The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/netinet6/nd6.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: BSD-3-Clause
    3  *
    4  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
    5  * All rights reserved.
    6  *
    7  * Redistribution and use in source and binary forms, with or without
    8  * modification, are permitted provided that the following conditions
    9  * are met:
   10  * 1. Redistributions of source code must retain the above copyright
   11  *    notice, this list of conditions and the following disclaimer.
   12  * 2. Redistributions in binary form must reproduce the above copyright
   13  *    notice, this list of conditions and the following disclaimer in the
   14  *    documentation and/or other materials provided with the distribution.
   15  * 3. Neither the name of the project nor the names of its contributors
   16  *    may be used to endorse or promote products derived from this software
   17  *    without specific prior written permission.
   18  *
   19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
   20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
   23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   29  * SUCH DAMAGE.
   30  *
   31  *      $KAME: nd6.c,v 1.144 2001/05/24 07:44:00 itojun Exp $
   32  */
   33 
   34 #include <sys/cdefs.h>
   35 __FBSDID("$FreeBSD$");
   36 
   37 #include "opt_inet.h"
   38 #include "opt_inet6.h"
   39 #include "opt_route.h"
   40 
   41 #include <sys/param.h>
   42 #include <sys/systm.h>
   43 #include <sys/eventhandler.h>
   44 #include <sys/callout.h>
   45 #include <sys/lock.h>
   46 #include <sys/malloc.h>
   47 #include <sys/mbuf.h>
   48 #include <sys/mutex.h>
   49 #include <sys/socket.h>
   50 #include <sys/sockio.h>
   51 #include <sys/time.h>
   52 #include <sys/kernel.h>
   53 #include <sys/protosw.h>
   54 #include <sys/errno.h>
   55 #include <sys/syslog.h>
   56 #include <sys/rwlock.h>
   57 #include <sys/queue.h>
   58 #include <sys/sdt.h>
   59 #include <sys/sysctl.h>
   60 
   61 #include <net/if.h>
   62 #include <net/if_var.h>
   63 #include <net/if_dl.h>
   64 #include <net/if_types.h>
   65 #include <net/route.h>
   66 #include <net/route/route_ctl.h>
   67 #include <net/route/nhop.h>
   68 #include <net/vnet.h>
   69 
   70 #include <netinet/in.h>
   71 #include <netinet/in_kdtrace.h>
   72 #include <net/if_llatbl.h>
   73 #include <netinet/if_ether.h>
   74 #include <netinet6/in6_var.h>
   75 #include <netinet/ip6.h>
   76 #include <netinet6/ip6_var.h>
   77 #include <netinet6/scope6_var.h>
   78 #include <netinet6/nd6.h>
   79 #include <netinet6/in6_ifattach.h>
   80 #include <netinet/icmp6.h>
   81 #include <netinet6/send.h>
   82 
   83 #include <sys/limits.h>
   84 
   85 #include <security/mac/mac_framework.h>
   86 
   87 #define ND6_SLOWTIMER_INTERVAL (60 * 60) /* 1 hour */
   88 #define ND6_RECALC_REACHTM_INTERVAL (60 * 120) /* 2 hours */
   89 
   90 #define SIN6(s) ((const struct sockaddr_in6 *)(s))
   91 
   92 MALLOC_DEFINE(M_IP6NDP, "ip6ndp", "IPv6 Neighbor Discovery");
   93 
   94 /* timer values */
   95 VNET_DEFINE(int, nd6_prune)     = 1;    /* walk list every 1 seconds */
   96 VNET_DEFINE(int, nd6_delay)     = 5;    /* delay first probe time 5 second */
   97 VNET_DEFINE(int, nd6_umaxtries) = 3;    /* maximum unicast query */
   98 VNET_DEFINE(int, nd6_mmaxtries) = 3;    /* maximum multicast query */
   99 VNET_DEFINE(int, nd6_useloopback) = 1;  /* use loopback interface for
  100                                          * local traffic */
  101 VNET_DEFINE(int, nd6_gctimer)   = (60 * 60 * 24); /* 1 day: garbage
  102                                          * collection timer */
  103 
  104 /* preventing too many loops in ND option parsing */
  105 VNET_DEFINE_STATIC(int, nd6_maxndopt) = 10; /* max # of ND options allowed */
  106 
  107 VNET_DEFINE(int, nd6_maxnudhint) = 0;   /* max # of subsequent upper
  108                                          * layer hints */
  109 VNET_DEFINE_STATIC(int, nd6_maxqueuelen) = 16; /* max pkts cached in unresolved
  110                                          * ND entries */
  111 #define V_nd6_maxndopt                  VNET(nd6_maxndopt)
  112 #define V_nd6_maxqueuelen               VNET(nd6_maxqueuelen)
  113 
  114 #ifdef ND6_DEBUG
  115 VNET_DEFINE(int, nd6_debug) = 1;
  116 #else
  117 VNET_DEFINE(int, nd6_debug) = 0;
  118 #endif
  119 
  120 static eventhandler_tag lle_event_eh, iflladdr_event_eh, ifnet_link_event_eh;
  121 
  122 VNET_DEFINE(struct nd_prhead, nd_prefix);
  123 VNET_DEFINE(struct rwlock, nd6_lock);
  124 VNET_DEFINE(uint64_t, nd6_list_genid);
  125 VNET_DEFINE(struct mtx, nd6_onlink_mtx);
  126 
  127 VNET_DEFINE(int, nd6_recalc_reachtm_interval) = ND6_RECALC_REACHTM_INTERVAL;
  128 #define V_nd6_recalc_reachtm_interval   VNET(nd6_recalc_reachtm_interval)
  129 
  130 int     (*send_sendso_input_hook)(struct mbuf *, struct ifnet *, int, int);
  131 
  132 static int nd6_is_new_addr_neighbor(const struct sockaddr_in6 *,
  133         struct ifnet *);
  134 static void nd6_setmtu0(struct ifnet *, struct nd_ifinfo *);
  135 static void nd6_slowtimo(void *);
  136 static int regen_tmpaddr(struct in6_ifaddr *);
  137 static void nd6_free(struct llentry **, int);
  138 static void nd6_free_redirect(const struct llentry *);
  139 static void nd6_llinfo_timer(void *);
  140 static void nd6_llinfo_settimer_locked(struct llentry *, long);
  141 static void clear_llinfo_pqueue(struct llentry *);
  142 static int nd6_resolve_slow(struct ifnet *, int, int, struct mbuf *,
  143     const struct sockaddr_in6 *, u_char *, uint32_t *, struct llentry **);
  144 static int nd6_need_cache(struct ifnet *);
  145 
  146 VNET_DEFINE_STATIC(struct callout, nd6_slowtimo_ch);
  147 #define V_nd6_slowtimo_ch               VNET(nd6_slowtimo_ch)
  148 
  149 VNET_DEFINE_STATIC(struct callout, nd6_timer_ch);
  150 #define V_nd6_timer_ch                  VNET(nd6_timer_ch)
  151 
  152 SYSCTL_DECL(_net_inet6_icmp6);
  153 
  154 static void
  155 nd6_lle_event(void *arg __unused, struct llentry *lle, int evt)
  156 {
  157         struct rt_addrinfo rtinfo;
  158         struct sockaddr_in6 dst;
  159         struct sockaddr_dl gw;
  160         struct ifnet *ifp;
  161         int type;
  162         int fibnum;
  163 
  164         LLE_WLOCK_ASSERT(lle);
  165 
  166         if (lltable_get_af(lle->lle_tbl) != AF_INET6)
  167                 return;
  168 
  169         switch (evt) {
  170         case LLENTRY_RESOLVED:
  171                 type = RTM_ADD;
  172                 KASSERT(lle->la_flags & LLE_VALID,
  173                     ("%s: %p resolved but not valid?", __func__, lle));
  174                 break;
  175         case LLENTRY_EXPIRED:
  176                 type = RTM_DELETE;
  177                 break;
  178         default:
  179                 return;
  180         }
  181 
  182         ifp = lltable_get_ifp(lle->lle_tbl);
  183 
  184         bzero(&dst, sizeof(dst));
  185         bzero(&gw, sizeof(gw));
  186         bzero(&rtinfo, sizeof(rtinfo));
  187         lltable_fill_sa_entry(lle, (struct sockaddr *)&dst);
  188         dst.sin6_scope_id = in6_getscopezone(ifp,
  189             in6_addrscope(&dst.sin6_addr));
  190         gw.sdl_len = sizeof(struct sockaddr_dl);
  191         gw.sdl_family = AF_LINK;
  192         gw.sdl_alen = ifp->if_addrlen;
  193         gw.sdl_index = ifp->if_index;
  194         gw.sdl_type = ifp->if_type;
  195         if (evt == LLENTRY_RESOLVED)
  196                 bcopy(lle->ll_addr, gw.sdl_data, ifp->if_addrlen);
  197         rtinfo.rti_info[RTAX_DST] = (struct sockaddr *)&dst;
  198         rtinfo.rti_info[RTAX_GATEWAY] = (struct sockaddr *)&gw;
  199         rtinfo.rti_addrs = RTA_DST | RTA_GATEWAY;
  200         fibnum = V_rt_add_addr_allfibs ? RT_ALL_FIBS : ifp->if_fib;
  201         rt_missmsg_fib(type, &rtinfo, RTF_HOST | RTF_LLDATA | (
  202             type == RTM_ADD ? RTF_UP: 0), 0, fibnum);
  203 }
  204 
  205 /*
  206  * A handler for interface link layer address change event.
  207  */
  208 static void
  209 nd6_iflladdr(void *arg __unused, struct ifnet *ifp)
  210 {
  211         if (ifp->if_afdata[AF_INET6] == NULL)
  212                 return;
  213 
  214         lltable_update_ifaddr(LLTABLE6(ifp));
  215 }
  216 
  217 void
  218 nd6_init(void)
  219 {
  220 
  221         mtx_init(&V_nd6_onlink_mtx, "nd6 onlink", NULL, MTX_DEF);
  222         rw_init(&V_nd6_lock, "nd6 list");
  223 
  224         LIST_INIT(&V_nd_prefix);
  225         nd6_defrouter_init();
  226 
  227         /* Start timers. */
  228         callout_init(&V_nd6_slowtimo_ch, 1);
  229         callout_reset(&V_nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz,
  230             nd6_slowtimo, curvnet);
  231 
  232         callout_init(&V_nd6_timer_ch, 1);
  233         callout_reset(&V_nd6_timer_ch, hz, nd6_timer, curvnet);
  234 
  235         nd6_dad_init();
  236         if (IS_DEFAULT_VNET(curvnet)) {
  237                 lle_event_eh = EVENTHANDLER_REGISTER(lle_event, nd6_lle_event,
  238                     NULL, EVENTHANDLER_PRI_ANY);
  239                 iflladdr_event_eh = EVENTHANDLER_REGISTER(iflladdr_event,
  240                     nd6_iflladdr, NULL, EVENTHANDLER_PRI_ANY);
  241                 ifnet_link_event_eh = EVENTHANDLER_REGISTER(ifnet_link_event,
  242                     nd6_ifnet_link_event, NULL, EVENTHANDLER_PRI_ANY);
  243         }
  244 }
  245 
  246 #ifdef VIMAGE
  247 void
  248 nd6_destroy()
  249 {
  250 
  251         callout_drain(&V_nd6_slowtimo_ch);
  252         callout_drain(&V_nd6_timer_ch);
  253         if (IS_DEFAULT_VNET(curvnet)) {
  254                 EVENTHANDLER_DEREGISTER(ifnet_link_event, ifnet_link_event_eh);
  255                 EVENTHANDLER_DEREGISTER(lle_event, lle_event_eh);
  256                 EVENTHANDLER_DEREGISTER(iflladdr_event, iflladdr_event_eh);
  257         }
  258         rw_destroy(&V_nd6_lock);
  259         mtx_destroy(&V_nd6_onlink_mtx);
  260 }
  261 #endif
  262 
  263 struct nd_ifinfo *
  264 nd6_ifattach(struct ifnet *ifp)
  265 {
  266         struct nd_ifinfo *nd;
  267 
  268         nd = malloc(sizeof(*nd), M_IP6NDP, M_WAITOK | M_ZERO);
  269         nd->initialized = 1;
  270 
  271         nd->chlim = IPV6_DEFHLIM;
  272         nd->basereachable = REACHABLE_TIME;
  273         nd->reachable = ND_COMPUTE_RTIME(nd->basereachable);
  274         nd->retrans = RETRANS_TIMER;
  275 
  276         nd->flags = ND6_IFF_PERFORMNUD;
  277 
  278         /* Set IPv6 disabled on all interfaces but loopback by default. */
  279         if ((ifp->if_flags & IFF_LOOPBACK) == 0)
  280                 nd->flags |= ND6_IFF_IFDISABLED;
  281 
  282         /* A loopback interface always has ND6_IFF_AUTO_LINKLOCAL.
  283          * XXXHRS: Clear ND6_IFF_AUTO_LINKLOCAL on an IFT_BRIDGE interface by
  284          * default regardless of the V_ip6_auto_linklocal configuration to
  285          * give a reasonable default behavior.
  286          */
  287         if ((V_ip6_auto_linklocal && ifp->if_type != IFT_BRIDGE) ||
  288             (ifp->if_flags & IFF_LOOPBACK))
  289                 nd->flags |= ND6_IFF_AUTO_LINKLOCAL;
  290         /*
  291          * A loopback interface does not need to accept RTADV.
  292          * XXXHRS: Clear ND6_IFF_ACCEPT_RTADV on an IFT_BRIDGE interface by
  293          * default regardless of the V_ip6_accept_rtadv configuration to
  294          * prevent the interface from accepting RA messages arrived
  295          * on one of the member interfaces with ND6_IFF_ACCEPT_RTADV.
