FreeBSD/Linux Kernel Cross Reference
sys/netipsec/key.c
1 /* $FreeBSD$ */
2 /* $KAME: key.c,v 1.191 2001/06/27 10:46:49 sakane Exp $ */
3
4 /*-
5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of the project nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 */
32
33 /*
34 * This code is referd to RFC 2367
35 */
36
37 #include "opt_inet.h"
38 #include "opt_inet6.h"
39 #include "opt_ipsec.h"
40
41 #include <sys/types.h>
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/kernel.h>
45 #include <sys/lock.h>
46 #include <sys/mutex.h>
47 #include <sys/mbuf.h>
48 #include <sys/domain.h>
49 #include <sys/protosw.h>
50 #include <sys/malloc.h>
51 #include <sys/socket.h>
52 #include <sys/socketvar.h>
53 #include <sys/sysctl.h>
54 #include <sys/errno.h>
55 #include <sys/proc.h>
56 #include <sys/queue.h>
57 #include <sys/refcount.h>
58 #include <sys/syslog.h>
59
60 #include <net/if.h>
61 #include <net/raw_cb.h>
62 #include <net/vnet.h>
63
64 #include <netinet/in.h>
65 #include <netinet/in_systm.h>
66 #include <netinet/ip.h>
67 #include <netinet/in_var.h>
68
69 #ifdef INET6
70 #include <netinet/ip6.h>
71 #include <netinet6/in6_var.h>
72 #include <netinet6/ip6_var.h>
73 #endif /* INET6 */
74
75 #if defined(INET) || defined(INET6)
76 #include <netinet/in_pcb.h>
77 #endif
78 #ifdef INET6
79 #include <netinet6/in6_pcb.h>
80 #endif /* INET6 */
81
82 #include <net/pfkeyv2.h>
83 #include <netipsec/keydb.h>
84 #include <netipsec/key.h>
85 #include <netipsec/keysock.h>
86 #include <netipsec/key_debug.h>
87
88 #include <netipsec/ipsec.h>
89 #ifdef INET6
90 #include <netipsec/ipsec6.h>
91 #endif
92
93 #include <netipsec/xform.h>
94
95 #include <machine/stdarg.h>
96
97 /* randomness */
98 #include <sys/random.h>
99
100 #define FULLMASK 0xff
101 #define _BITS(bytes) ((bytes) << 3)
102
103 /*
104 * Note on SA reference counting:
105 * - SAs that are not in DEAD state will have (total external reference + 1)
106 * following value in reference count field. they cannot be freed and are
107 * referenced from SA header.
108 * - SAs that are in DEAD state will have (total external reference)
109 * in reference count field. they are ready to be freed. reference from
110 * SA header will be removed in key_delsav(), when the reference count
111 * field hits 0 (= no external reference other than from SA header.
112 */
113
114 VNET_DEFINE(u_int32_t, key_debug_level) = 0;
115 static VNET_DEFINE(u_int, key_spi_trycnt) = 1000;
116 static VNET_DEFINE(u_int32_t, key_spi_minval) = 0x100;
117 static VNET_DEFINE(u_int32_t, key_spi_maxval) = 0x0fffffff; /* XXX */
118 static VNET_DEFINE(u_int32_t, policy_id) = 0;
119 /*interval to initialize randseed,1(m)*/
120 static VNET_DEFINE(u_int, key_int_random) = 60;
121 /* interval to expire acquiring, 30(s)*/
122 static VNET_DEFINE(u_int, key_larval_lifetime) = 30;
123 /* counter for blocking SADB_ACQUIRE.*/
124 static VNET_DEFINE(int, key_blockacq_count) = 10;
125 /* lifetime for blocking SADB_ACQUIRE.*/
126 static VNET_DEFINE(int, key_blockacq_lifetime) = 20;
127 /* preferred old sa rather than new sa.*/
128 static VNET_DEFINE(int, key_preferred_oldsa) = 1;
129 #define V_key_spi_trycnt VNET(key_spi_trycnt)
130 #define V_key_spi_minval VNET(key_spi_minval)
131 #define V_key_spi_maxval VNET(key_spi_maxval)
132 #define V_policy_id VNET(policy_id)
133 #define V_key_int_random VNET(key_int_random)
134 #define V_key_larval_lifetime VNET(key_larval_lifetime)
