The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/netinet6/nd6.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*      $FreeBSD: releng/6.0/sys/netinet6/nd6.c 151799 2005-10-28 14:38:56Z suz $       */
    2 /*      $KAME: nd6.c,v 1.144 2001/05/24 07:44:00 itojun Exp $   */
    3 
    4 /*-
    5  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
    6  * All rights reserved.
    7  *
    8  * Redistribution and use in source and binary forms, with or without
    9  * modification, are permitted provided that the following conditions
   10  * are met:
   11  * 1. Redistributions of source code must retain the above copyright
   12  *    notice, this list of conditions and the following disclaimer.
   13  * 2. Redistributions in binary form must reproduce the above copyright
   14  *    notice, this list of conditions and the following disclaimer in the
   15  *    documentation and/or other materials provided with the distribution.
   16  * 3. Neither the name of the project nor the names of its contributors
   17  *    may be used to endorse or promote products derived from this software
   18  *    without specific prior written permission.
   19  *
   20  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
   21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
   24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   30  * SUCH DAMAGE.
   31  */
   32 
   33 #include "opt_inet.h"
   34 #include "opt_inet6.h"
   35 #include "opt_mac.h"
   36 
   37 #include <sys/param.h>
   38 #include <sys/systm.h>
   39 #include <sys/callout.h>
   40 #include <sys/mac.h>
   41 #include <sys/malloc.h>
   42 #include <sys/mbuf.h>
   43 #include <sys/socket.h>
   44 #include <sys/sockio.h>
   45 #include <sys/time.h>
   46 #include <sys/kernel.h>
   47 #include <sys/protosw.h>
   48 #include <sys/errno.h>
   49 #include <sys/syslog.h>
   50 #include <sys/queue.h>
   51 #include <sys/sysctl.h>
   52 
   53 #include <net/if.h>
   54 #include <net/if_arc.h>
   55 #include <net/if_dl.h>
   56 #include <net/if_types.h>
   57 #include <net/iso88025.h>
   58 #include <net/fddi.h>
   59 #include <net/route.h>
   60 
   61 #include <netinet/in.h>
   62 #include <netinet/if_ether.h>
   63 #include <netinet6/in6_var.h>
   64 #include <netinet/ip6.h>
   65 #include <netinet6/ip6_var.h>
   66 #include <netinet6/nd6.h>
   67 #include <netinet/icmp6.h>
   68 
   69 #include <net/net_osdep.h>
   70 
   71 #define ND6_SLOWTIMER_INTERVAL (60 * 60) /* 1 hour */
   72 #define ND6_RECALC_REACHTM_INTERVAL (60 * 120) /* 2 hours */
   73 
   74 #define SIN6(s) ((struct sockaddr_in6 *)s)
   75 #define SDL(s) ((struct sockaddr_dl *)s)
   76 
   77 /* timer values */
   78 int     nd6_prune       = 1;    /* walk list every 1 seconds */
   79 int     nd6_delay       = 5;    /* delay first probe time 5 second */
   80 int     nd6_umaxtries   = 3;    /* maximum unicast query */
   81 int     nd6_mmaxtries   = 3;    /* maximum multicast query */
   82 int     nd6_useloopback = 1;    /* use loopback interface for local traffic */
   83 int     nd6_gctimer     = (60 * 60 * 24); /* 1 day: garbage collection timer */
   84 
   85 /* preventing too many loops in ND option parsing */
   86 int nd6_maxndopt = 10;  /* max # of ND options allowed */
   87 
   88 int nd6_maxnudhint = 0; /* max # of subsequent upper layer hints */
   89 
   90 #ifdef ND6_DEBUG
   91 int nd6_debug = 1;
   92 #else
   93 int nd6_debug = 0;
   94 #endif
   95 
   96 /* for debugging? */
   97 static int nd6_inuse, nd6_allocated;
   98 
   99 struct llinfo_nd6 llinfo_nd6 = {&llinfo_nd6, &llinfo_nd6};
  100 struct nd_drhead nd_defrouter;
  101 struct nd_prhead nd_prefix = { 0 };
  102 
  103 int nd6_recalc_reachtm_interval = ND6_RECALC_REACHTM_INTERVAL;
  104 static struct sockaddr_in6 all1_sa;
  105 
  106 static int nd6_is_new_addr_neighbor __P((struct sockaddr_in6 *,
  107         struct ifnet *));
  108 static void nd6_setmtu0 __P((struct ifnet *, struct nd_ifinfo *));
  109 static void nd6_slowtimo __P((void *));
  110 static int regen_tmpaddr __P((struct in6_ifaddr *));
  111 
  112 struct callout nd6_slowtimo_ch;
  113 struct callout nd6_timer_ch;
  114 extern struct callout in6_tmpaddrtimer_ch;
  115 
  116 void
  117 nd6_init()
  118 {
  119         static int nd6_init_done = 0;
  120         int i;
  121 
  122         if (nd6_init_done) {
  123                 log(LOG_NOTICE, "nd6_init called more than once(ignored)\n");
  124                 return;
  125         }
  126 
  127         all1_sa.sin6_family = AF_INET6;
  128         all1_sa.sin6_len = sizeof(struct sockaddr_in6);
  129         for (i = 0; i < sizeof(all1_sa.sin6_addr); i++)
  130                 all1_sa.sin6_addr.s6_addr[i] = 0xff;
  131 
  132         /* initialization of the default router list */
  133         TAILQ_INIT(&nd_defrouter);
  134 
  135         nd6_init_done = 1;
  136 
  137         /* start timer */
  138         callout_init(&nd6_slowtimo_ch, 0);
  139         callout_reset(&nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz,
  140             nd6_slowtimo, NULL);
  141 }
  142 
  143 struct nd_ifinfo *
  144 nd6_ifattach(ifp)
  145         struct ifnet *ifp;
  146 {
  147         struct nd_ifinfo *nd;
  148 
  149         nd = (struct nd_ifinfo *)malloc(sizeof(*nd), M_IP6NDP, M_WAITOK);
  150         bzero(nd, sizeof(*nd));
  151 
  152         nd->initialized = 1;
  153 
  154         nd->chlim = IPV6_DEFHLIM;
  155         nd->basereachable = REACHABLE_TIME;
  156         nd->reachable = ND_COMPUTE_RTIME(nd->basereachable);
  157         nd->retrans = RETRANS_TIMER;
  158         /*
  159          * Note that the default value of ip6_accept_rtadv is 0, which means
  160          * we won't accept RAs by default even if we set ND6_IFF_ACCEPT_RTADV
  161          * here.
  162          */
  163         nd->flags = (ND6_IFF_PERFORMNUD | ND6_IFF_ACCEPT_RTADV);
  164 
  165         /* XXX: we cannot call nd6_setmtu since ifp is not fully initialized */
  166         nd6_setmtu0(ifp, nd);
  167 
  168         return nd;
  169 }
  170 
  171 void
  172 nd6_ifdetach(nd)
  173         struct nd_ifinfo *nd;
  174 {
  175 
  176         free(nd, M_IP6NDP);
  177 }
  178 
  179 /*
  180  * Reset ND level link MTU. This function is called when the physical MTU
  181  * changes, which means we might have to adjust the ND level MTU.
  182  */
  183 void
  184 nd6_setmtu(ifp)
  185         struct ifnet *ifp;
  186 {
  187 
  188         nd6_setmtu0(ifp, ND_IFINFO(ifp));
  189 }
  190 
  191 /* XXX todo: do not maintain copy of ifp->if_mtu in ndi->maxmtu */
  192 void
  193 nd6_setmtu0(ifp, ndi)
  194         struct ifnet *ifp;
  195         struct nd_ifinfo *ndi;
  196 {
  197         u_int32_t omaxmtu;
  198 
  199         omaxmtu = ndi->maxmtu;
  200 
  201         switch (ifp->if_type) {
  202         case IFT_ARCNET:
  203                 ndi->maxmtu = MIN(ARC_PHDS_MAXMTU, ifp->if_mtu); /* RFC2497 */
  204                 break;
  205         case IFT_FDDI:
  206                 ndi->maxmtu = MIN(FDDIIPMTU, ifp->if_mtu); /* RFC2467 */
  207                 break;
  208          case IFT_ISO88025:
  209                  ndi->maxmtu = MIN(ISO88025_MAX_MTU, ifp->if_mtu);
  210                  break;
  211         default:
  212                 ndi->maxmtu = ifp->if_mtu;
  213                 break;
  214         }
  215 
  216         /*
  217          * Decreasing the interface MTU under IPV6 minimum MTU may cause
  218          * undesirable situation.  We thus notify the operator of the change
  219          * explicitly.  The check for omaxmtu is necessary to restrict the
  220          * log to the case of changing the MTU, not initializing it.
  221          */
  222         if (omaxmtu >= IPV6_MMTU && ndi->maxmtu < IPV6_MMTU) {
  223                 log(LOG_NOTICE, "nd6_setmtu0: "
  224                     "new link MTU on %s (%lu) is too small for IPv6\n",
  225                     if_name(ifp), (unsigned long)ndi->maxmtu);
  226         }
  227 
  228         if (ndi->maxmtu > in6_maxmtu)
  229                 in6_setmaxmtu(); /* check all interfaces just in case */
  230 
  231 #undef MIN
  232 }
  233 
  234 void
  235 nd6_option_init(opt, icmp6len, ndopts)
  236         void *opt;
  237         int icmp6len;
  238         union nd_opts *ndopts;
  239 {
  240 
  241         bzero(ndopts, sizeof(*ndopts));
  242         ndopts->nd_opts_search = (struct nd_opt_hdr *)opt;
  243         ndopts->nd_opts_last
  244                 = (struct nd_opt_hdr *)(((u_char *)opt) + icmp6len);
  245 
  246         if (icmp6len == 0) {
  247                 ndopts->nd_opts_done = 1;
  248                 ndopts->nd_opts_search = NULL;
  249         }
  250 }
  251 
  252 /*
  253  * Take one ND option.
  254  */
  255 struct nd_opt_hdr *
  256 nd6_option(ndopts)
  257         union nd_opts *ndopts;
  258 {
  259         struct nd_opt_hdr *nd_opt;
  260         int olen;
  261 
  262         if (!ndopts)
  263                 panic("ndopts == NULL in nd6_option");
  264         if (!ndopts->nd_opts_last)
  265                 panic("uninitialized ndopts in nd6_option");
  266         if (!ndopts->nd_opts_search)
  267                 return NULL;
  268         if (ndopts->nd_opts_done)
  269                 return NULL;
  270 
  271         nd_opt = ndopts->nd_opts_search;
  272 
  273         /* make sure nd_opt_len is inside the buffer */
  274         if ((caddr_t)&nd_opt->nd_opt_len >= (caddr_t)ndopts->nd_opts_last) {
  275                 bzero(ndopts, sizeof(*ndopts));
  276                 return NULL;
  277         }
  278 
  279         olen = nd_opt->nd_opt_len << 3;
  280         if (olen == 0) {
  281                 /*
  282                  * Message validation requires that all included
  283                  * options have a length that is greater than zero.
  284                  */
  285                 bzero(ndopts, sizeof(*ndopts));
  286                 return NULL;
  287         }
  288 
  289         ndopts->nd_opts_search = (struct nd_opt_hdr *)((caddr_t)nd_opt + olen);
  290         if (ndopts->nd_opts_search > ndopts->nd_opts_last) {
  291                 /* option overruns the end of buffer, invalid */
  292                 bzero(ndopts, sizeof(*ndopts));
  293                 return NULL;
  294         } else if (ndopts->nd_opts_search == ndopts->nd_opts_last) {
  295                 /* reached the end of options chain */
  296                 ndopts->nd_opts_done = 1;
  297                 ndopts->nd_opts_search = NULL;
  298         }
  299         return nd_opt;
  300 }
  301 
  302 /*
  303  * Parse multiple ND options.