  296          */
  297         if (V_ip6_accept_rtadv &&
  298             !(ifp->if_flags & IFF_LOOPBACK) &&
  299             (ifp->if_type != IFT_BRIDGE)) {
  300                         nd->flags |= ND6_IFF_ACCEPT_RTADV;
  301                         /* If we globally accept rtadv, assume IPv6 on. */
  302                         nd->flags &= ~ND6_IFF_IFDISABLED;
  303         }
  304         if (V_ip6_no_radr && !(ifp->if_flags & IFF_LOOPBACK))
  305                 nd->flags |= ND6_IFF_NO_RADR;
  306 
  307         /* XXX: we cannot call nd6_setmtu since ifp is not fully initialized */
  308         nd6_setmtu0(ifp, nd);
  309 
  310         return nd;
  311 }
  312 
  313 void
  314 nd6_ifdetach(struct ifnet *ifp, struct nd_ifinfo *nd)
  315 {
  316         struct epoch_tracker et;
  317         struct ifaddr *ifa, *next;
  318 
  319         NET_EPOCH_ENTER(et);
  320         CK_STAILQ_FOREACH_SAFE(ifa, &ifp->if_addrhead, ifa_link, next) {
  321                 if (ifa->ifa_addr->sa_family != AF_INET6)
  322                         continue;
  323 
  324                 /* stop DAD processing */
  325                 nd6_dad_stop(ifa);
  326         }
  327         NET_EPOCH_EXIT(et);
  328 
  329         free(nd, M_IP6NDP);
  330 }
  331 
  332 /*
  333  * Reset ND level link MTU. This function is called when the physical MTU
  334  * changes, which means we might have to adjust the ND level MTU.
  335  */
  336 void
  337 nd6_setmtu(struct ifnet *ifp)
  338 {
  339         if (ifp->if_afdata[AF_INET6] == NULL)
  340                 return;
  341 
  342         nd6_setmtu0(ifp, ND_IFINFO(ifp));
  343 }
  344 
  345 /* XXX todo: do not maintain copy of ifp->if_mtu in ndi->maxmtu */
  346 void
  347 nd6_setmtu0(struct ifnet *ifp, struct nd_ifinfo *ndi)
  348 {
  349         u_int32_t omaxmtu;
  350 
  351         omaxmtu = ndi->maxmtu;
  352         ndi->maxmtu = ifp->if_mtu;
  353 
  354         /*
  355          * Decreasing the interface MTU under IPV6 minimum MTU may cause
  356          * undesirable situation.  We thus notify the operator of the change
  357          * explicitly.  The check for omaxmtu is necessary to restrict the
  358          * log to the case of changing the MTU, not initializing it.
  359          */
  360         if (omaxmtu >= IPV6_MMTU && ndi->maxmtu < IPV6_MMTU) {
  361                 log(LOG_NOTICE, "nd6_setmtu0: "
  362                     "new link MTU on %s (%lu) is too small for IPv6\n",
  363                     if_name(ifp), (unsigned long)ndi->maxmtu);
  364         }
  365 
  366         if (ndi->maxmtu > V_in6_maxmtu)
  367                 in6_setmaxmtu(); /* check all interfaces just in case */
  368 
  369 }
  370 
  371 void
  372 nd6_option_init(void *opt, int icmp6len, union nd_opts *ndopts)
  373 {
  374 
  375         bzero(ndopts, sizeof(*ndopts));
  376         ndopts->nd_opts_search = (struct nd_opt_hdr *)opt;
  377         ndopts->nd_opts_last
  378                 = (struct nd_opt_hdr *)(((u_char *)opt) + icmp6len);
  379 
  380         if (icmp6len == 0) {
  381                 ndopts->nd_opts_done = 1;
  382                 ndopts->nd_opts_search = NULL;
  383         }
  384 }
  385 
  386 /*
  387  * Take one ND option.
  388  */
  389 struct nd_opt_hdr *
  390 nd6_option(union nd_opts *ndopts)
  391 {
  392         struct nd_opt_hdr *nd_opt;
  393         int olen;
  394 
  395         KASSERT(ndopts != NULL, ("%s: ndopts == NULL", __func__));
  396         KASSERT(ndopts->nd_opts_last != NULL, ("%s: uninitialized ndopts",
  397             __func__));
  398         if (ndopts->nd_opts_search == NULL)
  399                 return NULL;
  400         if (ndopts->nd_opts_done)
  401                 return NULL;
  402 
  403         nd_opt = ndopts->nd_opts_search;
  404 
  405         /* make sure nd_opt_len is inside the buffer */
  406         if ((caddr_t)&nd_opt->nd_opt_len >= (caddr_t)ndopts->nd_opts_last) {
  407                 bzero(ndopts, sizeof(*ndopts));
  408                 return NULL;
  409         }
  410 
  411         olen = nd_opt->nd_opt_len << 3;
  412         if (olen == 0) {
  413                 /*
  414                  * Message validation requires that all included
  415                  * options have a length that is greater than zero.
  416                  */
  417                 bzero(ndopts, sizeof(*ndopts));
  418                 return NULL;
  419         }
  420 
  421         ndopts->nd_opts_search = (struct nd_opt_hdr *)((caddr_t)nd_opt + olen);
  422         if (ndopts->nd_opts_search > ndopts->nd_opts_last) {
  423                 /* option overruns the end of buffer, invalid */
  424                 bzero(ndopts, sizeof(*ndopts));
  425                 return NULL;
  426         } else if (ndopts->nd_opts_search == ndopts->nd_opts_last) {
  427                 /* reached the end of options chain */
  428                 ndopts->nd_opts_done = 1;
  429                 ndopts->nd_opts_search = NULL;
  430         }
  431         return nd_opt;
  432 }
  433 
  434 /*
  435  * Parse multiple ND options.
  436  * This function is much easier to use, for ND routines that do not need
  437  * multiple options of the same type.
  438  */
  439 int
  440 nd6_options(union nd_opts *ndopts)
  441 {
  442         struct nd_opt_hdr *nd_opt;
  443         int i = 0;
  444 
  445         KASSERT(ndopts != NULL, ("%s: ndopts == NULL", __func__));
  446         KASSERT(ndopts->nd_opts_last != NULL, ("%s: uninitialized ndopts",
  447             __func__));
  448         if (ndopts->nd_opts_search == NULL)
  449                 return 0;
  450 
  451         while (1) {
  452                 nd_opt = nd6_option(ndopts);
  453                 if (nd_opt == NULL && ndopts->nd_opts_last == NULL) {
  454                         /*
  455                          * Message validation requires that all included
  456                          * options have a length that is greater than zero.
  457                          */
  458                         ICMP6STAT_INC(icp6s_nd_badopt);
  459                         bzero(ndopts, sizeof(*ndopts));
  460                         return -1;
  461                 }
  462 
  463                 if (nd_opt == NULL)
  464                         goto skip1;
  465 
  466                 switch (nd_opt->nd_opt_type) {
  467                 case ND_OPT_SOURCE_LINKADDR:
  468                 case ND_OPT_TARGET_LINKADDR:
  469                 case ND_OPT_MTU:
  470                 case ND_OPT_REDIRECTED_HEADER:
  471                 case ND_OPT_NONCE:
  472                         if (ndopts->nd_opt_array[nd_opt->nd_opt_type]) {
  473                                 nd6log((LOG_INFO,
  474                                     "duplicated ND6 option found (type=%d)\n",
  475                                     nd_opt->nd_opt_type));
  476                                 /* XXX bark? */
  477                         } else {
  478                                 ndopts->nd_opt_array[nd_opt->nd_opt_type]
  479                                         = nd_opt;
  480                         }
  481                         break;
  482                 case ND_OPT_PREFIX_INFORMATION:
  483                         if (ndopts->nd_opt_array[nd_opt->nd_opt_type] == 0) {
  484                                 ndopts->nd_opt_array[nd_opt->nd_opt_type]
  485                                         = nd_opt;
  486                         }
  487                         ndopts->nd_opts_pi_end =
  488                                 (struct nd_opt_prefix_info *)nd_opt;
  489                         break;
  490                 /* What about ND_OPT_ROUTE_INFO? RFC 4191 */
  491                 case ND_OPT_RDNSS:      /* RFC 6106 */
  492                 case ND_OPT_DNSSL:      /* RFC 6106 */
  493                         /*
  494                          * Silently ignore options we know and do not care about
  495                          * in the kernel.
  496                          */
  497                         break;
  498                 default:
  499                         /*
  500                          * Unknown options must be silently ignored,
  501                          * to accommodate future extension to the protocol.
  502                          */
  503                         nd6log((LOG_DEBUG,
  504                             "nd6_options: unsupported option %d - "
  505                             "option ignored\n", nd_opt->nd_opt_type));
  506                 }
  507 
  508 skip1:
  509                 i++;
  510                 if (i > V_nd6_maxndopt) {
  511                         ICMP6STAT_INC(icp6s_nd_toomanyopt);
  512                         nd6log((LOG_INFO, "too many loop in nd opt\n"));
  513                         break;
  514                 }
  515 
  516                 if (ndopts->nd_opts_done)
  517                         break;
  518         }
  519 
  520         return 0;
  521 }
  522 
  523 /*
  524  * ND6 timer routine to handle ND6 entries
  525  */
  526 static void
  527 nd6_llinfo_settimer_locked(struct llentry *ln, long tick)
  528 {
  529         int canceled;
  530 
  531         LLE_WLOCK_ASSERT(ln);
  532 
  533         /* Do not schedule timers for child LLEs. */
  534         if (ln->la_flags & LLE_CHILD)
  535                 return;
  536 
  537         if (tick < 0) {
  538                 ln->la_expire = 0;
  539                 ln->ln_ntick = 0;
  540                 canceled = callout_stop(&ln->lle_timer);
  541         } else {
  542                 ln->la_expire = time_uptime + tick / hz;
  543                 LLE_ADDREF(ln);
  544                 if (tick > INT_MAX) {
  545                         ln->ln_ntick = tick - INT_MAX;
  546                         canceled = callout_reset(&ln->lle_timer, INT_MAX,
  547                             nd6_llinfo_timer, ln);
  548                 } else {
  549                         ln->ln_ntick = 0;
  550                         canceled = callout_reset(&ln->lle_timer, tick,
  551                             nd6_llinfo_timer, ln);
  552                 }
  553         }
  554         if (canceled > 0)
  555                 LLE_REMREF(ln);
  556 }
  557 
  558 /*
  559  * Gets source address of the first packet in hold queue
  560  * and stores it in @src.
  561  * Returns pointer to @src (if hold queue is not empty) or NULL.
  562  *
  563  * Set noinline to be dtrace-friendly
  564  */
  565 static __noinline struct in6_addr *
  566 nd6_llinfo_get_holdsrc(struct llentry *ln, struct in6_addr *src)
  567 {
  568         struct ip6_hdr hdr;
  569         struct mbuf *m;
  570 
  571         if (ln->la_hold == NULL)
  572                 return (NULL);
  573 
  574         /*
  575          * assume every packet in la_hold has the same IP header
  576          */
  577         m = ln->la_hold;
  578         if (sizeof(hdr) > m->m_len)
  579                 return (NULL);
  580 
  581         m_copydata(m, 0, sizeof(hdr), (caddr_t)&hdr);
  582         *src = hdr.ip6_src;
  583 
  584         return (src);
  585 }
  586 
  587 /*
  588  * Checks if we need to switch from STALE state.
  589  *
  590  * RFC 4861 requires switching from STALE to DELAY state
  591  * on first packet matching entry, waiting V_nd6_delay and
  592  * transition to PROBE state (if upper layer confirmation was
  593  * not received).
  594  *
  595  * This code performs a bit differently:
  596  * On packet hit we don't change state (but desired state
  597  * can be guessed by control plane). However, after V_nd6_delay
  598  * seconds code will transition to PROBE state (so DELAY state
  599  * is kinda skipped in most situations).
  600  *
  601  * Typically, V_nd6_gctimer is bigger than V_nd6_delay, so
  602  * we perform the following upon entering STALE state:
  603  *
  604  * 1) Arm timer to run each V_nd6_delay seconds to make sure that
  605  * if packet was transmitted at the start of given interval, we
  606  * would be able to switch to PROBE state in V_nd6_delay seconds
  607  * as user expects.
  608  *
  609  * 2) Reschedule timer until original V_nd6_gctimer expires keeping
  610  * lle in STALE state (remaining timer value stored in lle_remtime).
  611  *
  612  * 3) Reschedule timer if packet was transmitted less that V_nd6_delay
  613  * seconds ago.
  614  *
  615  * Returns non-zero value if the entry is still STALE (storing
  616  * the next timer interval in @pdelay).
  617  *
  618  * Returns zero value if original timer expired or we need to switch to
  619  * PROBE (store that in @do_switch variable).
  620  */
  621 static int
  622 nd6_is_stale(struct llentry *lle, long *pdelay, int *do_switch)
  623 {
  624         int nd_delay, nd_gctimer;
  625         time_t lle_hittime;
  626         long delay;
  627 
  628         *do_switch = 0;
  629         nd_gctimer = V_nd6_gctimer;
  630         nd_delay = V_nd6_delay;
  631 
  632         lle_hittime = llentry_get_hittime(lle);
  633 
  634         if (lle_hittime == 0) {
  635                 /*
  636                  * Datapath feedback has been requested upon entering
  637                  * STALE state. No packets has been passed using this lle.
  638                  * Ask for the timer reschedule and keep STALE state.
  639                  */
  640                 delay = (long)(MIN(nd_gctimer, nd_delay));
  641                 delay *= hz;
  642                 if (lle->lle_remtime > delay)
  643                         lle->lle_remtime -= delay;
  644                 else {
  645                         delay = lle->lle_remtime;
  646                         lle->lle_remtime = 0;
  647                 }
  648 
  649                 if (delay == 0) {
  650                         /*
  651                          * The original ng6_gctime timeout ended,
  652                          * no more rescheduling.
  653                          */
  654                         return (0);
  655                 }
  656 
  657                 *pdelay = delay;
  658                 return (1);
  659         }
  660 
  661         /*
  662          * Packet received. Verify timestamp
  663          */
  664         delay = (long)(time_uptime - lle_hittime);
  665         if (delay < nd_delay) {
  666                 /*
  667                  * V_nd6_delay still not passed since the first
  668                  * hit in STALE state.
  669                  * Reschedule timer and return.
  670                  */
  671                 *pdelay = (long)(nd_delay - delay) * hz;
  672                 return (1);
  673         }
  674 
  675         /* Request switching to probe */
  676         *do_switch = 1;
  677         return (0);
  678 }
  679 
  680 /*
  681  * Switch @lle state to new state optionally arming timers.
