FreeBSD/Linux Kernel Cross Reference
sys/netipsec/ipsec.c
1 /* $FreeBSD$ */
2 /* $KAME: ipsec.c,v 1.103 2001/05/24 07:14:18 sakane Exp $ */
3
4 /*-
5 * SPDX-License-Identifier: BSD-3-Clause
6 *
7 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
8 * All rights reserved.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the project nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 */
34
35 /*
36 * IPsec controller part.
37 */
38
39 #include "opt_inet.h"
40 #include "opt_inet6.h"
41 #include "opt_ipsec.h"
42
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/malloc.h>
46 #include <sys/mbuf.h>
47 #include <sys/domain.h>
48 #include <sys/priv.h>
49 #include <sys/protosw.h>
50 #include <sys/socket.h>
51 #include <sys/socketvar.h>
52 #include <sys/errno.h>
53 #include <sys/hhook.h>
54 #include <sys/time.h>
55 #include <sys/kernel.h>
56 #include <sys/syslog.h>
57 #include <sys/sysctl.h>
58 #include <sys/proc.h>
59
60 #include <net/if.h>
61 #include <net/if_enc.h>
62 #include <net/if_var.h>
63 #include <net/vnet.h>
64
65 #include <netinet/in.h>
66 #include <netinet/in_systm.h>
67 #include <netinet/ip.h>
68 #include <netinet/ip_var.h>
69 #include <netinet/in_var.h>
70 #include <netinet/udp.h>
71 #include <netinet/udp_var.h>
72 #include <netinet/tcp.h>
73 #include <netinet/udp.h>
74
75 #include <netinet/ip6.h>
76 #ifdef INET6
77 #include <netinet6/ip6_var.h>
78 #endif
79 #include <netinet/in_pcb.h>
80 #ifdef INET6
81 #include <netinet/icmp6.h>
82 #endif
83
84 #include <sys/types.h>
85 #include <netipsec/ipsec.h>
86 #ifdef INET6
87 #include <netipsec/ipsec6.h>
88 #endif
89 #include <netipsec/ah_var.h>
90 #include <netipsec/esp_var.h>
91 #include <netipsec/ipcomp.h> /*XXX*/
92 #include <netipsec/ipcomp_var.h>
93 #include <netipsec/ipsec_support.h>
94
95 #include <netipsec/key.h>
96 #include <netipsec/keydb.h>
97 #include <netipsec/key_debug.h>
98
99 #include <netipsec/xform.h>
100
101 #include <machine/in_cksum.h>
102
103 #include <opencrypto/cryptodev.h>
104
105 /* NB: name changed so netstat doesn't use it. */
106 VNET_PCPUSTAT_DEFINE(struct ipsecstat, ipsec4stat);
107 VNET_PCPUSTAT_SYSINIT(ipsec4stat);
108
109 #ifdef VIMAGE
110 VNET_PCPUSTAT_SYSUNINIT(ipsec4stat);
111 #endif /* VIMAGE */
112
113 /* DF bit on encap. 0: clear 1: set 2: copy */
114 VNET_DEFINE(int, ip4_ipsec_dfbit) = 0;
115 VNET_DEFINE(int, ip4_ipsec_min_pmtu) = 576;
116 VNET_DEFINE(int, ip4_esp_trans_deflev) = IPSEC_LEVEL_USE;
117 VNET_DEFINE(int, ip4_esp_net_deflev) = IPSEC_LEVEL_USE;
118 VNET_DEFINE(int, ip4_ah_trans_deflev) = IPSEC_LEVEL_USE;
119 VNET_DEFINE(int, ip4_ah_net_deflev) = IPSEC_LEVEL_USE;
120 /* ECN ignore(-1)/forbidden(0)/allowed(1) */
121 VNET_DEFINE(int, ip4_ipsec_ecn) = 0;
122
123 VNET_DEFINE_STATIC(int, ip4_filtertunnel) = 0;
124 #define V_ip4_filtertunnel VNET(ip4_filtertunnel)
125 VNET_DEFINE_STATIC(int, check_policy_history) = 0;
126 #define V_check_policy_history VNET(check_policy_history)
127 VNET_DEFINE_STATIC(struct secpolicy *, def_policy) = NULL;
128 #define V_def_policy VNET(def_policy)
129 static int
130 sysctl_def_policy(SYSCTL_HANDLER_ARGS)
131 {
132 int error, value;
133
134 value = V_def_policy->policy;
135 error = sysctl_handle_int(oidp, &value, 0, req);
136 if (error == 0) {
137 if (value != IPSEC_POLICY_DISCARD &&
138 value != IPSEC_POLICY_NONE)
139 return (EINVAL);
140 V_def_policy->policy = value;
141 }
142 return (error);
143 }
144
145 /*
146 * Crypto support requirements:
147 *
148 * 1 require hardware support
149 * -1 require software support
150 * 0 take anything
151 */
152 VNET_DEFINE(int, crypto_support) = CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE;
153
154 /*
155 * Use asynchronous mode to parallelize crypto jobs:
156 *
157 * 0 - disabled
158 * 1 - enabled
159 */
160 VNET_DEFINE(int, async_crypto) = 0;
161
162 /*
163 * TCP/UDP checksum handling policy for transport mode NAT-T (RFC3948)
164 *
165 * 0 - auto: incrementally recompute, when checksum delta is known;
166 * if checksum delta isn't known, reset checksum to zero for UDP,
167 * and mark csum_flags as valid for TCP.
168 * 1 - fully recompute TCP/UDP checksum.
169 */
170 VNET_DEFINE(int, natt_cksum_policy) = 0;
171
172 FEATURE(ipsec, "Internet Protocol Security (IPsec)");
173 FEATURE(ipsec_natt, "UDP Encapsulation of IPsec ESP Packets ('NAT-T')");
174
175 SYSCTL_DECL(_net_inet_ipsec);
176
177 /* net.inet.ipsec */
178 SYSCTL_PROC(_net_inet_ipsec, IPSECCTL_DEF_POLICY, def_policy,
179 CTLTYPE_INT | CTLFLAG_VNET | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
180 0, 0, sysctl_def_policy, "I",
181 "IPsec default policy.");
182 SYSCTL_INT(_net_inet_ipsec, IPSECCTL_DEF_ESP_TRANSLEV, esp_trans_deflev,
183 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ip4_esp_trans_deflev), 0,
184 "Default ESP transport mode level");
185 SYSCTL_INT(_net_inet_ipsec, IPSECCTL_DEF_ESP_NETLEV, esp_net_deflev,
186 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ip4_esp_net_deflev), 0,
187 "Default ESP tunnel mode level.");
188 SYSCTL_INT(_net_inet_ipsec, IPSECCTL_DEF_AH_TRANSLEV, ah_trans_deflev,
189 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ip4_ah_trans_deflev), 0,
190 "AH transfer mode default level.");
191 SYSCTL_INT(_net_inet_ipsec, IPSECCTL_DEF_AH_NETLEV, ah_net_deflev,
192 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ip4_ah_net_deflev), 0,
193 "AH tunnel mode default level.");
194 SYSCTL_INT(_net_inet_ipsec, IPSECCTL_AH_CLEARTOS, ah_cleartos,
195 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ah_cleartos), 0,
196 "If set, clear type-of-service field when doing AH computation.");
197 SYSCTL_INT(_net_inet_ipsec, IPSECCTL_DFBIT, dfbit,
198 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ip4_ipsec_dfbit), 0,
199 "Do not fragment bit on encap.");
200 SYSCTL_INT(_net_inet_ipsec, IPSECCTL_MIN_PMTU, min_pmtu,
201 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ip4_ipsec_min_pmtu), 0,
202 "Lowest acceptable PMTU value.");
203 SYSCTL_INT(_net_inet_ipsec, IPSECCTL_ECN, ecn,
204 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ip4_ipsec_ecn), 0,
205 "Explicit Congestion Notification handling.");
206 SYSCTL_INT(_net_inet_ipsec, OID_AUTO, crypto_support,
207 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(crypto_support), 0,
208 "Crypto driver selection.");
209 SYSCTL_INT(_net_inet_ipsec, OID_AUTO, async_crypto,
210 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(async_crypto), 0,
211 "Use asynchronous mode to parallelize crypto jobs.");
212 SYSCTL_INT(_net_inet_ipsec, OID_AUTO, check_policy_history,
213 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(check_policy_history), 0,
214 "Use strict check of inbound packets to security policy compliance.");
215 SYSCTL_INT(_net_inet_ipsec, OID_AUTO, natt_cksum_policy,
216 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(natt_cksum_policy), 0,
217 "Method to fix TCP/UDP checksum for transport mode IPsec after NAT.");
218 SYSCTL_INT(_net_inet_ipsec, OID_AUTO, filtertunnel,
219 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ip4_filtertunnel), 0,
220 "If set, filter packets from an IPsec tunnel.");
221 SYSCTL_VNET_PCPUSTAT(_net_inet_ipsec, OID_AUTO, ipsecstats, struct ipsecstat,
222 ipsec4stat, "IPsec IPv4 statistics.");
223
224 #ifdef REGRESSION
225 /*
226 * When set to 1, IPsec will send packets with the same sequence number.
