm->in6m_addr)) {
 2122                         CTR1(KTR_MLD,
 2123 "%s: not kicking state machine for silent group", __func__);
 2124                 }
 2125                 CTR1(KTR_MLD, "%s: nothing to do", __func__);
 2126                 in6m_commit(inm);
 2127                 CTR3(KTR_MLD, "%s: T1 -> T0 for %s/%s", __func__,
 2128                     ip6_sprintf(ip6tbuf, &inm->in6m_addr),
 2129                     inm->in6m_ifp->if_xname);
 2130                 return (0);
 2131         }
 2132 
 2133         _IF_DRAIN(&inm->in6m_scq);
 2134 
 2135         retval = mld_v2_enqueue_group_record(&inm->in6m_scq, inm, 1, 0, 0,
 2136             (mli->mli_flags & MLIF_USEALLOW));
 2137         CTR2(KTR_MLD, "%s: enqueue record = %d", __func__, retval);
 2138         if (retval <= 0)
 2139                 return (-retval);
 2140 
 2141         /*
 2142          * If record(s) were enqueued, start the state-change
 2143          * report timer for this group.
 2144          */
 2145         inm->in6m_scrv = mli->mli_rv;
 2146         inm->in6m_sctimer = 1;
 2147         V_state_change_timers_running6 = 1;
 2148 
 2149         return (0);
 2150 }
 2151 
 2152 /*
 2153  * Perform the final leave for a multicast address.
 2154  *
 2155  * When leaving a group:
 2156  *  MLDv1 sends a DONE message, if and only if we are the reporter.
 2157  *  MLDv2 enqueues a state-change report containing a transition
 2158  *  to INCLUDE {} for immediate transmission.
 2159  */
 2160 static void
 2161 mld_final_leave(struct in6_multi *inm, struct mld_ifinfo *mli)
 2162 {
 2163         int syncstates;
 2164 #ifdef KTR
 2165         char ip6tbuf[INET6_ADDRSTRLEN];
 2166 #endif
 2167 
 2168         syncstates = 1;
 2169 
 2170         CTR4(KTR_MLD, "%s: final leave %s on ifp %p(%s)",
 2171             __func__, ip6_sprintf(ip6tbuf, &inm->in6m_addr),
 2172             inm->in6m_ifp, inm->in6m_ifp->if_xname);
 2173 
 2174         IN6_MULTI_LOCK_ASSERT();
 2175         MLD_LOCK_ASSERT();
 2176 
 2177         switch (inm->in6m_state) {
 2178         case MLD_NOT_MEMBER:
 2179         case MLD_SILENT_MEMBER:
 2180         case MLD_LEAVING_MEMBER:
 2181                 /* Already leaving or left; do nothing. */
 2182                 CTR1(KTR_MLD,
 2183 "%s: not kicking state machine for silent group", __func__);
 2184                 break;
 2185         case MLD_REPORTING_MEMBER:
 2186         case MLD_IDLE_MEMBER:
 2187         case MLD_G_QUERY_PENDING_MEMBER:
 2188         case MLD_SG_QUERY_PENDING_MEMBER:
 2189                 if (mli->mli_version == MLD_VERSION_1) {
 2190 #ifdef INVARIANTS
 2191                         if (inm->in6m_state == MLD_G_QUERY_PENDING_MEMBER ||
 2192                             inm->in6m_state == MLD_SG_QUERY_PENDING_MEMBER)
 2193                         panic("%s: MLDv2 state reached, not MLDv2 mode",
 2194                              __func__);
 2195 #endif
 2196                         mld_v1_transmit_report(inm, MLD_LISTENER_DONE);
 2197                         inm->in6m_state = MLD_NOT_MEMBER;
 2198                 } else if (mli->mli_version == MLD_VERSION_2) {
 2199                         /*
 2200                          * Stop group timer and all pending reports.
 2201                          * Immediately enqueue a state-change report
 2202                          * TO_IN {} to be sent on the next fast timeout,
 2203                          * giving us an opportunity to merge reports.
 2204                          */
 2205                         _IF_DRAIN(&inm->in6m_scq);
 2206                         inm->in6m_timer = 0;
 2207                         inm->in6m_scrv = mli->mli_rv;
 2208                         CTR4(KTR_MLD, "%s: Leaving %s/%s with %d "
 2209                             "pending retransmissions.", __func__,
 2210                             ip6_sprintf(ip6tbuf, &inm->in6m_addr),
 2211                             inm->in6m_ifp->if_xname, inm->in6m_scrv);
 2212                         if (inm->in6m_scrv == 0) {
 2213                                 inm->in6m_state = MLD_NOT_MEMBER;
 2214                                 inm->in6m_sctimer = 0;
 2215                         } else {
 2216                                 int retval;
 2217 
 2218                                 in6m_acquire_locked(inm);
 2219 
 2220                                 retval = mld_v2_enqueue_group_record(
 2221                                     &inm->in6m_scq, inm, 1, 0, 0,
 2222                                     (mli->mli_flags & MLIF_USEALLOW));
 2223                                 KASSERT(retval != 0,
 2224                                     ("%s: enqueue record = %d", __func__,
 2225                                      retval));
 2226 
 2227                                 inm->in6m_state = MLD_LEAVING_MEMBER;
 2228                                 inm->in6m_sctimer = 1;
 2229                                 V_state_change_timers_running6 = 1;
 2230                                 syncstates = 0;
 2231                         }
 2232                         break;
 2233                 }
 2234                 break;
 2235         case MLD_LAZY_MEMBER:
 2236         case MLD_SLEEPING_MEMBER:
 2237         case MLD_AWAKENING_MEMBER:
 2238                 /* Our reports are suppressed; do nothing. */
 2239                 break;
 2240         }
 2241 
 2242         if (syncstates) {
 2243                 in6m_commit(inm);
 2244                 CTR3(KTR_MLD, "%s: T1 -> T0 for %s/%s", __func__,
 2245                     ip6_sprintf(ip6tbuf, &inm->in6m_addr),
 2246                     inm->in6m_ifp->if_xname);
 2247                 inm->in6m_st[1].iss_fmode = MCAST_UNDEFINED;
 2248                 CTR3(KTR_MLD, "%s: T1 now MCAST_UNDEFINED for %p/%s",
 2249                     __func__, &inm->in6m_addr, inm->in6m_ifp->if_xname);
 2250         }
 2251 }
 2252 
 2253 /*
 2254  * Enqueue an MLDv2 group record to the given output queue.
 2255  *
 2256  * If is_state_change is zero, a current-state record is appended.
 2257  * If is_state_change is non-zero, a state-change report is appended.
 2258  *
 2259  * If is_group_query is non-zero, an mbuf packet chain is allocated.
 2260  * If is_group_query is zero, and if there is a packet with free space
 2261  * at the tail of the queue, it will be appended to providing there
 2262  * is enough free space.
