The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/netipsec/key.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*      $FreeBSD: releng/10.0/sys/netipsec/key.c 252028 2013-06-20 11:44:16Z ae $       */
    2 /*      $KAME: key.c,v 1.191 2001/06/27 10:46:49 sakane Exp $   */
    3 
    4 /*-
    5  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
    6  * All rights reserved.
    7  *
    8  * Redistribution and use in source and binary forms, with or without
    9  * modification, are permitted provided that the following conditions
   10  * are met:
   11  * 1. Redistributions of source code must retain the above copyright
   12  *    notice, this list of conditions and the following disclaimer.
   13  * 2. Redistributions in binary form must reproduce the above copyright
   14  *    notice, this list of conditions and the following disclaimer in the
   15  *    documentation and/or other materials provided with the distribution.
   16  * 3. Neither the name of the project nor the names of its contributors
   17  *    may be used to endorse or promote products derived from this software
   18  *    without specific prior written permission.
   19  *
   20  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
   21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
   24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   30  * SUCH DAMAGE.
   31  */
   32 
   33 /*
   34  * This code is referd to RFC 2367
   35  */
   36 
   37 #include "opt_inet.h"
   38 #include "opt_inet6.h"
   39 #include "opt_ipsec.h"
   40 
   41 #include <sys/types.h>
   42 #include <sys/param.h>
   43 #include <sys/systm.h>
   44 #include <sys/kernel.h>
   45 #include <sys/lock.h>
   46 #include <sys/mutex.h>
   47 #include <sys/mbuf.h>
   48 #include <sys/domain.h>
   49 #include <sys/protosw.h>
   50 #include <sys/malloc.h>
   51 #include <sys/socket.h>
   52 #include <sys/socketvar.h>
   53 #include <sys/sysctl.h>
   54 #include <sys/errno.h>
   55 #include <sys/proc.h>
   56 #include <sys/queue.h>
   57 #include <sys/refcount.h>
   58 #include <sys/syslog.h>
   59 
   60 #include <net/if.h>
   61 #include <net/route.h>
   62 #include <net/raw_cb.h>
   63 #include <net/vnet.h>
   64 
   65 #include <netinet/in.h>
   66 #include <netinet/in_systm.h>
   67 #include <netinet/ip.h>
   68 #include <netinet/in_var.h>
   69 
   70 #ifdef INET6
   71 #include <netinet/ip6.h>
   72 #include <netinet6/in6_var.h>
   73 #include <netinet6/ip6_var.h>
   74 #endif /* INET6 */
   75 
   76 #if defined(INET) || defined(INET6)
   77 #include <netinet/in_pcb.h>
   78 #endif
   79 #ifdef INET6
   80 #include <netinet6/in6_pcb.h>
   81 #endif /* INET6 */
   82 
   83 #include <net/pfkeyv2.h>
   84 #include <netipsec/keydb.h>
   85 #include <netipsec/key.h>
   86 #include <netipsec/keysock.h>
   87 #include <netipsec/key_debug.h>
   88 
   89 #include <netipsec/ipsec.h>
   90 #ifdef INET6
   91 #include <netipsec/ipsec6.h>
   92 #endif
   93 
   94 #include <netipsec/xform.h>
   95 
   96 #include <machine/stdarg.h>
   97 
   98 /* randomness */
   99 #include <sys/random.h>
  100 
  101 #define FULLMASK        0xff
  102 #define _BITS(bytes)    ((bytes) << 3)
  103 
  104 /*
  105  * Note on SA reference counting:
  106  * - SAs that are not in DEAD state will have (total external reference + 1)
  107  *   following value in reference count field.  they cannot be freed and are
  108  *   referenced from SA header.
  109  * - SAs that are in DEAD state will have (total external reference)
  110  *   in reference count field.  they are ready to be freed.  reference from
  111  *   SA header will be removed in key_delsav(), when the reference count
  112  *   field hits 0 (= no external reference other than from SA header.
  113  */
  114 
  115 VNET_DEFINE(u_int32_t, key_debug_level) = 0;
  116 static VNET_DEFINE(u_int, key_spi_trycnt) = 1000;
  117 static VNET_DEFINE(u_int32_t, key_spi_minval) = 0x100;
  118 static VNET_DEFINE(u_int32_t, key_spi_maxval) = 0x0fffffff;     /* XXX */
  119 static VNET_DEFINE(u_int32_t, policy_id) = 0;
  120 /*interval to initialize randseed,1(m)*/
  121 static VNET_DEFINE(u_int, key_int_random) = 60;
  122 /* interval to expire acquiring, 30(s)*/
  123 static VNET_DEFINE(u_int, key_larval_lifetime) = 30;
  124 /* counter for blocking SADB_ACQUIRE.*/
  125 static VNET_DEFINE(int, key_blockacq_count) = 10;
  126 /* lifetime for blocking SADB_ACQUIRE.*/
  127 static VNET_DEFINE(int, key_blockacq_lifetime) = 20;
  128 /* preferred old sa rather than new sa.*/
  129 static VNET_DEFINE(int, key_preferred_oldsa) = 1;
  130 #define V_key_spi_trycnt        VNET(key_spi_trycnt)
  131 #define V_key_spi_minval        VNET(key_spi_minval)
  132 #define V_key_spi_maxval        VNET(key_spi_maxval)
  133 #define V_policy_id             VNET(policy_id)
  134 #define V_key_int_random        VNET(key_int_random)
  135 #define V_key_larval_lifetime   VNET(key_larval_lifetime)
  136 #define V_key_blockacq_count    VNET(key_blockacq_count)
  137 #define V_key_blockacq_lifetime VNET(key_blockacq_lifetime)
  138 #define V_key_preferred_oldsa   VNET(key_preferred_oldsa)
  139 
  140 static VNET_DEFINE(u_int32_t, acq_seq) = 0;
  141 #define V_acq_seq               VNET(acq_seq)
  142 
  143                                                                 /* SPD */
  144 static VNET_DEFINE(LIST_HEAD(_sptree, secpolicy), sptree[IPSEC_DIR_MAX]);
  145 #define V_sptree                VNET(sptree)
  146 static struct mtx sptree_lock;
  147 #define SPTREE_LOCK_INIT() \
  148         mtx_init(&sptree_lock, "sptree", \
  149                 "fast ipsec security policy database", MTX_DEF)
  150 #define SPTREE_LOCK_DESTROY()   mtx_destroy(&sptree_lock)
  151 #define SPTREE_LOCK()           mtx_lock(&sptree_lock)
  152 #define SPTREE_UNLOCK() mtx_unlock(&sptree_lock)
  153 #define SPTREE_LOCK_ASSERT()    mtx_assert(&sptree_lock, MA_OWNED)
  154 
  155 static VNET_DEFINE(LIST_HEAD(_sahtree, secashead), sahtree);    /* SAD */
  156 #define V_sahtree               VNET(sahtree)
  157 static struct mtx sahtree_lock;
  158 #define SAHTREE_LOCK_INIT() \
  159         mtx_init(&sahtree_lock, "sahtree", \
  160                 "fast ipsec security association database", MTX_DEF)
  161 #define SAHTREE_LOCK_DESTROY()  mtx_destroy(&sahtree_lock)
  162 #define SAHTREE_LOCK()          mtx_lock(&sahtree_lock)
  163 #define SAHTREE_UNLOCK()        mtx_unlock(&sahtree_lock)
  164 #define SAHTREE_LOCK_ASSERT()   mtx_assert(&sahtree_lock, MA_OWNED)
  165 
  166                                                         /* registed list */
  167 static VNET_DEFINE(LIST_HEAD(_regtree, secreg), regtree[SADB_SATYPE_MAX + 1]);
  168 #define V_regtree               VNET(regtree)
  169 static struct mtx regtree_lock;
  170 #define REGTREE_LOCK_INIT() \
  171         mtx_init(&regtree_lock, "regtree", "fast ipsec regtree", MTX_DEF)
  172 #define REGTREE_LOCK_DESTROY()  mtx_destroy(&regtree_lock)
  173 #define REGTREE_LOCK()          mtx_lock(&regtree_lock)
  174 #define REGTREE_UNLOCK()        mtx_unlock(&regtree_lock)
  175 #define REGTREE_LOCK_ASSERT()   mtx_assert(&regtree_lock, MA_OWNED)
  176 
  177 static VNET_DEFINE(LIST_HEAD(_acqtree, secacq), acqtree); /* acquiring list */
  178 #define V_acqtree               VNET(acqtree)
  179 static struct mtx acq_lock;
  180 #define ACQ_LOCK_INIT() \
  181         mtx_init(&acq_lock, "acqtree", "fast ipsec acquire list", MTX_DEF)
  182 #define ACQ_LOCK_DESTROY()      mtx_destroy(&acq_lock)
  183 #define ACQ_LOCK()              mtx_lock(&acq_lock)
  184 #define ACQ_UNLOCK()            mtx_unlock(&acq_lock)
  185 #define ACQ_LOCK_ASSERT()       mtx_assert(&acq_lock, MA_OWNED)
  186 
  187                                                         /* SP acquiring list */
  188 static VNET_DEFINE(LIST_HEAD(_spacqtree, secspacq), spacqtree);
  189 #define V_spacqtree             VNET(spacqtree)
  190 static struct mtx spacq_lock;
  191 #define SPACQ_LOCK_INIT() \
  192         mtx_init(&spacq_lock, "spacqtree", \
  193                 "fast ipsec security policy acquire list", MTX_DEF)
  194 #define SPACQ_LOCK_DESTROY()    mtx_destroy(&spacq_lock)
  195 #define SPACQ_LOCK()            mtx_lock(&spacq_lock)
  196 #define SPACQ_UNLOCK()          mtx_unlock(&spacq_lock)
  197 #define SPACQ_LOCK_ASSERT()     mtx_assert(&spacq_lock, MA_OWNED)
  198 
  199 /* search order for SAs */
  200 static const u_int saorder_state_valid_prefer_old[] = {
  201         SADB_SASTATE_DYING, SADB_SASTATE_MATURE,
  202 };
  203 static const u_int saorder_state_valid_prefer_new[] = {
  204         SADB_SASTATE_MATURE, SADB_SASTATE_DYING,
  205 };
  206 static const u_int saorder_state_alive[] = {
  207         /* except DEAD */
  208         SADB_SASTATE_MATURE, SADB_SASTATE_DYING, SADB_SASTATE_LARVAL
  209 };
  210 static const u_int saorder_state_any[] = {
  211         SADB_SASTATE_MATURE, SADB_SASTATE_DYING,
  212         SADB_SASTATE_LARVAL, SADB_SASTATE_DEAD
  213 };
  214 
  215 static const int minsize[] = {
  216         sizeof(struct sadb_msg),        /* SADB_EXT_RESERVED */
  217         sizeof(struct sadb_sa),         /* SADB_EXT_SA */
  218         sizeof(struct sadb_lifetime),   /* SADB_EXT_LIFETIME_CURRENT */
  219         sizeof(struct sadb_lifetime),   /* SADB_EXT_LIFETIME_HARD */
  220         sizeof(struct sadb_lifetime),   /* SADB_EXT_LIFETIME_SOFT */
  221         sizeof(struct sadb_address),    /* SADB_EXT_ADDRESS_SRC */
  222         sizeof(struct sadb_address),    /* SADB_EXT_ADDRESS_DST */
  223         sizeof(struct sadb_address),    /* SADB_EXT_ADDRESS_PROXY */
  224         sizeof(struct sadb_key),        /* SADB_EXT_KEY_AUTH */
  225         sizeof(struct sadb_key),        /* SADB_EXT_KEY_ENCRYPT */
  226         sizeof(struct sadb_ident),      /* SADB_EXT_IDENTITY_SRC */
  227         sizeof(struct sadb_ident),      /* SADB_EXT_IDENTITY_DST */
  228         sizeof(struct sadb_sens),       /* SADB_EXT_SENSITIVITY */
  229         sizeof(struct sadb_prop),       /* SADB_EXT_PROPOSAL */
  230         sizeof(struct sadb_supported),  /* SADB_EXT_SUPPORTED_AUTH */
  231         sizeof(struct sadb_supported),  /* SADB_EXT_SUPPORTED_ENCRYPT */
  232         sizeof(struct sadb_spirange),   /* SADB_EXT_SPIRANGE */
  233         0,                              /* SADB_X_EXT_KMPRIVATE */
  234         sizeof(struct sadb_x_policy),   /* SADB_X_EXT_POLICY */
  235         sizeof(struct sadb_x_sa2),      /* SADB_X_SA2 */
  236         sizeof(struct sadb_x_nat_t_type),/* SADB_X_EXT_NAT_T_TYPE */
  237         sizeof(struct sadb_x_nat_t_port),/* SADB_X_EXT_NAT_T_SPORT */
  238         sizeof(struct sadb_x_nat_t_port),/* SADB_X_EXT_NAT_T_DPORT */
  239         sizeof(struct sadb_address),    /* SADB_X_EXT_NAT_T_OAI */
  240         sizeof(struct sadb_address),    /* SADB_X_EXT_NAT_T_OAR */
  241         sizeof(struct sadb_x_nat_t_frag),/* SADB_X_EXT_NAT_T_FRAG */
  242 };
  243 static const int maxsize[] = {
  244         sizeof(struct sadb_msg),        /* SADB_EXT_RESERVED */
  245         sizeof(struct sadb_sa),         /* SADB_EXT_SA */
  246         sizeof(struct sadb_lifetime),   /* SADB_EXT_LIFETIME_CURRENT */
  247         sizeof(struct sadb_lifetime),   /* SADB_EXT_LIFETIME_HARD */
  248         sizeof(struct sadb_lifetime),   /* SADB_EXT_LIFETIME_SOFT */
  249         0,                              /* SADB_EXT_ADDRESS_SRC */
  250         0,                              /* SADB_EXT_ADDRESS_DST */
  251         0,                              /* SADB_EXT_ADDRESS_PROXY */
  252         0,                              /* SADB_EXT_KEY_AUTH */
  253         0,                              /* SADB_EXT_KEY_ENCRYPT */
  254         0,                              /* SADB_EXT_IDENTITY_SRC */
  255         0,                              /* SADB_EXT_IDENTITY_DST */
  256         0,                              /* SADB_EXT_SENSITIVITY */
  257         0,                              /* SADB_EXT_PROPOSAL */
  258         0,                              /* SADB_EXT_SUPPORTED_AUTH */
  259         0,                              /* SADB_EXT_SUPPORTED_ENCRYPT */
  260         sizeof(struct sadb_spirange),   /* SADB_EXT_SPIRANGE */
  261         0,                              /* SADB_X_EXT_KMPRIVATE */
  262         0,                              /* SADB_X_EXT_POLICY */
  263         sizeof(struct sadb_x_sa2),      /* SADB_X_SA2 */
  264         sizeof(struct sadb_x_nat_t_type),/* SADB_X_EXT_NAT_T_TYPE */
  265         sizeof(struct sadb_x_nat_t_port),/* SADB_X_EXT_NAT_T_SPORT */
  266         sizeof(struct sadb_x_nat_t_port),/* SADB_X_EXT_NAT_T_DPORT */
  267         0,                              /* SADB_X_EXT_NAT_T_OAI */
  268         0,                              /* SADB_X_EXT_NAT_T_OAR */
  269         sizeof(struct sadb_x_nat_t_frag),/* SADB_X_EXT_NAT_T_FRAG */
  270 };
  271 
  272 static VNET_DEFINE(int, ipsec_esp_keymin) = 256;
  273 static VNET_DEFINE(int, ipsec_esp_auth) = 0;
  274 static VNET_DEFINE(int, ipsec_ah_keymin) = 128;
  275 
  276 #define V_ipsec_esp_keymin      VNET(ipsec_esp_keymin)
  277 #define V_ipsec_esp_auth        VNET(ipsec_esp_auth)
  278 #define V_ipsec_ah_keymin       VNET(ipsec_ah_keymin)
  279 
  280 #ifdef SYSCTL_DECL
  281 SYSCTL_DECL(_net_key);
  282 #endif
  283 
  284 SYSCTL_VNET_INT(_net_key, KEYCTL_DEBUG_LEVEL,   debug,
  285         CTLFLAG_RW, &VNET_NAME(key_debug_level),        0,      "");
  286 
  287 /* max count of trial for the decision of spi value */
  288 SYSCTL_VNET_INT(_net_key, KEYCTL_SPI_TRY, spi_trycnt,
  289         CTLFLAG_RW, &VNET_NAME(key_spi_trycnt), 0,      "");
  290 
  291 /* minimum spi value to allocate automatically. */
  292 SYSCTL_VNET_INT(_net_key, KEYCTL_SPI_MIN_VALUE,
  293         spi_minval,     CTLFLAG_RW, &VNET_NAME(key_spi_minval), 0,      "");
  294 
  295 /* maximun spi value to allocate automatically. */
  296 SYSCTL_VNET_INT(_net_key, KEYCTL_SPI_MAX_VALUE,
  297         spi_maxval,     CTLFLAG_RW, &VNET_NAME(key_spi_maxval), 0,      "");
  298 
  299 /* interval to initialize randseed */
  300 SYSCTL_VNET_INT(_net_key, KEYCTL_RANDOM_INT,
  301         int_random,     CTLFLAG_RW, &VNET_NAME(key_int_random), 0,      "");
  302 
  303 /* lifetime for larval SA */
  304 SYSCTL_VNET_INT(_net_key, KEYCTL_LARVAL_LIFETIME,
  305         larval_lifetime, CTLFLAG_RW, &VNET_NAME(key_larval_lifetime),   0, "");
  306 
  307 /* counter for blocking to send SADB_ACQUIRE to IKEd */
  308 SYSCTL_VNET_INT(_net_key, KEYCTL_BLOCKACQ_COUNT,
  309         blockacq_count, CTLFLAG_RW, &VNET_NAME(key_blockacq_count),     0, "");
  310 
  311 /* lifetime for blocking to send SADB_ACQUIRE to IKEd */
  312 SYSCTL_VNET_INT(_net_key, KEYCTL_BLOCKACQ_LIFETIME,
  313         blockacq_lifetime, CTLFLAG_RW, &VNET_NAME(key_blockacq_lifetime), 0, "");
  314 
  315 /* ESP auth */
  316 SYSCTL_VNET_INT(_net_key, KEYCTL_ESP_AUTH,      esp_auth,
  317         CTLFLAG_RW, &VNET_NAME(ipsec_esp_auth), 0,      "");
  318 
  319 /* minimum ESP key length */
  320 SYSCTL_VNET_INT(_net_key, KEYCTL_ESP_KEYMIN,
  321         esp_keymin, CTLFLAG_RW, &VNET_NAME(ipsec_esp_keymin),   0,      "");
  322 
  323 /* minimum AH key length */
  324 SYSCTL_VNET_INT(_net_key, KEYCTL_AH_KEYMIN,     ah_keymin,
  325         CTLFLAG_RW, &VNET_NAME(ipsec_ah_keymin),        0,      "");
  326 
  327 /* perfered old SA rather than new SA */
  328 SYSCTL_VNET_INT(_net_key, KEYCTL_PREFERED_OLDSA,
  329         preferred_oldsa, CTLFLAG_RW, &VNET_NAME(key_preferred_oldsa),   0, "");
  330 
  331 #define __LIST_CHAINED(elm) \
  332         (!((elm)->chain.le_next == NULL && (elm)->chain.le_prev == NULL))
  333 #define LIST_INSERT_TAIL(head, elm, type, field) \
  334 do {\
  335         struct type *curelm = LIST_FIRST(head); \
  336         if (curelm == NULL) {\
  337                 LIST_INSERT_HEAD(head, elm, field); \
  338         } else { \
  339                 while (LIST_NEXT(curelm, field)) \
  340                         curelm = LIST_NEXT(curelm, field);\
  341                 LIST_INSERT_AFTER(curelm, elm, field);\
  342         }\
  343 } while (0)
  344 
  345 #define KEY_CHKSASTATE(head, sav, name) \
  346 do { \
  347         if ((head) != (sav)) {                                          \
  348                 ipseclog((LOG_DEBUG, "%s: state mismatched (TREE=%d SA=%d)\n", \
  349                         (name), (head), (sav)));                        \
  350                 continue;                                               \
  351         }                                                               \
  352 } while (0)
  353 
  354 #define KEY_CHKSPDIR(head, sp, name) \
  355 do { \
  356         if ((head) != (sp)) {                                           \
  357                 ipseclog((LOG_DEBUG, "%s: direction mismatched (TREE=%d SP=%d), " \
  358                         "anyway continue.\n",                           \
  359                         (name), (head), (sp)));                         \
  360         }                                                               \
  361 } while (0)
  362 
  363 MALLOC_DEFINE(M_IPSEC_SA, "secasvar", "ipsec security association");
  364 MALLOC_DEFINE(M_IPSEC_SAH, "sahead", "ipsec sa head");
  365 MALLOC_DEFINE(M_IPSEC_SP, "ipsecpolicy", "ipsec security policy");
  366 MALLOC_DEFINE(M_IPSEC_SR, "ipsecrequest", "ipsec security request");
  367 MALLOC_DEFINE(M_IPSEC_MISC, "ipsec-misc", "ipsec miscellaneous");
  368 MALLOC_DEFINE(M_IPSEC_SAQ, "ipsec-saq", "ipsec sa acquire");
  369 MALLOC_DEFINE(M_IPSEC_SAR, "ipsec-reg", "ipsec sa acquire");
  370 
  371 /*
  372  * set parameters into secpolicyindex buffer.
  373  * Must allocate secpolicyindex buffer passed to this function.
  374  */
  375 #define KEY_SETSECSPIDX(_dir, s, d, ps, pd, ulp, idx) \
  376 do { \
  377         bzero((idx), sizeof(struct secpolicyindex));                         \
  378         (idx)->dir = (_dir);                                                 \
  379         (idx)->prefs = (ps);                                                 \
  380         (idx)->prefd = (pd);                                                 \
  381         (idx)->ul_proto = (ulp);                                             \
  382         bcopy((s), &(idx)->src, ((const struct sockaddr *)(s))->sa_len);     \
  383         bcopy((d), &(idx)->dst, ((const struct sockaddr *)(d))->sa_len);     \
  384 } while (0)
  385 
  386 /*
  387  * set parameters into secasindex buffer.
  388  * Must allocate secasindex buffer before calling this function.
  389  */
  390 #define KEY_SETSECASIDX(p, m, r, s, d, idx) \
  391 do { \
  392         bzero((idx), sizeof(struct secasindex));                             \
  393         (idx)->proto = (p);                                                  \
  394         (idx)->mode = (m);                                                   \
  395         (idx)->reqid = (r);                                                  \
  396         bcopy((s), &(idx)->src, ((const struct sockaddr *)(s))->sa_len);     \
  397         bcopy((d), &(idx)->dst, ((const struct sockaddr *)(d))->sa_len);     \
  398 } while (0)
  399 
  400 /* key statistics */
  401 struct _keystat {
  402         u_long getspi_count; /* the avarage of count to try to get new SPI */
  403 } keystat;
  404 
  405 struct sadb_msghdr {
  406         struct sadb_msg *msg;
  407         struct sadb_ext *ext[SADB_EXT_MAX + 1];
  408         int extoff[SADB_EXT_MAX + 1];
  409         int extlen[SADB_EXT_MAX + 1];
  410 };
  411 
  412 static struct secasvar *key_allocsa_policy __P((const struct secasindex *));
  413 static void key_freesp_so __P((struct secpolicy **));
  414 static struct secasvar *key_do_allocsa_policy __P((struct secashead *, u_int));
  415 static void key_delsp __P((struct secpolicy *));
  416 static struct secpolicy *key_getsp __P((struct secpolicyindex *));
  417 static void _key_delsp(struct secpolicy *sp);
  418 static struct secpolicy *key_getspbyid __P((u_int32_t));
  419 static u_int32_t key_newreqid __P((void));
  420 static struct mbuf *key_gather_mbuf __P((struct mbuf *,
  421         const struct sadb_msghdr *, int, int, ...));
  422 static int key_spdadd __P((struct socket *, struct mbuf *,
  423         const struct sadb_msghdr *));
  424 static u_int32_t key_getnewspid __P((void));
  425 static int key_spddelete __P((struct socket *, struct mbuf *,
  426         const struct sadb_msghdr *));
  427 static int key_spddelete2 __P((struct socket *, struct mbuf *,
  428         const struct sadb_msghdr *));
  429 static int key_spdget __P((struct socket *, struct mbuf *,
  430         const struct sadb_msghdr *));
  431 static int key_spdflush __P((struct socket *, struct mbuf *,
  432         const struct sadb_msghdr *));
  433 static int key_spddump __P((struct socket *, struct mbuf *,
  434         const struct sadb_msghdr *));
  435 static struct mbuf *key_setdumpsp __P((struct secpolicy *,
  436         u_int8_t, u_int32_t, u_int32_t));
  437 static u_int key_getspreqmsglen __P((struct secpolicy *));
  438 static int key_spdexpire __P((struct secpolicy *));
  439 static struct secashead *key_newsah __P((struct secasindex *));
  440 static void key_delsah __P((struct secashead *));
  441 static struct secasvar *key_newsav __P((struct mbuf *,
  442         const struct sadb_msghdr *, struct secashead *, int *,
  443         const char*, int));
  444 #define KEY_NEWSAV(m, sadb, sah, e)                             \
  445         key_newsav(m, sadb, sah, e, __FILE__, __LINE__)
  446 static void key_delsav __P((struct secasvar *));
  447 static struct secashead *key_getsah __P((struct secasindex *));
  448 static struct secasvar *key_checkspidup __P((struct secasindex *, u_int32_t));
  449 static struct secasvar *key_getsavbyspi __P((struct secashead *, u_int32_t));
  450 static int key_setsaval __P((struct secasvar *, struct mbuf *,
  451         const struct sadb_msghdr *));
  452 static int key_mature __P((struct secasvar *));
  453 static struct mbuf *key_setdumpsa __P((struct secasvar *, u_int8_t,
  454         u_int8_t, u_int32_t, u_int32_t));
  455 static struct mbuf *key_setsadbmsg __P((u_int8_t, u_int16_t, u_int8_t,
  456         u_int32_t, pid_t, u_int16_t));
  457 static struct mbuf *key_setsadbsa __P((struct secasvar *));
  458 static struct mbuf *key_setsadbaddr __P((u_int16_t,
  459         const struct sockaddr *, u_int8_t, u_int16_t));
  460 #ifdef IPSEC_NAT_T
  461 static struct mbuf *key_setsadbxport(u_int16_t, u_int16_t);
  462 static struct mbuf *key_setsadbxtype(u_int16_t);
  463 #endif
  464 static void key_porttosaddr(struct sockaddr *, u_int16_t);
  465 #define KEY_PORTTOSADDR(saddr, port)                            \
  466         key_porttosaddr((struct sockaddr *)(saddr), (port))
  467 static struct mbuf *key_setsadbxsa2 __P((u_int8_t, u_int32_t, u_int32_t));
  468 static struct mbuf *key_setsadbxpolicy __P((u_int16_t, u_int8_t,
  469         u_int32_t));
  470 static struct seckey *key_dup_keymsg(const struct sadb_key *, u_int, 
  471                                      struct malloc_type *);
  472 static struct seclifetime *key_dup_lifemsg(const struct sadb_lifetime *src,
  473                                             struct malloc_type *type);
  474 #ifdef INET6
  475 static int key_ismyaddr6 __P((struct sockaddr_in6 *));
  476 #endif
  477 
  478 /* flags for key_cmpsaidx() */
  479 #define CMP_HEAD        1       /* protocol, addresses. */
  480 #define CMP_MODE_REQID  2       /* additionally HEAD, reqid, mode. */
  481 #define CMP_REQID       3       /* additionally HEAD, reaid. */
  482 #define CMP_EXACTLY     4       /* all elements. */
  483 static int key_cmpsaidx
  484         __P((const struct secasindex *, const struct secasindex *, int));
  485 
  486 static int key_cmpspidx_exactly
  487         __P((struct secpolicyindex *, struct secpolicyindex *));
  488 static int key_cmpspidx_withmask
  489         __P((struct secpolicyindex *, struct secpolicyindex *));
  490 static int key_sockaddrcmp __P((const struct sockaddr *, const struct sockaddr *, int));
  491 static int key_bbcmp __P((const void *, const void *, u_int));
  492 static u_int16_t key_satype2proto __P((u_int8_t));
  493 static u_int8_t key_proto2satype __P((u_int16_t));
  494 
  495 static int key_getspi __P((struct socket *, struct mbuf *,
  496         const struct sadb_msghdr *));
  497 static u_int32_t key_do_getnewspi __P((struct sadb_spirange *,
  498                                         struct secasindex *));
  499 static int key_update __P((struct socket *, struct mbuf *,
  500         const struct sadb_msghdr *));
  501 #ifdef IPSEC_DOSEQCHECK
  502 static struct secasvar *key_getsavbyseq __P((struct secashead *, u_int32_t));
  503 #endif
  504 static int key_add __P((struct socket *, struct mbuf *,
  505         const struct sadb_msghdr *));
  506 static int key_setident __P((struct secashead *, struct mbuf *,
  507         const struct sadb_msghdr *));
  508 static struct mbuf *key_getmsgbuf_x1 __P((struct mbuf *,
  509         const struct sadb_msghdr *));
  510 static int key_delete __P((struct socket *, struct mbuf *,
  511         const struct sadb_msghdr *));
  512 static int key_get __P((struct socket *, struct mbuf *,
  513         const struct sadb_msghdr *));
  514 
  515 static void key_getcomb_setlifetime __P((struct sadb_comb *));
  516 static struct mbuf *key_getcomb_esp __P((void));
  517 static struct mbuf *key_getcomb_ah __P((void));
  518 static struct mbuf *key_getcomb_ipcomp __P((void));
  519 static struct mbuf *key_getprop __P((const struct secasindex *));
  520 
  521 static int key_acquire __P((const struct secasindex *, struct secpolicy *));
  522 static struct secacq *key_newacq __P((const struct secasindex *));
  523 static struct secacq *key_getacq __P((const struct secasindex *));
  524 static struct secacq *key_getacqbyseq __P((u_int32_t));
  525 static struct secspacq *key_newspacq __P((struct secpolicyindex *));
  526 static struct secspacq *key_getspacq __P((struct secpolicyindex *));
  527 static int key_acquire2 __P((struct socket *, struct mbuf *,
  528         const struct sadb_msghdr *));
  529 static int key_register __P((struct socket *, struct mbuf *,
  530         const struct sadb_msghdr *));
  531 static int key_expire __P((struct secasvar *));
  532 static int key_flush __P((struct socket *, struct mbuf *,
  533         const struct sadb_msghdr *));
  534 static int key_dump __P((struct socket *, struct mbuf *,
  535         const struct sadb_msghdr *));
  536 static int key_promisc __P((struct socket *, struct mbuf *,
  537         const struct sadb_msghdr *));
  538 static int key_senderror __P((struct socket *, struct mbuf *, int));
  539 static int key_validate_ext __P((const struct sadb_ext *, int));
  540 static int key_align __P((struct mbuf *, struct sadb_msghdr *));
  541 static struct mbuf *key_setlifetime(struct seclifetime *src, 
  542                                      u_int16_t exttype);
  543 static struct mbuf *key_setkey(struct seckey *src, u_int16_t exttype);
  544 
  545 #if 0
  546 static const char *key_getfqdn __P((void));
  547 static const char *key_getuserfqdn __P((void));
  548 #endif
  549 static void key_sa_chgstate __P((struct secasvar *, u_int8_t));
  550 
  551 static __inline void
  552 sa_initref(struct secasvar *sav)
  553 {
  554 
  555         refcount_init(&sav->refcnt, 1);
  556 }
  557 static __inline void
  558 sa_addref(struct secasvar *sav)
  559 {
  560 
  561         refcount_acquire(&sav->refcnt);
  562         IPSEC_ASSERT(sav->refcnt != 0, ("SA refcnt overflow"));
  563 }
  564 static __inline int
  565 sa_delref(struct secasvar *sav)
  566 {
  567 
  568         IPSEC_ASSERT(sav->refcnt > 0, ("SA refcnt underflow"));
  569         return (refcount_release(&sav->refcnt));
  570 }
  571 
  572 #define SP_ADDREF(p) do {                                               \
  573         (p)->refcnt++;                                                  \
  574         IPSEC_ASSERT((p)->refcnt != 0, ("SP refcnt overflow"));         \
  575 } while (0)
  576 #define SP_DELREF(p) do {                                               \
  577         IPSEC_ASSERT((p)->refcnt > 0, ("SP refcnt underflow"));         \
  578         (p)->refcnt--;                                                  \
  579 } while (0)
  580  
  581 
  582 /*
  583  * Update the refcnt while holding the SPTREE lock.