  304  * This function is much easier to use, for ND routines that do not need
  305  * multiple options of the same type.
  306  */
  307 int
  308 nd6_options(ndopts)
  309         union nd_opts *ndopts;
  310 {
  311         struct nd_opt_hdr *nd_opt;
  312         int i = 0;
  313 
  314         if (!ndopts)
  315                 panic("ndopts == NULL in nd6_options");
  316         if (!ndopts->nd_opts_last)
  317                 panic("uninitialized ndopts in nd6_options");
  318         if (!ndopts->nd_opts_search)
  319                 return 0;
  320 
  321         while (1) {
  322                 nd_opt = nd6_option(ndopts);
  323                 if (!nd_opt && !ndopts->nd_opts_last) {
  324                         /*
  325                          * Message validation requires that all included
  326                          * options have a length that is greater than zero.
  327                          */
  328                         icmp6stat.icp6s_nd_badopt++;
  329                         bzero(ndopts, sizeof(*ndopts));
  330                         return -1;
  331                 }
  332 
  333                 if (!nd_opt)
  334                         goto skip1;
  335 
  336                 switch (nd_opt->nd_opt_type) {
  337                 case ND_OPT_SOURCE_LINKADDR:
  338                 case ND_OPT_TARGET_LINKADDR:
  339                 case ND_OPT_MTU:
  340                 case ND_OPT_REDIRECTED_HEADER:
  341                         if (ndopts->nd_opt_array[nd_opt->nd_opt_type]) {
  342                                 nd6log((LOG_INFO,
  343                                     "duplicated ND6 option found (type=%d)\n",
  344                                     nd_opt->nd_opt_type));
  345                                 /* XXX bark? */
  346                         } else {
  347                                 ndopts->nd_opt_array[nd_opt->nd_opt_type]
  348                                         = nd_opt;
  349                         }
  350                         break;
  351                 case ND_OPT_PREFIX_INFORMATION:
  352                         if (ndopts->nd_opt_array[nd_opt->nd_opt_type] == 0) {
  353                                 ndopts->nd_opt_array[nd_opt->nd_opt_type]
  354                                         = nd_opt;
  355                         }
  356                         ndopts->nd_opts_pi_end =
  357                                 (struct nd_opt_prefix_info *)nd_opt;
  358                         break;
  359                 default:
  360                         /*
  361                          * Unknown options must be silently ignored,
  362                          * to accomodate future extension to the protocol.
  363                          */
  364                         nd6log((LOG_DEBUG,
  365                             "nd6_options: unsupported option %d - "
  366                             "option ignored\n", nd_opt->nd_opt_type));
  367                 }
  368 
  369 skip1:
  370                 i++;
  371                 if (i > nd6_maxndopt) {
  372                         icmp6stat.icp6s_nd_toomanyopt++;
  373                         nd6log((LOG_INFO, "too many loop in nd opt\n"));
  374                         break;
  375                 }
  376 
  377                 if (ndopts->nd_opts_done)
  378                         break;
  379         }
  380 
  381         return 0;
  382 }
  383 
  384 /*
  385  * ND6 timer routine to expire default route list and prefix list
  386  */
  387 void
  388 nd6_timer(ignored_arg)
  389         void    *ignored_arg;
  390 {
  391         int s;
  392         struct llinfo_nd6 *ln;
  393         struct nd_defrouter *dr;
  394         struct nd_prefix *pr;
  395         struct ifnet *ifp;
  396         struct in6_ifaddr *ia6, *nia6;
  397         struct in6_addrlifetime *lt6;
  398 
  399         s = splnet();
  400         callout_reset(&nd6_timer_ch, nd6_prune * hz,
  401             nd6_timer, NULL);
  402 
  403         ln = llinfo_nd6.ln_next;
  404         while (ln && ln != &llinfo_nd6) {
  405                 struct rtentry *rt;
  406                 struct sockaddr_in6 *dst;
  407                 struct llinfo_nd6 *next = ln->ln_next;
  408                 /* XXX: used for the DELAY case only: */
  409                 struct nd_ifinfo *ndi = NULL;
  410 
  411                 if ((rt = ln->ln_rt) == NULL) {
  412                         ln = next;
  413                         continue;
  414                 }
  415                 if ((ifp = rt->rt_ifp) == NULL) {
  416                         ln = next;
  417                         continue;
  418                 }
  419                 ndi = ND_IFINFO(ifp);
  420                 dst = (struct sockaddr_in6 *)rt_key(rt);
  421 
  422                 if (ln->ln_expire > time_second) {
  423                         ln = next;
  424                         continue;
  425                 }
  426 
  427                 /* sanity check */
  428                 if (!rt)
  429                         panic("rt=0 in nd6_timer(ln=%p)", ln);
  430                 if (rt->rt_llinfo && (struct llinfo_nd6 *)rt->rt_llinfo != ln)
  431                         panic("rt_llinfo(%p) is not equal to ln(%p)",
  432                               rt->rt_llinfo, ln);
  433                 if (!dst)
  434                         panic("dst=0 in nd6_timer(ln=%p)", ln);
  435 
  436                 switch (ln->ln_state) {
  437                 case ND6_LLINFO_INCOMPLETE:
  438                         if (ln->ln_asked < nd6_mmaxtries) {
  439                                 ln->ln_asked++;
  440                                 ln->ln_expire = time_second +
  441                                         ND_IFINFO(ifp)->retrans / 1000;
  442                                 nd6_ns_output(ifp, NULL, &dst->sin6_addr,
  443                                         ln, 0);
  444                         } else {
  445                                 struct mbuf *m = ln->ln_hold;
  446                                 if (m) {
  447                                         if (rt->rt_ifp) {
  448                                                 /*
  449                                                  * Fake rcvif to make ICMP error
  450                                                  * more helpful in diagnosing
  451                                                  * for the receiver.
  452                                                  * XXX: should we consider
  453                                                  * older rcvif?
  454                                                  */
  455                                                 m->m_pkthdr.rcvif = rt->rt_ifp;
  456                                         }
  457                                         icmp6_error(m, ICMP6_DST_UNREACH,
  458                                                     ICMP6_DST_UNREACH_ADDR, 0);
  459                                         ln->ln_hold = NULL;
  460                                 }
  461                                 next = nd6_free(rt);
  462                         }
  463                         break;
  464                 case ND6_LLINFO_REACHABLE:
  465                         if (ln->ln_expire) {
  466                                 ln->ln_state = ND6_LLINFO_STALE;
  467                                 ln->ln_expire = time_second + nd6_gctimer;
  468                         }
  469                         break;
  470 
  471                 case ND6_LLINFO_STALE:
  472                         /* Garbage Collection(RFC 2461 5.3) */
  473                         if (ln->ln_expire)
  474                                 next = nd6_free(rt);
  475                         break;
  476 
  477                 case ND6_LLINFO_DELAY:
  478                         if (ndi && (ndi->flags & ND6_IFF_PERFORMNUD) != 0) {
  479                                 /* We need NUD */
  480                                 ln->ln_asked = 1;
  481                                 ln->ln_state = ND6_LLINFO_PROBE;
  482                                 ln->ln_expire = time_second +
  483                                         ndi->retrans / 1000;
  484                                 nd6_ns_output(ifp, &dst->sin6_addr,
  485                                               &dst->sin6_addr,
  486                                               ln, 0);
  487                         } else {
  488                                 ln->ln_state = ND6_LLINFO_STALE; /* XXX */
  489                                 ln->ln_expire = time_second + nd6_gctimer;
  490                         }
  491                         break;
  492                 case ND6_LLINFO_PROBE:
  493                         if (ln->ln_asked < nd6_umaxtries) {
  494                                 ln->ln_asked++;
  495                                 ln->ln_expire = time_second +
  496                                         ND_IFINFO(ifp)->retrans / 1000;
  497                                 nd6_ns_output(ifp, &dst->sin6_addr,
  498                                                &dst->sin6_addr, ln, 0);
  499                         } else {
  500                                 next = nd6_free(rt);
  501                         }
  502                         break;
  503                 }
  504                 ln = next;
  505         }
  506 
  507         /* expire default router list */
  508         dr = TAILQ_FIRST(&nd_defrouter);
  509         while (dr) {
  510                 if (dr->expire && dr->expire < time_second) {
  511                         struct nd_defrouter *t;
  512                         t = TAILQ_NEXT(dr, dr_entry);
  513                         defrtrlist_del(dr);
  514                         dr = t;
  515                 } else {
  516                         dr = TAILQ_NEXT(dr, dr_entry);
  517                 }
  518         }
  519 
  520         /*
  521          * expire interface addresses.
  522          * in the past the loop was inside prefix expiry processing.
  523          * However, from a stricter speci-confrmance standpoint, we should
  524          * rather separate address lifetimes and prefix lifetimes.
  525          */
  526   addrloop:
  527         for (ia6 = in6_ifaddr; ia6; ia6 = nia6) {
  528                 nia6 = ia6->ia_next;
  529                 /* check address lifetime */
  530                 lt6 = &ia6->ia6_lifetime;
  531                 if (IFA6_IS_INVALID(ia6)) {
  532                         int regen = 0;
  533 
  534                         /*
  535                          * If the expiring address is temporary, try
  536                          * regenerating a new one.  This would be useful when
  537                          * we suspended a laptop PC, then turned it on after a
  538                          * period that could invalidate all temporary
  539                          * addresses.  Although we may have to restart the
  540                          * loop (see below), it must be after purging the
  541                          * address.  Otherwise, we'd see an infinite loop of
  542                          * regeneration.
  543                          */
  544                         if (ip6_use_tempaddr &&
  545                             (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0) {
  546                                 if (regen_tmpaddr(ia6) == 0)
  547                                         regen = 1;
  548                         }
  549 
  550                         in6_purgeaddr(&ia6->ia_ifa);
  551 
  552                         if (regen)
  553                                 goto addrloop; /* XXX: see below */
  554                 }
  555                 if (IFA6_IS_DEPRECATED(ia6)) {
  556                         int oldflags = ia6->ia6_flags;
  557 
  558                         ia6->ia6_flags |= IN6_IFF_DEPRECATED;
  559 
  560                         /*
  561                          * If a temporary address has just become deprecated,
  562                          * regenerate a new one if possible.
  563                          */
  564                         if (ip6_use_tempaddr &&
  565                             (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0 &&
  566                             (oldflags & IN6_IFF_DEPRECATED) == 0) {
  567 
  568                                 if (regen_tmpaddr(ia6) == 0) {
  569                                         /*
  570                                          * A new temporary address is
  571                                          * generated.
  572                                          * XXX: this means the address chain
  573                                          * has changed while we are still in
  574                                          * the loop.  Although the change
  575                                          * would not cause disaster (because
  576                                          * it's not a deletion, but an
  577                                          * addition,) we'd rather restart the
  578                                          * loop just for safety.  Or does this
  579                                          * significantly reduce performance??
  580                                          */
  581                                         goto addrloop;
  582                                 }
  583                         }
  584                 } else {
  585                         /*
  586                          * A new RA might have made a deprecated address
  587                          * preferred.
  588                          */
  589                         ia6->ia6_flags &= ~IN6_IFF_DEPRECATED;
  590                 }
  591         }
  592 
  593         /* expire prefix list */
  594         pr = nd_prefix.lh_first;
  595         while (pr) {
  596                 /*
  597                  * check prefix lifetime.