 2263  * Otherwise a new mbuf packet chain is allocated.
 2264  *
 2265  * If is_source_query is non-zero, each source is checked to see if
 2266  * it was recorded for a Group-Source query, and will be omitted if
 2267  * it is not both in-mode and recorded.
 2268  *
 2269  * If use_block_allow is non-zero, state change reports for initial join
 2270  * and final leave, on an inclusive mode group with a source list, will be
 2271  * rewritten to use the ALLOW_NEW and BLOCK_OLD record types, respectively.
 2272  *
 2273  * The function will attempt to allocate leading space in the packet
 2274  * for the IPv6+ICMP headers to be prepended without fragmenting the chain.
 2275  *
 2276  * If successful the size of all data appended to the queue is returned,
 2277  * otherwise an error code less than zero is returned, or zero if
 2278  * no record(s) were appended.
 2279  */
 2280 static int
 2281 mld_v2_enqueue_group_record(struct ifqueue *ifq, struct in6_multi *inm,
 2282     const int is_state_change, const int is_group_query,
 2283     const int is_source_query, const int use_block_allow)
 2284 {
 2285         struct mldv2_record      mr;
 2286         struct mldv2_record     *pmr;
 2287         struct ifnet            *ifp;
 2288         struct ip6_msource      *ims, *nims;
 2289         struct mbuf             *m0, *m, *md;
 2290         int                      error, is_filter_list_change;
 2291         int                      minrec0len, m0srcs, msrcs, nbytes, off;
 2292         int                      record_has_sources;
 2293         int                      now;
 2294         int                      type;
 2295         uint8_t                  mode;
 2296 #ifdef KTR
 2297         char                     ip6tbuf[INET6_ADDRSTRLEN];
 2298 #endif
 2299 
 2300         IN6_MULTI_LOCK_ASSERT();
 2301 
 2302         error = 0;
 2303         ifp = inm->in6m_ifp;
 2304         is_filter_list_change = 0;
 2305         m = NULL;
 2306         m0 = NULL;
 2307         m0srcs = 0;
 2308         msrcs = 0;
 2309         nbytes = 0;
 2310         nims = NULL;
 2311         record_has_sources = 1;
 2312         pmr = NULL;
 2313         type = MLD_DO_NOTHING;
 2314         mode = inm->in6m_st[1].iss_fmode;
 2315 
 2316         /*
 2317          * If we did not transition out of ASM mode during t0->t1,
 2318          * and there are no source nodes to process, we can skip
 2319          * the generation of source records.
 2320          */
 2321         if (inm->in6m_st[0].iss_asm > 0 && inm->in6m_st[1].iss_asm > 0 &&
 2322             inm->in6m_nsrc == 0)
 2323                 record_has_sources = 0;
 2324 
 2325         if (is_state_change) {
 2326                 /*
 2327                  * Queue a state change record.
 2328                  * If the mode did not change, and there are non-ASM
 2329                  * listeners or source filters present,
 2330                  * we potentially need to issue two records for the group.
 2331                  * If there are ASM listeners, and there was no filter
 2332                  * mode transition of any kind, do nothing.
 2333                  *
 2334                  * If we are transitioning to MCAST_UNDEFINED, we need
 2335                  * not send any sources. A transition to/from this state is
 2336                  * considered inclusive with some special treatment.
 2337                  *
 2338                  * If we are rewriting initial joins/leaves to use
 2339                  * ALLOW/BLOCK, and the group's membership is inclusive,
 2340                  * we need to send sources in all cases.
 2341                  */
 2342                 if (mode != inm->in6m_st[0].iss_fmode) {
 2343                         if (mode == MCAST_EXCLUDE) {
 2344                                 CTR1(KTR_MLD, "%s: change to EXCLUDE",
 2345                                     __func__);
 2346                                 type = MLD_CHANGE_TO_EXCLUDE_MODE;
 2347                         } else {
 2348                                 CTR1(KTR_MLD, "%s: change to INCLUDE",
 2349                                     __func__);
 2350                                 if (use_block_allow) {
 2351                                         /*
 2352                                          * XXX
 2353                                          * Here we're interested in state
 2354                                          * edges either direction between
 2355                                          * MCAST_UNDEFINED and MCAST_INCLUDE.
 2356                                          * Perhaps we should just check
 2357                                          * the group state, rather than
 2358                                          * the filter mode.
 2359                                          */
 2360                                         if (mode == MCAST_UNDEFINED) {
 2361                                                 type = MLD_BLOCK_OLD_SOURCES;
 2362                                         } else {
 2363                                                 type = MLD_ALLOW_NEW_SOURCES;
 2364                                         }
 2365                                 } else {
 2366                                         type = MLD_CHANGE_TO_INCLUDE_MODE;
 2367                                         if (mode == MCAST_UNDEFINED)
 2368                                                 record_has_sources = 0;
 2369                                 }
 2370                         }
 2371                 } else {
 2372                         if (record_has_sources) {
 2373                                 is_filter_list_change = 1;
 2374                         } else {
 2375                                 type = MLD_DO_NOTHING;
 2376                         }
 2377                 }
 2378         } else {
 2379                 /*
 2380                  * Queue a current state record.
 2381                  */
 2382                 if (mode == MCAST_EXCLUDE) {
 2383                         type = MLD_MODE_IS_EXCLUDE;
 2384                 } else if (mode == MCAST_INCLUDE) {
 2385                         type = MLD_MODE_IS_INCLUDE;
 2386                         KASSERT(inm->in6m_st[1].iss_asm == 0,
 2387                             ("%s: inm %p is INCLUDE but ASM count is %d",
 2388                              __func__, inm, inm->in6m_st[1].iss_asm));
 2389                 }
 2390         }
 2391 
 2392         /*
 2393          * Generate the filter list changes using a separate function.
 2394          */
 2395         if (is_filter_list_change)
 2396                 return (mld_v2_enqueue_filter_change(ifq, inm));
 2397 
 2398         if (type == MLD_DO_NOTHING) {
 2399                 CTR3(KTR_MLD, "%s: nothing to do for %s/%s",
 2400                     __func__, ip6_sprintf(ip6tbuf, &inm->in6m_addr),
 2401                     inm->in6m_ifp->if_xname);
 2402                 return (0);
 2403         }
 2404 
 2405         /*
 2406          * If any sources are present, we must be able to fit at least
 2407          * one in the trailing space of the tail packet's mbuf,
 2408          * ideally more.
 2409          */
 2410         minrec0len = sizeof(struct mldv2_record);
 2411         if (record_has_sources)
 2412                 minrec0len += sizeof(struct in6_addr);
 2413 
 2414         CTR4(KTR_MLD, "%s: queueing %s for %s/%s", __func__,
 2415             mld_rec_type_to_str(type),
 2416             ip6_sprintf(ip6tbuf, &inm->in6m_addr),
 2417             inm->in6m_ifp->if_xname);
 2418 
 2419         /*
 2420          * Check if we have a packet in the tail of the queue for this
 2421          * group into which the first group record for this group will fit.