  584  */
  585 void
  586 key_addref(struct secpolicy *sp)
  587 {
  588         SPTREE_LOCK();
  589         SP_ADDREF(sp);
  590         SPTREE_UNLOCK();
  591 }
  592 
  593 /*
  594  * Return 0 when there are known to be no SP's for the specified
  595  * direction.  Otherwise return 1.  This is used by IPsec code
  596  * to optimize performance.
  597  */
  598 int
  599 key_havesp(u_int dir)
  600 {
  601 
  602         return (dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND ?
  603                 LIST_FIRST(&V_sptree[dir]) != NULL : 1);
  604 }
  605 
  606 /* %%% IPsec policy management */
  607 /*
  608  * allocating a SP for OUTBOUND or INBOUND packet.
  609  * Must call key_freesp() later.
  610  * OUT: NULL:   not found
  611  *      others: found and return the pointer.
  612  */
  613 struct secpolicy *
  614 key_allocsp(struct secpolicyindex *spidx, u_int dir, const char* where, int tag)
  615 {
  616         struct secpolicy *sp;
  617 
  618         IPSEC_ASSERT(spidx != NULL, ("null spidx"));
  619         IPSEC_ASSERT(dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND,
  620                 ("invalid direction %u", dir));
  621 
  622         KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
  623                 printf("DP %s from %s:%u\n", __func__, where, tag));
  624 
  625         /* get a SP entry */
  626         KEYDEBUG(KEYDEBUG_IPSEC_DATA,
  627                 printf("*** objects\n");
  628                 kdebug_secpolicyindex(spidx));
  629 
  630         SPTREE_LOCK();
  631         LIST_FOREACH(sp, &V_sptree[dir], chain) {
  632                 KEYDEBUG(KEYDEBUG_IPSEC_DATA,
  633                         printf("*** in SPD\n");
  634                         kdebug_secpolicyindex(&sp->spidx));
  635 
  636                 if (sp->state == IPSEC_SPSTATE_DEAD)
  637                         continue;
  638                 if (key_cmpspidx_withmask(&sp->spidx, spidx))
  639                         goto found;
  640         }
  641         sp = NULL;
  642 found:
  643         if (sp) {
  644                 /* sanity check */
  645                 KEY_CHKSPDIR(sp->spidx.dir, dir, __func__);
  646 
  647                 /* found a SPD entry */
  648                 sp->lastused = time_second;
  649                 SP_ADDREF(sp);
  650         }
  651         SPTREE_UNLOCK();
  652 
  653         KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
  654                 printf("DP %s return SP:%p (ID=%u) refcnt %u\n", __func__,
  655                         sp, sp ? sp->id : 0, sp ? sp->refcnt : 0));
  656         return sp;
  657 }
  658 
  659 /*
  660  * allocating a SP for OUTBOUND or INBOUND packet.
  661  * Must call key_freesp() later.
  662  * OUT: NULL:   not found
  663  *      others: found and return the pointer.
  664  */
  665 struct secpolicy *
  666 key_allocsp2(u_int32_t spi,
  667              union sockaddr_union *dst,
  668              u_int8_t proto,
  669              u_int dir,
  670              const char* where, int tag)
  671 {
  672         struct secpolicy *sp;
  673 
  674         IPSEC_ASSERT(dst != NULL, ("null dst"));
  675         IPSEC_ASSERT(dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND,
  676                 ("invalid direction %u", dir));
  677 
  678         KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
  679                 printf("DP %s from %s:%u\n", __func__, where, tag));
  680 
  681         /* get a SP entry */
  682         KEYDEBUG(KEYDEBUG_IPSEC_DATA,
  683                 printf("*** objects\n");
  684                 printf("spi %u proto %u dir %u\n", spi, proto, dir);
  685                 kdebug_sockaddr(&dst->sa));
  686 
  687         SPTREE_LOCK();
  688         LIST_FOREACH(sp, &V_sptree[dir], chain) {
  689                 KEYDEBUG(KEYDEBUG_IPSEC_DATA,
  690                         printf("*** in SPD\n");
  691                         kdebug_secpolicyindex(&sp->spidx));
  692 
  693                 if (sp->state == IPSEC_SPSTATE_DEAD)
  694                         continue;
  695                 /* compare simple values, then dst address */
  696                 if (sp->spidx.ul_proto != proto)
  697                         continue;
  698                 /* NB: spi's must exist and match */
  699                 if (!sp->req || !sp->req->sav || sp->req->sav->spi != spi)
  700                         continue;
  701                 if (key_sockaddrcmp(&sp->spidx.dst.sa, &dst->sa, 1) == 0)
  702                         goto found;
  703         }
  704         sp = NULL;
  705 found:
  706         if (sp) {
  707                 /* sanity check */
  708                 KEY_CHKSPDIR(sp->spidx.dir, dir, __func__);
  709 
  710                 /* found a SPD entry */
  711                 sp->lastused = time_second;
  712                 SP_ADDREF(sp);
  713         }
  714         SPTREE_UNLOCK();
  715 
  716         KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
  717                 printf("DP %s return SP:%p (ID=%u) refcnt %u\n", __func__,
  718                         sp, sp ? sp->id : 0, sp ? sp->refcnt : 0));
  719         return sp;
  720 }
  721 
  722 #if 0
  723 /*
  724  * return a policy that matches this particular inbound packet.
  725  * XXX slow
  726  */
  727 struct secpolicy *
  728 key_gettunnel(const struct sockaddr *osrc,
  729               const struct sockaddr *odst,
  730               const struct sockaddr *isrc,
  731               const struct sockaddr *idst,
  732               const char* where, int tag)
  733 {
  734         struct secpolicy *sp;
  735         const int dir = IPSEC_DIR_INBOUND;
  736         struct ipsecrequest *r1, *r2, *p;
  737         struct secpolicyindex spidx;
  738 
  739         KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
  740                 printf("DP %s from %s:%u\n", __func__, where, tag));
  741 
  742         if (isrc->sa_family != idst->sa_family) {
  743                 ipseclog((LOG_ERR, "%s: protocol family mismatched %d != %d\n.",
  744                         __func__, isrc->sa_family, idst->sa_family));
  745                 sp = NULL;
  746                 goto done;
  747         }
  748 
  749         SPTREE_LOCK();
  750         LIST_FOREACH(sp, &V_sptree[dir], chain) {
  751                 if (sp->state == IPSEC_SPSTATE_DEAD)
  752                         continue;
  753 
  754                 r1 = r2 = NULL;
  755                 for (p = sp->req; p; p = p->next) {
  756                         if (p->saidx.mode != IPSEC_MODE_TUNNEL)
  757                                 continue;
  758 
  759                         r1 = r2;
  760                         r2 = p;
  761 
  762                         if (!r1) {
  763                                 /* here we look at address matches only */
  764                                 spidx = sp->spidx;
  765                                 if (isrc->sa_len > sizeof(spidx.src) ||
  766                                     idst->sa_len > sizeof(spidx.dst))
  767                                         continue;
  768                                 bcopy(isrc, &spidx.src, isrc->sa_len);
  769                                 bcopy(idst, &spidx.dst, idst->sa_len);
  770                                 if (!key_cmpspidx_withmask(&sp->spidx, &spidx))
  771                                         continue;
  772                         } else {
  773                                 if (key_sockaddrcmp(&r1->saidx.src.sa, isrc, 0) ||
  774                                     key_sockaddrcmp(&r1->saidx.dst.sa, idst, 0))
  775                                         continue;
  776                         }
  777 
  778                         if (key_sockaddrcmp(&r2->saidx.src.sa, osrc, 0) ||
  779                             key_sockaddrcmp(&r2->saidx.dst.sa, odst, 0))
  780                                 continue;
  781 
  782                         goto found;
  783                 }
  784         }
  785         sp = NULL;
  786 found:
  787         if (sp) {
  788                 sp->lastused = time_second;
  789                 SP_ADDREF(sp);
  790         }
  791         SPTREE_UNLOCK();
  792 done:
  793         KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
  794                 printf("DP %s return SP:%p (ID=%u) refcnt %u\n", __func__,
  795                         sp, sp ? sp->id : 0, sp ? sp->refcnt : 0));
  796         return sp;
  797 }
  798 #endif
  799 
  800 /*
  801  * allocating an SA entry for an *OUTBOUND* packet.
  802  * checking each request entries in SP, and acquire an SA if need.
  803  * OUT: 0: there are valid requests.
  804  *      ENOENT: policy may be valid, but SA with REQUIRE is on acquiring.
  805  */
  806 int
  807 key_checkrequest(struct ipsecrequest *isr, const struct secasindex *saidx)
  808 {
  809         u_int level;
  810         int error;
  811         struct secasvar *sav;
  812 
  813         IPSEC_ASSERT(isr != NULL, ("null isr"));
  814         IPSEC_ASSERT(saidx != NULL, ("null saidx"));
  815         IPSEC_ASSERT(saidx->mode == IPSEC_MODE_TRANSPORT ||
  816                 saidx->mode == IPSEC_MODE_TUNNEL,
  817                 ("unexpected policy %u", saidx->mode));
  818 
  819         /*
  820          * XXX guard against protocol callbacks from the crypto
  821          * thread as they reference ipsecrequest.sav which we
  822          * temporarily null out below.  Need to rethink how we
  823          * handle bundled SA's in the callback thread.
  824          */
  825         IPSECREQUEST_LOCK_ASSERT(isr);
  826 
  827         /* get current level */
  828         level = ipsec_get_reqlevel(isr);
  829 
  830         /*
  831          * We check new SA in the IPsec request because a different
  832          * SA may be involved each time this request is checked, either
  833          * because new SAs are being configured, or this request is
  834          * associated with an unconnected datagram socket, or this request
  835          * is associated with a system default policy.
  836          *
  837          * key_allocsa_policy should allocate the oldest SA available.
  838          * See key_do_allocsa_policy(), and draft-jenkins-ipsec-rekeying-03.txt.
  839          */
  840         sav = key_allocsa_policy(saidx);
  841         if (sav != isr->sav) {
  842                 /* SA need to be updated. */
  843                 if (!IPSECREQUEST_UPGRADE(isr)) {
  844                         /* Kick everyone off. */
  845                         IPSECREQUEST_UNLOCK(isr);
  846                         IPSECREQUEST_WLOCK(isr);
  847                 }
  848                 if (isr->sav != NULL)
  849                         KEY_FREESAV(&isr->sav);
  850                 isr->sav = sav;
  851                 IPSECREQUEST_DOWNGRADE(isr);
  852         } else if (sav != NULL)
  853                 KEY_FREESAV(&sav);
  854 
  855         /* When there is SA. */
  856         if (isr->sav != NULL) {
  857                 if (isr->sav->state != SADB_SASTATE_MATURE &&
  858                     isr->sav->state != SADB_SASTATE_DYING)
  859                         return EINVAL;
  860                 return 0;
  861         }
  862 
  863         /* there is no SA */
  864         error = key_acquire(saidx, isr->sp);
  865         if (error != 0) {
  866                 /* XXX What should I do ? */
  867                 ipseclog((LOG_DEBUG, "%s: error %d returned from key_acquire\n",
  868                         __func__, error));
  869                 return error;
  870         }
  871 
  872         if (level != IPSEC_LEVEL_REQUIRE) {
  873                 /* XXX sigh, the interface to this routine is botched */
  874                 IPSEC_ASSERT(isr->sav == NULL, ("unexpected SA"));
  875                 return 0;
  876         } else {
  877                 return ENOENT;
  878         }
  879 }
  880 
  881 /*
  882  * allocating a SA for policy entry from SAD.
  883  * NOTE: searching SAD of aliving state.
  884  * OUT: NULL:   not found.
  885  *      others: found and return the pointer.
  886  */
  887 static struct secasvar *
  888 key_allocsa_policy(const struct secasindex *saidx)
  889 {
  890 #define N(a)    _ARRAYLEN(a)
  891         struct secashead *sah;
  892         struct secasvar *sav;
  893         u_int stateidx, arraysize;
  894         const u_int *state_valid;
  895 
  896         state_valid = NULL;     /* silence gcc */
  897         arraysize = 0;          /* silence gcc */
  898 
  899         SAHTREE_LOCK();
  900         LIST_FOREACH(sah, &V_sahtree, chain) {
  901                 if (sah->state == SADB_SASTATE_DEAD)
  902                         continue;
  903                 if (key_cmpsaidx(&sah->saidx, saidx, CMP_MODE_REQID)) {
  904                         if (V_key_preferred_oldsa) {
  905                                 state_valid = saorder_state_valid_prefer_old;
  906                                 arraysize = N(saorder_state_valid_prefer_old);
  907                         } else {
  908                                 state_valid = saorder_state_valid_prefer_new;
  909                                 arraysize = N(saorder_state_valid_prefer_new);
  910                         }
  911                         break;
  912                 }
  913         }
  914         SAHTREE_UNLOCK();
  915         if (sah == NULL)
  916                 return NULL;
  917 
  918         /* search valid state */
  919         for (stateidx = 0; stateidx < arraysize; stateidx++) {
  920                 sav = key_do_allocsa_policy(sah, state_valid[stateidx]);
  921                 if (sav != NULL)
  922                         return sav;
  923         }
  924 
  925         return NULL;
  926 #undef N
  927 }
  928 
  929 /*
  930  * searching SAD with direction, protocol, mode and state.
  931  * called by key_allocsa_policy().
  932  * OUT:
  933  *      NULL    : not found
  934  *      others  : found, pointer to a SA.
  935  */
  936 static struct secasvar *
  937 key_do_allocsa_policy(struct secashead *sah, u_int state)
  938 {
  939         struct secasvar *sav, *nextsav, *candidate, *d;
  940 
  941         /* initilize */
  942         candidate = NULL;
  943 
  944         SAHTREE_LOCK();
  945         for (sav = LIST_FIRST(&sah->savtree[state]);
  946              sav != NULL;
  947              sav = nextsav) {
  948 
  949                 nextsav = LIST_NEXT(sav, chain);
  950 
  951                 /* sanity check */
  952                 KEY_CHKSASTATE(sav->state, state, __func__);
  953 
  954                 /* initialize */
  955                 if (candidate == NULL) {
  956                         candidate = sav;
  957                         continue;
  958                 }
  959 
  960                 /* Which SA is the better ? */
  961 
  962                 IPSEC_ASSERT(candidate->lft_c != NULL,
  963                         ("null candidate lifetime"));
  964                 IPSEC_ASSERT(sav->lft_c != NULL, ("null sav lifetime"));
  965 
  966                 /* What the best method is to compare ? */
  967                 if (V_key_preferred_oldsa) {
  968                         if (candidate->lft_c->addtime >
  969                                         sav->lft_c->addtime) {
  970                                 candidate = sav;
  971                         }
  972                         continue;
  973                         /*NOTREACHED*/
  974                 }
  975 
  976                 /* preferred new sa rather than old sa */
  977                 if (candidate->lft_c->addtime <
  978                                 sav->lft_c->addtime) {
  979                         d = candidate;
  980                         candidate = sav;
  981                 } else
  982                         d = sav;
  983 
  984                 /*
  985                  * prepared to delete the SA when there is more
  986                  * suitable candidate and the lifetime of the SA is not
  987                  * permanent.
  988                  */
  989                 if (d->lft_h->addtime != 0) {
  990                         struct mbuf *m, *result;
  991                         u_int8_t satype;
  992 
  993                         key_sa_chgstate(d, SADB_SASTATE_DEAD);
  994 
  995                         IPSEC_ASSERT(d->refcnt > 0, ("bogus ref count"));
  996 
  997                         satype = key_proto2satype(d->sah->saidx.proto);
  998                         if (satype == 0)
  999                                 goto msgfail;
 1000 
 1001                         m = key_setsadbmsg(SADB_DELETE, 0,
 1002                             satype, 0, 0, d->refcnt - 1);
 1003                         if (!m)
 1004                                 goto msgfail;
 1005                         result = m;
 1006 
 1007                         /* set sadb_address for saidx's. */
 1008                         m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
 1009                                 &d->sah->saidx.src.sa,
 1010                                 d->sah->saidx.src.sa.sa_len << 3,
 1011                                 IPSEC_ULPROTO_ANY);
 1012                         if (!m)
 1013                                 goto msgfail;
 1014                         m_cat(result, m);
 1015 
 1016                         /* set sadb_address for saidx's. */
 1017                         m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
 1018                                 &d->sah->saidx.dst.sa,
 1019                                 d->sah->saidx.dst.sa.sa_len << 3,
 1020                                 IPSEC_ULPROTO_ANY);
 1021                         if (!m)
 1022                                 goto msgfail;
 1023                         m_cat(result, m);
 1024 
 1025                         /* create SA extension */
 1026                         m = key_setsadbsa(d);
 1027                         if (!m)
 1028                                 goto msgfail;
 1029                         m_cat(result, m);
 1030 
 1031                         if (result->m_len < sizeof(struct sadb_msg)) {
 1032                                 result = m_pullup(result,
 1033                                                 sizeof(struct sadb_msg));
 1034                                 if (result == NULL)
 1035                                         goto msgfail;
 1036                         }
 1037 
 1038                         result->m_pkthdr.len = 0;
 1039                         for (m = result; m; m = m->m_next)
 1040                                 result->m_pkthdr.len += m->m_len;
 1041                         mtod(result, struct sadb_msg *)->sadb_msg_len =
 1042                                 PFKEY_UNIT64(result->m_pkthdr.len);
 1043 
 1044                         if (key_sendup_mbuf(NULL, result,
 1045                                         KEY_SENDUP_REGISTERED))
 1046                                 goto msgfail;
 1047                  msgfail:
 1048                         KEY_FREESAV(&d);
 1049                 }
 1050         }
 1051         if (candidate) {
 1052                 sa_addref(candidate);
 1053                 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
 1054                         printf("DP %s cause refcnt++:%d SA:%p\n",
 1055                                 __func__, candidate->refcnt, candidate));
 1056         }
 1057         SAHTREE_UNLOCK();
 1058 
 1059         return candidate;
 1060 }
 1061 
 1062 /*
 1063  * allocating a usable SA entry for a *INBOUND* packet.
 1064  * Must call key_freesav() later.
 1065  * OUT: positive:       pointer to a usable sav (i.e. MATURE or DYING state).
 1066  *      NULL:           not found, or error occured.
 1067  *
 1068  * In the comparison, no source address is used--for RFC2401 conformance.
 1069  * To quote, from section 4.1:
 1070  *      A security association is uniquely identified by a triple consisting
 1071  *      of a Security Parameter Index (SPI), an IP Destination Address, and a
 1072  *      security protocol (AH or ESP) identifier.
 1073  * Note that, however, we do need to keep source address in IPsec SA.
 1074  * IKE specification and PF_KEY specification do assume that we
 1075  * keep source address in IPsec SA.  We see a tricky situation here.
 1076  */
 1077 struct secasvar *
 1078 key_allocsa(
 1079         union sockaddr_union *dst,
 1080         u_int proto,
 1081         u_int32_t spi,
 1082         const char* where, int tag)
 1083 {
 1084         struct secashead *sah;
 1085         struct secasvar *sav;
 1086         u_int stateidx, arraysize, state;
 1087         const u_int *saorder_state_valid;
 1088         int chkport;
 1089 
 1090         IPSEC_ASSERT(dst != NULL, ("null dst address"));
 1091 
 1092         KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
 1093                 printf("DP %s from %s:%u\n", __func__, where, tag));
 1094 
 1095 #ifdef IPSEC_NAT_T
 1096         chkport = (dst->sa.sa_family == AF_INET &&
 1097             dst->sa.sa_len == sizeof(struct sockaddr_in) &&
 1098             dst->sin.sin_port != 0);
 1099 #else
 1100         chkport = 0;
 1101 #endif
 1102 
 1103         /*
 1104          * searching SAD.
 1105          * XXX: to be checked internal IP header somewhere.  Also when
 1106          * IPsec tunnel packet is received.  But ESP tunnel mode is
 1107          * encrypted so we can't check internal IP header.
 1108          */
 1109         SAHTREE_LOCK();
 1110         if (V_key_preferred_oldsa) {
 1111                 saorder_state_valid = saorder_state_valid_prefer_old;
 1112                 arraysize = _ARRAYLEN(saorder_state_valid_prefer_old);
 1113         } else {
 1114                 saorder_state_valid = saorder_state_valid_prefer_new;
 1115                 arraysize = _ARRAYLEN(saorder_state_valid_prefer_new);
 1116         }
 1117         LIST_FOREACH(sah, &V_sahtree, chain) {
 1118                 /* search valid state */
 1119                 for (stateidx = 0; stateidx < arraysize; stateidx++) {
 1120                         state = saorder_state_valid[stateidx];
 1121                         LIST_FOREACH(sav, &sah->savtree[state], chain) {
 1122                                 /* sanity check */
 1123                                 KEY_CHKSASTATE(sav->state, state, __func__);
 1124                                 /* do not return entries w/ unusable state */
 1125                                 if (sav->state != SADB_SASTATE_MATURE &&
 1126                                     sav->state != SADB_SASTATE_DYING)
 1127                                         continue;
 1128                                 if (proto != sav->sah->saidx.proto)
 1129                                         continue;
 1130                                 if (spi != sav->spi)
 1131                                         continue;
 1132 #if 0   /* don't check src */
 1133                                 /* check src address */
 1134                                 if (key_sockaddrcmp(&src->sa, &sav->sah->saidx.src.sa, chkport) != 0)
 1135                                         continue;
 1136 #endif
 1137                                 /* check dst address */
 1138                                 if (key_sockaddrcmp(&dst->sa, &sav->sah->saidx.dst.sa, chkport) != 0)
 1139                                         continue;
 1140                                 sa_addref(sav);
 1141                                 goto done;
 1142                         }
 1143                 }
 1144         }
 1145         sav = NULL;
 1146 done:
 1147         SAHTREE_UNLOCK();
 1148 
 1149         KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
 1150                 printf("DP %s return SA:%p; refcnt %u\n", __func__,
 1151                         sav, sav ? sav->refcnt : 0));
 1152         return sav;
 1153 }
 1154 
 1155 /*
 1156  * Must be called after calling key_allocsp().
 1157  * For both the packet without socket and key_freeso().
 1158  */
 1159 void
 1160 _key_freesp(struct secpolicy **spp, const char* where, int tag)
 1161 {
 1162         struct secpolicy *sp = *spp;
 1163 
 1164         IPSEC_ASSERT(sp != NULL, ("null sp"));
 1165 
 1166         SPTREE_LOCK();
 1167         SP_DELREF(sp);
 1168 
 1169         KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
 1170                 printf("DP %s SP:%p (ID=%u) from %s:%u; refcnt now %u\n",
 1171                         __func__, sp, sp->id, where, tag, sp->refcnt));
 1172 
 1173         if (sp->refcnt == 0) {
 1174                 *spp = NULL;
 1175                 key_delsp(sp);
 1176         }
 1177         SPTREE_UNLOCK();
 1178 }
 1179 
 1180 /*
 1181  * Must be called after calling key_allocsp().
 1182  * For the packet with socket.
 1183  */
 1184 void
 1185 key_freeso(struct socket *so)
 1186 {
 1187         IPSEC_ASSERT(so != NULL, ("null so"));
 1188 
 1189         switch (so->so_proto->pr_domain->dom_family) {
 1190 #if defined(INET) || defined(INET6)
 1191 #ifdef INET
 1192         case PF_INET:
 1193 #endif
 1194 #ifdef INET6
 1195         case PF_INET6:
 1196 #endif
 1197             {
 1198                 struct inpcb *pcb = sotoinpcb(so);
 1199 
 1200                 /* Does it have a PCB ? */
 1201                 if (pcb == NULL)
 1202                         return;
 1203                 key_freesp_so(&pcb->inp_sp->sp_in);
 1204                 key_freesp_so(&pcb->inp_sp->sp_out);
 1205             }
 1206                 break;
 1207 #endif /* INET || INET6 */
 1208         default:
 1209                 ipseclog((LOG_DEBUG, "%s: unknown address family=%d.\n",
 1210                     __func__, so->so_proto->pr_domain->dom_family));
 1211                 return;
 1212         }
 1213 }
 1214 
 1215 static void
 1216 key_freesp_so(struct secpolicy **sp)
 1217 {
 1218         IPSEC_ASSERT(sp != NULL && *sp != NULL, ("null sp"));
 1219 
 1220         if ((*sp)->policy == IPSEC_POLICY_ENTRUST ||
 1221             (*sp)->policy == IPSEC_POLICY_BYPASS)
 1222                 return;
 1223 
 1224         IPSEC_ASSERT((*sp)->policy == IPSEC_POLICY_IPSEC,
 1225                 ("invalid policy %u", (*sp)->policy));
 1226         KEY_FREESP(sp);
 1227 }
 1228 
 1229 void
 1230 key_addrefsa(struct secasvar *sav, const char* where, int tag)
 1231 {
 1232 
 1233         IPSEC_ASSERT(sav != NULL, ("null sav"));
 1234         IPSEC_ASSERT(sav->refcnt > 0, ("refcount must exist"));
 1235 
 1236         sa_addref(sav);
 1237 }
 1238 
 1239 /*
 1240  * Must be called after calling key_allocsa().
 1241  * This function is called by key_freesp() to free some SA allocated
 1242  * for a policy.
 1243  */
 1244 void
 1245 key_freesav(struct secasvar **psav, const char* where, int tag)
 1246 {
 1247         struct secasvar *sav = *psav;
 1248 
 1249         IPSEC_ASSERT(sav != NULL, ("null sav"));
 1250 
 1251         if (sa_delref(sav)) {
 1252                 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
 1253                         printf("DP %s SA:%p (SPI %u) from %s:%u; refcnt now %u\n",
 1254                                 __func__, sav, ntohl(sav->spi), where, tag, sav->refcnt));
 1255                 *psav = NULL;
 1256                 key_delsav(sav);
 1257         } else {
 1258                 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
 1259                         printf("DP %s SA:%p (SPI %u) from %s:%u; refcnt now %u\n",
 1260                                 __func__, sav, ntohl(sav->spi), where, tag, sav->refcnt));
 1261         }
 1262 }
 1263 
 1264 /* %%% SPD management */
 1265 /*
 1266  * free security policy entry.
 1267  */
 1268 static void
 1269 key_delsp(struct secpolicy *sp)
 1270 {
 1271         struct ipsecrequest *isr, *nextisr;
 1272 
 1273         IPSEC_ASSERT(sp != NULL, ("null sp"));
 1274         SPTREE_LOCK_ASSERT();
 1275 
 1276         sp->state = IPSEC_SPSTATE_DEAD;
 1277 
 1278         IPSEC_ASSERT(sp->refcnt == 0,
 1279                 ("SP with references deleted (refcnt %u)", sp->refcnt));
 1280 
 1281         /* remove from SP index */
 1282         if (__LIST_CHAINED(sp))
 1283                 LIST_REMOVE(sp, chain);
 1284 
 1285         for (isr = sp->req; isr != NULL; isr = nextisr) {
 1286                 if (isr->sav != NULL) {
 1287                         KEY_FREESAV(&isr->sav);
 1288                         isr->sav = NULL;
 1289                 }
 1290 
 1291                 nextisr = isr->next;
 1292                 ipsec_delisr(isr);
 1293         }
 1294         _key_delsp(sp);
 1295 }
 1296 
 1297 /*
 1298  * search SPD
 1299  * OUT: NULL    : not found
 1300  *      others  : found, pointer to a SP.
 1301  */
 1302 static struct secpolicy *
 1303 key_getsp(struct secpolicyindex *spidx)
 1304 {
 1305         struct secpolicy *sp;
 1306 
 1307         IPSEC_ASSERT(spidx != NULL, ("null spidx"));
 1308 
 1309         SPTREE_LOCK();
 1310         LIST_FOREACH(sp, &V_sptree[spidx->dir], chain) {
 1311                 if (sp->state == IPSEC_SPSTATE_DEAD)
 1312                         continue;
 1313                 if (key_cmpspidx_exactly(spidx, &sp->spidx)) {
 1314                         SP_ADDREF(sp);
 1315                         break;
 1316                 }
 1317         }
 1318         SPTREE_UNLOCK();
 1319 
 1320         return sp;
 1321 }
 1322 
 1323 /*
 1324  * get SP by index.