  598                  * since pltime is just for autoconf, pltime processing for
  599                  * prefix is not necessary.
  600                  */
  601                 if (pr->ndpr_expire && pr->ndpr_expire < time_second) {
  602                         struct nd_prefix *t;
  603                         t = pr->ndpr_next;
  604 
  605                         /*
  606                          * address expiration and prefix expiration are
  607                          * separate.  NEVER perform in6_purgeaddr here.
  608                          */
  609 
  610                         prelist_remove(pr);
  611                         pr = t;
  612                 } else
  613                         pr = pr->ndpr_next;
  614         }
  615         splx(s);
  616 }
  617 
  618 static int
  619 regen_tmpaddr(ia6)
  620         struct in6_ifaddr *ia6; /* deprecated/invalidated temporary address */
  621 {
  622         struct ifaddr *ifa;
  623         struct ifnet *ifp;
  624         struct in6_ifaddr *public_ifa6 = NULL;
  625 
  626         ifp = ia6->ia_ifa.ifa_ifp;
  627         for (ifa = ifp->if_addrlist.tqh_first; ifa;
  628              ifa = ifa->ifa_list.tqe_next) {
  629                 struct in6_ifaddr *it6;
  630 
  631                 if (ifa->ifa_addr->sa_family != AF_INET6)
  632                         continue;
  633 
  634                 it6 = (struct in6_ifaddr *)ifa;
  635 
  636                 /* ignore no autoconf addresses. */
  637                 if ((it6->ia6_flags & IN6_IFF_AUTOCONF) == 0)
  638                         continue;
  639 
  640                 /* ignore autoconf addresses with different prefixes. */
  641                 if (it6->ia6_ndpr == NULL || it6->ia6_ndpr != ia6->ia6_ndpr)
  642                         continue;
  643 
  644                 /*
  645                  * Now we are looking at an autoconf address with the same
  646                  * prefix as ours.  If the address is temporary and is still
  647                  * preferred, do not create another one.  It would be rare, but
  648                  * could happen, for example, when we resume a laptop PC after
  649                  * a long period.
  650                  */
  651                 if ((it6->ia6_flags & IN6_IFF_TEMPORARY) != 0 &&
  652                     !IFA6_IS_DEPRECATED(it6)) {
  653                         public_ifa6 = NULL;
  654                         break;
  655                 }
  656 
  657                 /*
  658                  * This is a public autoconf address that has the same prefix
  659                  * as ours.  If it is preferred, keep it.  We can't break the
  660                  * loop here, because there may be a still-preferred temporary
  661                  * address with the prefix.
  662                  */
  663                 if (!IFA6_IS_DEPRECATED(it6))
  664                     public_ifa6 = it6;
  665         }
  666 
  667         if (public_ifa6 != NULL) {
  668                 int e;
  669 
  670                 if ((e = in6_tmpifadd(public_ifa6, 0)) != 0) {
  671                         log(LOG_NOTICE, "regen_tmpaddr: failed to create a new"
  672                             " tmp addr,errno=%d\n", e);
  673                         return (-1);
  674                 }
  675                 return (0);
  676         }
  677 
  678         return (-1);
  679 }
  680 
  681 /*
  682  * Nuke neighbor cache/prefix/default router management table, right before
  683  * ifp goes away.
  684  */
  685 void
  686 nd6_purge(ifp)
  687         struct ifnet *ifp;
  688 {
  689         struct llinfo_nd6 *ln, *nln;
  690         struct nd_defrouter *dr, *ndr, drany;
  691         struct nd_prefix *pr, *npr;
  692 
  693         /* Nuke default router list entries toward ifp */
  694         if ((dr = TAILQ_FIRST(&nd_defrouter)) != NULL) {
  695                 /*
  696                  * The first entry of the list may be stored in
  697                  * the routing table, so we'll delete it later.
  698                  */
  699                 for (dr = TAILQ_NEXT(dr, dr_entry); dr; dr = ndr) {
  700                         ndr = TAILQ_NEXT(dr, dr_entry);
  701                         if (dr->ifp == ifp)
  702                                 defrtrlist_del(dr);
  703                 }
  704                 dr = TAILQ_FIRST(&nd_defrouter);
  705                 if (dr->ifp == ifp)
  706                         defrtrlist_del(dr);
  707         }
  708 
  709         /* Nuke prefix list entries toward ifp */
  710         for (pr = nd_prefix.lh_first; pr; pr = npr) {
  711                 npr = pr->ndpr_next;
  712                 if (pr->ndpr_ifp == ifp) {
  713                         /*
  714                          * Previously, pr->ndpr_addr is removed as well,
  715                          * but I strongly believe we don't have to do it.
  716                          * nd6_purge() is only called from in6_ifdetach(),
  717                          * which removes all the associated interface addresses
  718                          * by itself.
  719                          * (jinmei@kame.net 20010129)
  720                          */
  721                         prelist_remove(pr);
  722                 }
  723         }
  724 
  725         /* cancel default outgoing interface setting */
  726         if (nd6_defifindex == ifp->if_index)
  727                 nd6_setdefaultiface(0);
  728 
  729         if (!ip6_forwarding && ip6_accept_rtadv) { /* XXX: too restrictive? */
  730                 /* refresh default router list */
  731                 bzero(&drany, sizeof(drany));
  732                 defrouter_delreq(&drany, 0);
  733                 defrouter_select();
  734         }
  735 
  736         /*
  737          * Nuke neighbor cache entries for the ifp.
  738          * Note that rt->rt_ifp may not be the same as ifp,
  739          * due to KAME goto ours hack.  See RTM_RESOLVE case in
  740          * nd6_rtrequest(), and ip6_input().
  741          */
  742         ln = llinfo_nd6.ln_next;
  743         while (ln && ln != &llinfo_nd6) {
  744                 struct rtentry *rt;
  745                 struct sockaddr_dl *sdl;
  746 
  747                 nln = ln->ln_next;
  748                 rt = ln->ln_rt;
  749                 if (rt && rt->rt_gateway &&
  750                     rt->rt_gateway->sa_family == AF_LINK) {
  751                         sdl = (struct sockaddr_dl *)rt->rt_gateway;
  752                         if (sdl->sdl_index == ifp->if_index)
  753                                 nln = nd6_free(rt);
  754                 }
  755                 ln = nln;
  756         }
  757 }
  758 
  759 struct rtentry *
  760 nd6_lookup(addr6, create, ifp)
  761         struct in6_addr *addr6;
  762         int create;
  763         struct ifnet *ifp;
  764 {
  765         struct rtentry *rt;
  766         struct sockaddr_in6 sin6;
  767 
  768         bzero(&sin6, sizeof(sin6));
  769         sin6.sin6_len = sizeof(struct sockaddr_in6);
  770         sin6.sin6_family = AF_INET6;
  771         sin6.sin6_addr = *addr6;
  772         rt = rtalloc1((struct sockaddr *)&sin6, create, 0UL);
  773         if (rt) {
  774                 if ((rt->rt_flags & RTF_LLINFO) == 0 && create) {
  775                         /*
  776                          * This is the case for the default route.
  777                          * If we want to create a neighbor cache for the
  778                          * address, we should free the route for the
  779                          * destination and allocate an interface route.
  780                          */
  781                         RTFREE_LOCKED(rt);
  782                         rt = 0;
  783                 }
  784         }
  785         if (!rt) {
  786                 if (create && ifp) {
  787                         int e;
  788 
  789                         /*
  790                          * If no route is available and create is set,
  791                          * we allocate a host route for the destination
  792                          * and treat it like an interface route.
  793                          * This hack is necessary for a neighbor which can't
  794                          * be covered by our own prefix.
  795                          */
  796                         struct ifaddr *ifa =
  797                             ifaof_ifpforaddr((struct sockaddr *)&sin6, ifp);
  798                         if (ifa == NULL)
  799                                 return (NULL);
  800 
  801                         /*
  802                          * Create a new route.  RTF_LLINFO is necessary
  803                          * to create a Neighbor Cache entry for the
  804                          * destination in nd6_rtrequest which will be
  805                          * called in rtrequest via ifa->ifa_rtrequest.
  806                          */
  807                         if ((e = rtrequest(RTM_ADD, (struct sockaddr *)&sin6,
  808                             ifa->ifa_addr, (struct sockaddr *)&all1_sa,
  809                             (ifa->ifa_flags | RTF_HOST | RTF_LLINFO) &
  810                             ~RTF_CLONING, &rt)) != 0) {
  811                                 log(LOG_ERR,
  812                                     "nd6_lookup: failed to add route for a "
  813                                     "neighbor(%s), errno=%d\n",
  814                                     ip6_sprintf(addr6), e);
  815                         }
  816                         if (rt == NULL)
  817                                 return (NULL);
  818                         RT_LOCK(rt);
  819                         if (rt->rt_llinfo) {
  820                                 struct llinfo_nd6 *ln =
  821                                     (struct llinfo_nd6 *)rt->rt_llinfo;
  822                                 ln->ln_state = ND6_LLINFO_NOSTATE;
  823                         }
  824                 } else
  825                         return (NULL);
  826         }
  827         RT_LOCK_ASSERT(rt);
  828         RT_REMREF(rt);
  829         /*
  830          * Validation for the entry.
  831          * Note that the check for rt_llinfo is necessary because a cloned
  832          * route from a parent route that has the L flag (e.g. the default
  833          * route to a p2p interface) may have the flag, too, while the
  834          * destination is not actually a neighbor.
  835          * XXX: we can't use rt->rt_ifp to check for the interface, since
  836          *      it might be the loopback interface if the entry is for our
  837          *      own address on a non-loopback interface. Instead, we should
  838          *      use rt->rt_ifa->ifa_ifp, which would specify the REAL
  839          *      interface.
  840          */
  841         if ((rt->rt_flags & RTF_GATEWAY) || (rt->rt_flags & RTF_LLINFO) == 0 ||
  842             rt->rt_gateway->sa_family != AF_LINK || rt->rt_llinfo == NULL ||
  843             (ifp && rt->rt_ifa->ifa_ifp != ifp)) {
  844                 if (create) {
  845                         log(LOG_DEBUG,
  846                             "nd6_lookup: failed to lookup %s (if = %s)\n",
  847                             ip6_sprintf(addr6),
  848                             ifp ? if_name(ifp) : "unspec");
  849                         /* xxx more logs... kazu */
  850                 }
  851                 RT_UNLOCK(rt);
  852                 return (NULL);
  853         }
  854         RT_UNLOCK(rt);          /* XXX not ready to return rt locked */
  855         return (rt);
  856 }
  857 
  858 /*
  859  * Test whether a given IPv6 address is a neighbor or not, ignoring
  860  * the actual neighbor cache.  The neighbor cache is ignored in order
  861  * to not reenter the routing code from within itself.
  862  */
  863 static int
  864 nd6_is_new_addr_neighbor(addr, ifp)
  865         struct sockaddr_in6 *addr;
  866         struct ifnet *ifp;
  867 {
  868         struct nd_prefix *pr;
  869 
  870         /*
  871          * A link-local address is always a neighbor.
  872          * XXX: we should use the sin6_scope_id field rather than the embedded
  873          * interface index.
  874          * XXX: a link does not necessarily specify a single interface.
  875          */
  876         if (IN6_IS_ADDR_LINKLOCAL(&addr->sin6_addr) &&
  877             ntohs(*(u_int16_t *)&addr->sin6_addr.s6_addr[2]) == ifp->if_index)
  878                 return (1);
  879 
  880         /*
  881          * If the address matches one of our addresses,
  882          * it should be a neighbor.
  883          * If the address matches one of our on-link prefixes, it should be a
  884          * neighbor.