 2422          * Otherwise allocate a new packet.
 2423          * Always allocate leading space for IP6+RA+ICMPV6+REPORT.
 2424          * Note: Group records for G/GSR query responses MUST be sent
 2425          * in their own packet.
 2426          */
 2427         m0 = ifq->ifq_tail;
 2428         if (!is_group_query &&
 2429             m0 != NULL &&
 2430             (m0->m_pkthdr.PH_vt.vt_nrecs + 1 <= MLD_V2_REPORT_MAXRECS) &&
 2431             (m0->m_pkthdr.len + minrec0len) <
 2432              (ifp->if_mtu - MLD_MTUSPACE)) {
 2433                 m0srcs = (ifp->if_mtu - m0->m_pkthdr.len -
 2434                             sizeof(struct mldv2_record)) /
 2435                             sizeof(struct in6_addr);
 2436                 m = m0;
 2437                 CTR1(KTR_MLD, "%s: use existing packet", __func__);
 2438         } else {
 2439                 if (_IF_QFULL(ifq)) {
 2440                         CTR1(KTR_MLD, "%s: outbound queue full", __func__);
 2441                         return (-ENOMEM);
 2442                 }
 2443                 m = NULL;
 2444                 m0srcs = (ifp->if_mtu - MLD_MTUSPACE -
 2445                     sizeof(struct mldv2_record)) / sizeof(struct in6_addr);
 2446                 if (!is_state_change && !is_group_query)
 2447                         m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
 2448                 if (m == NULL)
 2449                         m = m_gethdr(M_DONTWAIT, MT_DATA);
 2450                 if (m == NULL)
 2451                         return (-ENOMEM);
 2452 
 2453                 mld_save_context(m, ifp);
 2454 
 2455                 CTR1(KTR_MLD, "%s: allocated first packet", __func__);
 2456         }
 2457 
 2458         /*
 2459          * Append group record.
 2460          * If we have sources, we don't know how many yet.
 2461          */
 2462         mr.mr_type = type;
 2463         mr.mr_datalen = 0;
 2464         mr.mr_numsrc = 0;
 2465         mr.mr_addr = inm->in6m_addr;
 2466         in6_clearscope(&mr.mr_addr);
 2467         if (!m_append(m, sizeof(struct mldv2_record), (void *)&mr)) {
 2468                 if (m != m0)
 2469                         m_freem(m);
 2470                 CTR1(KTR_MLD, "%s: m_append() failed.", __func__);
 2471                 return (-ENOMEM);
 2472         }
 2473         nbytes += sizeof(struct mldv2_record);
 2474 
 2475         /*
 2476          * Append as many sources as will fit in the first packet.
 2477          * If we are appending to a new packet, the chain allocation
 2478          * may potentially use clusters; use m_getptr() in this case.
 2479          * If we are appending to an existing packet, we need to obtain
 2480          * a pointer to the group record after m_append(), in case a new
 2481          * mbuf was allocated.
 2482          *
 2483          * Only append sources which are in-mode at t1. If we are
 2484          * transitioning to MCAST_UNDEFINED state on the group, and
 2485          * use_block_allow is zero, do not include source entries.
 2486          * Otherwise, we need to include this source in the report.
 2487          *
 2488          * Only report recorded sources in our filter set when responding
 2489          * to a group-source query.
 2490          */
 2491         if (record_has_sources) {
 2492                 if (m == m0) {
 2493                         md = m_last(m);
 2494                         pmr = (struct mldv2_record *)(mtod(md, uint8_t *) +
 2495                             md->m_len - nbytes);
 2496                 } else {
 2497                         md = m_getptr(m, 0, &off);
 2498                         pmr = (struct mldv2_record *)(mtod(md, uint8_t *) +
 2499                             off);
 2500                 }
 2501                 msrcs = 0;
 2502                 RB_FOREACH_SAFE(ims, ip6_msource_tree, &inm->in6m_srcs,
 2503                     nims) {
 2504                         CTR2(KTR_MLD, "%s: visit node %s", __func__,
 2505                             ip6_sprintf(ip6tbuf, &ims->im6s_addr));
 2506                         now = im6s_get_mode(inm, ims, 1);
 2507                         CTR2(KTR_MLD, "%s: node is %d", __func__, now);
 2508                         if ((now != mode) ||
 2509                             (now == mode &&
 2510                              (!use_block_allow && mode == MCAST_UNDEFINED))) {
 2511                                 CTR1(KTR_MLD, "%s: skip node", __func__);
 2512                                 continue;
 2513                         }
 2514                         if (is_source_query && ims->im6s_stp == 0) {
 2515                                 CTR1(KTR_MLD, "%s: skip unrecorded node",
 2516                                     __func__);
 2517                                 continue;
 2518                         }
 2519                         CTR1(KTR_MLD, "%s: append node", __func__);
 2520                         if (!m_append(m, sizeof(struct in6_addr),
 2521                             (void *)&ims->im6s_addr)) {
 2522                                 if (m != m0)
 2523                                         m_freem(m);
 2524                                 CTR1(KTR_MLD, "%s: m_append() failed.",
 2525                                     __func__);
 2526                                 return (-ENOMEM);
 2527                         }
 2528                         nbytes += sizeof(struct in6_addr);
 2529                         ++msrcs;
 2530                         if (msrcs == m0srcs)
 2531                                 break;
 2532                 }
 2533                 CTR2(KTR_MLD, "%s: msrcs is %d this packet", __func__,
 2534                     msrcs);
 2535                 pmr->mr_numsrc = htons(msrcs);
 2536                 nbytes += (msrcs * sizeof(struct in6_addr));
 2537         }
 2538 
 2539         if (is_source_query && msrcs == 0) {
 2540                 CTR1(KTR_MLD, "%s: no recorded sources to report", __func__);
 2541                 if (m != m0)
 2542                         m_freem(m);
 2543                 return (0);
 2544         }
 2545 
 2546         /*
 2547          * We are good to go with first packet.
 2548          */
 2549         if (m != m0) {
 2550                 CTR1(KTR_MLD, "%s: enqueueing first packet", __func__);
 2551                 m->m_pkthdr.PH_vt.vt_nrecs = 1;
 2552                 _IF_ENQUEUE(ifq, m);
 2553         } else
 2554                 m->m_pkthdr.PH_vt.vt_nrecs++;
 2555 
 2556         /*
 2557          * No further work needed if no source list in packet(s).
 2558          */
 2559         if (!record_has_sources)
 2560                 return (nbytes);
 2561 
 2562         /*
 2563          * Whilst sources remain to be announced, we need to allocate
 2564          * a new packet and fill out as many sources as will fit.