 1325  * OUT: NULL    : not found
 1326  *      others  : found, pointer to a SP.
 1327  */
 1328 static struct secpolicy *
 1329 key_getspbyid(u_int32_t id)
 1330 {
 1331         struct secpolicy *sp;
 1332 
 1333         SPTREE_LOCK();
 1334         LIST_FOREACH(sp, &V_sptree[IPSEC_DIR_INBOUND], chain) {
 1335                 if (sp->state == IPSEC_SPSTATE_DEAD)
 1336                         continue;
 1337                 if (sp->id == id) {
 1338                         SP_ADDREF(sp);
 1339                         goto done;
 1340                 }
 1341         }
 1342 
 1343         LIST_FOREACH(sp, &V_sptree[IPSEC_DIR_OUTBOUND], chain) {
 1344                 if (sp->state == IPSEC_SPSTATE_DEAD)
 1345                         continue;
 1346                 if (sp->id == id) {
 1347                         SP_ADDREF(sp);
 1348                         goto done;
 1349                 }
 1350         }
 1351 done:
 1352         SPTREE_UNLOCK();
 1353 
 1354         return sp;
 1355 }
 1356 
 1357 struct secpolicy *
 1358 key_newsp(const char* where, int tag)
 1359 {
 1360         struct secpolicy *newsp = NULL;
 1361 
 1362         newsp = (struct secpolicy *)
 1363                 malloc(sizeof(struct secpolicy), M_IPSEC_SP, M_NOWAIT|M_ZERO);
 1364         if (newsp) {
 1365                 SECPOLICY_LOCK_INIT(newsp);
 1366                 newsp->refcnt = 1;
 1367                 newsp->req = NULL;
 1368         }
 1369 
 1370         KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
 1371                 printf("DP %s from %s:%u return SP:%p\n", __func__,
 1372                         where, tag, newsp));
 1373         return newsp;
 1374 }
 1375 
 1376 static void
 1377 _key_delsp(struct secpolicy *sp)
 1378 {
 1379         SECPOLICY_LOCK_DESTROY(sp);
 1380         free(sp, M_IPSEC_SP);
 1381 }
 1382 
 1383 /*
 1384  * create secpolicy structure from sadb_x_policy structure.
 1385  * NOTE: `state', `secpolicyindex' in secpolicy structure are not set,
 1386  * so must be set properly later.
 1387  */
 1388 struct secpolicy *
 1389 key_msg2sp(xpl0, len, error)
 1390         struct sadb_x_policy *xpl0;
 1391         size_t len;
 1392         int *error;
 1393 {
 1394         struct secpolicy *newsp;
 1395 
 1396         IPSEC_ASSERT(xpl0 != NULL, ("null xpl0"));
 1397         IPSEC_ASSERT(len >= sizeof(*xpl0), ("policy too short: %zu", len));
 1398 
 1399         if (len != PFKEY_EXTLEN(xpl0)) {
 1400                 ipseclog((LOG_DEBUG, "%s: Invalid msg length.\n", __func__));
 1401                 *error = EINVAL;
 1402                 return NULL;
 1403         }
 1404 
 1405         if ((newsp = KEY_NEWSP()) == NULL) {
 1406                 *error = ENOBUFS;
 1407                 return NULL;
 1408         }
 1409 
 1410         newsp->spidx.dir = xpl0->sadb_x_policy_dir;
 1411         newsp->policy = xpl0->sadb_x_policy_type;
 1412 
 1413         /* check policy */
 1414         switch (xpl0->sadb_x_policy_type) {
 1415         case IPSEC_POLICY_DISCARD:
 1416         case IPSEC_POLICY_NONE:
 1417         case IPSEC_POLICY_ENTRUST:
 1418         case IPSEC_POLICY_BYPASS:
 1419                 newsp->req = NULL;
 1420                 break;
 1421 
 1422         case IPSEC_POLICY_IPSEC:
 1423             {
 1424                 int tlen;
 1425                 struct sadb_x_ipsecrequest *xisr;
 1426                 struct ipsecrequest **p_isr = &newsp->req;
 1427 
 1428                 /* validity check */
 1429                 if (PFKEY_EXTLEN(xpl0) < sizeof(*xpl0)) {
 1430                         ipseclog((LOG_DEBUG, "%s: Invalid msg length.\n",
 1431                                 __func__));
 1432                         KEY_FREESP(&newsp);
 1433                         *error = EINVAL;
 1434                         return NULL;
 1435                 }
 1436 
 1437                 tlen = PFKEY_EXTLEN(xpl0) - sizeof(*xpl0);
 1438                 xisr = (struct sadb_x_ipsecrequest *)(xpl0 + 1);
 1439 
 1440                 while (tlen > 0) {
 1441                         /* length check */
 1442                         if (xisr->sadb_x_ipsecrequest_len < sizeof(*xisr)) {
 1443                                 ipseclog((LOG_DEBUG, "%s: invalid ipsecrequest "
 1444                                         "length.\n", __func__));
 1445                                 KEY_FREESP(&newsp);
 1446                                 *error = EINVAL;
 1447                                 return NULL;
 1448                         }
 1449 
 1450                         /* allocate request buffer */
 1451                         /* NB: data structure is zero'd */
 1452                         *p_isr = ipsec_newisr();
 1453                         if ((*p_isr) == NULL) {
 1454                                 ipseclog((LOG_DEBUG,
 1455                                     "%s: No more memory.\n", __func__));
 1456                                 KEY_FREESP(&newsp);
 1457                                 *error = ENOBUFS;
 1458                                 return NULL;
 1459                         }
 1460 
 1461                         /* set values */
 1462                         switch (xisr->sadb_x_ipsecrequest_proto) {
 1463                         case IPPROTO_ESP:
 1464                         case IPPROTO_AH:
 1465                         case IPPROTO_IPCOMP:
 1466                                 break;
 1467                         default:
 1468                                 ipseclog((LOG_DEBUG,
 1469                                     "%s: invalid proto type=%u\n", __func__,
 1470                                     xisr->sadb_x_ipsecrequest_proto));
 1471                                 KEY_FREESP(&newsp);
 1472                                 *error = EPROTONOSUPPORT;
 1473                                 return NULL;
 1474                         }
 1475                         (*p_isr)->saidx.proto = xisr->sadb_x_ipsecrequest_proto;
 1476 
 1477                         switch (xisr->sadb_x_ipsecrequest_mode) {
 1478                         case IPSEC_MODE_TRANSPORT:
 1479                         case IPSEC_MODE_TUNNEL:
 1480                                 break;
 1481                         case IPSEC_MODE_ANY:
 1482                         default:
 1483                                 ipseclog((LOG_DEBUG,
 1484                                     "%s: invalid mode=%u\n", __func__,
 1485                                     xisr->sadb_x_ipsecrequest_mode));
 1486                                 KEY_FREESP(&newsp);
 1487                                 *error = EINVAL;
 1488                                 return NULL;
 1489                         }
 1490                         (*p_isr)->saidx.mode = xisr->sadb_x_ipsecrequest_mode;
 1491 
 1492                         switch (xisr->sadb_x_ipsecrequest_level) {
 1493                         case IPSEC_LEVEL_DEFAULT:
 1494                         case IPSEC_LEVEL_USE:
 1495                         case IPSEC_LEVEL_REQUIRE:
 1496                                 break;
 1497                         case IPSEC_LEVEL_UNIQUE:
 1498                                 /* validity check */
 1499                                 /*
 1500                                  * If range violation of reqid, kernel will
 1501                                  * update it, don't refuse it.
 1502                                  */
 1503                                 if (xisr->sadb_x_ipsecrequest_reqid
 1504                                                 > IPSEC_MANUAL_REQID_MAX) {
 1505                                         ipseclog((LOG_DEBUG,
 1506                                             "%s: reqid=%d range "
 1507                                             "violation, updated by kernel.\n",
 1508                                             __func__,
 1509                                             xisr->sadb_x_ipsecrequest_reqid));
 1510                                         xisr->sadb_x_ipsecrequest_reqid = 0;
 1511                                 }
 1512 
 1513                                 /* allocate new reqid id if reqid is zero. */
 1514                                 if (xisr->sadb_x_ipsecrequest_reqid == 0) {
 1515                                         u_int32_t reqid;
 1516                                         if ((reqid = key_newreqid()) == 0) {
 1517                                                 KEY_FREESP(&newsp);
 1518                                                 *error = ENOBUFS;
 1519                                                 return NULL;
 1520                                         }
 1521                                         (*p_isr)->saidx.reqid = reqid;
 1522                                         xisr->sadb_x_ipsecrequest_reqid = reqid;
 1523                                 } else {
 1524                                 /* set it for manual keying. */
 1525                                         (*p_isr)->saidx.reqid =
 1526                                                 xisr->sadb_x_ipsecrequest_reqid;
 1527                                 }
 1528                                 break;
 1529 
 1530                         default:
 1531                                 ipseclog((LOG_DEBUG, "%s: invalid level=%u\n",
 1532                                         __func__,
 1533                                         xisr->sadb_x_ipsecrequest_level));
 1534                                 KEY_FREESP(&newsp);
 1535                                 *error = EINVAL;
 1536                                 return NULL;
 1537                         }
 1538                         (*p_isr)->level = xisr->sadb_x_ipsecrequest_level;
 1539 
 1540                         /* set IP addresses if there */
 1541                         if (xisr->sadb_x_ipsecrequest_len > sizeof(*xisr)) {
 1542                                 struct sockaddr *paddr;
 1543 
 1544                                 paddr = (struct sockaddr *)(xisr + 1);
 1545 
 1546                                 /* validity check */
 1547                                 if (paddr->sa_len
 1548                                     > sizeof((*p_isr)->saidx.src)) {
 1549                                         ipseclog((LOG_DEBUG, "%s: invalid "
 1550                                                 "request address length.\n",
 1551                                                 __func__));
 1552                                         KEY_FREESP(&newsp);
 1553                                         *error = EINVAL;
 1554                                         return NULL;
 1555                                 }
 1556                                 bcopy(paddr, &(*p_isr)->saidx.src,
 1557                                         paddr->sa_len);
 1558 
 1559                                 paddr = (struct sockaddr *)((caddr_t)paddr
 1560                                                         + paddr->sa_len);
 1561 
 1562                                 /* validity check */
 1563                                 if (paddr->sa_len
 1564                                     > sizeof((*p_isr)->saidx.dst)) {
 1565                                         ipseclog((LOG_DEBUG, "%s: invalid "
 1566                                                 "request address length.\n",
 1567                                                 __func__));
 1568                                         KEY_FREESP(&newsp);
 1569                                         *error = EINVAL;
 1570                                         return NULL;
 1571                                 }
 1572                                 bcopy(paddr, &(*p_isr)->saidx.dst,
 1573                                         paddr->sa_len);
 1574                         }
 1575 
 1576                         (*p_isr)->sp = newsp;
 1577 
 1578                         /* initialization for the next. */
 1579                         p_isr = &(*p_isr)->next;
 1580                         tlen -= xisr->sadb_x_ipsecrequest_len;
 1581 
 1582                         /* validity check */
 1583                         if (tlen < 0) {
 1584                                 ipseclog((LOG_DEBUG, "%s: becoming tlen < 0.\n",
 1585                                         __func__));
 1586                                 KEY_FREESP(&newsp);
 1587                                 *error = EINVAL;
 1588                                 return NULL;
 1589                         }
 1590 
 1591                         xisr = (struct sadb_x_ipsecrequest *)((caddr_t)xisr
 1592                                          + xisr->sadb_x_ipsecrequest_len);
 1593                 }
 1594             }
 1595                 break;
 1596         default:
 1597                 ipseclog((LOG_DEBUG, "%s: invalid policy type.\n", __func__));
 1598                 KEY_FREESP(&newsp);
 1599                 *error = EINVAL;
 1600                 return NULL;
 1601         }
 1602 
 1603         *error = 0;
 1604         return newsp;
 1605 }
 1606 
 1607 static u_int32_t
 1608 key_newreqid()
 1609 {
 1610         static u_int32_t auto_reqid = IPSEC_MANUAL_REQID_MAX + 1;
 1611 
 1612         auto_reqid = (auto_reqid == ~0
 1613                         ? IPSEC_MANUAL_REQID_MAX + 1 : auto_reqid + 1);
 1614 
 1615         /* XXX should be unique check */
 1616 
 1617         return auto_reqid;
 1618 }
 1619 
 1620 /*
 1621  * copy secpolicy struct to sadb_x_policy structure indicated.
 1622  */
 1623 struct mbuf *
 1624 key_sp2msg(sp)
 1625         struct secpolicy *sp;
 1626 {
 1627         struct sadb_x_policy *xpl;
 1628         int tlen;
 1629         caddr_t p;
 1630         struct mbuf *m;
 1631 
 1632         IPSEC_ASSERT(sp != NULL, ("null policy"));
 1633 
 1634         tlen = key_getspreqmsglen(sp);
 1635 
 1636         m = m_get2(tlen, M_NOWAIT, MT_DATA, 0);
 1637         if (m == NULL)
 1638                 return (NULL);
 1639         m_align(m, tlen);
 1640         m->m_len = tlen;
 1641         xpl = mtod(m, struct sadb_x_policy *);
 1642         bzero(xpl, tlen);
 1643 
 1644         xpl->sadb_x_policy_len = PFKEY_UNIT64(tlen);
 1645         xpl->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
 1646         xpl->sadb_x_policy_type = sp->policy;
 1647         xpl->sadb_x_policy_dir = sp->spidx.dir;
 1648         xpl->sadb_x_policy_id = sp->id;
 1649         p = (caddr_t)xpl + sizeof(*xpl);
 1650 
 1651         /* if is the policy for ipsec ? */
 1652         if (sp->policy == IPSEC_POLICY_IPSEC) {
 1653                 struct sadb_x_ipsecrequest *xisr;
 1654                 struct ipsecrequest *isr;
 1655 
 1656                 for (isr = sp->req; isr != NULL; isr = isr->next) {
 1657 
 1658                         xisr = (struct sadb_x_ipsecrequest *)p;
 1659 
 1660                         xisr->sadb_x_ipsecrequest_proto = isr->saidx.proto;
 1661                         xisr->sadb_x_ipsecrequest_mode = isr->saidx.mode;
 1662                         xisr->sadb_x_ipsecrequest_level = isr->level;
 1663                         xisr->sadb_x_ipsecrequest_reqid = isr->saidx.reqid;
 1664 
 1665                         p += sizeof(*xisr);
 1666                         bcopy(&isr->saidx.src, p, isr->saidx.src.sa.sa_len);
 1667                         p += isr->saidx.src.sa.sa_len;
 1668                         bcopy(&isr->saidx.dst, p, isr->saidx.dst.sa.sa_len);
 1669                         p += isr->saidx.src.sa.sa_len;
 1670 
 1671                         xisr->sadb_x_ipsecrequest_len =
 1672                                 PFKEY_ALIGN8(sizeof(*xisr)
 1673                                         + isr->saidx.src.sa.sa_len
 1674                                         + isr->saidx.dst.sa.sa_len);
 1675                 }
 1676         }
 1677 
 1678         return m;
 1679 }
 1680 
 1681 /* m will not be freed nor modified */
 1682 static struct mbuf *
 1683 #ifdef __STDC__
 1684 key_gather_mbuf(struct mbuf *m, const struct sadb_msghdr *mhp,
 1685         int ndeep, int nitem, ...)
 1686 #else
 1687 key_gather_mbuf(m, mhp, ndeep, nitem, va_alist)
 1688         struct mbuf *m;
 1689         const struct sadb_msghdr *mhp;
 1690         int ndeep;
 1691         int nitem;
 1692         va_dcl
 1693 #endif
 1694 {
 1695         va_list ap;
 1696         int idx;
 1697         int i;
 1698         struct mbuf *result = NULL, *n;
 1699         int len;
 1700 
 1701         IPSEC_ASSERT(m != NULL, ("null mbuf"));
 1702         IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
 1703 
 1704         va_start(ap, nitem);
 1705         for (i = 0; i < nitem; i++) {
 1706                 idx = va_arg(ap, int);
 1707                 if (idx < 0 || idx > SADB_EXT_MAX)
 1708                         goto fail;
 1709                 /* don't attempt to pull empty extension */
 1710                 if (idx == SADB_EXT_RESERVED && mhp->msg == NULL)
 1711                         continue;
 1712                 if (idx != SADB_EXT_RESERVED  &&
 1713                     (mhp->ext[idx] == NULL || mhp->extlen[idx] == 0))
 1714                         continue;
 1715 
 1716                 if (idx == SADB_EXT_RESERVED) {
 1717                         len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
 1718 
 1719                         IPSEC_ASSERT(len <= MHLEN, ("header too big %u", len));
 1720 
 1721                         MGETHDR(n, M_NOWAIT, MT_DATA);
 1722                         if (!n)
 1723                                 goto fail;
 1724                         n->m_len = len;
 1725                         n->m_next = NULL;
 1726                         m_copydata(m, 0, sizeof(struct sadb_msg),
 1727                             mtod(n, caddr_t));
 1728                 } else if (i < ndeep) {
 1729                         len = mhp->extlen[idx];
 1730                         n = m_get2(len, M_NOWAIT, MT_DATA, 0);
 1731                         if (n == NULL)
 1732                                 goto fail;
 1733                         m_align(n, len);
 1734                         n->m_len = len;
 1735                         m_copydata(m, mhp->extoff[idx], mhp->extlen[idx],
 1736                             mtod(n, caddr_t));
 1737                 } else {
 1738                         n = m_copym(m, mhp->extoff[idx], mhp->extlen[idx],
 1739                             M_NOWAIT);
 1740                 }
 1741                 if (n == NULL)
 1742                         goto fail;
 1743 
 1744                 if (result)
 1745                         m_cat(result, n);
 1746                 else
 1747                         result = n;
 1748         }
 1749         va_end(ap);
 1750 
 1751         if ((result->m_flags & M_PKTHDR) != 0) {
 1752                 result->m_pkthdr.len = 0;
 1753                 for (n = result; n; n = n->m_next)
 1754                         result->m_pkthdr.len += n->m_len;
 1755         }
 1756 
 1757         return result;
 1758 
 1759 fail:
 1760         m_freem(result);
 1761         va_end(ap);
 1762         return NULL;
 1763 }
 1764 
 1765 /*
 1766  * SADB_X_SPDADD, SADB_X_SPDSETIDX or SADB_X_SPDUPDATE processing
 1767  * add an entry to SP database, when received
 1768  *   <base, address(SD), (lifetime(H),) policy>
 1769  * from the user(?).
 1770  * Adding to SP database,
 1771  * and send
 1772  *   <base, address(SD), (lifetime(H),) policy>
 1773  * to the socket which was send.
 1774  *
 1775  * SPDADD set a unique policy entry.
 1776  * SPDSETIDX like SPDADD without a part of policy requests.
 1777  * SPDUPDATE replace a unique policy entry.
 1778  *
 1779  * m will always be freed.
 1780  */
 1781 static int
 1782 key_spdadd(so, m, mhp)
 1783         struct socket *so;
 1784         struct mbuf *m;
 1785         const struct sadb_msghdr *mhp;
 1786 {
 1787         struct sadb_address *src0, *dst0;
 1788         struct sadb_x_policy *xpl0, *xpl;
 1789         struct sadb_lifetime *lft = NULL;
 1790         struct secpolicyindex spidx;
 1791         struct secpolicy *newsp;
 1792         int error;
 1793 
 1794         IPSEC_ASSERT(so != NULL, ("null socket"));
 1795         IPSEC_ASSERT(m != NULL, ("null mbuf"));
 1796         IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
 1797         IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
 1798 
 1799         if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
 1800             mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
 1801             mhp->ext[SADB_X_EXT_POLICY] == NULL) {
 1802                 ipseclog((LOG_DEBUG, "key_spdadd: invalid message is passed.\n"));
 1803                 return key_senderror(so, m, EINVAL);
 1804         }
 1805         if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
 1806             mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
 1807             mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
 1808                 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
 1809                         __func__));
 1810                 return key_senderror(so, m, EINVAL);
 1811         }
 1812         if (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL) {
 1813                 if (mhp->extlen[SADB_EXT_LIFETIME_HARD]
 1814                         < sizeof(struct sadb_lifetime)) {
 1815                         ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
 1816                                 __func__));
 1817                         return key_senderror(so, m, EINVAL);
 1818                 }
 1819                 lft = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD];
 1820         }
 1821 
 1822         src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
 1823         dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
 1824         xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY];
 1825 
 1826         /* 
 1827          * Note: do not parse SADB_X_EXT_NAT_T_* here:
 1828          * we are processing traffic endpoints.
 1829          */
 1830 
 1831         /* make secindex */
 1832         /* XXX boundary check against sa_len */
 1833         KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir,
 1834                         src0 + 1,
 1835                         dst0 + 1,
 1836                         src0->sadb_address_prefixlen,
 1837                         dst0->sadb_address_prefixlen,
 1838                         src0->sadb_address_proto,
 1839                         &spidx);
 1840 
 1841         /* checking the direciton. */
 1842         switch (xpl0->sadb_x_policy_dir) {
 1843         case IPSEC_DIR_INBOUND:
 1844         case IPSEC_DIR_OUTBOUND:
 1845                 break;
 1846         default:
 1847                 ipseclog((LOG_DEBUG, "%s: Invalid SP direction.\n", __func__));
 1848                 mhp->msg->sadb_msg_errno = EINVAL;
 1849                 return 0;
 1850         }
 1851 
 1852         /* check policy */
 1853         /* key_spdadd() accepts DISCARD, NONE and IPSEC. */
 1854         if (xpl0->sadb_x_policy_type == IPSEC_POLICY_ENTRUST
 1855          || xpl0->sadb_x_policy_type == IPSEC_POLICY_BYPASS) {
 1856                 ipseclog((LOG_DEBUG, "%s: Invalid policy type.\n", __func__));
 1857                 return key_senderror(so, m, EINVAL);
 1858         }
 1859 
 1860         /* policy requests are mandatory when action is ipsec. */
 1861         if (mhp->msg->sadb_msg_type != SADB_X_SPDSETIDX
 1862          && xpl0->sadb_x_policy_type == IPSEC_POLICY_IPSEC
 1863          && mhp->extlen[SADB_X_EXT_POLICY] <= sizeof(*xpl0)) {
 1864                 ipseclog((LOG_DEBUG, "%s: some policy requests part required\n",
 1865                         __func__));
 1866                 return key_senderror(so, m, EINVAL);
 1867         }
 1868 
 1869         /*
 1870          * checking there is SP already or not.
 1871          * SPDUPDATE doesn't depend on whether there is a SP or not.
 1872          * If the type is either SPDADD or SPDSETIDX AND a SP is found,
 1873          * then error.
 1874          */
 1875         newsp = key_getsp(&spidx);
 1876         if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) {
 1877                 if (newsp) {
 1878                         SPTREE_LOCK();
 1879                         newsp->state = IPSEC_SPSTATE_DEAD;
 1880                         SPTREE_UNLOCK();
 1881                         KEY_FREESP(&newsp);
 1882                 }
 1883         } else {
 1884                 if (newsp != NULL) {
 1885                         KEY_FREESP(&newsp);
 1886                         ipseclog((LOG_DEBUG, "%s: a SP entry exists already.\n",
 1887                                 __func__));
 1888                         return key_senderror(so, m, EEXIST);
 1889                 }
 1890         }
 1891 
 1892         /* allocation new SP entry */
 1893         if ((newsp = key_msg2sp(xpl0, PFKEY_EXTLEN(xpl0), &error)) == NULL) {
 1894                 return key_senderror(so, m, error);
 1895         }
 1896 
 1897         if ((newsp->id = key_getnewspid()) == 0) {
 1898                 _key_delsp(newsp);
 1899                 return key_senderror(so, m, ENOBUFS);
 1900         }
 1901 
 1902         /* XXX boundary check against sa_len */
 1903         KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir,
 1904                         src0 + 1,
 1905                         dst0 + 1,
 1906                         src0->sadb_address_prefixlen,
 1907                         dst0->sadb_address_prefixlen,
 1908                         src0->sadb_address_proto,
 1909                         &newsp->spidx);
 1910 
 1911         /* sanity check on addr pair */
 1912         if (((struct sockaddr *)(src0 + 1))->sa_family !=
 1913                         ((struct sockaddr *)(dst0+ 1))->sa_family) {
 1914                 _key_delsp(newsp);
 1915                 return key_senderror(so, m, EINVAL);
 1916         }
 1917         if (((struct sockaddr *)(src0 + 1))->sa_len !=
 1918                         ((struct sockaddr *)(dst0+ 1))->sa_len) {
 1919                 _key_delsp(newsp);
 1920                 return key_senderror(so, m, EINVAL);
 1921         }
 1922 #if 1
 1923         if (newsp->req && newsp->req->saidx.src.sa.sa_family && newsp->req->saidx.dst.sa.sa_family) {
 1924                 if (newsp->req->saidx.src.sa.sa_family != newsp->req->saidx.dst.sa.sa_family) {
 1925                         _key_delsp(newsp);
 1926                         return key_senderror(so, m, EINVAL);
 1927                 }
 1928         }
 1929 #endif
 1930 
 1931         newsp->created = time_second;
 1932         newsp->lastused = newsp->created;
 1933         newsp->lifetime = lft ? lft->sadb_lifetime_addtime : 0;
 1934         newsp->validtime = lft ? lft->sadb_lifetime_usetime : 0;
 1935 
 1936         newsp->refcnt = 1;      /* do not reclaim until I say I do */
 1937         newsp->state = IPSEC_SPSTATE_ALIVE;
 1938         LIST_INSERT_TAIL(&V_sptree[newsp->spidx.dir], newsp, secpolicy, chain);
 1939 
 1940         /* delete the entry in spacqtree */
 1941         if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) {
 1942                 struct secspacq *spacq = key_getspacq(&spidx);
 1943                 if (spacq != NULL) {
 1944                         /* reset counter in order to deletion by timehandler. */
 1945                         spacq->created = time_second;
 1946                         spacq->count = 0;
 1947                         SPACQ_UNLOCK();
 1948                 }
 1949         }
 1950 
 1951     {
 1952         struct mbuf *n, *mpolicy;
 1953         struct sadb_msg *newmsg;
 1954         int off;
 1955 
 1956         /*
 1957          * Note: do not send SADB_X_EXT_NAT_T_* here:
 1958          * we are sending traffic endpoints.
 1959          */
 1960 
 1961         /* create new sadb_msg to reply. */
 1962         if (lft) {
 1963                 n = key_gather_mbuf(m, mhp, 2, 5, SADB_EXT_RESERVED,
 1964                     SADB_X_EXT_POLICY, SADB_EXT_LIFETIME_HARD,
 1965                     SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
 1966         } else {
 1967                 n = key_gather_mbuf(m, mhp, 2, 4, SADB_EXT_RESERVED,
 1968                     SADB_X_EXT_POLICY,
 1969                     SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
 1970         }
 1971         if (!n)
 1972                 return key_senderror(so, m, ENOBUFS);
 1973 
 1974         if (n->m_len < sizeof(*newmsg)) {
 1975                 n = m_pullup(n, sizeof(*newmsg));
 1976                 if (!n)
 1977                         return key_senderror(so, m, ENOBUFS);
 1978         }
 1979         newmsg = mtod(n, struct sadb_msg *);
 1980         newmsg->sadb_msg_errno = 0;
 1981         newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
 1982 
 1983         off = 0;
 1984         mpolicy = m_pulldown(n, PFKEY_ALIGN8(sizeof(struct sadb_msg)),
 1985             sizeof(*xpl), &off);
 1986         if (mpolicy == NULL) {
 1987                 /* n is already freed */
 1988                 return key_senderror(so, m, ENOBUFS);
 1989         }
 1990         xpl = (struct sadb_x_policy *)(mtod(mpolicy, caddr_t) + off);
 1991         if (xpl->sadb_x_policy_exttype != SADB_X_EXT_POLICY) {
 1992                 m_freem(n);
 1993                 return key_senderror(so, m, EINVAL);
 1994         }
 1995         xpl->sadb_x_policy_id = newsp->id;
 1996 
 1997         m_freem(m);
 1998         return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
 1999     }
 2000 }
 2001 
 2002 /*
 2003  * get new policy id.
 2004  * OUT:
 2005  *      0:      failure.
 2006  *      others: success.
 2007  */
 2008 static u_int32_t
 2009 key_getnewspid()
 2010 {
 2011         u_int32_t newid = 0;
 2012         int count = V_key_spi_trycnt;   /* XXX */
 2013         struct secpolicy *sp;
 2014 
 2015         /* when requesting to allocate spi ranged */
 2016         while (count--) {
 2017                 newid = (V_policy_id = (V_policy_id == ~0 ? 1 : V_policy_id + 1));
 2018 
 2019                 if ((sp = key_getspbyid(newid)) == NULL)
 2020                         break;
 2021 
 2022                 KEY_FREESP(&sp);
 2023         }
 2024 
 2025         if (count == 0 || newid == 0) {
 2026                 ipseclog((LOG_DEBUG, "%s: to allocate policy id is failed.\n",
 2027                         __func__));
 2028                 return 0;
 2029         }
 2030 
 2031         return newid;
 2032 }
 2033 
 2034 /*
 2035  * SADB_SPDDELETE processing
 2036  * receive
 2037  *   <base, address(SD), policy(*)>
 2038  * from the user(?), and set SADB_SASTATE_DEAD,
 2039  * and send,
 2040  *   <base, address(SD), policy(*)>
 2041  * to the ikmpd.
 2042  * policy(*) including direction of policy.
 2043  *
 2044  * m will always be freed.
