FreeBSD/Linux Kernel Cross Reference
sys/netinet6/nd6.c
1 /* $NetBSD: nd6.c,v 1.89.2.1 2005/04/07 15:33:01 he Exp $ */
2 /* $KAME: nd6.c,v 1.279 2002/06/08 11:16:51 itojun Exp $ */
3
4 /*
5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of the project nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 */
32
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: nd6.c,v 1.89.2.1 2005/04/07 15:33:01 he Exp $");
35
36 #include "opt_ipsec.h"
37
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/callout.h>
41 #include <sys/malloc.h>
42 #include <sys/mbuf.h>
43 #include <sys/socket.h>
44 #include <sys/sockio.h>
45 #include <sys/time.h>
46 #include <sys/kernel.h>
47 #include <sys/protosw.h>
48 #include <sys/errno.h>
49 #include <sys/ioctl.h>
50 #include <sys/syslog.h>
51 #include <sys/queue.h>
52
53 #include <net/if.h>
54 #include <net/if_dl.h>
55 #include <net/if_types.h>
56 #include <net/route.h>
57 #include <net/if_ether.h>
58 #include <net/if_fddi.h>
59 #include <net/if_arc.h>
60
61 #include <netinet/in.h>
62 #include <netinet6/in6_var.h>
63 #include <netinet/ip6.h>
64 #include <netinet6/ip6_var.h>
65 #include <netinet6/nd6.h>
66 #include <netinet/icmp6.h>
67
68 #ifdef IPSEC
69 #include <netinet6/ipsec.h>
70 #endif
71
72 #include "loop.h"
73 extern struct ifnet loif[NLOOP];
74
75 #include <net/net_osdep.h>
76
77 #define ND6_SLOWTIMER_INTERVAL (60 * 60) /* 1 hour */
78 #define ND6_RECALC_REACHTM_INTERVAL (60 * 120) /* 2 hours */
79
80 #define SIN6(s) ((struct sockaddr_in6 *)s)
81 #define SDL(s) ((struct sockaddr_dl *)s)
82
83 /* timer values */
84 int nd6_prune = 1; /* walk list every 1 seconds */
85 int nd6_delay = 5; /* delay first probe time 5 second */
86 int nd6_umaxtries = 3; /* maximum unicast query */
87 int nd6_mmaxtries = 3; /* maximum multicast query */
88 int nd6_useloopback = 1; /* use loopback interface for local traffic */
89 int nd6_gctimer = (60 * 60 * 24); /* 1 day: garbage collection timer */
90
91 /* preventing too many loops in ND option parsing */
92 int nd6_maxndopt = 10; /* max # of ND options allowed */
93
94 int nd6_maxnudhint = 0; /* max # of subsequent upper layer hints */
95
96 #ifdef ND6_DEBUG
97 int nd6_debug = 1;
98 #else
99 int nd6_debug = 0;
100 #endif
101
102 /* for debugging? */
103 static int nd6_inuse, nd6_allocated;
104
105 struct llinfo_nd6 llinfo_nd6 = {&llinfo_nd6, &llinfo_nd6};
106 struct nd_drhead nd_defrouter;
107 struct nd_prhead nd_prefix = { 0 };
108
109 int nd6_recalc_reachtm_interval = ND6_RECALC_REACHTM_INTERVAL;
110 static struct sockaddr_in6 all1_sa;
111
112 static void nd6_setmtu0 __P((struct ifnet *, struct nd_ifinfo *));
113 static void nd6_slowtimo __P((void *));
114 static struct llinfo_nd6 *nd6_free __P((struct rtentry *, int));
115 static void nd6_llinfo_timer __P((void *));
116
117 struct callout nd6_slowtimo_ch = CALLOUT_INITIALIZER;
118 struct callout nd6_timer_ch = CALLOUT_INITIALIZER;
119
120 static int fill_drlist __P((void *, size_t *, size_t));
121 static int fill_prlist __P((void *, size_t *, size_t));
122
123 MALLOC_DEFINE(M_IP6NDP, "NDP", "IPv6 Neighbour Discovery");
124
125 void
126 nd6_init()
127 {
128 static int nd6_init_done = 0;
129 int i;
130
131 if (nd6_init_done) {
132 log(LOG_NOTICE, "nd6_init called more than once(ignored)\n");
133 return;
134 }
135
136 all1_sa.sin6_family = AF_INET6;
137 all1_sa.sin6_len = sizeof(struct sockaddr_in6);
138 for (i = 0; i < sizeof(all1_sa.sin6_addr); i++)
139 all1_sa.sin6_addr.s6_addr[i] = 0xff;
140
141 /* initialization of the default router list */
142 TAILQ_INIT(&nd_defrouter);
143
144 nd6_init_done = 1;
145
146 /* start timer */
147 callout_reset(&nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz,
148 nd6_slowtimo, NULL);
149 }
150
151 struct nd_ifinfo *
152 nd6_ifattach(ifp)
153 struct ifnet *ifp;
154 {
155 struct nd_ifinfo *nd;
156
157 nd = (struct nd_ifinfo *)malloc(sizeof(*nd), M_IP6NDP, M_WAITOK);
158 bzero(nd, sizeof(*nd));
159
160 nd->initialized = 1;
161
162 nd->chlim = IPV6_DEFHLIM;
163 nd->basereachable = REACHABLE_TIME;
164 nd->reachable = ND_COMPUTE_RTIME(nd->basereachable);
165 nd->retrans = RETRANS_TIMER;
166 /*
167 * Note that the default value of ip6_accept_rtadv is 0, which means
168 * we won't accept RAs by default even if we set ND6_IFF_ACCEPT_RTADV
169 * here.
170 */
171 nd->flags = (ND6_IFF_PERFORMNUD | ND6_IFF_ACCEPT_RTADV);
172
173 /* XXX: we cannot call nd6_setmtu since ifp is not fully initialized */
174 nd6_setmtu0(ifp, nd);
175
176 return nd;
177 }
178
179 void
180 nd6_ifdetach(nd)
181 struct nd_ifinfo *nd;
182 {
183
184 free(nd, M_IP6NDP);
185 }
186
187 void
188 nd6_setmtu(ifp)
189 struct ifnet *ifp;
190 {
191 nd6_setmtu0(ifp, ND_IFINFO(ifp));
192 }
193
194 void
195 nd6_setmtu0(ifp, ndi)
196 struct ifnet *ifp;
197 struct nd_ifinfo *ndi;
198 {
199 u_int32_t omaxmtu;
200
201 omaxmtu = ndi->maxmtu;
202
203 switch (ifp->if_type) {
204 case IFT_ARCNET:
205 ndi->maxmtu = MIN(ARC_PHDS_MAXMTU, ifp->if_mtu); /* RFC2497 */
206 break;
207 case IFT_FDDI:
208 ndi->maxmtu = MIN(FDDIIPMTU, ifp->if_mtu);
209 break;
210 default:
211 ndi->maxmtu = ifp->if_mtu;
212 break;
213 }
214
215 /*
216 * Decreasing the interface MTU under IPV6 minimum MTU may cause
217 * undesirable situation. We thus notify the operator of the change
218 * explicitly. The check for omaxmtu is necessary to restrict the
219 * log to the case of changing the MTU, not initializing it.
220 */
221 if (omaxmtu >= IPV6_MMTU && ndi->maxmtu < IPV6_MMTU) {
222 log(LOG_NOTICE, "nd6_setmtu0: new link MTU on %s (%lu) is too"
223 " small for IPv6 which needs %lu\n",
224 if_name(ifp), (unsigned long)ndi->maxmtu, (unsigned long)
225 IPV6_MMTU);
226 }
227
228 if (ndi->maxmtu > in6_maxmtu)
229 in6_setmaxmtu(); /* check all interfaces just in case */
230 }
231
232 void
233 nd6_option_init(opt, icmp6len, ndopts)
234 void *opt;
235 int icmp6len;
236 union nd_opts *ndopts;
237 {
238
239 bzero(ndopts, sizeof(*ndopts));
240 ndopts->nd_opts_search = (struct nd_opt_hdr *)opt;
241 ndopts->nd_opts_last
242 = (struct nd_opt_hdr *)(((u_char *)opt) + icmp6len);
243
244 if (icmp6len == 0) {
245 ndopts->nd_opts_done = 1;
246 ndopts->nd_opts_search = NULL;
247 }
248 }
249
250 /*
251 * Take one ND option.
252 */
253 struct nd_opt_hdr *
254 nd6_option(ndopts)
255 union nd_opts *ndopts;
256 {
257 struct nd_opt_hdr *nd_opt;
258 int olen;
259
260 if (!ndopts)
261 panic("ndopts == NULL in nd6_option");
262 if (!ndopts->nd_opts_last)
263 panic("uninitialized ndopts in nd6_option");
264 if (!ndopts->nd_opts_search)
265 return NULL;
266 if (ndopts->nd_opts_done)
267 return NULL;
268
269 nd_opt = ndopts->nd_opts_search;
270
271 /* make sure nd_opt_len is inside the buffer */
272 if ((caddr_t)&nd_opt->nd_opt_len >= (caddr_t)ndopts->nd_opts_last) {
273 bzero(ndopts, sizeof(*ndopts));
274 return NULL;
275 }
276
277 olen = nd_opt->nd_opt_len << 3;
278 if (olen == 0) {
279 /*
280 * Message validation requires that all included
281 * options have a length that is greater than zero.
282 */
283 bzero(ndopts, sizeof(*ndopts));
284 return NULL;
285 }
286
287 ndopts->nd_opts_search = (struct nd_opt_hdr *)((caddr_t)nd_opt + olen);
288 if (ndopts->nd_opts_search > ndopts->nd_opts_last) {
289 /* option overruns the end of buffer, invalid */
290 bzero(ndopts, sizeof(*ndopts));
291 return NULL;
292 } else if (ndopts->nd_opts_search == ndopts->nd_opts_last) {
293 /* reached the end of options chain */
294 ndopts->nd_opts_done = 1;
295 ndopts->nd_opts_search = NULL;
296 }
297 return nd_opt;
298 }
299
300 /*
301 * Parse multiple ND options.