 2565          * Always try for a cluster first.
 2566          */
 2567         while (nims != NULL) {
 2568                 if (_IF_QFULL(ifq)) {
 2569                         CTR1(KTR_MLD, "%s: outbound queue full", __func__);
 2570                         return (-ENOMEM);
 2571                 }
 2572                 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
 2573                 if (m == NULL)
 2574                         m = m_gethdr(M_DONTWAIT, MT_DATA);
 2575                 if (m == NULL)
 2576                         return (-ENOMEM);
 2577                 mld_save_context(m, ifp);
 2578                 md = m_getptr(m, 0, &off);
 2579                 pmr = (struct mldv2_record *)(mtod(md, uint8_t *) + off);
 2580                 CTR1(KTR_MLD, "%s: allocated next packet", __func__);
 2581 
 2582                 if (!m_append(m, sizeof(struct mldv2_record), (void *)&mr)) {
 2583                         if (m != m0)
 2584                                 m_freem(m);
 2585                         CTR1(KTR_MLD, "%s: m_append() failed.", __func__);
 2586                         return (-ENOMEM);
 2587                 }
 2588                 m->m_pkthdr.PH_vt.vt_nrecs = 1;
 2589                 nbytes += sizeof(struct mldv2_record);
 2590 
 2591                 m0srcs = (ifp->if_mtu - MLD_MTUSPACE -
 2592                     sizeof(struct mldv2_record)) / sizeof(struct in6_addr);
 2593 
 2594                 msrcs = 0;
 2595                 RB_FOREACH_FROM(ims, ip6_msource_tree, nims) {
 2596                         CTR2(KTR_MLD, "%s: visit node %s",
 2597                             __func__, ip6_sprintf(ip6tbuf, &ims->im6s_addr));
 2598                         now = im6s_get_mode(inm, ims, 1);
 2599                         if ((now != mode) ||
 2600                             (now == mode &&
 2601                              (!use_block_allow && mode == MCAST_UNDEFINED))) {
 2602                                 CTR1(KTR_MLD, "%s: skip node", __func__);
 2603                                 continue;
 2604                         }
 2605                         if (is_source_query && ims->im6s_stp == 0) {
 2606                                 CTR1(KTR_MLD, "%s: skip unrecorded node",
 2607                                     __func__);
 2608                                 continue;
 2609                         }
 2610                         CTR1(KTR_MLD, "%s: append node", __func__);
 2611                         if (!m_append(m, sizeof(struct in6_addr),
 2612                             (void *)&ims->im6s_addr)) {
 2613                                 if (m != m0)
 2614                                         m_freem(m);
 2615                                 CTR1(KTR_MLD, "%s: m_append() failed.",
 2616                                     __func__);
 2617                                 return (-ENOMEM);
 2618                         }
 2619                         ++msrcs;
 2620                         if (msrcs == m0srcs)
 2621                                 break;
 2622                 }
 2623                 pmr->mr_numsrc = htons(msrcs);
 2624                 nbytes += (msrcs * sizeof(struct in6_addr));
 2625 
 2626                 CTR1(KTR_MLD, "%s: enqueueing next packet", __func__);
 2627                 _IF_ENQUEUE(ifq, m);
 2628         }
 2629 
 2630         return (nbytes);
 2631 }
 2632 
 2633 /*
 2634  * Type used to mark record pass completion.
 2635  * We exploit the fact we can cast to this easily from the
 2636  * current filter modes on each ip_msource node.
 2637  */
 2638 typedef enum {
 2639         REC_NONE = 0x00,        /* MCAST_UNDEFINED */
 2640         REC_ALLOW = 0x01,       /* MCAST_INCLUDE */
 2641         REC_BLOCK = 0x02,       /* MCAST_EXCLUDE */
 2642         REC_FULL = REC_ALLOW | REC_BLOCK
 2643 } rectype_t;
 2644 
 2645 /*
 2646  * Enqueue an MLDv2 filter list change to the given output queue.
 2647  *
 2648  * Source list filter state is held in an RB-tree. When the filter list
 2649  * for a group is changed without changing its mode, we need to compute
 2650  * the deltas between T0 and T1 for each source in the filter set,
 2651  * and enqueue the appropriate ALLOW_NEW/BLOCK_OLD records.
 2652  *
 2653  * As we may potentially queue two record types, and the entire R-B tree
 2654  * needs to be walked at once, we break this out into its own function
 2655  * so we can generate a tightly packed queue of packets.
 2656  *
 2657  * XXX This could be written to only use one tree walk, although that makes
 2658  * serializing into the mbuf chains a bit harder. For now we do two walks
 2659  * which makes things easier on us, and it may or may not be harder on
 2660  * the L2 cache.
 2661  *
 2662  * If successful the size of all data appended to the queue is returned,
 2663  * otherwise an error code less than zero is returned, or zero if
 2664  * no record(s) were appended.
 2665  */
 2666 static int
 2667 mld_v2_enqueue_filter_change(struct ifqueue *ifq, struct in6_multi *inm)
 2668 {
 2669         static const int MINRECLEN =
 2670             sizeof(struct mldv2_record) + sizeof(struct in6_addr);
 2671         struct ifnet            *ifp;
 2672         struct mldv2_record      mr;
 2673         struct mldv2_record     *pmr;
 2674         struct ip6_msource      *ims, *nims;
 2675         struct mbuf             *m, *m0, *md;
 2676         int                      m0srcs, nbytes, npbytes, off, rsrcs, schanged;
 2677         int                      nallow, nblock;
 2678         uint8_t                  mode, now, then;
 2679         rectype_t                crt, drt, nrt;
 2680 #ifdef KTR
 2681         char                     ip6tbuf[INET6_ADDRSTRLEN];
 2682 #endif
 2683 
 2684         IN6_MULTI_LOCK_ASSERT();
 2685 
 2686         if (inm->in6m_nsrc == 0 ||
 2687             (inm->in6m_st[0].iss_asm > 0 && inm->in6m_st[1].iss_asm > 0))
 2688                 return (0);
 2689 
 2690         ifp = inm->in6m_ifp;                    /* interface */
 2691         mode = inm->in6m_st[1].iss_fmode;       /* filter mode at t1 */
 2692         crt = REC_NONE; /* current group record type */
 2693         drt = REC_NONE; /* mask of completed group record types */
 2694         nrt = REC_NONE; /* record type for current node */
 2695         m0srcs = 0;     /* # source which will fit in current mbuf chain */
 2696         npbytes = 0;    /* # of bytes appended this packet */
 2697         nbytes = 0;     /* # of bytes appended to group's state-change queue */
 2698         rsrcs = 0;      /* # sources encoded in current record */
 2699         schanged = 0;   /* # nodes encoded in overall filter change */
 2700         nallow = 0;     /* # of source entries in ALLOW_NEW */
 2701         nblock = 0;     /* # of source entries in BLOCK_OLD */
 2702         nims = NULL;    /* next tree node pointer */
 2703 
 2704         /*
 2705          * For each possible filter record mode.