  885          */
  886         for (pr = nd_prefix.lh_first; pr; pr = pr->ndpr_next) {
  887                 if (pr->ndpr_ifp != ifp)
  888                         continue;
  889 
  890                 if (!(pr->ndpr_stateflags & NDPRF_ONLINK))
  891                         continue;
  892 
  893                 if (IN6_ARE_MASKED_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr,
  894                     &addr->sin6_addr, &pr->ndpr_mask))
  895                         return (1);
  896         }
  897 
  898         /*
  899          * If the default router list is empty, all addresses are regarded
  900          * as on-link, and thus, as a neighbor.
  901          * XXX: we restrict the condition to hosts, because routers usually do
  902          * not have the "default router list".
  903          */
  904         if (!ip6_forwarding && TAILQ_FIRST(&nd_defrouter) == NULL &&
  905             nd6_defifindex == ifp->if_index) {
  906                 return (1);
  907         }
  908 
  909         return (0);
  910 }
  911 
  912 
  913 /*
  914  * Detect if a given IPv6 address identifies a neighbor on a given link.
  915  * XXX: should take care of the destination of a p2p link?
  916  */
  917 int
  918 nd6_is_addr_neighbor(addr, ifp)
  919         struct sockaddr_in6 *addr;
  920         struct ifnet *ifp;
  921 {
  922 
  923         if (nd6_is_new_addr_neighbor(addr, ifp))
  924                 return (1);
  925 
  926         /*
  927          * Even if the address matches none of our addresses, it might be
  928          * in the neighbor cache.
  929          */
  930         if (nd6_lookup(&addr->sin6_addr, 0, ifp) != NULL)
  931                 return (1);
  932 
  933         return (0);
  934 }
  935 
  936 /*
  937  * Free an nd6 llinfo entry.
  938  */
  939 struct llinfo_nd6 *
  940 nd6_free(rt)
  941         struct rtentry *rt;
  942 {
  943         struct llinfo_nd6 *ln = (struct llinfo_nd6 *)rt->rt_llinfo, *next;
  944         struct in6_addr in6 = ((struct sockaddr_in6 *)rt_key(rt))->sin6_addr;
  945         struct nd_defrouter *dr;
  946 
  947         /*
  948          * we used to have pfctlinput(PRC_HOSTDEAD) here.
  949          * even though it is not harmful, it was not really necessary.
  950          */
  951 
  952         if (!ip6_forwarding && ip6_accept_rtadv) { /* XXX: too restrictive? */
  953                 int s;
  954                 s = splnet();
  955                 dr = defrouter_lookup(&((struct sockaddr_in6 *)rt_key(rt))->sin6_addr,
  956                     rt->rt_ifp);
  957 
  958                 if (ln->ln_router || dr) {
  959                         /*
  960                          * rt6_flush must be called whether or not the neighbor
  961                          * is in the Default Router List.
  962                          * See a corresponding comment in nd6_na_input().
  963                          */
  964                         rt6_flush(&in6, rt->rt_ifp);
  965                 }
  966 
  967                 if (dr) {
  968                         /*
  969                          * Unreachablity of a router might affect the default
  970                          * router selection and on-link detection of advertised
  971                          * prefixes.
  972                          */
  973 
  974                         /*
  975                          * Temporarily fake the state to choose a new default
  976                          * router and to perform on-link determination of
  977                          * prefixes correctly.
  978                          * Below the state will be set correctly,
  979                          * or the entry itself will be deleted.
  980                          */
  981                         ln->ln_state = ND6_LLINFO_INCOMPLETE;
  982 
  983                         /*
  984                          * Since defrouter_select() does not affect the
  985                          * on-link determination and MIP6 needs the check
  986                          * before the default router selection, we perform
  987                          * the check now.
  988                          */
  989                         pfxlist_onlink_check();
  990 
  991                         if (dr == TAILQ_FIRST(&nd_defrouter)) {
  992                                 /*
  993                                  * It is used as the current default router,
  994                                  * so we have to move it to the end of the
  995                                  * list and choose a new one.
  996                                  * XXX: it is not very efficient if this is
  997                                  *      the only router.
  998                                  */
  999                                 TAILQ_REMOVE(&nd_defrouter, dr, dr_entry);
 1000                                 TAILQ_INSERT_TAIL(&nd_defrouter, dr, dr_entry);
 1001 
 1002                                 defrouter_select();
 1003                         }
 1004                 }
 1005                 splx(s);
 1006         }
 1007 
 1008         /*
 1009          * Before deleting the entry, remember the next entry as the
 1010          * return value.  We need this because pfxlist_onlink_check() above
 1011          * might have freed other entries (particularly the old next entry) as
 1012          * a side effect (XXX).
 1013          */
 1014         next = ln->ln_next;
 1015 
 1016         /*
 1017          * Detach the route from the routing tree and the list of neighbor
 1018          * caches, and disable the route entry not to be used in already
 1019          * cached routes.
 1020          */
 1021         rtrequest(RTM_DELETE, rt_key(rt), (struct sockaddr *)0,
 1022             rt_mask(rt), 0, (struct rtentry **)0);
 1023 
 1024         return (next);
 1025 }
 1026 
 1027 /*
 1028  * Upper-layer reachability hint for Neighbor Unreachability Detection.
 1029  *
 1030  * XXX cost-effective metods?
 1031  */
 1032 void
 1033 nd6_nud_hint(rt, dst6, force)
 1034         struct rtentry *rt;
 1035         struct in6_addr *dst6;
 1036         int force;
 1037 {
 1038         struct llinfo_nd6 *ln;
 1039 
 1040         /*
 1041          * If the caller specified "rt", use that.  Otherwise, resolve the
 1042          * routing table by supplied "dst6".
 1043          */
 1044         if (!rt) {
 1045                 if (!dst6)
 1046                         return;
 1047                 if (!(rt = nd6_lookup(dst6, 0, NULL)))
 1048                         return;
 1049         }
 1050 
 1051         if ((rt->rt_flags & RTF_GATEWAY) != 0 ||
 1052             (rt->rt_flags & RTF_LLINFO) == 0 ||
 1053             !rt->rt_llinfo || !rt->rt_gateway ||
 1054             rt->rt_gateway->sa_family != AF_LINK) {
 1055                 /* This is not a host route. */
 1056                 return;
 1057         }
 1058 
 1059         ln = (struct llinfo_nd6 *)rt->rt_llinfo;
 1060         if (ln->ln_state < ND6_LLINFO_REACHABLE)
 1061                 return;
 1062 
 1063         /*
 1064          * if we get upper-layer reachability confirmation many times,
 1065          * it is possible we have false information.
 1066          */
 1067         if (!force) {
 1068                 ln->ln_byhint++;
 1069                 if (ln->ln_byhint > nd6_maxnudhint)
 1070                         return;
 1071         }
 1072 
 1073         ln->ln_state = ND6_LLINFO_REACHABLE;
 1074         if (ln->ln_expire)
 1075                 ln->ln_expire = time_second +
 1076                         ND_IFINFO(rt->rt_ifp)->reachable;
 1077 }
 1078 
 1079 void
 1080 nd6_rtrequest(req, rt, info)
 1081         int     req;
 1082         struct rtentry *rt;
 1083         struct rt_addrinfo *info; /* xxx unused */
 1084 {
 1085         struct sockaddr *gate = rt->rt_gateway;
 1086         struct llinfo_nd6 *ln = (struct llinfo_nd6 *)rt->rt_llinfo;
 1087         static struct sockaddr_dl null_sdl = {sizeof(null_sdl), AF_LINK};
 1088         struct ifnet *ifp = rt->rt_ifp;
 1089         struct ifaddr *ifa;
 1090 
 1091         RT_LOCK_ASSERT(rt);
 1092 
 1093         if ((rt->rt_flags & RTF_GATEWAY) != 0)
 1094                 return;
 1095 
 1096         if (nd6_need_cache(ifp) == 0 && (rt->rt_flags & RTF_HOST) == 0) {
 1097                 /*
 1098                  * This is probably an interface direct route for a link
 1099                  * which does not need neighbor caches (e.g. fe80::%lo0/64).
 1100                  * We do not need special treatment below for such a route.
 1101                  * Moreover, the RTF_LLINFO flag which would be set below
 1102                  * would annoy the ndp(8) command.
 1103                  */
 1104                 return;
 1105         }
 1106 
 1107         if (req == RTM_RESOLVE &&
 1108             (nd6_need_cache(ifp) == 0 || /* stf case */
 1109              !nd6_is_new_addr_neighbor((struct sockaddr_in6 *)rt_key(rt),
 1110              ifp))) {
 1111                 /*
 1112                  * FreeBSD and BSD/OS often make a cloned host route based
 1113                  * on a less-specific route (e.g. the default route).
 1114                  * If the less specific route does not have a "gateway"
 1115                  * (this is the case when the route just goes to a p2p or an
 1116                  * stf interface), we'll mistakenly make a neighbor cache for
 1117                  * the host route, and will see strange neighbor solicitation
 1118                  * for the corresponding destination.  In order to avoid the
 1119                  * confusion, we check if the destination of the route is
 1120                  * a neighbor in terms of neighbor discovery, and stop the
 1121                  * process if not.  Additionally, we remove the LLINFO flag
 1122                  * so that ndp(8) will not try to get the neighbor information
 1123                  * of the destination.
 1124                  */
 1125                 rt->rt_flags &= ~RTF_LLINFO;
 1126                 return;
 1127         }
 1128 
 1129         switch (req) {
 1130         case RTM_ADD:
 1131                 /*
 1132                  * There is no backward compatibility :)
 1133                  *
 1134                  * if ((rt->rt_flags & RTF_HOST) == 0 &&
 1135                  *     SIN(rt_mask(rt))->sin_addr.s_addr != 0xffffffff)
 1136                  *         rt->rt_flags |= RTF_CLONING;
 1137                  */
 1138                 if (rt->rt_flags & (RTF_CLONING | RTF_LLINFO)) {
 1139                         /*
 1140                          * Case 1: This route should come from
 1141                          * a route to interface.  RTF_LLINFO flag is set
 1142                          * for a host route whose destination should be
 1143                          * treated as on-link.
 1144                          */
 1145                         rt_setgate(rt, rt_key(rt),
 1146                                    (struct sockaddr *)&null_sdl);
 1147                         gate = rt->rt_gateway;
 1148                         SDL(gate)->sdl_type = ifp->if_type;
 1149                         SDL(gate)->sdl_index = ifp->if_index;
 1150                         if (ln)
 1151                                 ln->ln_expire = time_second;
 1152                         if (ln && ln->ln_expire == 0) {
 1153                                 /* kludge for desktops */
 1154                                 ln->ln_expire = 1;
 1155                         }
 1156                         if ((rt->rt_flags & RTF_CLONING) != 0)
 1157                                 break;
 1158                 }
 1159                 /*
 1160                  * In IPv4 code, we try to annonuce new RTF_ANNOUNCE entry here.
 1161                  * We don't do that here since llinfo is not ready yet.
 1162                  *
 1163                  * There are also couple of other things to be discussed:
 1164                  * - unsolicited NA code needs improvement beforehand
 1165                  * - RFC2461 says we MAY send multicast unsolicited NA
 1166                  *   (7.2.6 paragraph 4), however, it also says that we
 1167                  *   SHOULD provide a mechanism to prevent multicast NA storm.
 1168                  *   we don't have anything like it right now.
 1169                  *   note that the mechanism needs a mutual agreement
 1170                  *   between proxies, which means that we need to implement
 1171                  *   a new protocol, or a new kludge.
 1172                  * - from RFC2461 6.2.4, host MUST NOT send an unsolicited NA.