302 * This function is much easier to use, for ND routines that do not need
303 * multiple options of the same type.
304 */
305 int
306 nd6_options(ndopts)
307 union nd_opts *ndopts;
308 {
309 struct nd_opt_hdr *nd_opt;
310 int i = 0;
311
312 if (!ndopts)
313 panic("ndopts == NULL in nd6_options");
314 if (!ndopts->nd_opts_last)
315 panic("uninitialized ndopts in nd6_options");
316 if (!ndopts->nd_opts_search)
317 return 0;
318
319 while (1) {
320 nd_opt = nd6_option(ndopts);
321 if (!nd_opt && !ndopts->nd_opts_last) {
322 /*
323 * Message validation requires that all included
324 * options have a length that is greater than zero.
325 */
326 icmp6stat.icp6s_nd_badopt++;
327 bzero(ndopts, sizeof(*ndopts));
328 return -1;
329 }
330
331 if (!nd_opt)
332 goto skip1;
333
334 switch (nd_opt->nd_opt_type) {
335 case ND_OPT_SOURCE_LINKADDR:
336 case ND_OPT_TARGET_LINKADDR:
337 case ND_OPT_MTU:
338 case ND_OPT_REDIRECTED_HEADER:
339 if (ndopts->nd_opt_array[nd_opt->nd_opt_type]) {
340 nd6log((LOG_INFO,
341 "duplicated ND6 option found (type=%d)\n",
342 nd_opt->nd_opt_type));
343 /* XXX bark? */
344 } else {
345 ndopts->nd_opt_array[nd_opt->nd_opt_type]
346 = nd_opt;
347 }
348 break;
349 case ND_OPT_PREFIX_INFORMATION:
350 if (ndopts->nd_opt_array[nd_opt->nd_opt_type] == 0) {
351 ndopts->nd_opt_array[nd_opt->nd_opt_type]
352 = nd_opt;
353 }
354 ndopts->nd_opts_pi_end =
355 (struct nd_opt_prefix_info *)nd_opt;
356 break;
357 default:
358 /*
359 * Unknown options must be silently ignored,
360 * to accomodate future extension to the protocol.
361 */
362 nd6log((LOG_DEBUG,
363 "nd6_options: unsupported option %d - "
364 "option ignored\n", nd_opt->nd_opt_type));
365 }
366
367 skip1:
368 i++;
369 if (i > nd6_maxndopt) {
370 icmp6stat.icp6s_nd_toomanyopt++;
371 nd6log((LOG_INFO, "too many loop in nd opt\n"));
372 break;
373 }
374
375 if (ndopts->nd_opts_done)
376 break;
377 }
378
379 return 0;
380 }
381
382 /*
383 * ND6 timer routine to handle ND6 entries
384 */
385 void
386 nd6_llinfo_settimer(ln, tick)
387 struct llinfo_nd6 *ln;
388 long tick;
389 {
390 int s;
391
392 s = splsoftnet();
393
394 if (tick < 0) {
395 ln->ln_expire = 0;
396 ln->ln_ntick = 0;
397 callout_stop(&ln->ln_timer_ch);
398 } else {
399 ln->ln_expire = time.tv_sec + tick / hz;
400 if (tick > INT_MAX) {
401 ln->ln_ntick = tick - INT_MAX;
402 callout_reset(&ln->ln_timer_ch, INT_MAX,
403 nd6_llinfo_timer, ln);
404 } else {
405 ln->ln_ntick = 0;
406 callout_reset(&ln->ln_timer_ch, tick,
407 nd6_llinfo_timer, ln);
408 }
409 }
410
411 splx(s);
412 }
413
414 static void
415 nd6_llinfo_timer(arg)
416 void *arg;
417 {
418 int s;
419 struct llinfo_nd6 *ln;
420 struct rtentry *rt;
421 const struct sockaddr_in6 *dst;
422 struct ifnet *ifp;
423 struct nd_ifinfo *ndi = NULL;
424
425 s = splsoftnet();
426
427 ln = (struct llinfo_nd6 *)arg;
428
429 if (ln->ln_ntick > 0) {
430 if (ln->ln_ntick > INT_MAX) {
431 ln->ln_ntick -= INT_MAX;
432 nd6_llinfo_settimer(ln, INT_MAX);
433 } else {
434 ln->ln_ntick = 0;
435 nd6_llinfo_settimer(ln, ln->ln_ntick);
436 }
437 splx(s);
438 return;
439 }
440
441 if ((rt = ln->ln_rt) == NULL)
442 panic("ln->ln_rt == NULL");
443 if ((ifp = rt->rt_ifp) == NULL)
444 panic("ln->ln_rt->rt_ifp == NULL");
445 ndi = ND_IFINFO(ifp);
446 dst = (struct sockaddr_in6 *)rt_key(rt);
447
448 /* sanity check */
449 if (rt->rt_llinfo && (struct llinfo_nd6 *)rt->rt_llinfo != ln)
450 panic("rt_llinfo(%p) is not equal to ln(%p)",
451 rt->rt_llinfo, ln);
452 if (!dst)
453 panic("dst=0 in nd6_timer(ln=%p)", ln);
454
455 switch (ln->ln_state) {
456 case ND6_LLINFO_INCOMPLETE:
457 if (ln->ln_asked < nd6_mmaxtries) {
458 ln->ln_asked++;
459 nd6_llinfo_settimer(ln, (long)ndi->retrans * hz / 1000);
460 nd6_ns_output(ifp, NULL, &dst->sin6_addr, ln, 0);
461 } else {
462 struct mbuf *m = ln->ln_hold;
463 if (m) {
464 ln->ln_hold = NULL;
465 /*
466 * Fake rcvif to make the ICMP error
467 * more helpful in diagnosing for the
468 * receiver.
469 * XXX: should we consider
470 * older rcvif?
471 */
472 m->m_pkthdr.rcvif = rt->rt_ifp;
473
474 icmp6_error(m, ICMP6_DST_UNREACH,
475 ICMP6_DST_UNREACH_ADDR, 0);
476 }
477 (void)nd6_free(rt, 0);
478 ln = NULL;
479 }
480 break;
481 case ND6_LLINFO_REACHABLE:
482 if (!ND6_LLINFO_PERMANENT(ln)) {
483 ln->ln_state = ND6_LLINFO_STALE;
484 nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz);
485 }
486 break;
487
488 case ND6_LLINFO_STALE:
489 /* Garbage Collection(RFC 2461 5.3) */
490 if (!ND6_LLINFO_PERMANENT(ln)) {
491 (void)nd6_free(rt, 1);
492 ln = NULL;
493 }
494 break;
495
496 case ND6_LLINFO_DELAY:
497 if (ndi && (ndi->flags & ND6_IFF_PERFORMNUD) != 0) {
498 /* We need NUD */
499 ln->ln_asked = 1;
500 ln->ln_state = ND6_LLINFO_PROBE;
501 nd6_llinfo_settimer(ln, (long)ndi->retrans * hz / 1000);
502 nd6_ns_output(ifp, &dst->sin6_addr,
503 &dst->sin6_addr, ln, 0);
504 } else {
505 ln->ln_state = ND6_LLINFO_STALE; /* XXX */
506 nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz);
507 }
508 break;
509 case ND6_LLINFO_PROBE:
510 if (ln->ln_asked < nd6_umaxtries) {
511 ln->ln_asked++;
512 nd6_llinfo_settimer(ln, (long)ndi->retrans * hz / 1000);
513 nd6_ns_output(ifp, &dst->sin6_addr,
514 &dst->sin6_addr, ln, 0);
515 } else {
516 (void)nd6_free(rt, 0);
517 ln = NULL;
518 }
519 break;
520 }
521
522 splx(s);
523 }
524
525 /*
526 * ND6 timer routine to expire default route list and prefix list
527 */
528 void
529 nd6_timer(ignored_arg)
530 void *ignored_arg;
531 {
532 int s;
533 struct nd_defrouter *dr;
534 struct nd_prefix *pr;
535 struct in6_ifaddr *ia6, *nia6;
536
537 s = splsoftnet();
538 callout_reset(&nd6_timer_ch, nd6_prune * hz,
539 nd6_timer, NULL);
540
541 /* expire default router list */
542 dr = TAILQ_FIRST(&nd_defrouter);
543 while (dr) {
544 if (dr->expire && dr->expire < time.tv_sec) {
545 struct nd_defrouter *t;
546 t = TAILQ_NEXT(dr, dr_entry);
547 defrtrlist_del(dr);
548 dr = t;
549 } else {
550 dr = TAILQ_NEXT(dr, dr_entry);
551 }
552 }
553
554 /*
555 * expire interface addresses.
556 * in the past the loop was inside prefix expiry processing.
557 * However, from a stricter speci-confrmance standpoint, we should
558 * rather separate address lifetimes and prefix lifetimes.
559 */
560 for (ia6 = in6_ifaddr; ia6; ia6 = nia6) {
561 nia6 = ia6->ia_next;
562 /* check address lifetime */
563 if (IFA6_IS_INVALID(ia6)) {
564 in6_purgeaddr(&ia6->ia_ifa);
565 }
566 if (IFA6_IS_DEPRECATED(ia6)) {
567 ia6->ia6_flags |= IN6_IFF_DEPRECATED;
568 } else {
569 /*
570 * A new RA might have made a deprecated address
571 * preferred.
572 */
573 ia6->ia6_flags &= ~IN6_IFF_DEPRECATED;
574 }
575 }
576
577 /* expire prefix list */
578 pr = nd_prefix.lh_first;
579 while (pr) {
580 /*
581 * check prefix lifetime.
582 * since pltime is just for autoconf, pltime processing for
583 * prefix is not necessary.
584 */
585 if (pr->ndpr_vltime != ND6_INFINITE_LIFETIME &&
586 time.tv_sec - pr->ndpr_lastupdate > pr->ndpr_vltime) {
587 struct nd_prefix *t;
588 t = pr->ndpr_next;
589
590 /*
591 * address expiration and prefix expiration are
592 * separate. NEVER perform in6_purgeaddr here.
593 */
594
595 prelist_remove(pr);
596 pr = t;
597 } else
598 pr = pr->ndpr_next;
599 }
600 splx(s);
601 }
602
603 /*
604 * Nuke neighbor cache/prefix/default router management table, right before
605 * ifp goes away.