 2706          * The first kind of source we encounter tells us which
 2707          * is the first kind of record we start appending.
 2708          * If a node transitioned to UNDEFINED at t1, its mode is treated
 2709          * as the inverse of the group's filter mode.
 2710          */
 2711         while (drt != REC_FULL) {
 2712                 do {
 2713                         m0 = ifq->ifq_tail;
 2714                         if (m0 != NULL &&
 2715                             (m0->m_pkthdr.PH_vt.vt_nrecs + 1 <=
 2716                              MLD_V2_REPORT_MAXRECS) &&
 2717                             (m0->m_pkthdr.len + MINRECLEN) <
 2718                              (ifp->if_mtu - MLD_MTUSPACE)) {
 2719                                 m = m0;
 2720                                 m0srcs = (ifp->if_mtu - m0->m_pkthdr.len -
 2721                                             sizeof(struct mldv2_record)) /
 2722                                             sizeof(struct in6_addr);
 2723                                 CTR1(KTR_MLD,
 2724                                     "%s: use previous packet", __func__);
 2725                         } else {
 2726                                 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
 2727                                 if (m == NULL)
 2728                                         m = m_gethdr(M_DONTWAIT, MT_DATA);
 2729                                 if (m == NULL) {
 2730                                         CTR1(KTR_MLD,
 2731                                             "%s: m_get*() failed", __func__);
 2732                                         return (-ENOMEM);
 2733                                 }
 2734                                 m->m_pkthdr.PH_vt.vt_nrecs = 0;
 2735                                 mld_save_context(m, ifp);
 2736                                 m0srcs = (ifp->if_mtu - MLD_MTUSPACE -
 2737                                     sizeof(struct mldv2_record)) /
 2738                                     sizeof(struct in6_addr);
 2739                                 npbytes = 0;
 2740                                 CTR1(KTR_MLD,
 2741                                     "%s: allocated new packet", __func__);
 2742                         }
 2743                         /*
 2744                          * Append the MLD group record header to the
 2745                          * current packet's data area.
 2746                          * Recalculate pointer to free space for next
 2747                          * group record, in case m_append() allocated
 2748                          * a new mbuf or cluster.
 2749                          */
 2750                         memset(&mr, 0, sizeof(mr));
 2751                         mr.mr_addr = inm->in6m_addr;
 2752                         in6_clearscope(&mr.mr_addr);
 2753                         if (!m_append(m, sizeof(mr), (void *)&mr)) {
 2754                                 if (m != m0)
 2755                                         m_freem(m);
 2756                                 CTR1(KTR_MLD,
 2757                                     "%s: m_append() failed", __func__);
 2758                                 return (-ENOMEM);
 2759                         }
 2760                         npbytes += sizeof(struct mldv2_record);
 2761                         if (m != m0) {
 2762                                 /* new packet; offset in chain */
 2763                                 md = m_getptr(m, npbytes -
 2764                                     sizeof(struct mldv2_record), &off);
 2765                                 pmr = (struct mldv2_record *)(mtod(md,
 2766                                     uint8_t *) + off);
 2767                         } else {
 2768                                 /* current packet; offset from last append */
 2769                                 md = m_last(m);
 2770                                 pmr = (struct mldv2_record *)(mtod(md,
 2771                                     uint8_t *) + md->m_len -
 2772                                     sizeof(struct mldv2_record));
 2773                         }
 2774                         /*
 2775                          * Begin walking the tree for this record type
 2776                          * pass, or continue from where we left off
 2777                          * previously if we had to allocate a new packet.
 2778                          * Only report deltas in-mode at t1.
 2779                          * We need not report included sources as allowed
 2780                          * if we are in inclusive mode on the group,
 2781                          * however the converse is not true.
 2782                          */
 2783                         rsrcs = 0;
 2784                         if (nims == NULL) {
 2785                                 nims = RB_MIN(ip6_msource_tree,
 2786                                     &inm->in6m_srcs);
 2787                         }
 2788                         RB_FOREACH_FROM(ims, ip6_msource_tree, nims) {
 2789                                 CTR2(KTR_MLD, "%s: visit node %s", __func__,
 2790                                     ip6_sprintf(ip6tbuf, &ims->im6s_addr));
 2791                                 now = im6s_get_mode(inm, ims, 1);
 2792                                 then = im6s_get_mode(inm, ims, 0);
 2793                                 CTR3(KTR_MLD, "%s: mode: t0 %d, t1 %d",
 2794                                     __func__, then, now);
 2795                                 if (now == then) {
 2796                                         CTR1(KTR_MLD,
 2797                                             "%s: skip unchanged", __func__);
 2798                                         continue;
 2799                                 }
 2800                                 if (mode == MCAST_EXCLUDE &&
 2801                                     now == MCAST_INCLUDE) {
 2802                                         CTR1(KTR_MLD,
 2803                                             "%s: skip IN src on EX group",
 2804                                             __func__);
 2805                                         continue;
 2806                                 }
 2807                                 nrt = (rectype_t)now;
 2808                                 if (nrt == REC_NONE)
 2809                                         nrt = (rectype_t)(~mode & REC_FULL);
 2810                                 if (schanged++ == 0) {
 2811                                         crt = nrt;
 2812                                 } else if (crt != nrt)
 2813                                         continue;
 2814                                 if (!m_append(m, sizeof(struct in6_addr),
 2815                                     (void *)&ims->im6s_addr)) {
 2816                                         if (m != m0)
 2817                                                 m_freem(m);
 2818                                         CTR1(KTR_MLD,
 2819                                             "%s: m_append() failed", __func__);
 2820                                         return (-ENOMEM);
 2821                                 }
 2822                                 nallow += !!(crt == REC_ALLOW);
 2823                                 nblock += !!(crt == REC_BLOCK);
 2824                                 if (++rsrcs == m0srcs)
 2825                                         break;
 2826                         }
 2827                         /*
 2828                          * If we did not append any tree nodes on this
 2829                          * pass, back out of allocations.
 2830                          */
 2831                         if (rsrcs == 0) {
 2832                                 npbytes -= sizeof(struct mldv2_record);
 2833                                 if (m != m0) {
 2834                                         CTR1(KTR_MLD,
 2835                                             "%s: m_free(m)", __func__);
 2836                                         m_freem(m);
 2837                                 } else {
 2838                                         CTR1(KTR_MLD,
 2839                                             "%s: m_adj(m, -mr)", __func__);
 2840                                         m_adj(m, -((int)sizeof(
 2841                                             struct mldv2_record)));
 2842                                 }
 2843                                 continue;
 2844                         }
 2845                         npbytes += (rsrcs * sizeof(struct in6_addr));
 2846                         if (crt == REC_ALLOW)
 2847                                 pmr->mr_type = MLD_ALLOW_NEW_SOURCES;
 2848                         else if (crt == REC_BLOCK)
 2849                                 pmr->mr_type = MLD_BLOCK_OLD_SOURCES;
 2850                         pmr->mr_numsrc = htons(rsrcs);
 2851                         /*
 2852                          * Count the new group record, and enqueue this
 2853                          * packet if it wasn't already queued.
