The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/netinet6/nd6.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*      $FreeBSD: releng/6.3/sys/netinet6/nd6.c 173201 2007-10-30 18:07:55Z jhb $       */
    2 /*      $KAME: nd6.c,v 1.144 2001/05/24 07:44:00 itojun Exp $   */
    3 
    4 /*-
    5  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
    6  * All rights reserved.
    7  *
    8  * Redistribution and use in source and binary forms, with or without
    9  * modification, are permitted provided that the following conditions
   10  * are met:
   11  * 1. Redistributions of source code must retain the above copyright
   12  *    notice, this list of conditions and the following disclaimer.
   13  * 2. Redistributions in binary form must reproduce the above copyright
   14  *    notice, this list of conditions and the following disclaimer in the
   15  *    documentation and/or other materials provided with the distribution.
   16  * 3. Neither the name of the project nor the names of its contributors
   17  *    may be used to endorse or promote products derived from this software
   18  *    without specific prior written permission.
   19  *
   20  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
   21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
   24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   30  * SUCH DAMAGE.
   31  */
   32 
   33 #include "opt_inet.h"
   34 #include "opt_inet6.h"
   35 #include "opt_mac.h"
   36 
   37 #include <sys/param.h>
   38 #include <sys/systm.h>
   39 #include <sys/callout.h>
   40 #include <sys/mac.h>
   41 #include <sys/malloc.h>
   42 #include <sys/mbuf.h>
   43 #include <sys/socket.h>
   44 #include <sys/sockio.h>
   45 #include <sys/time.h>
   46 #include <sys/kernel.h>
   47 #include <sys/protosw.h>
   48 #include <sys/errno.h>
   49 #include <sys/syslog.h>
   50 #include <sys/queue.h>
   51 #include <sys/sysctl.h>
   52 
   53 #include <net/if.h>
   54 #include <net/if_arc.h>
   55 #include <net/if_dl.h>
   56 #include <net/if_types.h>
   57 #include <net/iso88025.h>
   58 #include <net/fddi.h>
   59 #include <net/route.h>
   60 
   61 #include <netinet/in.h>
   62 #include <netinet/if_ether.h>
   63 #include <netinet6/in6_var.h>
   64 #include <netinet/ip6.h>
   65 #include <netinet6/ip6_var.h>
   66 #include <netinet6/scope6_var.h>
   67 #include <netinet6/nd6.h>
   68 #include <netinet/icmp6.h>
   69 
   70 #include <sys/limits.h>
   71 
   72 #include <net/net_osdep.h>
   73 
   74 #define ND6_SLOWTIMER_INTERVAL (60 * 60) /* 1 hour */
   75 #define ND6_RECALC_REACHTM_INTERVAL (60 * 120) /* 2 hours */
   76 
   77 #define SIN6(s) ((struct sockaddr_in6 *)s)
   78 #define SDL(s) ((struct sockaddr_dl *)s)
   79 
   80 /* timer values */
   81 int     nd6_prune       = 1;    /* walk list every 1 seconds */
   82 int     nd6_delay       = 5;    /* delay first probe time 5 second */
   83 int     nd6_umaxtries   = 3;    /* maximum unicast query */
   84 int     nd6_mmaxtries   = 3;    /* maximum multicast query */
   85 int     nd6_useloopback = 1;    /* use loopback interface for local traffic */
   86 int     nd6_gctimer     = (60 * 60 * 24); /* 1 day: garbage collection timer */
   87 
   88 /* preventing too many loops in ND option parsing */
   89 int nd6_maxndopt = 10;  /* max # of ND options allowed */
   90 
   91 int nd6_maxnudhint = 0; /* max # of subsequent upper layer hints */
   92 int nd6_maxqueuelen = 1; /* max # of packets cached in unresolved ND entries */
   93 
   94 #ifdef ND6_DEBUG
   95 int nd6_debug = 1;
   96 #else
   97 int nd6_debug = 0;
   98 #endif
   99 
  100 /* for debugging? */
  101 static int nd6_inuse, nd6_allocated;
  102 
  103 struct llinfo_nd6 llinfo_nd6 = {&llinfo_nd6, &llinfo_nd6};
  104 struct nd_drhead nd_defrouter;
  105 struct nd_prhead nd_prefix = { 0 };
  106 
  107 int nd6_recalc_reachtm_interval = ND6_RECALC_REACHTM_INTERVAL;
  108 static struct sockaddr_in6 all1_sa;
  109 
  110 static int nd6_is_new_addr_neighbor __P((struct sockaddr_in6 *,
  111         struct ifnet *));
  112 static void nd6_setmtu0 __P((struct ifnet *, struct nd_ifinfo *));
  113 static void nd6_slowtimo __P((void *));
  114 static int regen_tmpaddr __P((struct in6_ifaddr *));
  115 static struct llinfo_nd6 *nd6_free __P((struct rtentry *, int));
  116 static void nd6_llinfo_timer __P((void *));
  117 static void clear_llinfo_pqueue __P((struct llinfo_nd6 *));
  118 
  119 struct callout nd6_slowtimo_ch;
  120 struct callout nd6_timer_ch;
  121 extern struct callout in6_tmpaddrtimer_ch;
  122 
  123 void
  124 nd6_init()
  125 {
  126         static int nd6_init_done = 0;
  127         int i;
  128 
  129         if (nd6_init_done) {
  130                 log(LOG_NOTICE, "nd6_init called more than once(ignored)\n");
  131                 return;
  132         }
  133 
  134         all1_sa.sin6_family = AF_INET6;
  135         all1_sa.sin6_len = sizeof(struct sockaddr_in6);
  136         for (i = 0; i < sizeof(all1_sa.sin6_addr); i++)
  137                 all1_sa.sin6_addr.s6_addr[i] = 0xff;
  138 
  139         /* initialization of the default router list */
  140         TAILQ_INIT(&nd_defrouter);
  141 
  142         nd6_init_done = 1;
  143 
  144         /* start timer */
  145         callout_init(&nd6_slowtimo_ch, 0);
  146         callout_reset(&nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz,
  147             nd6_slowtimo, NULL);
  148 }
  149 
  150 struct nd_ifinfo *
  151 nd6_ifattach(ifp)
  152         struct ifnet *ifp;
  153 {
  154         struct nd_ifinfo *nd;
  155 
  156         nd = (struct nd_ifinfo *)malloc(sizeof(*nd), M_IP6NDP, M_WAITOK);
  157         bzero(nd, sizeof(*nd));
  158 
  159         nd->initialized = 1;
  160 
  161         nd->chlim = IPV6_DEFHLIM;
  162         nd->basereachable = REACHABLE_TIME;
  163         nd->reachable = ND_COMPUTE_RTIME(nd->basereachable);
  164         nd->retrans = RETRANS_TIMER;
  165         /*
  166          * Note that the default value of ip6_accept_rtadv is 0, which means
  167          * we won't accept RAs by default even if we set ND6_IFF_ACCEPT_RTADV
  168          * here.
  169          */
  170         nd->flags = (ND6_IFF_PERFORMNUD | ND6_IFF_ACCEPT_RTADV);
  171 
  172         /* XXX: we cannot call nd6_setmtu since ifp is not fully initialized */
  173         nd6_setmtu0(ifp, nd);
  174 
  175         return nd;
  176 }
  177 
  178 void
  179 nd6_ifdetach(nd)
  180         struct nd_ifinfo *nd;
  181 {
  182 
  183         free(nd, M_IP6NDP);
  184 }
  185 
  186 /*
  187  * Reset ND level link MTU. This function is called when the physical MTU
  188  * changes, which means we might have to adjust the ND level MTU.
  189  */
  190 void
  191 nd6_setmtu(ifp)
  192         struct ifnet *ifp;
  193 {
  194 
  195         nd6_setmtu0(ifp, ND_IFINFO(ifp));
  196 }
  197 
  198 /* XXX todo: do not maintain copy of ifp->if_mtu in ndi->maxmtu */
  199 void
  200 nd6_setmtu0(ifp, ndi)
  201         struct ifnet *ifp;
  202         struct nd_ifinfo *ndi;
  203 {
  204         u_int32_t omaxmtu;
  205 
  206         omaxmtu = ndi->maxmtu;
  207 
  208         switch (ifp->if_type) {
  209         case IFT_ARCNET:
  210                 ndi->maxmtu = MIN(ARC_PHDS_MAXMTU, ifp->if_mtu); /* RFC2497 */
  211                 break;
  212         case IFT_FDDI:
  213                 ndi->maxmtu = MIN(FDDIIPMTU, ifp->if_mtu); /* RFC2467 */
  214                 break;
  215         case IFT_ISO88025:
  216                  ndi->maxmtu = MIN(ISO88025_MAX_MTU, ifp->if_mtu);
  217                  break;
  218         default:
  219                 ndi->maxmtu = ifp->if_mtu;
  220                 break;
  221         }
  222 
  223         /*
  224          * Decreasing the interface MTU under IPV6 minimum MTU may cause
  225          * undesirable situation.  We thus notify the operator of the change
  226          * explicitly.  The check for omaxmtu is necessary to restrict the
  227          * log to the case of changing the MTU, not initializing it.
  228          */
  229         if (omaxmtu >= IPV6_MMTU && ndi->maxmtu < IPV6_MMTU) {
  230                 log(LOG_NOTICE, "nd6_setmtu0: "
  231                     "new link MTU on %s (%lu) is too small for IPv6\n",
  232                     if_name(ifp), (unsigned long)ndi->maxmtu);
  233         }
  234 
  235         if (ndi->maxmtu > in6_maxmtu)
  236                 in6_setmaxmtu(); /* check all interfaces just in case */
  237 
  238 #undef MIN
  239 }
  240 
  241 void
  242 nd6_option_init(opt, icmp6len, ndopts)
  243         void *opt;
  244         int icmp6len;
  245         union nd_opts *ndopts;
  246 {
  247 
  248         bzero(ndopts, sizeof(*ndopts));
  249         ndopts->nd_opts_search = (struct nd_opt_hdr *)opt;
  250         ndopts->nd_opts_last
  251                 = (struct nd_opt_hdr *)(((u_char *)opt) + icmp6len);
  252 
  253         if (icmp6len == 0) {
  254                 ndopts->nd_opts_done = 1;
  255                 ndopts->nd_opts_search = NULL;
  256         }
  257 }
  258 
  259 /*
  260  * Take one ND option.
  261  */
  262 struct nd_opt_hdr *
  263 nd6_option(ndopts)
  264         union nd_opts *ndopts;
  265 {
  266         struct nd_opt_hdr *nd_opt;
  267         int olen;
  268 
  269         if (ndopts == NULL)
  270                 panic("ndopts == NULL in nd6_option");
  271         if (ndopts->nd_opts_last == NULL)
  272                 panic("uninitialized ndopts in nd6_option");
  273         if (ndopts->nd_opts_search == NULL)
  274                 return NULL;
  275         if (ndopts->nd_opts_done)
  276                 return NULL;
  277 
  278         nd_opt = ndopts->nd_opts_search;
  279 
  280         /* make sure nd_opt_len is inside the buffer */
  281         if ((caddr_t)&nd_opt->nd_opt_len >= (caddr_t)ndopts->nd_opts_last) {
  282                 bzero(ndopts, sizeof(*ndopts));
  283                 return NULL;
  284         }
  285 
  286         olen = nd_opt->nd_opt_len << 3;
  287         if (olen == 0) {
  288                 /*
  289                  * Message validation requires that all included
  290                  * options have a length that is greater than zero.
  291                  */
  292                 bzero(ndopts, sizeof(*ndopts));
  293                 return NULL;
  294         }
  295 
  296         ndopts->nd_opts_search = (struct nd_opt_hdr *)((caddr_t)nd_opt + olen);
  297         if (ndopts->nd_opts_search > ndopts->nd_opts_last) {
  298                 /* option overruns the end of buffer, invalid */
  299                 bzero(ndopts, sizeof(*ndopts));
  300                 return NULL;
  301         } else if (ndopts->nd_opts_search == ndopts->nd_opts_last) {
  302                 /* reached the end of options chain */
  303                 ndopts->nd_opts_done = 1;
  304                 ndopts->nd_opts_search = NULL;
  305         }
  306         return nd_opt;
  307 }
  308 
  309 /*
  310  * Parse multiple ND options.
  311  * This function is much easier to use, for ND routines that do not need
  312  * multiple options of the same type.