227 * This allows to verify if the other side has proper replay attacks detection.
228 */
229 VNET_DEFINE(int, ipsec_replay) = 0;
230 SYSCTL_INT(_net_inet_ipsec, OID_AUTO, test_replay,
231 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ipsec_replay), 0,
232 "Emulate replay attack");
233 /*
234 * When set 1, IPsec will send packets with corrupted HMAC.
235 * This allows to verify if the other side properly detects modified packets.
236 */
237 VNET_DEFINE(int, ipsec_integrity) = 0;
238 SYSCTL_INT(_net_inet_ipsec, OID_AUTO, test_integrity,
239 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ipsec_integrity), 0,
240 "Emulate man-in-the-middle attack");
241 #endif
242
243 #ifdef INET6
244 VNET_PCPUSTAT_DEFINE(struct ipsecstat, ipsec6stat);
245 VNET_PCPUSTAT_SYSINIT(ipsec6stat);
246
247 #ifdef VIMAGE
248 VNET_PCPUSTAT_SYSUNINIT(ipsec6stat);
249 #endif /* VIMAGE */
250
251 VNET_DEFINE(int, ip6_esp_trans_deflev) = IPSEC_LEVEL_USE;
252 VNET_DEFINE(int, ip6_esp_net_deflev) = IPSEC_LEVEL_USE;
253 VNET_DEFINE(int, ip6_ah_trans_deflev) = IPSEC_LEVEL_USE;
254 VNET_DEFINE(int, ip6_ah_net_deflev) = IPSEC_LEVEL_USE;
255 VNET_DEFINE(int, ip6_ipsec_ecn) = 0; /* ECN ignore(-1)/forbidden(0)/allowed(1) */
256
257 VNET_DEFINE_STATIC(int, ip6_filtertunnel) = 0;
258 #define V_ip6_filtertunnel VNET(ip6_filtertunnel)
259
260 SYSCTL_DECL(_net_inet6_ipsec6);
261
262 /* net.inet6.ipsec6 */
263 SYSCTL_PROC(_net_inet6_ipsec6, IPSECCTL_DEF_POLICY, def_policy,
264 CTLTYPE_INT | CTLFLAG_VNET | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
265 0, 0, sysctl_def_policy, "I",
266 "IPsec default policy.");
267 SYSCTL_INT(_net_inet6_ipsec6, IPSECCTL_DEF_ESP_TRANSLEV, esp_trans_deflev,
268 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ip6_esp_trans_deflev), 0,
269 "Default ESP transport mode level.");
270 SYSCTL_INT(_net_inet6_ipsec6, IPSECCTL_DEF_ESP_NETLEV, esp_net_deflev,
271 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ip6_esp_net_deflev), 0,
272 "Default ESP tunnel mode level.");
273 SYSCTL_INT(_net_inet6_ipsec6, IPSECCTL_DEF_AH_TRANSLEV, ah_trans_deflev,
274 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ip6_ah_trans_deflev), 0,
275 "AH transfer mode default level.");
276 SYSCTL_INT(_net_inet6_ipsec6, IPSECCTL_DEF_AH_NETLEV, ah_net_deflev,
277 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ip6_ah_net_deflev), 0,
278 "AH tunnel mode default level.");
279 SYSCTL_INT(_net_inet6_ipsec6, IPSECCTL_ECN, ecn,
280 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ip6_ipsec_ecn), 0,
281 "Explicit Congestion Notification handling.");
282 SYSCTL_INT(_net_inet6_ipsec6, OID_AUTO, filtertunnel,
283 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ip6_filtertunnel), 0,
284 "If set, filter packets from an IPsec tunnel.");
285 SYSCTL_VNET_PCPUSTAT(_net_inet6_ipsec6, IPSECCTL_STATS, ipsecstats,
286 struct ipsecstat, ipsec6stat, "IPsec IPv6 statistics.");
287 #endif /* INET6 */
288
289 static int ipsec_in_reject(struct secpolicy *, struct inpcb *,
290 const struct mbuf *);
291
292 #ifdef INET
293 static void ipsec4_get_ulp(const struct mbuf *, struct secpolicyindex *, int);
294 static void ipsec4_setspidx_ipaddr(const struct mbuf *,
295 struct secpolicyindex *);
296 #endif
297 #ifdef INET6
298 static void ipsec6_get_ulp(const struct mbuf *m, struct secpolicyindex *, int);
299 static void ipsec6_setspidx_ipaddr(const struct mbuf *,
300 struct secpolicyindex *);
301 #endif
302
303 /*
304 * Return a held reference to the default SP.
305 */
306 static struct secpolicy *
307 key_allocsp_default(void)
308 {
309
310 key_addref(V_def_policy);
311 return (V_def_policy);
312 }
313
314 static void
315 ipsec_invalidate_cache(struct inpcb *inp, u_int dir)
316 {
317 struct secpolicy *sp;
318
319 INP_WLOCK_ASSERT(inp);
320 if (dir == IPSEC_DIR_OUTBOUND) {
321 if (inp->inp_sp->flags & INP_INBOUND_POLICY)
322 return;
323 sp = inp->inp_sp->sp_in;
324 inp->inp_sp->sp_in = NULL;
325 } else {
326 if (inp->inp_sp->flags & INP_OUTBOUND_POLICY)
327 return;
328 sp = inp->inp_sp->sp_out;
329 inp->inp_sp->sp_out = NULL;
330 }
331 if (sp != NULL)
332 key_freesp(&sp); /* release extra reference */
333 }
334
335 static void
336 ipsec_cachepolicy(struct inpcb *inp, struct secpolicy *sp, u_int dir)
337 {
338 uint32_t genid;
339 int downgrade;
340
341 INP_LOCK_ASSERT(inp);
342
343 if (dir == IPSEC_DIR_OUTBOUND) {
344 /* Do we have configured PCB policy? */
345 if (inp->inp_sp->flags & INP_OUTBOUND_POLICY)
346 return;
347 /* Another thread has already set cached policy */
348 if (inp->inp_sp->sp_out != NULL)
349 return;
350 /*
351 * Do not cache OUTBOUND policy if PCB isn't connected,
352 * i.e. foreign address is INADDR_ANY/UNSPECIFIED.