 2854                          */
 2855                         m->m_pkthdr.PH_vt.vt_nrecs++;
 2856                         if (m != m0)
 2857                                 _IF_ENQUEUE(ifq, m);
 2858                         nbytes += npbytes;
 2859                 } while (nims != NULL);
 2860                 drt |= crt;
 2861                 crt = (~crt & REC_FULL);
 2862         }
 2863 
 2864         CTR3(KTR_MLD, "%s: queued %d ALLOW_NEW, %d BLOCK_OLD", __func__,
 2865             nallow, nblock);
 2866 
 2867         return (nbytes);
 2868 }
 2869 
 2870 static int
 2871 mld_v2_merge_state_changes(struct in6_multi *inm, struct ifqueue *ifscq)
 2872 {
 2873         struct ifqueue  *gq;
 2874         struct mbuf     *m;             /* pending state-change */
 2875         struct mbuf     *m0;            /* copy of pending state-change */
 2876         struct mbuf     *mt;            /* last state-change in packet */
 2877         int              docopy, domerge;
 2878         u_int            recslen;
 2879 
 2880         docopy = 0;
 2881         domerge = 0;
 2882         recslen = 0;
 2883 
 2884         IN6_MULTI_LOCK_ASSERT();
 2885         MLD_LOCK_ASSERT();
 2886 
 2887         /*
 2888          * If there are further pending retransmissions, make a writable
 2889          * copy of each queued state-change message before merging.
 2890          */
 2891         if (inm->in6m_scrv > 0)
 2892                 docopy = 1;
 2893 
 2894         gq = &inm->in6m_scq;
 2895 #ifdef KTR
 2896         if (gq->ifq_head == NULL) {
 2897                 CTR2(KTR_MLD, "%s: WARNING: queue for inm %p is empty",
 2898                     __func__, inm);
 2899         }
 2900 #endif
 2901 
 2902         m = gq->ifq_head;
 2903         while (m != NULL) {
 2904                 /*
 2905                  * Only merge the report into the current packet if
 2906                  * there is sufficient space to do so; an MLDv2 report
 2907                  * packet may only contain 65,535 group records.
 2908                  * Always use a simple mbuf chain concatentation to do this,
 2909                  * as large state changes for single groups may have
 2910                  * allocated clusters.
 2911                  */
 2912                 domerge = 0;
 2913                 mt = ifscq->ifq_tail;
 2914                 if (mt != NULL) {
 2915                         recslen = m_length(m, NULL);
 2916 
 2917                         if ((mt->m_pkthdr.PH_vt.vt_nrecs +
 2918                             m->m_pkthdr.PH_vt.vt_nrecs <=
 2919                             MLD_V2_REPORT_MAXRECS) &&
 2920                             (mt->m_pkthdr.len + recslen <=
 2921                             (inm->in6m_ifp->if_mtu - MLD_MTUSPACE)))
 2922                                 domerge = 1;
 2923                 }
 2924 
 2925                 if (!domerge && _IF_QFULL(gq)) {
 2926                         CTR2(KTR_MLD,
 2927                             "%s: outbound queue full, skipping whole packet %p",
 2928                             __func__, m);
 2929                         mt = m->m_nextpkt;
 2930                         if (!docopy)
 2931                                 m_freem(m);
 2932                         m = mt;
 2933                         continue;
 2934                 }
 2935 
 2936                 if (!docopy) {
 2937                         CTR2(KTR_MLD, "%s: dequeueing %p", __func__, m);
 2938                         _IF_DEQUEUE(gq, m0);
 2939                         m = m0->m_nextpkt;
 2940                 } else {
 2941                         CTR2(KTR_MLD, "%s: copying %p", __func__, m);
 2942                         m0 = m_dup(m, M_NOWAIT);
 2943                         if (m0 == NULL)
 2944                                 return (ENOMEM);
 2945                         m0->m_nextpkt = NULL;
 2946                         m = m->m_nextpkt;
 2947                 }
 2948 
 2949                 if (!domerge) {
 2950                         CTR3(KTR_MLD, "%s: queueing %p to ifscq %p)",
 2951                             __func__, m0, ifscq);
 2952                         _IF_ENQUEUE(ifscq, m0);
 2953                 } else {
 2954                         struct mbuf *mtl;       /* last mbuf of packet mt */
 2955 
 2956                         CTR3(KTR_MLD, "%s: merging %p with ifscq tail %p)",
 2957                             __func__, m0, mt);
 2958 
 2959                         mtl = m_last(mt);
 2960                         m0->m_flags &= ~M_PKTHDR;
 2961                         mt->m_pkthdr.len += recslen;
 2962                         mt->m_pkthdr.PH_vt.vt_nrecs +=
 2963                             m0->m_pkthdr.PH_vt.vt_nrecs;
 2964 
 2965                         mtl->m_next = m0;
 2966                 }
 2967         }
 2968 
 2969         return (0);
 2970 }
 2971 
 2972 /*
 2973  * Respond to a pending MLDv2 General Query.
 2974  */
 2975 static void
 2976 mld_v2_dispatch_general_query(struct mld_ifinfo *mli)
 2977 {
 2978         struct ifmultiaddr      *ifma, *tifma;
 2979         struct ifnet            *ifp;
 2980         struct in6_multi        *inm;
 2981         int                      retval;
 2982 
 2983         IN6_MULTI_LOCK_ASSERT();
 2984         MLD_LOCK_ASSERT();
 2985 
 2986         KASSERT(mli->mli_version == MLD_VERSION_2,
 2987             ("%s: called when version %d", __func__, mli->mli_version));
 2988 
 2989         ifp = mli->mli_ifp;
 2990 
 2991         IF_ADDR_LOCK(ifp);
 2992         TAILQ_FOREACH_SAFE(ifma, &ifp->if_multiaddrs, ifma_link, tifma) {
 2993                 if (ifma->ifma_addr->sa_family != AF_INET6 ||
 2994                     ifma->ifma_protospec == NULL)
 2995                         continue;
 2996 
 2997                 inm = (struct in6_multi *)ifma->ifma_protospec;
 2998                 KASSERT(ifp == inm->in6m_ifp,
 2999                     ("%s: inconsistent ifp", __func__));
 3000 
 3001                 switch (inm->in6m_state) {
 3002                 case MLD_NOT_MEMBER:
 3003                 case MLD_SILENT_MEMBER:
 3004                         break;
 3005                 case MLD_REPORTING_MEMBER:
 3006                 case MLD_IDLE_MEMBER:
 3007                 case MLD_LAZY_MEMBER:
 3008                 case MLD_SLEEPING_MEMBER:
 3009                 case MLD_AWAKENING_MEMBER:
 3010                         inm->in6m_state = MLD_REPORTING_MEMBER;
 3011                         retval = mld_v2_enqueue_group_record(&mli->mli_gq,
 3012                             inm, 0, 0, 0, 0);
 3013                         CTR2(KTR_MLD, "%s: enqueue record = %d",
 3014                             __func__, retval);
 3015                         break;
 3016                 case MLD_G_QUERY_PENDING_MEMBER:
 3017                 case MLD_SG_QUERY_PENDING_MEMBER:
 3018                 case MLD_LEAVING_MEMBER:
 3019                         break;
 3020                 }
 3021         }
 3022         IF_ADDR_UNLOCK(ifp);
 3023 
 3024         mld_dispatch_queue(&mli->mli_gq, MLD_MAX_RESPONSE_BURST);
 3025 
 3026         /*
 3027          * Slew transmission of bursts over 500ms intervals.