  313  */
  314 int
  315 nd6_options(ndopts)
  316         union nd_opts *ndopts;
  317 {
  318         struct nd_opt_hdr *nd_opt;
  319         int i = 0;
  320 
  321         if (ndopts == NULL)
  322                 panic("ndopts == NULL in nd6_options");
  323         if (ndopts->nd_opts_last == NULL)
  324                 panic("uninitialized ndopts in nd6_options");
  325         if (ndopts->nd_opts_search == NULL)
  326                 return 0;
  327 
  328         while (1) {
  329                 nd_opt = nd6_option(ndopts);
  330                 if (nd_opt == NULL && ndopts->nd_opts_last == NULL) {
  331                         /*
  332                          * Message validation requires that all included
  333                          * options have a length that is greater than zero.
  334                          */
  335                         icmp6stat.icp6s_nd_badopt++;
  336                         bzero(ndopts, sizeof(*ndopts));
  337                         return -1;
  338                 }
  339 
  340                 if (nd_opt == NULL)
  341                         goto skip1;
  342 
  343                 switch (nd_opt->nd_opt_type) {
  344                 case ND_OPT_SOURCE_LINKADDR:
  345                 case ND_OPT_TARGET_LINKADDR:
  346                 case ND_OPT_MTU:
  347                 case ND_OPT_REDIRECTED_HEADER:
  348                         if (ndopts->nd_opt_array[nd_opt->nd_opt_type]) {
  349                                 nd6log((LOG_INFO,
  350                                     "duplicated ND6 option found (type=%d)\n",
  351                                     nd_opt->nd_opt_type));
  352                                 /* XXX bark? */
  353                         } else {
  354                                 ndopts->nd_opt_array[nd_opt->nd_opt_type]
  355                                         = nd_opt;
  356                         }
  357                         break;
  358                 case ND_OPT_PREFIX_INFORMATION:
  359                         if (ndopts->nd_opt_array[nd_opt->nd_opt_type] == 0) {
  360                                 ndopts->nd_opt_array[nd_opt->nd_opt_type]
  361                                         = nd_opt;
  362                         }
  363                         ndopts->nd_opts_pi_end =
  364                                 (struct nd_opt_prefix_info *)nd_opt;
  365                         break;
  366                 default:
  367                         /*
  368                          * Unknown options must be silently ignored,
  369                          * to accomodate future extension to the protocol.
  370                          */
  371                         nd6log((LOG_DEBUG,
  372                             "nd6_options: unsupported option %d - "
  373                             "option ignored\n", nd_opt->nd_opt_type));
  374                 }
  375 
  376 skip1:
  377                 i++;
  378                 if (i > nd6_maxndopt) {
  379                         icmp6stat.icp6s_nd_toomanyopt++;
  380                         nd6log((LOG_INFO, "too many loop in nd opt\n"));
  381                         break;
  382                 }
  383 
  384                 if (ndopts->nd_opts_done)
  385                         break;
  386         }
  387 
  388         return 0;
  389 }
  390 
  391 /*
  392  * ND6 timer routine to handle ND6 entries
  393  */
  394 void
  395 nd6_llinfo_settimer(ln, tick)
  396         struct llinfo_nd6 *ln;
  397         long tick;
  398 {
  399         if (tick < 0) {
  400                 ln->ln_expire = 0;
  401                 ln->ln_ntick = 0;
  402                 callout_stop(&ln->ln_timer_ch);
  403         } else {
  404                 ln->ln_expire = time_second + tick / hz;
  405                 if (tick > INT_MAX) {
  406                         ln->ln_ntick = tick - INT_MAX;
  407                         callout_reset(&ln->ln_timer_ch, INT_MAX,
  408                             nd6_llinfo_timer, ln);
  409                 } else {
  410                         ln->ln_ntick = 0;
  411                         callout_reset(&ln->ln_timer_ch, tick,
  412                             nd6_llinfo_timer, ln);
  413                 }
  414         }
  415 }
  416 
  417 static void
  418 nd6_llinfo_timer(arg)
  419         void *arg;
  420 {
  421         struct llinfo_nd6 *ln;
  422         struct rtentry *rt;
  423         struct in6_addr *dst;
  424         struct ifnet *ifp;
  425         struct nd_ifinfo *ndi = NULL;
  426 
  427         ln = (struct llinfo_nd6 *)arg;
  428 
  429         if (ln->ln_ntick > 0) {
  430                 if (ln->ln_ntick > INT_MAX) {
  431                         ln->ln_ntick -= INT_MAX;
  432                         nd6_llinfo_settimer(ln, INT_MAX);
  433                 } else {
  434                         ln->ln_ntick = 0;
  435                         nd6_llinfo_settimer(ln, ln->ln_ntick);
  436                 }
  437                 return;
  438         }
  439 
  440         if ((rt = ln->ln_rt) == NULL)
  441                 panic("ln->ln_rt == NULL");
  442         if ((ifp = rt->rt_ifp) == NULL)
  443                 panic("ln->ln_rt->rt_ifp == NULL");
  444         ndi = ND_IFINFO(ifp);
  445 
  446         /* sanity check */
  447         if (rt->rt_llinfo && (struct llinfo_nd6 *)rt->rt_llinfo != ln)
  448                 panic("rt_llinfo(%p) is not equal to ln(%p)",
  449                       rt->rt_llinfo, ln);
  450         if (rt_key(rt) == NULL)
  451                 panic("rt key is NULL in nd6_timer(ln=%p)", ln);
  452 
  453         dst = &((struct sockaddr_in6 *)rt_key(rt))->sin6_addr;
  454 
  455         switch (ln->ln_state) {
  456         case ND6_LLINFO_INCOMPLETE:
  457                 if (ln->ln_asked < nd6_mmaxtries) {
  458                         ln->ln_asked++;
  459                         nd6_llinfo_settimer(ln, (long)ndi->retrans * hz / 1000);
  460                         nd6_ns_output(ifp, NULL, dst, ln, 0);
  461                 } else {
  462                         struct mbuf *m = ln->ln_hold;
  463                         if (m) {
  464                                 struct mbuf *m0;
  465 
  466                                 /*
  467                                  * assuming every packet in ln_hold has the
  468                                  * same IP header
  469                                  */
  470                                 m0 = m->m_nextpkt;
  471                                 m->m_nextpkt = NULL;
  472                                 icmp6_error2(m, ICMP6_DST_UNREACH,
  473                                     ICMP6_DST_UNREACH_ADDR, 0, rt->rt_ifp);
  474 
  475                                 ln->ln_hold = m0;
  476                                 clear_llinfo_pqueue(ln);
  477                         }
  478                         if (rt)
  479                                 (void)nd6_free(rt, 0);
  480                         ln = NULL;
  481                 }
  482                 break;
  483         case ND6_LLINFO_REACHABLE:
  484                 if (!ND6_LLINFO_PERMANENT(ln)) {
  485                         ln->ln_state = ND6_LLINFO_STALE;
  486                         nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz);
  487                 }
  488                 break;
  489 
  490         case ND6_LLINFO_STALE:
  491                 /* Garbage Collection(RFC 2461 5.3) */
  492                 if (!ND6_LLINFO_PERMANENT(ln)) {
  493                         (void)nd6_free(rt, 1);
  494                         ln = NULL;
  495                 }
  496                 break;
  497 
  498         case ND6_LLINFO_DELAY:
  499                 if (ndi && (ndi->flags & ND6_IFF_PERFORMNUD) != 0) {
  500                         /* We need NUD */
  501                         ln->ln_asked = 1;
  502                         ln->ln_state = ND6_LLINFO_PROBE;
  503                         nd6_llinfo_settimer(ln, (long)ndi->retrans * hz / 1000);
  504                         nd6_ns_output(ifp, dst, dst, ln, 0);
  505                 } else {
  506                         ln->ln_state = ND6_LLINFO_STALE; /* XXX */
  507                         nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz);
  508                 }
  509                 break;
  510         case ND6_LLINFO_PROBE:
  511                 if (ln->ln_asked < nd6_umaxtries) {
  512                         ln->ln_asked++;
  513                         nd6_llinfo_settimer(ln, (long)ndi->retrans * hz / 1000);
  514                         nd6_ns_output(ifp, dst, dst, ln, 0);
  515                 } else if (rt->rt_ifa != NULL &&
  516                     rt->rt_ifa->ifa_addr->sa_family == AF_INET6 &&
  517                     (((struct in6_ifaddr *)rt->rt_ifa)->ia_flags & IFA_ROUTE)) {
  518                         /*
  519                          * This is an unreachable neighbor whose address is
  520                          * specified as the destination of a p2p interface
  521                          * (see in6_ifinit()).  We should not free the entry
  522                          * since this is sort of a "static" entry generated
  523                          * via interface address configuration. 
  524                          */
  525                         ln->ln_asked = 0;
  526                         ln->ln_expire = 0; /* make it permanent */
  527                         ln->ln_state = ND6_LLINFO_STALE;
  528                 } else {
  529                         (void)nd6_free(rt, 0);
  530                         ln = NULL;
  531                 }
  532                 break;
  533         }
  534 }
  535 
  536 
  537 /*
  538  * ND6 timer routine to expire default route list and prefix list
  539  */
  540 void
  541 nd6_timer(ignored_arg)
  542         void    *ignored_arg;
  543 {
  544         int s;
  545         struct nd_defrouter *dr;
  546         struct nd_prefix *pr;
  547         struct in6_ifaddr *ia6, *nia6;
  548         struct in6_addrlifetime *lt6;
  549 
  550         callout_reset(&nd6_timer_ch, nd6_prune * hz,
  551             nd6_timer, NULL);
  552 
  553         /* expire default router list */
  554         s = splnet();
  555         dr = TAILQ_FIRST(&nd_defrouter);
  556         while (dr) {
  557                 if (dr->expire && dr->expire < time_second) {
  558                         struct nd_defrouter *t;
  559                         t = TAILQ_NEXT(dr, dr_entry);
  560                         defrtrlist_del(dr);
  561                         dr = t;
  562                 } else {
  563                         dr = TAILQ_NEXT(dr, dr_entry);
  564                 }
  565         }
  566 
  567         /*
  568          * expire interface addresses.
  569          * in the past the loop was inside prefix expiry processing.
  570          * However, from a stricter speci-confrmance standpoint, we should
  571          * rather separate address lifetimes and prefix lifetimes.
  572          */
  573   addrloop:
  574         for (ia6 = in6_ifaddr; ia6; ia6 = nia6) {
  575                 nia6 = ia6->ia_next;
  576                 /* check address lifetime */
  577                 lt6 = &ia6->ia6_lifetime;
  578                 if (IFA6_IS_INVALID(ia6)) {
  579                         int regen = 0;
  580 
  581                         /*
  582                          * If the expiring address is temporary, try
  583                          * regenerating a new one.  This would be useful when
  584                          * we suspended a laptop PC, then turned it on after a
  585                          * period that could invalidate all temporary
  586                          * addresses.  Although we may have to restart the
  587                          * loop (see below), it must be after purging the
  588                          * address.  Otherwise, we'd see an infinite loop of
  589                          * regeneration.
  590                          */
  591                         if (ip6_use_tempaddr &&
  592                             (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0) {
  593                                 if (regen_tmpaddr(ia6) == 0)
  594                                         regen = 1;
  595                         }
  596 
  597                         in6_purgeaddr(&ia6->ia_ifa);
  598 
  599                         if (regen)
  600                                 goto addrloop; /* XXX: see below */
  601                 } else if (IFA6_IS_DEPRECATED(ia6)) {
  602                         int oldflags = ia6->ia6_flags;
  603 
  604                         ia6->ia6_flags |= IN6_IFF_DEPRECATED;
  605 
  606                         /*
  607                          * If a temporary address has just become deprecated,
  608                          * regenerate a new one if possible.
  609                          */
  610                         if (ip6_use_tempaddr &&
  611                             (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0 &&
  612                             (oldflags & IN6_IFF_DEPRECATED) == 0) {
  613 
  614                                 if (regen_tmpaddr(ia6) == 0) {
  615                                         /*
  616                                          * A new temporary address is
  617                                          * generated.
  618                                          * XXX: this means the address chain
  619                                          * has changed while we are still in
  620                                          * the loop.  Although the change
  621                                          * would not cause disaster (because
  622                                          * it's not a deletion, but an
  623                                          * addition,) we'd rather restart the
  624                                          * loop just for safety.  Or does this
  625                                          * significantly reduce performance??
  626                                          */
  627                                         goto addrloop;
  628                                 }
  629                         }
  630                 } else {
  631                         /*
  632                          * A new RA might have made a deprecated address
  633                          * preferred.
  634                          */
  635                         ia6->ia6_flags &= ~IN6_IFF_DEPRECATED;
  636                 }
  637         }
  638 
  639         /* expire prefix list */
  640         pr = nd_prefix.lh_first;
  641         while (pr) {
  642                 /*
  643                  * check prefix lifetime.
  644                  * since pltime is just for autoconf, pltime processing for
  645                  * prefix is not necessary.