  682  *
  683  * Set noinline to be dtrace-friendly
  684  */
  685 __noinline void
  686 nd6_llinfo_setstate(struct llentry *lle, int newstate)
  687 {
  688         struct ifnet *ifp;
  689         int nd_gctimer, nd_delay;
  690         long delay, remtime;
  691 
  692         delay = 0;
  693         remtime = 0;
  694 
  695         switch (newstate) {
  696         case ND6_LLINFO_INCOMPLETE:
  697                 ifp = lle->lle_tbl->llt_ifp;
  698                 delay = (long)ND_IFINFO(ifp)->retrans * hz / 1000;
  699                 break;
  700         case ND6_LLINFO_REACHABLE:
  701                 if (!ND6_LLINFO_PERMANENT(lle)) {
  702                         ifp = lle->lle_tbl->llt_ifp;
  703                         delay = (long)ND_IFINFO(ifp)->reachable * hz;
  704                 }
  705                 break;
  706         case ND6_LLINFO_STALE:
  707 
  708                 llentry_request_feedback(lle);
  709                 nd_delay = V_nd6_delay;
  710                 nd_gctimer = V_nd6_gctimer;
  711 
  712                 delay = (long)(MIN(nd_gctimer, nd_delay)) * hz;
  713                 remtime = (long)nd_gctimer * hz - delay;
  714                 break;
  715         case ND6_LLINFO_DELAY:
  716                 lle->la_asked = 0;
  717                 delay = (long)V_nd6_delay * hz;
  718                 break;
  719         }
  720 
  721         if (delay > 0)
  722                 nd6_llinfo_settimer_locked(lle, delay);
  723 
  724         lle->lle_remtime = remtime;
  725         lle->ln_state = newstate;
  726 }
  727 
  728 /*
  729  * Timer-dependent part of nd state machine.
  730  *
  731  * Set noinline to be dtrace-friendly
  732  */
  733 static __noinline void
  734 nd6_llinfo_timer(void *arg)
  735 {
  736         struct epoch_tracker et;
  737         struct llentry *ln;
  738         struct in6_addr *dst, *pdst, *psrc, src;
  739         struct ifnet *ifp;
  740         struct nd_ifinfo *ndi;
  741         int do_switch, send_ns;
  742         long delay;
  743 
  744         KASSERT(arg != NULL, ("%s: arg NULL", __func__));
  745         ln = (struct llentry *)arg;
  746         ifp = lltable_get_ifp(ln->lle_tbl);
  747         CURVNET_SET(ifp->if_vnet);
  748 
  749         ND6_RLOCK();
  750         LLE_WLOCK(ln);
  751         if (callout_pending(&ln->lle_timer)) {
  752                 /*
  753                  * Here we are a bit odd here in the treatment of 
  754                  * active/pending. If the pending bit is set, it got
  755                  * rescheduled before I ran. The active
  756                  * bit we ignore, since if it was stopped
  757                  * in ll_tablefree() and was currently running
  758                  * it would have return 0 so the code would
  759                  * not have deleted it since the callout could
  760                  * not be stopped so we want to go through
  761                  * with the delete here now. If the callout
  762                  * was restarted, the pending bit will be back on and
  763                  * we just want to bail since the callout_reset would
  764                  * return 1 and our reference would have been removed
  765                  * by nd6_llinfo_settimer_locked above since canceled
  766                  * would have been 1.
  767                  */
  768                 LLE_WUNLOCK(ln);
  769                 ND6_RUNLOCK();
  770                 CURVNET_RESTORE();
  771                 return;
  772         }
  773         NET_EPOCH_ENTER(et);
  774         ndi = ND_IFINFO(ifp);
  775         send_ns = 0;
  776         dst = &ln->r_l3addr.addr6;
  777         pdst = dst;
  778 
  779         if (ln->ln_ntick > 0) {
  780                 if (ln->ln_ntick > INT_MAX) {
  781                         ln->ln_ntick -= INT_MAX;
  782                         nd6_llinfo_settimer_locked(ln, INT_MAX);
  783                 } else {
  784                         ln->ln_ntick = 0;
  785                         nd6_llinfo_settimer_locked(ln, ln->ln_ntick);
  786                 }
  787                 goto done;
  788         }
  789 
  790         if (ln->la_flags & LLE_STATIC) {
  791                 goto done;
  792         }
  793 
  794         if (ln->la_flags & LLE_DELETED) {
  795                 nd6_free(&ln, 0);
  796                 goto done;
  797         }
  798 
  799         switch (ln->ln_state) {
  800         case ND6_LLINFO_INCOMPLETE:
  801                 if (ln->la_asked < V_nd6_mmaxtries) {
  802                         ln->la_asked++;
  803                         send_ns = 1;
  804                         /* Send NS to multicast address */
  805                         pdst = NULL;
  806                 } else {
  807                         struct mbuf *m = ln->la_hold;
  808                         if (m) {
  809                                 struct mbuf *m0;
  810 
  811                                 /*
  812                                  * assuming every packet in la_hold has the
  813                                  * same IP header.  Send error after unlock.
  814                                  */
  815                                 m0 = m->m_nextpkt;
  816                                 m->m_nextpkt = NULL;
  817                                 ln->la_hold = m0;
  818                                 clear_llinfo_pqueue(ln);
  819                         }
  820                         nd6_free(&ln, 0);
  821                         if (m != NULL) {
  822                                 struct mbuf *n = m;
  823 
  824                                 /*
  825                                  * if there are any ummapped mbufs, we
  826                                  * must free them, rather than using
  827                                  * them for an ICMP, as they cannot be
  828                                  * checksummed.
  829                                  */
  830                                 while ((n = n->m_next) != NULL) {
  831                                         if (n->m_flags & M_EXTPG)
  832                                                 break;
  833                                 }
  834                                 if (n != NULL) {
  835                                         m_freem(m);
  836                                         m = NULL;
  837                                 } else {
  838                                         icmp6_error2(m, ICMP6_DST_UNREACH,
  839                                             ICMP6_DST_UNREACH_ADDR, 0, ifp);
  840                                 }
  841                         }
  842                 }
  843                 break;
  844         case ND6_LLINFO_REACHABLE:
  845                 if (!ND6_LLINFO_PERMANENT(ln))
  846                         nd6_llinfo_setstate(ln, ND6_LLINFO_STALE);
  847                 break;
  848 
  849         case ND6_LLINFO_STALE:
  850                 if (nd6_is_stale(ln, &delay, &do_switch) != 0) {
  851                         /*
  852                          * No packet has used this entry and GC timeout
  853                          * has not been passed. Reschedule timer and
  854                          * return.
  855                          */
  856                         nd6_llinfo_settimer_locked(ln, delay);
  857                         break;
  858                 }
  859 
  860                 if (do_switch == 0) {
  861                         /*
  862                          * GC timer has ended and entry hasn't been used.
  863                          * Run Garbage collector (RFC 4861, 5.3)
  864                          */
  865                         if (!ND6_LLINFO_PERMANENT(ln))
  866                                 nd6_free(&ln, 1);
  867                         break;
  868                 }
  869 
  870                 /* Entry has been used AND delay timer has ended. */
  871 
  872                 /* FALLTHROUGH */
  873 
  874         case ND6_LLINFO_DELAY:
  875                 if (ndi && (ndi->flags & ND6_IFF_PERFORMNUD) != 0) {
  876                         /* We need NUD */
  877                         ln->la_asked = 1;
  878                         nd6_llinfo_setstate(ln, ND6_LLINFO_PROBE);
  879                         send_ns = 1;
  880                 } else
  881                         nd6_llinfo_setstate(ln, ND6_LLINFO_STALE); /* XXX */
  882                 break;
  883         case ND6_LLINFO_PROBE:
  884                 if (ln->la_asked < V_nd6_umaxtries) {
  885                         ln->la_asked++;
  886                         send_ns = 1;
  887                 } else {
  888                         nd6_free(&ln, 0);
  889                 }
  890                 break;
  891         default:
  892                 panic("%s: paths in a dark night can be confusing: %d",
  893                     __func__, ln->ln_state);
  894         }
  895 done:
  896         if (ln != NULL)
  897                 ND6_RUNLOCK();
  898         if (send_ns != 0) {
  899                 nd6_llinfo_settimer_locked(ln, (long)ndi->retrans * hz / 1000);
  900                 psrc = nd6_llinfo_get_holdsrc(ln, &src);
  901                 LLE_FREE_LOCKED(ln);
  902                 ln = NULL;
  903                 nd6_ns_output(ifp, psrc, pdst, dst, NULL);
  904         }
  905 
  906         if (ln != NULL)
  907                 LLE_FREE_LOCKED(ln);
  908         NET_EPOCH_EXIT(et);
  909         CURVNET_RESTORE();
  910 }
  911 
  912 /*
  913  * ND6 timer routine to expire default route list and prefix list
  914  */
  915 void
  916 nd6_timer(void *arg)
  917 {
  918         CURVNET_SET((struct vnet *) arg);
  919         struct epoch_tracker et;
  920         struct nd_prhead prl;
  921         struct nd_prefix *pr, *npr;
  922         struct ifnet *ifp;
  923         struct in6_ifaddr *ia6, *nia6;
  924         uint64_t genid;
  925 
  926         LIST_INIT(&prl);
  927 
  928         NET_EPOCH_ENTER(et);
  929         nd6_defrouter_timer();
  930 
  931         /*
  932          * expire interface addresses.
  933          * in the past the loop was inside prefix expiry processing.
  934          * However, from a stricter speci-confrmance standpoint, we should
  935          * rather separate address lifetimes and prefix lifetimes.
  936          *
  937          * XXXRW: in6_ifaddrhead locking.
  938          */
  939   addrloop:
  940         CK_STAILQ_FOREACH_SAFE(ia6, &V_in6_ifaddrhead, ia_link, nia6) {
  941                 /* check address lifetime */
  942                 if (IFA6_IS_INVALID(ia6)) {
  943                         int regen = 0;
  944 
  945                         /*
  946                          * If the expiring address is temporary, try
  947                          * regenerating a new one.  This would be useful when
  948                          * we suspended a laptop PC, then turned it on after a
  949                          * period that could invalidate all temporary
  950                          * addresses.  Although we may have to restart the
  951                          * loop (see below), it must be after purging the
  952                          * address.  Otherwise, we'd see an infinite loop of
  953                          * regeneration.
  954                          */
  955                         if (V_ip6_use_tempaddr &&
  956                             (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0) {
  957                                 if (regen_tmpaddr(ia6) == 0)
  958                                         regen = 1;
  959                         }
  960 
  961                         in6_purgeaddr(&ia6->ia_ifa);
  962 
  963                         if (regen)
  964                                 goto addrloop; /* XXX: see below */
  965                 } else if (IFA6_IS_DEPRECATED(ia6)) {
  966                         int oldflags = ia6->ia6_flags;
  967 
  968                         ia6->ia6_flags |= IN6_IFF_DEPRECATED;
  969 
  970                         /*
  971                          * If a temporary address has just become deprecated,
  972                          * regenerate a new one if possible.
  973                          */
  974                         if (V_ip6_use_tempaddr &&
  975                             (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0 &&
  976                             (oldflags & IN6_IFF_DEPRECATED) == 0) {
  977                                 if (regen_tmpaddr(ia6) == 0) {
  978                                         /*
  979                                          * A new temporary address is
  980                                          * generated.
  981                                          * XXX: this means the address chain
  982                                          * has changed while we are still in
  983                                          * the loop.  Although the change
  984                                          * would not cause disaster (because
  985                                          * it's not a deletion, but an
  986                                          * addition,) we'd rather restart the
  987                                          * loop just for safety.  Or does this
  988                                          * significantly reduce performance??
  989                                          */
  990                                         goto addrloop;
  991                                 }
  992                         }
  993                 } else if ((ia6->ia6_flags & IN6_IFF_TENTATIVE) != 0) {
  994                         /*
  995                          * Schedule DAD for a tentative address.  This happens
  996                          * if the interface was down or not running
  997                          * when the address was configured.
  998                          */
  999                         int delay;
 1000 
 1001                         delay = arc4random() %
 1002                             (MAX_RTR_SOLICITATION_DELAY * hz);
 1003                         nd6_dad_start((struct ifaddr *)ia6, delay);
 1004                 } else {
 1005                         /*
 1006                          * Check status of the interface.  If it is down,
 1007                          * mark the address as tentative for future DAD.
 1008                          */
 1009                         ifp = ia6->ia_ifp;
 1010                         if ((ND_IFINFO(ifp)->flags & ND6_IFF_NO_DAD) == 0 &&
 1011                             ((ifp->if_flags & IFF_UP) == 0 ||
 1012                             (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 ||
 1013                             (ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) != 0)){
 1014                                 ia6->ia6_flags &= ~IN6_IFF_DUPLICATED;
 1015                                 ia6->ia6_flags |= IN6_IFF_TENTATIVE;
 1016                         }
 1017 
 1018                         /*
 1019                          * A new RA might have made a deprecated address
 1020                          * preferred.
 1021                          */
 1022                         ia6->ia6_flags &= ~IN6_IFF_DEPRECATED;
 1023                 }
 1024         }
 1025         NET_EPOCH_EXIT(et);
 1026 
 1027         ND6_WLOCK();
 1028 restart:
 1029         LIST_FOREACH_SAFE(pr, &V_nd_prefix, ndpr_entry, npr) {
 1030                 /*
 1031                  * Expire prefixes. Since the pltime is only used for
 1032                  * autoconfigured addresses, pltime processing for prefixes is
 1033                  * not necessary.
 1034                  *
 1035                  * Only unlink after all derived addresses have expired. This
 1036                  * may not occur until two hours after the prefix has expired
 1037                  * per RFC 4862. If the prefix expires before its derived
 1038                  * addresses, mark it off-link. This will be done automatically
 1039                  * after unlinking if no address references remain.