353 */
354 #ifdef INET
355 if ((inp->inp_vflag & INP_IPV4) != 0 &&
356 inp->inp_faddr.s_addr == INADDR_ANY)
357 return;
358 #endif
359 #ifdef INET6
360 if ((inp->inp_vflag & INP_IPV6) != 0 &&
361 IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_faddr))
362 return;
363 #endif
364 } else {
365 /* Do we have configured PCB policy? */
366 if (inp->inp_sp->flags & INP_INBOUND_POLICY)
367 return;
368 /* Another thread has already set cached policy */
369 if (inp->inp_sp->sp_in != NULL)
370 return;
371 /*
372 * Do not cache INBOUND policy for listen socket,
373 * that is bound to INADDR_ANY/UNSPECIFIED address.
374 */
375 #ifdef INET
376 if ((inp->inp_vflag & INP_IPV4) != 0 &&
377 inp->inp_faddr.s_addr == INADDR_ANY)
378 return;
379 #endif
380 #ifdef INET6
381 if ((inp->inp_vflag & INP_IPV6) != 0 &&
382 IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_faddr))
383 return;
384 #endif
385 }
386 downgrade = 0;
387 if (!INP_WLOCKED(inp)) {
388 if ((downgrade = INP_TRY_UPGRADE(inp)) == 0)
389 return;
390 }
391 if (dir == IPSEC_DIR_OUTBOUND)
392 inp->inp_sp->sp_out = sp;
393 else
394 inp->inp_sp->sp_in = sp;
395 /*
396 * SP is already referenced by the lookup code.
397 * We take extra reference here to avoid race in the
398 * ipsec_getpcbpolicy() function - SP will not be freed in the
399 * time between we take SP pointer from the cache and key_addref()
400 * call.
401 */
402 key_addref(sp);
403 genid = key_getspgen();
404 if (genid != inp->inp_sp->genid) {
405 ipsec_invalidate_cache(inp, dir);
406 inp->inp_sp->genid = genid;
407 }
408 KEYDBG(IPSEC_STAMP,
409 printf("%s: PCB(%p): cached %s SP(%p)\n",
410 __func__, inp, dir == IPSEC_DIR_OUTBOUND ? "OUTBOUND":
411 "INBOUND", sp));
412 if (downgrade != 0)
413 INP_DOWNGRADE(inp);
414 }
415
416 static struct secpolicy *
417 ipsec_checkpolicy(struct secpolicy *sp, struct inpcb *inp, int *error)
418 {
419
420 /* Save found OUTBOUND policy into PCB SP cache. */
421 if (inp != NULL && inp->inp_sp != NULL && inp->inp_sp->sp_out == NULL)
422 ipsec_cachepolicy(inp, sp, IPSEC_DIR_OUTBOUND);
423
424 switch (sp->policy) {
425 default:
426 printf("%s: invalid policy %u\n", __func__, sp->policy);
427 /* FALLTHROUGH */
428 case IPSEC_POLICY_DISCARD:
429 *error = -EINVAL; /* Packet is discarded by caller. */
430 /* FALLTHROUGH */
431 case IPSEC_POLICY_BYPASS:
432 case IPSEC_POLICY_NONE:
433 key_freesp(&sp);
434 sp = NULL; /* NB: force NULL result. */
435 break;
436 case IPSEC_POLICY_IPSEC:
437 /* XXXAE: handle LARVAL SP */
438 break;
439 }
440 KEYDBG(IPSEC_DUMP,
441 printf("%s: get SP(%p), error %d\n", __func__, sp, *error));
442 return (sp);
443 }
444
445 static struct secpolicy *
446 ipsec_getpcbpolicy(struct inpcb *inp, u_int dir)
447 {
448 struct secpolicy *sp;
449 int flags, downgrade;
450
451 if (inp == NULL || inp->inp_sp == NULL)
452 return (NULL);
453
454 INP_LOCK_ASSERT(inp);
455
456 flags = inp->inp_sp->flags;
457 if (dir == IPSEC_DIR_OUTBOUND) {
458 sp = inp->inp_sp->sp_out;
459 flags &= INP_OUTBOUND_POLICY;
460 } else {
461 sp = inp->inp_sp->sp_in;
462 flags &= INP_INBOUND_POLICY;
463 }
464 /*
465 * Check flags. If we have PCB SP, just return it.
466 * Otherwise we need to check that cached SP entry isn't stale.
467 */
468 if (flags == 0) {
469 if (sp == NULL)
470 return (NULL);
471 if (inp->inp_sp->genid != key_getspgen()) {
472 /* Invalidate the cache. */
473 downgrade = 0;
474 if (!INP_WLOCKED(inp)) {
475 if ((downgrade = INP_TRY_UPGRADE(inp)) == 0)
476 return (NULL);
477 }
478 ipsec_invalidate_cache(inp, IPSEC_DIR_OUTBOUND);
479 ipsec_invalidate_cache(inp, IPSEC_DIR_INBOUND);
480 if (downgrade != 0)
481 INP_DOWNGRADE(inp);
482 return (NULL);
483 }
484 KEYDBG(IPSEC_STAMP,
485 printf("%s: PCB(%p): cache hit SP(%p)\n",
486 __func__, inp, sp));
487 /* Return referenced cached policy */
488 }
489 key_addref(sp);
490 return (sp);
491 }
492
493 #ifdef INET
494 static void
495 ipsec4_get_ulp(const struct mbuf *m, struct secpolicyindex *spidx,
496 int needport)
497 {
498 uint8_t nxt;
499 int off;
500
501 /* Sanity check. */
502 IPSEC_ASSERT(m->m_pkthdr.len >= sizeof(struct ip),
503 ("packet too short"));
504
505 if (m->m_len >= sizeof (struct ip)) {
506 const struct ip *ip = mtod(m, const struct ip *);
507 if (ip->ip_off & htons(IP_MF | IP_OFFMASK))
508 goto done;
509 off = ip->ip_hl << 2;
510 nxt = ip->ip_p;
511 } else {
512 struct ip ih;
513
514 m_copydata(m, 0, sizeof (struct ip), (caddr_t) &ih);
515 if (ih.ip_off & htons(IP_MF | IP_OFFMASK))
516 goto done;
517 off = ih.ip_hl << 2;
518 nxt = ih.ip_p;
519 }
520
521 while (off < m->m_pkthdr.len) {
522 struct ip6_ext ip6e;
523 struct tcphdr th;
524 struct udphdr uh;
525
526 switch (nxt) {
527 case IPPROTO_TCP:
528 spidx->ul_proto = nxt;
529 if (!needport)
530 goto done_proto;
531 if (off + sizeof(struct tcphdr) > m->m_pkthdr.len)
532 goto done;
533 m_copydata(m, off, sizeof (th), (caddr_t) &th);
534 spidx->src.sin.sin_port = th.th_sport;
535 spidx->dst.sin.sin_port = th.th_dport;
536 return;
537 case IPPROTO_UDP:
538 spidx->ul_proto = nxt;
539 if (!needport)
540 goto done_proto;
541 if (off + sizeof(struct udphdr) > m->m_pkthdr.len)
542 goto done;
543 m_copydata(m, off, sizeof (uh), (caddr_t) &uh);
544 spidx->src.sin.sin_port = uh.uh_sport;
545 spidx->dst.sin.sin_port = uh.uh_dport;
546 return;
547 case IPPROTO_AH:
548 if (off + sizeof(ip6e) > m->m_pkthdr.len)
549 goto done;
550 /* XXX Sigh, this works but is totally bogus. */
551 m_copydata(m, off, sizeof(ip6e), (caddr_t) &ip6e);
552 off += (ip6e.ip6e_len + 2) << 2;
553 nxt = ip6e.ip6e_nxt;
554 break;
555 case IPPROTO_ICMP:
556 default:
557 /* XXX Intermediate headers??? */
558 spidx->ul_proto = nxt;
559 goto done_proto;
560 }
561 }
562 done:
563 spidx->ul_proto = IPSEC_ULPROTO_ANY;
564 done_proto:
565 spidx->src.sin.sin_port = IPSEC_PORT_ANY;
566 spidx->dst.sin.sin_port = IPSEC_PORT_ANY;
567 KEYDBG(IPSEC_DUMP,
568 printf("%s: ", __func__); kdebug_secpolicyindex(spidx, NULL));
569 }
570
571 static void
572 ipsec4_setspidx_ipaddr(const struct mbuf *m, struct secpolicyindex *spidx)
573 {
574
575 ipsec4_setsockaddrs(m, &spidx->src, &spidx->dst);
576 spidx->prefs = sizeof(struct in_addr) << 3;
577 spidx->prefd = sizeof(struct in_addr) << 3;
578 }
579
580 static struct secpolicy *
581 ipsec4_getpolicy(const struct mbuf *m, struct inpcb *inp, u_int dir,
582 int needport)
583 {
584 struct secpolicyindex spidx;
585 struct secpolicy *sp;
586
587 sp = ipsec_getpcbpolicy(inp, dir);
588 if (sp == NULL && key_havesp(dir)) {
589 /* Make an index to look for a policy. */
590 ipsec4_setspidx_ipaddr(m, &spidx);
591 ipsec4_get_ulp(m, &spidx, needport);
592 spidx.dir = dir;
593 sp = key_allocsp(&spidx, dir);
594 }
595 if (sp == NULL) /* No SP found, use system default. */
596 sp = key_allocsp_default();
597 return (sp);
598 }
599
600 /*
601 * Check security policy for *OUTBOUND* IPv4 packet.