  646                  */
  647                 if (pr->ndpr_vltime != ND6_INFINITE_LIFETIME &&
  648                     time_second - pr->ndpr_lastupdate > pr->ndpr_vltime) {
  649                         struct nd_prefix *t;
  650                         t = pr->ndpr_next;
  651 
  652                         /*
  653                          * address expiration and prefix expiration are
  654                          * separate.  NEVER perform in6_purgeaddr here.
  655                          */
  656 
  657                         prelist_remove(pr);
  658                         pr = t;
  659                 } else
  660                         pr = pr->ndpr_next;
  661         }
  662         splx(s);
  663 }
  664 
  665 static int
  666 regen_tmpaddr(ia6)
  667         struct in6_ifaddr *ia6; /* deprecated/invalidated temporary address */
  668 {
  669         struct ifaddr *ifa;
  670         struct ifnet *ifp;
  671         struct in6_ifaddr *public_ifa6 = NULL;
  672 
  673         ifp = ia6->ia_ifa.ifa_ifp;
  674         for (ifa = ifp->if_addrlist.tqh_first; ifa;
  675              ifa = ifa->ifa_list.tqe_next) {
  676                 struct in6_ifaddr *it6;
  677 
  678                 if (ifa->ifa_addr->sa_family != AF_INET6)
  679                         continue;
  680 
  681                 it6 = (struct in6_ifaddr *)ifa;
  682 
  683                 /* ignore no autoconf addresses. */
  684                 if ((it6->ia6_flags & IN6_IFF_AUTOCONF) == 0)
  685                         continue;
  686 
  687                 /* ignore autoconf addresses with different prefixes. */
  688                 if (it6->ia6_ndpr == NULL || it6->ia6_ndpr != ia6->ia6_ndpr)
  689                         continue;
  690 
  691                 /*
  692                  * Now we are looking at an autoconf address with the same
  693                  * prefix as ours.  If the address is temporary and is still
  694                  * preferred, do not create another one.  It would be rare, but
  695                  * could happen, for example, when we resume a laptop PC after
  696                  * a long period.
  697                  */
  698                 if ((it6->ia6_flags & IN6_IFF_TEMPORARY) != 0 &&
  699                     !IFA6_IS_DEPRECATED(it6)) {
  700                         public_ifa6 = NULL;
  701                         break;
  702                 }
  703 
  704                 /*
  705                  * This is a public autoconf address that has the same prefix
  706                  * as ours.  If it is preferred, keep it.  We can't break the
  707                  * loop here, because there may be a still-preferred temporary
  708                  * address with the prefix.
  709                  */
  710                 if (!IFA6_IS_DEPRECATED(it6))
  711                     public_ifa6 = it6;
  712         }
  713 
  714         if (public_ifa6 != NULL) {
  715                 int e;
  716 
  717                 if ((e = in6_tmpifadd(public_ifa6, 0, 0)) != 0) {
  718                         log(LOG_NOTICE, "regen_tmpaddr: failed to create a new"
  719                             " tmp addr,errno=%d\n", e);
  720                         return (-1);
  721                 }
  722                 return (0);
  723         }
  724 
  725         return (-1);
  726 }
  727 
  728 /*
  729  * Nuke neighbor cache/prefix/default router management table, right before
  730  * ifp goes away.
  731  */
  732 void
  733 nd6_purge(ifp)
  734         struct ifnet *ifp;
  735 {
  736         struct llinfo_nd6 *ln, *nln;
  737         struct nd_defrouter *dr, *ndr;
  738         struct nd_prefix *pr, *npr;
  739 
  740         /*
  741          * Nuke default router list entries toward ifp.
  742          * We defer removal of default router list entries that is installed
  743          * in the routing table, in order to keep additional side effects as
  744          * small as possible.
  745          */
  746         for (dr = TAILQ_FIRST(&nd_defrouter); dr; dr = ndr) {
  747                 ndr = TAILQ_NEXT(dr, dr_entry);
  748                 if (dr->installed)
  749                         continue;
  750 
  751                 if (dr->ifp == ifp)
  752                         defrtrlist_del(dr);
  753         }
  754 
  755         for (dr = TAILQ_FIRST(&nd_defrouter); dr; dr = ndr) {
  756                 ndr = TAILQ_NEXT(dr, dr_entry);
  757                 if (!dr->installed)
  758                         continue;
  759 
  760                 if (dr->ifp == ifp)
  761                         defrtrlist_del(dr);
  762         }
  763 
  764         /* Nuke prefix list entries toward ifp */
  765         for (pr = nd_prefix.lh_first; pr; pr = npr) {
  766                 npr = pr->ndpr_next;
  767                 if (pr->ndpr_ifp == ifp) {
  768                         /*
  769                          * Because if_detach() does *not* release prefixes
  770                          * while purging addresses the reference count will
  771                          * still be above zero. We therefore reset it to
  772                          * make sure that the prefix really gets purged.
  773                          */
  774                         pr->ndpr_refcnt = 0;
  775 
  776                         /*
  777                          * Previously, pr->ndpr_addr is removed as well,
  778                          * but I strongly believe we don't have to do it.
  779                          * nd6_purge() is only called from in6_ifdetach(),
  780                          * which removes all the associated interface addresses
  781                          * by itself.
  782                          * (jinmei@kame.net 20010129)
  783                          */
  784                         prelist_remove(pr);
  785                 }
  786         }
  787 
  788         /* cancel default outgoing interface setting */
  789         if (nd6_defifindex == ifp->if_index)
  790                 nd6_setdefaultiface(0);
  791 
  792         if (!ip6_forwarding && ip6_accept_rtadv) { /* XXX: too restrictive? */
  793                 /* refresh default router list */
  794                 defrouter_select();
  795         }
  796 
  797         /*
  798          * Nuke neighbor cache entries for the ifp.
  799          * Note that rt->rt_ifp may not be the same as ifp,
  800          * due to KAME goto ours hack.  See RTM_RESOLVE case in
  801          * nd6_rtrequest(), and ip6_input().
  802          */
  803         ln = llinfo_nd6.ln_next;
  804         while (ln && ln != &llinfo_nd6) {
  805                 struct rtentry *rt;
  806                 struct sockaddr_dl *sdl;
  807 
  808                 nln = ln->ln_next;
  809                 rt = ln->ln_rt;
  810                 if (rt && rt->rt_gateway &&
  811                     rt->rt_gateway->sa_family == AF_LINK) {
  812                         sdl = (struct sockaddr_dl *)rt->rt_gateway;
  813                         if (sdl->sdl_index == ifp->if_index)
  814                                 nln = nd6_free(rt, 0);
  815                 }
  816                 ln = nln;
  817         }
  818 }
  819 
  820 struct rtentry *
  821 nd6_lookup(addr6, create, ifp)
  822         struct in6_addr *addr6;
  823         int create;
  824         struct ifnet *ifp;
  825 {
  826         struct rtentry *rt;
  827         struct sockaddr_in6 sin6;
  828 
  829         bzero(&sin6, sizeof(sin6));
  830         sin6.sin6_len = sizeof(struct sockaddr_in6);
  831         sin6.sin6_family = AF_INET6;
  832         sin6.sin6_addr = *addr6;
  833         rt = rtalloc1((struct sockaddr *)&sin6, create, 0UL);
  834         if (rt) {
  835                 if ((rt->rt_flags & RTF_LLINFO) == 0 && create) {
  836                         /*
  837                          * This is the case for the default route.
  838                          * If we want to create a neighbor cache for the
  839                          * address, we should free the route for the
  840                          * destination and allocate an interface route.
  841                          */
  842                         RTFREE_LOCKED(rt);
  843                         rt = NULL;
  844                 }
  845         }
  846         if (rt == NULL) {
  847                 if (create && ifp) {
  848                         int e;
  849 
  850                         /*
  851                          * If no route is available and create is set,
  852                          * we allocate a host route for the destination
  853                          * and treat it like an interface route.
  854                          * This hack is necessary for a neighbor which can't
  855                          * be covered by our own prefix.
  856                          */
  857                         struct ifaddr *ifa =
  858                             ifaof_ifpforaddr((struct sockaddr *)&sin6, ifp);
  859                         if (ifa == NULL)
  860                                 return (NULL);
  861 
  862                         /*
  863                          * Create a new route.  RTF_LLINFO is necessary
  864                          * to create a Neighbor Cache entry for the
  865                          * destination in nd6_rtrequest which will be
  866                          * called in rtrequest via ifa->ifa_rtrequest.
  867                          */
  868                         if ((e = rtrequest(RTM_ADD, (struct sockaddr *)&sin6,
  869                             ifa->ifa_addr, (struct sockaddr *)&all1_sa,
  870                             (ifa->ifa_flags | RTF_HOST | RTF_LLINFO) &
  871                             ~RTF_CLONING, &rt)) != 0) {
  872                                 log(LOG_ERR,
  873                                     "nd6_lookup: failed to add route for a "
  874                                     "neighbor(%s), errno=%d\n",
  875                                     ip6_sprintf(addr6), e);
  876                         }
  877                         if (rt == NULL)
  878                                 return (NULL);
  879                         RT_LOCK(rt);
  880                         if (rt->rt_llinfo) {
  881                                 struct llinfo_nd6 *ln =
  882                                     (struct llinfo_nd6 *)rt->rt_llinfo;
  883                                 ln->ln_state = ND6_LLINFO_NOSTATE;
  884                         }
  885                 } else
  886                         return (NULL);
  887         }
  888         RT_LOCK_ASSERT(rt);
  889         RT_REMREF(rt);
  890         /*
  891          * Validation for the entry.
  892          * Note that the check for rt_llinfo is necessary because a cloned
  893          * route from a parent route that has the L flag (e.g. the default
  894          * route to a p2p interface) may have the flag, too, while the
  895          * destination is not actually a neighbor.
  896          * XXX: we can't use rt->rt_ifp to check for the interface, since
  897          *      it might be the loopback interface if the entry is for our
  898          *      own address on a non-loopback interface. Instead, we should
  899          *      use rt->rt_ifa->ifa_ifp, which would specify the REAL
  900          *      interface.
  901          * Note also that ifa_ifp and ifp may differ when we connect two
  902          * interfaces to a same link, install a link prefix to an interface,
  903          * and try to install a neighbor cache on an interface that does not
  904          * have a route to the prefix.
  905          */
  906         if ((rt->rt_flags & RTF_GATEWAY) || (rt->rt_flags & RTF_LLINFO) == 0 ||
  907             rt->rt_gateway->sa_family != AF_LINK || rt->rt_llinfo == NULL ||
  908             (ifp && rt->rt_ifa->ifa_ifp != ifp)) {
  909                 if (create) {
  910                         nd6log((LOG_DEBUG,
  911                             "nd6_lookup: failed to lookup %s (if = %s)\n",
  912                             ip6_sprintf(addr6),
  913                             ifp ? if_name(ifp) : "unspec"));
  914                 }
  915                 RT_UNLOCK(rt);
  916                 return (NULL);
  917         }
  918         RT_UNLOCK(rt);          /* XXX not ready to return rt locked */
  919         return (rt);
  920 }
  921 
  922 /*
  923  * Test whether a given IPv6 address is a neighbor or not, ignoring
  924  * the actual neighbor cache.  The neighbor cache is ignored in order
  925  * to not reenter the routing code from within itself.
  926  */
  927 static int
  928 nd6_is_new_addr_neighbor(addr, ifp)
  929         struct sockaddr_in6 *addr;
  930         struct ifnet *ifp;
  931 {
  932         struct nd_prefix *pr;
  933         struct ifaddr *dstaddr;
  934 
  935         /*
  936          * A link-local address is always a neighbor.
  937          * XXX: a link does not necessarily specify a single interface.
  938          */
  939         if (IN6_IS_ADDR_LINKLOCAL(&addr->sin6_addr)) {
  940                 struct sockaddr_in6 sin6_copy;
  941                 u_int32_t zone;
  942 
  943                 /*
  944                  * We need sin6_copy since sa6_recoverscope() may modify the
  945                  * content (XXX).
  946                  */
  947                 sin6_copy = *addr;
  948                 if (sa6_recoverscope(&sin6_copy))
  949                         return (0); /* XXX: should be impossible */
  950                 if (in6_setscope(&sin6_copy.sin6_addr, ifp, &zone))
  951                         return (0);
  952                 if (sin6_copy.sin6_scope_id == zone)
  953                         return (1);
  954                 else
  955                         return (0);
  956         }
  957 
  958         /*
  959          * If the address matches one of our addresses,
  960          * it should be a neighbor.
  961          * If the address matches one of our on-link prefixes, it should be a
  962          * neighbor.