606 */
607 void
608 nd6_purge(ifp)
609 struct ifnet *ifp;
610 {
611 struct llinfo_nd6 *ln, *nln;
612 struct nd_defrouter *dr, *ndr;
613 struct nd_prefix *pr, *npr;
614
615 /*
616 * Nuke default router list entries toward ifp.
617 * We defer removal of default router list entries that is installed
618 * in the routing table, in order to keep additional side effects as
619 * small as possible.
620 */
621 for (dr = TAILQ_FIRST(&nd_defrouter); dr; dr = ndr) {
622 ndr = TAILQ_NEXT(dr, dr_entry);
623 if (dr->installed)
624 continue;
625
626 if (dr->ifp == ifp)
627 defrtrlist_del(dr);
628 }
629 for (dr = TAILQ_FIRST(&nd_defrouter); dr; dr = ndr) {
630 ndr = TAILQ_NEXT(dr, dr_entry);
631 if (!dr->installed)
632 continue;
633
634 if (dr->ifp == ifp)
635 defrtrlist_del(dr);
636 }
637
638 /* Nuke prefix list entries toward ifp */
639 for (pr = nd_prefix.lh_first; pr; pr = npr) {
640 npr = pr->ndpr_next;
641 if (pr->ndpr_ifp == ifp) {
642 /*
643 * Because if_detach() does *not* release prefixes
644 * while purging addresses the reference count will
645 * still be above zero. We therefore reset it to
646 * make sure that the prefix really gets purged.
647 */
648 pr->ndpr_refcnt = 0;
649 /*
650 * Previously, pr->ndpr_addr is removed as well,
651 * but I strongly believe we don't have to do it.
652 * nd6_purge() is only called from in6_ifdetach(),
653 * which removes all the associated interface addresses
654 * by itself.
655 * (jinmei@kame.net 20010129)
656 */
657 prelist_remove(pr);
658 }
659 }
660
661 /* cancel default outgoing interface setting */
662 if (nd6_defifindex == ifp->if_index)
663 nd6_setdefaultiface(0);
664
665 if (!ip6_forwarding && ip6_accept_rtadv) { /* XXX: too restrictive? */
666 /* refresh default router list */
667 defrouter_select();
668 }
669
670 /*
671 * Nuke neighbor cache entries for the ifp.
672 * Note that rt->rt_ifp may not be the same as ifp,
673 * due to KAME goto ours hack. See RTM_RESOLVE case in
674 * nd6_rtrequest(), and ip6_input().
675 */
676 ln = llinfo_nd6.ln_next;
677 while (ln && ln != &llinfo_nd6) {
678 struct rtentry *rt;
679 struct sockaddr_dl *sdl;
680
681 nln = ln->ln_next;
682 rt = ln->ln_rt;
683 if (rt && rt->rt_gateway &&
684 rt->rt_gateway->sa_family == AF_LINK) {
685 sdl = (struct sockaddr_dl *)rt->rt_gateway;
686 if (sdl->sdl_index == ifp->if_index)
687 nln = nd6_free(rt, 0);
688 }
689 ln = nln;
690 }
691 }
692
693 struct rtentry *
694 nd6_lookup(addr6, create, ifp)
695 struct in6_addr *addr6;
696 int create;
697 struct ifnet *ifp;
698 {
699 struct rtentry *rt;
700 struct sockaddr_in6 sin6;
701
702 bzero(&sin6, sizeof(sin6));
703 sin6.sin6_len = sizeof(struct sockaddr_in6);
704 sin6.sin6_family = AF_INET6;
705 sin6.sin6_addr = *addr6;
706 rt = rtalloc1((struct sockaddr *)&sin6, create);
707 if (rt && (rt->rt_flags & RTF_LLINFO) == 0) {
708 /*
709 * This is the case for the default route.
710 * If we want to create a neighbor cache for the address, we
711 * should free the route for the destination and allocate an
712 * interface route.
713 */
714 if (create) {
715 RTFREE(rt);
716 rt = 0;
717 }
718 }
719 if (!rt) {
720 if (create && ifp) {
721 int e;
722
723 /*
724 * If no route is available and create is set,
725 * we allocate a host route for the destination
726 * and treat it like an interface route.
727 * This hack is necessary for a neighbor which can't
728 * be covered by our own prefix.
729 */
730 struct ifaddr *ifa =
731 ifaof_ifpforaddr((struct sockaddr *)&sin6, ifp);
732 if (ifa == NULL)
733 return (NULL);
734
735 /*
736 * Create a new route. RTF_LLINFO is necessary
737 * to create a Neighbor Cache entry for the
738 * destination in nd6_rtrequest which will be
739 * called in rtrequest via ifa->ifa_rtrequest.
740 */
741 if ((e = rtrequest(RTM_ADD, (struct sockaddr *)&sin6,
742 ifa->ifa_addr, (struct sockaddr *)&all1_sa,
743 (ifa->ifa_flags | RTF_HOST | RTF_LLINFO) &
744 ~RTF_CLONING, &rt)) != 0) {
745 #if 0
746 log(LOG_ERR,
747 "nd6_lookup: failed to add route for a "
748 "neighbor(%s), errno=%d\n",
749 ip6_sprintf(addr6), e);
750 #endif
751 return (NULL);
752 }
753 if (rt == NULL)
754 return (NULL);
755 if (rt->rt_llinfo) {
756 struct llinfo_nd6 *ln =
757 (struct llinfo_nd6 *)rt->rt_llinfo;
758 ln->ln_state = ND6_LLINFO_NOSTATE;
759 }
760 } else
761 return (NULL);
762 }
763 rt->rt_refcnt--;
764 /*
765 * Validation for the entry.
766 * Note that the check for rt_llinfo is necessary because a cloned
767 * route from a parent route that has the L flag (e.g. the default
768 * route to a p2p interface) may have the flag, too, while the
769 * destination is not actually a neighbor.
770 * XXX: we can't use rt->rt_ifp to check for the interface, since
771 * it might be the loopback interface if the entry is for our
772 * own address on a non-loopback interface. Instead, we should
773 * use rt->rt_ifa->ifa_ifp, which would specify the REAL
774 * interface.
775 */
776 if ((rt->rt_flags & RTF_GATEWAY) || (rt->rt_flags & RTF_LLINFO) == 0 ||
777 rt->rt_gateway->sa_family != AF_LINK || rt->rt_llinfo == NULL ||
778 (ifp && rt->rt_ifa->ifa_ifp != ifp)) {
779 if (create) {
780 nd6log((LOG_DEBUG,
781 "nd6_lookup: failed to lookup %s (if = %s)\n",
782 ip6_sprintf(addr6),
783 ifp ? if_name(ifp) : "unspec"));
784 }
785 return (NULL);
786 }
787 return (rt);
788 }
789
790 /*
791 * Detect if a given IPv6 address identifies a neighbor on a given link.
792 * XXX: should take care of the destination of a p2p link?
793 */
794 int
795 nd6_is_addr_neighbor(addr, ifp)
796 struct sockaddr_in6 *addr;
797 struct ifnet *ifp;
798 {
799 struct nd_prefix *pr;
800
801 /*
802 * A link-local address is always a neighbor.
803 * XXX: we should use the sin6_scope_id field rather than the embedded
804 * interface index.
805 * XXX: a link does not necessarily specify a single interface.
806 */
807 if (IN6_IS_ADDR_LINKLOCAL(&addr->sin6_addr) &&
808 ntohs(addr->sin6_addr.s6_addr16[1]) == ifp->if_index)
809 return (1);
810
811 /*
812 * If the address matches one of our on-link prefixes, it should be a
813 * neighbor.
814 */
815 for (pr = nd_prefix.lh_first; pr; pr = pr->ndpr_next) {
816 if (pr->ndpr_ifp != ifp)
817 continue;
818
819 if (!(pr->ndpr_stateflags & NDPRF_ONLINK))
820 continue;
821
822 if (IN6_ARE_MASKED_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr,
823 &addr->sin6_addr, &pr->ndpr_mask))
824 return (1);
825 }
826
827 /*
828 * If the default router list is empty, all addresses are regarded
829 * as on-link, and thus, as a neighbor.
830 * XXX: we restrict the condition to hosts, because routers usually do
831 * not have the "default router list".
832 */
833 if (!ip6_forwarding && TAILQ_FIRST(&nd_defrouter) == NULL &&
834 nd6_defifindex == ifp->if_index) {
835 return (1);
836 }
837
838 /*
839 * Even if the address matches none of our addresses, it might be
840 * in the neighbor cache.
841 */
842 if (nd6_lookup(&addr->sin6_addr, 0, ifp) != NULL)
843 return (1);
844
845 return (0);
846 }
847
848 /*
849 * Free an nd6 llinfo entry.
850 * Since the function would cause significant changes in the kernel, DO NOT
851 * make it global, unless you have a strong reason for the change, and are sure
852 * that the change is safe.
853 */
854 static struct llinfo_nd6 *
855 nd6_free(rt, gc)
856 struct rtentry *rt;
857 int gc;
858 {
859 struct llinfo_nd6 *ln = (struct llinfo_nd6 *)rt->rt_llinfo, *next;
860 struct in6_addr in6 = ((struct sockaddr_in6 *)rt_key(rt))->sin6_addr;
861 struct nd_defrouter *dr;
862
863 /*
864 * we used to have pfctlinput(PRC_HOSTDEAD) here.
865 * even though it is not harmful, it was not really necessary.
866 */
867
868 /* cancel timer */
869 nd6_llinfo_settimer(ln, -1);
870
871 if (!ip6_forwarding) {
872 int s;
873 s = splsoftnet();
874 dr = defrouter_lookup(&((struct sockaddr_in6 *)rt_key(rt))->sin6_addr,
875 rt->rt_ifp);
876
877 if (dr != NULL && dr->expire &&
878 ln->ln_state == ND6_LLINFO_STALE && gc) {
879 /*
880 * If the reason for the deletion is just garbage
881 * collection, and the neighbor is an active default
882 * router, do not delete it. Instead, reset the GC
883 * timer using the router's lifetime.