 2045  */
 2046 static int
 2047 key_spddelete(so, m, mhp)
 2048         struct socket *so;
 2049         struct mbuf *m;
 2050         const struct sadb_msghdr *mhp;
 2051 {
 2052         struct sadb_address *src0, *dst0;
 2053         struct sadb_x_policy *xpl0;
 2054         struct secpolicyindex spidx;
 2055         struct secpolicy *sp;
 2056 
 2057         IPSEC_ASSERT(so != NULL, ("null so"));
 2058         IPSEC_ASSERT(m != NULL, ("null mbuf"));
 2059         IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
 2060         IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
 2061 
 2062         if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
 2063             mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
 2064             mhp->ext[SADB_X_EXT_POLICY] == NULL) {
 2065                 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
 2066                         __func__));
 2067                 return key_senderror(so, m, EINVAL);
 2068         }
 2069         if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
 2070             mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
 2071             mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
 2072                 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
 2073                         __func__));
 2074                 return key_senderror(so, m, EINVAL);
 2075         }
 2076 
 2077         src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
 2078         dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
 2079         xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY];
 2080 
 2081         /*
 2082          * Note: do not parse SADB_X_EXT_NAT_T_* here:
 2083          * we are processing traffic endpoints.
 2084          */
 2085 
 2086         /* make secindex */
 2087         /* XXX boundary check against sa_len */
 2088         KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir,
 2089                         src0 + 1,
 2090                         dst0 + 1,
 2091                         src0->sadb_address_prefixlen,
 2092                         dst0->sadb_address_prefixlen,
 2093                         src0->sadb_address_proto,
 2094                         &spidx);
 2095 
 2096         /* checking the direciton. */
 2097         switch (xpl0->sadb_x_policy_dir) {
 2098         case IPSEC_DIR_INBOUND:
 2099         case IPSEC_DIR_OUTBOUND:
 2100                 break;
 2101         default:
 2102                 ipseclog((LOG_DEBUG, "%s: Invalid SP direction.\n", __func__));
 2103                 return key_senderror(so, m, EINVAL);
 2104         }
 2105 
 2106         /* Is there SP in SPD ? */
 2107         if ((sp = key_getsp(&spidx)) == NULL) {
 2108                 ipseclog((LOG_DEBUG, "%s: no SP found.\n", __func__));
 2109                 return key_senderror(so, m, EINVAL);
 2110         }
 2111 
 2112         /* save policy id to buffer to be returned. */
 2113         xpl0->sadb_x_policy_id = sp->id;
 2114 
 2115         SPTREE_LOCK();
 2116         sp->state = IPSEC_SPSTATE_DEAD;
 2117         SPTREE_UNLOCK();
 2118         KEY_FREESP(&sp);
 2119 
 2120     {
 2121         struct mbuf *n;
 2122         struct sadb_msg *newmsg;
 2123 
 2124         /*
 2125          * Note: do not send SADB_X_EXT_NAT_T_* here:
 2126          * we are sending traffic endpoints.
 2127          */
 2128 
 2129         /* create new sadb_msg to reply. */
 2130         n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED,
 2131             SADB_X_EXT_POLICY, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
 2132         if (!n)
 2133                 return key_senderror(so, m, ENOBUFS);
 2134 
 2135         newmsg = mtod(n, struct sadb_msg *);
 2136         newmsg->sadb_msg_errno = 0;
 2137         newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
 2138 
 2139         m_freem(m);
 2140         return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
 2141     }
 2142 }
 2143 
 2144 /*
 2145  * SADB_SPDDELETE2 processing
 2146  * receive
 2147  *   <base, policy(*)>
 2148  * from the user(?), and set SADB_SASTATE_DEAD,
 2149  * and send,
 2150  *   <base, policy(*)>
 2151  * to the ikmpd.
 2152  * policy(*) including direction of policy.
 2153  *
 2154  * m will always be freed.
 2155  */
 2156 static int
 2157 key_spddelete2(so, m, mhp)
 2158         struct socket *so;
 2159         struct mbuf *m;
 2160         const struct sadb_msghdr *mhp;
 2161 {
 2162         u_int32_t id;
 2163         struct secpolicy *sp;
 2164 
 2165         IPSEC_ASSERT(so != NULL, ("null socket"));
 2166         IPSEC_ASSERT(m != NULL, ("null mbuf"));
 2167         IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
 2168         IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
 2169 
 2170         if (mhp->ext[SADB_X_EXT_POLICY] == NULL ||
 2171             mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
 2172                 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", __func__));
 2173                 return key_senderror(so, m, EINVAL);
 2174         }
 2175 
 2176         id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id;
 2177 
 2178         /* Is there SP in SPD ? */
 2179         if ((sp = key_getspbyid(id)) == NULL) {
 2180                 ipseclog((LOG_DEBUG, "%s: no SP found id:%u.\n", __func__, id));
 2181                 return key_senderror(so, m, EINVAL);
 2182         }
 2183 
 2184         SPTREE_LOCK();
 2185         sp->state = IPSEC_SPSTATE_DEAD;
 2186         SPTREE_UNLOCK();
 2187         KEY_FREESP(&sp);
 2188 
 2189     {
 2190         struct mbuf *n, *nn;
 2191         struct sadb_msg *newmsg;
 2192         int off, len;
 2193 
 2194         /* create new sadb_msg to reply. */
 2195         len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
 2196 
 2197         MGETHDR(n, M_NOWAIT, MT_DATA);
 2198         if (n && len > MHLEN) {
 2199                 MCLGET(n, M_NOWAIT);
 2200                 if ((n->m_flags & M_EXT) == 0) {
 2201                         m_freem(n);
 2202                         n = NULL;
 2203                 }
 2204         }
 2205         if (!n)
 2206                 return key_senderror(so, m, ENOBUFS);
 2207 
 2208         n->m_len = len;
 2209         n->m_next = NULL;
 2210         off = 0;
 2211 
 2212         m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off);
 2213         off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
 2214 
 2215         IPSEC_ASSERT(off == len, ("length inconsistency (off %u len %u)",
 2216                 off, len));
 2217 
 2218         n->m_next = m_copym(m, mhp->extoff[SADB_X_EXT_POLICY],
 2219             mhp->extlen[SADB_X_EXT_POLICY], M_NOWAIT);
 2220         if (!n->m_next) {
 2221                 m_freem(n);
 2222                 return key_senderror(so, m, ENOBUFS);
 2223         }
 2224 
 2225         n->m_pkthdr.len = 0;
 2226         for (nn = n; nn; nn = nn->m_next)
 2227                 n->m_pkthdr.len += nn->m_len;
 2228 
 2229         newmsg = mtod(n, struct sadb_msg *);
 2230         newmsg->sadb_msg_errno = 0;
 2231         newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
 2232 
 2233         m_freem(m);
 2234         return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
 2235     }
 2236 }
 2237 
 2238 /*
 2239  * SADB_X_GET processing
 2240  * receive
 2241  *   <base, policy(*)>
 2242  * from the user(?),
 2243  * and send,
 2244  *   <base, address(SD), policy>
 2245  * to the ikmpd.
 2246  * policy(*) including direction of policy.
 2247  *
 2248  * m will always be freed.
 2249  */
 2250 static int
 2251 key_spdget(so, m, mhp)
 2252         struct socket *so;
 2253         struct mbuf *m;
 2254         const struct sadb_msghdr *mhp;
 2255 {
 2256         u_int32_t id;
 2257         struct secpolicy *sp;
 2258         struct mbuf *n;
 2259 
 2260         IPSEC_ASSERT(so != NULL, ("null socket"));
 2261         IPSEC_ASSERT(m != NULL, ("null mbuf"));
 2262         IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
 2263         IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
 2264 
 2265         if (mhp->ext[SADB_X_EXT_POLICY] == NULL ||
 2266             mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
 2267                 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
 2268                         __func__));
 2269                 return key_senderror(so, m, EINVAL);
 2270         }
 2271 
 2272         id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id;
 2273 
 2274         /* Is there SP in SPD ? */
 2275         if ((sp = key_getspbyid(id)) == NULL) {
 2276                 ipseclog((LOG_DEBUG, "%s: no SP found id:%u.\n", __func__, id));
 2277                 return key_senderror(so, m, ENOENT);
 2278         }
 2279 
 2280         n = key_setdumpsp(sp, SADB_X_SPDGET, 0, mhp->msg->sadb_msg_pid);
 2281         KEY_FREESP(&sp);
 2282         if (n != NULL) {
 2283                 m_freem(m);
 2284                 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
 2285         } else
 2286                 return key_senderror(so, m, ENOBUFS);
 2287 }
 2288 
 2289 /*
 2290  * SADB_X_SPDACQUIRE processing.
 2291  * Acquire policy and SA(s) for a *OUTBOUND* packet.
 2292  * send
 2293  *   <base, policy(*)>
 2294  * to KMD, and expect to receive
 2295  *   <base> with SADB_X_SPDACQUIRE if error occured,
 2296  * or
 2297  *   <base, policy>
 2298  * with SADB_X_SPDUPDATE from KMD by PF_KEY.
 2299  * policy(*) is without policy requests.
 2300  *
 2301  *    0     : succeed
 2302  *    others: error number
 2303  */
 2304 int
 2305 key_spdacquire(sp)
 2306         struct secpolicy *sp;
 2307 {
 2308         struct mbuf *result = NULL, *m;
 2309         struct secspacq *newspacq;
 2310 
 2311         IPSEC_ASSERT(sp != NULL, ("null secpolicy"));
 2312         IPSEC_ASSERT(sp->req == NULL, ("policy exists"));
 2313         IPSEC_ASSERT(sp->policy == IPSEC_POLICY_IPSEC,
 2314                 ("policy not IPSEC %u", sp->policy));
 2315 
 2316         /* Get an entry to check whether sent message or not. */
 2317         newspacq = key_getspacq(&sp->spidx);
 2318         if (newspacq != NULL) {
 2319                 if (V_key_blockacq_count < newspacq->count) {
 2320                         /* reset counter and do send message. */
 2321                         newspacq->count = 0;
 2322                 } else {
 2323                         /* increment counter and do nothing. */
 2324                         newspacq->count++;
 2325                         return 0;
 2326                 }
 2327                 SPACQ_UNLOCK();
 2328         } else {
 2329                 /* make new entry for blocking to send SADB_ACQUIRE. */
 2330                 newspacq = key_newspacq(&sp->spidx);
 2331                 if (newspacq == NULL)
 2332                         return ENOBUFS;
 2333         }
 2334 
 2335         /* create new sadb_msg to reply. */
 2336         m = key_setsadbmsg(SADB_X_SPDACQUIRE, 0, 0, 0, 0, 0);
 2337         if (!m)
 2338                 return ENOBUFS;
 2339 
 2340         result = m;
 2341 
 2342         result->m_pkthdr.len = 0;
 2343         for (m = result; m; m = m->m_next)
 2344                 result->m_pkthdr.len += m->m_len;
 2345 
 2346         mtod(result, struct sadb_msg *)->sadb_msg_len =
 2347             PFKEY_UNIT64(result->m_pkthdr.len);
 2348 
 2349         return key_sendup_mbuf(NULL, m, KEY_SENDUP_REGISTERED);
 2350 }
 2351 
 2352 /*
 2353  * SADB_SPDFLUSH processing
 2354  * receive
 2355  *   <base>
 2356  * from the user, and free all entries in secpctree.
 2357  * and send,
 2358  *   <base>
 2359  * to the user.
 2360  * NOTE: what to do is only marking SADB_SASTATE_DEAD.
 2361  *
 2362  * m will always be freed.
 2363  */
 2364 static int
 2365 key_spdflush(so, m, mhp)
 2366         struct socket *so;
 2367         struct mbuf *m;
 2368         const struct sadb_msghdr *mhp;
 2369 {
 2370         struct sadb_msg *newmsg;
 2371         struct secpolicy *sp;
 2372         u_int dir;
 2373 
 2374         IPSEC_ASSERT(so != NULL, ("null socket"));
 2375         IPSEC_ASSERT(m != NULL, ("null mbuf"));
 2376         IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
 2377         IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
 2378 
 2379         if (m->m_len != PFKEY_ALIGN8(sizeof(struct sadb_msg)))
 2380                 return key_senderror(so, m, EINVAL);
 2381 
 2382         for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
 2383                 SPTREE_LOCK();
 2384                 LIST_FOREACH(sp, &V_sptree[dir], chain)
 2385                         sp->state = IPSEC_SPSTATE_DEAD;
 2386                 SPTREE_UNLOCK();
 2387         }
 2388 
 2389         if (sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) {
 2390                 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
 2391                 return key_senderror(so, m, ENOBUFS);
 2392         }
 2393 
 2394         if (m->m_next)
 2395                 m_freem(m->m_next);
 2396         m->m_next = NULL;
 2397         m->m_pkthdr.len = m->m_len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
 2398         newmsg = mtod(m, struct sadb_msg *);
 2399         newmsg->sadb_msg_errno = 0;
 2400         newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len);
 2401 
 2402         return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
 2403 }
 2404 
 2405 /*
 2406  * SADB_SPDDUMP processing
 2407  * receive
 2408  *   <base>
 2409  * from the user, and dump all SP leaves
 2410  * and send,
 2411  *   <base> .....
 2412  * to the ikmpd.
 2413  *
 2414  * m will always be freed.
 2415  */
 2416 static int
 2417 key_spddump(so, m, mhp)
 2418         struct socket *so;
 2419         struct mbuf *m;
 2420         const struct sadb_msghdr *mhp;
 2421 {
 2422         struct secpolicy *sp;
 2423         int cnt;
 2424         u_int dir;
 2425         struct mbuf *n;
 2426 
 2427         IPSEC_ASSERT(so != NULL, ("null socket"));
 2428         IPSEC_ASSERT(m != NULL, ("null mbuf"));
 2429         IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
 2430         IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
 2431 
 2432         /* search SPD entry and get buffer size. */
 2433         cnt = 0;
 2434         SPTREE_LOCK();
 2435         for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
 2436                 LIST_FOREACH(sp, &V_sptree[dir], chain) {
 2437                         cnt++;
 2438                 }
 2439         }
 2440 
 2441         if (cnt == 0) {
 2442                 SPTREE_UNLOCK();
 2443                 return key_senderror(so, m, ENOENT);
 2444         }
 2445 
 2446         for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
 2447                 LIST_FOREACH(sp, &V_sptree[dir], chain) {
 2448                         --cnt;
 2449                         n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt,
 2450                             mhp->msg->sadb_msg_pid);
 2451 
 2452                         if (n)
 2453                                 key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
 2454                 }
 2455         }
 2456 
 2457         SPTREE_UNLOCK();
 2458         m_freem(m);
 2459         return 0;
 2460 }
 2461 
 2462 static struct mbuf *
 2463 key_setdumpsp(struct secpolicy *sp, u_int8_t type, u_int32_t seq, u_int32_t pid)
 2464 {
 2465         struct mbuf *result = NULL, *m;
 2466         struct seclifetime lt;
 2467 
 2468         m = key_setsadbmsg(type, 0, SADB_SATYPE_UNSPEC, seq, pid, sp->refcnt);
 2469         if (!m)
 2470                 goto fail;
 2471         result = m;
 2472 
 2473         /*
 2474          * Note: do not send SADB_X_EXT_NAT_T_* here:
 2475          * we are sending traffic endpoints.
 2476          */
 2477         m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
 2478             &sp->spidx.src.sa, sp->spidx.prefs,
 2479             sp->spidx.ul_proto);
 2480         if (!m)
 2481                 goto fail;
 2482         m_cat(result, m);
 2483 
 2484         m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
 2485             &sp->spidx.dst.sa, sp->spidx.prefd,
 2486             sp->spidx.ul_proto);
 2487         if (!m)
 2488                 goto fail;
 2489         m_cat(result, m);
 2490 
 2491         m = key_sp2msg(sp);
 2492         if (!m)
 2493                 goto fail;
 2494         m_cat(result, m);
 2495 
 2496         if(sp->lifetime){
 2497                 lt.addtime=sp->created;
 2498                 lt.usetime= sp->lastused;
 2499                 m = key_setlifetime(&lt, SADB_EXT_LIFETIME_CURRENT);
 2500                 if (!m)
 2501                         goto fail;
 2502                 m_cat(result, m);
 2503                 
 2504                 lt.addtime=sp->lifetime;
 2505                 lt.usetime= sp->validtime;
 2506                 m = key_setlifetime(&lt, SADB_EXT_LIFETIME_HARD);
 2507                 if (!m)
 2508                         goto fail;
 2509                 m_cat(result, m);
 2510         }
 2511 
 2512         if ((result->m_flags & M_PKTHDR) == 0)
 2513                 goto fail;
 2514 
 2515         if (result->m_len < sizeof(struct sadb_msg)) {
 2516                 result = m_pullup(result, sizeof(struct sadb_msg));
 2517                 if (result == NULL)
 2518                         goto fail;
 2519         }
 2520 
 2521         result->m_pkthdr.len = 0;
 2522         for (m = result; m; m = m->m_next)
 2523                 result->m_pkthdr.len += m->m_len;
 2524 
 2525         mtod(result, struct sadb_msg *)->sadb_msg_len =
 2526             PFKEY_UNIT64(result->m_pkthdr.len);
 2527 
 2528         return result;
 2529 
 2530 fail:
 2531         m_freem(result);
 2532         return NULL;
 2533 }
 2534 
 2535 /*
 2536  * get PFKEY message length for security policy and request.
 2537  */
 2538 static u_int
 2539 key_getspreqmsglen(sp)
 2540         struct secpolicy *sp;
 2541 {
 2542         u_int tlen;
 2543 
 2544         tlen = sizeof(struct sadb_x_policy);
 2545 
 2546         /* if is the policy for ipsec ? */
 2547         if (sp->policy != IPSEC_POLICY_IPSEC)
 2548                 return tlen;
 2549 
 2550         /* get length of ipsec requests */
 2551     {
 2552         struct ipsecrequest *isr;
 2553         int len;
 2554 
 2555         for (isr = sp->req; isr != NULL; isr = isr->next) {
 2556                 len = sizeof(struct sadb_x_ipsecrequest)
 2557                         + isr->saidx.src.sa.sa_len
 2558                         + isr->saidx.dst.sa.sa_len;
 2559 
 2560                 tlen += PFKEY_ALIGN8(len);
 2561         }
 2562     }
 2563 
 2564         return tlen;
 2565 }
 2566 
 2567 /*
 2568  * SADB_SPDEXPIRE processing
 2569  * send
 2570  *   <base, address(SD), lifetime(CH), policy>
 2571  * to KMD by PF_KEY.
 2572  *
 2573  * OUT: 0       : succeed
 2574  *      others  : error number
 2575  */
 2576 static int
 2577 key_spdexpire(sp)
 2578         struct secpolicy *sp;
 2579 {
 2580         struct mbuf *result = NULL, *m;
 2581         int len;
 2582         int error = -1;
 2583         struct sadb_lifetime *lt;
 2584 
 2585         /* XXX: Why do we lock ? */
 2586 
 2587         IPSEC_ASSERT(sp != NULL, ("null secpolicy"));
 2588 
 2589         /* set msg header */
 2590         m = key_setsadbmsg(SADB_X_SPDEXPIRE, 0, 0, 0, 0, 0);
 2591         if (!m) {
 2592                 error = ENOBUFS;
 2593                 goto fail;
 2594         }
 2595         result = m;
 2596 
 2597         /* create lifetime extension (current and hard) */
 2598         len = PFKEY_ALIGN8(sizeof(*lt)) * 2;
 2599         m = m_get2(len, M_NOWAIT, MT_DATA, 0);
 2600         if (m == NULL) {
 2601                 error = ENOBUFS;
 2602                 goto fail;
 2603         }
 2604         m_align(m, len);
 2605         m->m_len = len;
 2606         bzero(mtod(m, caddr_t), len);
 2607         lt = mtod(m, struct sadb_lifetime *);
 2608         lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
 2609         lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
 2610         lt->sadb_lifetime_allocations = 0;
 2611         lt->sadb_lifetime_bytes = 0;
 2612         lt->sadb_lifetime_addtime = sp->created;
 2613         lt->sadb_lifetime_usetime = sp->lastused;
 2614         lt = (struct sadb_lifetime *)(mtod(m, caddr_t) + len / 2);
 2615         lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
 2616         lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
 2617         lt->sadb_lifetime_allocations = 0;
 2618         lt->sadb_lifetime_bytes = 0;
 2619         lt->sadb_lifetime_addtime = sp->lifetime;
 2620         lt->sadb_lifetime_usetime = sp->validtime;
 2621         m_cat(result, m);
 2622 
 2623         /*
 2624          * Note: do not send SADB_X_EXT_NAT_T_* here:
 2625          * we are sending traffic endpoints.
 2626          */
 2627 
 2628         /* set sadb_address for source */
 2629         m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
 2630             &sp->spidx.src.sa,
 2631             sp->spidx.prefs, sp->spidx.ul_proto);
 2632         if (!m) {
 2633                 error = ENOBUFS;
 2634                 goto fail;
 2635         }
 2636         m_cat(result, m);
 2637 
 2638         /* set sadb_address for destination */
 2639         m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
 2640             &sp->spidx.dst.sa,
 2641             sp->spidx.prefd, sp->spidx.ul_proto);
 2642         if (!m) {
 2643                 error = ENOBUFS;
 2644                 goto fail;
 2645         }
 2646         m_cat(result, m);
 2647 
 2648         /* set secpolicy */
 2649         m = key_sp2msg(sp);
 2650         if (!m) {
 2651                 error = ENOBUFS;
 2652                 goto fail;
 2653         }
 2654         m_cat(result, m);
 2655 
 2656         if ((result->m_flags & M_PKTHDR) == 0) {
 2657                 error = EINVAL;
 2658                 goto fail;
 2659         }
 2660 
 2661         if (result->m_len < sizeof(struct sadb_msg)) {
 2662                 result = m_pullup(result, sizeof(struct sadb_msg));
 2663                 if (result == NULL) {
 2664                         error = ENOBUFS;
 2665                         goto fail;
 2666                 }
 2667         }
 2668 
 2669         result->m_pkthdr.len = 0;
 2670         for (m = result; m; m = m->m_next)
 2671                 result->m_pkthdr.len += m->m_len;
 2672 
 2673         mtod(result, struct sadb_msg *)->sadb_msg_len =
 2674             PFKEY_UNIT64(result->m_pkthdr.len);
 2675 
 2676         return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
 2677 
 2678  fail:
 2679         if (result)
 2680                 m_freem(result);
 2681         return error;
 2682 }
 2683 
 2684 /* %%% SAD management */
 2685 /*
 2686  * allocating a memory for new SA head, and copy from the values of mhp.
 2687  * OUT: NULL    : failure due to the lack of memory.
 2688  *      others  : pointer to new SA head.
 2689  */
 2690 static struct secashead *
 2691 key_newsah(saidx)
 2692         struct secasindex *saidx;
 2693 {
 2694         struct secashead *newsah;
 2695 
 2696         IPSEC_ASSERT(saidx != NULL, ("null saidx"));
 2697 
 2698         newsah = malloc(sizeof(struct secashead), M_IPSEC_SAH, M_NOWAIT|M_ZERO);
 2699         if (newsah != NULL) {
 2700                 int i;
 2701                 for (i = 0; i < sizeof(newsah->savtree)/sizeof(newsah->savtree[0]); i++)
 2702                         LIST_INIT(&newsah->savtree[i]);
 2703                 newsah->saidx = *saidx;
 2704 
 2705                 /* add to saidxtree */
 2706                 newsah->state = SADB_SASTATE_MATURE;
 2707 
 2708                 SAHTREE_LOCK();
 2709                 LIST_INSERT_HEAD(&V_sahtree, newsah, chain);
 2710                 SAHTREE_UNLOCK();
 2711         }
 2712         return(newsah);
 2713 }
 2714 
 2715 /*
 2716  * delete SA index and all SA registerd.
 2717  */
 2718 static void
 2719 key_delsah(sah)
 2720         struct secashead *sah;
 2721 {
 2722         struct secasvar *sav, *nextsav;
 2723         u_int stateidx;
 2724         int zombie = 0;
 2725 
 2726         IPSEC_ASSERT(sah != NULL, ("NULL sah"));
 2727         SAHTREE_LOCK_ASSERT();
 2728 
 2729         /* searching all SA registerd in the secindex. */
 2730         for (stateidx = 0;
 2731              stateidx < _ARRAYLEN(saorder_state_any);
 2732              stateidx++) {
 2733                 u_int state = saorder_state_any[stateidx];
 2734                 LIST_FOREACH_SAFE(sav, &sah->savtree[state], chain, nextsav) {
 2735                         if (sav->refcnt == 0) {
 2736                                 /* sanity check */
 2737                                 KEY_CHKSASTATE(state, sav->state, __func__);
 2738                                 /* 
 2739                                  * do NOT call KEY_FREESAV here:
 2740                                  * it will only delete the sav if refcnt == 1,
 2741                                  * where we already know that refcnt == 0
 2742                                  */
 2743                                 key_delsav(sav);
 2744                         } else {
 2745                                 /* give up to delete this sa */
 2746                                 zombie++;
 2747                         }
 2748                 }
 2749         }
 2750         if (!zombie) {          /* delete only if there are savs */
 2751                 /* remove from tree of SA index */
 2752                 if (__LIST_CHAINED(sah))
 2753                         LIST_REMOVE(sah, chain);
 2754                 if (sah->route_cache.sa_route.ro_rt) {
 2755                         RTFREE(sah->route_cache.sa_route.ro_rt);
 2756                         sah->route_cache.sa_route.ro_rt = (struct rtentry *)NULL;
 2757                 }
 2758                 free(sah, M_IPSEC_SAH);
 2759         }
 2760 }
 2761 
 2762 /*
 2763  * allocating a new SA with LARVAL state.  key_add() and key_getspi() call,
 2764  * and copy the values of mhp into new buffer.
 2765  * When SAD message type is GETSPI:
 2766  *      to set sequence number from acq_seq++,
 2767  *      to set zero to SPI.
 2768  *      not to call key_setsava().
 2769  * OUT: NULL    : fail
 2770  *      others  : pointer to new secasvar.
 2771  *
 2772  * does not modify mbuf.  does not free mbuf on error.
 2773  */
 2774 static struct secasvar *
 2775 key_newsav(m, mhp, sah, errp, where, tag)
 2776         struct mbuf *m;
 2777         const struct sadb_msghdr *mhp;
 2778         struct secashead *sah;
 2779         int *errp;
 2780         const char* where;
 2781         int tag;
 2782 {
 2783         struct secasvar *newsav;
 2784         const struct sadb_sa *xsa;
 2785 
 2786         IPSEC_ASSERT(m != NULL, ("null mbuf"));
 2787         IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
 2788         IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
 2789         IPSEC_ASSERT(sah != NULL, ("null secashead"));
 2790 
 2791         newsav = malloc(sizeof(struct secasvar), M_IPSEC_SA, M_NOWAIT|M_ZERO);
 2792         if (newsav == NULL) {
 2793                 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
 2794                 *errp = ENOBUFS;
 2795                 goto done;
 2796         }
 2797 
 2798         switch (mhp->msg->sadb_msg_type) {
 2799         case SADB_GETSPI:
 2800                 newsav->spi = 0;
 2801 
 2802 #ifdef IPSEC_DOSEQCHECK
 2803                 /* sync sequence number */
 2804                 if (mhp->msg->sadb_msg_seq == 0)
 2805                         newsav->seq =
 2806                                 (V_acq_seq = (V_acq_seq == ~0 ? 1 : ++V_acq_seq));
 2807                 else
 2808 #endif
 2809                         newsav->seq = mhp->msg->sadb_msg_seq;
 2810                 break;
 2811 
 2812         case SADB_ADD:
 2813                 /* sanity check */
 2814                 if (mhp->ext[SADB_EXT_SA] == NULL) {
 2815                         free(newsav, M_IPSEC_SA);
 2816                         newsav = NULL;
 2817                         ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
 2818                                 __func__));
 2819                         *errp = EINVAL;
 2820                         goto done;
 2821                 }
 2822                 xsa = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA];
 2823                 newsav->spi = xsa->sadb_sa_spi;
 2824                 newsav->seq = mhp->msg->sadb_msg_seq;
 2825                 break;
 2826         default:
 2827                 free(newsav, M_IPSEC_SA);
 2828                 newsav = NULL;
 2829                 *errp = EINVAL;
 2830                 goto done;
 2831         }
 2832 
 2833 
 2834         /* copy sav values */
 2835         if (mhp->msg->sadb_msg_type != SADB_GETSPI) {
 2836                 *errp = key_setsaval(newsav, m, mhp);
 2837                 if (*errp) {
 2838                         free(newsav, M_IPSEC_SA);
 2839                         newsav = NULL;
 2840                         goto done;
 2841                 }
 2842         }
 2843 
 2844         SECASVAR_LOCK_INIT(newsav);
 2845 
 2846         /* reset created */
 2847         newsav->created = time_second;
 2848         newsav->pid = mhp->msg->sadb_msg_pid;
 2849 
 2850         /* add to satree */
 2851         newsav->sah = sah;
 2852         sa_initref(newsav);
 2853         newsav->state = SADB_SASTATE_LARVAL;
 2854 
 2855         SAHTREE_LOCK();
 2856         LIST_INSERT_TAIL(&sah->savtree[SADB_SASTATE_LARVAL], newsav,
 2857                         secasvar, chain);
 2858         SAHTREE_UNLOCK();
 2859 done:
 2860         KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
 2861                 printf("DP %s from %s:%u return SP:%p\n", __func__,
 2862                         where, tag, newsav));
 2863 
 2864         return newsav;
 2865 }
 2866 
 2867 /*
 2868  * free() SA variable entry.
 2869  */
 2870 static void
 2871 key_cleansav(struct secasvar *sav)
 2872 {
 2873         /*
 2874          * Cleanup xform state.  Note that zeroize'ing causes the
 2875          * keys to be cleared; otherwise we must do it ourself.