  963          */
  964         for (pr = nd_prefix.lh_first; pr; pr = pr->ndpr_next) {
  965                 if (pr->ndpr_ifp != ifp)
  966                         continue;
  967 
  968                 if (!(pr->ndpr_stateflags & NDPRF_ONLINK))
  969                         continue;
  970 
  971                 if (IN6_ARE_MASKED_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr,
  972                     &addr->sin6_addr, &pr->ndpr_mask))
  973                         return (1);
  974         }
  975 
  976         /*
  977          * If the address is assigned on the node of the other side of
  978          * a p2p interface, the address should be a neighbor.
  979          */
  980         dstaddr = ifa_ifwithdstaddr((struct sockaddr *)addr);
  981         if ((dstaddr != NULL) && (dstaddr->ifa_ifp == ifp))
  982                 return (1);
  983 
  984         /*
  985          * If the default router list is empty, all addresses are regarded
  986          * as on-link, and thus, as a neighbor.
  987          * XXX: we restrict the condition to hosts, because routers usually do
  988          * not have the "default router list".
  989          */
  990         if (!ip6_forwarding && TAILQ_FIRST(&nd_defrouter) == NULL &&
  991             nd6_defifindex == ifp->if_index) {
  992                 return (1);
  993         }
  994 
  995         return (0);
  996 }
  997 
  998 
  999 /*
 1000  * Detect if a given IPv6 address identifies a neighbor on a given link.
 1001  * XXX: should take care of the destination of a p2p link?
 1002  */
 1003 int
 1004 nd6_is_addr_neighbor(addr, ifp)
 1005         struct sockaddr_in6 *addr;
 1006         struct ifnet *ifp;
 1007 {
 1008 
 1009         if (nd6_is_new_addr_neighbor(addr, ifp))
 1010                 return (1);
 1011 
 1012         /*
 1013          * Even if the address matches none of our addresses, it might be
 1014          * in the neighbor cache.
 1015          */
 1016         if (nd6_lookup(&addr->sin6_addr, 0, ifp) != NULL)
 1017                 return (1);
 1018 
 1019         return (0);
 1020 }
 1021 
 1022 /*
 1023  * Free an nd6 llinfo entry.
 1024  * Since the function would cause significant changes in the kernel, DO NOT
 1025  * make it global, unless you have a strong reason for the change, and are sure
 1026  * that the change is safe.
 1027  */
 1028 static struct llinfo_nd6 *
 1029 nd6_free(rt, gc)
 1030         struct rtentry *rt;
 1031         int gc;
 1032 {
 1033         struct llinfo_nd6 *ln = (struct llinfo_nd6 *)rt->rt_llinfo, *next;
 1034         struct in6_addr in6 = ((struct sockaddr_in6 *)rt_key(rt))->sin6_addr;
 1035         struct nd_defrouter *dr;
 1036 
 1037         /*
 1038          * we used to have pfctlinput(PRC_HOSTDEAD) here.
 1039          * even though it is not harmful, it was not really necessary.
 1040          */
 1041 
 1042         /* cancel timer */
 1043         nd6_llinfo_settimer(ln, -1);
 1044 
 1045         if (!ip6_forwarding) {
 1046                 int s;
 1047                 s = splnet();
 1048                 dr = defrouter_lookup(&((struct sockaddr_in6 *)rt_key(rt))->sin6_addr,
 1049                     rt->rt_ifp);
 1050 
 1051                 if (dr != NULL && dr->expire &&
 1052                     ln->ln_state == ND6_LLINFO_STALE && gc) {
 1053                         /*
 1054                          * If the reason for the deletion is just garbage
 1055                          * collection, and the neighbor is an active default
 1056                          * router, do not delete it.  Instead, reset the GC
 1057                          * timer using the router's lifetime.
 1058                          * Simply deleting the entry would affect default
 1059                          * router selection, which is not necessarily a good
 1060                          * thing, especially when we're using router preference
 1061                          * values.
 1062                          * XXX: the check for ln_state would be redundant,
 1063                          *      but we intentionally keep it just in case.
 1064                          */
 1065                         if (dr->expire > time_second)
 1066                                 nd6_llinfo_settimer(ln,
 1067                                     (dr->expire - time_second) * hz);
 1068                         else
 1069                                 nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz);
 1070                         splx(s);
 1071                         return (ln->ln_next);
 1072                 }
 1073 
 1074                 if (ln->ln_router || dr) {
 1075                         /*
 1076                          * rt6_flush must be called whether or not the neighbor
 1077                          * is in the Default Router List.
 1078                          * See a corresponding comment in nd6_na_input().
 1079                          */
 1080                         rt6_flush(&in6, rt->rt_ifp);
 1081                 }
 1082 
 1083                 if (dr) {
 1084                         /*
 1085                          * Unreachablity of a router might affect the default
 1086                          * router selection and on-link detection of advertised
 1087                          * prefixes.
 1088                          */
 1089 
 1090                         /*
 1091                          * Temporarily fake the state to choose a new default
 1092                          * router and to perform on-link determination of
 1093                          * prefixes correctly.
 1094                          * Below the state will be set correctly,
 1095                          * or the entry itself will be deleted.
 1096                          */
 1097                         ln->ln_state = ND6_LLINFO_INCOMPLETE;
 1098 
 1099                         /*
 1100                          * Since defrouter_select() does not affect the
 1101                          * on-link determination and MIP6 needs the check
 1102                          * before the default router selection, we perform
 1103                          * the check now.
 1104                          */
 1105                         pfxlist_onlink_check();
 1106 
 1107                         /*
 1108                          * refresh default router list
 1109                          */
 1110                         defrouter_select();
 1111                 }
 1112                 splx(s);
 1113         }
 1114 
 1115         /*
 1116          * Before deleting the entry, remember the next entry as the
 1117          * return value.  We need this because pfxlist_onlink_check() above
 1118          * might have freed other entries (particularly the old next entry) as
 1119          * a side effect (XXX).
 1120          */
 1121         next = ln->ln_next;
 1122 
 1123         /*
 1124          * Detach the route from the routing tree and the list of neighbor
 1125          * caches, and disable the route entry not to be used in already
 1126          * cached routes.
 1127          */
 1128         rtrequest(RTM_DELETE, rt_key(rt), (struct sockaddr *)0,
 1129             rt_mask(rt), 0, (struct rtentry **)0);
 1130 
 1131         return (next);
 1132 }
 1133 
 1134 /*
 1135  * Upper-layer reachability hint for Neighbor Unreachability Detection.
 1136  *
 1137  * XXX cost-effective methods?
 1138  */
 1139 void
 1140 nd6_nud_hint(rt, dst6, force)
 1141         struct rtentry *rt;
 1142         struct in6_addr *dst6;
 1143         int force;
 1144 {
 1145         struct llinfo_nd6 *ln;
 1146 
 1147         /*
 1148          * If the caller specified "rt", use that.  Otherwise, resolve the
 1149          * routing table by supplied "dst6".
 1150          */
 1151         if (rt == NULL) {
 1152                 if (dst6 == NULL)
 1153                         return;
 1154                 if ((rt = nd6_lookup(dst6, 0, NULL)) == NULL)
 1155                         return;
 1156         }
 1157 
 1158         if ((rt->rt_flags & RTF_GATEWAY) != 0 ||
 1159             (rt->rt_flags & RTF_LLINFO) == 0 ||
 1160             rt->rt_llinfo == NULL || rt->rt_gateway == NULL ||
 1161             rt->rt_gateway->sa_family != AF_LINK) {
 1162                 /* This is not a host route. */
 1163                 return;
 1164         }
 1165 
 1166         ln = (struct llinfo_nd6 *)rt->rt_llinfo;
 1167         if (ln->ln_state < ND6_LLINFO_REACHABLE)
 1168                 return;
 1169 
 1170         /*
 1171          * if we get upper-layer reachability confirmation many times,
 1172          * it is possible we have false information.
 1173          */
 1174         if (!force) {
 1175                 ln->ln_byhint++;
 1176                 if (ln->ln_byhint > nd6_maxnudhint)
 1177                         return;
 1178         }
 1179 
 1180         ln->ln_state = ND6_LLINFO_REACHABLE;
 1181         if (!ND6_LLINFO_PERMANENT(ln)) {
 1182                 nd6_llinfo_settimer(ln,
 1183                     (long)ND_IFINFO(rt->rt_ifp)->reachable * hz);
 1184         }
 1185 }
 1186 
 1187 void
 1188 nd6_rtrequest(req, rt, info)
 1189         int     req;
 1190         struct rtentry *rt;
 1191         struct rt_addrinfo *info; /* xxx unused */
 1192 {
 1193         struct sockaddr *gate = rt->rt_gateway;
 1194         struct llinfo_nd6 *ln = (struct llinfo_nd6 *)rt->rt_llinfo;
 1195         static struct sockaddr_dl null_sdl = {sizeof(null_sdl), AF_LINK};
 1196         struct ifnet *ifp = rt->rt_ifp;
 1197         struct ifaddr *ifa;
 1198 
 1199         RT_LOCK_ASSERT(rt);
 1200 
 1201         if ((rt->rt_flags & RTF_GATEWAY) != 0)
 1202                 return;
 1203 
 1204         if (nd6_need_cache(ifp) == 0 && (rt->rt_flags & RTF_HOST) == 0) {
 1205                 /*
 1206                  * This is probably an interface direct route for a link
 1207                  * which does not need neighbor caches (e.g. fe80::%lo0/64).
 1208                  * We do not need special treatment below for such a route.
 1209                  * Moreover, the RTF_LLINFO flag which would be set below
 1210                  * would annoy the ndp(8) command.
 1211                  */
 1212                 return;
 1213         }
 1214 
 1215         if (req == RTM_RESOLVE &&
 1216             (nd6_need_cache(ifp) == 0 || /* stf case */
 1217              !nd6_is_new_addr_neighbor((struct sockaddr_in6 *)rt_key(rt),
 1218              ifp))) {
 1219                 /*
 1220                  * FreeBSD and BSD/OS often make a cloned host route based
 1221                  * on a less-specific route (e.g. the default route).
 1222                  * If the less specific route does not have a "gateway"
 1223                  * (this is the case when the route just goes to a p2p or an
 1224                  * stf interface), we'll mistakenly make a neighbor cache for
 1225                  * the host route, and will see strange neighbor solicitation
 1226                  * for the corresponding destination.  In order to avoid the
 1227                  * confusion, we check if the destination of the route is
 1228                  * a neighbor in terms of neighbor discovery, and stop the
 1229                  * process if not.  Additionally, we remove the LLINFO flag
 1230                  * so that ndp(8) will not try to get the neighbor information
 1231                  * of the destination.
 1232                  */
 1233                 rt->rt_flags &= ~RTF_LLINFO;
 1234                 return;
 1235         }
 1236 
 1237         switch (req) {
 1238         case RTM_ADD:
 1239                 /*
 1240                  * There is no backward compatibility :)
 1241                  *
 1242                  * if ((rt->rt_flags & RTF_HOST) == 0 &&
 1243                  *     SIN(rt_mask(rt))->sin_addr.s_addr != 0xffffffff)
 1244                  *         rt->rt_flags |= RTF_CLONING;
 1245                  */
 1246                 if ((rt->rt_flags & RTF_CLONING) ||
 1247                     ((rt->rt_flags & RTF_LLINFO) && ln == NULL)) {
 1248                         /*
 1249                          * Case 1: This route should come from a route to
 1250                          * interface (RTF_CLONING case) or the route should be
 1251                          * treated as on-link but is currently not
 1252                          * (RTF_LLINFO && ln == NULL case).
 1253                          */
 1254                         rt_setgate(rt, rt_key(rt),
 1255                                    (struct sockaddr *)&null_sdl);
 1256                         gate = rt->rt_gateway;
 1257                         SDL(gate)->sdl_type = ifp->if_type;
 1258                         SDL(gate)->sdl_index = ifp->if_index;
 1259                         if (ln)
 1260                                 nd6_llinfo_settimer(ln, 0);
 1261                         if ((rt->rt_flags & RTF_CLONING) != 0)
 1262                                 break;
 1263                 }
 1264                 /*
 1265                  * In IPv4 code, we try to annonuce new RTF_ANNOUNCE entry here.
 1266                  * We don't do that here since llinfo is not ready yet.
 1267                  *
 1268                  * There are also couple of other things to be discussed:
 1269                  * - unsolicited NA code needs improvement beforehand
 1270                  * - RFC2461 says we MAY send multicast unsolicited NA
 1271                  *   (7.2.6 paragraph 4), however, it also says that we
 1272                  *   SHOULD provide a mechanism to prevent multicast NA storm.
 1273                  *   we don't have anything like it right now.
 1274                  *   note that the mechanism needs a mutual agreement
 1275                  *   between proxies, which means that we need to implement
 1276                  *   a new protocol, or a new kludge.