 1173                  *   we need to check ip6forwarding before sending it.
 1174                  *   (or should we allow proxy ND configuration only for
 1175                  *   routers?  there's no mention about proxy ND from hosts)
 1176                  */
 1177 #if 0
 1178                 /* XXX it does not work */
 1179                 if (rt->rt_flags & RTF_ANNOUNCE)
 1180                         nd6_na_output(ifp,
 1181                               &SIN6(rt_key(rt))->sin6_addr,
 1182                               &SIN6(rt_key(rt))->sin6_addr,
 1183                               ip6_forwarding ? ND_NA_FLAG_ROUTER : 0,
 1184                               1, NULL);
 1185 #endif
 1186                 /* FALLTHROUGH */
 1187         case RTM_RESOLVE:
 1188                 if ((ifp->if_flags & (IFF_POINTOPOINT | IFF_LOOPBACK)) == 0) {
 1189                         /*
 1190                          * Address resolution isn't necessary for a point to
 1191                          * point link, so we can skip this test for a p2p link.
 1192                          */
 1193                         if (gate->sa_family != AF_LINK ||
 1194                             gate->sa_len < sizeof(null_sdl)) {
 1195                                 log(LOG_DEBUG,
 1196                                     "nd6_rtrequest: bad gateway value: %s\n",
 1197                                     if_name(ifp));
 1198                                 break;
 1199                         }
 1200                         SDL(gate)->sdl_type = ifp->if_type;
 1201                         SDL(gate)->sdl_index = ifp->if_index;
 1202                 }
 1203                 if (ln != NULL)
 1204                         break;  /* This happens on a route change */
 1205                 /*
 1206                  * Case 2: This route may come from cloning, or a manual route
 1207                  * add with a LL address.
 1208                  */
 1209                 R_Malloc(ln, struct llinfo_nd6 *, sizeof(*ln));
 1210                 rt->rt_llinfo = (caddr_t)ln;
 1211                 if (!ln) {
 1212                         log(LOG_DEBUG, "nd6_rtrequest: malloc failed\n");
 1213                         break;
 1214                 }
 1215                 nd6_inuse++;
 1216                 nd6_allocated++;
 1217                 bzero(ln, sizeof(*ln));
 1218                 ln->ln_rt = rt;
 1219                 /* this is required for "ndp" command. - shin */
 1220                 if (req == RTM_ADD) {
 1221                         /*
 1222                          * gate should have some valid AF_LINK entry,
 1223                          * and ln->ln_expire should have some lifetime
 1224                          * which is specified by ndp command.
 1225                          */
 1226                         ln->ln_state = ND6_LLINFO_REACHABLE;
 1227                         ln->ln_byhint = 0;
 1228                 } else {
 1229                         /*
 1230                          * When req == RTM_RESOLVE, rt is created and
 1231                          * initialized in rtrequest(), so rt_expire is 0.
 1232                          */
 1233                         ln->ln_state = ND6_LLINFO_NOSTATE;
 1234                         ln->ln_expire = time_second;
 1235                 }
 1236                 rt->rt_flags |= RTF_LLINFO;
 1237                 ln->ln_next = llinfo_nd6.ln_next;
 1238                 llinfo_nd6.ln_next = ln;
 1239                 ln->ln_prev = &llinfo_nd6;
 1240                 ln->ln_next->ln_prev = ln;
 1241 
 1242                 /*
 1243                  * check if rt_key(rt) is one of my address assigned
 1244                  * to the interface.
 1245                  */
 1246                 ifa = (struct ifaddr *)in6ifa_ifpwithaddr(rt->rt_ifp,
 1247                     &SIN6(rt_key(rt))->sin6_addr);
 1248                 if (ifa) {
 1249                         caddr_t macp = nd6_ifptomac(ifp);
 1250                         ln->ln_expire = 0;
 1251                         ln->ln_state = ND6_LLINFO_REACHABLE;
 1252                         ln->ln_byhint = 0;
 1253                         if (macp) {
 1254                                 bcopy(macp, LLADDR(SDL(gate)), ifp->if_addrlen);
 1255                                 SDL(gate)->sdl_alen = ifp->if_addrlen;
 1256                         }
 1257                         if (nd6_useloopback) {
 1258                                 rt->rt_ifp = &loif[0];  /* XXX */
 1259                                 /*
 1260                                  * Make sure rt_ifa be equal to the ifaddr
 1261                                  * corresponding to the address.
 1262                                  * We need this because when we refer
 1263                                  * rt_ifa->ia6_flags in ip6_input, we assume
 1264                                  * that the rt_ifa points to the address instead
 1265                                  * of the loopback address.
 1266                                  */
 1267                                 if (ifa != rt->rt_ifa) {
 1268                                         IFAFREE(rt->rt_ifa);
 1269                                         IFAREF(ifa);
 1270                                         rt->rt_ifa = ifa;
 1271                                 }
 1272                         }
 1273                 } else if (rt->rt_flags & RTF_ANNOUNCE) {
 1274                         ln->ln_expire = 0;
 1275                         ln->ln_state = ND6_LLINFO_REACHABLE;
 1276                         ln->ln_byhint = 0;
 1277 
 1278                         /* join solicited node multicast for proxy ND */
 1279                         if (ifp->if_flags & IFF_MULTICAST) {
 1280                                 struct in6_addr llsol;
 1281                                 int error;
 1282 
 1283                                 llsol = SIN6(rt_key(rt))->sin6_addr;
 1284                                 llsol.s6_addr16[0] = htons(0xff02);
 1285                                 llsol.s6_addr16[1] = htons(ifp->if_index);
 1286                                 llsol.s6_addr32[1] = 0;
 1287                                 llsol.s6_addr32[2] = htonl(1);
 1288                                 llsol.s6_addr8[12] = 0xff;
 1289 
 1290                                 if (!in6_addmulti(&llsol, ifp, &error)) {
 1291                                         nd6log((LOG_ERR, "%s: failed to join "
 1292                                             "%s (errno=%d)\n", if_name(ifp),
 1293                                             ip6_sprintf(&llsol), error));
 1294                                 }
 1295                         }
 1296                 }
 1297                 break;
 1298 
 1299         case RTM_DELETE:
 1300                 if (!ln)
 1301                         break;
 1302                 /* leave from solicited node multicast for proxy ND */
 1303                 if ((rt->rt_flags & RTF_ANNOUNCE) != 0 &&
 1304                     (ifp->if_flags & IFF_MULTICAST) != 0) {
 1305                         struct in6_addr llsol;
 1306                         struct in6_multi *in6m;
 1307 
 1308                         llsol = SIN6(rt_key(rt))->sin6_addr;
 1309                         llsol.s6_addr16[0] = htons(0xff02);
 1310                         llsol.s6_addr16[1] = htons(ifp->if_index);
 1311                         llsol.s6_addr32[1] = 0;
 1312                         llsol.s6_addr32[2] = htonl(1);
 1313                         llsol.s6_addr8[12] = 0xff;
 1314 
 1315                         IN6_LOOKUP_MULTI(llsol, ifp, in6m);
 1316                         if (in6m)
 1317                                 in6_delmulti(in6m);
 1318                 }
 1319                 nd6_inuse--;
 1320                 ln->ln_next->ln_prev = ln->ln_prev;
 1321                 ln->ln_prev->ln_next = ln->ln_next;
 1322                 ln->ln_prev = NULL;
 1323                 rt->rt_llinfo = 0;
 1324                 rt->rt_flags &= ~RTF_LLINFO;
 1325                 if (ln->ln_hold)
 1326                         m_freem(ln->ln_hold);
 1327                 Free((caddr_t)ln);
 1328         }
 1329 }
 1330 
 1331 int
 1332 nd6_ioctl(cmd, data, ifp)
 1333         u_long cmd;
 1334         caddr_t data;
 1335         struct ifnet *ifp;
 1336 {
 1337         struct in6_drlist *drl = (struct in6_drlist *)data;
 1338         struct in6_oprlist *oprl = (struct in6_oprlist *)data;
 1339         struct in6_ndireq *ndi = (struct in6_ndireq *)data;
 1340         struct in6_nbrinfo *nbi = (struct in6_nbrinfo *)data;
 1341         struct in6_ndifreq *ndif = (struct in6_ndifreq *)data;
 1342         struct nd_defrouter *dr, any;
 1343         struct nd_prefix *pr;
 1344         struct rtentry *rt;
 1345         int i = 0, error = 0;
 1346         int s;
 1347 
 1348         switch (cmd) {
 1349         case SIOCGDRLST_IN6:
 1350                 /*
 1351                  * obsolete API, use sysctl under net.inet6.icmp6
 1352                  */
 1353                 bzero(drl, sizeof(*drl));
 1354                 s = splnet();
 1355                 dr = TAILQ_FIRST(&nd_defrouter);
 1356                 while (dr && i < DRLSTSIZ) {
 1357                         drl->defrouter[i].rtaddr = dr->rtaddr;
 1358                         in6_clearscope(&drl->defrouter[i].rtaddr);
 1359 
 1360                         drl->defrouter[i].flags = dr->flags;
 1361                         drl->defrouter[i].rtlifetime = dr->rtlifetime;
 1362                         drl->defrouter[i].expire = dr->expire;
 1363                         drl->defrouter[i].if_index = dr->ifp->if_index;
 1364                         i++;
 1365                         dr = TAILQ_NEXT(dr, dr_entry);
 1366                 }
 1367                 splx(s);
 1368                 break;
 1369         case SIOCGPRLST_IN6:
 1370                 /*
 1371                  * obsolete API, use sysctl under net.inet6.icmp6
 1372                  *
 1373                  * XXX the structure in6_prlist was changed in backward-
 1374                  * incompatible manner.  in6_oprlist is used for SIOCGPRLST_IN6,
 1375                  * in6_prlist is used for nd6_sysctl() - fill_prlist().
 1376                  */
 1377                 /*
 1378                  * XXX meaning of fields, especialy "raflags", is very
 1379                  * differnet between RA prefix list and RR/static prefix list.
 1380                  * how about separating ioctls into two?