602 */
603 struct secpolicy *
604 ipsec4_checkpolicy(const struct mbuf *m, struct inpcb *inp, int *error,
605 int needport)
606 {
607 struct secpolicy *sp;
608
609 *error = 0;
610 sp = ipsec4_getpolicy(m, inp, IPSEC_DIR_OUTBOUND, needport);
611 if (sp != NULL)
612 sp = ipsec_checkpolicy(sp, inp, error);
613 if (sp == NULL) {
614 switch (*error) {
615 case 0: /* No IPsec required: BYPASS or NONE */
616 break;
617 case -EINVAL:
618 IPSECSTAT_INC(ips_out_polvio);
619 break;
620 default:
621 IPSECSTAT_INC(ips_out_inval);
622 }
623 }
624 KEYDBG(IPSEC_STAMP,
625 printf("%s: using SP(%p), error %d\n", __func__, sp, *error));
626 if (sp != NULL)
627 KEYDBG(IPSEC_DATA, kdebug_secpolicy(sp));
628 return (sp);
629 }
630
631 /*
632 * Check IPv4 packet against *INBOUND* security policy.
633 * This function is called from tcp_input(), udp_input(),
634 * rip_input() and sctp_input().
635 */
636 int
637 ipsec4_in_reject(const struct mbuf *m, struct inpcb *inp)
638 {
639 struct secpolicy *sp;
640 int result;
641
642 sp = ipsec4_getpolicy(m, inp, IPSEC_DIR_INBOUND, 0);
643 result = ipsec_in_reject(sp, inp, m);
644 key_freesp(&sp);
645 if (result != 0)
646 IPSECSTAT_INC(ips_in_polvio);
647 return (result);
648 }
649
650 /*
651 * IPSEC_CAP() method implementation for IPv4.
652 */
653 int
654 ipsec4_capability(struct mbuf *m, u_int cap)
655 {
656
657 switch (cap) {
658 case IPSEC_CAP_BYPASS_FILTER:
659 /*
660 * Bypass packet filtering for packets previously handled
661 * by IPsec.
662 */
663 if (!V_ip4_filtertunnel &&
664 m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL) != NULL)
665 return (1);
666 return (0);
667 case IPSEC_CAP_OPERABLE:
668 /* Do we have active security policies? */
669 return (key_havesp_any());
670 };
671 return (EOPNOTSUPP);
672 }
673
674 #endif /* INET */
675
676 #ifdef INET6
677 static void
678 ipsec6_get_ulp(const struct mbuf *m, struct secpolicyindex *spidx,
679 int needport)
680 {
681 struct tcphdr th;
682 struct udphdr uh;
683 struct icmp6_hdr ih;
684 int off, nxt;
685
686 IPSEC_ASSERT(m->m_pkthdr.len >= sizeof(struct ip6_hdr),
687 ("packet too short"));
688
689 /* Set default. */
690 spidx->ul_proto = IPSEC_ULPROTO_ANY;
691 spidx->src.sin6.sin6_port = IPSEC_PORT_ANY;
692 spidx->dst.sin6.sin6_port = IPSEC_PORT_ANY;
693
694 nxt = -1;
695 off = ip6_lasthdr(m, 0, IPPROTO_IPV6, &nxt);
696 if (off < 0 || m->m_pkthdr.len < off)
697 return;
698
699 switch (nxt) {
700 case IPPROTO_TCP:
701 spidx->ul_proto = nxt;
702 if (!needport)
703 break;
704 if (off + sizeof(struct tcphdr) > m->m_pkthdr.len)
705 break;
706 m_copydata(m, off, sizeof(th), (caddr_t)&th);
707 spidx->src.sin6.sin6_port = th.th_sport;
708 spidx->dst.sin6.sin6_port = th.th_dport;
709 break;
710 case IPPROTO_UDP:
711 spidx->ul_proto = nxt;
712 if (!needport)
713 break;
714 if (off + sizeof(struct udphdr) > m->m_pkthdr.len)
715 break;
716 m_copydata(m, off, sizeof(uh), (caddr_t)&uh);
717 spidx->src.sin6.sin6_port = uh.uh_sport;
718 spidx->dst.sin6.sin6_port = uh.uh_dport;
719 break;
720 case IPPROTO_ICMPV6:
721 spidx->ul_proto = nxt;
722 if (off + sizeof(struct icmp6_hdr) > m->m_pkthdr.len)
723 break;
724 m_copydata(m, off, sizeof(ih), (caddr_t)&ih);
725 spidx->src.sin6.sin6_port = htons((uint16_t)ih.icmp6_type);
726 spidx->dst.sin6.sin6_port = htons((uint16_t)ih.icmp6_code);
727 break;
728 default:
729 /* XXX Intermediate headers??? */
730 spidx->ul_proto = nxt;
731 break;
732 }
733 KEYDBG(IPSEC_DUMP,
734 printf("%s: ", __func__); kdebug_secpolicyindex(spidx, NULL));
735 }
736
737 static void
738 ipsec6_setspidx_ipaddr(const struct mbuf *m, struct secpolicyindex *spidx)
739 {
740
741 ipsec6_setsockaddrs(m, &spidx->src, &spidx->dst);
742 spidx->prefs = sizeof(struct in6_addr) << 3;
743 spidx->prefd = sizeof(struct in6_addr) << 3;
744 }
745
746 static struct secpolicy *
747 ipsec6_getpolicy(const struct mbuf *m, struct inpcb *inp, u_int dir,
748 int needport)
749 {
750 struct secpolicyindex spidx;
751 struct secpolicy *sp;
752
753 sp = ipsec_getpcbpolicy(inp, dir);
754 if (sp == NULL && key_havesp(dir)) {
755 /* Make an index to look for a policy. */
756 ipsec6_setspidx_ipaddr(m, &spidx);
757 ipsec6_get_ulp(m, &spidx, needport);
758 spidx.dir = dir;
759 sp = key_allocsp(&spidx, dir);
760 }
761 if (sp == NULL) /* No SP found, use system default. */
762 sp = key_allocsp_default();
763 return (sp);
764 }
765
766 /*
767 * Check security policy for *OUTBOUND* IPv6 packet.