884 * Simply deleting the entry would affect default
885 * router selection, which is not necessarily a good
886 * thing, especially when we're using router preference
887 * values.
888 * XXX: the check for ln_state would be redundant,
889 * but we intentionally keep it just in case.
890 */
891 if (dr->expire > time.tv_sec * hz)
892 nd6_llinfo_settimer(ln,
893 dr->expire - time.tv_sec * hz);
894 else
895 nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz);
896 splx(s);
897 return (ln->ln_next);
898 }
899
900 if (ln->ln_router || dr) {
901 /*
902 * rt6_flush must be called whether or not the neighbor
903 * is in the Default Router List.
904 * See a corresponding comment in nd6_na_input().
905 */
906 rt6_flush(&in6, rt->rt_ifp);
907 }
908
909 if (dr) {
910 /*
911 * Unreachablity of a router might affect the default
912 * router selection and on-link detection of advertised
913 * prefixes.
914 */
915
916 /*
917 * Temporarily fake the state to choose a new default
918 * router and to perform on-link determination of
919 * prefixes correctly.
920 * Below the state will be set correctly,
921 * or the entry itself will be deleted.
922 */
923 ln->ln_state = ND6_LLINFO_INCOMPLETE;
924
925 /*
926 * Since defrouter_select() does not affect the
927 * on-link determination and MIP6 needs the check
928 * before the default router selection, we perform
929 * the check now.
930 */
931 pfxlist_onlink_check();
932
933 /*
934 * refresh default router list
935 */
936 defrouter_select();
937 }
938 splx(s);
939 }
940
941 /*
942 * Before deleting the entry, remember the next entry as the
943 * return value. We need this because pfxlist_onlink_check() above
944 * might have freed other entries (particularly the old next entry) as
945 * a side effect (XXX).
946 */
947 next = ln->ln_next;
948
949 /*
950 * Detach the route from the routing tree and the list of neighbor
951 * caches, and disable the route entry not to be used in already
952 * cached routes.
953 */
954 rtrequest(RTM_DELETE, rt_key(rt), (struct sockaddr *)0,
955 rt_mask(rt), 0, (struct rtentry **)0);
956
957 return (next);
958 }
959
960 /*
961 * Upper-layer reachability hint for Neighbor Unreachability Detection.
962 *
963 * XXX cost-effective metods?
964 */
965 void
966 nd6_nud_hint(rt, dst6, force)
967 struct rtentry *rt;
968 struct in6_addr *dst6;
969 int force;
970 {
971 struct llinfo_nd6 *ln;
972
973 /*
974 * If the caller specified "rt", use that. Otherwise, resolve the
975 * routing table by supplied "dst6".
976 */
977 if (!rt) {
978 if (!dst6)
979 return;
980 if (!(rt = nd6_lookup(dst6, 0, NULL)))
981 return;
982 }
983
984 if ((rt->rt_flags & RTF_GATEWAY) != 0 ||
985 (rt->rt_flags & RTF_LLINFO) == 0 ||
986 !rt->rt_llinfo || !rt->rt_gateway ||
987 rt->rt_gateway->sa_family != AF_LINK) {
988 /* This is not a host route. */
989 return;
990 }
991
992 ln = (struct llinfo_nd6 *)rt->rt_llinfo;
993 if (ln->ln_state < ND6_LLINFO_REACHABLE)
994 return;
995
996 /*
997 * if we get upper-layer reachability confirmation many times,
998 * it is possible we have false information.
999 */
1000 if (!force) {
1001 ln->ln_byhint++;
1002 if (ln->ln_byhint > nd6_maxnudhint)
1003 return;
1004 }
1005
1006 ln->ln_state = ND6_LLINFO_REACHABLE;
1007 if (!ND6_LLINFO_PERMANENT(ln)) {
1008 nd6_llinfo_settimer(ln,
1009 (long)ND_IFINFO(rt->rt_ifp)->reachable * hz);
1010 }
1011 }
1012
1013 void
1014 nd6_rtrequest(req, rt, info)
1015 int req;
1016 struct rtentry *rt;
1017 struct rt_addrinfo *info; /* xxx unused */
1018 {
1019 struct sockaddr *gate = rt->rt_gateway;
1020 struct llinfo_nd6 *ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1021 static struct sockaddr_dl null_sdl = {sizeof(null_sdl), AF_LINK};
1022 struct ifnet *ifp = rt->rt_ifp;
1023 struct ifaddr *ifa;
1024
1025 if ((rt->rt_flags & RTF_GATEWAY) != 0)
1026 return;
1027
1028 if (nd6_need_cache(ifp) == 0 && (rt->rt_flags & RTF_HOST) == 0) {
1029 /*
1030 * This is probably an interface direct route for a link
1031 * which does not need neighbor caches (e.g. fe80::%lo0/64).
1032 * We do not need special treatment below for such a route.
1033 * Moreover, the RTF_LLINFO flag which would be set below
1034 * would annoy the ndp(8) command.
1035 */
1036 return;
1037 }
1038
1039 if (req == RTM_RESOLVE &&
1040 (nd6_need_cache(ifp) == 0 || /* stf case */
1041 !nd6_is_addr_neighbor((struct sockaddr_in6 *)rt_key(rt), ifp))) {
1042 /*
1043 * FreeBSD and BSD/OS often make a cloned host route based
1044 * on a less-specific route (e.g. the default route).
1045 * If the less specific route does not have a "gateway"
1046 * (this is the case when the route just goes to a p2p or an
1047 * stf interface), we'll mistakenly make a neighbor cache for
1048 * the host route, and will see strange neighbor solicitation
1049 * for the corresponding destination. In order to avoid the
1050 * confusion, we check if the destination of the route is
1051 * a neighbor in terms of neighbor discovery, and stop the
1052 * process if not. Additionally, we remove the LLINFO flag
1053 * so that ndp(8) will not try to get the neighbor information
1054 * of the destination.
1055 */
1056 rt->rt_flags &= ~RTF_LLINFO;
1057 return;
1058 }
1059
1060 switch (req) {
1061 case RTM_ADD:
1062 /*
1063 * There is no backward compatibility :)
1064 *
1065 * if ((rt->rt_flags & RTF_HOST) == 0 &&
1066 * SIN(rt_mask(rt))->sin_addr.s_addr != 0xffffffff)
1067 * rt->rt_flags |= RTF_CLONING;
1068 */
1069 if ((rt->rt_flags & RTF_CLONING) ||
1070 ((rt->rt_flags & RTF_LLINFO) && !ln)) {
1071 /*
1072 * Case 1: This route should come from a route to
1073 * interface (RTF_CLONING case) or the route should be
1074 * treated as on-link but is currently not
1075 * (RTF_LLINFO && !ln case).
1076 */
1077 rt_setgate(rt, rt_key(rt),
1078 (struct sockaddr *)&null_sdl);
1079 gate = rt->rt_gateway;
1080 SDL(gate)->sdl_type = ifp->if_type;
1081 SDL(gate)->sdl_index = ifp->if_index;
1082 if (ln)
1083 nd6_llinfo_settimer(ln, 0);
1084 if ((rt->rt_flags & RTF_CLONING) != 0)
1085 break;
1086 }
1087 /*
1088 * In IPv4 code, we try to annonuce new RTF_ANNOUNCE entry here.
1089 * We don't do that here since llinfo is not ready yet.
1090 *
1091 * There are also couple of other things to be discussed:
1092 * - unsolicited NA code needs improvement beforehand
1093 * - RFC2461 says we MAY send multicast unsolicited NA
1094 * (7.2.6 paragraph 4), however, it also says that we
1095 * SHOULD provide a mechanism to prevent multicast NA storm.
1096 * we don't have anything like it right now.
1097 * note that the mechanism needs a mutual agreement
1098 * between proxies, which means that we need to implement
1099 * a new protocol, or a new kludge.
1100 * - from RFC2461 6.2.4, host MUST NOT send an unsolicited NA.
1101 * we need to check ip6forwarding before sending it.
1102 * (or should we allow proxy ND configuration only for
1103 * routers? there's no mention about proxy ND from hosts)
1104 */
1105 #if 0
1106 /* XXX it does not work */
1107 if (rt->rt_flags & RTF_ANNOUNCE)
1108 nd6_na_output(ifp,
1109 &SIN6(rt_key(rt))->sin6_addr,
1110 &SIN6(rt_key(rt))->sin6_addr,
1111 ip6_forwarding ? ND_NA_FLAG_ROUTER : 0,
1112 1, NULL);
1113 #endif
1114 /* FALLTHROUGH */
1115 case RTM_RESOLVE:
1116 if ((ifp->if_flags & (IFF_POINTOPOINT | IFF_LOOPBACK)) == 0) {
1117 /*
1118 * Address resolution isn't necessary for a point to
1119 * point link, so we can skip this test for a p2p link.
1120 */
1121 if (gate->sa_family != AF_LINK ||
1122 gate->sa_len < sizeof(null_sdl)) {
1123 log(LOG_DEBUG,
1124 "nd6_rtrequest: bad gateway value: %s\n",
1125 if_name(ifp));
1126 break;
1127 }
1128 SDL(gate)->sdl_type = ifp->if_type;
1129 SDL(gate)->sdl_index = ifp->if_index;
1130 }
1131 if (ln != NULL)
1132 break; /* This happens on a route change */
1133 /*
1134 * Case 2: This route may come from cloning, or a manual route
1135 * add with a LL address.
1136 */
1137 R_Malloc(ln, struct llinfo_nd6 *, sizeof(*ln));
1138 rt->rt_llinfo = (caddr_t)ln;
1139 if (!ln) {
1140 log(LOG_DEBUG, "nd6_rtrequest: malloc failed\n");
1141 break;
1142 }
1143 nd6_inuse++;
1144 nd6_allocated++;
1145 Bzero(ln, sizeof(*ln));
1146 ln->ln_rt = rt;
1147 callout_init(&ln->ln_timer_ch);
1148 /* this is required for "ndp" command. - shin */
1149 if (req == RTM_ADD) {
1150 /*
1151 * gate should have some valid AF_LINK entry,
1152 * and ln->ln_expire should have some lifetime
1153 * which is specified by ndp command.