 1277                  * - from RFC2461 6.2.4, host MUST NOT send an unsolicited NA.
 1278                  *   we need to check ip6forwarding before sending it.
 1279                  *   (or should we allow proxy ND configuration only for
 1280                  *   routers?  there's no mention about proxy ND from hosts)
 1281                  */
 1282                 /* FALLTHROUGH */
 1283         case RTM_RESOLVE:
 1284                 if ((ifp->if_flags & (IFF_POINTOPOINT | IFF_LOOPBACK)) == 0) {
 1285                         /*
 1286                          * Address resolution isn't necessary for a point to
 1287                          * point link, so we can skip this test for a p2p link.
 1288                          */
 1289                         if (gate->sa_family != AF_LINK ||
 1290                             gate->sa_len < sizeof(null_sdl)) {
 1291                                 log(LOG_DEBUG,
 1292                                     "nd6_rtrequest: bad gateway value: %s\n",
 1293                                     if_name(ifp));
 1294                                 break;
 1295                         }
 1296                         SDL(gate)->sdl_type = ifp->if_type;
 1297                         SDL(gate)->sdl_index = ifp->if_index;
 1298                 }
 1299                 if (ln != NULL)
 1300                         break;  /* This happens on a route change */
 1301                 /*
 1302                  * Case 2: This route may come from cloning, or a manual route
 1303                  * add with a LL address.
 1304                  */
 1305                 R_Malloc(ln, struct llinfo_nd6 *, sizeof(*ln));
 1306                 rt->rt_llinfo = (caddr_t)ln;
 1307                 if (ln == NULL) {
 1308                         log(LOG_DEBUG, "nd6_rtrequest: malloc failed\n");
 1309                         break;
 1310                 }
 1311                 nd6_inuse++;
 1312                 nd6_allocated++;
 1313                 bzero(ln, sizeof(*ln));
 1314                 RT_ADDREF(rt);
 1315                 ln->ln_rt = rt;
 1316                 callout_init(&ln->ln_timer_ch, 0);
 1317 
 1318                 /* this is required for "ndp" command. - shin */
 1319                 if (req == RTM_ADD) {
 1320                         /*
 1321                          * gate should have some valid AF_LINK entry,
 1322                          * and ln->ln_expire should have some lifetime
 1323                          * which is specified by ndp command.
 1324                          */
 1325                         ln->ln_state = ND6_LLINFO_REACHABLE;
 1326                         ln->ln_byhint = 0;
 1327                 } else {
 1328                         /*
 1329                          * When req == RTM_RESOLVE, rt is created and
 1330                          * initialized in rtrequest(), so rt_expire is 0.
 1331                          */
 1332                         ln->ln_state = ND6_LLINFO_NOSTATE;
 1333                         nd6_llinfo_settimer(ln, 0);
 1334                 }
 1335                 rt->rt_flags |= RTF_LLINFO;
 1336                 ln->ln_next = llinfo_nd6.ln_next;
 1337                 llinfo_nd6.ln_next = ln;
 1338                 ln->ln_prev = &llinfo_nd6;
 1339                 ln->ln_next->ln_prev = ln;
 1340 
 1341                 /*
 1342                  * check if rt_key(rt) is one of my address assigned
 1343                  * to the interface.
 1344                  */
 1345                 ifa = (struct ifaddr *)in6ifa_ifpwithaddr(rt->rt_ifp,
 1346                     &SIN6(rt_key(rt))->sin6_addr);
 1347                 if (ifa) {
 1348                         caddr_t macp = nd6_ifptomac(ifp);
 1349                         nd6_llinfo_settimer(ln, -1);
 1350                         ln->ln_state = ND6_LLINFO_REACHABLE;
 1351                         ln->ln_byhint = 0;
 1352                         if (macp) {
 1353                                 bcopy(macp, LLADDR(SDL(gate)), ifp->if_addrlen);
 1354                                 SDL(gate)->sdl_alen = ifp->if_addrlen;
 1355                         }
 1356                         if (nd6_useloopback) {
 1357                                 rt->rt_ifp = &loif[0];  /* XXX */
 1358                                 /*
 1359                                  * Make sure rt_ifa be equal to the ifaddr
 1360                                  * corresponding to the address.
 1361                                  * We need this because when we refer
 1362                                  * rt_ifa->ia6_flags in ip6_input, we assume
 1363                                  * that the rt_ifa points to the address instead
 1364                                  * of the loopback address.
 1365                                  */
 1366                                 if (ifa != rt->rt_ifa) {
 1367                                         IFAFREE(rt->rt_ifa);
 1368                                         IFAREF(ifa);
 1369                                         rt->rt_ifa = ifa;
 1370                                 }
 1371                         }
 1372                 } else if (rt->rt_flags & RTF_ANNOUNCE) {
 1373                         nd6_llinfo_settimer(ln, -1);
 1374                         ln->ln_state = ND6_LLINFO_REACHABLE;
 1375                         ln->ln_byhint = 0;
 1376 
 1377                         /* join solicited node multicast for proxy ND */
 1378                         if (ifp->if_flags & IFF_MULTICAST) {
 1379                                 struct in6_addr llsol;
 1380                                 int error;
 1381 
 1382                                 llsol = SIN6(rt_key(rt))->sin6_addr;
 1383                                 llsol.s6_addr32[0] = IPV6_ADDR_INT32_MLL;
 1384                                 llsol.s6_addr32[1] = 0;
 1385                                 llsol.s6_addr32[2] = htonl(1);
 1386                                 llsol.s6_addr8[12] = 0xff;
 1387                                 if (in6_setscope(&llsol, ifp, NULL))
 1388                                         break;
 1389                                 if (in6_addmulti(&llsol, ifp,
 1390                                     &error, 0) == NULL) {
 1391                                         nd6log((LOG_ERR, "%s: failed to join "
 1392                                             "%s (errno=%d)\n", if_name(ifp),
 1393                                             ip6_sprintf(&llsol), error));
 1394                                 }
 1395                         }
 1396                 }
 1397                 break;
 1398 
 1399         case RTM_DELETE:
 1400                 if (ln == NULL)
 1401                         break;
 1402                 /* leave from solicited node multicast for proxy ND */
 1403                 if ((rt->rt_flags & RTF_ANNOUNCE) != 0 &&
 1404                     (ifp->if_flags & IFF_MULTICAST) != 0) {
 1405                         struct in6_addr llsol;
 1406                         struct in6_multi *in6m;
 1407 
 1408                         llsol = SIN6(rt_key(rt))->sin6_addr;
 1409                         llsol.s6_addr32[0] = IPV6_ADDR_INT32_MLL;
 1410                         llsol.s6_addr32[1] = 0;
 1411                         llsol.s6_addr32[2] = htonl(1);
 1412                         llsol.s6_addr8[12] = 0xff;
 1413                         if (in6_setscope(&llsol, ifp, NULL) == 0) {
 1414                                 IN6_LOOKUP_MULTI(llsol, ifp, in6m);
 1415                                 if (in6m)
 1416                                         in6_delmulti(in6m);
 1417                         } else
 1418                                 ; /* XXX: should not happen. bark here? */
 1419                 }
 1420                 nd6_inuse--;
 1421                 ln->ln_next->ln_prev = ln->ln_prev;
 1422                 ln->ln_prev->ln_next = ln->ln_next;
 1423                 ln->ln_prev = NULL;
 1424                 nd6_llinfo_settimer(ln, -1);
 1425                 RT_REMREF(rt);
 1426                 rt->rt_llinfo = 0;
 1427                 rt->rt_flags &= ~RTF_LLINFO;
 1428                 clear_llinfo_pqueue(ln);
 1429                 Free((caddr_t)ln);
 1430         }
 1431 }
 1432 
 1433 int
 1434 nd6_ioctl(cmd, data, ifp)
 1435         u_long cmd;
 1436         caddr_t data;
 1437         struct ifnet *ifp;
 1438 {
 1439         struct in6_drlist *drl = (struct in6_drlist *)data;
 1440         struct in6_oprlist *oprl = (struct in6_oprlist *)data;
 1441         struct in6_ndireq *ndi = (struct in6_ndireq *)data;
 1442         struct in6_nbrinfo *nbi = (struct in6_nbrinfo *)data;
 1443         struct in6_ndifreq *ndif = (struct in6_ndifreq *)data;
 1444         struct nd_defrouter *dr;
 1445         struct nd_prefix *pr;
 1446         struct rtentry *rt;
 1447         int i = 0, error = 0;
 1448         int s;
 1449 
 1450         switch (cmd) {
 1451         case SIOCGDRLST_IN6:
 1452                 /*
 1453                  * obsolete API, use sysctl under net.inet6.icmp6
 1454                  */
 1455                 bzero(drl, sizeof(*drl));
 1456                 s = splnet();
 1457                 dr = TAILQ_FIRST(&nd_defrouter);
 1458                 while (dr && i < DRLSTSIZ) {
 1459                         drl->defrouter[i].rtaddr = dr->rtaddr;
 1460                         in6_clearscope(&drl->defrouter[i].rtaddr);
 1461 
 1462                         drl->defrouter[i].flags = dr->flags;
 1463                         drl->defrouter[i].rtlifetime = dr->rtlifetime;
 1464                         drl->defrouter[i].expire = dr->expire;
 1465                         drl->defrouter[i].if_index = dr->ifp->if_index;
 1466                         i++;
 1467                         dr = TAILQ_NEXT(dr, dr_entry);
 1468                 }
 1469                 splx(s);
 1470                 break;
 1471         case SIOCGPRLST_IN6:
 1472                 /*
 1473                  * obsolete API, use sysctl under net.inet6.icmp6
 1474                  *
 1475                  * XXX the structure in6_prlist was changed in backward-
 1476                  * incompatible manner.  in6_oprlist is used for SIOCGPRLST_IN6,
 1477                  * in6_prlist is used for nd6_sysctl() - fill_prlist().
 1478                  */
 1479                 /*
 1480                  * XXX meaning of fields, especialy "raflags", is very
 1481                  * differnet between RA prefix list and RR/static prefix list.
 1482                  * how about separating ioctls into two?
 1483                  */
 1484                 bzero(oprl, sizeof(*oprl));
 1485                 s = splnet();
 1486                 pr = nd_prefix.lh_first;
 1487                 while (pr && i < PRLSTSIZ) {
 1488                         struct nd_pfxrouter *pfr;
 1489                         int j;
 1490 
 1491                         oprl->prefix[i].prefix = pr->ndpr_prefix.sin6_addr;
 1492                         oprl->prefix[i].raflags = pr->ndpr_raf;
 1493                         oprl->prefix[i].prefixlen = pr->ndpr_plen;
 1494                         oprl->prefix[i].vltime = pr->ndpr_vltime;
 1495                         oprl->prefix[i].pltime = pr->ndpr_pltime;
 1496                         oprl->prefix[i].if_index = pr->ndpr_ifp->if_index;
 1497                         if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME)
 1498                                 oprl->prefix[i].expire = 0;
 1499                         else {
 1500                                 time_t maxexpire;
 1501 
 1502                                 /* XXX: we assume time_t is signed. */
 1503                                 maxexpire = (-1) &
 1504                                     ~((time_t)1 <<
 1505                                     ((sizeof(maxexpire) * 8) - 1));
 1506                                 if (pr->ndpr_vltime <
 1507                                     maxexpire - pr->ndpr_lastupdate) {
 1508                                         oprl->prefix[i].expire =
 1509                                             pr->ndpr_lastupdate +
 1510                                             pr->ndpr_vltime;
 1511                                 } else
 1512                                         oprl->prefix[i].expire = maxexpire;
 1513                         }
 1514 
 1515                         pfr = pr->ndpr_advrtrs.lh_first;
 1516                         j = 0;
 1517                         while (pfr) {
 1518                                 if (j < DRLSTSIZ) {
 1519 #define RTRADDR oprl->prefix[i].advrtr[j]
 1520                                         RTRADDR = pfr->router->rtaddr;
 1521                                         in6_clearscope(&RTRADDR);
 1522 #undef RTRADDR
 1523                                 }
 1524                                 j++;
 1525                                 pfr = pfr->pfr_next;
 1526                         }
 1527                         oprl->prefix[i].advrtrs = j;
 1528                         oprl->prefix[i].origin = PR_ORIG_RA;
 1529 
 1530                         i++;
 1531                         pr = pr->ndpr_next;
 1532                 }
 1533                 splx(s);
 1534 
 1535                 break;
 1536         case OSIOCGIFINFO_IN6:
 1537 #define ND      ndi->ndi
 1538                 /* XXX: old ndp(8) assumes a positive value for linkmtu. */
 1539                 bzero(&ND, sizeof(ND));
 1540                 ND.linkmtu = IN6_LINKMTU(ifp);
 1541                 ND.maxmtu = ND_IFINFO(ifp)->maxmtu;
 1542                 ND.basereachable = ND_IFINFO(ifp)->basereachable;
 1543                 ND.reachable = ND_IFINFO(ifp)->reachable;
 1544                 ND.retrans = ND_IFINFO(ifp)->retrans;
 1545                 ND.flags = ND_IFINFO(ifp)->flags;
 1546                 ND.recalctm = ND_IFINFO(ifp)->recalctm;
 1547                 ND.chlim = ND_IFINFO(ifp)->chlim;
 1548                 break;
 1549         case SIOCGIFINFO_IN6:
 1550                 ND = *ND_IFINFO(ifp);
 1551                 break;
 1552         case SIOCSIFINFO_IN6:
 1553                 /*
 1554                  * used to change host variables from userland.