768 */
769 struct secpolicy *
770 ipsec6_checkpolicy(const struct mbuf *m, struct inpcb *inp, int *error,
771 int needport)
772 {
773 struct secpolicy *sp;
774
775 *error = 0;
776 sp = ipsec6_getpolicy(m, inp, IPSEC_DIR_OUTBOUND, needport);
777 if (sp != NULL)
778 sp = ipsec_checkpolicy(sp, inp, error);
779 if (sp == NULL) {
780 switch (*error) {
781 case 0: /* No IPsec required: BYPASS or NONE */
782 break;
783 case -EINVAL:
784 IPSEC6STAT_INC(ips_out_polvio);
785 break;
786 default:
787 IPSEC6STAT_INC(ips_out_inval);
788 }
789 }
790 KEYDBG(IPSEC_STAMP,
791 printf("%s: using SP(%p), error %d\n", __func__, sp, *error));
792 if (sp != NULL)
793 KEYDBG(IPSEC_DATA, kdebug_secpolicy(sp));
794 return (sp);
795 }
796
797 /*
798 * Check IPv6 packet against inbound security policy.
799 * This function is called from tcp6_input(), udp6_input(),
800 * rip6_input() and sctp_input().
801 */
802 int
803 ipsec6_in_reject(const struct mbuf *m, struct inpcb *inp)
804 {
805 struct secpolicy *sp;
806 int result;
807
808 sp = ipsec6_getpolicy(m, inp, IPSEC_DIR_INBOUND, 0);
809 result = ipsec_in_reject(sp, inp, m);
810 key_freesp(&sp);
811 if (result)
812 IPSEC6STAT_INC(ips_in_polvio);
813 return (result);
814 }
815
816 /*
817 * IPSEC_CAP() method implementation for IPv6.
818 */
819 int
820 ipsec6_capability(struct mbuf *m, u_int cap)
821 {
822
823 switch (cap) {
824 case IPSEC_CAP_BYPASS_FILTER:
825 /*
826 * Bypass packet filtering for packets previously handled
827 * by IPsec.
828 */
829 if (!V_ip6_filtertunnel &&
830 m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL) != NULL)
831 return (1);
832 return (0);
833 case IPSEC_CAP_OPERABLE:
834 /* Do we have active security policies? */
835 return (key_havesp_any());
836 };
837 return (EOPNOTSUPP);
838 }
839 #endif /* INET6 */
840
841 int
842 ipsec_run_hhooks(struct ipsec_ctx_data *ctx, int type)
843 {
844 int idx;
845
846 switch (ctx->af) {
847 #ifdef INET
848 case AF_INET:
849 idx = HHOOK_IPSEC_INET;
850 break;
851 #endif
852 #ifdef INET6
853 case AF_INET6:
854 idx = HHOOK_IPSEC_INET6;
855 break;
856 #endif
857 default:
858 return (EPFNOSUPPORT);
859 }
860 if (type == HHOOK_TYPE_IPSEC_IN)
861 HHOOKS_RUN_IF(V_ipsec_hhh_in[idx], ctx, NULL);
862 else
863 HHOOKS_RUN_IF(V_ipsec_hhh_out[idx], ctx, NULL);
864 if (*ctx->mp == NULL)
865 return (EACCES);
866 return (0);
867 }
868
869 /*
870 * Return current level.
871 * Either IPSEC_LEVEL_USE or IPSEC_LEVEL_REQUIRE are always returned.
872 */
873 u_int
874 ipsec_get_reqlevel(struct secpolicy *sp, u_int idx)
875 {
876 struct ipsecrequest *isr;
877 u_int esp_trans_deflev, esp_net_deflev;
878 u_int ah_trans_deflev, ah_net_deflev;
879 u_int level = 0;
880
881 IPSEC_ASSERT(idx < sp->tcount, ("Wrong IPsec request index %d", idx));
882 /* XXX Note that we have ipseclog() expanded here - code sync issue. */
883 #define IPSEC_CHECK_DEFAULT(lev) \
884 (((lev) != IPSEC_LEVEL_USE && (lev) != IPSEC_LEVEL_REQUIRE && \
885 (lev) != IPSEC_LEVEL_UNIQUE) \
886 ? (V_ipsec_debug ? \
887 log(LOG_INFO, "fixed system default level " #lev ":%d->%d\n",\
888 (lev), IPSEC_LEVEL_REQUIRE) : 0), \
889 (lev) = IPSEC_LEVEL_REQUIRE, (lev) : (lev))
890
891 /*
892 * IPsec VTI uses unique security policy with fake spidx filled
893 * with zeroes. Just return IPSEC_LEVEL_REQUIRE instead of doing
894 * full level lookup for such policies.
895 */
896 if (sp->state == IPSEC_SPSTATE_IFNET) {
897 IPSEC_ASSERT(sp->req[idx]->level == IPSEC_LEVEL_UNIQUE,
898 ("Wrong IPsec request level %d", sp->req[idx]->level));
899 return (IPSEC_LEVEL_REQUIRE);
900 }
901
902 /* Set default level. */
903 switch (sp->spidx.src.sa.sa_family) {
904 #ifdef INET
905 case AF_INET:
906 esp_trans_deflev = IPSEC_CHECK_DEFAULT(V_ip4_esp_trans_deflev);
907 esp_net_deflev = IPSEC_CHECK_DEFAULT(V_ip4_esp_net_deflev);
908 ah_trans_deflev = IPSEC_CHECK_DEFAULT(V_ip4_ah_trans_deflev);
909 ah_net_deflev = IPSEC_CHECK_DEFAULT(V_ip4_ah_net_deflev);
910 break;
911 #endif
912 #ifdef INET6
913 case AF_INET6:
914 esp_trans_deflev = IPSEC_CHECK_DEFAULT(V_ip6_esp_trans_deflev);
915 esp_net_deflev = IPSEC_CHECK_DEFAULT(V_ip6_esp_net_deflev);
916 ah_trans_deflev = IPSEC_CHECK_DEFAULT(V_ip6_ah_trans_deflev);
917 ah_net_deflev = IPSEC_CHECK_DEFAULT(V_ip6_ah_net_deflev);
918 break;
919 #endif /* INET6 */
920 default:
921 panic("%s: unknown af %u",
922 __func__, sp->spidx.src.sa.sa_family);
923 }
924
925 #undef IPSEC_CHECK_DEFAULT
926
927 isr = sp->req[idx];
928 /* Set level. */
929 switch (isr->level) {
930 case IPSEC_LEVEL_DEFAULT:
931 switch (isr->saidx.proto) {
932 case IPPROTO_ESP:
933 if (isr->saidx.mode == IPSEC_MODE_TUNNEL)
934 level = esp_net_deflev;
935 else
936 level = esp_trans_deflev;
937 break;
938 case IPPROTO_AH:
939 if (isr->saidx.mode == IPSEC_MODE_TUNNEL)
940 level = ah_net_deflev;
941 else
942 level = ah_trans_deflev;
943 break;
944 case IPPROTO_IPCOMP:
945 /*
946 * We don't really care, as IPcomp document says that
947 * we shouldn't compress small packets.