1154 */
1155 ln->ln_state = ND6_LLINFO_REACHABLE;
1156 ln->ln_byhint = 0;
1157 } else {
1158 /*
1159 * When req == RTM_RESOLVE, rt is created and
1160 * initialized in rtrequest(), so rt_expire is 0.
1161 */
1162 ln->ln_state = ND6_LLINFO_NOSTATE;
1163 nd6_llinfo_settimer(ln, 0);
1164 }
1165 rt->rt_flags |= RTF_LLINFO;
1166 ln->ln_next = llinfo_nd6.ln_next;
1167 llinfo_nd6.ln_next = ln;
1168 ln->ln_prev = &llinfo_nd6;
1169 ln->ln_next->ln_prev = ln;
1170
1171 /*
1172 * check if rt_key(rt) is one of my address assigned
1173 * to the interface.
1174 */
1175 ifa = (struct ifaddr *)in6ifa_ifpwithaddr(rt->rt_ifp,
1176 &SIN6(rt_key(rt))->sin6_addr);
1177 if (ifa) {
1178 caddr_t macp = nd6_ifptomac(ifp);
1179 nd6_llinfo_settimer(ln, -1);
1180 ln->ln_state = ND6_LLINFO_REACHABLE;
1181 ln->ln_byhint = 0;
1182 if (macp) {
1183 Bcopy(macp, LLADDR(SDL(gate)), ifp->if_addrlen);
1184 SDL(gate)->sdl_alen = ifp->if_addrlen;
1185 }
1186 if (nd6_useloopback) {
1187 rt->rt_ifp = &loif[0]; /* XXX */
1188 /*
1189 * Make sure rt_ifa be equal to the ifaddr
1190 * corresponding to the address.
1191 * We need this because when we refer
1192 * rt_ifa->ia6_flags in ip6_input, we assume
1193 * that the rt_ifa points to the address instead
1194 * of the loopback address.
1195 */
1196 if (ifa != rt->rt_ifa) {
1197 IFAFREE(rt->rt_ifa);
1198 IFAREF(ifa);
1199 rt->rt_ifa = ifa;
1200 }
1201 }
1202 } else if (rt->rt_flags & RTF_ANNOUNCE) {
1203 nd6_llinfo_settimer(ln, -1);
1204 ln->ln_state = ND6_LLINFO_REACHABLE;
1205 ln->ln_byhint = 0;
1206
1207 /* join solicited node multicast for proxy ND */
1208 if (ifp->if_flags & IFF_MULTICAST) {
1209 struct in6_addr llsol;
1210 int error;
1211
1212 llsol = SIN6(rt_key(rt))->sin6_addr;
1213 llsol.s6_addr16[0] = htons(0xff02);
1214 llsol.s6_addr16[1] = htons(ifp->if_index);
1215 llsol.s6_addr32[1] = 0;
1216 llsol.s6_addr32[2] = htonl(1);
1217 llsol.s6_addr8[12] = 0xff;
1218
1219 if (!in6_addmulti(&llsol, ifp, &error)) {
1220 nd6log((LOG_ERR, "%s: failed to join "
1221 "%s (errno=%d)\n", if_name(ifp),
1222 ip6_sprintf(&llsol), error));
1223 }
1224 }
1225 }
1226 break;
1227
1228 case RTM_DELETE:
1229 if (!ln)
1230 break;
1231 /* leave from solicited node multicast for proxy ND */
1232 if ((rt->rt_flags & RTF_ANNOUNCE) != 0 &&
1233 (ifp->if_flags & IFF_MULTICAST) != 0) {
1234 struct in6_addr llsol;
1235 struct in6_multi *in6m;
1236
1237 llsol = SIN6(rt_key(rt))->sin6_addr;
1238 llsol.s6_addr16[0] = htons(0xff02);
1239 llsol.s6_addr16[1] = htons(ifp->if_index);
1240 llsol.s6_addr32[1] = 0;
1241 llsol.s6_addr32[2] = htonl(1);
1242 llsol.s6_addr8[12] = 0xff;
1243
1244 IN6_LOOKUP_MULTI(llsol, ifp, in6m);
1245 if (in6m)
1246 in6_delmulti(in6m);
1247 }
1248 nd6_inuse--;
1249 ln->ln_next->ln_prev = ln->ln_prev;
1250 ln->ln_prev->ln_next = ln->ln_next;
1251 ln->ln_prev = NULL;
1252 nd6_llinfo_settimer(ln, -1);
1253 rt->rt_llinfo = 0;
1254 rt->rt_flags &= ~RTF_LLINFO;
1255 if (ln->ln_hold)
1256 m_freem(ln->ln_hold);
1257 Free((caddr_t)ln);
1258 }
1259 }
1260
1261 int
1262 nd6_ioctl(cmd, data, ifp)
1263 u_long cmd;
1264 caddr_t data;
1265 struct ifnet *ifp;
1266 {
1267 struct in6_drlist *drl = (struct in6_drlist *)data;
1268 struct in6_oprlist *oprl = (struct in6_oprlist *)data;
1269 struct in6_ndireq *ndi = (struct in6_ndireq *)data;
1270 struct in6_nbrinfo *nbi = (struct in6_nbrinfo *)data;
1271 struct in6_ndifreq *ndif = (struct in6_ndifreq *)data;
1272 struct nd_defrouter *dr;
1273 struct nd_prefix *pr;
1274 struct rtentry *rt;
1275 int i = 0, error = 0;
1276 int s;
1277
1278 switch (cmd) {
1279 case SIOCGDRLST_IN6:
1280 /*
1281 * obsolete API, use sysctl under net.inet6.icmp6
1282 */
1283 bzero(drl, sizeof(*drl));
1284 s = splsoftnet();
1285 dr = TAILQ_FIRST(&nd_defrouter);
1286 while (dr && i < DRLSTSIZ) {
1287 drl->defrouter[i].rtaddr = dr->rtaddr;
1288 if (IN6_IS_ADDR_LINKLOCAL(&drl->defrouter[i].rtaddr)) {
1289 /* XXX: need to this hack for KAME stack */
1290 drl->defrouter[i].rtaddr.s6_addr16[1] = 0;
1291 } else
1292 log(LOG_ERR,
1293 "default router list contains a "
1294 "non-linklocal address(%s)\n",
1295 ip6_sprintf(&drl->defrouter[i].rtaddr));
1296
1297 drl->defrouter[i].flags = dr->flags;
1298 drl->defrouter[i].rtlifetime = dr->rtlifetime;
1299 drl->defrouter[i].expire = dr->expire;
1300 drl->defrouter[i].if_index = dr->ifp->if_index;
1301 i++;
1302 dr = TAILQ_NEXT(dr, dr_entry);
1303 }
1304 splx(s);
1305 break;
1306 case SIOCGPRLST_IN6:
1307 /*
1308 * obsolete API, use sysctl under net.inet6.icmp6
1309 *
1310 * XXX the structure in6_prlist was changed in backward-
1311 * incompatible manner. in6_oprlist is used for SIOCGPRLST_IN6,
1312 * in6_prlist is used for nd6_sysctl() - fill_prlist().
1313 */
1314 /*
1315 * XXX meaning of fields, especialy "raflags", is very
1316 * differnet between RA prefix list and RR/static prefix list.
1317 * how about separating ioctls into two?
1318 */
1319 bzero(oprl, sizeof(*oprl));
1320 s = splsoftnet();
1321 pr = nd_prefix.lh_first;
1322 while (pr && i < PRLSTSIZ) {
1323 struct nd_pfxrouter *pfr;
1324 int j;
1325
1326 oprl->prefix[i].prefix = pr->ndpr_prefix.sin6_addr;
1327 oprl->prefix[i].raflags = pr->ndpr_raf;
1328 oprl->prefix[i].prefixlen = pr->ndpr_plen;
1329 oprl->prefix[i].vltime = pr->ndpr_vltime;
1330 oprl->prefix[i].pltime = pr->ndpr_pltime;
1331 oprl->prefix[i].if_index = pr->ndpr_ifp->if_index;
1332 oprl->prefix[i].expire = pr->ndpr_expire;
1333
1334 pfr = pr->ndpr_advrtrs.lh_first;
1335 j = 0;
1336 while (pfr) {
1337 if (j < DRLSTSIZ) {
1338 #define RTRADDR oprl->prefix[i].advrtr[j]
1339 RTRADDR = pfr->router->rtaddr;
1340 if (IN6_IS_ADDR_LINKLOCAL(&RTRADDR)) {
1341 /* XXX: hack for KAME */
1342 RTRADDR.s6_addr16[1] = 0;
1343 } else
1344 log(LOG_ERR,
1345 "a router(%s) advertises "
1346 "a prefix with "
1347 "non-link local address\n",
1348 ip6_sprintf(&RTRADDR));
1349 #undef RTRADDR
1350 }
1351 j++;
1352 pfr = pfr->pfr_next;
1353 }
1354 oprl->prefix[i].advrtrs = j;
1355 oprl->prefix[i].origin = PR_ORIG_RA;
1356
1357 i++;
1358 pr = pr->ndpr_next;
1359 }
1360 splx(s);
1361
1362 break;
1363 case OSIOCGIFINFO_IN6:
1364 /* XXX: old ndp(8) assumes a positive value for linkmtu. */
1365 bzero(&ndi->ndi, sizeof(ndi->ndi));
1366 ndi->ndi.linkmtu = IN6_LINKMTU(ifp);
1367 ndi->ndi.maxmtu = ND_IFINFO(ifp)->maxmtu;
1368 ndi->ndi.basereachable = ND_IFINFO(ifp)->basereachable;
1369 ndi->ndi.reachable = ND_IFINFO(ifp)->reachable;
1370 ndi->ndi.retrans = ND_IFINFO(ifp)->retrans;
1371 ndi->ndi.flags = ND_IFINFO(ifp)->flags;
1372 ndi->ndi.recalctm = ND_IFINFO(ifp)->recalctm;
1373 ndi->ndi.chlim = ND_IFINFO(ifp)->chlim;
1374 break;
1375 case SIOCGIFINFO_IN6:
1376 ndi->ndi = *ND_IFINFO(ifp);
1377 break;
1378 case SIOCSIFINFO_FLAGS:
1379 ND_IFINFO(ifp)->flags = ndi->ndi.flags;
1380 break;
1381 case SIOCSNDFLUSH_IN6: /* XXX: the ioctl name is confusing... */
1382 /* sync kernel routing table with the default router list */
1383 defrouter_reset();
1384 defrouter_select();
1385 break;
1386 case SIOCSPFXFLUSH_IN6:
1387 {
1388 /* flush all the prefix advertised by routers */
1389 struct nd_prefix *pr, *next;
1390
1391 s = splsoftnet();
1392 for (pr = nd_prefix.lh_first; pr; pr = next) {
1393 struct in6_ifaddr *ia, *ia_next;
1394
1395 next = pr->ndpr_next;
1396
1397 if (IN6_IS_ADDR_LINKLOCAL(&pr->ndpr_prefix.sin6_addr))
1398 continue; /* XXX */
1399
1400 /* do we really have to remove addresses as well? */
1401 for (ia = in6_ifaddr; ia; ia = ia_next) {
1402 /* ia might be removed. keep the next ptr. */
1403 ia_next = ia->ia_next;
1404
1405 if ((ia->ia6_flags & IN6_IFF_AUTOCONF) == 0)
1406 continue;
1407
1408 if (ia->ia6_ndpr == pr)
1409 in6_purgeaddr(&ia->ia_ifa);
1410 }
1411 prelist_remove(pr);
1412 }
1413 splx(s);
1414 break;
1415 }
1416 case SIOCSRTRFLUSH_IN6:
1417 {
1418 /* flush all the default routers */
1419 struct nd_defrouter *dr, *next;
1420
1421 s = splsoftnet();
1422 defrouter_reset();
1423 for (dr = TAILQ_FIRST(&nd_defrouter); dr; dr = next) {
1424 next = TAILQ_NEXT(dr, dr_entry);
1425 defrtrlist_del(dr);
1426 }
1427 defrouter_select();
1428 splx(s);
1429 break;
1430 }
1431 case SIOCGNBRINFO_IN6:
1432 {
1433 struct llinfo_nd6 *ln;
1434 struct in6_addr nb_addr = nbi->addr; /* make local for safety */
1435
1436 /*
1437 * XXX: KAME specific hack for scoped addresses
1438 * XXXX: for other scopes than link-local?