 1555                  * intented for a use on router to reflect RA configurations.
 1556                  */
 1557                 /* 0 means 'unspecified' */
 1558                 if (ND.linkmtu != 0) {
 1559                         if (ND.linkmtu < IPV6_MMTU ||
 1560                             ND.linkmtu > IN6_LINKMTU(ifp)) {
 1561                                 error = EINVAL;
 1562                                 break;
 1563                         }
 1564                         ND_IFINFO(ifp)->linkmtu = ND.linkmtu;
 1565                 }
 1566 
 1567                 if (ND.basereachable != 0) {
 1568                         int obasereachable = ND_IFINFO(ifp)->basereachable;
 1569 
 1570                         ND_IFINFO(ifp)->basereachable = ND.basereachable;
 1571                         if (ND.basereachable != obasereachable)
 1572                                 ND_IFINFO(ifp)->reachable =
 1573                                     ND_COMPUTE_RTIME(ND.basereachable);
 1574                 }
 1575                 if (ND.retrans != 0)
 1576                         ND_IFINFO(ifp)->retrans = ND.retrans;
 1577                 if (ND.chlim != 0)
 1578                         ND_IFINFO(ifp)->chlim = ND.chlim;
 1579                 /* FALLTHROUGH */
 1580         case SIOCSIFINFO_FLAGS:
 1581                 ND_IFINFO(ifp)->flags = ND.flags;
 1582                 break;
 1583 #undef ND
 1584         case SIOCSNDFLUSH_IN6:  /* XXX: the ioctl name is confusing... */
 1585                 /* sync kernel routing table with the default router list */
 1586                 defrouter_reset();
 1587                 defrouter_select();
 1588                 break;
 1589         case SIOCSPFXFLUSH_IN6:
 1590         {
 1591                 /* flush all the prefix advertised by routers */
 1592                 struct nd_prefix *pr, *next;
 1593 
 1594                 s = splnet();
 1595                 for (pr = nd_prefix.lh_first; pr; pr = next) {
 1596                         struct in6_ifaddr *ia, *ia_next;
 1597 
 1598                         next = pr->ndpr_next;
 1599 
 1600                         if (IN6_IS_ADDR_LINKLOCAL(&pr->ndpr_prefix.sin6_addr))
 1601                                 continue; /* XXX */
 1602 
 1603                         /* do we really have to remove addresses as well? */
 1604                         for (ia = in6_ifaddr; ia; ia = ia_next) {
 1605                                 /* ia might be removed.  keep the next ptr. */
 1606                                 ia_next = ia->ia_next;
 1607 
 1608                                 if ((ia->ia6_flags & IN6_IFF_AUTOCONF) == 0)
 1609                                         continue;
 1610 
 1611                                 if (ia->ia6_ndpr == pr)
 1612                                         in6_purgeaddr(&ia->ia_ifa);
 1613                         }
 1614                         prelist_remove(pr);
 1615                 }
 1616                 splx(s);
 1617                 break;
 1618         }
 1619         case SIOCSRTRFLUSH_IN6:
 1620         {
 1621                 /* flush all the default routers */
 1622                 struct nd_defrouter *dr, *next;
 1623 
 1624                 s = splnet();
 1625                 defrouter_reset();
 1626                 for (dr = TAILQ_FIRST(&nd_defrouter); dr; dr = next) {
 1627                         next = TAILQ_NEXT(dr, dr_entry);
 1628                         defrtrlist_del(dr);
 1629                 }
 1630                 defrouter_select();
 1631                 splx(s);
 1632                 break;
 1633         }
 1634         case SIOCGNBRINFO_IN6:
 1635         {
 1636                 struct llinfo_nd6 *ln;
 1637                 struct in6_addr nb_addr = nbi->addr; /* make local for safety */
 1638 
 1639                 if ((error = in6_setscope(&nb_addr, ifp, NULL)) != 0)
 1640                         return (error);
 1641 
 1642                 s = splnet();
 1643                 if ((rt = nd6_lookup(&nb_addr, 0, ifp)) == NULL) {
 1644                         error = EINVAL;
 1645                         splx(s);
 1646                         break;
 1647                 }
 1648                 ln = (struct llinfo_nd6 *)rt->rt_llinfo;
 1649                 nbi->state = ln->ln_state;
 1650                 nbi->asked = ln->ln_asked;
 1651                 nbi->isrouter = ln->ln_router;
 1652                 nbi->expire = ln->ln_expire;
 1653                 splx(s);
 1654 
 1655                 break;
 1656         }
 1657         case SIOCGDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */
 1658                 ndif->ifindex = nd6_defifindex;
 1659                 break;
 1660         case SIOCSDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */
 1661                 return (nd6_setdefaultiface(ndif->ifindex));
 1662         }
 1663         return (error);
 1664 }
 1665 
 1666 /*
 1667  * Create neighbor cache entry and cache link-layer address,
 1668  * on reception of inbound ND6 packets.  (RS/RA/NS/redirect)
 1669  */
 1670 struct rtentry *
 1671 nd6_cache_lladdr(ifp, from, lladdr, lladdrlen, type, code)
 1672         struct ifnet *ifp;
 1673         struct in6_addr *from;
 1674         char *lladdr;
 1675         int lladdrlen;
 1676         int type;       /* ICMP6 type */
 1677         int code;       /* type dependent information */
 1678 {
 1679         struct rtentry *rt = NULL;
 1680         struct llinfo_nd6 *ln = NULL;
 1681         int is_newentry;
 1682         struct sockaddr_dl *sdl = NULL;
 1683         int do_update;
 1684         int olladdr;
 1685         int llchange;
 1686         int newstate = 0;
 1687 
 1688         if (ifp == NULL)
 1689                 panic("ifp == NULL in nd6_cache_lladdr");
 1690         if (from == NULL)
 1691                 panic("from == NULL in nd6_cache_lladdr");
 1692 
 1693         /* nothing must be updated for unspecified address */
 1694         if (IN6_IS_ADDR_UNSPECIFIED(from))
 1695                 return NULL;
 1696 
 1697         /*
 1698          * Validation about ifp->if_addrlen and lladdrlen must be done in
 1699          * the caller.
 1700          *
 1701          * XXX If the link does not have link-layer adderss, what should
 1702          * we do? (ifp->if_addrlen == 0)
 1703          * Spec says nothing in sections for RA, RS and NA.  There's small
 1704          * description on it in NS section (RFC 2461 7.2.3).
 1705          */
 1706 
 1707         rt = nd6_lookup(from, 0, ifp);
 1708         if (rt == NULL) {
 1709                 rt = nd6_lookup(from, 1, ifp);
 1710                 is_newentry = 1;
 1711         } else {
 1712                 /* do nothing if static ndp is set */
 1713                 if (rt->rt_flags & RTF_STATIC)
 1714                         return NULL;
 1715                 is_newentry = 0;
 1716         }
 1717 
 1718         if (rt == NULL)
 1719                 return NULL;
 1720         if ((rt->rt_flags & (RTF_GATEWAY | RTF_LLINFO)) != RTF_LLINFO) {
 1721 fail:
 1722                 (void)nd6_free(rt, 0);
 1723                 return NULL;
 1724         }
 1725         ln = (struct llinfo_nd6 *)rt->rt_llinfo;
 1726         if (ln == NULL)
 1727                 goto fail;
 1728         if (rt->rt_gateway == NULL)
 1729                 goto fail;
 1730         if (rt->rt_gateway->sa_family != AF_LINK)
 1731                 goto fail;
 1732         sdl = SDL(rt->rt_gateway);
 1733 
 1734         olladdr = (sdl->sdl_alen) ? 1 : 0;
 1735         if (olladdr && lladdr) {
 1736                 if (bcmp(lladdr, LLADDR(sdl), ifp->if_addrlen))
 1737                         llchange = 1;
 1738                 else
 1739                         llchange = 0;
 1740         } else
 1741                 llchange = 0;
 1742 
 1743         /*
 1744          * newentry olladdr  lladdr  llchange   (*=record)
 1745          *      0       n       n       --      (1)
 1746          *      0       y       n       --      (2)
 1747          *      0       n       y       --      (3) * STALE
 1748          *      0       y       y       n       (4) *
 1749          *      0       y       y       y       (5) * STALE
 1750          *      1       --      n       --      (6)   NOSTATE(= PASSIVE)
 1751          *      1       --      y       --      (7) * STALE
 1752          */
 1753 
 1754         if (lladdr) {           /* (3-5) and (7) */
 1755                 /*
 1756                  * Record source link-layer address
 1757                  * XXX is it dependent to ifp->if_type?
 1758                  */
 1759                 sdl->sdl_alen = ifp->if_addrlen;
 1760                 bcopy(lladdr, LLADDR(sdl), ifp->if_addrlen);
 1761         }
 1762 
 1763         if (!is_newentry) {
 1764                 if ((!olladdr && lladdr != NULL) ||     /* (3) */
 1765                     (olladdr && lladdr != NULL && llchange)) {  /* (5) */
 1766                         do_update = 1;
 1767                         newstate = ND6_LLINFO_STALE;
 1768                 } else                                  /* (1-2,4) */
 1769                         do_update = 0;
 1770         } else {
 1771                 do_update = 1;
 1772                 if (lladdr == NULL)                     /* (6) */
 1773                         newstate = ND6_LLINFO_NOSTATE;
 1774                 else                                    /* (7) */
 1775                         newstate = ND6_LLINFO_STALE;
 1776         }
 1777 
 1778         if (do_update) {
 1779                 /*
 1780                  * Update the state of the neighbor cache.
 1781                  */
 1782                 ln->ln_state = newstate;
 1783 
 1784                 if (ln->ln_state == ND6_LLINFO_STALE) {
 1785                         /*
 1786                          * XXX: since nd6_output() below will cause
 1787                          * state tansition to DELAY and reset the timer,
 1788                          * we must set the timer now, although it is actually
 1789                          * meaningless.
 1790                          */
 1791                         nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz);
 1792 
 1793                         if (ln->ln_hold) {
 1794                                 struct mbuf *m_hold, *m_hold_next;
 1795 
 1796                                 /*
 1797                                  * reset the ln_hold in advance, to explicitly
 1798                                  * prevent a ln_hold lookup in nd6_output()
 1799                                  * (wouldn't happen, though...)
 1800                                  */
 1801                                 for (m_hold = ln->ln_hold, ln->ln_hold = NULL;
 1802                                     m_hold; m_hold = m_hold_next) {
 1803                                         m_hold_next = m_hold->m_nextpkt;
 1804                                         m_hold->m_nextpkt = NULL;
 1805 
 1806                                         /*
 1807                                          * we assume ifp is not a p2p here, so
 1808                                          * just set the 2nd argument as the
 1809                                          * 1st one.
 1810                                          */
 1811                                         nd6_output(ifp, ifp, m_hold,
 1812                                              (struct sockaddr_in6 *)rt_key(rt),
 1813                                              rt);
 1814                                 }
 1815                         }
 1816                 } else if (ln->ln_state == ND6_LLINFO_INCOMPLETE) {
 1817                         /* probe right away */
 1818                         nd6_llinfo_settimer((void *)ln, 0);
 1819                 }
 1820         }
 1821 
 1822         /*
 1823          * ICMP6 type dependent behavior.
 1824          *
 1825          * NS: clear IsRouter if new entry
 1826          * RS: clear IsRouter
 1827          * RA: set IsRouter if there's lladdr
 1828          * redir: clear IsRouter if new entry
 1829          *
 1830          * RA case, (1):
 1831          * The spec says that we must set IsRouter in the following cases:
 1832          * - If lladdr exist, set IsRouter.  This means (1-5).
 1833          * - If it is old entry (!newentry), set IsRouter.  This means (7).
 1834          * So, based on the spec, in (1-5) and (7) cases we must set IsRouter.
 1835          * A quetion arises for (1) case.  (1) case has no lladdr in the
 1836          * neighbor cache, this is similar to (6).