 2876          */
 2877         if (sav->tdb_xform != NULL) {
 2878                 sav->tdb_xform->xf_zeroize(sav);
 2879                 sav->tdb_xform = NULL;
 2880         } else {
 2881                 KASSERT(sav->iv == NULL, ("iv but no xform"));
 2882                 if (sav->key_auth != NULL)
 2883                         bzero(sav->key_auth->key_data, _KEYLEN(sav->key_auth));
 2884                 if (sav->key_enc != NULL)
 2885                         bzero(sav->key_enc->key_data, _KEYLEN(sav->key_enc));
 2886         }
 2887         if (sav->key_auth != NULL) {
 2888                 if (sav->key_auth->key_data != NULL)
 2889                         free(sav->key_auth->key_data, M_IPSEC_MISC);
 2890                 free(sav->key_auth, M_IPSEC_MISC);
 2891                 sav->key_auth = NULL;
 2892         }
 2893         if (sav->key_enc != NULL) {
 2894                 if (sav->key_enc->key_data != NULL)
 2895                         free(sav->key_enc->key_data, M_IPSEC_MISC);
 2896                 free(sav->key_enc, M_IPSEC_MISC);
 2897                 sav->key_enc = NULL;
 2898         }
 2899         if (sav->sched) {
 2900                 bzero(sav->sched, sav->schedlen);
 2901                 free(sav->sched, M_IPSEC_MISC);
 2902                 sav->sched = NULL;
 2903         }
 2904         if (sav->replay != NULL) {
 2905                 free(sav->replay, M_IPSEC_MISC);
 2906                 sav->replay = NULL;
 2907         }
 2908         if (sav->lft_c != NULL) {
 2909                 free(sav->lft_c, M_IPSEC_MISC);
 2910                 sav->lft_c = NULL;
 2911         }
 2912         if (sav->lft_h != NULL) {
 2913                 free(sav->lft_h, M_IPSEC_MISC);
 2914                 sav->lft_h = NULL;
 2915         }
 2916         if (sav->lft_s != NULL) {
 2917                 free(sav->lft_s, M_IPSEC_MISC);
 2918                 sav->lft_s = NULL;
 2919         }
 2920 }
 2921 
 2922 /*
 2923  * free() SA variable entry.
 2924  */
 2925 static void
 2926 key_delsav(sav)
 2927         struct secasvar *sav;
 2928 {
 2929         IPSEC_ASSERT(sav != NULL, ("null sav"));
 2930         IPSEC_ASSERT(sav->refcnt == 0, ("reference count %u > 0", sav->refcnt));
 2931 
 2932         /* remove from SA header */
 2933         if (__LIST_CHAINED(sav))
 2934                 LIST_REMOVE(sav, chain);
 2935         key_cleansav(sav);
 2936         SECASVAR_LOCK_DESTROY(sav);
 2937         free(sav, M_IPSEC_SA);
 2938 }
 2939 
 2940 /*
 2941  * search SAD.
 2942  * OUT:
 2943  *      NULL    : not found
 2944  *      others  : found, pointer to a SA.
 2945  */
 2946 static struct secashead *
 2947 key_getsah(saidx)
 2948         struct secasindex *saidx;
 2949 {
 2950         struct secashead *sah;
 2951 
 2952         SAHTREE_LOCK();
 2953         LIST_FOREACH(sah, &V_sahtree, chain) {
 2954                 if (sah->state == SADB_SASTATE_DEAD)
 2955                         continue;
 2956                 if (key_cmpsaidx(&sah->saidx, saidx, CMP_REQID))
 2957                         break;
 2958         }
 2959         SAHTREE_UNLOCK();
 2960 
 2961         return sah;
 2962 }
 2963 
 2964 /*
 2965  * check not to be duplicated SPI.
 2966  * NOTE: this function is too slow due to searching all SAD.
 2967  * OUT:
 2968  *      NULL    : not found
 2969  *      others  : found, pointer to a SA.
 2970  */
 2971 static struct secasvar *
 2972 key_checkspidup(saidx, spi)
 2973         struct secasindex *saidx;
 2974         u_int32_t spi;
 2975 {
 2976         struct secashead *sah;
 2977         struct secasvar *sav;
 2978 
 2979         /* check address family */
 2980         if (saidx->src.sa.sa_family != saidx->dst.sa.sa_family) {
 2981                 ipseclog((LOG_DEBUG, "%s: address family mismatched.\n",
 2982                         __func__));
 2983                 return NULL;
 2984         }
 2985 
 2986         sav = NULL;
 2987         /* check all SAD */
 2988         SAHTREE_LOCK();
 2989         LIST_FOREACH(sah, &V_sahtree, chain) {
 2990                 if (!key_ismyaddr((struct sockaddr *)&sah->saidx.dst))
 2991                         continue;
 2992                 sav = key_getsavbyspi(sah, spi);
 2993                 if (sav != NULL)
 2994                         break;
 2995         }
 2996         SAHTREE_UNLOCK();
 2997 
 2998         return sav;
 2999 }
 3000 
 3001 /*
 3002  * search SAD litmited alive SA, protocol, SPI.
 3003  * OUT:
 3004  *      NULL    : not found
 3005  *      others  : found, pointer to a SA.
 3006  */
 3007 static struct secasvar *
 3008 key_getsavbyspi(sah, spi)
 3009         struct secashead *sah;
 3010         u_int32_t spi;
 3011 {
 3012         struct secasvar *sav;
 3013         u_int stateidx, state;
 3014 
 3015         sav = NULL;
 3016         SAHTREE_LOCK_ASSERT();
 3017         /* search all status */
 3018         for (stateidx = 0;
 3019              stateidx < _ARRAYLEN(saorder_state_alive);
 3020              stateidx++) {
 3021 
 3022                 state = saorder_state_alive[stateidx];
 3023                 LIST_FOREACH(sav, &sah->savtree[state], chain) {
 3024 
 3025                         /* sanity check */
 3026                         if (sav->state != state) {
 3027                                 ipseclog((LOG_DEBUG, "%s: "
 3028                                     "invalid sav->state (queue: %d SA: %d)\n",
 3029                                     __func__, state, sav->state));
 3030                                 continue;
 3031                         }
 3032 
 3033                         if (sav->spi == spi)
 3034                                 return sav;
 3035                 }
 3036         }
 3037 
 3038         return NULL;
 3039 }
 3040 
 3041 /*
 3042  * copy SA values from PF_KEY message except *SPI, SEQ, PID, STATE and TYPE*.
 3043  * You must update these if need.
 3044  * OUT: 0:      success.
 3045  *      !0:     failure.
 3046  *
 3047  * does not modify mbuf.  does not free mbuf on error.
 3048  */
 3049 static int
 3050 key_setsaval(sav, m, mhp)
 3051         struct secasvar *sav;
 3052         struct mbuf *m;
 3053         const struct sadb_msghdr *mhp;
 3054 {
 3055         int error = 0;
 3056 
 3057         IPSEC_ASSERT(m != NULL, ("null mbuf"));
 3058         IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
 3059         IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
 3060 
 3061         /* initialization */
 3062         sav->replay = NULL;
 3063         sav->key_auth = NULL;
 3064         sav->key_enc = NULL;
 3065         sav->sched = NULL;
 3066         sav->schedlen = 0;
 3067         sav->iv = NULL;
 3068         sav->lft_c = NULL;
 3069         sav->lft_h = NULL;
 3070         sav->lft_s = NULL;
 3071         sav->tdb_xform = NULL;          /* transform */
 3072         sav->tdb_encalgxform = NULL;    /* encoding algorithm */
 3073         sav->tdb_authalgxform = NULL;   /* authentication algorithm */
 3074         sav->tdb_compalgxform = NULL;   /* compression algorithm */
 3075         /*  Initialize even if NAT-T not compiled in: */
 3076         sav->natt_type = 0;
 3077         sav->natt_esp_frag_len = 0;
 3078 
 3079         /* SA */
 3080         if (mhp->ext[SADB_EXT_SA] != NULL) {
 3081                 const struct sadb_sa *sa0;
 3082 
 3083                 sa0 = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA];
 3084                 if (mhp->extlen[SADB_EXT_SA] < sizeof(*sa0)) {
 3085                         error = EINVAL;
 3086                         goto fail;
 3087                 }
 3088 
 3089                 sav->alg_auth = sa0->sadb_sa_auth;
 3090                 sav->alg_enc = sa0->sadb_sa_encrypt;
 3091                 sav->flags = sa0->sadb_sa_flags;
 3092 
 3093                 /* replay window */
 3094                 if ((sa0->sadb_sa_flags & SADB_X_EXT_OLD) == 0) {
 3095                         sav->replay = (struct secreplay *)
 3096                                 malloc(sizeof(struct secreplay)+sa0->sadb_sa_replay, M_IPSEC_MISC, M_NOWAIT|M_ZERO);
 3097                         if (sav->replay == NULL) {
 3098                                 ipseclog((LOG_DEBUG, "%s: No more memory.\n",
 3099                                         __func__));
 3100                                 error = ENOBUFS;
 3101                                 goto fail;
 3102                         }
 3103                         if (sa0->sadb_sa_replay != 0)
 3104                                 sav->replay->bitmap = (caddr_t)(sav->replay+1);
 3105                         sav->replay->wsize = sa0->sadb_sa_replay;
 3106                 }
 3107         }
 3108 
 3109         /* Authentication keys */
 3110         if (mhp->ext[SADB_EXT_KEY_AUTH] != NULL) {
 3111                 const struct sadb_key *key0;
 3112                 int len;
 3113 
 3114                 key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_AUTH];
 3115                 len = mhp->extlen[SADB_EXT_KEY_AUTH];
 3116 
 3117                 error = 0;
 3118                 if (len < sizeof(*key0)) {
 3119                         error = EINVAL;
 3120                         goto fail;
 3121                 }
 3122                 switch (mhp->msg->sadb_msg_satype) {
 3123                 case SADB_SATYPE_AH:
 3124                 case SADB_SATYPE_ESP:
 3125                 case SADB_X_SATYPE_TCPSIGNATURE:
 3126                         if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) &&
 3127                             sav->alg_auth != SADB_X_AALG_NULL)
 3128                                 error = EINVAL;
 3129                         break;
 3130                 case SADB_X_SATYPE_IPCOMP:
 3131                 default:
 3132                         error = EINVAL;
 3133                         break;
 3134                 }
 3135                 if (error) {
 3136                         ipseclog((LOG_DEBUG, "%s: invalid key_auth values.\n",
 3137                                 __func__));
 3138                         goto fail;
 3139                 }
 3140 
 3141                 sav->key_auth = (struct seckey *)key_dup_keymsg(key0, len,
 3142                                                                 M_IPSEC_MISC);
 3143                 if (sav->key_auth == NULL ) {
 3144                         ipseclog((LOG_DEBUG, "%s: No more memory.\n",
 3145                                   __func__));
 3146                         error = ENOBUFS;
 3147                         goto fail;
 3148                 }
 3149         }
 3150 
 3151         /* Encryption key */
 3152         if (mhp->ext[SADB_EXT_KEY_ENCRYPT] != NULL) {
 3153                 const struct sadb_key *key0;
 3154                 int len;
 3155 
 3156                 key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_ENCRYPT];
 3157                 len = mhp->extlen[SADB_EXT_KEY_ENCRYPT];
 3158 
 3159                 error = 0;
 3160                 if (len < sizeof(*key0)) {
 3161                         error = EINVAL;
 3162                         goto fail;
 3163                 }
 3164                 switch (mhp->msg->sadb_msg_satype) {
 3165                 case SADB_SATYPE_ESP:
 3166                         if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) &&
 3167                             sav->alg_enc != SADB_EALG_NULL) {
 3168                                 error = EINVAL;
 3169                                 break;
 3170                         }
 3171                         sav->key_enc = (struct seckey *)key_dup_keymsg(key0,
 3172                                                                        len,
 3173                                                                        M_IPSEC_MISC);
 3174                         if (sav->key_enc == NULL) {
 3175                                 ipseclog((LOG_DEBUG, "%s: No more memory.\n",
 3176                                         __func__));
 3177                                 error = ENOBUFS;
 3178                                 goto fail;
 3179                         }
 3180                         break;
 3181                 case SADB_X_SATYPE_IPCOMP:
 3182                         if (len != PFKEY_ALIGN8(sizeof(struct sadb_key)))
 3183                                 error = EINVAL;
 3184                         sav->key_enc = NULL;    /*just in case*/
 3185                         break;
 3186                 case SADB_SATYPE_AH:
 3187                 case SADB_X_SATYPE_TCPSIGNATURE:
 3188                 default:
 3189                         error = EINVAL;
 3190                         break;
 3191                 }
 3192                 if (error) {
 3193                         ipseclog((LOG_DEBUG, "%s: invalid key_enc value.\n",
 3194                                 __func__));
 3195                         goto fail;
 3196                 }
 3197         }
 3198 
 3199         /* set iv */
 3200         sav->ivlen = 0;
 3201 
 3202         switch (mhp->msg->sadb_msg_satype) {
 3203         case SADB_SATYPE_AH:
 3204                 error = xform_init(sav, XF_AH);
 3205                 break;
 3206         case SADB_SATYPE_ESP:
 3207                 error = xform_init(sav, XF_ESP);
 3208                 break;
 3209         case SADB_X_SATYPE_IPCOMP:
 3210                 error = xform_init(sav, XF_IPCOMP);
 3211                 break;
 3212         case SADB_X_SATYPE_TCPSIGNATURE:
 3213                 error = xform_init(sav, XF_TCPSIGNATURE);
 3214                 break;
 3215         }
 3216         if (error) {
 3217                 ipseclog((LOG_DEBUG, "%s: unable to initialize SA type %u.\n",
 3218                         __func__, mhp->msg->sadb_msg_satype));
 3219                 goto fail;
 3220         }
 3221 
 3222         /* reset created */
 3223         sav->created = time_second;
 3224 
 3225         /* make lifetime for CURRENT */
 3226         sav->lft_c = malloc(sizeof(struct seclifetime), M_IPSEC_MISC, M_NOWAIT);
 3227         if (sav->lft_c == NULL) {
 3228                 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
 3229                 error = ENOBUFS;
 3230                 goto fail;
 3231         }
 3232 
 3233         sav->lft_c->allocations = 0;
 3234         sav->lft_c->bytes = 0;
 3235         sav->lft_c->addtime = time_second;
 3236         sav->lft_c->usetime = 0;
 3237 
 3238         /* lifetimes for HARD and SOFT */
 3239     {
 3240         const struct sadb_lifetime *lft0;
 3241 
 3242         lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD];
 3243         if (lft0 != NULL) {
 3244                 if (mhp->extlen[SADB_EXT_LIFETIME_HARD] < sizeof(*lft0)) {
 3245                         error = EINVAL;
 3246                         goto fail;
 3247                 }
 3248                 sav->lft_h = key_dup_lifemsg(lft0, M_IPSEC_MISC);
 3249                 if (sav->lft_h == NULL) {
 3250                         ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__));
 3251                         error = ENOBUFS;
 3252                         goto fail;
 3253                 }
 3254                 /* to be initialize ? */
 3255         }
 3256 
 3257         lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_SOFT];
 3258         if (lft0 != NULL) {
 3259                 if (mhp->extlen[SADB_EXT_LIFETIME_SOFT] < sizeof(*lft0)) {
 3260                         error = EINVAL;
 3261                         goto fail;
 3262                 }
 3263                 sav->lft_s = key_dup_lifemsg(lft0, M_IPSEC_MISC);
 3264                 if (sav->lft_s == NULL) {
 3265                         ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__));
 3266                         error = ENOBUFS;
 3267                         goto fail;
 3268                 }
 3269                 /* to be initialize ? */
 3270         }
 3271     }
 3272 
 3273         return 0;
 3274 
 3275  fail:
 3276         /* initialization */
 3277         key_cleansav(sav);
 3278 
 3279         return error;
 3280 }
 3281 
 3282 /*
 3283  * validation with a secasvar entry, and set SADB_SATYPE_MATURE.
 3284  * OUT: 0:      valid
 3285  *      other:  errno
 3286  */
 3287 static int
 3288 key_mature(struct secasvar *sav)
 3289 {
 3290         int error;
 3291 
 3292         /* check SPI value */
 3293         switch (sav->sah->saidx.proto) {
 3294         case IPPROTO_ESP:
 3295         case IPPROTO_AH:
 3296                 /*
 3297                  * RFC 4302, 2.4. Security Parameters Index (SPI), SPI values
 3298                  * 1-255 reserved by IANA for future use,
 3299                  * 0 for implementation specific, local use.
 3300                  */
 3301                 if (ntohl(sav->spi) <= 255) {
 3302                         ipseclog((LOG_DEBUG, "%s: illegal range of SPI %u.\n",
 3303                             __func__, (u_int32_t)ntohl(sav->spi)));
 3304                         return EINVAL;
 3305                 }
 3306                 break;
 3307         }
 3308 
 3309         /* check satype */
 3310         switch (sav->sah->saidx.proto) {
 3311         case IPPROTO_ESP:
 3312                 /* check flags */
 3313                 if ((sav->flags & (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) ==
 3314                     (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) {
 3315                         ipseclog((LOG_DEBUG, "%s: invalid flag (derived) "
 3316                                 "given to old-esp.\n", __func__));
 3317                         return EINVAL;
 3318                 }
 3319                 error = xform_init(sav, XF_ESP);
 3320                 break;
 3321         case IPPROTO_AH:
 3322                 /* check flags */
 3323                 if (sav->flags & SADB_X_EXT_DERIV) {
 3324                         ipseclog((LOG_DEBUG, "%s: invalid flag (derived) "
 3325                                 "given to AH SA.\n", __func__));
 3326                         return EINVAL;
 3327                 }
 3328                 if (sav->alg_enc != SADB_EALG_NONE) {
 3329                         ipseclog((LOG_DEBUG, "%s: protocol and algorithm "
 3330                                 "mismated.\n", __func__));
 3331                         return(EINVAL);
 3332                 }
 3333                 error = xform_init(sav, XF_AH);
 3334                 break;
 3335         case IPPROTO_IPCOMP:
 3336                 if (sav->alg_auth != SADB_AALG_NONE) {
 3337                         ipseclog((LOG_DEBUG, "%s: protocol and algorithm "
 3338                                 "mismated.\n", __func__));
 3339                         return(EINVAL);
 3340                 }
 3341                 if ((sav->flags & SADB_X_EXT_RAWCPI) == 0
 3342                  && ntohl(sav->spi) >= 0x10000) {
 3343                         ipseclog((LOG_DEBUG, "%s: invalid cpi for IPComp.\n",
 3344                                 __func__));
 3345                         return(EINVAL);
 3346                 }
 3347                 error = xform_init(sav, XF_IPCOMP);
 3348                 break;
 3349         case IPPROTO_TCP:
 3350                 if (sav->alg_enc != SADB_EALG_NONE) {
 3351                         ipseclog((LOG_DEBUG, "%s: protocol and algorithm "
 3352                                 "mismated.\n", __func__));
 3353                         return(EINVAL);
 3354                 }
 3355                 error = xform_init(sav, XF_TCPSIGNATURE);
 3356                 break;
 3357         default:
 3358                 ipseclog((LOG_DEBUG, "%s: Invalid satype.\n", __func__));
 3359                 error = EPROTONOSUPPORT;
 3360                 break;
 3361         }
 3362         if (error == 0) {
 3363                 SAHTREE_LOCK();
 3364                 key_sa_chgstate(sav, SADB_SASTATE_MATURE);
 3365                 SAHTREE_UNLOCK();
 3366         }
 3367         return (error);
 3368 }
 3369 
 3370 /*
 3371  * subroutine for SADB_GET and SADB_DUMP.
 3372  */
 3373 static struct mbuf *
 3374 key_setdumpsa(struct secasvar *sav, u_int8_t type, u_int8_t satype,
 3375     u_int32_t seq, u_int32_t pid)
 3376 {
 3377         struct mbuf *result = NULL, *tres = NULL, *m;
 3378         int i;
 3379         int dumporder[] = {
 3380                 SADB_EXT_SA, SADB_X_EXT_SA2,
 3381                 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT,
 3382                 SADB_EXT_LIFETIME_CURRENT, SADB_EXT_ADDRESS_SRC,
 3383                 SADB_EXT_ADDRESS_DST, SADB_EXT_ADDRESS_PROXY, SADB_EXT_KEY_AUTH,
 3384                 SADB_EXT_KEY_ENCRYPT, SADB_EXT_IDENTITY_SRC,
 3385                 SADB_EXT_IDENTITY_DST, SADB_EXT_SENSITIVITY,
 3386 #ifdef IPSEC_NAT_T
 3387                 SADB_X_EXT_NAT_T_TYPE,
 3388                 SADB_X_EXT_NAT_T_SPORT, SADB_X_EXT_NAT_T_DPORT,
 3389                 SADB_X_EXT_NAT_T_OAI, SADB_X_EXT_NAT_T_OAR,
 3390                 SADB_X_EXT_NAT_T_FRAG,
 3391 #endif
 3392         };
 3393 
 3394         m = key_setsadbmsg(type, 0, satype, seq, pid, sav->refcnt);
 3395         if (m == NULL)
 3396                 goto fail;
 3397         result = m;
 3398 
 3399         for (i = sizeof(dumporder)/sizeof(dumporder[0]) - 1; i >= 0; i--) {
 3400                 m = NULL;
 3401                 switch (dumporder[i]) {
 3402                 case SADB_EXT_SA:
 3403                         m = key_setsadbsa(sav);
 3404                         if (!m)
 3405                                 goto fail;
 3406                         break;
 3407 
 3408                 case SADB_X_EXT_SA2:
 3409                         m = key_setsadbxsa2(sav->sah->saidx.mode,
 3410                                         sav->replay ? sav->replay->count : 0,
 3411                                         sav->sah->saidx.reqid);
 3412                         if (!m)
 3413                                 goto fail;
 3414                         break;
 3415 
 3416                 case SADB_EXT_ADDRESS_SRC:
 3417                         m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
 3418                             &sav->sah->saidx.src.sa,
 3419                             FULLMASK, IPSEC_ULPROTO_ANY);
 3420                         if (!m)
 3421                                 goto fail;
 3422                         break;
 3423 
 3424                 case SADB_EXT_ADDRESS_DST:
 3425                         m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
 3426                             &sav->sah->saidx.dst.sa,
 3427                             FULLMASK, IPSEC_ULPROTO_ANY);
 3428                         if (!m)
 3429                                 goto fail;
 3430                         break;
 3431 
 3432                 case SADB_EXT_KEY_AUTH:
 3433                         if (!sav->key_auth)
 3434                                 continue;
 3435                         m = key_setkey(sav->key_auth, SADB_EXT_KEY_AUTH);
 3436                         if (!m)
 3437                                 goto fail;
 3438                         break;
 3439 
 3440                 case SADB_EXT_KEY_ENCRYPT:
 3441                         if (!sav->key_enc)
 3442                                 continue;
 3443                         m = key_setkey(sav->key_enc, SADB_EXT_KEY_ENCRYPT);
 3444                         if (!m)
 3445                                 goto fail;
 3446                         break;
 3447 
 3448                 case SADB_EXT_LIFETIME_CURRENT:
 3449                         if (!sav->lft_c)
 3450                                 continue;
 3451                         m = key_setlifetime(sav->lft_c, 
 3452                                             SADB_EXT_LIFETIME_CURRENT);
 3453                         if (!m)
 3454                                 goto fail;
 3455                         break;
 3456 
 3457                 case SADB_EXT_LIFETIME_HARD:
 3458                         if (!sav->lft_h)
 3459                                 continue;
 3460                         m = key_setlifetime(sav->lft_h, 
 3461                                             SADB_EXT_LIFETIME_HARD);
 3462                         if (!m)
 3463                                 goto fail;
 3464                         break;
 3465 
 3466                 case SADB_EXT_LIFETIME_SOFT:
 3467                         if (!sav->lft_s)
 3468                                 continue;
 3469                         m = key_setlifetime(sav->lft_s, 
 3470                                             SADB_EXT_LIFETIME_SOFT);
 3471 
 3472                         if (!m)
 3473                                 goto fail;
 3474                         break;
 3475 
 3476 #ifdef IPSEC_NAT_T
 3477                 case SADB_X_EXT_NAT_T_TYPE:
 3478                         m = key_setsadbxtype(sav->natt_type);
 3479                         if (!m)
 3480                                 goto fail;
 3481                         break;
 3482                 
 3483                 case SADB_X_EXT_NAT_T_DPORT:
 3484                         m = key_setsadbxport(
 3485                             KEY_PORTFROMSADDR(&sav->sah->saidx.dst),
 3486                             SADB_X_EXT_NAT_T_DPORT);
 3487                         if (!m)
 3488                                 goto fail;
 3489                         break;
 3490 
 3491                 case SADB_X_EXT_NAT_T_SPORT:
 3492                         m = key_setsadbxport(
 3493                             KEY_PORTFROMSADDR(&sav->sah->saidx.src),
 3494                             SADB_X_EXT_NAT_T_SPORT);
 3495                         if (!m)
 3496                                 goto fail;
 3497                         break;
 3498 
 3499                 case SADB_X_EXT_NAT_T_OAI:
 3500                 case SADB_X_EXT_NAT_T_OAR:
 3501                 case SADB_X_EXT_NAT_T_FRAG:
 3502                         /* We do not (yet) support those. */
 3503                         continue;
 3504 #endif
 3505 
 3506                 case SADB_EXT_ADDRESS_PROXY:
 3507                 case SADB_EXT_IDENTITY_SRC:
 3508                 case SADB_EXT_IDENTITY_DST:
 3509                         /* XXX: should we brought from SPD ? */
 3510                 case SADB_EXT_SENSITIVITY:
 3511                 default:
 3512                         continue;
 3513                 }
 3514 
 3515                 if (!m)
 3516                         goto fail;
 3517                 if (tres)
 3518                         m_cat(m, tres);
 3519                 tres = m;
 3520                   
 3521         }
 3522 
 3523         m_cat(result, tres);
 3524         if (result->m_len < sizeof(struct sadb_msg)) {
 3525                 result = m_pullup(result, sizeof(struct sadb_msg));
 3526                 if (result == NULL)
 3527                         goto fail;
 3528         }
 3529 
 3530         result->m_pkthdr.len = 0;
 3531         for (m = result; m; m = m->m_next)
 3532                 result->m_pkthdr.len += m->m_len;
 3533 
 3534         mtod(result, struct sadb_msg *)->sadb_msg_len =
 3535             PFKEY_UNIT64(result->m_pkthdr.len);
 3536 
 3537         return result;
 3538 
 3539 fail:
 3540         m_freem(result);
 3541         m_freem(tres);
 3542         return NULL;
 3543 }
 3544 
 3545 /*
 3546  * set data into sadb_msg.
 3547  */
 3548 static struct mbuf *
 3549 key_setsadbmsg(u_int8_t type, u_int16_t tlen, u_int8_t satype, u_int32_t seq,
 3550     pid_t pid, u_int16_t reserved)
 3551 {
 3552         struct mbuf *m;
 3553         struct sadb_msg *p;
 3554         int len;
 3555 
 3556         len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
 3557         if (len > MCLBYTES)
 3558                 return NULL;
 3559         MGETHDR(m, M_NOWAIT, MT_DATA);
 3560         if (m && len > MHLEN) {
 3561                 MCLGET(m, M_NOWAIT);
 3562                 if ((m->m_flags & M_EXT) == 0) {
 3563                         m_freem(m);
 3564                         m = NULL;
 3565                 }
 3566         }
 3567         if (!m)
 3568                 return NULL;
 3569         m->m_pkthdr.len = m->m_len = len;
 3570         m->m_next = NULL;
 3571 
 3572         p = mtod(m, struct sadb_msg *);
 3573 
 3574         bzero(p, len);
 3575         p->sadb_msg_version = PF_KEY_V2;
 3576         p->sadb_msg_type = type;
 3577         p->sadb_msg_errno = 0;
 3578         p->sadb_msg_satype = satype;
 3579         p->sadb_msg_len = PFKEY_UNIT64(tlen);
 3580         p->sadb_msg_reserved = reserved;
 3581         p->sadb_msg_seq = seq;
 3582         p->sadb_msg_pid = (u_int32_t)pid;
 3583 
 3584         return m;
 3585 }
 3586 
 3587 /*
 3588  * copy secasvar data into sadb_address.
 3589  */
 3590 static struct mbuf *
 3591 key_setsadbsa(sav)
 3592         struct secasvar *sav;
 3593 {
 3594         struct mbuf *m;
 3595         struct sadb_sa *p;
 3596         int len;
 3597 
 3598         len = PFKEY_ALIGN8(sizeof(struct sadb_sa));
 3599         m = m_get2(len, M_NOWAIT, MT_DATA, 0);
 3600         if (m == NULL)
 3601                 return (NULL);
 3602         m_align(m, len);
 3603         m->m_len = len;
 3604         p = mtod(m, struct sadb_sa *);
 3605         bzero(p, len);
 3606         p->sadb_sa_len = PFKEY_UNIT64(len);
 3607         p->sadb_sa_exttype = SADB_EXT_SA;
 3608         p->sadb_sa_spi = sav->spi;
 3609         p->sadb_sa_replay = (sav->replay != NULL ? sav->replay->wsize : 0);
 3610         p->sadb_sa_state = sav->state;
 3611         p->sadb_sa_auth = sav->alg_auth;
 3612         p->sadb_sa_encrypt = sav->alg_enc;
 3613         p->sadb_sa_flags = sav->flags;
 3614 
 3615         return m;
 3616 }
 3617 
 3618 /*
 3619  * set data into sadb_address.
 3620  */
 3621 static struct mbuf *
 3622 key_setsadbaddr(u_int16_t exttype, const struct sockaddr *saddr, u_int8_t prefixlen, u_int16_t ul_proto)
 3623 {
 3624         struct mbuf *m;
 3625         struct sadb_address *p;
 3626         size_t len;
 3627 
 3628         len = PFKEY_ALIGN8(sizeof(struct sadb_address)) +
 3629             PFKEY_ALIGN8(saddr->sa_len);
 3630         m = m_get2(len, M_NOWAIT, MT_DATA, 0);
 3631         if (m == NULL)
 3632                 return (NULL);
 3633         m_align(m, len);
 3634         m->m_len = len;
 3635         p = mtod(m, struct sadb_address *);
 3636 
 3637         bzero(p, len);
 3638         p->sadb_address_len = PFKEY_UNIT64(len);
 3639         p->sadb_address_exttype = exttype;
 3640         p->sadb_address_proto = ul_proto;
 3641         if (prefixlen == FULLMASK) {
 3642                 switch (saddr->sa_family) {
 3643                 case AF_INET:
 3644                         prefixlen = sizeof(struct in_addr) << 3;
 3645                         break;
 3646                 case AF_INET6:
 3647                         prefixlen = sizeof(struct in6_addr) << 3;
 3648                         break;
 3649                 default:
 3650                         ; /*XXX*/
 3651                 }
 3652         }
 3653         p->sadb_address_prefixlen = prefixlen;
 3654         p->sadb_address_reserved = 0;
 3655 
 3656         bcopy(saddr,
 3657             mtod(m, caddr_t) + PFKEY_ALIGN8(sizeof(struct sadb_address)),
 3658             saddr->sa_len);
 3659 
 3660         return m;
 3661 }
 3662 
 3663 /*
 3664  * set data into sadb_x_sa2.