 1040                  */
 1041                 if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME ||
 1042                     time_uptime - pr->ndpr_lastupdate <= pr->ndpr_vltime)
 1043                         continue;
 1044 
 1045                 if (pr->ndpr_addrcnt == 0) {
 1046                         nd6_prefix_unlink(pr, &prl);
 1047                         continue;
 1048                 }
 1049                 if ((pr->ndpr_stateflags & NDPRF_ONLINK) != 0) {
 1050                         genid = V_nd6_list_genid;
 1051                         nd6_prefix_ref(pr);
 1052                         ND6_WUNLOCK();
 1053                         ND6_ONLINK_LOCK();
 1054                         (void)nd6_prefix_offlink(pr);
 1055                         ND6_ONLINK_UNLOCK();
 1056                         ND6_WLOCK();
 1057                         nd6_prefix_rele(pr);
 1058                         if (genid != V_nd6_list_genid)
 1059                                 goto restart;
 1060                 }
 1061         }
 1062         ND6_WUNLOCK();
 1063 
 1064         while ((pr = LIST_FIRST(&prl)) != NULL) {
 1065                 LIST_REMOVE(pr, ndpr_entry);
 1066                 nd6_prefix_del(pr);
 1067         }
 1068 
 1069         callout_reset(&V_nd6_timer_ch, V_nd6_prune * hz,
 1070             nd6_timer, curvnet);
 1071 
 1072         CURVNET_RESTORE();
 1073 }
 1074 
 1075 /*
 1076  * ia6 - deprecated/invalidated temporary address
 1077  */
 1078 static int
 1079 regen_tmpaddr(struct in6_ifaddr *ia6)
 1080 {
 1081         struct ifaddr *ifa;
 1082         struct ifnet *ifp;
 1083         struct in6_ifaddr *public_ifa6 = NULL;
 1084 
 1085         NET_EPOCH_ASSERT();
 1086 
 1087         ifp = ia6->ia_ifa.ifa_ifp;
 1088         CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
 1089                 struct in6_ifaddr *it6;
 1090 
 1091                 if (ifa->ifa_addr->sa_family != AF_INET6)
 1092                         continue;
 1093 
 1094                 it6 = (struct in6_ifaddr *)ifa;
 1095 
 1096                 /* ignore no autoconf addresses. */
 1097                 if ((it6->ia6_flags & IN6_IFF_AUTOCONF) == 0)
 1098                         continue;
 1099 
 1100                 /* ignore autoconf addresses with different prefixes. */
 1101                 if (it6->ia6_ndpr == NULL || it6->ia6_ndpr != ia6->ia6_ndpr)
 1102                         continue;
 1103 
 1104                 /*
 1105                  * Now we are looking at an autoconf address with the same
 1106                  * prefix as ours.  If the address is temporary and is still
 1107                  * preferred, do not create another one.  It would be rare, but
 1108                  * could happen, for example, when we resume a laptop PC after
 1109                  * a long period.
 1110                  */
 1111                 if ((it6->ia6_flags & IN6_IFF_TEMPORARY) != 0 &&
 1112                     !IFA6_IS_DEPRECATED(it6)) {
 1113                         public_ifa6 = NULL;
 1114                         break;
 1115                 }
 1116 
 1117                 /*
 1118                  * This is a public autoconf address that has the same prefix
 1119                  * as ours.  If it is preferred, keep it.  We can't break the
 1120                  * loop here, because there may be a still-preferred temporary
 1121                  * address with the prefix.
 1122                  */
 1123                 if (!IFA6_IS_DEPRECATED(it6))
 1124                         public_ifa6 = it6;
 1125         }
 1126         if (public_ifa6 != NULL)
 1127                 ifa_ref(&public_ifa6->ia_ifa);
 1128 
 1129         if (public_ifa6 != NULL) {
 1130                 int e;
 1131 
 1132                 if ((e = in6_tmpifadd(public_ifa6, 0, 0)) != 0) {
 1133                         ifa_free(&public_ifa6->ia_ifa);
 1134                         log(LOG_NOTICE, "regen_tmpaddr: failed to create a new"
 1135                             " tmp addr,errno=%d\n", e);
 1136                         return (-1);
 1137                 }
 1138                 ifa_free(&public_ifa6->ia_ifa);
 1139                 return (0);
 1140         }
 1141 
 1142         return (-1);
 1143 }
 1144 
 1145 /*
 1146  * Remove prefix and default router list entries corresponding to ifp. Neighbor
 1147  * cache entries are freed in in6_domifdetach().
 1148  */
 1149 void
 1150 nd6_purge(struct ifnet *ifp)
 1151 {
 1152         struct nd_prhead prl;
 1153         struct nd_prefix *pr, *npr;
 1154 
 1155         LIST_INIT(&prl);
 1156 
 1157         /* Purge default router list entries toward ifp. */
 1158         nd6_defrouter_purge(ifp);
 1159 
 1160         ND6_WLOCK();
 1161         /*
 1162          * Remove prefixes on ifp. We should have already removed addresses on
 1163          * this interface, so no addresses should be referencing these prefixes.
 1164          */
 1165         LIST_FOREACH_SAFE(pr, &V_nd_prefix, ndpr_entry, npr) {
 1166                 if (pr->ndpr_ifp == ifp)
 1167                         nd6_prefix_unlink(pr, &prl);
 1168         }
 1169         ND6_WUNLOCK();
 1170 
 1171         /* Delete the unlinked prefix objects. */
 1172         while ((pr = LIST_FIRST(&prl)) != NULL) {
 1173                 LIST_REMOVE(pr, ndpr_entry);
 1174                 nd6_prefix_del(pr);
 1175         }
 1176 
 1177         /* cancel default outgoing interface setting */
 1178         if (V_nd6_defifindex == ifp->if_index)
 1179                 nd6_setdefaultiface(0);
 1180 
 1181         if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) {
 1182                 /* Refresh default router list. */
 1183                 defrouter_select_fib(ifp->if_fib);
 1184         }
 1185 }
 1186 
 1187 /* 
 1188  * the caller acquires and releases the lock on the lltbls
 1189  * Returns the llentry locked
 1190  */
 1191 struct llentry *
 1192 nd6_lookup(const struct in6_addr *addr6, int flags, struct ifnet *ifp)
 1193 {
 1194         struct sockaddr_in6 sin6;
 1195         struct llentry *ln;
 1196 
 1197         bzero(&sin6, sizeof(sin6));
 1198         sin6.sin6_len = sizeof(struct sockaddr_in6);
 1199         sin6.sin6_family = AF_INET6;
 1200         sin6.sin6_addr = *addr6;
 1201 
 1202         IF_AFDATA_LOCK_ASSERT(ifp);
 1203 
 1204         ln = lla_lookup(LLTABLE6(ifp), flags, (struct sockaddr *)&sin6);
 1205 
 1206         return (ln);
 1207 }
 1208 
 1209 static struct llentry *
 1210 nd6_alloc(const struct in6_addr *addr6, int flags, struct ifnet *ifp)
 1211 {
 1212         struct sockaddr_in6 sin6;
 1213         struct llentry *ln;
 1214 
 1215         bzero(&sin6, sizeof(sin6));
 1216         sin6.sin6_len = sizeof(struct sockaddr_in6);
 1217         sin6.sin6_family = AF_INET6;
 1218         sin6.sin6_addr = *addr6;
 1219 
 1220         ln = lltable_alloc_entry(LLTABLE6(ifp), 0, (struct sockaddr *)&sin6);
 1221         if (ln != NULL)
 1222                 ln->ln_state = ND6_LLINFO_NOSTATE;
 1223 
 1224         return (ln);
 1225 }
 1226 
 1227 /*
 1228  * Test whether a given IPv6 address is a neighbor or not, ignoring
 1229  * the actual neighbor cache.  The neighbor cache is ignored in order
 1230  * to not reenter the routing code from within itself.
 1231  */
 1232 static int
 1233 nd6_is_new_addr_neighbor(const struct sockaddr_in6 *addr, struct ifnet *ifp)
 1234 {
 1235         struct nd_prefix *pr;
 1236         struct ifaddr *ifa;
 1237         struct rt_addrinfo info;
 1238         struct sockaddr_in6 rt_key;
 1239         const struct sockaddr *dst6;
 1240         uint64_t genid;
 1241         int error, fibnum;
 1242 
 1243         /*
 1244          * A link-local address is always a neighbor.
 1245          * XXX: a link does not necessarily specify a single interface.
 1246          */
 1247         if (IN6_IS_ADDR_LINKLOCAL(&addr->sin6_addr)) {
 1248                 struct sockaddr_in6 sin6_copy;
 1249                 u_int32_t zone;
 1250 
 1251                 /*
 1252                  * We need sin6_copy since sa6_recoverscope() may modify the
 1253                  * content (XXX).
 1254                  */
 1255                 sin6_copy = *addr;
 1256                 if (sa6_recoverscope(&sin6_copy))
 1257                         return (0); /* XXX: should be impossible */
 1258                 if (in6_setscope(&sin6_copy.sin6_addr, ifp, &zone))
 1259                         return (0);
 1260                 if (sin6_copy.sin6_scope_id == zone)
 1261                         return (1);
 1262                 else
 1263                         return (0);
 1264         }
 1265 
 1266         bzero(&rt_key, sizeof(rt_key));
 1267         bzero(&info, sizeof(info));
 1268         info.rti_info[RTAX_DST] = (struct sockaddr *)&rt_key;
 1269 
 1270         /*
 1271          * If the address matches one of our addresses,
 1272          * it should be a neighbor.
 1273          * If the address matches one of our on-link prefixes, it should be a
 1274          * neighbor.
 1275          */
 1276         ND6_RLOCK();
 1277 restart:
 1278         LIST_FOREACH(pr, &V_nd_prefix, ndpr_entry) {
 1279                 if (pr->ndpr_ifp != ifp)
 1280                         continue;
 1281 
 1282                 if ((pr->ndpr_stateflags & NDPRF_ONLINK) == 0) {
 1283                         dst6 = (const struct sockaddr *)&pr->ndpr_prefix;
 1284 
 1285                         /*
 1286                          * We only need to check all FIBs if add_addr_allfibs
 1287                          * is unset. If set, checking any FIB will suffice.
 1288                          */
 1289                         fibnum = V_rt_add_addr_allfibs ? rt_numfibs - 1 : 0;
 1290                         for (; fibnum < rt_numfibs; fibnum++) {
 1291                                 genid = V_nd6_list_genid;
 1292                                 ND6_RUNLOCK();
 1293 
 1294                                 /*
 1295                                  * Restore length field before
 1296                                  * retrying lookup
 1297                                  */
 1298                                 rt_key.sin6_len = sizeof(rt_key);
 1299                                 error = rib_lookup_info(fibnum, dst6, 0, 0,
 1300                                                         &info);
 1301 
 1302                                 ND6_RLOCK();
 1303                                 if (genid != V_nd6_list_genid)
 1304                                         goto restart;
 1305                                 if (error == 0)
 1306                                         break;
 1307                         }
 1308                         if (error != 0)
 1309                                 continue;
 1310 
 1311                         /*
 1312                          * This is the case where multiple interfaces
 1313                          * have the same prefix, but only one is installed 
 1314                          * into the routing table and that prefix entry
 1315                          * is not the one being examined here.
 1316                          */
 1317                         if (!IN6_ARE_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr,
 1318                             &rt_key.sin6_addr))
 1319                                 continue;
 1320                 }
 1321 
 1322                 if (IN6_ARE_MASKED_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr,
 1323                     &addr->sin6_addr, &pr->ndpr_mask)) {
 1324                         ND6_RUNLOCK();
 1325                         return (1);
 1326                 }
 1327         }
 1328         ND6_RUNLOCK();
 1329 
 1330         /*
 1331          * If the address is assigned on the node of the other side of
 1332          * a p2p interface, the address should be a neighbor.
 1333          */
 1334         if (ifp->if_flags & IFF_POINTOPOINT) {
 1335                 struct epoch_tracker et;
 1336 
 1337                 NET_EPOCH_ENTER(et);
 1338                 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
 1339                         if (ifa->ifa_addr->sa_family != addr->sin6_family)
 1340                                 continue;
 1341                         if (ifa->ifa_dstaddr != NULL &&
 1342                             sa_equal(addr, ifa->ifa_dstaddr)) {
 1343                                 NET_EPOCH_EXIT(et);
 1344                                 return 1;
 1345                         }
 1346                 }
 1347                 NET_EPOCH_EXIT(et);
 1348         }
 1349 
 1350         /*
 1351          * If the default router list is empty, all addresses are regarded
 1352          * as on-link, and thus, as a neighbor.
 1353          */
 1354         if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV &&
 1355             nd6_defrouter_list_empty() &&
 1356             V_nd6_defifindex == ifp->if_index) {
 1357                 return (1);
 1358         }
 1359 
 1360         return (0);
 1361 }
 1362 
 1363 /*
 1364  * Detect if a given IPv6 address identifies a neighbor on a given link.
 1365  * XXX: should take care of the destination of a p2p link?
 1366  */
 1367 int
 1368 nd6_is_addr_neighbor(const struct sockaddr_in6 *addr, struct ifnet *ifp)
 1369 {
 1370         struct llentry *lle;
 1371         int rc = 0;
 1372 
 1373         NET_EPOCH_ASSERT();
 1374         IF_AFDATA_UNLOCK_ASSERT(ifp);
 1375         if (nd6_is_new_addr_neighbor(addr, ifp))
 1376                 return (1);
 1377 
 1378         /*
 1379          * Even if the address matches none of our addresses, it might be
 1380          * in the neighbor cache.
 1381          */
 1382         if ((lle = nd6_lookup(&addr->sin6_addr, LLE_SF(AF_INET6, 0), ifp)) != NULL) {
 1383                 LLE_RUNLOCK(lle);
 1384                 rc = 1;
 1385         }
 1386         return (rc);
 1387 }
 1388 
 1389 static __noinline void
 1390 nd6_free_children(struct llentry *lle)
 1391 {
 1392         struct llentry *child_lle;
 1393 
 1394         NET_EPOCH_ASSERT();
 1395         LLE_WLOCK_ASSERT(lle);
 1396 
 1397         while ((child_lle = CK_SLIST_FIRST(&lle->lle_children)) != NULL) {
 1398                 LLE_WLOCK(child_lle);
 1399                 lltable_unlink_child_entry(child_lle);
 1400                 llentry_free(child_lle);
 1401         }
 1402 }
 1403 
 1404 /*
 1405  * Tries to update @lle address/prepend data with new @lladdr.
 1406  *
 1407  * Returns true on success.
 1408  * In any case, @lle is returned wlocked.
 1409  */
 1410 static __noinline bool
 1411 nd6_try_set_entry_addr_locked(struct ifnet *ifp, struct llentry *lle, char *lladdr)
 1412 {
 1413         u_char buf[LLE_MAX_LINKHDR];
 1414         int fam, off;
 1415         size_t sz;
 1416 
 1417         sz = sizeof(buf);
 1418         if (lltable_calc_llheader(ifp, AF_INET6, lladdr, buf, &sz, &off) != 0)
 1419                 return (false);
 1420 
 1421         /* Update data */
 1422         lltable_set_entry_addr(ifp, lle, buf, sz, off);
 1423 
 1424         struct llentry *child_lle;
 1425         CK_SLIST_FOREACH(child_lle, &lle->lle_children, lle_child_next) {
 1426                 LLE_WLOCK(child_lle);
 1427                 fam = child_lle->r_family;
 1428                 sz = sizeof(buf);
 1429                 if (lltable_calc_llheader(ifp, fam, lladdr, buf, &sz, &off) == 0) {
 1430                         /* success */
 1431                         lltable_set_entry_addr(ifp, child_lle, buf, sz, off);
 1432                         child_lle->ln_state = ND6_LLINFO_REACHABLE;
 1433                 }
 1434                 LLE_WUNLOCK(child_lle);
 1435         }
 1436 
 1437         return (true);
 1438 }
 1439 
 1440 bool
 1441 nd6_try_set_entry_addr(struct ifnet *ifp, struct llentry *lle, char *lladdr)
 1442 {
 1443         NET_EPOCH_ASSERT();
 1444         LLE_WLOCK_ASSERT(lle);
 1445 
 1446         if (!lltable_acquire_wlock(ifp, lle))
 1447                 return (false);
 1448         bool ret = nd6_try_set_entry_addr_locked(ifp, lle, lladdr);
 1449         IF_AFDATA_WUNLOCK(ifp);
 1450 
 1451         return (ret);
 1452 }
 1453 
 1454 /*
 1455  * Free an nd6 llinfo entry.