 1381                  */
 1382                 bzero(oprl, sizeof(*oprl));
 1383                 s = splnet();
 1384                 pr = nd_prefix.lh_first;
 1385                 while (pr && i < PRLSTSIZ) {
 1386                         struct nd_pfxrouter *pfr;
 1387                         int j;
 1388 
 1389                         (void)in6_embedscope(&oprl->prefix[i].prefix,
 1390                             &pr->ndpr_prefix, NULL, NULL);
 1391                         oprl->prefix[i].raflags = pr->ndpr_raf;
 1392                         oprl->prefix[i].prefixlen = pr->ndpr_plen;
 1393                         oprl->prefix[i].vltime = pr->ndpr_vltime;
 1394                         oprl->prefix[i].pltime = pr->ndpr_pltime;
 1395                         oprl->prefix[i].if_index = pr->ndpr_ifp->if_index;
 1396                         oprl->prefix[i].expire = pr->ndpr_expire;
 1397 
 1398                         pfr = pr->ndpr_advrtrs.lh_first;
 1399                         j = 0;
 1400                         while (pfr) {
 1401                                 if (j < DRLSTSIZ) {
 1402 #define RTRADDR oprl->prefix[i].advrtr[j]
 1403                                         RTRADDR = pfr->router->rtaddr;
 1404                                         in6_clearscope(&RTRADDR);
 1405 #undef RTRADDR
 1406                                 }
 1407                                 j++;
 1408                                 pfr = pfr->pfr_next;
 1409                         }
 1410                         oprl->prefix[i].advrtrs = j;
 1411                         oprl->prefix[i].origin = PR_ORIG_RA;
 1412 
 1413                         i++;
 1414                         pr = pr->ndpr_next;
 1415                 }
 1416                 splx(s);
 1417 
 1418                 break;
 1419         case OSIOCGIFINFO_IN6:
 1420                 /* XXX: old ndp(8) assumes a positive value for linkmtu. */
 1421                 bzero(&ndi->ndi, sizeof(ndi->ndi));
 1422                 ndi->ndi.linkmtu = IN6_LINKMTU(ifp);
 1423                 ndi->ndi.maxmtu = ND_IFINFO(ifp)->maxmtu;
 1424                 ndi->ndi.basereachable = ND_IFINFO(ifp)->basereachable;
 1425                 ndi->ndi.reachable = ND_IFINFO(ifp)->reachable;
 1426                 ndi->ndi.retrans = ND_IFINFO(ifp)->retrans;
 1427                 ndi->ndi.flags = ND_IFINFO(ifp)->flags;
 1428                 ndi->ndi.recalctm = ND_IFINFO(ifp)->recalctm;
 1429                 ndi->ndi.chlim = ND_IFINFO(ifp)->chlim;
 1430                 break;
 1431         case SIOCGIFINFO_IN6:
 1432                 ndi->ndi = *ND_IFINFO(ifp);
 1433                 ndi->ndi.linkmtu = IN6_LINKMTU(ifp);
 1434                 break;
 1435         case SIOCSIFINFO_FLAGS:
 1436                 ND_IFINFO(ifp)->flags = ndi->ndi.flags;
 1437                 break;
 1438         case SIOCSNDFLUSH_IN6:  /* XXX: the ioctl name is confusing... */
 1439                 /* flush default router list */
 1440                 /*
 1441                  * xxx sumikawa: should not delete route if default
 1442                  * route equals to the top of default router list
 1443                  */
 1444                 bzero(&any, sizeof(any));
 1445                 defrouter_delreq(&any, 0);
 1446                 defrouter_select();
 1447                 /* xxx sumikawa: flush prefix list */
 1448                 break;
 1449         case SIOCSPFXFLUSH_IN6:
 1450         {
 1451                 /* flush all the prefix advertised by routers */
 1452                 struct nd_prefix *pr, *next;
 1453 
 1454                 s = splnet();
 1455                 for (pr = nd_prefix.lh_first; pr; pr = next) {
 1456                         struct in6_ifaddr *ia, *ia_next;
 1457 
 1458                         next = pr->ndpr_next;
 1459 
 1460                         if (IN6_IS_ADDR_LINKLOCAL(&pr->ndpr_prefix.sin6_addr))
 1461                                 continue; /* XXX */
 1462 
 1463                         /* do we really have to remove addresses as well? */
 1464                         for (ia = in6_ifaddr; ia; ia = ia_next) {
 1465                                 /* ia might be removed.  keep the next ptr. */
 1466                                 ia_next = ia->ia_next;
 1467 
 1468                                 if ((ia->ia6_flags & IN6_IFF_AUTOCONF) == 0)
 1469                                         continue;
 1470 
 1471                                 if (ia->ia6_ndpr == pr)
 1472                                         in6_purgeaddr(&ia->ia_ifa);
 1473                         }
 1474                         prelist_remove(pr);
 1475                 }
 1476                 splx(s);
 1477                 break;
 1478         }
 1479         case SIOCSRTRFLUSH_IN6:
 1480         {
 1481                 /* flush all the default routers */
 1482                 struct nd_defrouter *dr, *next;
 1483 
 1484                 s = splnet();
 1485                 if ((dr = TAILQ_FIRST(&nd_defrouter)) != NULL) {
 1486                         /*
 1487                          * The first entry of the list may be stored in
 1488                          * the routing table, so we'll delete it later.
 1489                          */
 1490                         for (dr = TAILQ_NEXT(dr, dr_entry); dr; dr = next) {
 1491                                 next = TAILQ_NEXT(dr, dr_entry);
 1492                                 defrtrlist_del(dr);
 1493                         }
 1494                         defrtrlist_del(TAILQ_FIRST(&nd_defrouter));
 1495                 }
 1496                 splx(s);
 1497                 break;
 1498         }
 1499         case SIOCGNBRINFO_IN6:
 1500         {
 1501                 struct llinfo_nd6 *ln;
 1502                 struct in6_addr nb_addr = nbi->addr; /* make local for safety */
 1503 
 1504                 /*
 1505                  * XXX: KAME specific hack for scoped addresses
 1506                  *      XXXX: for other scopes than link-local?
 1507                  */
 1508                 if (IN6_IS_ADDR_LINKLOCAL(&nbi->addr) ||
 1509                     IN6_IS_ADDR_MC_LINKLOCAL(&nbi->addr)) {
 1510                         u_int16_t *idp = (u_int16_t *)&nb_addr.s6_addr[2];
 1511 
 1512                         if (*idp == 0)
 1513                                 *idp = htons(ifp->if_index);
 1514                 }
 1515 
 1516                 s = splnet();
 1517                 if ((rt = nd6_lookup(&nb_addr, 0, ifp)) == NULL) {
 1518                         error = EINVAL;
 1519                         splx(s);
 1520                         break;
 1521                 }
 1522                 ln = (struct llinfo_nd6 *)rt->rt_llinfo;
 1523                 nbi->state = ln->ln_state;
 1524                 nbi->asked = ln->ln_asked;
 1525                 nbi->isrouter = ln->ln_router;
 1526                 nbi->expire = ln->ln_expire;
 1527                 splx(s);
 1528 
 1529                 break;
 1530         }
 1531         case SIOCGDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */
 1532                 ndif->ifindex = nd6_defifindex;
 1533                 break;
 1534         case SIOCSDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */
 1535                 return (nd6_setdefaultiface(ndif->ifindex));
 1536         }
 1537         return (error);
 1538 }
 1539 
 1540 /*
 1541  * Create neighbor cache entry and cache link-layer address,
 1542  * on reception of inbound ND6 packets.  (RS/RA/NS/redirect)
 1543  */
 1544 struct rtentry *
 1545 nd6_cache_lladdr(ifp, from, lladdr, lladdrlen, type, code)
 1546         struct ifnet *ifp;
 1547         struct in6_addr *from;
 1548         char *lladdr;
 1549         int lladdrlen;
 1550         int type;       /* ICMP6 type */
 1551         int code;       /* type dependent information */
 1552 {
 1553         struct rtentry *rt = NULL;
 1554         struct llinfo_nd6 *ln = NULL;
 1555         int is_newentry;
 1556         struct sockaddr_dl *sdl = NULL;
 1557         int do_update;
 1558         int olladdr;
 1559         int llchange;
 1560         int newstate = 0;
 1561 
 1562         if (!ifp)
 1563                 panic("ifp == NULL in nd6_cache_lladdr");
 1564         if (!from)
 1565                 panic("from == NULL in nd6_cache_lladdr");
 1566 
 1567         /* nothing must be updated for unspecified address */
 1568         if (IN6_IS_ADDR_UNSPECIFIED(from))
 1569                 return NULL;
 1570 
 1571         /*
 1572          * Validation about ifp->if_addrlen and lladdrlen must be done in
 1573          * the caller.
 1574          *
 1575          * XXX If the link does not have link-layer adderss, what should
 1576          * we do? (ifp->if_addrlen == 0)
 1577          * Spec says nothing in sections for RA, RS and NA.  There's small
 1578          * description on it in NS section (RFC 2461 7.2.3).
 1579          */
 1580 
 1581         rt = nd6_lookup(from, 0, ifp);
 1582         if (!rt) {
 1583 #if 0
 1584                 /* nothing must be done if there's no lladdr */
 1585                 if (!lladdr || !lladdrlen)
 1586                         return NULL;
 1587 #endif
 1588 
 1589                 rt = nd6_lookup(from, 1, ifp);
 1590                 is_newentry = 1;
 1591         } else {
 1592                 /* do nothing if static ndp is set */
 1593                 if (rt->rt_flags & RTF_STATIC)
 1594                         return NULL;
 1595                 is_newentry = 0;
 1596         }
 1597 
 1598         if (!rt)
 1599                 return NULL;
 1600         if ((rt->rt_flags & (RTF_GATEWAY | RTF_LLINFO)) != RTF_LLINFO) {
 1601 fail:
 1602                 (void)nd6_free(rt);
 1603                 return NULL;
 1604         }
 1605         ln = (struct llinfo_nd6 *)rt->rt_llinfo;
 1606         if (!ln)
 1607                 goto fail;
 1608         if (!rt->rt_gateway)
 1609                 goto fail;
 1610         if (rt->rt_gateway->sa_family != AF_LINK)
 1611                 goto fail;
 1612         sdl = SDL(rt->rt_gateway);
 1613 
 1614         olladdr = (sdl->sdl_alen) ? 1 : 0;
 1615         if (olladdr && lladdr) {
 1616                 if (bcmp(lladdr, LLADDR(sdl), ifp->if_addrlen))
 1617                         llchange = 1;
 1618                 else
 1619                         llchange = 0;
 1620         } else
 1621                 llchange = 0;
 1622 
 1623         /*
 1624          * newentry olladdr  lladdr  llchange   (*=record)
 1625          *      0       n       n       --      (1)
 1626          *      0       y       n       --      (2)
 1627          *      0       n       y       --      (3) * STALE
 1628          *      0       y       y       n       (4) *
 1629          *      0       y       y       y       (5) * STALE
 1630          *      1       --      n       --      (6)   NOSTATE(= PASSIVE)
 1631          *      1       --      y       --      (7) * STALE
 1632          */
 1633 
 1634         if (lladdr) {           /* (3-5) and (7) */
 1635                 /*
 1636                  * Record source link-layer address
 1637                  * XXX is it dependent to ifp->if_type?
 1638                  */
 1639                 sdl->sdl_alen = ifp->if_addrlen;
 1640                 bcopy(lladdr, LLADDR(sdl), ifp->if_addrlen);
 1641         }
 1642 
 1643         if (!is_newentry) {
 1644                 if ((!olladdr && lladdr) ||             /* (3) */
 1645                     (olladdr && lladdr && llchange)) {  /* (5) */
 1646                         do_update = 1;
 1647                         newstate = ND6_LLINFO_STALE;
 1648                 } else                                  /* (1-2,4) */
 1649                         do_update = 0;
 1650         } else {
 1651                 do_update = 1;
 1652                 if (!lladdr)                            /* (6) */
 1653                         newstate = ND6_LLINFO_NOSTATE;
 1654                 else                                    /* (7) */
 1655                         newstate = ND6_LLINFO_STALE;
 1656         }
 1657 
 1658         if (do_update) {
 1659                 /*
 1660                  * Update the state of the neighbor cache.
 1661                  */
 1662                 ln->ln_state = newstate;
 1663 
 1664                 if (ln->ln_state == ND6_LLINFO_STALE) {
 1665                         /*
 1666                          * XXX: since nd6_output() below will cause
 1667                          * state tansition to DELAY and reset the timer,
 1668                          * we must set the timer now, although it is actually
 1669                          * meaningless.
 1670                          */
 1671                         ln->ln_expire = time_second + nd6_gctimer;
 1672 
 1673                         if (ln->ln_hold) {
 1674                                 /*
 1675                                  * we assume ifp is not a p2p here, so just
 1676                                  * set the 2nd argument as the 1st one.
 1677                                  */
 1678                                 nd6_output(ifp, ifp, ln->ln_hold,
 1679                                     (struct sockaddr_in6 *)rt_key(rt), rt);
 1680                                 ln->ln_hold = NULL;
 1681                         }
 1682                 } else if (ln->ln_state == ND6_LLINFO_INCOMPLETE) {
 1683                         /* probe right away */
 1684                         ln->ln_expire = time_second;
 1685                 }
 1686         }
 1687 
 1688         /*
 1689          * ICMP6 type dependent behavior.