 3665  */
 3666 static struct mbuf *
 3667 key_setsadbxsa2(u_int8_t mode, u_int32_t seq, u_int32_t reqid)
 3668 {
 3669         struct mbuf *m;
 3670         struct sadb_x_sa2 *p;
 3671         size_t len;
 3672 
 3673         len = PFKEY_ALIGN8(sizeof(struct sadb_x_sa2));
 3674         m = m_get2(len, M_NOWAIT, MT_DATA, 0);
 3675         if (m == NULL)
 3676                 return (NULL);
 3677         m_align(m, len);
 3678         m->m_len = len;
 3679         p = mtod(m, struct sadb_x_sa2 *);
 3680 
 3681         bzero(p, len);
 3682         p->sadb_x_sa2_len = PFKEY_UNIT64(len);
 3683         p->sadb_x_sa2_exttype = SADB_X_EXT_SA2;
 3684         p->sadb_x_sa2_mode = mode;
 3685         p->sadb_x_sa2_reserved1 = 0;
 3686         p->sadb_x_sa2_reserved2 = 0;
 3687         p->sadb_x_sa2_sequence = seq;
 3688         p->sadb_x_sa2_reqid = reqid;
 3689 
 3690         return m;
 3691 }
 3692 
 3693 #ifdef IPSEC_NAT_T
 3694 /*
 3695  * Set a type in sadb_x_nat_t_type.
 3696  */
 3697 static struct mbuf *
 3698 key_setsadbxtype(u_int16_t type)
 3699 {
 3700         struct mbuf *m;
 3701         size_t len;
 3702         struct sadb_x_nat_t_type *p;
 3703 
 3704         len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_type));
 3705 
 3706         m = m_get2(len, M_NOWAIT, MT_DATA, 0);
 3707         if (m == NULL)
 3708                 return (NULL);
 3709         m_align(m, len);
 3710         m->m_len = len;
 3711         p = mtod(m, struct sadb_x_nat_t_type *);
 3712 
 3713         bzero(p, len);
 3714         p->sadb_x_nat_t_type_len = PFKEY_UNIT64(len);
 3715         p->sadb_x_nat_t_type_exttype = SADB_X_EXT_NAT_T_TYPE;
 3716         p->sadb_x_nat_t_type_type = type;
 3717 
 3718         return (m);
 3719 }
 3720 /*
 3721  * Set a port in sadb_x_nat_t_port.
 3722  * In contrast to default RFC 2367 behaviour, port is in network byte order.
 3723  */
 3724 static struct mbuf *
 3725 key_setsadbxport(u_int16_t port, u_int16_t type)
 3726 {
 3727         struct mbuf *m;
 3728         size_t len;
 3729         struct sadb_x_nat_t_port *p;
 3730 
 3731         len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_port));
 3732 
 3733         m = m_get2(len, M_NOWAIT, MT_DATA, 0);
 3734         if (m == NULL)
 3735                 return (NULL);
 3736         m_align(m, len);
 3737         m->m_len = len;
 3738         p = mtod(m, struct sadb_x_nat_t_port *);
 3739 
 3740         bzero(p, len);
 3741         p->sadb_x_nat_t_port_len = PFKEY_UNIT64(len);
 3742         p->sadb_x_nat_t_port_exttype = type;
 3743         p->sadb_x_nat_t_port_port = port;
 3744 
 3745         return (m);
 3746 }
 3747 
 3748 /* 
 3749  * Get port from sockaddr. Port is in network byte order.
 3750  */
 3751 u_int16_t 
 3752 key_portfromsaddr(struct sockaddr *sa)
 3753 {
 3754 
 3755         switch (sa->sa_family) {
 3756 #ifdef INET
 3757         case AF_INET:
 3758                 return ((struct sockaddr_in *)sa)->sin_port;
 3759 #endif
 3760 #ifdef INET6
 3761         case AF_INET6:
 3762                 return ((struct sockaddr_in6 *)sa)->sin6_port;
 3763 #endif
 3764         }
 3765         KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
 3766                 printf("DP %s unexpected address family %d\n",
 3767                         __func__, sa->sa_family));
 3768         return (0);
 3769 }
 3770 #endif /* IPSEC_NAT_T */
 3771 
 3772 /*
 3773  * Set port in struct sockaddr. Port is in network byte order.
 3774  */
 3775 static void
 3776 key_porttosaddr(struct sockaddr *sa, u_int16_t port)
 3777 {
 3778 
 3779         switch (sa->sa_family) {
 3780 #ifdef INET
 3781         case AF_INET:
 3782                 ((struct sockaddr_in *)sa)->sin_port = port;
 3783                 break;
 3784 #endif
 3785 #ifdef INET6
 3786         case AF_INET6:
 3787                 ((struct sockaddr_in6 *)sa)->sin6_port = port;
 3788                 break;
 3789 #endif
 3790         default:
 3791                 ipseclog((LOG_DEBUG, "%s: unexpected address family %d.\n",
 3792                         __func__, sa->sa_family));
 3793                 break;
 3794         }
 3795 }
 3796 
 3797 /*
 3798  * set data into sadb_x_policy
 3799  */
 3800 static struct mbuf *
 3801 key_setsadbxpolicy(u_int16_t type, u_int8_t dir, u_int32_t id)
 3802 {
 3803         struct mbuf *m;
 3804         struct sadb_x_policy *p;
 3805         size_t len;
 3806 
 3807         len = PFKEY_ALIGN8(sizeof(struct sadb_x_policy));
 3808         m = m_get2(len, M_NOWAIT, MT_DATA, 0);
 3809         if (m == NULL)
 3810                 return (NULL);
 3811         m_align(m, len);
 3812         m->m_len = len;
 3813         p = mtod(m, struct sadb_x_policy *);
 3814 
 3815         bzero(p, len);
 3816         p->sadb_x_policy_len = PFKEY_UNIT64(len);
 3817         p->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
 3818         p->sadb_x_policy_type = type;
 3819         p->sadb_x_policy_dir = dir;
 3820         p->sadb_x_policy_id = id;
 3821 
 3822         return m;
 3823 }
 3824 
 3825 /* %%% utilities */
 3826 /* Take a key message (sadb_key) from the socket and turn it into one
 3827  * of the kernel's key structures (seckey).
 3828  *
 3829  * IN: pointer to the src
 3830  * OUT: NULL no more memory
 3831  */
 3832 struct seckey *
 3833 key_dup_keymsg(const struct sadb_key *src, u_int len,
 3834                struct malloc_type *type)
 3835 {
 3836         struct seckey *dst;
 3837         dst = (struct seckey *)malloc(sizeof(struct seckey), type, M_NOWAIT);
 3838         if (dst != NULL) {
 3839                 dst->bits = src->sadb_key_bits;
 3840                 dst->key_data = (char *)malloc(len, type, M_NOWAIT);
 3841                 if (dst->key_data != NULL) {
 3842                         bcopy((const char *)src + sizeof(struct sadb_key), 
 3843                               dst->key_data, len);
 3844                 } else {
 3845                         ipseclog((LOG_DEBUG, "%s: No more memory.\n", 
 3846                                   __func__));
 3847                         free(dst, type);
 3848                         dst = NULL;
 3849                 }
 3850         } else {
 3851                 ipseclog((LOG_DEBUG, "%s: No more memory.\n", 
 3852                           __func__));
 3853 
 3854         }
 3855         return dst;
 3856 }
 3857 
 3858 /* Take a lifetime message (sadb_lifetime) passed in on a socket and
 3859  * turn it into one of the kernel's lifetime structures (seclifetime).
 3860  *
 3861  * IN: pointer to the destination, source and malloc type
 3862  * OUT: NULL, no more memory
 3863  */
 3864 
 3865 static struct seclifetime *
 3866 key_dup_lifemsg(const struct sadb_lifetime *src,
 3867                  struct malloc_type *type)
 3868 {
 3869         struct seclifetime *dst = NULL;
 3870 
 3871         dst = (struct seclifetime *)malloc(sizeof(struct seclifetime), 
 3872                                            type, M_NOWAIT);
 3873         if (dst == NULL) {
 3874                 /* XXX counter */
 3875                 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
 3876         } else {
 3877                 dst->allocations = src->sadb_lifetime_allocations;
 3878                 dst->bytes = src->sadb_lifetime_bytes;
 3879                 dst->addtime = src->sadb_lifetime_addtime;
 3880                 dst->usetime = src->sadb_lifetime_usetime;
 3881         }
 3882         return dst;
 3883 }
 3884 
 3885 /* compare my own address
 3886  * OUT: 1: true, i.e. my address.
 3887  *      0: false
 3888  */
 3889 int
 3890 key_ismyaddr(sa)
 3891         struct sockaddr *sa;
 3892 {
 3893 #ifdef INET
 3894         struct sockaddr_in *sin;
 3895         struct in_ifaddr *ia;
 3896 #endif
 3897 
 3898         IPSEC_ASSERT(sa != NULL, ("null sockaddr"));
 3899 
 3900         switch (sa->sa_family) {
 3901 #ifdef INET
 3902         case AF_INET:
 3903                 sin = (struct sockaddr_in *)sa;
 3904                 IN_IFADDR_RLOCK();
 3905                 TAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link)
 3906                 {
 3907                         if (sin->sin_family == ia->ia_addr.sin_family &&
 3908                             sin->sin_len == ia->ia_addr.sin_len &&
 3909                             sin->sin_addr.s_addr == ia->ia_addr.sin_addr.s_addr)
 3910                         {
 3911                                 IN_IFADDR_RUNLOCK();
 3912                                 return 1;
 3913                         }
 3914                 }
 3915                 IN_IFADDR_RUNLOCK();
 3916                 break;
 3917 #endif
 3918 #ifdef INET6
 3919         case AF_INET6:
 3920                 return key_ismyaddr6((struct sockaddr_in6 *)sa);
 3921 #endif
 3922         }
 3923 
 3924         return 0;
 3925 }
 3926 
 3927 #ifdef INET6
 3928 /*
 3929  * compare my own address for IPv6.
 3930  * 1: ours
 3931  * 0: other
 3932  * NOTE: derived ip6_input() in KAME. This is necessary to modify more.
 3933  */
 3934 #include <netinet6/in6_var.h>
 3935 
 3936 static int
 3937 key_ismyaddr6(sin6)
 3938         struct sockaddr_in6 *sin6;
 3939 {
 3940         struct in6_ifaddr *ia;
 3941 #if 0
 3942         struct in6_multi *in6m;
 3943 #endif
 3944 
 3945         IN6_IFADDR_RLOCK();
 3946         TAILQ_FOREACH(ia, &V_in6_ifaddrhead, ia_link) {
 3947                 if (key_sockaddrcmp((struct sockaddr *)&sin6,
 3948                     (struct sockaddr *)&ia->ia_addr, 0) == 0) {
 3949                         IN6_IFADDR_RUNLOCK();
 3950                         return 1;
 3951                 }
 3952 
 3953 #if 0
 3954                 /*
 3955                  * XXX Multicast
 3956                  * XXX why do we care about multlicast here while we don't care
 3957                  * about IPv4 multicast??
 3958                  * XXX scope
 3959                  */
 3960                 in6m = NULL;
 3961                 IN6_LOOKUP_MULTI(sin6->sin6_addr, ia->ia_ifp, in6m);
 3962                 if (in6m) {
 3963                         IN6_IFADDR_RUNLOCK();
 3964                         return 1;
 3965                 }
 3966 #endif
 3967         }
 3968         IN6_IFADDR_RUNLOCK();
 3969 
 3970         /* loopback, just for safety */
 3971         if (IN6_IS_ADDR_LOOPBACK(&sin6->sin6_addr))
 3972                 return 1;
 3973 
 3974         return 0;
 3975 }
 3976 #endif /*INET6*/
 3977 
 3978 /*
 3979  * compare two secasindex structure.
 3980  * flag can specify to compare 2 saidxes.
 3981  * compare two secasindex structure without both mode and reqid.
 3982  * don't compare port.
 3983  * IN:  
 3984  *      saidx0: source, it can be in SAD.
 3985  *      saidx1: object.
 3986  * OUT: 
 3987  *      1 : equal
 3988  *      0 : not equal
 3989  */
 3990 static int
 3991 key_cmpsaidx(
 3992         const struct secasindex *saidx0,
 3993         const struct secasindex *saidx1,
 3994         int flag)
 3995 {
 3996         int chkport = 0;
 3997 
 3998         /* sanity */
 3999         if (saidx0 == NULL && saidx1 == NULL)
 4000                 return 1;
 4001 
 4002         if (saidx0 == NULL || saidx1 == NULL)
 4003                 return 0;
 4004 
 4005         if (saidx0->proto != saidx1->proto)
 4006                 return 0;
 4007 
 4008         if (flag == CMP_EXACTLY) {
 4009                 if (saidx0->mode != saidx1->mode)
 4010                         return 0;
 4011                 if (saidx0->reqid != saidx1->reqid)
 4012                         return 0;
 4013                 if (bcmp(&saidx0->src, &saidx1->src, saidx0->src.sa.sa_len) != 0 ||
 4014                     bcmp(&saidx0->dst, &saidx1->dst, saidx0->dst.sa.sa_len) != 0)
 4015                         return 0;
 4016         } else {
 4017 
 4018                 /* CMP_MODE_REQID, CMP_REQID, CMP_HEAD */
 4019                 if (flag == CMP_MODE_REQID
 4020                   ||flag == CMP_REQID) {
 4021                         /*
 4022                          * If reqid of SPD is non-zero, unique SA is required.
 4023                          * The result must be of same reqid in this case.
 4024                          */
 4025                         if (saidx1->reqid != 0 && saidx0->reqid != saidx1->reqid)
 4026                                 return 0;
 4027                 }
 4028 
 4029                 if (flag == CMP_MODE_REQID) {
 4030                         if (saidx0->mode != IPSEC_MODE_ANY
 4031                          && saidx0->mode != saidx1->mode)
 4032                                 return 0;
 4033                 }
 4034 
 4035 #ifdef IPSEC_NAT_T
 4036                 /*
 4037                  * If NAT-T is enabled, check ports for tunnel mode.
 4038                  * Do not check ports if they are set to zero in the SPD.
 4039                  * Also do not do it for native transport mode, as there
 4040                  * is no port information available in the SP.
 4041                  */
 4042                 if ((saidx1->mode == IPSEC_MODE_TUNNEL ||
 4043                      (saidx1->mode == IPSEC_MODE_TRANSPORT &&
 4044                       saidx1->proto == IPPROTO_ESP)) &&
 4045                     saidx1->src.sa.sa_family == AF_INET &&
 4046                     saidx1->dst.sa.sa_family == AF_INET &&
 4047                     ((const struct sockaddr_in *)(&saidx1->src))->sin_port &&
 4048                     ((const struct sockaddr_in *)(&saidx1->dst))->sin_port)
 4049                         chkport = 1;
 4050 #endif /* IPSEC_NAT_T */
 4051 
 4052                 if (key_sockaddrcmp(&saidx0->src.sa, &saidx1->src.sa, chkport) != 0) {
 4053                         return 0;
 4054                 }
 4055                 if (key_sockaddrcmp(&saidx0->dst.sa, &saidx1->dst.sa, chkport) != 0) {
 4056                         return 0;
 4057                 }
 4058         }
 4059 
 4060         return 1;
 4061 }
 4062 
 4063 /*
 4064  * compare two secindex structure exactly.
 4065  * IN:
 4066  *      spidx0: source, it is often in SPD.
 4067  *      spidx1: object, it is often from PFKEY message.
 4068  * OUT:
 4069  *      1 : equal
 4070  *      0 : not equal
 4071  */
 4072 static int
 4073 key_cmpspidx_exactly(
 4074         struct secpolicyindex *spidx0,
 4075         struct secpolicyindex *spidx1)
 4076 {
 4077         /* sanity */
 4078         if (spidx0 == NULL && spidx1 == NULL)
 4079                 return 1;
 4080 
 4081         if (spidx0 == NULL || spidx1 == NULL)
 4082                 return 0;
 4083 
 4084         if (spidx0->prefs != spidx1->prefs
 4085          || spidx0->prefd != spidx1->prefd
 4086          || spidx0->ul_proto != spidx1->ul_proto)
 4087                 return 0;
 4088 
 4089         return key_sockaddrcmp(&spidx0->src.sa, &spidx1->src.sa, 1) == 0 &&
 4090                key_sockaddrcmp(&spidx0->dst.sa, &spidx1->dst.sa, 1) == 0;
 4091 }
 4092 
 4093 /*
 4094  * compare two secindex structure with mask.
 4095  * IN:
 4096  *      spidx0: source, it is often in SPD.
 4097  *      spidx1: object, it is often from IP header.
 4098  * OUT:
 4099  *      1 : equal
 4100  *      0 : not equal
 4101  */
 4102 static int
 4103 key_cmpspidx_withmask(
 4104         struct secpolicyindex *spidx0,
 4105         struct secpolicyindex *spidx1)
 4106 {
 4107         /* sanity */
 4108         if (spidx0 == NULL && spidx1 == NULL)
 4109                 return 1;
 4110 
 4111         if (spidx0 == NULL || spidx1 == NULL)
 4112                 return 0;
 4113 
 4114         if (spidx0->src.sa.sa_family != spidx1->src.sa.sa_family ||
 4115             spidx0->dst.sa.sa_family != spidx1->dst.sa.sa_family ||
 4116             spidx0->src.sa.sa_len != spidx1->src.sa.sa_len ||
 4117             spidx0->dst.sa.sa_len != spidx1->dst.sa.sa_len)
 4118                 return 0;
 4119 
 4120         /* if spidx.ul_proto == IPSEC_ULPROTO_ANY, ignore. */
 4121         if (spidx0->ul_proto != (u_int16_t)IPSEC_ULPROTO_ANY
 4122          && spidx0->ul_proto != spidx1->ul_proto)
 4123                 return 0;
 4124 
 4125         switch (spidx0->src.sa.sa_family) {
 4126         case AF_INET:
 4127                 if (spidx0->src.sin.sin_port != IPSEC_PORT_ANY
 4128                  && spidx0->src.sin.sin_port != spidx1->src.sin.sin_port)
 4129                         return 0;
 4130                 if (!key_bbcmp(&spidx0->src.sin.sin_addr,
 4131                     &spidx1->src.sin.sin_addr, spidx0->prefs))
 4132                         return 0;
 4133                 break;
 4134         case AF_INET6:
 4135                 if (spidx0->src.sin6.sin6_port != IPSEC_PORT_ANY
 4136                  && spidx0->src.sin6.sin6_port != spidx1->src.sin6.sin6_port)
 4137                         return 0;
 4138                 /*
 4139                  * scope_id check. if sin6_scope_id is 0, we regard it
 4140                  * as a wildcard scope, which matches any scope zone ID. 
 4141                  */
 4142                 if (spidx0->src.sin6.sin6_scope_id &&
 4143                     spidx1->src.sin6.sin6_scope_id &&
 4144                     spidx0->src.sin6.sin6_scope_id != spidx1->src.sin6.sin6_scope_id)
 4145                         return 0;
 4146                 if (!key_bbcmp(&spidx0->src.sin6.sin6_addr,
 4147                     &spidx1->src.sin6.sin6_addr, spidx0->prefs))
 4148                         return 0;
 4149                 break;
 4150         default:
 4151                 /* XXX */
 4152                 if (bcmp(&spidx0->src, &spidx1->src, spidx0->src.sa.sa_len) != 0)
 4153                         return 0;
 4154                 break;
 4155         }
 4156 
 4157         switch (spidx0->dst.sa.sa_family) {
 4158         case AF_INET:
 4159                 if (spidx0->dst.sin.sin_port != IPSEC_PORT_ANY
 4160                  && spidx0->dst.sin.sin_port != spidx1->dst.sin.sin_port)
 4161                         return 0;
 4162                 if (!key_bbcmp(&spidx0->dst.sin.sin_addr,
 4163                     &spidx1->dst.sin.sin_addr, spidx0->prefd))
 4164                         return 0;
 4165                 break;
 4166         case AF_INET6:
 4167                 if (spidx0->dst.sin6.sin6_port != IPSEC_PORT_ANY
 4168                  && spidx0->dst.sin6.sin6_port != spidx1->dst.sin6.sin6_port)
 4169                         return 0;
 4170                 /*
 4171                  * scope_id check. if sin6_scope_id is 0, we regard it
 4172                  * as a wildcard scope, which matches any scope zone ID. 
 4173                  */
 4174                 if (spidx0->dst.sin6.sin6_scope_id &&
 4175                     spidx1->dst.sin6.sin6_scope_id &&
 4176                     spidx0->dst.sin6.sin6_scope_id != spidx1->dst.sin6.sin6_scope_id)
 4177                         return 0;
 4178                 if (!key_bbcmp(&spidx0->dst.sin6.sin6_addr,
 4179                     &spidx1->dst.sin6.sin6_addr, spidx0->prefd))
 4180                         return 0;
 4181                 break;
 4182         default:
 4183                 /* XXX */
 4184                 if (bcmp(&spidx0->dst, &spidx1->dst, spidx0->dst.sa.sa_len) != 0)
 4185                         return 0;
 4186                 break;
 4187         }
 4188 
 4189         /* XXX Do we check other field ?  e.g. flowinfo */
 4190 
 4191         return 1;
 4192 }
 4193 
 4194 /* returns 0 on match */
 4195 static int
 4196 key_sockaddrcmp(
 4197         const struct sockaddr *sa1,
 4198         const struct sockaddr *sa2,
 4199         int port)
 4200 {
 4201 #ifdef satosin
 4202 #undef satosin
 4203 #endif
 4204 #define satosin(s) ((const struct sockaddr_in *)s)
 4205 #ifdef satosin6
 4206 #undef satosin6
 4207 #endif
 4208 #define satosin6(s) ((const struct sockaddr_in6 *)s)
 4209         if (sa1->sa_family != sa2->sa_family || sa1->sa_len != sa2->sa_len)
 4210                 return 1;
 4211 
 4212         switch (sa1->sa_family) {
 4213         case AF_INET:
 4214                 if (sa1->sa_len != sizeof(struct sockaddr_in))
 4215                         return 1;
 4216                 if (satosin(sa1)->sin_addr.s_addr !=
 4217                     satosin(sa2)->sin_addr.s_addr) {
 4218                         return 1;
 4219                 }
 4220                 if (port && satosin(sa1)->sin_port != satosin(sa2)->sin_port)
 4221                         return 1;
 4222                 break;
 4223         case AF_INET6:
 4224                 if (sa1->sa_len != sizeof(struct sockaddr_in6))
 4225                         return 1;       /*EINVAL*/
 4226                 if (satosin6(sa1)->sin6_scope_id !=
 4227                     satosin6(sa2)->sin6_scope_id) {
 4228                         return 1;
 4229                 }
 4230                 if (!IN6_ARE_ADDR_EQUAL(&satosin6(sa1)->sin6_addr,
 4231                     &satosin6(sa2)->sin6_addr)) {
 4232                         return 1;
 4233                 }
 4234                 if (port &&
 4235                     satosin6(sa1)->sin6_port != satosin6(sa2)->sin6_port) {
 4236                         return 1;
 4237                 }
 4238                 break;
 4239         default:
 4240                 if (bcmp(sa1, sa2, sa1->sa_len) != 0)
 4241                         return 1;
 4242                 break;
 4243         }
 4244 
 4245         return 0;
 4246 #undef satosin
 4247 #undef satosin6
 4248 }
 4249 
 4250 /*
 4251  * compare two buffers with mask.
 4252  * IN:
 4253  *      addr1: source
 4254  *      addr2: object
 4255  *      bits:  Number of bits to compare
 4256  * OUT:
 4257  *      1 : equal
 4258  *      0 : not equal
 4259  */
 4260 static int
 4261 key_bbcmp(const void *a1, const void *a2, u_int bits)
 4262 {
 4263         const unsigned char *p1 = a1;
 4264         const unsigned char *p2 = a2;
 4265 
 4266         /* XXX: This could be considerably faster if we compare a word
 4267          * at a time, but it is complicated on LSB Endian machines */
 4268 
 4269         /* Handle null pointers */
 4270         if (p1 == NULL || p2 == NULL)
 4271                 return (p1 == p2);
 4272 
 4273         while (bits >= 8) {
 4274                 if (*p1++ != *p2++)
 4275                         return 0;
 4276                 bits -= 8;
 4277         }
 4278 
 4279         if (bits > 0) {
 4280                 u_int8_t mask = ~((1<<(8-bits))-1);
 4281                 if ((*p1 & mask) != (*p2 & mask))
 4282                         return 0;
 4283         }
 4284         return 1;       /* Match! */
 4285 }
 4286 
 4287 static void
 4288 key_flush_spd(time_t now)
 4289 {
 4290         static u_int16_t sptree_scangen = 0;
 4291         u_int16_t gen = sptree_scangen++;
 4292         struct secpolicy *sp;
 4293         u_int dir;
 4294 
 4295         /* SPD */
 4296         for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
 4297 restart:
 4298                 SPTREE_LOCK();
 4299                 LIST_FOREACH(sp, &V_sptree[dir], chain) {
 4300                         if (sp->scangen == gen)         /* previously handled */
 4301                                 continue;
 4302                         sp->scangen = gen;
 4303                         if (sp->state == IPSEC_SPSTATE_DEAD &&
 4304                             sp->refcnt == 1) {
 4305                                 /*
 4306                                  * Ensure that we only decrease refcnt once,
 4307                                  * when we're the last consumer.
 4308                                  * Directly call SP_DELREF/key_delsp instead
 4309                                  * of KEY_FREESP to avoid unlocking/relocking
 4310                                  * SPTREE_LOCK before key_delsp: may refcnt
 4311                                  * be increased again during that time ?
 4312                                  * NB: also clean entries created by
 4313                                  * key_spdflush
 4314                                  */
 4315                                 SP_DELREF(sp);
 4316                                 key_delsp(sp);
 4317                                 SPTREE_UNLOCK();
 4318                                 goto restart;
 4319                         }
 4320                         if (sp->lifetime == 0 && sp->validtime == 0)
 4321                                 continue;
 4322                         if ((sp->lifetime && now - sp->created > sp->lifetime)
 4323                          || (sp->validtime && now - sp->lastused > sp->validtime)) {
 4324                                 sp->state = IPSEC_SPSTATE_DEAD;
 4325                                 SPTREE_UNLOCK();
 4326                                 key_spdexpire(sp);
 4327                                 goto restart;
 4328                         }
 4329                 }
 4330                 SPTREE_UNLOCK();
 4331         }
 4332 }
 4333 
 4334 static void
 4335 key_flush_sad(time_t now)
 4336 {
 4337         struct secashead *sah, *nextsah;
 4338         struct secasvar *sav, *nextsav;
 4339 
 4340         /* SAD */
 4341         SAHTREE_LOCK();
 4342         LIST_FOREACH_SAFE(sah, &V_sahtree, chain, nextsah) {
 4343                 /* if sah has been dead, then delete it and process next sah. */
 4344                 if (sah->state == SADB_SASTATE_DEAD) {
 4345                         key_delsah(sah);
 4346                         continue;
 4347                 }
 4348 
 4349                 /* if LARVAL entry doesn't become MATURE, delete it. */
 4350                 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_LARVAL], chain, nextsav) {
 4351                         /* Need to also check refcnt for a larval SA ??? */
 4352                         if (now - sav->created > V_key_larval_lifetime)
 4353                                 KEY_FREESAV(&sav);
 4354                 }
 4355 
 4356                 /*
 4357                  * check MATURE entry to start to send expire message
 4358                  * whether or not.
 4359                  */
 4360                 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_MATURE], chain, nextsav) {
 4361                         /* we don't need to check. */
 4362                         if (sav->lft_s == NULL)
 4363                                 continue;
 4364 
 4365                         /* sanity check */
 4366                         if (sav->lft_c == NULL) {
 4367                                 ipseclog((LOG_DEBUG,"%s: there is no CURRENT "
 4368                                         "time, why?\n", __func__));
 4369                                 continue;
 4370                         }
 4371 
 4372                         /* check SOFT lifetime */
 4373                         if (sav->lft_s->addtime != 0 &&
 4374                             now - sav->created > sav->lft_s->addtime) {
 4375                                 key_sa_chgstate(sav, SADB_SASTATE_DYING);
 4376                                 /* 
 4377                                  * Actually, only send expire message if
 4378                                  * SA has been used, as it was done before,
 4379                                  * but should we always send such message,
 4380                                  * and let IKE daemon decide if it should be
 4381                                  * renegotiated or not ?
 4382                                  * XXX expire message will actually NOT be
 4383                                  * sent if SA is only used after soft
 4384                                  * lifetime has been reached, see below
 4385                                  * (DYING state)
 4386                                  */
 4387                                 if (sav->lft_c->usetime != 0)
 4388                                         key_expire(sav);
 4389                         }
 4390                         /* check SOFT lifetime by bytes */
 4391                         /*
 4392                          * XXX I don't know the way to delete this SA
 4393                          * when new SA is installed.  Caution when it's
 4394                          * installed too big lifetime by time.
 4395                          */
 4396                         else if (sav->lft_s->bytes != 0 &&
 4397                             sav->lft_s->bytes < sav->lft_c->bytes) {
 4398 
 4399                                 key_sa_chgstate(sav, SADB_SASTATE_DYING);
 4400                                 /*
 4401                                  * XXX If we keep to send expire
 4402                                  * message in the status of
 4403                                  * DYING. Do remove below code.