948 */
949 level = IPSEC_LEVEL_USE;
950 break;
951 default:
952 panic("%s: Illegal protocol defined %u\n", __func__,
953 isr->saidx.proto);
954 }
955 break;
956
957 case IPSEC_LEVEL_USE:
958 case IPSEC_LEVEL_REQUIRE:
959 level = isr->level;
960 break;
961 case IPSEC_LEVEL_UNIQUE:
962 level = IPSEC_LEVEL_REQUIRE;
963 break;
964
965 default:
966 panic("%s: Illegal IPsec level %u\n", __func__, isr->level);
967 }
968
969 return (level);
970 }
971
972 static int
973 ipsec_check_history(const struct mbuf *m, struct secpolicy *sp, u_int idx)
974 {
975 struct xform_history *xh;
976 struct m_tag *mtag;
977
978 mtag = NULL;
979 while ((mtag = m_tag_find(__DECONST(struct mbuf *, m),
980 PACKET_TAG_IPSEC_IN_DONE, mtag)) != NULL) {
981 xh = (struct xform_history *)(mtag + 1);
982 KEYDBG(IPSEC_DATA,
983 char buf[IPSEC_ADDRSTRLEN];
984 printf("%s: mode %s proto %u dst %s\n", __func__,
985 kdebug_secasindex_mode(xh->mode), xh->proto,
986 ipsec_address(&xh->dst, buf, sizeof(buf))));
987 if (xh->proto != sp->req[idx]->saidx.proto)
988 continue;
989 /* If SA had IPSEC_MODE_ANY, consider this as match. */
990 if (xh->mode != sp->req[idx]->saidx.mode &&
991 xh->mode != IPSEC_MODE_ANY)
992 continue;
993 /*
994 * For transport mode IPsec request doesn't contain
995 * addresses. We need to use address from spidx.
996 */
997 if (sp->req[idx]->saidx.mode == IPSEC_MODE_TRANSPORT) {
998 if (key_sockaddrcmp_withmask(&xh->dst.sa,
999 &sp->spidx.dst.sa, sp->spidx.prefd) != 0)
1000 continue;
1001 } else {
1002 if (key_sockaddrcmp(&xh->dst.sa,
1003 &sp->req[idx]->saidx.dst.sa, 0) != 0)
1004 continue;
1005 }
1006 return (0); /* matched */
1007 }
1008 return (1);
1009 }
1010
1011 /*
1012 * Check security policy requirements against the actual
1013 * packet contents. Return one if the packet should be
1014 * rejected as "invalid"; otherwise return zero to have the
1015 * packet treated as "valid".
1016 *
1017 * OUT:
1018 * 0: valid
1019 * 1: invalid
1020 */
1021 static int
1022 ipsec_in_reject(struct secpolicy *sp, struct inpcb *inp, const struct mbuf *m)
1023 {
1024 int i;
1025
1026 KEYDBG(IPSEC_STAMP,
1027 printf("%s: PCB(%p): using SP(%p)\n", __func__, inp, sp));
1028 KEYDBG(IPSEC_DATA, kdebug_secpolicy(sp));
1029
1030 if (inp != NULL && inp->inp_sp != NULL && inp->inp_sp->sp_in == NULL)
1031 ipsec_cachepolicy(inp, sp, IPSEC_DIR_INBOUND);
1032
1033 /* Check policy. */
1034 switch (sp->policy) {
1035 case IPSEC_POLICY_DISCARD:
1036 return (1);
1037 case IPSEC_POLICY_BYPASS:
1038 case IPSEC_POLICY_NONE:
1039 return (0);
1040 }
1041
1042 IPSEC_ASSERT(sp->policy == IPSEC_POLICY_IPSEC,
1043 ("invalid policy %u", sp->policy));
1044
1045 /*
1046 * ipsec[46]_common_input_cb after each transform adds
1047 * PACKET_TAG_IPSEC_IN_DONE mbuf tag. It contains SPI, proto, mode
1048 * and destination address from saidx. We can compare info from
1049 * these tags with requirements in SP.
1050 */
1051 for (i = 0; i < sp->tcount; i++) {
1052 /*
1053 * Do not check IPcomp, since IPcomp document
1054 * says that we shouldn't compress small packets.
1055 * IPComp policy should always be treated as being
1056 * in "use" level.
1057 */
1058 if (sp->req[i]->saidx.proto == IPPROTO_IPCOMP ||
1059 ipsec_get_reqlevel(sp, i) != IPSEC_LEVEL_REQUIRE)
1060 continue;
1061 if (V_check_policy_history != 0 &&
1062 ipsec_check_history(m, sp, i) != 0)
1063 return (1);
1064 else switch (sp->req[i]->saidx.proto) {
1065 case IPPROTO_ESP:
1066 if ((m->m_flags & M_DECRYPTED) == 0) {
1067 KEYDBG(IPSEC_DUMP,
1068 printf("%s: ESP m_flags:%x\n", __func__,
1069 m->m_flags));
1070 return (1);
1071 }
1072 break;
1073 case IPPROTO_AH:
1074 if ((m->m_flags & M_AUTHIPHDR) == 0) {
1075 KEYDBG(IPSEC_DUMP,
1076 printf("%s: AH m_flags:%x\n", __func__,
1077 m->m_flags));
1078 return (1);
1079 }
1080 break;
1081 }
1082 }
1083 return (0); /* Valid. */
1084 }
1085
1086 /*
1087 * Compute the byte size to be occupied by IPsec header.
1088 * In case it is tunnelled, it includes the size of outer IP header.
1089 */
1090 size_t
1091 ipsec_hdrsiz_internal(struct secpolicy *sp)
1092 {
1093 size_t size;
1094 int i;
1095
1096 KEYDBG(IPSEC_STAMP, printf("%s: using SP(%p)\n", __func__, sp));
1097 KEYDBG(IPSEC_DATA, kdebug_secpolicy(sp));
1098
1099 switch (sp->policy) {
1100 case IPSEC_POLICY_DISCARD:
1101 case IPSEC_POLICY_BYPASS:
1102 case IPSEC_POLICY_NONE:
1103 return (0);
1104 }
1105
1106 IPSEC_ASSERT(sp->policy == IPSEC_POLICY_IPSEC,
1107 ("invalid policy %u", sp->policy));
1108
1109 /*
1110 * XXX: for each transform we need to lookup suitable SA
1111 * and use info from SA to calculate headers size.
1112 * XXX: for NAT-T we need to cosider UDP header size.
1113 */
1114 size = 0;
1115 for (i = 0; i < sp->tcount; i++) {
1116 switch (sp->req[i]->saidx.proto) {
1117 case IPPROTO_ESP:
1118 size += esp_hdrsiz(NULL);
1119 break;
1120 case IPPROTO_AH:
1121 size += ah_hdrsiz(NULL);
1122 break;
1123 case IPPROTO_IPCOMP:
1124 size += sizeof(struct ipcomp);
1125 break;
1126 }
1127
1128 if (sp->req[i]->saidx.mode == IPSEC_MODE_TUNNEL) {
1129 switch (sp->req[i]->saidx.dst.sa.sa_family) {
1130 #ifdef INET
1131 case AF_INET:
1132 size += sizeof(struct ip);
1133 break;
1134 #endif
1135 #ifdef INET6
1136 case AF_INET6:
1137 size += sizeof(struct ip6_hdr);
1138 break;
1139 #endif
1140 default:
1141 ipseclog((LOG_ERR, "%s: unknown AF %d in "
1142 "IPsec tunnel SA\n", __func__,
1143 sp->req[i]->saidx.dst.sa.sa_family));
1144 break;
1145 }
1146 }
1147 }
1148 return (size);
1149 }
1150
1151 /*
1152 * Compute ESP/AH header size for protocols with PCB, including
1153 * outer IP header. Currently only tcp_output() uses it.