 1837          * This case is rare but we figured that we MUST NOT set IsRouter.
 1838          *
 1839          * newentry olladdr  lladdr  llchange       NS  RS  RA  redir
 1840          *                                                      D R
 1841          *      0       n       n       --      (1)     c   ?     s
 1842          *      0       y       n       --      (2)     c   s     s
 1843          *      0       n       y       --      (3)     c   s     s
 1844          *      0       y       y       n       (4)     c   s     s
 1845          *      0       y       y       y       (5)     c   s     s
 1846          *      1       --      n       --      (6) c   c       c s
 1847          *      1       --      y       --      (7) c   c   s   c s
 1848          *
 1849          *                                      (c=clear s=set)
 1850          */
 1851         switch (type & 0xff) {
 1852         case ND_NEIGHBOR_SOLICIT:
 1853                 /*
 1854                  * New entry must have is_router flag cleared.
 1855                  */
 1856                 if (is_newentry)        /* (6-7) */
 1857                         ln->ln_router = 0;
 1858                 break;
 1859         case ND_REDIRECT:
 1860                 /*
 1861                  * If the icmp is a redirect to a better router, always set the
 1862                  * is_router flag.  Otherwise, if the entry is newly created,
 1863                  * clear the flag.  [RFC 2461, sec 8.3]
 1864                  */
 1865                 if (code == ND_REDIRECT_ROUTER)
 1866                         ln->ln_router = 1;
 1867                 else if (is_newentry) /* (6-7) */
 1868                         ln->ln_router = 0;
 1869                 break;
 1870         case ND_ROUTER_SOLICIT:
 1871                 /*
 1872                  * is_router flag must always be cleared.
 1873                  */
 1874                 ln->ln_router = 0;
 1875                 break;
 1876         case ND_ROUTER_ADVERT:
 1877                 /*
 1878                  * Mark an entry with lladdr as a router.
 1879                  */
 1880                 if ((!is_newentry && (olladdr || lladdr)) ||    /* (2-5) */
 1881                     (is_newentry && lladdr)) {                  /* (7) */
 1882                         ln->ln_router = 1;
 1883                 }
 1884                 break;
 1885         }
 1886 
 1887         /*
 1888          * When the link-layer address of a router changes, select the
 1889          * best router again.  In particular, when the neighbor entry is newly
 1890          * created, it might affect the selection policy.
 1891          * Question: can we restrict the first condition to the "is_newentry"
 1892          * case?
 1893          * XXX: when we hear an RA from a new router with the link-layer
 1894          * address option, defrouter_select() is called twice, since
 1895          * defrtrlist_update called the function as well.  However, I believe
 1896          * we can compromise the overhead, since it only happens the first
 1897          * time.
 1898          * XXX: although defrouter_select() should not have a bad effect
 1899          * for those are not autoconfigured hosts, we explicitly avoid such
 1900          * cases for safety.
 1901          */
 1902         if (do_update && ln->ln_router && !ip6_forwarding && ip6_accept_rtadv)
 1903                 defrouter_select();
 1904 
 1905         return rt;
 1906 }
 1907 
 1908 static void
 1909 nd6_slowtimo(ignored_arg)
 1910     void *ignored_arg;
 1911 {
 1912         struct nd_ifinfo *nd6if;
 1913         struct ifnet *ifp;
 1914 
 1915         callout_reset(&nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz,
 1916             nd6_slowtimo, NULL);
 1917         IFNET_RLOCK();
 1918         for (ifp = TAILQ_FIRST(&ifnet); ifp; ifp = TAILQ_NEXT(ifp, if_list)) {
 1919                 nd6if = ND_IFINFO(ifp);
 1920                 if (nd6if->basereachable && /* already initialized */
 1921                     (nd6if->recalctm -= ND6_SLOWTIMER_INTERVAL) <= 0) {
 1922                         /*
 1923                          * Since reachable time rarely changes by router
 1924                          * advertisements, we SHOULD insure that a new random
 1925                          * value gets recomputed at least once every few hours.
 1926                          * (RFC 2461, 6.3.4)
 1927                          */
 1928                         nd6if->recalctm = nd6_recalc_reachtm_interval;
 1929                         nd6if->reachable = ND_COMPUTE_RTIME(nd6if->basereachable);
 1930                 }
 1931         }
 1932         IFNET_RUNLOCK();
 1933 }
 1934 
 1935 #define senderr(e) { error = (e); goto bad;}
 1936 int
 1937 nd6_output(ifp, origifp, m0, dst, rt0)
 1938         struct ifnet *ifp;
 1939         struct ifnet *origifp;
 1940         struct mbuf *m0;
 1941         struct sockaddr_in6 *dst;
 1942         struct rtentry *rt0;
 1943 {
 1944         struct mbuf *m = m0;
 1945         struct rtentry *rt = rt0;
 1946         struct sockaddr_in6 *gw6 = NULL;
 1947         struct llinfo_nd6 *ln = NULL;
 1948         int error = 0;
 1949 
 1950         if (IN6_IS_ADDR_MULTICAST(&dst->sin6_addr))
 1951                 goto sendpkt;
 1952 
 1953         if (nd6_need_cache(ifp) == 0)
 1954                 goto sendpkt;
 1955 
 1956         /*
 1957          * next hop determination.  This routine is derived from ether_output.
 1958          */
 1959         /* NB: the locking here is tortuous... */
 1960         if (rt != NULL)
 1961                 RT_LOCK(rt);
 1962 again:
 1963         if (rt != NULL) {
 1964                 if ((rt->rt_flags & RTF_UP) == 0) {
 1965                         RT_UNLOCK(rt);
 1966                         rt0 = rt = rtalloc1((struct sockaddr *)dst, 1, 0UL);
 1967                         if (rt != NULL) {
 1968                                 RT_REMREF(rt);
 1969                                 if (rt->rt_ifp != ifp)
 1970                                         /*
 1971                                          * XXX maybe we should update ifp too,
 1972                                          * but the original code didn't and I
 1973                                          * don't know what is correct here.
 1974                                          */
 1975                                         goto again;
 1976                         } else
 1977                                 senderr(EHOSTUNREACH);
 1978                 }
 1979 
 1980                 if (rt->rt_flags & RTF_GATEWAY) {
 1981                         gw6 = (struct sockaddr_in6 *)rt->rt_gateway;
 1982 
 1983                         /*
 1984                          * We skip link-layer address resolution and NUD
 1985                          * if the gateway is not a neighbor from ND point
 1986                          * of view, regardless of the value of nd_ifinfo.flags.
 1987                          * The second condition is a bit tricky; we skip
 1988                          * if the gateway is our own address, which is
 1989                          * sometimes used to install a route to a p2p link.
 1990                          */
 1991                         if (!nd6_is_addr_neighbor(gw6, ifp) ||
 1992                             in6ifa_ifpwithaddr(ifp, &gw6->sin6_addr)) {
 1993                                 RT_UNLOCK(rt);
 1994                                 /*
 1995                                  * We allow this kind of tricky route only
 1996                                  * when the outgoing interface is p2p.
 1997                                  * XXX: we may need a more generic rule here.
 1998                                  */
 1999                                 if ((ifp->if_flags & IFF_POINTOPOINT) == 0)
 2000                                         senderr(EHOSTUNREACH);
 2001 
 2002                                 goto sendpkt;
 2003                         }
 2004 
 2005                         if (rt->rt_gwroute == NULL)
 2006                                 goto lookup;
 2007                         rt = rt->rt_gwroute;
 2008                         RT_LOCK(rt);            /* NB: gwroute */
 2009                         if ((rt->rt_flags & RTF_UP) == 0) {
 2010                                 rtfree(rt);     /* unlock gwroute */
 2011                                 rt = rt0;
 2012                                 rt0->rt_gwroute = NULL;
 2013                         lookup:
 2014                                 RT_UNLOCK(rt0);
 2015                                 rt = rtalloc1(rt->rt_gateway, 1, 0UL);
 2016                                 if (rt == rt0) {
 2017                                         RT_REMREF(rt0);
 2018                                         RT_UNLOCK(rt0);
 2019                                         senderr(EHOSTUNREACH);
 2020                                 }
 2021                                 RT_LOCK(rt0);
 2022                                 if (rt0->rt_gwroute != NULL)
 2023                                         RTFREE(rt0->rt_gwroute);
 2024                                 rt0->rt_gwroute = rt;
 2025                                 if (rt == NULL) {
 2026                                         RT_UNLOCK(rt0);
 2027                                         senderr(EHOSTUNREACH);
 2028                                 }
 2029                         }
 2030                         RT_UNLOCK(rt0);
 2031                 }
 2032                 RT_UNLOCK(rt);
 2033         }
 2034 
 2035         /*
 2036          * Address resolution or Neighbor Unreachability Detection
 2037          * for the next hop.
 2038          * At this point, the destination of the packet must be a unicast
 2039          * or an anycast address(i.e. not a multicast).
 2040          */
 2041 
 2042         /* Look up the neighbor cache for the nexthop */
 2043         if (rt && (rt->rt_flags & RTF_LLINFO) != 0)
 2044                 ln = (struct llinfo_nd6 *)rt->rt_llinfo;
 2045         else {
 2046                 /*
 2047                  * Since nd6_is_addr_neighbor() internally calls nd6_lookup(),
 2048                  * the condition below is not very efficient.  But we believe
 2049                  * it is tolerable, because this should be a rare case.
 2050                  */
 2051                 if (nd6_is_addr_neighbor(dst, ifp) &&
 2052                     (rt = nd6_lookup(&dst->sin6_addr, 1, ifp)) != NULL)
 2053                         ln = (struct llinfo_nd6 *)rt->rt_llinfo;
 2054         }
 2055         if (ln == NULL || rt == NULL) {
 2056                 if ((ifp->if_flags & IFF_POINTOPOINT) == 0 &&
 2057                     !(ND_IFINFO(ifp)->flags & ND6_IFF_PERFORMNUD)) {
 2058                         log(LOG_DEBUG,
 2059                             "nd6_output: can't allocate llinfo for %s "
 2060                             "(ln=%p, rt=%p)\n",
 2061                             ip6_sprintf(&dst->sin6_addr), ln, rt);
 2062                         senderr(EIO);   /* XXX: good error? */
 2063                 }
 2064 
 2065                 goto sendpkt;   /* send anyway */
 2066         }
 2067 
 2068         /* We don't have to do link-layer address resolution on a p2p link. */
 2069         if ((ifp->if_flags & IFF_POINTOPOINT) != 0 &&
 2070             ln->ln_state < ND6_LLINFO_REACHABLE) {
 2071                 ln->ln_state = ND6_LLINFO_STALE;
 2072                 nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz);
 2073         }
 2074 
 2075         /*
 2076          * The first time we send a packet to a neighbor whose entry is
 2077          * STALE, we have to change the state to DELAY and a sets a timer to
 2078          * expire in DELAY_FIRST_PROBE_TIME seconds to ensure do
 2079          * neighbor unreachability detection on expiration.
 2080          * (RFC 2461 7.3.3)
 2081          */
 2082         if (ln->ln_state == ND6_LLINFO_STALE) {
 2083                 ln->ln_asked = 0;
 2084                 ln->ln_state = ND6_LLINFO_DELAY;
 2085                 nd6_llinfo_settimer(ln, (long)nd6_delay * hz);
 2086         }
 2087 
 2088         /*
 2089          * If the neighbor cache entry has a state other than INCOMPLETE
 2090          * (i.e. its link-layer address is already resolved), just
 2091          * send the packet.
 2092          */
 2093         if (ln->ln_state > ND6_LLINFO_INCOMPLETE)
 2094                 goto sendpkt;
 2095 
 2096         /*
 2097          * There is a neighbor cache entry, but no ethernet address
 2098          * response yet.  Append this latest packet to the end of the
 2099          * packet queue in the mbuf, unless the number of the packet
 2100          * does not exceed nd6_maxqueuelen.  When it exceeds nd6_maxqueuelen,
 2101          * the oldest packet in the queue will be removed.
 2102          */
 2103         if (ln->ln_state == ND6_LLINFO_NOSTATE)
 2104                 ln->ln_state = ND6_LLINFO_INCOMPLETE;
 2105         if (ln->ln_hold) {
 2106                 struct mbuf *m_hold;
 2107                 int i;
 2108 
 2109                 i = 0;
 2110                 for (m_hold = ln->ln_hold; m_hold; m_hold = m_hold->m_nextpkt) {
 2111                         i++;
 2112                         if (m_hold->m_nextpkt == NULL) {
 2113                                 m_hold->m_nextpkt = m;
 2114                                 break;
 2115                         }
 2116                 }
 2117                 while (i >= nd6_maxqueuelen) {
 2118                         m_hold = ln->ln_hold;
 2119                         ln->ln_hold = ln->ln_hold->m_nextpkt;
 2120                         m_freem(m_hold);
 2121                         i--;
 2122                 }
 2123         } else {
 2124                 ln->ln_hold = m;
 2125         }
 2126 
 2127         /*
 2128          * If there has been no NS for the neighbor after entering the
 2129          * INCOMPLETE state, send the first solicitation.