1439 */
1440 if (IN6_IS_ADDR_LINKLOCAL(&nbi->addr) ||
1441 IN6_IS_ADDR_MC_LINKLOCAL(&nbi->addr)) {
1442 u_int16_t *idp = (u_int16_t *)&nb_addr.s6_addr[2];
1443
1444 if (*idp == 0)
1445 *idp = htons(ifp->if_index);
1446 }
1447
1448 s = splsoftnet();
1449 if ((rt = nd6_lookup(&nb_addr, 0, ifp)) == NULL ||
1450 (ln = (struct llinfo_nd6 *)rt->rt_llinfo) == NULL) {
1451 error = EINVAL;
1452 splx(s);
1453 break;
1454 }
1455 nbi->state = ln->ln_state;
1456 nbi->asked = ln->ln_asked;
1457 nbi->isrouter = ln->ln_router;
1458 nbi->expire = ln->ln_expire;
1459 splx(s);
1460
1461 break;
1462 }
1463 case SIOCGDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */
1464 ndif->ifindex = nd6_defifindex;
1465 break;
1466 case SIOCSDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */
1467 return (nd6_setdefaultiface(ndif->ifindex));
1468 }
1469 return (error);
1470 }
1471
1472 /*
1473 * Create neighbor cache entry and cache link-layer address,
1474 * on reception of inbound ND6 packets. (RS/RA/NS/redirect)
1475 */
1476 struct rtentry *
1477 nd6_cache_lladdr(ifp, from, lladdr, lladdrlen, type, code)
1478 struct ifnet *ifp;
1479 struct in6_addr *from;
1480 char *lladdr;
1481 int lladdrlen;
1482 int type; /* ICMP6 type */
1483 int code; /* type dependent information */
1484 {
1485 struct rtentry *rt = NULL;
1486 struct llinfo_nd6 *ln = NULL;
1487 int is_newentry;
1488 struct sockaddr_dl *sdl = NULL;
1489 int do_update;
1490 int olladdr;
1491 int llchange;
1492 int newstate = 0;
1493
1494 if (!ifp)
1495 panic("ifp == NULL in nd6_cache_lladdr");
1496 if (!from)
1497 panic("from == NULL in nd6_cache_lladdr");
1498
1499 /* nothing must be updated for unspecified address */
1500 if (IN6_IS_ADDR_UNSPECIFIED(from))
1501 return NULL;
1502
1503 /*
1504 * Validation about ifp->if_addrlen and lladdrlen must be done in
1505 * the caller.
1506 *
1507 * XXX If the link does not have link-layer adderss, what should
1508 * we do? (ifp->if_addrlen == 0)
1509 * Spec says nothing in sections for RA, RS and NA. There's small
1510 * description on it in NS section (RFC 2461 7.2.3).
1511 */
1512
1513 rt = nd6_lookup(from, 0, ifp);
1514 if (!rt) {
1515 #if 0
1516 /* nothing must be done if there's no lladdr */
1517 if (!lladdr || !lladdrlen)
1518 return NULL;
1519 #endif
1520
1521 rt = nd6_lookup(from, 1, ifp);
1522 is_newentry = 1;
1523 } else {
1524 /* do nothing if static ndp is set */
1525 if (rt->rt_flags & RTF_STATIC)
1526 return NULL;
1527 is_newentry = 0;
1528 }
1529
1530 if (!rt)
1531 return NULL;
1532 if ((rt->rt_flags & (RTF_GATEWAY | RTF_LLINFO)) != RTF_LLINFO) {
1533 fail:
1534 (void)nd6_free(rt, 0);
1535 return NULL;
1536 }
1537 ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1538 if (!ln)
1539 goto fail;
1540 if (!rt->rt_gateway)
1541 goto fail;
1542 if (rt->rt_gateway->sa_family != AF_LINK)
1543 goto fail;
1544 sdl = SDL(rt->rt_gateway);
1545
1546 olladdr = (sdl->sdl_alen) ? 1 : 0;
1547 if (olladdr && lladdr) {
1548 if (bcmp(lladdr, LLADDR(sdl), ifp->if_addrlen))
1549 llchange = 1;
1550 else
1551 llchange = 0;
1552 } else
1553 llchange = 0;
1554
1555 /*
1556 * newentry olladdr lladdr llchange (*=record)
1557 * 0 n n -- (1)
1558 * 0 y n -- (2)
1559 * 0 n y -- (3) * STALE
1560 * 0 y y n (4) *
1561 * 0 y y y (5) * STALE
1562 * 1 -- n -- (6) NOSTATE(= PASSIVE)
1563 * 1 -- y -- (7) * STALE
1564 */
1565
1566 if (lladdr) { /* (3-5) and (7) */
1567 /*
1568 * Record source link-layer address
1569 * XXX is it dependent to ifp->if_type?
1570 */
1571 sdl->sdl_alen = ifp->if_addrlen;
1572 bcopy(lladdr, LLADDR(sdl), ifp->if_addrlen);
1573 }
1574
1575 if (!is_newentry) {
1576 if ((!olladdr && lladdr) || /* (3) */
1577 (olladdr && lladdr && llchange)) { /* (5) */
1578 do_update = 1;
1579 newstate = ND6_LLINFO_STALE;
1580 } else /* (1-2,4) */
1581 do_update = 0;
1582 } else {
1583 do_update = 1;
1584 if (!lladdr) /* (6) */
1585 newstate = ND6_LLINFO_NOSTATE;
1586 else /* (7) */
1587 newstate = ND6_LLINFO_STALE;
1588 }
1589
1590 if (do_update) {
1591 /*
1592 * Update the state of the neighbor cache.
1593 */
1594 ln->ln_state = newstate;
1595
1596 if (ln->ln_state == ND6_LLINFO_STALE) {
1597 /*
1598 * XXX: since nd6_output() below will cause
1599 * state tansition to DELAY and reset the timer,
1600 * we must set the timer now, although it is actually
1601 * meaningless.
1602 */
1603 nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz);
1604
1605 if (ln->ln_hold) {
1606 /*
1607 * we assume ifp is not a p2p here, so just
1608 * set the 2nd argument as the 1st one.
1609 */
1610 nd6_output(ifp, ifp, ln->ln_hold,
1611 (struct sockaddr_in6 *)rt_key(rt), rt);
1612 ln->ln_hold = NULL;
1613 }
1614 } else if (ln->ln_state == ND6_LLINFO_INCOMPLETE) {
1615 /* probe right away */
1616 nd6_llinfo_settimer((void *)ln, 0);
1617 }
1618 }
1619
1620 /*
1621 * ICMP6 type dependent behavior.
1622 *
1623 * NS: clear IsRouter if new entry
1624 * RS: clear IsRouter
1625 * RA: set IsRouter if there's lladdr
1626 * redir: clear IsRouter if new entry
1627 *
1628 * RA case, (1):
1629 * The spec says that we must set IsRouter in the following cases:
1630 * - If lladdr exist, set IsRouter. This means (1-5).
1631 * - If it is old entry (!newentry), set IsRouter. This means (7).
1632 * So, based on the spec, in (1-5) and (7) cases we must set IsRouter.
1633 * A quetion arises for (1) case. (1) case has no lladdr in the
1634 * neighbor cache, this is similar to (6).
1635 * This case is rare but we figured that we MUST NOT set IsRouter.
1636 *
1637 * newentry olladdr lladdr llchange NS RS RA redir
1638 * D R
1639 * 0 n n -- (1) c ? s
1640 * 0 y n -- (2) c s s
1641 * 0 n y -- (3) c s s
1642 * 0 y y n (4) c s s
1643 * 0 y y y (5) c s s
1644 * 1 -- n -- (6) c c c s
1645 * 1 -- y -- (7) c c s c s
1646 *
1647 * (c=clear s=set)
1648 */
1649 switch (type & 0xff) {
1650 case ND_NEIGHBOR_SOLICIT:
1651 /*
1652 * New entry must have is_router flag cleared.