1154 */
1155 size_t
1156 ipsec_hdrsiz_inpcb(struct inpcb *inp)
1157 {
1158 struct secpolicyindex spidx;
1159 struct secpolicy *sp;
1160 size_t sz;
1161
1162 sp = ipsec_getpcbpolicy(inp, IPSEC_DIR_OUTBOUND);
1163 if (sp == NULL && key_havesp(IPSEC_DIR_OUTBOUND)) {
1164 ipsec_setspidx_inpcb(inp, &spidx, IPSEC_DIR_OUTBOUND);
1165 sp = key_allocsp(&spidx, IPSEC_DIR_OUTBOUND);
1166 }
1167 if (sp == NULL)
1168 sp = key_allocsp_default();
1169 sz = ipsec_hdrsiz_internal(sp);
1170 key_freesp(&sp);
1171 return (sz);
1172 }
1173
1174
1175 #define IPSEC_BITMAP_INDEX_MASK(w) (w - 1)
1176 #define IPSEC_REDUNDANT_BIT_SHIFTS 5
1177 #define IPSEC_REDUNDANT_BITS (1 << IPSEC_REDUNDANT_BIT_SHIFTS)
1178 #define IPSEC_BITMAP_LOC_MASK (IPSEC_REDUNDANT_BITS - 1)
1179
1180 /*
1181 * Functions below are responsible for checking and updating bitmap.
1182 * These are used to separate ipsec_chkreplay() and ipsec_updatereplay()
1183 * from window implementation
1184 *
1185 * Based on RFC 6479. Blocks are 32 bits unsigned integers
1186 */
1187
1188 static inline int
1189 check_window(const struct secreplay *replay, uint64_t seq)
1190 {
1191 int index, bit_location;
1192
1193 SECREPLAY_ASSERT(replay);
1194
1195 bit_location = seq & IPSEC_BITMAP_LOC_MASK;
1196 index = (seq >> IPSEC_REDUNDANT_BIT_SHIFTS)
1197 & IPSEC_BITMAP_INDEX_MASK(replay->bitmap_size);
1198
1199 /* This packet already seen? */
1200 return ((replay->bitmap)[index] & (1 << bit_location));
1201 }
1202
1203 static inline void
1204 advance_window(const struct secreplay *replay, uint64_t seq)
1205 {
1206 int i;
1207 uint64_t index, index_cur, diff;
1208
1209 SECREPLAY_ASSERT(replay);
1210
1211 index_cur = replay->last >> IPSEC_REDUNDANT_BIT_SHIFTS;
1212 index = seq >> IPSEC_REDUNDANT_BIT_SHIFTS;
1213 diff = index - index_cur;
1214
1215 if (diff > replay->bitmap_size) {
1216 /* something unusual in this case */
1217 diff = replay->bitmap_size;
1218 }
1219
1220 for (i = 0; i < diff; i++) {
1221 replay->bitmap[(i + index_cur + 1)
1222 & IPSEC_BITMAP_INDEX_MASK(replay->bitmap_size)] = 0;
1223 }
1224 }
1225
1226 static inline void
1227 set_window(const struct secreplay *replay, uint64_t seq)
1228 {
1229 int index, bit_location;
1230
1231 SECREPLAY_ASSERT(replay);
1232
1233 bit_location = seq & IPSEC_BITMAP_LOC_MASK;
1234 index = (seq >> IPSEC_REDUNDANT_BIT_SHIFTS)
1235 & IPSEC_BITMAP_INDEX_MASK(replay->bitmap_size);
1236
1237 replay->bitmap[index] |= (1 << bit_location);
1238 }
1239
1240 /*
1241 * Check the variable replay window.
1242 * ipsec_chkreplay() performs replay check before ICV verification.
1243 * ipsec_updatereplay() updates replay bitmap. This must be called after
1244 * ICV verification (it also performs replay check, which is usually done
1245 * beforehand).
1246 * 0 (zero) is returned if packet disallowed, 1 if packet permitted.
1247 *
1248 * Based on RFC 4303
1249 */
1250
1251 int
1252 ipsec_chkreplay(uint32_t seq, uint32_t *seqhigh, struct secasvar *sav)
1253 {
1254 char buf[128];
1255 struct secreplay *replay;
1256 uint32_t window;
1257 uint32_t tl, th, bl;
1258 uint32_t seqh;
1259
1260 IPSEC_ASSERT(sav != NULL, ("Null SA"));
1261 IPSEC_ASSERT(sav->replay != NULL, ("Null replay state"));
1262
1263 replay = sav->replay;
1264
1265 /* No need to check replay if disabled. */
1266 if (replay->wsize == 0) {
1267 return (1);
1268 }
1269
1270 SECREPLAY_LOCK(replay);
1271
1272 /* Zero sequence number is not allowed. */
1273 if (seq == 0 && replay->last == 0) {
1274 SECREPLAY_UNLOCK(replay);
1275 return (0);
1276 }
1277
1278 window = replay->wsize << 3; /* Size of window */
1279 tl = (uint32_t)replay->last; /* Top of window, lower part */
1280 th = (uint32_t)(replay->last >> 32); /* Top of window, high part */
1281 bl = tl - window + 1; /* Bottom of window, lower part */
1282
1283 /*
1284 * We keep the high part intact when:
1285 * 1) the seq is within [bl, 0xffffffff] and the whole window is
1286 * within one subspace;
1287 * 2) the seq is within [0, bl) and window spans two subspaces.
1288 */
1289 if ((tl >= window - 1 && seq >= bl) ||
1290 (tl < window - 1 && seq < bl)) {
1291 *seqhigh = th;
1292 if (seq <= tl) {
1293 /* Sequence number inside window - check against replay */
1294 if (check_window(replay, seq)) {
1295 SECREPLAY_UNLOCK(replay);
1296 return (0);
1297 }
1298 }
1299
1300 SECREPLAY_UNLOCK(replay);
1301 /* Sequence number above top of window or not found in bitmap */
1302 return (1);
1303 }
1304
1305 /*
1306 * If ESN is not enabled and packet with highest sequence number
1307 * was received we should report overflow
1308 */
1309 if (tl == 0xffffffff && !(sav->flags & SADB_X_SAFLAGS_ESN)) {
1310 /* Set overflow flag. */
1311 replay->overflow++;
1312
1313 if ((sav->flags & SADB_X_EXT_CYCSEQ) == 0) {
1314 if (sav->sah->saidx.proto == IPPROTO_ESP)
1315 ESPSTAT_INC(esps_wrap);
1316 else if (sav->sah->saidx.proto == IPPROTO_AH)
1317 AHSTAT_INC(ahs_wrap);
1318 SECREPLAY_UNLOCK(replay);
1319 return (0);
1320 }
1321
1322 ipseclog((LOG_WARNING, "%s: replay counter made %d cycle. %s\n",
1323 __func__, replay->overflow,
1324 ipsec_sa2str(sav, buf, sizeof(buf))));
1325 }
1326
1327 /*
1328 * Seq is within [bl, 0xffffffff] and bl is within
1329 * [0xffffffff-window, 0xffffffff]. This means we got a seq
1330 * which is within our replay window, but in the previous
1331 * subspace.
1332 */
1333 if (tl < window - 1 && seq >= bl) {
1334 if (th == 0)
1335 return (0);
1336 *seqhigh = th - 1;
1337 seqh = th - 1;
1338 if (check_window(replay, seq)) {
1339 SECREPLAY_UNLOCK(replay);
1340 return (0);
1341 }
1342 SECREPLAY_UNLOCK(replay);
1343 return (1);
1344 }
1345
1346 /*
1347 * Seq is within [0, bl) but the whole window is within one subspace.