 4404                                  */
 4405                                 key_expire(sav);
 4406                         }
 4407                 }
 4408 
 4409                 /* check DYING entry to change status to DEAD. */
 4410                 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_DYING], chain, nextsav) {
 4411                         /* we don't need to check. */
 4412                         if (sav->lft_h == NULL)
 4413                                 continue;
 4414 
 4415                         /* sanity check */
 4416                         if (sav->lft_c == NULL) {
 4417                                 ipseclog((LOG_DEBUG, "%s: there is no CURRENT "
 4418                                         "time, why?\n", __func__));
 4419                                 continue;
 4420                         }
 4421 
 4422                         if (sav->lft_h->addtime != 0 &&
 4423                             now - sav->created > sav->lft_h->addtime) {
 4424                                 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
 4425                                 KEY_FREESAV(&sav);
 4426                         }
 4427 #if 0   /* XXX Should we keep to send expire message until HARD lifetime ? */
 4428                         else if (sav->lft_s != NULL
 4429                               && sav->lft_s->addtime != 0
 4430                               && now - sav->created > sav->lft_s->addtime) {
 4431                                 /*
 4432                                  * XXX: should be checked to be
 4433                                  * installed the valid SA.
 4434                                  */
 4435 
 4436                                 /*
 4437                                  * If there is no SA then sending
 4438                                  * expire message.
 4439                                  */
 4440                                 key_expire(sav);
 4441                         }
 4442 #endif
 4443                         /* check HARD lifetime by bytes */
 4444                         else if (sav->lft_h->bytes != 0 &&
 4445                             sav->lft_h->bytes < sav->lft_c->bytes) {
 4446                                 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
 4447                                 KEY_FREESAV(&sav);
 4448                         }
 4449                 }
 4450 
 4451                 /* delete entry in DEAD */
 4452                 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_DEAD], chain, nextsav) {
 4453                         /* sanity check */
 4454                         if (sav->state != SADB_SASTATE_DEAD) {
 4455                                 ipseclog((LOG_DEBUG, "%s: invalid sav->state "
 4456                                         "(queue: %d SA: %d): kill it anyway\n",
 4457                                         __func__,
 4458                                         SADB_SASTATE_DEAD, sav->state));
 4459                         }
 4460                         /*
 4461                          * do not call key_freesav() here.
 4462                          * sav should already be freed, and sav->refcnt
 4463                          * shows other references to sav
 4464                          * (such as from SPD).
 4465                          */
 4466                 }
 4467         }
 4468         SAHTREE_UNLOCK();
 4469 }
 4470 
 4471 static void
 4472 key_flush_acq(time_t now)
 4473 {
 4474         struct secacq *acq, *nextacq;
 4475 
 4476         /* ACQ tree */
 4477         ACQ_LOCK();
 4478         for (acq = LIST_FIRST(&V_acqtree); acq != NULL; acq = nextacq) {
 4479                 nextacq = LIST_NEXT(acq, chain);
 4480                 if (now - acq->created > V_key_blockacq_lifetime
 4481                  && __LIST_CHAINED(acq)) {
 4482                         LIST_REMOVE(acq, chain);
 4483                         free(acq, M_IPSEC_SAQ);
 4484                 }
 4485         }
 4486         ACQ_UNLOCK();
 4487 }
 4488 
 4489 static void
 4490 key_flush_spacq(time_t now)
 4491 {
 4492         struct secspacq *acq, *nextacq;
 4493 
 4494         /* SP ACQ tree */
 4495         SPACQ_LOCK();
 4496         for (acq = LIST_FIRST(&V_spacqtree); acq != NULL; acq = nextacq) {
 4497                 nextacq = LIST_NEXT(acq, chain);
 4498                 if (now - acq->created > V_key_blockacq_lifetime
 4499                  && __LIST_CHAINED(acq)) {
 4500                         LIST_REMOVE(acq, chain);
 4501                         free(acq, M_IPSEC_SAQ);
 4502                 }
 4503         }
 4504         SPACQ_UNLOCK();
 4505 }
 4506 
 4507 /*
 4508  * time handler.
 4509  * scanning SPD and SAD to check status for each entries,
 4510  * and do to remove or to expire.
 4511  * XXX: year 2038 problem may remain.
 4512  */
 4513 void
 4514 key_timehandler(void)
 4515 {
 4516         VNET_ITERATOR_DECL(vnet_iter);
 4517         time_t now = time_second;
 4518 
 4519         VNET_LIST_RLOCK_NOSLEEP();
 4520         VNET_FOREACH(vnet_iter) {
 4521                 CURVNET_SET(vnet_iter);
 4522                 key_flush_spd(now);
 4523                 key_flush_sad(now);
 4524                 key_flush_acq(now);
 4525                 key_flush_spacq(now);
 4526                 CURVNET_RESTORE();
 4527         }
 4528         VNET_LIST_RUNLOCK_NOSLEEP();
 4529 
 4530 #ifndef IPSEC_DEBUG2
 4531         /* do exchange to tick time !! */
 4532         (void)timeout((void *)key_timehandler, (void *)0, hz);
 4533 #endif /* IPSEC_DEBUG2 */
 4534 }
 4535 
 4536 u_long
 4537 key_random()
 4538 {
 4539         u_long value;
 4540 
 4541         key_randomfill(&value, sizeof(value));
 4542         return value;
 4543 }
 4544 
 4545 void
 4546 key_randomfill(p, l)
 4547         void *p;
 4548         size_t l;
 4549 {
 4550         size_t n;
 4551         u_long v;
 4552         static int warn = 1;
 4553 
 4554         n = 0;
 4555         n = (size_t)read_random(p, (u_int)l);
 4556         /* last resort */
 4557         while (n < l) {
 4558                 v = random();
 4559                 bcopy(&v, (u_int8_t *)p + n,
 4560                     l - n < sizeof(v) ? l - n : sizeof(v));
 4561                 n += sizeof(v);
 4562 
 4563                 if (warn) {
 4564                         printf("WARNING: pseudo-random number generator "
 4565                             "used for IPsec processing\n");
 4566                         warn = 0;
 4567                 }
 4568         }
 4569 }
 4570 
 4571 /*
 4572  * map SADB_SATYPE_* to IPPROTO_*.
 4573  * if satype == SADB_SATYPE then satype is mapped to ~0.
 4574  * OUT:
 4575  *      0: invalid satype.
 4576  */
 4577 static u_int16_t
 4578 key_satype2proto(u_int8_t satype)
 4579 {
 4580         switch (satype) {
 4581         case SADB_SATYPE_UNSPEC:
 4582                 return IPSEC_PROTO_ANY;
 4583         case SADB_SATYPE_AH:
 4584                 return IPPROTO_AH;
 4585         case SADB_SATYPE_ESP:
 4586                 return IPPROTO_ESP;
 4587         case SADB_X_SATYPE_IPCOMP:
 4588                 return IPPROTO_IPCOMP;
 4589         case SADB_X_SATYPE_TCPSIGNATURE:
 4590                 return IPPROTO_TCP;
 4591         default:
 4592                 return 0;
 4593         }
 4594         /* NOTREACHED */
 4595 }
 4596 
 4597 /*
 4598  * map IPPROTO_* to SADB_SATYPE_*
 4599  * OUT:
 4600  *      0: invalid protocol type.
 4601  */
 4602 static u_int8_t
 4603 key_proto2satype(u_int16_t proto)
 4604 {
 4605         switch (proto) {
 4606         case IPPROTO_AH:
 4607                 return SADB_SATYPE_AH;
 4608         case IPPROTO_ESP:
 4609                 return SADB_SATYPE_ESP;
 4610         case IPPROTO_IPCOMP:
 4611                 return SADB_X_SATYPE_IPCOMP;
 4612         case IPPROTO_TCP:
 4613                 return SADB_X_SATYPE_TCPSIGNATURE;
 4614         default:
 4615                 return 0;
 4616         }
 4617         /* NOTREACHED */
 4618 }
 4619 
 4620 /* %%% PF_KEY */
 4621 /*
 4622  * SADB_GETSPI processing is to receive
 4623  *      <base, (SA2), src address, dst address, (SPI range)>
 4624  * from the IKMPd, to assign a unique spi value, to hang on the INBOUND
 4625  * tree with the status of LARVAL, and send
 4626  *      <base, SA(*), address(SD)>
 4627  * to the IKMPd.
 4628  *
 4629  * IN:  mhp: pointer to the pointer to each header.
 4630  * OUT: NULL if fail.
 4631  *      other if success, return pointer to the message to send.
 4632  */
 4633 static int
 4634 key_getspi(so, m, mhp)
 4635         struct socket *so;
 4636         struct mbuf *m;
 4637         const struct sadb_msghdr *mhp;
 4638 {
 4639         struct sadb_address *src0, *dst0;
 4640         struct secasindex saidx;
 4641         struct secashead *newsah;
 4642         struct secasvar *newsav;
 4643         u_int8_t proto;
 4644         u_int32_t spi;
 4645         u_int8_t mode;
 4646         u_int32_t reqid;
 4647         int error;
 4648 
 4649         IPSEC_ASSERT(so != NULL, ("null socket"));
 4650         IPSEC_ASSERT(m != NULL, ("null mbuf"));
 4651         IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
 4652         IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
 4653 
 4654         if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
 4655             mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
 4656                 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
 4657                         __func__));
 4658                 return key_senderror(so, m, EINVAL);
 4659         }
 4660         if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
 4661             mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
 4662                 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
 4663                         __func__));
 4664                 return key_senderror(so, m, EINVAL);
 4665         }
 4666         if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
 4667                 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
 4668                 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
 4669         } else {
 4670                 mode = IPSEC_MODE_ANY;
 4671                 reqid = 0;
 4672         }
 4673 
 4674         src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
 4675         dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
 4676 
 4677         /* map satype to proto */
 4678         if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
 4679                 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
 4680                         __func__));
 4681                 return key_senderror(so, m, EINVAL);
 4682         }
 4683 
 4684         /*
 4685          * Make sure the port numbers are zero.
 4686          * In case of NAT-T we will update them later if needed.
 4687          */
 4688         switch (((struct sockaddr *)(src0 + 1))->sa_family) {
 4689         case AF_INET:
 4690                 if (((struct sockaddr *)(src0 + 1))->sa_len !=
 4691                     sizeof(struct sockaddr_in))
 4692                         return key_senderror(so, m, EINVAL);
 4693                 ((struct sockaddr_in *)(src0 + 1))->sin_port = 0;
 4694                 break;
 4695         case AF_INET6:
 4696                 if (((struct sockaddr *)(src0 + 1))->sa_len !=
 4697                     sizeof(struct sockaddr_in6))
 4698                         return key_senderror(so, m, EINVAL);
 4699                 ((struct sockaddr_in6 *)(src0 + 1))->sin6_port = 0;
 4700                 break;
 4701         default:
 4702                 ; /*???*/
 4703         }
 4704         switch (((struct sockaddr *)(dst0 + 1))->sa_family) {
 4705         case AF_INET:
 4706                 if (((struct sockaddr *)(dst0 + 1))->sa_len !=
 4707                     sizeof(struct sockaddr_in))
 4708                         return key_senderror(so, m, EINVAL);
 4709                 ((struct sockaddr_in *)(dst0 + 1))->sin_port = 0;
 4710                 break;
 4711         case AF_INET6:
 4712                 if (((struct sockaddr *)(dst0 + 1))->sa_len !=
 4713                     sizeof(struct sockaddr_in6))
 4714                         return key_senderror(so, m, EINVAL);
 4715                 ((struct sockaddr_in6 *)(dst0 + 1))->sin6_port = 0;
 4716                 break;
 4717         default:
 4718                 ; /*???*/
 4719         }
 4720 
 4721         /* XXX boundary check against sa_len */
 4722         KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx);
 4723 
 4724 #ifdef IPSEC_NAT_T
 4725         /*
 4726          * Handle NAT-T info if present.
 4727          * We made sure the port numbers are zero above, so we do
 4728          * not have to worry in case we do not update them.
 4729          */
 4730         if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL)
 4731                 ipseclog((LOG_DEBUG, "%s: NAT-T OAi present\n", __func__));
 4732         if (mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL)
 4733                 ipseclog((LOG_DEBUG, "%s: NAT-T OAr present\n", __func__));
 4734 
 4735         if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] != NULL &&
 4736             mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL &&
 4737             mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) {
 4738                 struct sadb_x_nat_t_type *type;
 4739                 struct sadb_x_nat_t_port *sport, *dport;
 4740 
 4741                 if (mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type) ||
 4742                     mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) ||
 4743                     mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) {
 4744                         ipseclog((LOG_DEBUG, "%s: invalid nat-t message "
 4745                             "passed.\n", __func__));
 4746                         return key_senderror(so, m, EINVAL);
 4747                 }
 4748 
 4749                 sport = (struct sadb_x_nat_t_port *)
 4750                     mhp->ext[SADB_X_EXT_NAT_T_SPORT];
 4751                 dport = (struct sadb_x_nat_t_port *)
 4752                     mhp->ext[SADB_X_EXT_NAT_T_DPORT];
 4753 
 4754                 if (sport)
 4755                         KEY_PORTTOSADDR(&saidx.src, sport->sadb_x_nat_t_port_port);
 4756                 if (dport)
 4757                         KEY_PORTTOSADDR(&saidx.dst, dport->sadb_x_nat_t_port_port);
 4758         }
 4759 #endif
 4760 
 4761         /* SPI allocation */
 4762         spi = key_do_getnewspi((struct sadb_spirange *)mhp->ext[SADB_EXT_SPIRANGE],
 4763                                &saidx);
 4764         if (spi == 0)
 4765                 return key_senderror(so, m, EINVAL);
 4766 
 4767         /* get a SA index */
 4768         if ((newsah = key_getsah(&saidx)) == NULL) {
 4769                 /* create a new SA index */
 4770                 if ((newsah = key_newsah(&saidx)) == NULL) {
 4771                         ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__));
 4772                         return key_senderror(so, m, ENOBUFS);
 4773                 }
 4774         }
 4775 
 4776         /* get a new SA */
 4777         /* XXX rewrite */
 4778         newsav = KEY_NEWSAV(m, mhp, newsah, &error);
 4779         if (newsav == NULL) {
 4780                 /* XXX don't free new SA index allocated in above. */
 4781                 return key_senderror(so, m, error);
 4782         }
 4783 
 4784         /* set spi */
 4785         newsav->spi = htonl(spi);
 4786 
 4787         /* delete the entry in acqtree */
 4788         if (mhp->msg->sadb_msg_seq != 0) {
 4789                 struct secacq *acq;
 4790                 if ((acq = key_getacqbyseq(mhp->msg->sadb_msg_seq)) != NULL) {
 4791                         /* reset counter in order to deletion by timehandler. */
 4792                         acq->created = time_second;
 4793                         acq->count = 0;
 4794                 }
 4795         }
 4796 
 4797     {
 4798         struct mbuf *n, *nn;
 4799         struct sadb_sa *m_sa;
 4800         struct sadb_msg *newmsg;
 4801         int off, len;
 4802 
 4803         /* create new sadb_msg to reply. */
 4804         len = PFKEY_ALIGN8(sizeof(struct sadb_msg)) +
 4805             PFKEY_ALIGN8(sizeof(struct sadb_sa));
 4806 
 4807         MGETHDR(n, M_NOWAIT, MT_DATA);
 4808         if (len > MHLEN) {
 4809                 MCLGET(n, M_NOWAIT);
 4810                 if ((n->m_flags & M_EXT) == 0) {
 4811                         m_freem(n);
 4812                         n = NULL;
 4813                 }
 4814         }
 4815         if (!n)
 4816                 return key_senderror(so, m, ENOBUFS);
 4817 
 4818         n->m_len = len;
 4819         n->m_next = NULL;
 4820         off = 0;
 4821 
 4822         m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off);
 4823         off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
 4824 
 4825         m_sa = (struct sadb_sa *)(mtod(n, caddr_t) + off);
 4826         m_sa->sadb_sa_len = PFKEY_UNIT64(sizeof(struct sadb_sa));
 4827         m_sa->sadb_sa_exttype = SADB_EXT_SA;
 4828         m_sa->sadb_sa_spi = htonl(spi);
 4829         off += PFKEY_ALIGN8(sizeof(struct sadb_sa));
 4830 
 4831         IPSEC_ASSERT(off == len,
 4832                 ("length inconsistency (off %u len %u)", off, len));
 4833 
 4834         n->m_next = key_gather_mbuf(m, mhp, 0, 2, SADB_EXT_ADDRESS_SRC,
 4835             SADB_EXT_ADDRESS_DST);
 4836         if (!n->m_next) {
 4837                 m_freem(n);
 4838                 return key_senderror(so, m, ENOBUFS);
 4839         }
 4840 
 4841         if (n->m_len < sizeof(struct sadb_msg)) {
 4842                 n = m_pullup(n, sizeof(struct sadb_msg));
 4843                 if (n == NULL)
 4844                         return key_sendup_mbuf(so, m, KEY_SENDUP_ONE);
 4845         }
 4846 
 4847         n->m_pkthdr.len = 0;
 4848         for (nn = n; nn; nn = nn->m_next)
 4849                 n->m_pkthdr.len += nn->m_len;
 4850 
 4851         newmsg = mtod(n, struct sadb_msg *);
 4852         newmsg->sadb_msg_seq = newsav->seq;
 4853         newmsg->sadb_msg_errno = 0;
 4854         newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
 4855 
 4856         m_freem(m);
 4857         return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
 4858     }
 4859 }
 4860 
 4861 /*
 4862  * allocating new SPI
 4863  * called by key_getspi().
 4864  * OUT:
 4865  *      0:      failure.
 4866  *      others: success.
 4867  */
 4868 static u_int32_t
 4869 key_do_getnewspi(spirange, saidx)
 4870         struct sadb_spirange *spirange;
 4871         struct secasindex *saidx;
 4872 {
 4873         u_int32_t newspi;
 4874         u_int32_t min, max;
 4875         int count = V_key_spi_trycnt;
 4876 
 4877         /* set spi range to allocate */
 4878         if (spirange != NULL) {
 4879                 min = spirange->sadb_spirange_min;
 4880                 max = spirange->sadb_spirange_max;
 4881         } else {
 4882                 min = V_key_spi_minval;
 4883                 max = V_key_spi_maxval;
 4884         }
 4885         /* IPCOMP needs 2-byte SPI */
 4886         if (saidx->proto == IPPROTO_IPCOMP) {
 4887                 u_int32_t t;
 4888                 if (min >= 0x10000)
 4889                         min = 0xffff;
 4890                 if (max >= 0x10000)
 4891                         max = 0xffff;
 4892                 if (min > max) {
 4893                         t = min; min = max; max = t;
 4894                 }
 4895         }
 4896 
 4897         if (min == max) {
 4898                 if (key_checkspidup(saidx, min) != NULL) {
 4899                         ipseclog((LOG_DEBUG, "%s: SPI %u exists already.\n",
 4900                                 __func__, min));
 4901                         return 0;
 4902                 }
 4903 
 4904                 count--; /* taking one cost. */
 4905                 newspi = min;
 4906 
 4907         } else {
 4908 
 4909                 /* init SPI */
 4910                 newspi = 0;
 4911 
 4912                 /* when requesting to allocate spi ranged */
 4913                 while (count--) {
 4914                         /* generate pseudo-random SPI value ranged. */
 4915                         newspi = min + (key_random() % (max - min + 1));
 4916 
 4917                         if (key_checkspidup(saidx, newspi) == NULL)
 4918                                 break;
 4919                 }
 4920 
 4921                 if (count == 0 || newspi == 0) {
 4922                         ipseclog((LOG_DEBUG, "%s: to allocate spi is failed.\n",
 4923                                 __func__));
 4924                         return 0;
 4925                 }
 4926         }
 4927 
 4928         /* statistics */
 4929         keystat.getspi_count =
 4930                 (keystat.getspi_count + V_key_spi_trycnt - count) / 2;
 4931 
 4932         return newspi;
 4933 }
 4934 
 4935 /*
 4936  * SADB_UPDATE processing
 4937  * receive
 4938  *   <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
 4939  *       key(AE), (identity(SD),) (sensitivity)>
 4940  * from the ikmpd, and update a secasvar entry whose status is SADB_SASTATE_LARVAL.
 4941  * and send
 4942  *   <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
 4943  *       (identity(SD),) (sensitivity)>
 4944  * to the ikmpd.
 4945  *
 4946  * m will always be freed.
 4947  */
 4948 static int
 4949 key_update(so, m, mhp)
 4950         struct socket *so;
 4951         struct mbuf *m;
 4952         const struct sadb_msghdr *mhp;
 4953 {
 4954         struct sadb_sa *sa0;
 4955         struct sadb_address *src0, *dst0;
 4956 #ifdef IPSEC_NAT_T
 4957         struct sadb_x_nat_t_type *type;
 4958         struct sadb_x_nat_t_port *sport, *dport;
 4959         struct sadb_address *iaddr, *raddr;
 4960         struct sadb_x_nat_t_frag *frag;
 4961 #endif
 4962         struct secasindex saidx;
 4963         struct secashead *sah;
 4964         struct secasvar *sav;
 4965         u_int16_t proto;
 4966         u_int8_t mode;
 4967         u_int32_t reqid;
 4968         int error;
 4969 
 4970         IPSEC_ASSERT(so != NULL, ("null socket"));
 4971         IPSEC_ASSERT(m != NULL, ("null mbuf"));
 4972         IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
 4973         IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
 4974 
 4975         /* map satype to proto */
 4976         if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
 4977                 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
 4978                         __func__));
 4979                 return key_senderror(so, m, EINVAL);
 4980         }
 4981 
 4982         if (mhp->ext[SADB_EXT_SA] == NULL ||
 4983             mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
 4984             mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
 4985             (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP &&
 4986              mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) ||
 4987             (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH &&
 4988              mhp->ext[SADB_EXT_KEY_AUTH] == NULL) ||
 4989             (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL &&
 4990              mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) ||
 4991             (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL &&
 4992              mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) {
 4993                 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
 4994                         __func__));
 4995                 return key_senderror(so, m, EINVAL);
 4996         }
 4997         if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
 4998             mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
 4999             mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
 5000                 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
 5001                         __func__));
 5002                 return key_senderror(so, m, EINVAL);
 5003         }
 5004         if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
 5005                 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
 5006                 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
 5007         } else {
 5008                 mode = IPSEC_MODE_ANY;
 5009                 reqid = 0;
 5010         }
 5011         /* XXX boundary checking for other extensions */
 5012 
 5013         sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
 5014         src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
 5015         dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
 5016 
 5017         /* XXX boundary check against sa_len */
 5018         KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx);
 5019 
 5020         /*
 5021          * Make sure the port numbers are zero.
 5022          * In case of NAT-T we will update them later if needed.
 5023          */
 5024         KEY_PORTTOSADDR(&saidx.src, 0);
 5025         KEY_PORTTOSADDR(&saidx.dst, 0);
 5026 
 5027 #ifdef IPSEC_NAT_T
 5028         /*
 5029          * Handle NAT-T info if present.
 5030          */
 5031         if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] != NULL &&
 5032             mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL &&
 5033             mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) {
 5034 
 5035                 if (mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type) ||
 5036                     mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) ||
 5037                     mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) {
 5038                         ipseclog((LOG_DEBUG, "%s: invalid message.\n",
 5039                             __func__));
 5040                         return key_senderror(so, m, EINVAL);
 5041                 }
 5042 
 5043                 type = (struct sadb_x_nat_t_type *)
 5044                     mhp->ext[SADB_X_EXT_NAT_T_TYPE];
 5045                 sport = (struct sadb_x_nat_t_port *)
 5046                     mhp->ext[SADB_X_EXT_NAT_T_SPORT];
 5047                 dport = (struct sadb_x_nat_t_port *)
 5048                     mhp->ext[SADB_X_EXT_NAT_T_DPORT];
 5049         } else {
 5050                 type = 0;
 5051                 sport = dport = 0;
 5052         }
 5053         if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL &&
 5054             mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) {
 5055                 if (mhp->extlen[SADB_X_EXT_NAT_T_OAI] < sizeof(*iaddr) ||
 5056                     mhp->extlen[SADB_X_EXT_NAT_T_OAR] < sizeof(*raddr)) {
 5057                         ipseclog((LOG_DEBUG, "%s: invalid message\n",
 5058                             __func__));
 5059                         return key_senderror(so, m, EINVAL);
 5060                 }
 5061                 iaddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAI];
 5062                 raddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAR];
 5063                 ipseclog((LOG_DEBUG, "%s: NAT-T OAi/r present\n", __func__));
 5064         } else {
 5065                 iaddr = raddr = NULL;
 5066         }
 5067         if (mhp->ext[SADB_X_EXT_NAT_T_FRAG] != NULL) {
 5068                 if (mhp->extlen[SADB_X_EXT_NAT_T_FRAG] < sizeof(*frag)) {
 5069                         ipseclog((LOG_DEBUG, "%s: invalid message\n",
 5070                             __func__));
 5071                         return key_senderror(so, m, EINVAL);
 5072                 }
 5073                 frag = (struct sadb_x_nat_t_frag *)
 5074                     mhp->ext[SADB_X_EXT_NAT_T_FRAG];
 5075         } else {
 5076                 frag = 0;
 5077         }
 5078 #endif
 5079 
 5080         /* get a SA header */
 5081         if ((sah = key_getsah(&saidx)) == NULL) {
 5082                 ipseclog((LOG_DEBUG, "%s: no SA index found.\n", __func__));
 5083                 return key_senderror(so, m, ENOENT);
 5084         }
 5085 
 5086         /* set spidx if there */
 5087         /* XXX rewrite */
 5088         error = key_setident(sah, m, mhp);
 5089         if (error)
 5090                 return key_senderror(so, m, error);
 5091 
 5092         /* find a SA with sequence number. */
 5093 #ifdef IPSEC_DOSEQCHECK
 5094         if (mhp->msg->sadb_msg_seq != 0
 5095          && (sav = key_getsavbyseq(sah, mhp->msg->sadb_msg_seq)) == NULL) {
 5096                 ipseclog((LOG_DEBUG, "%s: no larval SA with sequence %u "
 5097                         "exists.\n", __func__, mhp->msg->sadb_msg_seq));
 5098                 return key_senderror(so, m, ENOENT);
 5099         }
 5100 #else
 5101         SAHTREE_LOCK();
 5102         sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
 5103         SAHTREE_UNLOCK();
 5104         if (sav == NULL) {
 5105                 ipseclog((LOG_DEBUG, "%s: no such a SA found (spi:%u)\n",
 5106                         __func__, (u_int32_t)ntohl(sa0->sadb_sa_spi)));
 5107                 return key_senderror(so, m, EINVAL);
 5108         }
 5109 #endif
 5110 
 5111         /* validity check */
 5112         if (sav->sah->saidx.proto != proto) {
 5113                 ipseclog((LOG_DEBUG, "%s: protocol mismatched "
 5114                         "(DB=%u param=%u)\n", __func__,
 5115                         sav->sah->saidx.proto, proto));
 5116                 return key_senderror(so, m, EINVAL);
 5117         }
 5118 #ifdef IPSEC_DOSEQCHECK
 5119         if (sav->spi != sa0->sadb_sa_spi) {
 5120                 ipseclog((LOG_DEBUG, "%s: SPI mismatched (DB:%u param:%u)\n",
 5121                     __func__,
 5122                     (u_int32_t)ntohl(sav->spi),
 5123                     (u_int32_t)ntohl(sa0->sadb_sa_spi)));
 5124                 return key_senderror(so, m, EINVAL);
 5125         }
 5126 #endif
 5127         if (sav->pid != mhp->msg->sadb_msg_pid) {
 5128                 ipseclog((LOG_DEBUG, "%s: pid mismatched (DB:%u param:%u)\n",
 5129                     __func__, sav->pid, mhp->msg->sadb_msg_pid));
 5130                 return key_senderror(so, m, EINVAL);
 5131         }
 5132 
 5133         /* copy sav values */
 5134         error = key_setsaval(sav, m, mhp);
 5135         if (error) {
 5136                 KEY_FREESAV(&sav);
 5137                 return key_senderror(so, m, error);
 5138         }
 5139 
 5140 #ifdef IPSEC_NAT_T
 5141         /*
 5142          * Handle more NAT-T info if present,
 5143          * now that we have a sav to fill.
 5144          */
 5145         if (type)
 5146                 sav->natt_type = type->sadb_x_nat_t_type_type;
 5147 
 5148         if (sport)
 5149                 KEY_PORTTOSADDR(&sav->sah->saidx.src,
 5150                     sport->sadb_x_nat_t_port_port);
 5151         if (dport)
 5152                 KEY_PORTTOSADDR(&sav->sah->saidx.dst,
 5153                     dport->sadb_x_nat_t_port_port);
 5154 
 5155 #if 0
 5156         /*
 5157          * In case SADB_X_EXT_NAT_T_FRAG was not given, leave it at 0.
 5158          * We should actually check for a minimum MTU here, if we
 5159          * want to support it in ip_output.
 5160          */
 5161         if (frag)
 5162                 sav->natt_esp_frag_len = frag->sadb_x_nat_t_frag_fraglen;
 5163 #endif
 5164 #endif
 5165 
 5166         /* check SA values to be mature. */
 5167         if ((mhp->msg->sadb_msg_errno = key_mature(sav)) != 0) {
 5168                 KEY_FREESAV(&sav);
 5169                 return key_senderror(so, m, 0);
 5170         }
 5171 
 5172     {
 5173         struct mbuf *n;
 5174 
 5175         /* set msg buf from mhp */
 5176         n = key_getmsgbuf_x1(m, mhp);
 5177         if (n == NULL) {
 5178                 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
 5179                 return key_senderror(so, m, ENOBUFS);
 5180         }
 5181 
 5182         m_freem(m);
 5183         return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
 5184     }
 5185 }
 5186 
 5187 /*
 5188  * search SAD with sequence for a SA which state is SADB_SASTATE_LARVAL.
 5189  * only called by key_update().
 5190  * OUT:
 5191  *      NULL    : not found
 5192  *      others  : found, pointer to a SA.