 1456  * Since the function would cause significant changes in the kernel, DO NOT
 1457  * make it global, unless you have a strong reason for the change, and are sure
 1458  * that the change is safe.
 1459  *
 1460  * Set noinline to be dtrace-friendly
 1461  */
 1462 static __noinline void
 1463 nd6_free(struct llentry **lnp, int gc)
 1464 {
 1465         struct ifnet *ifp;
 1466         struct llentry *ln;
 1467         struct nd_defrouter *dr;
 1468 
 1469         ln = *lnp;
 1470         *lnp = NULL;
 1471 
 1472         LLE_WLOCK_ASSERT(ln);
 1473         ND6_RLOCK_ASSERT();
 1474 
 1475         KASSERT((ln->la_flags & LLE_CHILD) == 0, ("child lle"));
 1476 
 1477         ifp = lltable_get_ifp(ln->lle_tbl);
 1478         if ((ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) != 0)
 1479                 dr = defrouter_lookup_locked(&ln->r_l3addr.addr6, ifp);
 1480         else
 1481                 dr = NULL;
 1482         ND6_RUNLOCK();
 1483 
 1484         if ((ln->la_flags & LLE_DELETED) == 0)
 1485                 EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_EXPIRED);
 1486 
 1487         /*
 1488          * we used to have pfctlinput(PRC_HOSTDEAD) here.
 1489          * even though it is not harmful, it was not really necessary.
 1490          */
 1491 
 1492         /* cancel timer */
 1493         nd6_llinfo_settimer_locked(ln, -1);
 1494 
 1495         if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) {
 1496                 if (dr != NULL && dr->expire &&
 1497                     ln->ln_state == ND6_LLINFO_STALE && gc) {
 1498                         /*
 1499                          * If the reason for the deletion is just garbage
 1500                          * collection, and the neighbor is an active default
 1501                          * router, do not delete it.  Instead, reset the GC
 1502                          * timer using the router's lifetime.
 1503                          * Simply deleting the entry would affect default
 1504                          * router selection, which is not necessarily a good
 1505                          * thing, especially when we're using router preference
 1506                          * values.
 1507                          * XXX: the check for ln_state would be redundant,
 1508                          *      but we intentionally keep it just in case.
 1509                          */
 1510                         if (dr->expire > time_uptime)
 1511                                 nd6_llinfo_settimer_locked(ln,
 1512                                     (dr->expire - time_uptime) * hz);
 1513                         else
 1514                                 nd6_llinfo_settimer_locked(ln,
 1515                                     (long)V_nd6_gctimer * hz);
 1516 
 1517                         LLE_REMREF(ln);
 1518                         LLE_WUNLOCK(ln);
 1519                         defrouter_rele(dr);
 1520                         return;
 1521                 }
 1522 
 1523                 if (dr) {
 1524                         /*
 1525                          * Unreachablity of a router might affect the default
 1526                          * router selection and on-link detection of advertised
 1527                          * prefixes.
 1528                          */
 1529 
 1530                         /*
 1531                          * Temporarily fake the state to choose a new default
 1532                          * router and to perform on-link determination of
 1533                          * prefixes correctly.
 1534                          * Below the state will be set correctly,
 1535                          * or the entry itself will be deleted.
 1536                          */
 1537                         ln->ln_state = ND6_LLINFO_INCOMPLETE;
 1538                 }
 1539 
 1540                 if (ln->ln_router || dr) {
 1541                         /*
 1542                          * We need to unlock to avoid a LOR with rt6_flush() with the
 1543                          * rnh and for the calls to pfxlist_onlink_check() and
 1544                          * defrouter_select_fib() in the block further down for calls
 1545                          * into nd6_lookup().  We still hold a ref.
 1546                          */
 1547                         LLE_WUNLOCK(ln);
 1548 
 1549                         /*
 1550                          * rt6_flush must be called whether or not the neighbor
 1551                          * is in the Default Router List.
 1552                          * See a corresponding comment in nd6_na_input().
 1553                          */
 1554                         rt6_flush(&ln->r_l3addr.addr6, ifp);
 1555                 }
 1556 
 1557                 if (dr) {
 1558                         /*
 1559                          * Since defrouter_select_fib() does not affect the
 1560                          * on-link determination and MIP6 needs the check
 1561                          * before the default router selection, we perform
 1562                          * the check now.
 1563                          */
 1564                         pfxlist_onlink_check();
 1565 
 1566                         /*
 1567                          * Refresh default router list.
 1568                          */
 1569                         defrouter_select_fib(dr->ifp->if_fib);
 1570                 }
 1571 
 1572                 /*
 1573                  * If this entry was added by an on-link redirect, remove the
 1574                  * corresponding host route.
 1575                  */
 1576                 if (ln->la_flags & LLE_REDIRECT)
 1577                         nd6_free_redirect(ln);
 1578 
 1579                 if (ln->ln_router || dr)
 1580                         LLE_WLOCK(ln);
 1581         }
 1582 
 1583         /*
 1584          * Save to unlock. We still hold an extra reference and will not
 1585          * free(9) in llentry_free() if someone else holds one as well.
 1586          */
 1587         LLE_WUNLOCK(ln);
 1588         IF_AFDATA_LOCK(ifp);
 1589         LLE_WLOCK(ln);
 1590         /* Guard against race with other llentry_free(). */
 1591         if (ln->la_flags & LLE_LINKED) {
 1592                 /* Remove callout reference */
 1593                 LLE_REMREF(ln);
 1594                 lltable_unlink_entry(ln->lle_tbl, ln);
 1595         }
 1596         IF_AFDATA_UNLOCK(ifp);
 1597 
 1598         nd6_free_children(ln);
 1599 
 1600         llentry_free(ln);
 1601         if (dr != NULL)
 1602                 defrouter_rele(dr);
 1603 }
 1604 
 1605 static int
 1606 nd6_isdynrte(const struct rtentry *rt, const struct nhop_object *nh, void *xap)
 1607 {
 1608 
 1609         if (nh->nh_flags & NHF_REDIRECT)
 1610                 return (1);
 1611 
 1612         return (0);
 1613 }
 1614 
 1615 /*
 1616  * Remove the rtentry for the given llentry,
 1617  * both of which were installed by a redirect.
 1618  */
 1619 static void
 1620 nd6_free_redirect(const struct llentry *ln)
 1621 {
 1622         int fibnum;
 1623         struct sockaddr_in6 sin6;
 1624         struct rt_addrinfo info;
 1625         struct rib_cmd_info rc;
 1626         struct epoch_tracker et;
 1627 
 1628         lltable_fill_sa_entry(ln, (struct sockaddr *)&sin6);
 1629         memset(&info, 0, sizeof(info));
 1630         info.rti_info[RTAX_DST] = (struct sockaddr *)&sin6;
 1631         info.rti_filter = nd6_isdynrte;
 1632 
 1633         NET_EPOCH_ENTER(et);
 1634         for (fibnum = 0; fibnum < rt_numfibs; fibnum++)
 1635                 rib_action(fibnum, RTM_DELETE, &info, &rc);
 1636         NET_EPOCH_EXIT(et);
 1637 }
 1638 
 1639 /*
 1640  * Updates status of the default router route.
 1641  */
 1642 static void
 1643 check_release_defrouter(struct rib_cmd_info *rc, void *_cbdata)
 1644 {
 1645         struct nd_defrouter *dr;
 1646         struct nhop_object *nh;
 1647 
 1648         nh = rc->rc_nh_old;
 1649 
 1650         if ((nh != NULL) && (nh->nh_flags & NHF_DEFAULT)) {
 1651                 dr = defrouter_lookup(&nh->gw6_sa.sin6_addr, nh->nh_ifp);
 1652                 if (dr != NULL) {
 1653                         dr->installed = 0;
 1654                         defrouter_rele(dr);
 1655                 }
 1656         }
 1657 }
 1658 
 1659 void
 1660 nd6_subscription_cb(struct rib_head *rnh, struct rib_cmd_info *rc, void *arg)
 1661 {
 1662 
 1663 #ifdef ROUTE_MPATH
 1664         rib_decompose_notification(rc, check_release_defrouter, NULL);
 1665 #else
 1666         check_release_defrouter(rc, NULL);
 1667 #endif
 1668 }
 1669 
 1670 int
 1671 nd6_ioctl(u_long cmd, caddr_t data, struct ifnet *ifp)
 1672 {
 1673         struct in6_ndireq *ndi = (struct in6_ndireq *)data;
 1674         struct in6_nbrinfo *nbi = (struct in6_nbrinfo *)data;
 1675         struct in6_ndifreq *ndif = (struct in6_ndifreq *)data;
 1676         struct epoch_tracker et;
 1677         int error = 0;
 1678 
 1679         if (ifp->if_afdata[AF_INET6] == NULL)
 1680                 return (EPFNOSUPPORT);
 1681         switch (cmd) {
 1682         case OSIOCGIFINFO_IN6:
 1683 #define ND      ndi->ndi
 1684                 /* XXX: old ndp(8) assumes a positive value for linkmtu. */
 1685                 bzero(&ND, sizeof(ND));
 1686                 ND.linkmtu = IN6_LINKMTU(ifp);
 1687                 ND.maxmtu = ND_IFINFO(ifp)->maxmtu;
 1688                 ND.basereachable = ND_IFINFO(ifp)->basereachable;
 1689                 ND.reachable = ND_IFINFO(ifp)->reachable;
 1690                 ND.retrans = ND_IFINFO(ifp)->retrans;
 1691                 ND.flags = ND_IFINFO(ifp)->flags;
 1692                 ND.recalctm = ND_IFINFO(ifp)->recalctm;
 1693                 ND.chlim = ND_IFINFO(ifp)->chlim;
 1694                 break;
 1695         case SIOCGIFINFO_IN6:
 1696                 ND = *ND_IFINFO(ifp);
 1697                 break;
 1698         case SIOCSIFINFO_IN6:
 1699                 /*
 1700                  * used to change host variables from userland.
 1701                  * intended for a use on router to reflect RA configurations.
 1702                  */
 1703                 /* 0 means 'unspecified' */
 1704                 if (ND.linkmtu != 0) {
 1705                         if (ND.linkmtu < IPV6_MMTU ||
 1706                             ND.linkmtu > IN6_LINKMTU(ifp)) {
 1707                                 error = EINVAL;
 1708                                 break;
 1709                         }
 1710                         ND_IFINFO(ifp)->linkmtu = ND.linkmtu;
 1711                 }
 1712 
 1713                 if (ND.basereachable != 0) {
 1714                         int obasereachable = ND_IFINFO(ifp)->basereachable;
 1715 
 1716                         ND_IFINFO(ifp)->basereachable = ND.basereachable;
 1717                         if (ND.basereachable != obasereachable)
 1718                                 ND_IFINFO(ifp)->reachable =
 1719                                     ND_COMPUTE_RTIME(ND.basereachable);
 1720                 }
 1721                 if (ND.retrans != 0)
 1722                         ND_IFINFO(ifp)->retrans = ND.retrans;
 1723                 if (ND.chlim != 0)
 1724                         ND_IFINFO(ifp)->chlim = ND.chlim;
 1725                 /* FALLTHROUGH */
 1726         case SIOCSIFINFO_FLAGS:
 1727         {
 1728                 struct ifaddr *ifa;
 1729                 struct in6_ifaddr *ia;
 1730 
 1731                 if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) &&
 1732                     !(ND.flags & ND6_IFF_IFDISABLED)) {
 1733                         /* ifdisabled 1->0 transision */
 1734 
 1735                         /*
 1736                          * If the interface is marked as ND6_IFF_IFDISABLED and
 1737                          * has an link-local address with IN6_IFF_DUPLICATED,
 1738                          * do not clear ND6_IFF_IFDISABLED.
 1739                          * See RFC 4862, Section 5.4.5.
 1740                          */
 1741                         NET_EPOCH_ENTER(et);
 1742                         CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
 1743                                 if (ifa->ifa_addr->sa_family != AF_INET6)
 1744                                         continue;
 1745                                 ia = (struct in6_ifaddr *)ifa;
 1746                                 if ((ia->ia6_flags & IN6_IFF_DUPLICATED) &&
 1747                                     IN6_IS_ADDR_LINKLOCAL(IA6_IN6(ia)))
 1748                                         break;
 1749                         }
 1750                         NET_EPOCH_EXIT(et);
 1751 
 1752                         if (ifa != NULL) {
 1753                                 /* LLA is duplicated. */
 1754                                 ND.flags |= ND6_IFF_IFDISABLED;
 1755                                 log(LOG_ERR, "Cannot enable an interface"
 1756                                     " with a link-local address marked"
 1757                                     " duplicate.\n");
 1758                         } else {
 1759                                 ND_IFINFO(ifp)->flags &= ~ND6_IFF_IFDISABLED;
 1760                                 if (ifp->if_flags & IFF_UP)
 1761                                         in6_if_up(ifp);
 1762                         }
 1763                 } else if (!(ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) &&
 1764                             (ND.flags & ND6_IFF_IFDISABLED)) {
 1765                         /* ifdisabled 0->1 transision */
 1766                         /* Mark all IPv6 address as tentative. */
 1767 
 1768                         ND_IFINFO(ifp)->flags |= ND6_IFF_IFDISABLED;
 1769                         if (V_ip6_dad_count > 0 &&
 1770                             (ND_IFINFO(ifp)->flags & ND6_IFF_NO_DAD) == 0) {
 1771                                 NET_EPOCH_ENTER(et);
 1772                                 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead,
 1773                                     ifa_link) {
 1774                                         if (ifa->ifa_addr->sa_family !=
 1775                                             AF_INET6)
 1776                                                 continue;
 1777                                         ia = (struct in6_ifaddr *)ifa;
 1778                                         ia->ia6_flags |= IN6_IFF_TENTATIVE;
 1779                                 }
 1780                                 NET_EPOCH_EXIT(et);
 1781                         }
 1782                 }
 1783 
 1784                 if (ND.flags & ND6_IFF_AUTO_LINKLOCAL) {
 1785                         if (!(ND_IFINFO(ifp)->flags & ND6_IFF_AUTO_LINKLOCAL)) {
 1786                                 /* auto_linklocal 0->1 transision */
 1787 
 1788                                 /* If no link-local address on ifp, configure */
 1789                                 ND_IFINFO(ifp)->flags |= ND6_IFF_AUTO_LINKLOCAL;
 1790                                 in6_ifattach(ifp, NULL);
 1791                         } else if (!(ND.flags & ND6_IFF_IFDISABLED) &&
 1792                             ifp->if_flags & IFF_UP) {
 1793                                 /*
 1794                                  * When the IF already has
 1795                                  * ND6_IFF_AUTO_LINKLOCAL, no link-local
 1796                                  * address is assigned, and IFF_UP, try to
 1797                                  * assign one.