 2130          */
 2131         if (!ND6_LLINFO_PERMANENT(ln) && ln->ln_asked == 0) {
 2132                 ln->ln_asked++;
 2133                 nd6_llinfo_settimer(ln,
 2134                     (long)ND_IFINFO(ifp)->retrans * hz / 1000);
 2135                 nd6_ns_output(ifp, NULL, &dst->sin6_addr, ln, 0);
 2136         }
 2137         return (0);
 2138 
 2139   sendpkt:
 2140         /* discard the packet if IPv6 operation is disabled on the interface */
 2141         if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED)) {
 2142                 error = ENETDOWN; /* better error? */
 2143                 goto bad;
 2144         }
 2145 
 2146 #ifdef IPSEC
 2147         /* clean ipsec history once it goes out of the node */
 2148         ipsec_delaux(m);
 2149 #endif
 2150 
 2151 #ifdef MAC
 2152         mac_create_mbuf_linklayer(ifp, m);
 2153 #endif
 2154         if ((ifp->if_flags & IFF_LOOPBACK) != 0) {
 2155                 return ((*ifp->if_output)(origifp, m, (struct sockaddr *)dst,
 2156                     rt));
 2157         }
 2158         return ((*ifp->if_output)(ifp, m, (struct sockaddr *)dst, rt));
 2159 
 2160   bad:
 2161         if (m)
 2162                 m_freem(m);
 2163         return (error);
 2164 }
 2165 #undef senderr
 2166 
 2167 int
 2168 nd6_need_cache(ifp)
 2169         struct ifnet *ifp;
 2170 {
 2171         /*
 2172          * XXX: we currently do not make neighbor cache on any interface
 2173          * other than ARCnet, Ethernet, FDDI and GIF.
 2174          *
 2175          * RFC2893 says:
 2176          * - unidirectional tunnels needs no ND
 2177          */
 2178         switch (ifp->if_type) {
 2179         case IFT_ARCNET:
 2180         case IFT_ETHER:
 2181         case IFT_FDDI:
 2182         case IFT_IEEE1394:
 2183 #ifdef IFT_L2VLAN
 2184         case IFT_L2VLAN:
 2185 #endif
 2186 #ifdef IFT_IEEE80211
 2187         case IFT_IEEE80211:
 2188 #endif
 2189 #ifdef IFT_CARP
 2190         case IFT_CARP:
 2191 #endif
 2192         case IFT_GIF:           /* XXX need more cases? */
 2193         case IFT_PPP:
 2194         case IFT_TUNNEL:
 2195         case IFT_BRIDGE:
 2196         case IFT_PROPVIRTUAL:
 2197                 return (1);
 2198         default:
 2199                 return (0);
 2200         }
 2201 }
 2202 
 2203 int
 2204 nd6_storelladdr(ifp, rt0, m, dst, desten)
 2205         struct ifnet *ifp;
 2206         struct rtentry *rt0;
 2207         struct mbuf *m;
 2208         struct sockaddr *dst;
 2209         u_char *desten;
 2210 {
 2211         struct sockaddr_dl *sdl;
 2212         struct rtentry *rt;
 2213         int error;
 2214 
 2215         if (m->m_flags & M_MCAST) {
 2216                 int i;
 2217 
 2218                 switch (ifp->if_type) {
 2219                 case IFT_ETHER:
 2220                 case IFT_FDDI:
 2221 #ifdef IFT_L2VLAN
 2222                 case IFT_L2VLAN:
 2223 #endif
 2224 #ifdef IFT_IEEE80211
 2225                 case IFT_IEEE80211:
 2226 #endif
 2227                 case IFT_BRIDGE:
 2228                 case IFT_ISO88025:
 2229                         ETHER_MAP_IPV6_MULTICAST(&SIN6(dst)->sin6_addr,
 2230                                                  desten);
 2231                         return (0);
 2232                 case IFT_IEEE1394:
 2233                         /*
 2234                          * netbsd can use if_broadcastaddr, but we don't do so
 2235                          * to reduce # of ifdef.
 2236                          */
 2237                         for (i = 0; i < ifp->if_addrlen; i++)
 2238                                 desten[i] = ~0;
 2239                         return (0);
 2240                 case IFT_ARCNET:
 2241                         *desten = 0;
 2242                         return (0);
 2243                 default:
 2244                         m_freem(m);
 2245                         return (EAFNOSUPPORT);
 2246                 }
 2247         }
 2248 
 2249         if (rt0 == NULL) {
 2250                 /* this could happen, if we could not allocate memory */
 2251                 m_freem(m);
 2252                 return (ENOMEM);
 2253         }
 2254 
 2255         error = rt_check(&rt, &rt0, dst);
 2256         if (error) {
 2257                 m_freem(m);
 2258                 return (error);
 2259         }
 2260         RT_UNLOCK(rt);
 2261 
 2262         if (rt->rt_gateway->sa_family != AF_LINK) {
 2263                 printf("nd6_storelladdr: something odd happens\n");
 2264                 m_freem(m);
 2265                 return (EINVAL);
 2266         }
 2267         sdl = SDL(rt->rt_gateway);
 2268         if (sdl->sdl_alen == 0) {
 2269                 /* this should be impossible, but we bark here for debugging */
 2270                 printf("nd6_storelladdr: sdl_alen == 0\n");
 2271                 m_freem(m);
 2272                 return (EINVAL);
 2273         }
 2274 
 2275         bcopy(LLADDR(sdl), desten, sdl->sdl_alen);
 2276         return (0);
 2277 }
 2278 
 2279 static void 
 2280 clear_llinfo_pqueue(ln)
 2281         struct llinfo_nd6 *ln;
 2282 {
 2283         struct mbuf *m_hold, *m_hold_next;
 2284 
 2285         for (m_hold = ln->ln_hold; m_hold; m_hold = m_hold_next) {
 2286                 m_hold_next = m_hold->m_nextpkt;
 2287                 m_hold->m_nextpkt = NULL;
 2288                 m_freem(m_hold);
 2289         }
 2290 
 2291         ln->ln_hold = NULL;
 2292         return;
 2293 }
 2294 
 2295 static int nd6_sysctl_drlist(SYSCTL_HANDLER_ARGS);
 2296 static int nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS);
 2297 #ifdef SYSCTL_DECL
 2298 SYSCTL_DECL(_net_inet6_icmp6);
 2299 #endif
 2300 SYSCTL_NODE(_net_inet6_icmp6, ICMPV6CTL_ND6_DRLIST, nd6_drlist,
 2301         CTLFLAG_RD, nd6_sysctl_drlist, "");
 2302 SYSCTL_NODE(_net_inet6_icmp6, ICMPV6CTL_ND6_PRLIST, nd6_prlist,
 2303         CTLFLAG_RD, nd6_sysctl_prlist, "");
 2304 SYSCTL_INT(_net_inet6_icmp6, ICMPV6CTL_ND6_MAXQLEN, nd6_maxqueuelen,
 2305         CTLFLAG_RW, &nd6_maxqueuelen, 1, "");
 2306 
 2307 static int
 2308 nd6_sysctl_drlist(SYSCTL_HANDLER_ARGS)
 2309 {
 2310         int error;
 2311         char buf[1024];
 2312         struct in6_defrouter *d, *de;
 2313         struct nd_defrouter *dr;
 2314 
 2315         if (req->newptr)
 2316                 return EPERM;
 2317         error = 0;
 2318 
 2319         for (dr = TAILQ_FIRST(&nd_defrouter); dr;
 2320              dr = TAILQ_NEXT(dr, dr_entry)) {
 2321                 d = (struct in6_defrouter *)buf;
 2322                 de = (struct in6_defrouter *)(buf + sizeof(buf));
 2323 
 2324                 if (d + 1 <= de) {
 2325                         bzero(d, sizeof(*d));
 2326                         d->rtaddr.sin6_family = AF_INET6;
 2327                         d->rtaddr.sin6_len = sizeof(d->rtaddr);
 2328                         d->rtaddr.sin6_addr = dr->rtaddr;
 2329                         sa6_recoverscope(&d->rtaddr);
 2330                         d->flags = dr->flags;
 2331                         d->rtlifetime = dr->rtlifetime;
 2332                         d->expire = dr->expire;
 2333                         d->if_index = dr->ifp->if_index;
 2334                 } else
 2335                         panic("buffer too short");
 2336 
 2337                 error = SYSCTL_OUT(req, buf, sizeof(*d));
 2338                 if (error)
 2339                         break;
 2340         }
 2341 
 2342         return (error);
 2343 }
 2344 
 2345 static int
 2346 nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS)
 2347 {
 2348         int error;
 2349         char buf[1024];
 2350         struct in6_prefix *p, *pe;
 2351         struct nd_prefix *pr;
 2352 
 2353         if (req->newptr)
 2354                 return EPERM;
 2355         error = 0;
 2356 
 2357         for (pr = nd_prefix.lh_first; pr; pr = pr->ndpr_next) {
 2358                 u_short advrtrs;
 2359                 size_t advance;
 2360                 struct sockaddr_in6 *sin6, *s6;
 2361                 struct nd_pfxrouter *pfr;
 2362 
 2363                 p = (struct in6_prefix *)buf;
 2364                 pe = (struct in6_prefix *)(buf + sizeof(buf));
 2365 
 2366                 if (p + 1 <= pe) {
 2367                         bzero(p, sizeof(*p));
 2368                         sin6 = (struct sockaddr_in6 *)(p + 1);
 2369 
 2370                         p->prefix = pr->ndpr_prefix;
 2371                         if (sa6_recoverscope(&p->prefix)) {
 2372                                 log(LOG_ERR,
 2373                                     "scope error in prefix list (%s)\n",
 2374                                     ip6_sprintf(&p->prefix.sin6_addr));
 2375                                 /* XXX: press on... */
 2376                         }
 2377                         p->raflags = pr->ndpr_raf;
 2378                         p->prefixlen = pr->ndpr_plen;
 2379                         p->vltime = pr->ndpr_vltime;
 2380                         p->pltime = pr->ndpr_pltime;
 2381                         p->if_index = pr->ndpr_ifp->if_index;
 2382                         if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME)
 2383                                 p->expire = 0;
 2384                         else {
 2385                                 time_t maxexpire;
 2386 
 2387                                 /* XXX: we assume time_t is signed. */
 2388                                 maxexpire = (-1) &
 2389                                     ~((time_t)1 <<
 2390                                     ((sizeof(maxexpire) * 8) - 1));
 2391                                 if (pr->ndpr_vltime <
 2392                                     maxexpire - pr->ndpr_lastupdate) {
 2393                                     p->expire = pr->ndpr_lastupdate +
 2394                                         pr->ndpr_vltime;
 2395                                 } else
 2396                                         p->expire = maxexpire;
 2397                         }
 2398                         p->refcnt = pr->ndpr_refcnt;
 2399                         p->flags = pr->ndpr_stateflags;
 2400                         p->origin = PR_ORIG_RA;
 2401                         advrtrs = 0;
 2402                         for (pfr = pr->ndpr_advrtrs.lh_first; pfr;
 2403                              pfr = pfr->pfr_next) {
 2404                                 if ((void *)&sin6[advrtrs + 1] > (void *)pe) {
 2405                                         advrtrs++;
 2406                                         continue;
 2407                                 }
 2408                                 s6 = &sin6[advrtrs];
 2409                                 bzero(s6, sizeof(*s6));
 2410                                 s6->sin6_family = AF_INET6;
 2411                                 s6->sin6_len = sizeof(*sin6);
 2412                                 s6->sin6_addr = pfr->router->rtaddr;
 2413                                 if (sa6_recoverscope(s6)) {
 2414                                         log(LOG_ERR,
 2415                                             "scope error in "
 2416                                             "prefix list (%s)\n",
 2417                                             ip6_sprintf(&pfr->router->rtaddr));
 2418                                 }
 2419                                 advrtrs++;
 2420                         }
 2421                         p->advrtrs = advrtrs;
 2422                 } else
 2423                         panic("buffer too short");
 2424 
 2425                 advance = sizeof(*p) + sizeof(*sin6) * advrtrs;
 2426                 error = SYSCTL_OUT(req, buf, advance);
 2427                 if (error)
 2428                         break;
 2429         }
 2430 
 2431         return (error);
 2432 }

Cache object: 3af74c501951cac2575b4842da087761


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.