1653 */
1654 if (is_newentry) /* (6-7) */
1655 ln->ln_router = 0;
1656 break;
1657 case ND_REDIRECT:
1658 /*
1659 * If the icmp is a redirect to a better router, always set the
1660 * is_router flag. Otherwise, if the entry is newly created,
1661 * clear the flag. [RFC 2461, sec 8.3]
1662 */
1663 if (code == ND_REDIRECT_ROUTER)
1664 ln->ln_router = 1;
1665 else if (is_newentry) /* (6-7) */
1666 ln->ln_router = 0;
1667 break;
1668 case ND_ROUTER_SOLICIT:
1669 /*
1670 * is_router flag must always be cleared.
1671 */
1672 ln->ln_router = 0;
1673 break;
1674 case ND_ROUTER_ADVERT:
1675 /*
1676 * Mark an entry with lladdr as a router.
1677 */
1678 if ((!is_newentry && (olladdr || lladdr)) || /* (2-5) */
1679 (is_newentry && lladdr)) { /* (7) */
1680 ln->ln_router = 1;
1681 }
1682 break;
1683 }
1684
1685 /*
1686 * When the link-layer address of a router changes, select the
1687 * best router again. In particular, when the neighbor entry is newly
1688 * created, it might affect the selection policy.
1689 * Question: can we restrict the first condition to the "is_newentry"
1690 * case?
1691 * XXX: when we hear an RA from a new router with the link-layer
1692 * address option, defrouter_select() is called twice, since
1693 * defrtrlist_update called the function as well. However, I believe
1694 * we can compromise the overhead, since it only happens the first
1695 * time.
1696 * XXX: although defrouter_select() should not have a bad effect
1697 * for those are not autoconfigured hosts, we explicitly avoid such
1698 * cases for safety.
1699 */
1700 if (do_update && ln->ln_router && !ip6_forwarding && ip6_accept_rtadv)
1701 defrouter_select();
1702
1703 return rt;
1704 }
1705
1706 static void
1707 nd6_slowtimo(ignored_arg)
1708 void *ignored_arg;
1709 {
1710 int s = splsoftnet();
1711 struct nd_ifinfo *nd6if;
1712 struct ifnet *ifp;
1713
1714 callout_reset(&nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz,
1715 nd6_slowtimo, NULL);
1716 for (ifp = TAILQ_FIRST(&ifnet); ifp; ifp = TAILQ_NEXT(ifp, if_list))
1717 {
1718 nd6if = ND_IFINFO(ifp);
1719 if (nd6if->basereachable && /* already initialized */
1720 (nd6if->recalctm -= ND6_SLOWTIMER_INTERVAL) <= 0) {
1721 /*
1722 * Since reachable time rarely changes by router
1723 * advertisements, we SHOULD insure that a new random
1724 * value gets recomputed at least once every few hours.
1725 * (RFC 2461, 6.3.4)
1726 */
1727 nd6if->recalctm = nd6_recalc_reachtm_interval;
1728 nd6if->reachable = ND_COMPUTE_RTIME(nd6if->basereachable);
1729 }
1730 }
1731 splx(s);
1732 }
1733
1734 #define senderr(e) { error = (e); goto bad;}
1735 int
1736 nd6_output(ifp, origifp, m0, dst, rt0)
1737 struct ifnet *ifp;
1738 struct ifnet *origifp;
1739 struct mbuf *m0;
1740 struct sockaddr_in6 *dst;
1741 struct rtentry *rt0;
1742 {
1743 struct mbuf *m = m0;
1744 struct rtentry *rt = rt0;
1745 struct sockaddr_in6 *gw6 = NULL;
1746 struct llinfo_nd6 *ln = NULL;
1747 int error = 0;
1748
1749 if (IN6_IS_ADDR_MULTICAST(&dst->sin6_addr))
1750 goto sendpkt;
1751
1752 if (nd6_need_cache(ifp) == 0)
1753 goto sendpkt;
1754
1755 /*
1756 * next hop determination. This routine is derived from ether_outpout.
1757 */
1758 if (rt) {
1759 if ((rt->rt_flags & RTF_UP) == 0) {
1760 if ((rt0 = rt = rtalloc1((struct sockaddr *)dst,
1761 1)) != NULL)
1762 {
1763 rt->rt_refcnt--;
1764 if (rt->rt_ifp != ifp) {
1765 /* XXX: loop care? */
1766 return nd6_output(ifp, origifp, m0,
1767 dst, rt);
1768 }
1769 } else
1770 senderr(EHOSTUNREACH);
1771 }
1772
1773 if (rt->rt_flags & RTF_GATEWAY) {
1774 gw6 = (struct sockaddr_in6 *)rt->rt_gateway;
1775
1776 /*
1777 * We skip link-layer address resolution and NUD
1778 * if the gateway is not a neighbor from ND point
1779 * of view, regardless of the value of nd_ifinfo.flags.
1780 * The second condition is a bit tricky; we skip
1781 * if the gateway is our own address, which is
1782 * sometimes used to install a route to a p2p link.
1783 */
1784 if (!nd6_is_addr_neighbor(gw6, ifp) ||
1785 in6ifa_ifpwithaddr(ifp, &gw6->sin6_addr)) {
1786 /*
1787 * We allow this kind of tricky route only
1788 * when the outgoing interface is p2p.
1789 * XXX: we may need a more generic rule here.
1790 */
1791 if ((ifp->if_flags & IFF_POINTOPOINT) == 0)
1792 senderr(EHOSTUNREACH);
1793
1794 goto sendpkt;
1795 }
1796
1797 if (rt->rt_gwroute == 0)
1798 goto lookup;
1799 if (((rt = rt->rt_gwroute)->rt_flags & RTF_UP) == 0) {
1800 rtfree(rt); rt = rt0;
1801 lookup:
1802 rt->rt_gwroute = rtalloc1(rt->rt_gateway, 1);
1803 if ((rt = rt->rt_gwroute) == 0)
1804 senderr(EHOSTUNREACH);
1805 /* the "G" test below also prevents rt == rt0 */
1806 if ((rt->rt_flags & RTF_GATEWAY) ||
1807 (rt->rt_ifp != ifp)) {
1808 rt->rt_refcnt--;
1809 rt0->rt_gwroute = 0;
1810 senderr(EHOSTUNREACH);
1811 }
1812 }
1813 }
1814 }
1815
1816 /*
1817 * Address resolution or Neighbor Unreachability Detection
1818 * for the next hop.
1819 * At this point, the destination of the packet must be a unicast
1820 * or an anycast address(i.e. not a multicast).
1821 */
1822
1823 /* Look up the neighbor cache for the nexthop */
1824 if (rt && (rt->rt_flags & RTF_LLINFO) != 0)
1825 ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1826 else {
1827 /*
1828 * Since nd6_is_addr_neighbor() internally calls nd6_lookup(),
1829 * the condition below is not very efficient. But we believe
1830 * it is tolerable, because this should be a rare case.
1831 */
1832 if (nd6_is_addr_neighbor(dst, ifp) &&
1833 (rt = nd6_lookup(&dst->sin6_addr, 1, ifp)) != NULL)
1834 ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1835 }
1836 if (!ln || !rt) {
1837 if ((ifp->if_flags & IFF_POINTOPOINT) == 0 &&
1838 !(ND_IFINFO(ifp)->flags & ND6_IFF_PERFORMNUD)) {
1839 log(LOG_DEBUG,
1840 "nd6_output: can't allocate llinfo for %s "
1841 "(ln=%p, rt=%p)\n",
1842 ip6_sprintf(&dst->sin6_addr), ln, rt);
1843 senderr(EIO); /* XXX: good error? */
1844 }
1845
1846 goto sendpkt; /* send anyway */
1847 }
1848
1849 /* We don't have to do link-layer address resolution on a p2p link. */
1850 if ((ifp->if_flags & IFF_POINTOPOINT) != 0 &&
1851 ln->ln_state < ND6_LLINFO_REACHABLE) {
1852 ln->ln_state = ND6_LLINFO_STALE;
1853 nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz);
1854 }
1855
1856 /*
1857 * The first time we send a packet to a neighbor whose entry is
1858 * STALE, we have to change the state to DELAY and a sets a timer to
1859 * expire in DELAY_FIRST_PROBE_TIME seconds to ensure do
1860 * neighbor unreachability detection on expiration.
1861 * (RFC 2461 7.3.3)
1862 */
1863 if (ln->ln_state == ND6_LLINFO_STALE) {
1864 ln->ln_asked = 0;
1865 ln->ln_state = ND6_LLINFO_DELAY;
1866 nd6_llinfo_settimer(ln, nd6_delay * hz);
1867 }
1868
1869 /*
1870 * If the neighbor cache entry has a state other than INCOMPLETE
1871 * (i.e. its link-layer address is already resolved), just
1872 * send the packet.
1873 */
1874 if (ln->ln_state > ND6_LLINFO_INCOMPLETE)
1875 goto sendpkt;
1876
1877 /*
1878 * There is a neighbor cache entry, but no ethernet address
1879 * response yet. Replace the held mbuf (if any) with this
1880 * latest one.
1881 */
1882 if (ln->ln_state == ND6_LLINFO_NOSTATE)
1883 ln->ln_state = ND6_LLINFO_INCOMPLETE;
1884 if (ln->ln_hold)
1885 m_freem(ln->ln_hold);
1886 ln->ln_hold = m;
1887 /*
1888 * If there has been no NS for the neighbor after entering the
1889 * INCOMPLETE state, send the first solicitation.