 3028          */
 3029         if (mli->mli_gq.ifq_head != NULL) {
 3030                 mli->mli_v2_timer = 1 + MLD_RANDOM_DELAY(
 3031                     MLD_RESPONSE_BURST_INTERVAL);
 3032                 V_interface_timers_running6 = 1;
 3033         }
 3034 }
 3035 
 3036 /*
 3037  * Transmit the next pending message in the output queue.
 3038  *
 3039  * VIMAGE: Needs to store/restore vnet pointer on a per-mbuf-chain basis.
 3040  * MRT: Nothing needs to be done, as MLD traffic is always local to
 3041  * a link and uses a link-scope multicast address.
 3042  */
 3043 static void
 3044 mld_dispatch_packet(struct mbuf *m)
 3045 {
 3046         struct ip6_moptions      im6o;
 3047         struct ifnet            *ifp;
 3048         struct ifnet            *oifp;
 3049         struct mbuf             *m0;
 3050         struct mbuf             *md;
 3051         struct ip6_hdr          *ip6;
 3052         struct mld_hdr          *mld;
 3053         int                      error;
 3054         int                      off;
 3055         int                      type;
 3056         uint32_t                 ifindex;
 3057 
 3058         CTR2(KTR_MLD, "%s: transmit %p", __func__, m);
 3059 
 3060         /*
 3061          * Set VNET image pointer from enqueued mbuf chain
 3062          * before doing anything else. Whilst we use interface
 3063          * indexes to guard against interface detach, they are
 3064          * unique to each VIMAGE and must be retrieved.
 3065          */
 3066         ifindex = mld_restore_context(m);
 3067 
 3068         /*
 3069          * Check if the ifnet still exists. This limits the scope of
 3070          * any race in the absence of a global ifp lock for low cost
 3071          * (an array lookup).
 3072          */
 3073         ifp = ifnet_byindex(ifindex);
 3074         if (ifp == NULL) {
 3075                 CTR3(KTR_MLD, "%s: dropped %p as ifindex %u went away.",
 3076                     __func__, m, ifindex);
 3077                 m_freem(m);
 3078                 IP6STAT_INC(ip6s_noroute);
 3079                 goto out;
 3080         }
 3081 
 3082         im6o.im6o_multicast_hlim  = 1;
 3083         im6o.im6o_multicast_loop = (V_ip6_mrouter != NULL);
 3084         im6o.im6o_multicast_ifp = ifp;
 3085 
 3086         if (m->m_flags & M_MLDV1) {
 3087                 m0 = m;
 3088         } else {
 3089                 m0 = mld_v2_encap_report(ifp, m);
 3090                 if (m0 == NULL) {
 3091                         CTR2(KTR_MLD, "%s: dropped %p", __func__, m);
 3092                         m_freem(m);
 3093                         IP6STAT_INC(ip6s_odropped);
 3094                         goto out;
 3095                 }
 3096         }
 3097 
 3098         mld_scrub_context(m0);
 3099         m->m_flags &= ~(M_PROTOFLAGS);
 3100         m0->m_pkthdr.rcvif = V_loif;
 3101 
 3102         ip6 = mtod(m0, struct ip6_hdr *);
 3103 #if 0
 3104         (void)in6_setscope(&ip6->ip6_dst, ifp, NULL);   /* XXX LOR */
 3105 #else
 3106         /*
 3107          * XXX XXX Break some KPI rules to prevent an LOR which would
 3108          * occur if we called in6_setscope() at transmission.
 3109          * See comments at top of file.
 3110          */
 3111         MLD_EMBEDSCOPE(&ip6->ip6_dst, ifp->if_index);
 3112 #endif
 3113 
 3114         /*
 3115          * Retrieve the ICMPv6 type before handoff to ip6_output(),
 3116          * so we can bump the stats.
 3117          */
 3118         md = m_getptr(m0, sizeof(struct ip6_hdr), &off);
 3119         mld = (struct mld_hdr *)(mtod(md, uint8_t *) + off);
 3120         type = mld->mld_type;
 3121 
 3122         error = ip6_output(m0, &mld_po, NULL, IPV6_UNSPECSRC, &im6o,
 3123             &oifp, NULL);
 3124         if (error) {
 3125                 CTR3(KTR_MLD, "%s: ip6_output(%p) = %d", __func__, m0, error);
 3126                 goto out;
 3127         }
 3128         ICMP6STAT_INC(icp6s_outhist[type]);
 3129         if (oifp != NULL) {
 3130                 icmp6_ifstat_inc(oifp, ifs6_out_msg);
 3131                 switch (type) {
 3132                 case MLD_LISTENER_REPORT:
 3133                 case MLDV2_LISTENER_REPORT:
 3134                         icmp6_ifstat_inc(oifp, ifs6_out_mldreport);
 3135                         break;
 3136                 case MLD_LISTENER_DONE:
 3137                         icmp6_ifstat_inc(oifp, ifs6_out_mlddone);
 3138                         break;
 3139                 }
 3140         }
 3141 out:
 3142         return;
 3143 }
 3144 
 3145 /*
 3146  * Encapsulate an MLDv2 report.
 3147  *
 3148  * KAME IPv6 requires that hop-by-hop options be passed separately,
 3149  * and that the IPv6 header be prepended in a separate mbuf.
 3150  *
 3151  * Returns a pointer to the new mbuf chain head, or NULL if the
 3152  * allocation failed.