 1798                                  */
 1799                                 NET_EPOCH_ENTER(et);
 1800                                 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead,
 1801                                     ifa_link) {
 1802                                         if (ifa->ifa_addr->sa_family !=
 1803                                             AF_INET6)
 1804                                                 continue;
 1805                                         ia = (struct in6_ifaddr *)ifa;
 1806                                         if (IN6_IS_ADDR_LINKLOCAL(IA6_IN6(ia)))
 1807                                                 break;
 1808                                 }
 1809                                 NET_EPOCH_EXIT(et);
 1810                                 if (ifa != NULL)
 1811                                         /* No LLA is configured. */
 1812                                         in6_ifattach(ifp, NULL);
 1813                         }
 1814                 }
 1815                 ND_IFINFO(ifp)->flags = ND.flags;
 1816                 break;
 1817         }
 1818 #undef ND
 1819         case SIOCSNDFLUSH_IN6:  /* XXX: the ioctl name is confusing... */
 1820                 /* sync kernel routing table with the default router list */
 1821                 defrouter_reset();
 1822                 defrouter_select_fib(RT_ALL_FIBS);
 1823                 break;
 1824         case SIOCSPFXFLUSH_IN6:
 1825         {
 1826                 /* flush all the prefix advertised by routers */
 1827                 struct in6_ifaddr *ia, *ia_next;
 1828                 struct nd_prefix *pr, *next;
 1829                 struct nd_prhead prl;
 1830 
 1831                 LIST_INIT(&prl);
 1832 
 1833                 ND6_WLOCK();
 1834                 LIST_FOREACH_SAFE(pr, &V_nd_prefix, ndpr_entry, next) {
 1835                         if (IN6_IS_ADDR_LINKLOCAL(&pr->ndpr_prefix.sin6_addr))
 1836                                 continue; /* XXX */
 1837                         nd6_prefix_unlink(pr, &prl);
 1838                 }
 1839                 ND6_WUNLOCK();
 1840 
 1841                 while ((pr = LIST_FIRST(&prl)) != NULL) {
 1842                         LIST_REMOVE(pr, ndpr_entry);
 1843                         /* XXXRW: in6_ifaddrhead locking. */
 1844                         CK_STAILQ_FOREACH_SAFE(ia, &V_in6_ifaddrhead, ia_link,
 1845                             ia_next) {
 1846                                 if ((ia->ia6_flags & IN6_IFF_AUTOCONF) == 0)
 1847                                         continue;
 1848 
 1849                                 if (ia->ia6_ndpr == pr)
 1850                                         in6_purgeaddr(&ia->ia_ifa);
 1851                         }
 1852                         nd6_prefix_del(pr);
 1853                 }
 1854                 break;
 1855         }
 1856         case SIOCSRTRFLUSH_IN6:
 1857         {
 1858                 /* flush all the default routers */
 1859 
 1860                 defrouter_reset();
 1861                 nd6_defrouter_flush_all();
 1862                 defrouter_select_fib(RT_ALL_FIBS);
 1863                 break;
 1864         }
 1865         case SIOCGNBRINFO_IN6:
 1866         {
 1867                 struct llentry *ln;
 1868                 struct in6_addr nb_addr = nbi->addr; /* make local for safety */
 1869 
 1870                 if ((error = in6_setscope(&nb_addr, ifp, NULL)) != 0)
 1871                         return (error);
 1872 
 1873                 NET_EPOCH_ENTER(et);
 1874                 ln = nd6_lookup(&nb_addr, LLE_SF(AF_INET6, 0), ifp);
 1875                 NET_EPOCH_EXIT(et);
 1876 
 1877                 if (ln == NULL) {
 1878                         error = EINVAL;
 1879                         break;
 1880                 }
 1881                 nbi->state = ln->ln_state;
 1882                 nbi->asked = ln->la_asked;
 1883                 nbi->isrouter = ln->ln_router;
 1884                 if (ln->la_expire == 0)
 1885                         nbi->expire = 0;
 1886                 else
 1887                         nbi->expire = ln->la_expire + ln->lle_remtime / hz +
 1888                             (time_second - time_uptime);
 1889                 LLE_RUNLOCK(ln);
 1890                 break;
 1891         }
 1892         case SIOCGDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */
 1893                 ndif->ifindex = V_nd6_defifindex;
 1894                 break;
 1895         case SIOCSDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */
 1896                 return (nd6_setdefaultiface(ndif->ifindex));
 1897         }
 1898         return (error);
 1899 }
 1900 
 1901 /*
 1902  * Calculates new isRouter value based on provided parameters and
 1903  * returns it.
 1904  */
 1905 static int
 1906 nd6_is_router(int type, int code, int is_new, int old_addr, int new_addr,
 1907     int ln_router)
 1908 {
 1909 
 1910         /*
 1911          * ICMP6 type dependent behavior.
 1912          *
 1913          * NS: clear IsRouter if new entry
 1914          * RS: clear IsRouter
 1915          * RA: set IsRouter if there's lladdr
 1916          * redir: clear IsRouter if new entry
 1917          *
 1918          * RA case, (1):
 1919          * The spec says that we must set IsRouter in the following cases:
 1920          * - If lladdr exist, set IsRouter.  This means (1-5).
 1921          * - If it is old entry (!newentry), set IsRouter.  This means (7).
 1922          * So, based on the spec, in (1-5) and (7) cases we must set IsRouter.
 1923          * A quetion arises for (1) case.  (1) case has no lladdr in the
 1924          * neighbor cache, this is similar to (6).
 1925          * This case is rare but we figured that we MUST NOT set IsRouter.
 1926          *
 1927          *   is_new  old_addr new_addr      NS  RS  RA  redir
 1928          *                                                      D R
 1929          *      0       n       n       (1)     c   ?     s
 1930          *      0       y       n       (2)     c   s     s
 1931          *      0       n       y       (3)     c   s     s
 1932          *      0       y       y       (4)     c   s     s
 1933          *      0       y       y       (5)     c   s     s
 1934          *      1       --      n       (6) c   c       c s
 1935          *      1       --      y       (7) c   c   s   c s
 1936          *
 1937          *                                      (c=clear s=set)
 1938          */
 1939         switch (type & 0xff) {
 1940         case ND_NEIGHBOR_SOLICIT:
 1941                 /*
 1942                  * New entry must have is_router flag cleared.
 1943                  */
 1944                 if (is_new)                                     /* (6-7) */
 1945                         ln_router = 0;
 1946                 break;
 1947         case ND_REDIRECT:
 1948                 /*
 1949                  * If the icmp is a redirect to a better router, always set the
 1950                  * is_router flag.  Otherwise, if the entry is newly created,
 1951                  * clear the flag.  [RFC 2461, sec 8.3]
 1952                  */
 1953                 if (code == ND_REDIRECT_ROUTER)
 1954                         ln_router = 1;
 1955                 else {
 1956                         if (is_new)                             /* (6-7) */
 1957                                 ln_router = 0;
 1958                 }
 1959                 break;
 1960         case ND_ROUTER_SOLICIT:
 1961                 /*
 1962                  * is_router flag must always be cleared.
 1963                  */
 1964                 ln_router = 0;
 1965                 break;
 1966         case ND_ROUTER_ADVERT:
 1967                 /*
 1968                  * Mark an entry with lladdr as a router.
 1969                  */
 1970                 if ((!is_new && (old_addr || new_addr)) ||      /* (2-5) */
 1971                     (is_new && new_addr)) {                     /* (7) */
 1972                         ln_router = 1;
 1973                 }
 1974                 break;
 1975         }
 1976 
 1977         return (ln_router);
 1978 }
 1979 
 1980 /*
 1981  * Create neighbor cache entry and cache link-layer address,
 1982  * on reception of inbound ND6 packets.  (RS/RA/NS/redirect)
 1983  *
 1984  * type - ICMP6 type
 1985  * code - type dependent information
 1986  *
 1987  */
 1988 void
 1989 nd6_cache_lladdr(struct ifnet *ifp, struct in6_addr *from, char *lladdr,
 1990     int lladdrlen, int type, int code)
 1991 {
 1992         struct llentry *ln = NULL, *ln_tmp;
 1993         int is_newentry;
 1994         int do_update;
 1995         int olladdr;
 1996         int llchange;
 1997         int flags;
 1998         uint16_t router = 0;
 1999         struct mbuf *chain = NULL;
 2000         u_char linkhdr[LLE_MAX_LINKHDR];
 2001         size_t linkhdrsize;
 2002         int lladdr_off;
 2003 
 2004         NET_EPOCH_ASSERT();
 2005         IF_AFDATA_UNLOCK_ASSERT(ifp);
 2006 
 2007         KASSERT(ifp != NULL, ("%s: ifp == NULL", __func__));
 2008         KASSERT(from != NULL, ("%s: from == NULL", __func__));
 2009 
 2010         /* nothing must be updated for unspecified address */
 2011         if (IN6_IS_ADDR_UNSPECIFIED(from))
 2012                 return;
 2013 
 2014         /*
 2015          * Validation about ifp->if_addrlen and lladdrlen must be done in
 2016          * the caller.
 2017          *
 2018          * XXX If the link does not have link-layer adderss, what should
 2019          * we do? (ifp->if_addrlen == 0)
 2020          * Spec says nothing in sections for RA, RS and NA.  There's small
 2021          * description on it in NS section (RFC 2461 7.2.3).
 2022          */
 2023         flags = lladdr ? LLE_EXCLUSIVE : 0;
 2024         ln = nd6_lookup(from, LLE_SF(AF_INET6, flags), ifp);
 2025         is_newentry = 0;
 2026         if (ln == NULL) {
 2027                 flags |= LLE_EXCLUSIVE;
 2028                 ln = nd6_alloc(from, 0, ifp);
 2029                 if (ln == NULL)
 2030                         return;
 2031 
 2032                 /*
 2033                  * Since we already know all the data for the new entry,
 2034                  * fill it before insertion.
 2035                  */
 2036                 if (lladdr != NULL) {
 2037                         linkhdrsize = sizeof(linkhdr);
 2038                         if (lltable_calc_llheader(ifp, AF_INET6, lladdr,
 2039                             linkhdr, &linkhdrsize, &lladdr_off) != 0)
 2040                                 return;
 2041                         lltable_set_entry_addr(ifp, ln, linkhdr, linkhdrsize,
 2042                             lladdr_off);
 2043                 }
 2044 
 2045                 IF_AFDATA_WLOCK(ifp);
 2046                 LLE_WLOCK(ln);
 2047                 /* Prefer any existing lle over newly-created one */
 2048                 ln_tmp = nd6_lookup(from, LLE_SF(AF_INET6, LLE_EXCLUSIVE), ifp);
 2049                 if (ln_tmp == NULL)
 2050                         lltable_link_entry(LLTABLE6(ifp), ln);
 2051                 IF_AFDATA_WUNLOCK(ifp);
 2052                 if (ln_tmp == NULL) {
 2053                         /* No existing lle, mark as new entry (6,7) */
 2054                         is_newentry = 1;
 2055                         if (lladdr != NULL) {   /* (7) */
 2056                                 nd6_llinfo_setstate(ln, ND6_LLINFO_STALE);
 2057                                 EVENTHANDLER_INVOKE(lle_event, ln,
 2058                                     LLENTRY_RESOLVED);
 2059                         }
 2060                 } else {
 2061                         lltable_free_entry(LLTABLE6(ifp), ln);
 2062                         ln = ln_tmp;
 2063                         ln_tmp = NULL;
 2064                 }
 2065         } 
 2066         /* do nothing if static ndp is set */
 2067         if ((ln->la_flags & LLE_STATIC)) {
 2068                 if (flags & LLE_EXCLUSIVE)
 2069                         LLE_WUNLOCK(ln);
 2070                 else
 2071                         LLE_RUNLOCK(ln);
 2072                 return;
 2073         }
 2074 
 2075         olladdr = (ln->la_flags & LLE_VALID) ? 1 : 0;
 2076         if (olladdr && lladdr) {
 2077                 llchange = bcmp(lladdr, ln->ll_addr,
 2078                     ifp->if_addrlen);
 2079         } else if (!olladdr && lladdr)
 2080                 llchange = 1;
 2081         else
 2082                 llchange = 0;
 2083 
 2084         /*
 2085          * newentry olladdr  lladdr  llchange   (*=record)
 2086          *      0       n       n       --      (1)
 2087          *      0       y       n       --      (2)
 2088          *      0       n       y       y       (3) * STALE
 2089          *      0       y       y       n       (4) *
 2090          *      0       y       y       y       (5) * STALE
 2091          *      1       --      n       --      (6)   NOSTATE(= PASSIVE)
 2092          *      1       --      y       --      (7) * STALE
 2093          */
 2094 
 2095         do_update = 0;
 2096         if (is_newentry == 0 && llchange != 0) {
 2097                 do_update = 1;  /* (3,5) */
 2098 
 2099                 /*
 2100                  * Record source link-layer address
 2101                  * XXX is it dependent to ifp->if_type?