1890 */
1891 if (!ND6_LLINFO_PERMANENT(ln) && ln->ln_asked == 0) {
1892 ln->ln_asked++;
1893 nd6_llinfo_settimer(ln,
1894 (long)ND_IFINFO(ifp)->retrans * hz / 1000);
1895 nd6_ns_output(ifp, NULL, &dst->sin6_addr, ln, 0);
1896 }
1897 return (0);
1898
1899 sendpkt:
1900
1901 #ifdef IPSEC
1902 /* clean ipsec history once it goes out of the node */
1903 ipsec_delaux(m);
1904 #endif
1905 if ((ifp->if_flags & IFF_LOOPBACK) != 0) {
1906 return ((*ifp->if_output)(origifp, m, (struct sockaddr *)dst,
1907 rt));
1908 }
1909 return ((*ifp->if_output)(ifp, m, (struct sockaddr *)dst, rt));
1910
1911 bad:
1912 if (m)
1913 m_freem(m);
1914 return (error);
1915 }
1916 #undef senderr
1917
1918 int
1919 nd6_need_cache(ifp)
1920 struct ifnet *ifp;
1921 {
1922 /*
1923 * XXX: we currently do not make neighbor cache on any interface
1924 * other than ARCnet, Ethernet, FDDI and GIF.
1925 *
1926 * RFC2893 says:
1927 * - unidirectional tunnels needs no ND
1928 */
1929 switch (ifp->if_type) {
1930 case IFT_ARCNET:
1931 case IFT_ETHER:
1932 case IFT_FDDI:
1933 case IFT_IEEE1394:
1934 case IFT_GIF: /* XXX need more cases? */
1935 return (1);
1936 default:
1937 return (0);
1938 }
1939 }
1940
1941 int
1942 nd6_storelladdr(ifp, rt, m, dst, desten)
1943 struct ifnet *ifp;
1944 struct rtentry *rt;
1945 struct mbuf *m;
1946 struct sockaddr *dst;
1947 u_char *desten;
1948 {
1949 struct sockaddr_dl *sdl;
1950
1951 if (m->m_flags & M_MCAST) {
1952 switch (ifp->if_type) {
1953 case IFT_ETHER:
1954 case IFT_FDDI:
1955 ETHER_MAP_IPV6_MULTICAST(&SIN6(dst)->sin6_addr,
1956 desten);
1957 return (1);
1958 case IFT_IEEE1394:
1959 bcopy(ifp->if_broadcastaddr, desten, ifp->if_addrlen);
1960 return (1);
1961 case IFT_ARCNET:
1962 *desten = 0;
1963 return (1);
1964 default:
1965 m_freem(m);
1966 return (0);
1967 }
1968 }
1969
1970 if (rt == NULL) {
1971 /* this could happen, if we could not allocate memory */
1972 m_freem(m);
1973 return (0);
1974 }
1975 if (rt->rt_gateway->sa_family != AF_LINK) {
1976 printf("nd6_storelladdr: something odd happens\n");
1977 m_freem(m);
1978 return (0);
1979 }
1980 sdl = SDL(rt->rt_gateway);
1981 if (sdl->sdl_alen == 0) {
1982 /* this should be impossible, but we bark here for debugging */
1983 printf("nd6_storelladdr: sdl_alen == 0, dst=%s, if=%s\n",
1984 ip6_sprintf(&SIN6(dst)->sin6_addr), if_name(ifp));
1985 m_freem(m);
1986 return (0);
1987 }
1988
1989 bcopy(LLADDR(sdl), desten, sdl->sdl_alen);
1990 return (1);
1991 }
1992
1993 int
1994 nd6_sysctl(name, oldp, oldlenp, newp, newlen)
1995 int name;
1996 void *oldp; /* syscall arg, need copyout */
1997 size_t *oldlenp;
1998 void *newp; /* syscall arg, need copyin */
1999 size_t newlen;
2000 {
2001 void *p;
2002 size_t ol;
2003 int error;
2004
2005 error = 0;
2006
2007 if (newp)
2008 return EPERM;
2009 if (oldp && !oldlenp)
2010 return EINVAL;
2011 ol = oldlenp ? *oldlenp : 0;
2012
2013 if (oldp) {
2014 p = malloc(*oldlenp, M_TEMP, M_WAITOK);
2015 if (!p)
2016 return ENOMEM;
2017 } else
2018 p = NULL;
2019 switch (name) {
2020 case ICMPV6CTL_ND6_DRLIST:
2021 error = fill_drlist(p, oldlenp, ol);
2022 if (!error && p && oldp)
2023 error = copyout(p, oldp, *oldlenp);
2024 break;
2025
2026 case ICMPV6CTL_ND6_PRLIST:
2027 error = fill_prlist(p, oldlenp, ol);
2028 if (!error && p && oldp)
2029 error = copyout(p, oldp, *oldlenp);
2030 break;
2031
2032 default:
2033 error = ENOPROTOOPT;
2034 break;
2035 }
2036 if (p)
2037 free(p, M_TEMP);
2038
2039 return (error);
2040 }
2041
2042 static int
2043 fill_drlist(oldp, oldlenp, ol)
2044 void *oldp;
2045 size_t *oldlenp, ol;
2046 {
2047 int error = 0, s;
2048 struct in6_defrouter *d = NULL, *de = NULL;
2049 struct nd_defrouter *dr;
2050 size_t l;
2051
2052 s = splsoftnet();
2053
2054 if (oldp) {
2055 d = (struct in6_defrouter *)oldp;
2056 de = (struct in6_defrouter *)((caddr_t)oldp + *oldlenp);
2057 }
2058 l = 0;
2059
2060 for (dr = TAILQ_FIRST(&nd_defrouter); dr;
2061 dr = TAILQ_NEXT(dr, dr_entry)) {
2062
2063 if (oldp && d + 1 <= de) {
2064 bzero(d, sizeof(*d));
2065 d->rtaddr.sin6_family = AF_INET6;
2066 d->rtaddr.sin6_len = sizeof(struct sockaddr_in6);
2067 d->rtaddr.sin6_addr = dr->rtaddr;
2068 in6_recoverscope(&d->rtaddr, &d->rtaddr.sin6_addr,
2069 dr->ifp);
2070 d->flags = dr->flags;
2071 d->rtlifetime = dr->rtlifetime;
2072 d->expire = dr->expire;
2073 d->if_index = dr->ifp->if_index;
2074 }
2075
2076 l += sizeof(*d);
2077 if (d)
2078 d++;
2079 }
2080
2081 if (oldp) {
2082 *oldlenp = l; /* (caddr_t)d - (caddr_t)oldp */
2083 if (l > ol)
2084 error = ENOMEM;
2085 } else
2086 *oldlenp = l;
2087
2088 splx(s);
2089
2090 return (error);
2091 }
2092
2093 static int
2094 fill_prlist(oldp, oldlenp, ol)
2095 void *oldp;
2096 size_t *oldlenp, ol;
2097 {
2098 int error = 0, s;
2099 struct nd_prefix *pr;
2100 struct in6_prefix *p = NULL;
2101 struct in6_prefix *pe = NULL;
2102 size_t l;
2103
2104 s = splsoftnet();
2105
2106 if (oldp) {
2107 p = (struct in6_prefix *)oldp;
2108 pe = (struct in6_prefix *)((caddr_t)oldp + *oldlenp);
2109 }
2110 l = 0;
2111
2112 for (pr = nd_prefix.lh_first; pr; pr = pr->ndpr_next) {
2113 u_short advrtrs;
2114 size_t advance;
2115 struct sockaddr_in6 *sin6;
2116 struct sockaddr_in6 *s6;
2117 struct nd_pfxrouter *pfr;
2118
2119 if (oldp && p + 1 <= pe)
2120 {
2121 bzero(p, sizeof(*p));
2122 sin6 = (struct sockaddr_in6 *)(p + 1);
2123
2124 p->prefix = pr->ndpr_prefix;
2125 if (in6_recoverscope(&p->prefix,
2126 &p->prefix.sin6_addr, pr->ndpr_ifp) != 0)
2127 log(LOG_ERR,
2128 "scope error in prefix list (%s)\n",
2129 ip6_sprintf(&p->prefix.sin6_addr));
2130 p->raflags = pr->ndpr_raf;
2131 p->prefixlen = pr->ndpr_plen;
2132 p->vltime = pr->ndpr_vltime;
2133 p->pltime = pr->ndpr_pltime;
2134 p->if_index = pr->ndpr_ifp->if_index;
2135 if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME)
2136 p->expire = 0;
2137 else {
2138 time_t maxexpire;
2139
2140 /* XXX: we assume time_t is signed. */
2141 maxexpire = (-1) &
2142 ~(1 << ((sizeof(maxexpire) * 8) - 1));
2143 if (pr->ndpr_vltime <
2144 maxexpire - pr->ndpr_lastupdate) {
2145 p->expire = pr->ndpr_lastupdate +
2146 pr->ndpr_vltime;
2147 } else
2148 p->expire = maxexpire;
2149 }
2150 p->refcnt = pr->ndpr_refcnt;
2151 p->flags = pr->ndpr_stateflags;
2152 p->origin = PR_ORIG_RA;
2153 advrtrs = 0;
2154 for (pfr = pr->ndpr_advrtrs.lh_first; pfr;
2155 pfr = pfr->pfr_next) {
2156 if ((void *)&sin6[advrtrs + 1] > (void *)pe) {
2157 advrtrs++;
2158 continue;
2159 }
2160 s6 = &sin6[advrtrs];
2161 s6->sin6_family = AF_INET6;
2162 s6->sin6_len = sizeof(struct sockaddr_in6);
2163 s6->sin6_addr = pfr->router->rtaddr;
2164 in6_recoverscope(s6, &s6->sin6_addr,
2165 pfr->router->ifp);
2166 advrtrs++;
2167 }
2168 p->advrtrs = advrtrs;
2169 }
2170 else {
2171 advrtrs = 0;
2172 for (pfr = pr->ndpr_advrtrs.lh_first; pfr;
2173 pfr = pfr->pfr_next)
2174 advrtrs++;
2175 }
2176
2177 advance = sizeof(*p) + sizeof(*sin6) * advrtrs;
2178 l += advance;
2179 if (p)
2180 p = (struct in6_prefix *)((caddr_t)p + advance);
2181 }
2182
2183 if (oldp) {
2184 *oldlenp = l; /* (caddr_t)d - (caddr_t)oldp */
2185 if (l > ol)
2186 error = ENOMEM;
2187 } else
2188 *oldlenp = l;
2189
2190 splx(s);
2191
2192 return (error);
2193 }
Cache object: 9914c43f2197cd29df9d87b462cb3c09
|