 1690          *
 1691          * NS: clear IsRouter if new entry
 1692          * RS: clear IsRouter
 1693          * RA: set IsRouter if there's lladdr
 1694          * redir: clear IsRouter if new entry
 1695          *
 1696          * RA case, (1):
 1697          * The spec says that we must set IsRouter in the following cases:
 1698          * - If lladdr exist, set IsRouter.  This means (1-5).
 1699          * - If it is old entry (!newentry), set IsRouter.  This means (7).
 1700          * So, based on the spec, in (1-5) and (7) cases we must set IsRouter.
 1701          * A quetion arises for (1) case.  (1) case has no lladdr in the
 1702          * neighbor cache, this is similar to (6).
 1703          * This case is rare but we figured that we MUST NOT set IsRouter.
 1704          *
 1705          * newentry olladdr  lladdr  llchange       NS  RS  RA  redir
 1706          *                                                      D R
 1707          *      0       n       n       --      (1)     c   ?     s
 1708          *      0       y       n       --      (2)     c   s     s
 1709          *      0       n       y       --      (3)     c   s     s
 1710          *      0       y       y       n       (4)     c   s     s
 1711          *      0       y       y       y       (5)     c   s     s
 1712          *      1       --      n       --      (6) c   c       c s
 1713          *      1       --      y       --      (7) c   c   s   c s
 1714          *
 1715          *                                      (c=clear s=set)
 1716          */
 1717         switch (type & 0xff) {
 1718         case ND_NEIGHBOR_SOLICIT:
 1719                 /*
 1720                  * New entry must have is_router flag cleared.
 1721                  */
 1722                 if (is_newentry)        /* (6-7) */
 1723                         ln->ln_router = 0;
 1724                 break;
 1725         case ND_REDIRECT:
 1726                 /*
 1727                  * If the icmp is a redirect to a better router, always set the
 1728                  * is_router flag.  Otherwise, if the entry is newly created,
 1729                  * clear the flag.  [RFC 2461, sec 8.3]
 1730                  */
 1731                 if (code == ND_REDIRECT_ROUTER)
 1732                         ln->ln_router = 1;
 1733                 else if (is_newentry) /* (6-7) */
 1734                         ln->ln_router = 0;
 1735                 break;
 1736         case ND_ROUTER_SOLICIT:
 1737                 /*
 1738                  * is_router flag must always be cleared.
 1739                  */
 1740                 ln->ln_router = 0;
 1741                 break;
 1742         case ND_ROUTER_ADVERT:
 1743                 /*
 1744                  * Mark an entry with lladdr as a router.
 1745                  */
 1746                 if ((!is_newentry && (olladdr || lladdr)) ||    /* (2-5) */
 1747                     (is_newentry && lladdr)) {                  /* (7) */
 1748                         ln->ln_router = 1;
 1749                 }
 1750                 break;
 1751         }
 1752 
 1753         /*
 1754          * When the link-layer address of a router changes, select the
 1755          * best router again.  In particular, when the neighbor entry is newly
 1756          * created, it might affect the selection policy.
 1757          * Question: can we restrict the first condition to the "is_newentry"
 1758          * case?
 1759          * XXX: when we hear an RA from a new router with the link-layer
 1760          * address option, defrouter_select() is called twice, since
 1761          * defrtrlist_update called the function as well.  However, I believe
 1762          * we can compromise the overhead, since it only happens the first
 1763          * time.
 1764          * XXX: although defrouter_select() should not have a bad effect
 1765          * for those are not autoconfigured hosts, we explicitly avoid such
 1766          * cases for safety.
 1767          */
 1768         if (do_update && ln->ln_router && !ip6_forwarding && ip6_accept_rtadv)
 1769                 defrouter_select();
 1770 
 1771         return rt;
 1772 }
 1773 
 1774 static void
 1775 nd6_slowtimo(ignored_arg)
 1776     void *ignored_arg;
 1777 {
 1778         int s = splnet();
 1779         struct nd_ifinfo *nd6if;
 1780         struct ifnet *ifp;
 1781 
 1782         callout_reset(&nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz,
 1783             nd6_slowtimo, NULL);
 1784         IFNET_RLOCK();
 1785         for (ifp = TAILQ_FIRST(&ifnet); ifp; ifp = TAILQ_NEXT(ifp, if_list)) {
 1786                 nd6if = ND_IFINFO(ifp);
 1787                 if (nd6if->basereachable && /* already initialized */
 1788                     (nd6if->recalctm -= ND6_SLOWTIMER_INTERVAL) <= 0) {
 1789                         /*
 1790                          * Since reachable time rarely changes by router
 1791                          * advertisements, we SHOULD insure that a new random
 1792                          * value gets recomputed at least once every few hours.
 1793                          * (RFC 2461, 6.3.4)
 1794                          */
 1795                         nd6if->recalctm = nd6_recalc_reachtm_interval;
 1796                         nd6if->reachable = ND_COMPUTE_RTIME(nd6if->basereachable);
 1797                 }
 1798         }
 1799         IFNET_RUNLOCK();
 1800         splx(s);
 1801 }
 1802 
 1803 #define senderr(e) { error = (e); goto bad;}
 1804 int
 1805 nd6_output(ifp, origifp, m0, dst, rt0)
 1806         struct ifnet *ifp;
 1807         struct ifnet *origifp;
 1808         struct mbuf *m0;
 1809         struct sockaddr_in6 *dst;
 1810         struct rtentry *rt0;
 1811 {
 1812         struct mbuf *m = m0;
 1813         struct rtentry *rt = rt0;
 1814         struct sockaddr_in6 *gw6 = NULL;
 1815         struct llinfo_nd6 *ln = NULL;
 1816         int error = 0;
 1817 
 1818         if (IN6_IS_ADDR_MULTICAST(&dst->sin6_addr))
 1819                 goto sendpkt;
 1820 
 1821         if (nd6_need_cache(ifp) == 0)
 1822                 goto sendpkt;
 1823 
 1824         /*
 1825          * next hop determination.  This routine is derived from ether_outpout.
 1826          */
 1827 again:
 1828         if (rt) {
 1829                 if ((rt->rt_flags & RTF_UP) == 0) {
 1830                         rt0 = rt = rtalloc1((struct sockaddr *)dst, 1, 0UL);
 1831                         if (rt != NULL) {
 1832                                 RT_REMREF(rt);
 1833                                 RT_UNLOCK(rt);
 1834                                 if (rt->rt_ifp != ifp)
 1835                                         /*
 1836                                          * XXX maybe we should update ifp too,
 1837                                          * but the original code didn't and I
 1838                                          * don't know what is correct here.
 1839                                          */
 1840                                         goto again;
 1841                         } else
 1842                                 senderr(EHOSTUNREACH);
 1843                 }
 1844 
 1845                 if (rt->rt_flags & RTF_GATEWAY) {
 1846                         gw6 = (struct sockaddr_in6 *)rt->rt_gateway;
 1847 
 1848                         /*
 1849                          * We skip link-layer address resolution and NUD
 1850                          * if the gateway is not a neighbor from ND point
 1851                          * of view, regardless of the value of nd_ifinfo.flags.
 1852                          * The second condition is a bit tricky; we skip
 1853                          * if the gateway is our own address, which is
 1854                          * sometimes used to install a route to a p2p link.
 1855                          */
 1856                         if (!nd6_is_addr_neighbor(gw6, ifp) ||
 1857                             in6ifa_ifpwithaddr(ifp, &gw6->sin6_addr)) {
 1858                                 /*
 1859                                  * We allow this kind of tricky route only
 1860                                  * when the outgoing interface is p2p.
 1861                                  * XXX: we may need a more generic rule here.
 1862                                  */
 1863                                 if ((ifp->if_flags & IFF_POINTOPOINT) == 0)
 1864                                         senderr(EHOSTUNREACH);
 1865 
 1866                                 goto sendpkt;
 1867                         }
 1868 
 1869                         if (rt->rt_gwroute == 0)
 1870                                 goto lookup;
 1871                         if (((rt = rt->rt_gwroute)->rt_flags & RTF_UP) == 0) {
 1872                                 RT_LOCK(rt);
 1873                                 rtfree(rt); rt = rt0;
 1874                         lookup:
 1875                                 rt->rt_gwroute = rtalloc1(rt->rt_gateway, 1, 0UL);
 1876                                 if ((rt = rt->rt_gwroute) == 0)
 1877                                         senderr(EHOSTUNREACH);
 1878                                 RT_UNLOCK(rt);
 1879                         }
 1880                 }
 1881         }
 1882 
 1883         /*
 1884          * Address resolution or Neighbor Unreachability Detection
 1885          * for the next hop.
 1886          * At this point, the destination of the packet must be a unicast
 1887          * or an anycast address(i.e. not a multicast).
 1888          */
 1889 
 1890         /* Look up the neighbor cache for the nexthop */
 1891         if (rt && (rt->rt_flags & RTF_LLINFO) != 0)
 1892                 ln = (struct llinfo_nd6 *)rt->rt_llinfo;
 1893         else {
 1894                 /*
 1895                  * Since nd6_is_addr_neighbor() internally calls nd6_lookup(),
 1896                  * the condition below is not very efficient.  But we believe
 1897                  * it is tolerable, because this should be a rare case.
 1898                  */
 1899                 if (nd6_is_addr_neighbor(dst, ifp) &&
 1900                     (rt = nd6_lookup(&dst->sin6_addr, 1, ifp)) != NULL)
 1901                         ln = (struct llinfo_nd6 *)rt->rt_llinfo;
 1902         }
 1903         if (!ln || !rt) {
 1904                 if ((ifp->if_flags & IFF_POINTOPOINT) == 0 &&
 1905                     !(ND_IFINFO(ifp)->flags & ND6_IFF_PERFORMNUD)) {
 1906                         log(LOG_DEBUG,
 1907                             "nd6_output: can't allocate llinfo for %s "
 1908                             "(ln=%p, rt=%p)\n",
 1909                             ip6_sprintf(&dst->sin6_addr), ln, rt);
 1910                         senderr(EIO);   /* XXX: good error? */
 1911                 }
 1912 
 1913                 goto sendpkt;   /* send anyway */
 1914         }
 1915 
 1916         /* We don't have to do link-layer address resolution on a p2p link. */
 1917         if ((ifp->if_flags & IFF_POINTOPOINT) != 0 &&
 1918             ln->ln_state < ND6_LLINFO_REACHABLE) {
 1919                 ln->ln_state = ND6_LLINFO_STALE;
 1920                 ln->ln_expire = time_second + nd6_gctimer;
 1921         }
 1922 
 1923         /*
 1924          * The first time we send a packet to a neighbor whose entry is
 1925          * STALE, we have to change the state to DELAY and a sets a timer to
 1926          * expire in DELAY_FIRST_PROBE_TIME seconds to ensure do
 1927          * neighbor unreachability detection on expiration.
 1928          * (RFC 2461 7.3.3)
 1929          */
 1930         if (ln->ln_state == ND6_LLINFO_STALE) {
 1931                 ln->ln_asked = 0;
 1932                 ln->ln_state = ND6_LLINFO_DELAY;
 1933                 ln->ln_expire = time_second + nd6_delay;
 1934         }
 1935 
 1936         /*
 1937          * If the neighbor cache entry has a state other than INCOMPLETE
 1938          * (i.e. its link-layer address is already resolved), just
 1939          * send the packet.