1348 * This means that seq has wrapped and is in next subspace
1349 */
1350 *seqhigh = th + 1;
1351 seqh = th + 1;
1352
1353 /* Don't let high part wrap. */
1354 if (seqh == 0) {
1355 /* Set overflow flag. */
1356 replay->overflow++;
1357
1358 if ((sav->flags & SADB_X_EXT_CYCSEQ) == 0) {
1359 if (sav->sah->saidx.proto == IPPROTO_ESP)
1360 ESPSTAT_INC(esps_wrap);
1361 else if (sav->sah->saidx.proto == IPPROTO_AH)
1362 AHSTAT_INC(ahs_wrap);
1363 SECREPLAY_UNLOCK(replay);
1364 return (0);
1365 }
1366
1367 ipseclog((LOG_WARNING, "%s: replay counter made %d cycle. %s\n",
1368 __func__, replay->overflow,
1369 ipsec_sa2str(sav, buf, sizeof(buf))));
1370 }
1371
1372 SECREPLAY_UNLOCK(replay);
1373 return (1);
1374 }
1375
1376 /*
1377 * Check replay counter whether to update or not.
1378 * OUT: 0: OK
1379 * 1: NG
1380 */
1381 int
1382 ipsec_updatereplay(uint32_t seq, struct secasvar *sav)
1383 {
1384 struct secreplay *replay;
1385 uint32_t window;
1386 uint32_t tl, th, bl;
1387 uint32_t seqh;
1388
1389 IPSEC_ASSERT(sav != NULL, ("Null SA"));
1390 IPSEC_ASSERT(sav->replay != NULL, ("Null replay state"));
1391
1392 replay = sav->replay;
1393
1394 /* No need to check replay if disabled. */
1395 if (replay->wsize == 0)
1396 return (0);
1397
1398 SECREPLAY_LOCK(replay);
1399
1400 /* Zero sequence number is not allowed. */
1401 if (seq == 0 && replay->last == 0) {
1402 SECREPLAY_UNLOCK(replay);
1403 return (1);
1404 }
1405
1406 window = replay->wsize << 3; /* Size of window */
1407 tl = (uint32_t)replay->last; /* Top of window, lower part */
1408 th = (uint32_t)(replay->last >> 32); /* Top of window, high part */
1409 bl = tl - window + 1; /* Bottom of window, lower part */
1410
1411 /*
1412 * We keep the high part intact when:
1413 * 1) the seq is within [bl, 0xffffffff] and the whole window is
1414 * within one subspace;
1415 * 2) the seq is within [0, bl) and window spans two subspaces.
1416 */
1417 if ((tl >= window - 1 && seq >= bl) ||
1418 (tl < window - 1 && seq < bl)) {
1419 seqh = th;
1420 if (seq <= tl) {
1421 /* Sequence number inside window - check against replay */
1422 if (check_window(replay, seq)) {
1423 SECREPLAY_UNLOCK(replay);
1424 return (1);
1425 }
1426 set_window(replay, seq);
1427 } else {
1428 advance_window(replay, ((uint64_t)seqh << 32) | seq);
1429 set_window(replay, seq);
1430 replay->last = ((uint64_t)seqh << 32) | seq;
1431 }
1432
1433 /* Sequence number above top of window or not found in bitmap */
1434 replay->count++;
1435 SECREPLAY_UNLOCK(replay);
1436 return (0);
1437 }
1438
1439 if (!(sav->flags & SADB_X_SAFLAGS_ESN)) {
1440 SECREPLAY_UNLOCK(replay);
1441 return (1);
1442 }
1443
1444 /*
1445 * Seq is within [bl, 0xffffffff] and bl is within
1446 * [0xffffffff-window, 0xffffffff]. This means we got a seq
1447 * which is within our replay window, but in the previous
1448 * subspace.
1449 */
1450 if (tl < window - 1 && seq >= bl) {
1451 if (th == 0) {
1452 SECREPLAY_UNLOCK(replay);
1453 return (1);
1454 }
1455 if (check_window(replay, seq)) {
1456 SECREPLAY_UNLOCK(replay);
1457 return (1);
1458 }
1459
1460 set_window(replay, seq);
1461 replay->count++;
1462 SECREPLAY_UNLOCK(replay);
1463 return (0);
1464 }
1465
1466 /*
1467 * Seq is within [0, bl) but the whole window is within one subspace.
1468 * This means that seq has wrapped and is in next subspace
1469 */
1470 seqh = th + 1;
1471
1472 /* Don't let high part wrap. */
1473 if (seqh == 0) {
1474 SECREPLAY_UNLOCK(replay);
1475 return (1);
1476 }
1477
1478 advance_window(replay, ((uint64_t)seqh << 32) | seq);
1479 set_window(replay, seq);
1480 replay->last = ((uint64_t)seqh << 32) | seq;
1481 replay->count++;
1482
1483 SECREPLAY_UNLOCK(replay);
1484 return (0);
1485 }
1486 int
1487 ipsec_updateid(struct secasvar *sav, crypto_session_t *new,
1488 crypto_session_t *old)
1489 {
1490 crypto_session_t tmp;
1491
1492 /*
1493 * tdb_cryptoid is initialized by xform_init().
1494 * Then it can be changed only when some crypto error occurred or
1495 * when SA is deleted. We stored used cryptoid in the xform_data
1496 * structure. In case when crypto error occurred and crypto
1497 * subsystem has reinited the session, it returns new cryptoid
1498 * and EAGAIN error code.
1499 *
1500 * This function will be called when we got EAGAIN from crypto
1501 * subsystem.
1502 * *new is cryptoid that was returned by crypto subsystem in
1503 * the crp_sid.
1504 * *old is the original cryptoid that we stored in xform_data.
1505 *
1506 * For first failed request *old == sav->tdb_cryptoid, then
1507 * we update sav->tdb_cryptoid and redo crypto_dispatch().
1508 * For next failed request *old != sav->tdb_cryptoid, then
1509 * we store cryptoid from first request into the *new variable
1510 * and crp_sid from this second session will be returned via
1511 * *old pointer, so caller can release second session.
1512 *
1513 * XXXAE: check this more carefully.
1514 */
1515 KEYDBG(IPSEC_STAMP,
1516 printf("%s: SA(%p) moves cryptoid %p -> %p\n",
1517 __func__, sav, *old, *new));
1518 KEYDBG(IPSEC_DATA, kdebug_secasv(sav));
1519 SECASVAR_WLOCK(sav);
1520 if (sav->tdb_cryptoid != *old) {
1521 /* cryptoid was already updated */
1522 tmp = *new;
1523 *new = sav->tdb_cryptoid;
1524 *old = tmp;
1525 SECASVAR_WUNLOCK(sav);
1526 return (1);
1527 }
1528 sav->tdb_cryptoid = *new;
1529 SECASVAR_WUNLOCK(sav);
1530 return (0);
1531 }
1532
1533 int
1534 ipsec_initialized(void)
1535 {
1536
1537 return (V_def_policy != NULL);
1538 }
1539
1540 static void
1541 def_policy_init(const void *unused __unused)
1542 {
1543
1544 V_def_policy = key_newsp();
1545 if (V_def_policy != NULL) {
1546 V_def_policy->policy = IPSEC_POLICY_NONE;
1547 /* Force INPCB SP cache invalidation */
1548 key_bumpspgen();
1549 } else
1550 printf("%s: failed to initialize default policy\n", __func__);
1551 }
1552
1553 static void
1554 def_policy_uninit(const void *unused __unused)
1555 {
1556
1557 if (V_def_policy != NULL) {
1558 key_freesp(&V_def_policy);
1559 key_bumpspgen();
1560 }
1561 }
1562
1563 VNET_SYSINIT(def_policy_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_FIRST,
1564 def_policy_init, NULL);
1565 VNET_SYSUNINIT(def_policy_uninit, SI_SUB_PROTO_DOMAIN, SI_ORDER_FIRST,
1566 def_policy_uninit, NULL);
Cache object: 4b60443c677bda53221896bce1121675
|