 2102                  */
 2103                 if (!nd6_try_set_entry_addr(ifp, ln, lladdr)) {
 2104                         /* Entry was deleted */
 2105                         LLE_WUNLOCK(ln);
 2106                         return;
 2107                 }
 2108 
 2109                 nd6_llinfo_setstate(ln, ND6_LLINFO_STALE);
 2110 
 2111                 EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_RESOLVED);
 2112 
 2113                 if (ln->la_hold != NULL)
 2114                         chain = nd6_grab_holdchain(ln);
 2115         }
 2116 
 2117         /* Calculates new router status */
 2118         router = nd6_is_router(type, code, is_newentry, olladdr,
 2119             lladdr != NULL ? 1 : 0, ln->ln_router);
 2120 
 2121         ln->ln_router = router;
 2122         /* Mark non-router redirects with special flag */
 2123         if ((type & 0xFF) == ND_REDIRECT && code != ND_REDIRECT_ROUTER)
 2124                 ln->la_flags |= LLE_REDIRECT;
 2125 
 2126         if (flags & LLE_EXCLUSIVE)
 2127                 LLE_WUNLOCK(ln);
 2128         else
 2129                 LLE_RUNLOCK(ln);
 2130 
 2131         if (chain != NULL)
 2132                 nd6_flush_holdchain(ifp, ln, chain);
 2133         if (do_update)
 2134                 nd6_flush_children_holdchain(ifp, ln);
 2135 
 2136         /*
 2137          * When the link-layer address of a router changes, select the
 2138          * best router again.  In particular, when the neighbor entry is newly
 2139          * created, it might affect the selection policy.
 2140          * Question: can we restrict the first condition to the "is_newentry"
 2141          * case?
 2142          * XXX: when we hear an RA from a new router with the link-layer
 2143          * address option, defrouter_select_fib() is called twice, since
 2144          * defrtrlist_update called the function as well.  However, I believe
 2145          * we can compromise the overhead, since it only happens the first
 2146          * time.
 2147          * XXX: although defrouter_select_fib() should not have a bad effect
 2148          * for those are not autoconfigured hosts, we explicitly avoid such
 2149          * cases for safety.
 2150          */
 2151         if ((do_update || is_newentry) && router &&
 2152             ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) {
 2153                 /*
 2154                  * guaranteed recursion
 2155                  */
 2156                 defrouter_select_fib(ifp->if_fib);
 2157         }
 2158 }
 2159 
 2160 static void
 2161 nd6_slowtimo(void *arg)
 2162 {
 2163         struct epoch_tracker et;
 2164         CURVNET_SET((struct vnet *) arg);
 2165         struct nd_ifinfo *nd6if;
 2166         struct ifnet *ifp;
 2167 
 2168         callout_reset(&V_nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz,
 2169             nd6_slowtimo, curvnet);
 2170         NET_EPOCH_ENTER(et);
 2171         CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) {
 2172                 if (ifp->if_afdata[AF_INET6] == NULL)
 2173                         continue;
 2174                 nd6if = ND_IFINFO(ifp);
 2175                 if (nd6if->basereachable && /* already initialized */
 2176                     (nd6if->recalctm -= ND6_SLOWTIMER_INTERVAL) <= 0) {
 2177                         /*
 2178                          * Since reachable time rarely changes by router
 2179                          * advertisements, we SHOULD insure that a new random
 2180                          * value gets recomputed at least once every few hours.
 2181                          * (RFC 2461, 6.3.4)
 2182                          */
 2183                         nd6if->recalctm = V_nd6_recalc_reachtm_interval;
 2184                         nd6if->reachable = ND_COMPUTE_RTIME(nd6if->basereachable);
 2185                 }
 2186         }
 2187         NET_EPOCH_EXIT(et);
 2188         CURVNET_RESTORE();
 2189 }
 2190 
 2191 struct mbuf *
 2192 nd6_grab_holdchain(struct llentry *ln)
 2193 {
 2194         struct mbuf *chain;
 2195 
 2196         LLE_WLOCK_ASSERT(ln);
 2197 
 2198         chain = ln->la_hold;
 2199         ln->la_hold = NULL;
 2200 
 2201         if (ln->ln_state == ND6_LLINFO_STALE) {
 2202                 /*
 2203                  * The first time we send a packet to a
 2204                  * neighbor whose entry is STALE, we have
 2205                  * to change the state to DELAY and a sets
 2206                  * a timer to expire in DELAY_FIRST_PROBE_TIME
 2207                  * seconds to ensure do neighbor unreachability
 2208                  * detection on expiration.
 2209                  * (RFC 2461 7.3.3)
 2210                  */
 2211                 nd6_llinfo_setstate(ln, ND6_LLINFO_DELAY);
 2212         }
 2213 
 2214         return (chain);
 2215 }
 2216 
 2217 int
 2218 nd6_output_ifp(struct ifnet *ifp, struct ifnet *origifp, struct mbuf *m,
 2219     struct sockaddr_in6 *dst, struct route *ro)
 2220 {
 2221         int error;
 2222         int ip6len;
 2223         struct ip6_hdr *ip6;
 2224         struct m_tag *mtag;
 2225 
 2226 #ifdef MAC
 2227         mac_netinet6_nd6_send(ifp, m);
 2228 #endif
 2229 
 2230         /*
 2231          * If called from nd6_ns_output() (NS), nd6_na_output() (NA),
 2232          * icmp6_redirect_output() (REDIRECT) or from rip6_output() (RS, RA
 2233          * as handled by rtsol and rtadvd), mbufs will be tagged for SeND
 2234          * to be diverted to user space.  When re-injected into the kernel,
 2235          * send_output() will directly dispatch them to the outgoing interface.
 2236          */
 2237         if (send_sendso_input_hook != NULL) {
 2238                 mtag = m_tag_find(m, PACKET_TAG_ND_OUTGOING, NULL);
 2239                 if (mtag != NULL) {
 2240                         ip6 = mtod(m, struct ip6_hdr *);
 2241                         ip6len = sizeof(struct ip6_hdr) + ntohs(ip6->ip6_plen);
 2242                         /* Use the SEND socket */
 2243                         error = send_sendso_input_hook(m, ifp, SND_OUT,
 2244                             ip6len);
 2245                         /* -1 == no app on SEND socket */
 2246                         if (error == 0 || error != -1)
 2247                             return (error);
 2248                 }
 2249         }
 2250 
 2251         m_clrprotoflags(m);     /* Avoid confusing lower layers. */
 2252         IP_PROBE(send, NULL, NULL, mtod(m, struct ip6_hdr *), ifp, NULL,
 2253             mtod(m, struct ip6_hdr *));
 2254 
 2255         if ((ifp->if_flags & IFF_LOOPBACK) == 0)
 2256                 origifp = ifp;
 2257 
 2258         error = (*ifp->if_output)(origifp, m, (struct sockaddr *)dst, ro);
 2259         return (error);
 2260 }
 2261 
 2262 /*
 2263  * Lookup link headerfor @sa_dst address. Stores found
 2264  * data in @desten buffer. Copy of lle ln_flags can be also
 2265  * saved in @pflags if @pflags is non-NULL.
 2266  *
 2267  * If destination LLE does not exists or lle state modification
 2268  * is required, call "slow" version.
 2269  *
 2270  * Return values:
 2271  * - 0 on success (address copied to buffer).
 2272  * - EWOULDBLOCK (no local error, but address is still unresolved)
 2273  * - other errors (alloc failure, etc)
 2274  */
 2275 int
 2276 nd6_resolve(struct ifnet *ifp, int gw_flags, struct mbuf *m,
 2277     const struct sockaddr *sa_dst, u_char *desten, uint32_t *pflags,
 2278     struct llentry **plle)
 2279 {
 2280         struct llentry *ln = NULL;
 2281         const struct sockaddr_in6 *dst6;
 2282 
 2283         NET_EPOCH_ASSERT();
 2284 
 2285         if (pflags != NULL)
 2286                 *pflags = 0;
 2287 
 2288         dst6 = (const struct sockaddr_in6 *)sa_dst;
 2289 
 2290         /* discard the packet if IPv6 operation is disabled on the interface */
 2291         if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED)) {
 2292                 m_freem(m);
 2293                 return (ENETDOWN); /* better error? */
 2294         }
 2295 
 2296         if (m != NULL && m->m_flags & M_MCAST) {
 2297                 switch (ifp->if_type) {
 2298                 case IFT_ETHER:
 2299                 case IFT_L2VLAN:
 2300                 case IFT_BRIDGE:
 2301                         ETHER_MAP_IPV6_MULTICAST(&dst6->sin6_addr,
 2302                                                  desten);
 2303                         return (0);
 2304                 default:
 2305                         m_freem(m);
 2306                         return (EAFNOSUPPORT);
 2307                 }
 2308         }
 2309 
 2310         int family = gw_flags >> 16;
 2311         int lookup_flags = plle ? LLE_EXCLUSIVE : LLE_UNLOCKED;
 2312         ln = nd6_lookup(&dst6->sin6_addr, LLE_SF(family, lookup_flags), ifp);
 2313         if (ln != NULL && (ln->r_flags & RLLE_VALID) != 0) {
 2314                 /* Entry found, let's copy lle info */
 2315                 bcopy(ln->r_linkdata, desten, ln->r_hdrlen);
 2316                 if (pflags != NULL)
 2317                         *pflags = LLE_VALID | (ln->r_flags & RLLE_IFADDR);
 2318                 llentry_provide_feedback(ln);
 2319                 if (plle) {
 2320                         LLE_ADDREF(ln);
 2321                         *plle = ln;
 2322                         LLE_WUNLOCK(ln);
 2323                 }
 2324                 return (0);
 2325         } else if (plle && ln)
 2326                 LLE_WUNLOCK(ln);
 2327 
 2328         return (nd6_resolve_slow(ifp, family, 0, m, dst6, desten, pflags, plle));
 2329 }
 2330 
 2331 /*
 2332  * Finds or creates a new llentry for @addr and @family.
 2333  * Returns wlocked llentry or NULL.
 2334  *
 2335  *
 2336  * Child LLEs.
 2337  *
 2338  * Do not have their own state machine (gets marked as static)
 2339  *  settimer bails out for child LLEs just in case.
 2340  *
 2341  * Locking order: parent lle gets locked first, chen goes the child.
 2342  */
 2343 static __noinline struct llentry *
 2344 nd6_get_llentry(struct ifnet *ifp, const struct in6_addr *addr, int family)
 2345 {
 2346         struct llentry *child_lle = NULL;
 2347         struct llentry *lle, *lle_tmp;
 2348 
 2349         lle = nd6_alloc(addr, 0, ifp);
 2350         if (lle != NULL && family != AF_INET6) {
 2351                 child_lle = nd6_alloc(addr, 0, ifp);
 2352                 if (child_lle == NULL) {
 2353                         lltable_free_entry(LLTABLE6(ifp), lle);
 2354                         return (NULL);
 2355                 }
 2356                 child_lle->r_family = family;
 2357                 child_lle->la_flags |= LLE_CHILD | LLE_STATIC;
 2358                 child_lle->ln_state = ND6_LLINFO_INCOMPLETE;
 2359         }
 2360 
 2361         if (lle == NULL) {
 2362                 char ip6buf[INET6_ADDRSTRLEN];
 2363                 log(LOG_DEBUG,
 2364                     "nd6_get_llentry: can't allocate llinfo for %s "
 2365                     "(ln=%p)\n",
 2366                     ip6_sprintf(ip6buf, addr), lle);
 2367                 return (NULL);
 2368         }
 2369 
 2370         IF_AFDATA_WLOCK(ifp);
 2371         LLE_WLOCK(lle);
 2372         /* Prefer any existing entry over newly-created one */
 2373         lle_tmp = nd6_lookup(addr, LLE_SF(AF_INET6, LLE_EXCLUSIVE), ifp);
 2374         if (lle_tmp == NULL)
 2375                 lltable_link_entry(LLTABLE6(ifp), lle);
 2376         else {
 2377                 lltable_free_entry(LLTABLE6(ifp), lle);
 2378                 lle = lle_tmp;
 2379         }
 2380         if (child_lle != NULL) {
 2381                 /* Check if child lle for the same family exists */
 2382                 lle_tmp = llentry_lookup_family(lle, child_lle->r_family);
 2383                 LLE_WLOCK(child_lle);
 2384                 if (lle_tmp == NULL) {
 2385                         /* Attach */
 2386                         lltable_link_child_entry(lle, child_lle);
 2387                 } else {
 2388                         /* child lle already exists, free newly-created one */
 2389                         lltable_free_entry(LLTABLE6(ifp), child_lle);
 2390                         child_lle = lle_tmp;
 2391                 }
 2392                 LLE_WUNLOCK(lle);
 2393                 lle = child_lle;
 2394         }
 2395         IF_AFDATA_WUNLOCK(ifp);
 2396         return (lle);
 2397 }
 2398 
 2399 /*
 2400  * Do L2 address resolution for @sa_dst address. Stores found
 2401  * address in @desten buffer. Copy of lle ln_flags can be also
 2402  * saved in @pflags if @pflags is non-NULL.
 2403  *
 2404  * Heavy version.
 2405  * Function assume that destination LLE does not exist,
 2406  * is invalid or stale, so LLE_EXCLUSIVE lock needs to be acquired.
 2407  *
 2408  * Set noinline to be dtrace-friendly
 2409  */
 2410 static __noinline int
 2411 nd6_resolve_slow(struct ifnet *ifp, int family, int flags, struct mbuf *m,
 2412     const struct sockaddr_in6 *dst, u_char *desten, uint32_t *pflags,
 2413     struct llentry **plle)
 2414 {
 2415         struct llentry *lle = NULL;
 2416         struct in6_addr *psrc, src;
 2417         int send_ns, ll_len;
 2418         char *lladdr;
 2419 
 2420         NET_EPOCH_ASSERT();
 2421 
 2422         /*
 2423          * Address resolution or Neighbor Unreachability Detection
 2424          * for the next hop.
 2425          * At this point, the destination of the packet must be a unicast
 2426          * or an anycast address(i.e. not a multicast).
 2427          */
 2428         lle = nd6_lookup(&dst->sin6_addr, LLE_SF(family, LLE_EXCLUSIVE), ifp);
 2429         if ((lle == NULL) && nd6_is_addr_neighbor(dst, ifp))  {
 2430                 /*
 2431                  * Since nd6_is_addr_neighbor() internally calls nd6_lookup(),
 2432                  * the condition below is not very efficient.  But we believe
 2433                  * it is tolerable, because this should be a rare case.
 2434                  */
 2435                 lle = nd6_get_llentry(ifp, &dst->sin6_addr, family);
 2436         }
 2437 
 2438         if (lle == NULL) {
 2439                 m_freem(m);
 2440                 return (ENOBUFS);
 2441         }
 2442 
 2443         LLE_WLOCK_ASSERT(lle);
 2444 
 2445         /*
 2446          * The first time we send a packet to a neighbor whose entry is
 2447          * STALE, we have to change the state to DELAY and a sets a timer to
 2448          * expire in DELAY_FIRST_PROBE_TIME seconds to ensure do
 2449          * neighbor unreachability detection on expiration.