 1940          */
 1941         if (ln->ln_state > ND6_LLINFO_INCOMPLETE)
 1942                 goto sendpkt;
 1943 
 1944         /*
 1945          * There is a neighbor cache entry, but no ethernet address
 1946          * response yet.  Replace the held mbuf (if any) with this
 1947          * latest one.
 1948          *
 1949          * This code conforms to the rate-limiting rule described in Section
 1950          * 7.2.2 of RFC 2461, because the timer is set correctly after sending
 1951          * an NS below.
 1952          */
 1953         if (ln->ln_state == ND6_LLINFO_NOSTATE)
 1954                 ln->ln_state = ND6_LLINFO_INCOMPLETE;
 1955         if (ln->ln_hold)
 1956                 m_freem(ln->ln_hold);
 1957         ln->ln_hold = m;
 1958         if (ln->ln_expire) {
 1959                 if (ln->ln_asked < nd6_mmaxtries &&
 1960                     ln->ln_expire < time_second) {
 1961                         ln->ln_asked++;
 1962                         ln->ln_expire = time_second +
 1963                                 ND_IFINFO(ifp)->retrans / 1000;
 1964                         nd6_ns_output(ifp, NULL, &dst->sin6_addr, ln, 0);
 1965                 }
 1966         }
 1967         return (0);
 1968 
 1969   sendpkt:
 1970 #ifdef IPSEC
 1971         /* clean ipsec history once it goes out of the node */
 1972         ipsec_delaux(m);
 1973 #endif
 1974 
 1975 #ifdef MAC
 1976         mac_create_mbuf_linklayer(ifp, m);
 1977 #endif
 1978         if ((ifp->if_flags & IFF_LOOPBACK) != 0) {
 1979                 return ((*ifp->if_output)(origifp, m, (struct sockaddr *)dst,
 1980                     rt));
 1981         }
 1982         return ((*ifp->if_output)(ifp, m, (struct sockaddr *)dst, rt));
 1983 
 1984   bad:
 1985         if (m)
 1986                 m_freem(m);
 1987         return (error);
 1988 }
 1989 #undef senderr
 1990 
 1991 int
 1992 nd6_need_cache(ifp)
 1993         struct ifnet *ifp;
 1994 {
 1995         /*
 1996          * XXX: we currently do not make neighbor cache on any interface
 1997          * other than ARCnet, Ethernet, FDDI and GIF.
 1998          *
 1999          * RFC2893 says:
 2000          * - unidirectional tunnels needs no ND
 2001          */
 2002         switch (ifp->if_type) {
 2003         case IFT_ARCNET:
 2004         case IFT_ETHER:
 2005         case IFT_FDDI:
 2006         case IFT_IEEE1394:
 2007 #ifdef IFT_L2VLAN
 2008         case IFT_L2VLAN:
 2009 #endif
 2010 #ifdef IFT_IEEE80211
 2011         case IFT_IEEE80211:
 2012 #endif
 2013 #ifdef IFT_CARP
 2014         case IFT_CARP:
 2015 #endif
 2016         case IFT_GIF:           /* XXX need more cases? */
 2017         case IFT_PPP:
 2018         case IFT_TUNNEL:
 2019         case IFT_BRIDGE:
 2020                 return (1);
 2021         default:
 2022                 return (0);
 2023         }
 2024 }
 2025 
 2026 int
 2027 nd6_storelladdr(ifp, rt0, m, dst, desten)
 2028         struct ifnet *ifp;
 2029         struct rtentry *rt0;
 2030         struct mbuf *m;
 2031         struct sockaddr *dst;
 2032         u_char *desten;
 2033 {
 2034         struct sockaddr_dl *sdl;
 2035         struct rtentry *rt;
 2036         int error;
 2037 
 2038         if (m->m_flags & M_MCAST) {
 2039                 int i;
 2040 
 2041                 switch (ifp->if_type) {
 2042                 case IFT_ETHER:
 2043                 case IFT_FDDI:
 2044 #ifdef IFT_L2VLAN
 2045                 case IFT_L2VLAN:
 2046 #endif
 2047 #ifdef IFT_IEEE80211
 2048                 case IFT_IEEE80211:
 2049 #endif
 2050                 case IFT_BRIDGE:
 2051                 case IFT_ISO88025:
 2052                         ETHER_MAP_IPV6_MULTICAST(&SIN6(dst)->sin6_addr,
 2053                                                  desten);
 2054                         return (0);
 2055                 case IFT_IEEE1394:
 2056                         /*
 2057                          * netbsd can use if_broadcastaddr, but we don't do so
 2058                          * to reduce # of ifdef.
 2059                          */
 2060                         for (i = 0; i < ifp->if_addrlen; i++)
 2061                                 desten[i] = ~0;
 2062                         return (0);
 2063                 case IFT_ARCNET:
 2064                         *desten = 0;
 2065                         return (0);
 2066                 default:
 2067                         m_freem(m);
 2068                         return (EAFNOSUPPORT);
 2069                 }
 2070         }
 2071 
 2072         if (rt0 == NULL) {
 2073                 /* this could happen, if we could not allocate memory */
 2074                 m_freem(m);
 2075                 return (ENOMEM);
 2076         }
 2077 
 2078         error = rt_check(&rt, &rt0, dst);
 2079         if (error) {
 2080                 m_freem(m);
 2081                 return (error);
 2082         }
 2083         RT_UNLOCK(rt);
 2084 
 2085         if (rt->rt_gateway->sa_family != AF_LINK) {
 2086                 printf("nd6_storelladdr: something odd happens\n");
 2087                 m_freem(m);
 2088                 return (EINVAL);
 2089         }
 2090         sdl = SDL(rt->rt_gateway);
 2091         if (sdl->sdl_alen == 0) {
 2092                 /* this should be impossible, but we bark here for debugging */
 2093                 printf("nd6_storelladdr: sdl_alen == 0\n");
 2094                 m_freem(m);
 2095                 return (EINVAL);
 2096         }
 2097 
 2098         bcopy(LLADDR(sdl), desten, sdl->sdl_alen);
 2099         return (0);
 2100 }
 2101 
 2102 static int nd6_sysctl_drlist(SYSCTL_HANDLER_ARGS);
 2103 static int nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS);
 2104 #ifdef SYSCTL_DECL
 2105 SYSCTL_DECL(_net_inet6_icmp6);
 2106 #endif
 2107 SYSCTL_NODE(_net_inet6_icmp6, ICMPV6CTL_ND6_DRLIST, nd6_drlist,
 2108         CTLFLAG_RD, nd6_sysctl_drlist, "");
 2109 SYSCTL_NODE(_net_inet6_icmp6, ICMPV6CTL_ND6_PRLIST, nd6_prlist,
 2110         CTLFLAG_RD, nd6_sysctl_prlist, "");
 2111 
 2112 static int
 2113 nd6_sysctl_drlist(SYSCTL_HANDLER_ARGS)
 2114 {
 2115         int error;
 2116         char buf[1024];
 2117         struct in6_defrouter *d, *de;
 2118         struct nd_defrouter *dr;
 2119 
 2120         if (req->newptr)
 2121                 return EPERM;
 2122         error = 0;
 2123 
 2124         for (dr = TAILQ_FIRST(&nd_defrouter); dr;
 2125              dr = TAILQ_NEXT(dr, dr_entry)) {
 2126                 d = (struct in6_defrouter *)buf;
 2127                 de = (struct in6_defrouter *)(buf + sizeof(buf));
 2128 
 2129                 if (d + 1 <= de) {
 2130                         bzero(d, sizeof(*d));
 2131                         d->rtaddr.sin6_family = AF_INET6;
 2132                         d->rtaddr.sin6_len = sizeof(d->rtaddr);
 2133                         if (in6_recoverscope(&d->rtaddr, &dr->rtaddr,
 2134                             dr->ifp) != 0)
 2135                                 log(LOG_ERR,
 2136                                     "scope error in "
 2137                                     "default router list (%s)\n",
 2138                                     ip6_sprintf(&dr->rtaddr));
 2139                         d->flags = dr->flags;
 2140                         d->rtlifetime = dr->rtlifetime;
 2141                         d->expire = dr->expire;
 2142                         d->if_index = dr->ifp->if_index;
 2143                 } else
 2144                         panic("buffer too short");
 2145 
 2146                 error = SYSCTL_OUT(req, buf, sizeof(*d));
 2147                 if (error)
 2148                         break;
 2149         }
 2150 
 2151         return (error);
 2152 }
 2153 
 2154 static int
 2155 nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS)
 2156 {
 2157         int error;
 2158         char buf[1024];
 2159         struct in6_prefix *p, *pe;
 2160         struct nd_prefix *pr;
 2161 
 2162         if (req->newptr)
 2163                 return EPERM;
 2164         error = 0;
 2165 
 2166         for (pr = nd_prefix.lh_first; pr; pr = pr->ndpr_next) {
 2167                 u_short advrtrs;
 2168                 size_t advance;
 2169                 struct sockaddr_in6 *sin6, *s6;
 2170                 struct nd_pfxrouter *pfr;
 2171 
 2172                 p = (struct in6_prefix *)buf;
 2173                 pe = (struct in6_prefix *)(buf + sizeof(buf));
 2174 
 2175                 if (p + 1 <= pe) {
 2176                         bzero(p, sizeof(*p));
 2177                         sin6 = (struct sockaddr_in6 *)(p + 1);
 2178 
 2179                         p->prefix = pr->ndpr_prefix;
 2180                         if (in6_recoverscope(&p->prefix,
 2181                             &p->prefix.sin6_addr, pr->ndpr_ifp) != 0)
 2182                                 log(LOG_ERR,
 2183                                     "scope error in prefix list (%s)\n",
 2184                                     ip6_sprintf(&p->prefix.sin6_addr));
 2185                         p->raflags = pr->ndpr_raf;
 2186                         p->prefixlen = pr->ndpr_plen;
 2187                         p->vltime = pr->ndpr_vltime;
 2188                         p->pltime = pr->ndpr_pltime;
 2189                         p->if_index = pr->ndpr_ifp->if_index;
 2190                         p->expire = pr->ndpr_expire;
 2191                         p->refcnt = pr->ndpr_refcnt;
 2192                         p->flags = pr->ndpr_stateflags;
 2193                         p->origin = PR_ORIG_RA;
 2194                         advrtrs = 0;
 2195                         for (pfr = pr->ndpr_advrtrs.lh_first; pfr;
 2196                              pfr = pfr->pfr_next) {
 2197                                 if ((void *)&sin6[advrtrs + 1] > (void *)pe) {
 2198                                         advrtrs++;
 2199                                         continue;
 2200                                 }
 2201                                 s6 = &sin6[advrtrs];
 2202                                 bzero(s6, sizeof(*s6));
 2203                                 s6->sin6_family = AF_INET6;
 2204                                 s6->sin6_len = sizeof(*sin6);
 2205                                 if (in6_recoverscope(s6, &pfr->router->rtaddr,
 2206                                     pfr->router->ifp) != 0)
 2207                                         log(LOG_ERR,
 2208                                             "scope error in "
 2209                                             "prefix list (%s)\n",
 2210                                             ip6_sprintf(&pfr->router->rtaddr));
 2211                                 advrtrs++;
 2212                         }
 2213                         p->advrtrs = advrtrs;
 2214                 } else
 2215                         panic("buffer too short");
 2216 
 2217                 advance = sizeof(*p) + sizeof(*sin6) * advrtrs;
 2218                 error = SYSCTL_OUT(req, buf, advance);
 2219                 if (error)
 2220                         break;
 2221         }
 2222 
 2223         return (error);
 2224 }

Cache object: 760834b7a79ce6670ad03886c9f1c5de


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.