 3153  */
 3154 static struct mbuf *
 3155 mld_v2_encap_report(struct ifnet *ifp, struct mbuf *m)
 3156 {
 3157         struct mbuf             *mh;
 3158         struct mldv2_report     *mld;
 3159         struct ip6_hdr          *ip6;
 3160         struct in6_ifaddr       *ia;
 3161         int                      mldreclen;
 3162 
 3163         KASSERT(ifp != NULL, ("%s: null ifp", __func__));
 3164         KASSERT((m->m_flags & M_PKTHDR),
 3165             ("%s: mbuf chain %p is !M_PKTHDR", __func__, m));
 3166 
 3167         /*
 3168          * RFC3590: OK to send as :: or tentative during DAD.
 3169          */
 3170         ia = in6ifa_ifpforlinklocal(ifp, IN6_IFF_NOTREADY|IN6_IFF_ANYCAST);
 3171         if (ia == NULL)
 3172                 CTR1(KTR_MLD, "%s: warning: ia is NULL", __func__);
 3173 
 3174         MGETHDR(mh, M_DONTWAIT, MT_HEADER);
 3175         if (mh == NULL) {
 3176                 if (ia != NULL)
 3177                         ifa_free(&ia->ia_ifa);
 3178                 m_freem(m);
 3179                 return (NULL);
 3180         }
 3181         MH_ALIGN(mh, sizeof(struct ip6_hdr) + sizeof(struct mldv2_report));
 3182 
 3183         mldreclen = m_length(m, NULL);
 3184         CTR2(KTR_MLD, "%s: mldreclen is %d", __func__, mldreclen);
 3185 
 3186         mh->m_len = sizeof(struct ip6_hdr) + sizeof(struct mldv2_report);
 3187         mh->m_pkthdr.len = sizeof(struct ip6_hdr) +
 3188             sizeof(struct mldv2_report) + mldreclen;
 3189 
 3190         ip6 = mtod(mh, struct ip6_hdr *);
 3191         ip6->ip6_flow = 0;
 3192         ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
 3193         ip6->ip6_vfc |= IPV6_VERSION;
 3194         ip6->ip6_nxt = IPPROTO_ICMPV6;
 3195         ip6->ip6_src = ia ? ia->ia_addr.sin6_addr : in6addr_any;
 3196         if (ia != NULL)
 3197                 ifa_free(&ia->ia_ifa);
 3198         ip6->ip6_dst = in6addr_linklocal_allv2routers;
 3199         /* scope ID will be set in netisr */
 3200 
 3201         mld = (struct mldv2_report *)(ip6 + 1);
 3202         mld->mld_type = MLDV2_LISTENER_REPORT;
 3203         mld->mld_code = 0;
 3204         mld->mld_cksum = 0;
 3205         mld->mld_v2_reserved = 0;
 3206         mld->mld_v2_numrecs = htons(m->m_pkthdr.PH_vt.vt_nrecs);
 3207         m->m_pkthdr.PH_vt.vt_nrecs = 0;
 3208 
 3209         mh->m_next = m;
 3210         mld->mld_cksum = in6_cksum(mh, IPPROTO_ICMPV6,
 3211             sizeof(struct ip6_hdr), sizeof(struct mldv2_report) + mldreclen);
 3212         return (mh);
 3213 }
 3214 
 3215 #ifdef KTR
 3216 static char *
 3217 mld_rec_type_to_str(const int type)
 3218 {
 3219 
 3220         switch (type) {
 3221                 case MLD_CHANGE_TO_EXCLUDE_MODE:
 3222                         return "TO_EX";
 3223                         break;
 3224                 case MLD_CHANGE_TO_INCLUDE_MODE:
 3225                         return "TO_IN";
 3226                         break;
 3227                 case MLD_MODE_IS_EXCLUDE:
 3228                         return "MODE_EX";
 3229                         break;
 3230                 case MLD_MODE_IS_INCLUDE:
 3231                         return "MODE_IN";
 3232                         break;
 3233                 case MLD_ALLOW_NEW_SOURCES:
 3234                         return "ALLOW_NEW";
 3235                         break;
 3236                 case MLD_BLOCK_OLD_SOURCES:
 3237                         return "BLOCK_OLD";
 3238                         break;
 3239                 default:
 3240                         break;
 3241         }
 3242         return "unknown";
 3243 }
 3244 #endif
 3245 
 3246 static void
 3247 mld_init(void *unused __unused)
 3248 {
 3249 
 3250         CTR1(KTR_MLD, "%s: initializing", __func__);
 3251         MLD_LOCK_INIT();
 3252 
 3253         ip6_initpktopts(&mld_po);
 3254         mld_po.ip6po_hlim = 1;
 3255         mld_po.ip6po_hbh = &mld_ra.hbh;
 3256         mld_po.ip6po_prefer_tempaddr = IP6PO_TEMPADDR_NOTPREFER;
 3257         mld_po.ip6po_flags = IP6PO_DONTFRAG;
 3258 }
 3259 SYSINIT(mld_init, SI_SUB_PSEUDO, SI_ORDER_MIDDLE, mld_init, NULL);
 3260 
 3261 static void
 3262 mld_uninit(void *unused __unused)
 3263 {
 3264 
 3265         CTR1(KTR_MLD, "%s: tearing down", __func__);
 3266         MLD_LOCK_DESTROY();
 3267 }
 3268 SYSUNINIT(mld_uninit, SI_SUB_PSEUDO, SI_ORDER_MIDDLE, mld_uninit, NULL);
 3269 
 3270 static void
 3271 vnet_mld_init(const void *unused __unused)
 3272 {
 3273 
 3274         CTR1(KTR_MLD, "%s: initializing", __func__);
 3275 
 3276         LIST_INIT(&V_mli_head);
 3277 }
 3278 VNET_SYSINIT(vnet_mld_init, SI_SUB_PSEUDO, SI_ORDER_ANY, vnet_mld_init,
 3279     NULL);
 3280 
 3281 static void
 3282 vnet_mld_uninit(const void *unused __unused)
 3283 {
 3284 
 3285         CTR1(KTR_MLD, "%s: tearing down", __func__);
 3286 
 3287         KASSERT(LIST_EMPTY(&V_mli_head),
 3288             ("%s: mli list not empty; ifnets not detached?", __func__));
 3289 }
 3290 VNET_SYSUNINIT(vnet_mld_uninit, SI_SUB_PSEUDO, SI_ORDER_ANY, vnet_mld_uninit,
 3291     NULL);
 3292 
 3293 static int
 3294 mld_modevent(module_t mod, int type, void *unused __unused)
 3295 {
 3296 
 3297     switch (type) {
 3298     case MOD_LOAD:
 3299     case MOD_UNLOAD:
 3300         break;
 3301     default:
 3302         return (EOPNOTSUPP);
 3303     }
 3304     return (0);
 3305 }
 3306 
 3307 static moduledata_t mld_mod = {
 3308     "mld",
 3309     mld_modevent,
 3310     0
 3311 };
 3312 DECLARE_MODULE(mld, mld_mod, SI_SUB_PSEUDO, SI_ORDER_ANY);

Cache object: 5eee2f1121d3738512b03ebc297b2af4


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.