 5193  */
 5194 #ifdef IPSEC_DOSEQCHECK
 5195 static struct secasvar *
 5196 key_getsavbyseq(sah, seq)
 5197         struct secashead *sah;
 5198         u_int32_t seq;
 5199 {
 5200         struct secasvar *sav;
 5201         u_int state;
 5202 
 5203         state = SADB_SASTATE_LARVAL;
 5204 
 5205         /* search SAD with sequence number ? */
 5206         LIST_FOREACH(sav, &sah->savtree[state], chain) {
 5207 
 5208                 KEY_CHKSASTATE(state, sav->state, __func__);
 5209 
 5210                 if (sav->seq == seq) {
 5211                         sa_addref(sav);
 5212                         KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
 5213                                 printf("DP %s cause refcnt++:%d SA:%p\n",
 5214                                         __func__, sav->refcnt, sav));
 5215                         return sav;
 5216                 }
 5217         }
 5218 
 5219         return NULL;
 5220 }
 5221 #endif
 5222 
 5223 /*
 5224  * SADB_ADD processing
 5225  * add an entry to SA database, when received
 5226  *   <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
 5227  *       key(AE), (identity(SD),) (sensitivity)>
 5228  * from the ikmpd,
 5229  * and send
 5230  *   <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
 5231  *       (identity(SD),) (sensitivity)>
 5232  * to the ikmpd.
 5233  *
 5234  * IGNORE identity and sensitivity messages.
 5235  *
 5236  * m will always be freed.
 5237  */
 5238 static int
 5239 key_add(so, m, mhp)
 5240         struct socket *so;
 5241         struct mbuf *m;
 5242         const struct sadb_msghdr *mhp;
 5243 {
 5244         struct sadb_sa *sa0;
 5245         struct sadb_address *src0, *dst0;
 5246 #ifdef IPSEC_NAT_T
 5247         struct sadb_x_nat_t_type *type;
 5248         struct sadb_address *iaddr, *raddr;
 5249         struct sadb_x_nat_t_frag *frag;
 5250 #endif
 5251         struct secasindex saidx;
 5252         struct secashead *newsah;
 5253         struct secasvar *newsav;
 5254         u_int16_t proto;
 5255         u_int8_t mode;
 5256         u_int32_t reqid;
 5257         int error;
 5258 
 5259         IPSEC_ASSERT(so != NULL, ("null socket"));
 5260         IPSEC_ASSERT(m != NULL, ("null mbuf"));
 5261         IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
 5262         IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
 5263 
 5264         /* map satype to proto */
 5265         if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
 5266                 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
 5267                         __func__));
 5268                 return key_senderror(so, m, EINVAL);
 5269         }
 5270 
 5271         if (mhp->ext[SADB_EXT_SA] == NULL ||
 5272             mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
 5273             mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
 5274             (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP &&
 5275              mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) ||
 5276             (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH &&
 5277              mhp->ext[SADB_EXT_KEY_AUTH] == NULL) ||
 5278             (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL &&
 5279              mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) ||
 5280             (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL &&
 5281              mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) {
 5282                 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
 5283                         __func__));
 5284                 return key_senderror(so, m, EINVAL);
 5285         }
 5286         if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
 5287             mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
 5288             mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
 5289                 /* XXX need more */
 5290                 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
 5291                         __func__));
 5292                 return key_senderror(so, m, EINVAL);
 5293         }
 5294         if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
 5295                 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
 5296                 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
 5297         } else {
 5298                 mode = IPSEC_MODE_ANY;
 5299                 reqid = 0;
 5300         }
 5301 
 5302         sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
 5303         src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
 5304         dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
 5305 
 5306         /* XXX boundary check against sa_len */
 5307         KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx);
 5308 
 5309         /*
 5310          * Make sure the port numbers are zero.
 5311          * In case of NAT-T we will update them later if needed.
 5312          */
 5313         KEY_PORTTOSADDR(&saidx.src, 0);
 5314         KEY_PORTTOSADDR(&saidx.dst, 0);
 5315 
 5316 #ifdef IPSEC_NAT_T
 5317         /*
 5318          * Handle NAT-T info if present.
 5319          */
 5320         if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] != NULL &&
 5321             mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL &&
 5322             mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) {
 5323                 struct sadb_x_nat_t_port *sport, *dport;
 5324 
 5325                 if (mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type) ||
 5326                     mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) ||
 5327                     mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) {
 5328                         ipseclog((LOG_DEBUG, "%s: invalid message.\n",
 5329                             __func__));
 5330                         return key_senderror(so, m, EINVAL);
 5331                 }
 5332 
 5333                 type = (struct sadb_x_nat_t_type *)
 5334                     mhp->ext[SADB_X_EXT_NAT_T_TYPE];
 5335                 sport = (struct sadb_x_nat_t_port *)
 5336                     mhp->ext[SADB_X_EXT_NAT_T_SPORT];
 5337                 dport = (struct sadb_x_nat_t_port *)
 5338                     mhp->ext[SADB_X_EXT_NAT_T_DPORT];
 5339 
 5340                 if (sport)
 5341                         KEY_PORTTOSADDR(&saidx.src,
 5342                             sport->sadb_x_nat_t_port_port);
 5343                 if (dport)
 5344                         KEY_PORTTOSADDR(&saidx.dst,
 5345                             dport->sadb_x_nat_t_port_port);
 5346         } else {
 5347                 type = 0;
 5348         }
 5349         if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL &&
 5350             mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) {
 5351                 if (mhp->extlen[SADB_X_EXT_NAT_T_OAI] < sizeof(*iaddr) ||
 5352                     mhp->extlen[SADB_X_EXT_NAT_T_OAR] < sizeof(*raddr)) {
 5353                         ipseclog((LOG_DEBUG, "%s: invalid message\n",
 5354                             __func__));
 5355                         return key_senderror(so, m, EINVAL);
 5356                 }
 5357                 iaddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAI];
 5358                 raddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAR];
 5359                 ipseclog((LOG_DEBUG, "%s: NAT-T OAi/r present\n", __func__));
 5360         } else {
 5361                 iaddr = raddr = NULL;
 5362         }
 5363         if (mhp->ext[SADB_X_EXT_NAT_T_FRAG] != NULL) {
 5364                 if (mhp->extlen[SADB_X_EXT_NAT_T_FRAG] < sizeof(*frag)) {
 5365                         ipseclog((LOG_DEBUG, "%s: invalid message\n",
 5366                             __func__));
 5367                         return key_senderror(so, m, EINVAL);
 5368                 }
 5369                 frag = (struct sadb_x_nat_t_frag *)
 5370                     mhp->ext[SADB_X_EXT_NAT_T_FRAG];
 5371         } else {
 5372                 frag = 0;
 5373         }
 5374 #endif
 5375 
 5376         /* get a SA header */
 5377         if ((newsah = key_getsah(&saidx)) == NULL) {
 5378                 /* create a new SA header */
 5379                 if ((newsah = key_newsah(&saidx)) == NULL) {
 5380                         ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__));
 5381                         return key_senderror(so, m, ENOBUFS);
 5382                 }
 5383         }
 5384 
 5385         /* set spidx if there */
 5386         /* XXX rewrite */
 5387         error = key_setident(newsah, m, mhp);
 5388         if (error) {
 5389                 return key_senderror(so, m, error);
 5390         }
 5391 
 5392         /* create new SA entry. */
 5393         /* We can create new SA only if SPI is differenct. */
 5394         SAHTREE_LOCK();
 5395         newsav = key_getsavbyspi(newsah, sa0->sadb_sa_spi);
 5396         SAHTREE_UNLOCK();
 5397         if (newsav != NULL) {
 5398                 ipseclog((LOG_DEBUG, "%s: SA already exists.\n", __func__));
 5399                 return key_senderror(so, m, EEXIST);
 5400         }
 5401         newsav = KEY_NEWSAV(m, mhp, newsah, &error);
 5402         if (newsav == NULL) {
 5403                 return key_senderror(so, m, error);
 5404         }
 5405 
 5406 #ifdef IPSEC_NAT_T
 5407         /*
 5408          * Handle more NAT-T info if present,
 5409          * now that we have a sav to fill.
 5410          */
 5411         if (type)
 5412                 newsav->natt_type = type->sadb_x_nat_t_type_type;
 5413 
 5414 #if 0
 5415         /*
 5416          * In case SADB_X_EXT_NAT_T_FRAG was not given, leave it at 0.
 5417          * We should actually check for a minimum MTU here, if we
 5418          * want to support it in ip_output.
 5419          */
 5420         if (frag)
 5421                 newsav->natt_esp_frag_len = frag->sadb_x_nat_t_frag_fraglen;
 5422 #endif
 5423 #endif
 5424 
 5425         /* check SA values to be mature. */
 5426         if ((error = key_mature(newsav)) != 0) {
 5427                 KEY_FREESAV(&newsav);
 5428                 return key_senderror(so, m, error);
 5429         }
 5430 
 5431         /*
 5432          * don't call key_freesav() here, as we would like to keep the SA
 5433          * in the database on success.
 5434          */
 5435 
 5436     {
 5437         struct mbuf *n;
 5438 
 5439         /* set msg buf from mhp */
 5440         n = key_getmsgbuf_x1(m, mhp);
 5441         if (n == NULL) {
 5442                 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
 5443                 return key_senderror(so, m, ENOBUFS);
 5444         }
 5445 
 5446         m_freem(m);
 5447         return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
 5448     }
 5449 }
 5450 
 5451 /* m is retained */
 5452 static int
 5453 key_setident(sah, m, mhp)
 5454         struct secashead *sah;
 5455         struct mbuf *m;
 5456         const struct sadb_msghdr *mhp;
 5457 {
 5458         const struct sadb_ident *idsrc, *iddst;
 5459         int idsrclen, iddstlen;
 5460 
 5461         IPSEC_ASSERT(sah != NULL, ("null secashead"));
 5462         IPSEC_ASSERT(m != NULL, ("null mbuf"));
 5463         IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
 5464         IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
 5465 
 5466         /* don't make buffer if not there */
 5467         if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL &&
 5468             mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) {
 5469                 sah->idents = NULL;
 5470                 sah->identd = NULL;
 5471                 return 0;
 5472         }
 5473         
 5474         if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL ||
 5475             mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) {
 5476                 ipseclog((LOG_DEBUG, "%s: invalid identity.\n", __func__));
 5477                 return EINVAL;
 5478         }
 5479 
 5480         idsrc = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_SRC];
 5481         iddst = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_DST];
 5482         idsrclen = mhp->extlen[SADB_EXT_IDENTITY_SRC];
 5483         iddstlen = mhp->extlen[SADB_EXT_IDENTITY_DST];
 5484 
 5485         /* validity check */
 5486         if (idsrc->sadb_ident_type != iddst->sadb_ident_type) {
 5487                 ipseclog((LOG_DEBUG, "%s: ident type mismatch.\n", __func__));
 5488                 return EINVAL;
 5489         }
 5490 
 5491         switch (idsrc->sadb_ident_type) {
 5492         case SADB_IDENTTYPE_PREFIX:
 5493         case SADB_IDENTTYPE_FQDN:
 5494         case SADB_IDENTTYPE_USERFQDN:
 5495         default:
 5496                 /* XXX do nothing */
 5497                 sah->idents = NULL;
 5498                 sah->identd = NULL;
 5499                 return 0;
 5500         }
 5501 
 5502         /* make structure */
 5503         sah->idents = malloc(sizeof(struct secident), M_IPSEC_MISC, M_NOWAIT);
 5504         if (sah->idents == NULL) {
 5505                 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
 5506                 return ENOBUFS;
 5507         }
 5508         sah->identd = malloc(sizeof(struct secident), M_IPSEC_MISC, M_NOWAIT);
 5509         if (sah->identd == NULL) {
 5510                 free(sah->idents, M_IPSEC_MISC);
 5511                 sah->idents = NULL;
 5512                 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
 5513                 return ENOBUFS;
 5514         }
 5515         sah->idents->type = idsrc->sadb_ident_type;
 5516         sah->idents->id = idsrc->sadb_ident_id;
 5517 
 5518         sah->identd->type = iddst->sadb_ident_type;
 5519         sah->identd->id = iddst->sadb_ident_id;
 5520 
 5521         return 0;
 5522 }
 5523 
 5524 /*
 5525  * m will not be freed on return.
 5526  * it is caller's responsibility to free the result. 
 5527  */
 5528 static struct mbuf *
 5529 key_getmsgbuf_x1(m, mhp)
 5530         struct mbuf *m;
 5531         const struct sadb_msghdr *mhp;
 5532 {
 5533         struct mbuf *n;
 5534 
 5535         IPSEC_ASSERT(m != NULL, ("null mbuf"));
 5536         IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
 5537         IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
 5538 
 5539         /* create new sadb_msg to reply. */
 5540         n = key_gather_mbuf(m, mhp, 1, 9, SADB_EXT_RESERVED,
 5541             SADB_EXT_SA, SADB_X_EXT_SA2,
 5542             SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST,
 5543             SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT,
 5544             SADB_EXT_IDENTITY_SRC, SADB_EXT_IDENTITY_DST);
 5545         if (!n)
 5546                 return NULL;
 5547 
 5548         if (n->m_len < sizeof(struct sadb_msg)) {
 5549                 n = m_pullup(n, sizeof(struct sadb_msg));
 5550                 if (n == NULL)
 5551                         return NULL;
 5552         }
 5553         mtod(n, struct sadb_msg *)->sadb_msg_errno = 0;
 5554         mtod(n, struct sadb_msg *)->sadb_msg_len =
 5555             PFKEY_UNIT64(n->m_pkthdr.len);
 5556 
 5557         return n;
 5558 }
 5559 
 5560 static int key_delete_all __P((struct socket *, struct mbuf *,
 5561         const struct sadb_msghdr *, u_int16_t));
 5562 
 5563 /*
 5564  * SADB_DELETE processing
 5565  * receive
 5566  *   <base, SA(*), address(SD)>
 5567  * from the ikmpd, and set SADB_SASTATE_DEAD,
 5568  * and send,
 5569  *   <base, SA(*), address(SD)>
 5570  * to the ikmpd.
 5571  *
 5572  * m will always be freed.
 5573  */
 5574 static int
 5575 key_delete(so, m, mhp)
 5576         struct socket *so;
 5577         struct mbuf *m;
 5578         const struct sadb_msghdr *mhp;
 5579 {
 5580         struct sadb_sa *sa0;
 5581         struct sadb_address *src0, *dst0;
 5582         struct secasindex saidx;
 5583         struct secashead *sah;
 5584         struct secasvar *sav = NULL;
 5585         u_int16_t proto;
 5586 
 5587         IPSEC_ASSERT(so != NULL, ("null socket"));
 5588         IPSEC_ASSERT(m != NULL, ("null mbuf"));
 5589         IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
 5590         IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
 5591 
 5592         /* map satype to proto */
 5593         if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
 5594                 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
 5595                         __func__));
 5596                 return key_senderror(so, m, EINVAL);
 5597         }
 5598 
 5599         if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
 5600             mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
 5601                 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
 5602                         __func__));
 5603                 return key_senderror(so, m, EINVAL);
 5604         }
 5605 
 5606         if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
 5607             mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
 5608                 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
 5609                         __func__));
 5610                 return key_senderror(so, m, EINVAL);
 5611         }
 5612 
 5613         if (mhp->ext[SADB_EXT_SA] == NULL) {
 5614                 /*
 5615                  * Caller wants us to delete all non-LARVAL SAs
 5616                  * that match the src/dst.  This is used during
 5617                  * IKE INITIAL-CONTACT.
 5618                  */
 5619                 ipseclog((LOG_DEBUG, "%s: doing delete all.\n", __func__));
 5620                 return key_delete_all(so, m, mhp, proto);
 5621         } else if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa)) {
 5622                 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
 5623                         __func__));
 5624                 return key_senderror(so, m, EINVAL);
 5625         }
 5626 
 5627         sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
 5628         src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
 5629         dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
 5630 
 5631         /* XXX boundary check against sa_len */
 5632         KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx);
 5633 
 5634         /*
 5635          * Make sure the port numbers are zero.
 5636          * In case of NAT-T we will update them later if needed.
 5637          */
 5638         KEY_PORTTOSADDR(&saidx.src, 0);
 5639         KEY_PORTTOSADDR(&saidx.dst, 0);
 5640 
 5641 #ifdef IPSEC_NAT_T
 5642         /*
 5643          * Handle NAT-T info if present.
 5644          */
 5645         if (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL &&
 5646             mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) {
 5647                 struct sadb_x_nat_t_port *sport, *dport;
 5648 
 5649                 if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) ||
 5650                     mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) {
 5651                         ipseclog((LOG_DEBUG, "%s: invalid message.\n",
 5652                             __func__));
 5653                         return key_senderror(so, m, EINVAL);
 5654                 }
 5655 
 5656                 sport = (struct sadb_x_nat_t_port *)
 5657                     mhp->ext[SADB_X_EXT_NAT_T_SPORT];
 5658                 dport = (struct sadb_x_nat_t_port *)
 5659                     mhp->ext[SADB_X_EXT_NAT_T_DPORT];
 5660 
 5661                 if (sport)
 5662                         KEY_PORTTOSADDR(&saidx.src,
 5663                             sport->sadb_x_nat_t_port_port);
 5664                 if (dport)
 5665                         KEY_PORTTOSADDR(&saidx.dst,
 5666                             dport->sadb_x_nat_t_port_port);
 5667         }
 5668 #endif
 5669 
 5670         /* get a SA header */
 5671         SAHTREE_LOCK();
 5672         LIST_FOREACH(sah, &V_sahtree, chain) {
 5673                 if (sah->state == SADB_SASTATE_DEAD)
 5674                         continue;
 5675                 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0)
 5676                         continue;
 5677 
 5678                 /* get a SA with SPI. */
 5679                 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
 5680                 if (sav)
 5681                         break;
 5682         }
 5683         if (sah == NULL) {
 5684                 SAHTREE_UNLOCK();
 5685                 ipseclog((LOG_DEBUG, "%s: no SA found.\n", __func__));
 5686                 return key_senderror(so, m, ENOENT);
 5687         }
 5688 
 5689         key_sa_chgstate(sav, SADB_SASTATE_DEAD);
 5690         KEY_FREESAV(&sav);
 5691         SAHTREE_UNLOCK();
 5692 
 5693     {
 5694         struct mbuf *n;
 5695         struct sadb_msg *newmsg;
 5696 
 5697         /* create new sadb_msg to reply. */
 5698         /* XXX-BZ NAT-T extensions? */
 5699         n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED,
 5700             SADB_EXT_SA, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
 5701         if (!n)
 5702                 return key_senderror(so, m, ENOBUFS);
 5703 
 5704         if (n->m_len < sizeof(struct sadb_msg)) {
 5705                 n = m_pullup(n, sizeof(struct sadb_msg));
 5706                 if (n == NULL)
 5707                         return key_senderror(so, m, ENOBUFS);
 5708         }
 5709         newmsg = mtod(n, struct sadb_msg *);
 5710         newmsg->sadb_msg_errno = 0;
 5711         newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
 5712 
 5713         m_freem(m);
 5714         return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
 5715     }
 5716 }
 5717 
 5718 /*
 5719  * delete all SAs for src/dst.  Called from key_delete().
 5720  */
 5721 static int
 5722 key_delete_all(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp,
 5723     u_int16_t proto)
 5724 {
 5725         struct sadb_address *src0, *dst0;
 5726         struct secasindex saidx;
 5727         struct secashead *sah;
 5728         struct secasvar *sav, *nextsav;
 5729         u_int stateidx, state;
 5730 
 5731         src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
 5732         dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
 5733 
 5734         /* XXX boundary check against sa_len */
 5735         KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx);
 5736 
 5737         /*
 5738          * Make sure the port numbers are zero.
 5739          * In case of NAT-T we will update them later if needed.
 5740          */
 5741         KEY_PORTTOSADDR(&saidx.src, 0);
 5742         KEY_PORTTOSADDR(&saidx.dst, 0);
 5743 
 5744 #ifdef IPSEC_NAT_T
 5745         /*
 5746          * Handle NAT-T info if present.
 5747          */
 5748 
 5749         if (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL &&
 5750             mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) {
 5751                 struct sadb_x_nat_t_port *sport, *dport;
 5752 
 5753                 if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) ||
 5754                     mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) {
 5755                         ipseclog((LOG_DEBUG, "%s: invalid message.\n",
 5756                             __func__));
 5757                         return key_senderror(so, m, EINVAL);
 5758                 }
 5759 
 5760                 sport = (struct sadb_x_nat_t_port *)
 5761                     mhp->ext[SADB_X_EXT_NAT_T_SPORT];
 5762                 dport = (struct sadb_x_nat_t_port *)
 5763                     mhp->ext[SADB_X_EXT_NAT_T_DPORT];
 5764 
 5765                 if (sport)
 5766                         KEY_PORTTOSADDR(&saidx.src,
 5767                             sport->sadb_x_nat_t_port_port);
 5768                 if (dport)
 5769                         KEY_PORTTOSADDR(&saidx.dst,
 5770                             dport->sadb_x_nat_t_port_port);
 5771         }
 5772 #endif
 5773 
 5774         SAHTREE_LOCK();
 5775         LIST_FOREACH(sah, &V_sahtree, chain) {
 5776                 if (sah->state == SADB_SASTATE_DEAD)
 5777                         continue;
 5778                 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0)
 5779                         continue;
 5780 
 5781                 /* Delete all non-LARVAL SAs. */
 5782                 for (stateidx = 0;
 5783                      stateidx < _ARRAYLEN(saorder_state_alive);
 5784                      stateidx++) {
 5785                         state = saorder_state_alive[stateidx];
 5786                         if (state == SADB_SASTATE_LARVAL)
 5787                                 continue;
 5788                         for (sav = LIST_FIRST(&sah->savtree[state]);
 5789                              sav != NULL; sav = nextsav) {
 5790                                 nextsav = LIST_NEXT(sav, chain);
 5791                                 /* sanity check */
 5792                                 if (sav->state != state) {
 5793                                         ipseclog((LOG_DEBUG, "%s: invalid "
 5794                                                 "sav->state (queue %d SA %d)\n",
 5795                                                 __func__, state, sav->state));
 5796                                         continue;
 5797                                 }
 5798                                 
 5799                                 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
 5800                                 KEY_FREESAV(&sav);
 5801                         }
 5802                 }
 5803         }
 5804         SAHTREE_UNLOCK();
 5805     {
 5806         struct mbuf *n;
 5807         struct sadb_msg *newmsg;
 5808 
 5809         /* create new sadb_msg to reply. */
 5810         /* XXX-BZ NAT-T extensions? */
 5811         n = key_gather_mbuf(m, mhp, 1, 3, SADB_EXT_RESERVED,
 5812             SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
 5813         if (!n)
 5814                 return key_senderror(so, m, ENOBUFS);
 5815 
 5816         if (n->m_len < sizeof(struct sadb_msg)) {
 5817                 n = m_pullup(n, sizeof(struct sadb_msg));
 5818                 if (n == NULL)
 5819                         return key_senderror(so, m, ENOBUFS);
 5820         }
 5821         newmsg = mtod(n, struct sadb_msg *);
 5822         newmsg->sadb_msg_errno = 0;
 5823         newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
 5824 
 5825         m_freem(m);
 5826         return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
 5827     }
 5828 }
 5829 
 5830 /*
 5831  * SADB_GET processing
 5832  * receive
 5833  *   <base, SA(*), address(SD)>
 5834  * from the ikmpd, and get a SP and a SA to respond,
 5835  * and send,
 5836  *   <base, SA, (lifetime(HSC),) address(SD), (address(P),) key(AE),
 5837  *       (identity(SD),) (sensitivity)>
 5838  * to the ikmpd.
 5839  *
 5840  * m will always be freed.
 5841  */
 5842 static int
 5843 key_get(so, m, mhp)
 5844         struct socket *so;
 5845         struct mbuf *m;
 5846         const struct sadb_msghdr *mhp;
 5847 {
 5848         struct sadb_sa *sa0;
 5849         struct sadb_address *src0, *dst0;
 5850         struct secasindex saidx;
 5851         struct secashead *sah;
 5852         struct secasvar *sav = NULL;
 5853         u_int16_t proto;
 5854 
 5855         IPSEC_ASSERT(so != NULL, ("null socket"));
 5856         IPSEC_ASSERT(m != NULL, ("null mbuf"));
 5857         IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
 5858         IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
 5859 
 5860         /* map satype to proto */
 5861         if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
 5862                 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
 5863                         __func__));
 5864                 return key_senderror(so, m, EINVAL);
 5865         }
 5866 
 5867         if (mhp->ext[SADB_EXT_SA] == NULL ||
 5868             mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
 5869             mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
 5870                 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
 5871                         __func__));
 5872                 return key_senderror(so, m, EINVAL);
 5873         }
 5874         if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
 5875             mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
 5876             mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
 5877                 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
 5878                         __func__));
 5879                 return key_senderror(so, m, EINVAL);
 5880         }
 5881 
 5882         sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
 5883         src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
 5884         dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
 5885 
 5886         /* XXX boundary check against sa_len */
 5887         KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx);
 5888 
 5889         /*
 5890          * Make sure the port numbers are zero.
 5891          * In case of NAT-T we will update them later if needed.
 5892          */
 5893         KEY_PORTTOSADDR(&saidx.src, 0);
 5894         KEY_PORTTOSADDR(&saidx.dst, 0);
 5895 
 5896 #ifdef IPSEC_NAT_T
 5897         /*
 5898          * Handle NAT-T info if present.
 5899          */
 5900 
 5901         if (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL &&
 5902             mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) {
 5903                 struct sadb_x_nat_t_port *sport, *dport;
 5904 
 5905                 if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) ||
 5906                     mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) {
 5907                         ipseclog((LOG_DEBUG, "%s: invalid message.\n",
 5908                             __func__));
 5909                         return key_senderror(so, m, EINVAL);
 5910                 }
 5911 
 5912                 sport = (struct sadb_x_nat_t_port *)
 5913                     mhp->ext[SADB_X_EXT_NAT_T_SPORT];
 5914                 dport = (struct sadb_x_nat_t_port *)
 5915                     mhp->ext[SADB_X_EXT_NAT_T_DPORT];
 5916 
 5917                 if (sport)
 5918                         KEY_PORTTOSADDR(&saidx.src,
 5919                             sport->sadb_x_nat_t_port_port);
 5920                 if (dport)
 5921                         KEY_PORTTOSADDR(&saidx.dst,
 5922                             dport->sadb_x_nat_t_port_port);
 5923         }
 5924 #endif
 5925 
 5926         /* get a SA header */
 5927         SAHTREE_LOCK();
 5928         LIST_FOREACH(sah, &V_sahtree, chain) {
 5929                 if (sah->state == SADB_SASTATE_DEAD)
 5930                         continue;
 5931                 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0)
 5932                         continue;
 5933 
 5934                 /* get a SA with SPI. */
 5935                 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
 5936                 if (sav)
 5937                         break;
 5938         }
 5939         SAHTREE_UNLOCK();
 5940         if (sah == NULL) {
 5941                 ipseclog((LOG_DEBUG, "%s: no SA found.\n", __func__));
 5942                 return key_senderror(so, m, ENOENT);
 5943         }
 5944 
 5945     {
 5946         struct mbuf *n;
 5947         u_int8_t satype;
 5948 
 5949         /* map proto to satype */
 5950         if ((satype = key_proto2satype(sah->saidx.proto)) == 0) {
 5951                 ipseclog((LOG_DEBUG, "%s: there was invalid proto in SAD.\n",
 5952                         __func__));
 5953                 return key_senderror(so, m, EINVAL);
 5954         }
 5955 
 5956         /* create new sadb_msg to reply. */
 5957         n = key_setdumpsa(sav, SADB_GET, satype, mhp->msg->sadb_msg_seq,
 5958             mhp->msg->sadb_msg_pid);
 5959         if (!n)
 5960                 return key_senderror(so, m, ENOBUFS);
 5961 
 5962         m_freem(m);
 5963         return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
 5964     }
 5965 }
 5966 
 5967 /* XXX make it sysctl-configurable? */
 5968 static void
 5969 key_getcomb_setlifetime(comb)
 5970         struct sadb_comb *comb;
 5971 {
 5972 
 5973         comb->sadb_comb_soft_allocations = 1;
 5974         comb->sadb_comb_hard_allocations = 1;
 5975         comb->sadb_comb_soft_bytes = 0;
 5976         comb->sadb_comb_hard_bytes = 0;
 5977         comb->sadb_comb_hard_addtime = 86400;   /* 1 day */
 5978         comb->sadb_comb_soft_addtime = comb->sadb_comb_soft_addtime * 80 / 100;
 5979         comb->sadb_comb_soft_usetime = 28800;   /* 8 hours */
 5980         comb->sadb_comb_hard_usetime = comb->sadb_comb_hard_usetime * 80 / 100;
 5981 }
 5982 
 5983 /*
 5984  * XXX reorder combinations by preference
 5985  * XXX no idea if the user wants ESP authentication or not
 5986  */
 5987 static struct mbuf *
 5988 key_getcomb_esp()
 5989 {
 5990         struct sadb_comb *comb;
 5991         struct enc_xform *algo;
 5992         struct mbuf *result = NULL, *m, *n;
 5993         int encmin;
 5994         int i, off, o;
 5995         int totlen;
 5996         const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
 5997 
 5998         m = NULL;
 5999         for (i = 1; i <= SADB_EALG_MAX; i++) {
 6000                 algo = esp_algorithm_lookup(i);
 6001                 if (algo == NULL)
 6002                         continue;
 6003 
 6004                 /* discard algorithms with key size smaller than system min */
 6005                 if (_BITS(algo->maxkey) < V_ipsec_esp_keymin)
 6006                         continue;
 6007                 if (_BITS(algo->minkey) < V_ipsec_esp_keymin)
 6008                         encmin = V_ipsec_esp_keymin;
 6009                 else
 6010                         encmin = _BITS(algo->minkey);
 6011 
 6012                 if (V_ipsec_esp_auth)
 6013                         m = key_getcomb_ah();
 6014                 else {
 6015                         IPSEC_ASSERT(l <= MLEN,
 6016                                 ("l=%u > MLEN=%lu", l, (u_long) MLEN));
 6017                         MGET(m, M_NOWAIT, MT_DATA);
 6018                         if (m) {
 6019                                 M_ALIGN(m, l);
 6020                                 m->m_len = l;
 6021                                 m->m_next = NULL;
 6022                                 bzero(mtod(m, caddr_t), m->m_len);
 6023                         }
 6024                 }
 6025                 if (!m)
 6026                         goto fail;
 6027 
 6028                 totlen = 0;
 6029                 for (n = m; n; n = n->m_next)
 6030                         totlen += n->m_len;
 6031                 IPSEC_ASSERT((totlen % l) == 0, ("totlen=%u, l=%u", totlen, l));
 6032 
 6033