 2450          * (RFC 2461 7.3.3)
 2451          */
 2452         if ((!(lle->la_flags & LLE_CHILD)) && (lle->ln_state == ND6_LLINFO_STALE))
 2453                 nd6_llinfo_setstate(lle, ND6_LLINFO_DELAY);
 2454 
 2455         /*
 2456          * If the neighbor cache entry has a state other than INCOMPLETE
 2457          * (i.e. its link-layer address is already resolved), just
 2458          * send the packet.
 2459          */
 2460         if (lle->ln_state > ND6_LLINFO_INCOMPLETE) {
 2461                 if (flags & LLE_ADDRONLY) {
 2462                         lladdr = lle->ll_addr;
 2463                         ll_len = ifp->if_addrlen;
 2464                 } else {
 2465                         lladdr = lle->r_linkdata;
 2466                         ll_len = lle->r_hdrlen;
 2467                 }
 2468                 bcopy(lladdr, desten, ll_len);
 2469                 if (pflags != NULL)
 2470                         *pflags = lle->la_flags;
 2471                 if (plle) {
 2472                         LLE_ADDREF(lle);
 2473                         *plle = lle;
 2474                 }
 2475                 LLE_WUNLOCK(lle);
 2476                 return (0);
 2477         }
 2478 
 2479         /*
 2480          * There is a neighbor cache entry, but no ethernet address
 2481          * response yet.  Append this latest packet to the end of the
 2482          * packet queue in the mbuf.  When it exceeds nd6_maxqueuelen,
 2483          * the oldest packet in the queue will be removed.
 2484          */
 2485 
 2486         if (lle->la_hold != NULL) {
 2487                 struct mbuf *m_hold;
 2488                 int i;
 2489                 
 2490                 i = 0;
 2491                 for (m_hold = lle->la_hold; m_hold; m_hold = m_hold->m_nextpkt){
 2492                         i++;
 2493                         if (m_hold->m_nextpkt == NULL) {
 2494                                 m_hold->m_nextpkt = m;
 2495                                 break;
 2496                         }
 2497                 }
 2498                 while (i >= V_nd6_maxqueuelen) {
 2499                         m_hold = lle->la_hold;
 2500                         lle->la_hold = lle->la_hold->m_nextpkt;
 2501                         m_freem(m_hold);
 2502                         i--;
 2503                 }
 2504         } else {
 2505                 lle->la_hold = m;
 2506         }
 2507 
 2508         /*
 2509          * If there has been no NS for the neighbor after entering the
 2510          * INCOMPLETE state, send the first solicitation.
 2511          * Note that for newly-created lle la_asked will be 0,
 2512          * so we will transition from ND6_LLINFO_NOSTATE to
 2513          * ND6_LLINFO_INCOMPLETE state here.
 2514          */
 2515         psrc = NULL;
 2516         send_ns = 0;
 2517 
 2518         /* If we have child lle, switch to the parent to send NS */
 2519         if (lle->la_flags & LLE_CHILD) {
 2520                 struct llentry *lle_parent = lle->lle_parent;
 2521                 LLE_WUNLOCK(lle);
 2522                 lle = lle_parent;
 2523                 LLE_WLOCK(lle);
 2524         }
 2525         if (lle->la_asked == 0) {
 2526                 lle->la_asked++;
 2527                 send_ns = 1;
 2528                 psrc = nd6_llinfo_get_holdsrc(lle, &src);
 2529 
 2530                 nd6_llinfo_setstate(lle, ND6_LLINFO_INCOMPLETE);
 2531         }
 2532         LLE_WUNLOCK(lle);
 2533         if (send_ns != 0)
 2534                 nd6_ns_output(ifp, psrc, NULL, &dst->sin6_addr, NULL);
 2535 
 2536         return (EWOULDBLOCK);
 2537 }
 2538 
 2539 /*
 2540  * Do L2 address resolution for @sa_dst address. Stores found
 2541  * address in @desten buffer. Copy of lle ln_flags can be also
 2542  * saved in @pflags if @pflags is non-NULL.
 2543  *
 2544  * Return values:
 2545  * - 0 on success (address copied to buffer).
 2546  * - EWOULDBLOCK (no local error, but address is still unresolved)
 2547  * - other errors (alloc failure, etc)
 2548  */
 2549 int
 2550 nd6_resolve_addr(struct ifnet *ifp, int flags, const struct sockaddr *dst,
 2551     char *desten, uint32_t *pflags)
 2552 {
 2553         int error;
 2554 
 2555         flags |= LLE_ADDRONLY;
 2556         error = nd6_resolve_slow(ifp, AF_INET6, flags, NULL,
 2557             (const struct sockaddr_in6 *)dst, desten, pflags, NULL);
 2558         return (error);
 2559 }
 2560 
 2561 int
 2562 nd6_flush_holdchain(struct ifnet *ifp, struct llentry *lle, struct mbuf *chain)
 2563 {
 2564         struct mbuf *m, *m_head;
 2565         struct sockaddr_in6 dst6;
 2566         int error = 0;
 2567 
 2568         NET_EPOCH_ASSERT();
 2569 
 2570         struct route_in6 ro = {
 2571                 .ro_prepend = lle->r_linkdata,
 2572                 .ro_plen = lle->r_hdrlen,
 2573         };
 2574 
 2575         lltable_fill_sa_entry(lle, (struct sockaddr *)&dst6);
 2576         m_head = chain;
 2577 
 2578         while (m_head) {
 2579                 m = m_head;
 2580                 m_head = m_head->m_nextpkt;
 2581                 m->m_nextpkt = NULL;
 2582                 error = nd6_output_ifp(ifp, ifp, m, &dst6, (struct route *)&ro);
 2583         }
 2584 
 2585         /*
 2586          * XXX
 2587          * note that intermediate errors are blindly ignored
 2588          */
 2589         return (error);
 2590 }
 2591 
 2592 __noinline void
 2593 nd6_flush_children_holdchain(struct ifnet *ifp, struct llentry *lle)
 2594 {
 2595         struct llentry *child_lle;
 2596         struct mbuf *chain;
 2597 
 2598         NET_EPOCH_ASSERT();
 2599 
 2600         CK_SLIST_FOREACH(child_lle, &lle->lle_children, lle_child_next) {
 2601                 LLE_WLOCK(child_lle);
 2602                 chain = nd6_grab_holdchain(child_lle);
 2603                 LLE_WUNLOCK(child_lle);
 2604                 nd6_flush_holdchain(ifp, child_lle, chain);
 2605         }
 2606 }
 2607 
 2608 static int
 2609 nd6_need_cache(struct ifnet *ifp)
 2610 {
 2611         /*
 2612          * XXX: we currently do not make neighbor cache on any interface
 2613          * other than Ethernet and GIF.
 2614          *
 2615          * RFC2893 says:
 2616          * - unidirectional tunnels needs no ND
 2617          */
 2618         switch (ifp->if_type) {
 2619         case IFT_ETHER:
 2620         case IFT_IEEE1394:
 2621         case IFT_L2VLAN:
 2622         case IFT_INFINIBAND:
 2623         case IFT_BRIDGE:
 2624         case IFT_PROPVIRTUAL:
 2625                 return (1);
 2626         default:
 2627                 return (0);
 2628         }
 2629 }
 2630 
 2631 /*
 2632  * Add pernament ND6 link-layer record for given
 2633  * interface address.
 2634  *
 2635  * Very similar to IPv4 arp_ifinit(), but:
 2636  * 1) IPv6 DAD is performed in different place
 2637  * 2) It is called by IPv6 protocol stack in contrast to
 2638  * arp_ifinit() which is typically called in SIOCSIFADDR
 2639  * driver ioctl handler.
 2640  *
 2641  */
 2642 int
 2643 nd6_add_ifa_lle(struct in6_ifaddr *ia)
 2644 {
 2645         struct ifnet *ifp;
 2646         struct llentry *ln, *ln_tmp;
 2647         struct sockaddr *dst;
 2648 
 2649         ifp = ia->ia_ifa.ifa_ifp;
 2650         if (nd6_need_cache(ifp) == 0)
 2651                 return (0);
 2652 
 2653         dst = (struct sockaddr *)&ia->ia_addr;
 2654         ln = lltable_alloc_entry(LLTABLE6(ifp), LLE_IFADDR, dst);
 2655         if (ln == NULL)
 2656                 return (ENOBUFS);
 2657 
 2658         IF_AFDATA_WLOCK(ifp);
 2659         LLE_WLOCK(ln);
 2660         /* Unlink any entry if exists */
 2661         ln_tmp = lla_lookup(LLTABLE6(ifp), LLE_SF(AF_INET6, LLE_EXCLUSIVE), dst);
 2662         if (ln_tmp != NULL)
 2663                 lltable_unlink_entry(LLTABLE6(ifp), ln_tmp);
 2664         lltable_link_entry(LLTABLE6(ifp), ln);
 2665         IF_AFDATA_WUNLOCK(ifp);
 2666 
 2667         if (ln_tmp != NULL)
 2668                 EVENTHANDLER_INVOKE(lle_event, ln_tmp, LLENTRY_EXPIRED);
 2669         EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_RESOLVED);
 2670 
 2671         LLE_WUNLOCK(ln);
 2672         if (ln_tmp != NULL)
 2673                 llentry_free(ln_tmp);
 2674 
 2675         return (0);
 2676 }
 2677 
 2678 /*
 2679  * Removes either all lle entries for given @ia, or lle
 2680  * corresponding to @ia address.
 2681  */
 2682 void
 2683 nd6_rem_ifa_lle(struct in6_ifaddr *ia, int all)
 2684 {
 2685         struct sockaddr_in6 mask, addr;
 2686         struct sockaddr *saddr, *smask;
 2687         struct ifnet *ifp;
 2688 
 2689         ifp = ia->ia_ifa.ifa_ifp;
 2690         memcpy(&addr, &ia->ia_addr, sizeof(ia->ia_addr));
 2691         memcpy(&mask, &ia->ia_prefixmask, sizeof(ia->ia_prefixmask));
 2692         saddr = (struct sockaddr *)&addr;
 2693         smask = (struct sockaddr *)&mask;
 2694 
 2695         if (all != 0)
 2696                 lltable_prefix_free(AF_INET6, saddr, smask, LLE_STATIC);
 2697         else
 2698                 lltable_delete_addr(LLTABLE6(ifp), LLE_IFADDR, saddr);
 2699 }
 2700 
 2701 static void 
 2702 clear_llinfo_pqueue(struct llentry *ln)
 2703 {
 2704         struct mbuf *m_hold, *m_hold_next;
 2705 
 2706         for (m_hold = ln->la_hold; m_hold; m_hold = m_hold_next) {
 2707                 m_hold_next = m_hold->m_nextpkt;
 2708                 m_freem(m_hold);
 2709         }
 2710 
 2711         ln->la_hold = NULL;
 2712 }
 2713 
 2714 static int
 2715 nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS)
 2716 {
 2717         struct in6_prefix p;
 2718         struct sockaddr_in6 s6;
 2719         struct nd_prefix *pr;
 2720         struct nd_pfxrouter *pfr;
 2721         time_t maxexpire;
 2722         int error;
 2723         char ip6buf[INET6_ADDRSTRLEN];
 2724 
 2725         if (req->newptr)
 2726                 return (EPERM);
 2727 
 2728         error = sysctl_wire_old_buffer(req, 0);
 2729         if (error != 0)
 2730                 return (error);
 2731 
 2732         bzero(&p, sizeof(p));
 2733         p.origin = PR_ORIG_RA;
 2734         bzero(&s6, sizeof(s6));
 2735         s6.sin6_family = AF_INET6;
 2736         s6.sin6_len = sizeof(s6);
 2737 
 2738         ND6_RLOCK();
 2739         LIST_FOREACH(pr, &V_nd_prefix, ndpr_entry) {
 2740                 p.prefix = pr->ndpr_prefix;
 2741                 if (sa6_recoverscope(&p.prefix)) {
 2742                         log(LOG_ERR, "scope error in prefix list (%s)\n",
 2743                             ip6_sprintf(ip6buf, &p.prefix.sin6_addr));
 2744                         /* XXX: press on... */
 2745                 }
 2746                 p.raflags = pr->ndpr_raf;
 2747                 p.prefixlen = pr->ndpr_plen;
 2748                 p.vltime = pr->ndpr_vltime;
 2749                 p.pltime = pr->ndpr_pltime;
 2750                 p.if_index = pr->ndpr_ifp->if_index;
 2751                 if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME)
 2752                         p.expire = 0;
 2753                 else {
 2754                         /* XXX: we assume time_t is signed. */
 2755                         maxexpire = (-1) &
 2756                             ~((time_t)1 << ((sizeof(maxexpire) * 8) - 1));
 2757                         if (pr->ndpr_vltime < maxexpire - pr->ndpr_lastupdate)
 2758                                 p.expire = pr->ndpr_lastupdate +
 2759                                     pr->ndpr_vltime +
 2760                                     (time_second - time_uptime);
 2761                         else
 2762                                 p.expire = maxexpire;
 2763                 }
 2764                 p.refcnt = pr->ndpr_addrcnt;
 2765                 p.flags = pr->ndpr_stateflags;
 2766                 p.advrtrs = 0;
 2767                 LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry)
 2768                         p.advrtrs++;
 2769                 error = SYSCTL_OUT(req, &p, sizeof(p));
 2770                 if (error != 0)
 2771                         break;
 2772                 LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) {
 2773                         s6.sin6_addr = pfr->router->rtaddr;
 2774                         if (sa6_recoverscope(&s6))
 2775                                 log(LOG_ERR,
 2776                                     "scope error in prefix list (%s)\n",
 2777                                     ip6_sprintf(ip6buf, &pfr->router->rtaddr));
 2778                         error = SYSCTL_OUT(req, &s6, sizeof(s6));
 2779                         if (error != 0)
 2780                                 goto out;
 2781                 }
 2782         }
 2783 out:
 2784         ND6_RUNLOCK();
 2785         return (error);
 2786 }
 2787 SYSCTL_PROC(_net_inet6_icmp6, ICMPV6CTL_ND6_PRLIST, nd6_prlist,
 2788         CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE,
 2789         NULL, 0, nd6_sysctl_prlist, "S,in6_prefix",
 2790         "NDP prefix list");
 2791 SYSCTL_INT(_net_inet6_icmp6, ICMPV6CTL_ND6_MAXQLEN, nd6_maxqueuelen,
 2792         CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(nd6_maxqueuelen), 1, "");
 2793 SYSCTL_INT(_net_inet6_icmp6, OID_AUTO, nd6_gctimer,
 2794         CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(nd6_gctimer), (60 * 60 * 24), "");

Cache object: 1f9aa16e582a10caf03c6539157fb71c


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.