135 #define V_key_blockacq_count VNET(key_blockacq_count)
136 #define V_key_blockacq_lifetime VNET(key_blockacq_lifetime)
137 #define V_key_preferred_oldsa VNET(key_preferred_oldsa)
138
139 static VNET_DEFINE(u_int32_t, acq_seq) = 0;
140 #define V_acq_seq VNET(acq_seq)
141
142 /* SPD */
143 static VNET_DEFINE(LIST_HEAD(_sptree, secpolicy), sptree[IPSEC_DIR_MAX]);
144 #define V_sptree VNET(sptree)
145 static struct mtx sptree_lock;
146 #define SPTREE_LOCK_INIT() \
147 mtx_init(&sptree_lock, "sptree", \
148 "fast ipsec security policy database", MTX_DEF)
149 #define SPTREE_LOCK_DESTROY() mtx_destroy(&sptree_lock)
150 #define SPTREE_LOCK() mtx_lock(&sptree_lock)
151 #define SPTREE_UNLOCK() mtx_unlock(&sptree_lock)
152 #define SPTREE_LOCK_ASSERT() mtx_assert(&sptree_lock, MA_OWNED)
153
154 static VNET_DEFINE(LIST_HEAD(_sahtree, secashead), sahtree); /* SAD */
155 #define V_sahtree VNET(sahtree)
156 static struct mtx sahtree_lock;
157 #define SAHTREE_LOCK_INIT() \
158 mtx_init(&sahtree_lock, "sahtree", \
159 "fast ipsec security association database", MTX_DEF)
160 #define SAHTREE_LOCK_DESTROY() mtx_destroy(&sahtree_lock)
161 #define SAHTREE_LOCK() mtx_lock(&sahtree_lock)
162 #define SAHTREE_UNLOCK() mtx_unlock(&sahtree_lock)
163 #define SAHTREE_LOCK_ASSERT() mtx_assert(&sahtree_lock, MA_OWNED)
164
165 /* registed list */
166 static VNET_DEFINE(LIST_HEAD(_regtree, secreg), regtree[SADB_SATYPE_MAX + 1]);
167 #define V_regtree VNET(regtree)
168 static struct mtx regtree_lock;
169 #define REGTREE_LOCK_INIT() \
170 mtx_init(®tree_lock, "regtree", "fast ipsec regtree", MTX_DEF)
171 #define REGTREE_LOCK_DESTROY() mtx_destroy(®tree_lock)
172 #define REGTREE_LOCK() mtx_lock(®tree_lock)
173 #define REGTREE_UNLOCK() mtx_unlock(®tree_lock)
174 #define REGTREE_LOCK_ASSERT() mtx_assert(®tree_lock, MA_OWNED)
175
176 static VNET_DEFINE(LIST_HEAD(_acqtree, secacq), acqtree); /* acquiring list */
177 #define V_acqtree VNET(acqtree)
178 static struct mtx acq_lock;
179 #define ACQ_LOCK_INIT() \
180 mtx_init(&acq_lock, "acqtree", "fast ipsec acquire list", MTX_DEF)
181 #define ACQ_LOCK_DESTROY() mtx_destroy(&acq_lock)
182 #define ACQ_LOCK() mtx_lock(&acq_lock)
183 #define ACQ_UNLOCK() mtx_unlock(&acq_lock)
184 #define ACQ_LOCK_ASSERT() mtx_assert(&acq_lock, MA_OWNED)
185
186 /* SP acquiring list */
187 static VNET_DEFINE(LIST_HEAD(_spacqtree, secspacq), spacqtree);
188 #define V_spacqtree VNET(spacqtree)
189 static struct mtx spacq_lock;
190 #define SPACQ_LOCK_INIT() \
191 mtx_init(&spacq_lock, "spacqtree", \
192 "fast ipsec security policy acquire list", MTX_DEF)
193 #define SPACQ_LOCK_DESTROY() mtx_destroy(&spacq_lock)
194 #define SPACQ_LOCK() mtx_lock(&spacq_lock)
195 #define SPACQ_UNLOCK() mtx_unlock(&spacq_lock)
196 #define SPACQ_LOCK_ASSERT() mtx_assert(&spacq_lock, MA_OWNED)
197
198 /* search order for SAs */
199 static const u_int saorder_state_valid_prefer_old[] = {
200 SADB_SASTATE_DYING, SADB_SASTATE_MATURE,
201 };
202 static const u_int saorder_state_valid_prefer_new[] = {
203 SADB_SASTATE_MATURE, SADB_SASTATE_DYING,
204 };
205 static const u_int saorder_state_alive[] = {
206 /* except DEAD */
207 SADB_SASTATE_MATURE, SADB_SASTATE_DYING, SADB_SASTATE_LARVAL
208 };
209 static const u_int saorder_state_any[] = {
210 SADB_SASTATE_MATURE, SADB_SASTATE_DYING,
211 SADB_SASTATE_LARVAL, SADB_SASTATE_DEAD
212 };
213
214 static const int minsize[] = {
215 sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */
216 sizeof(struct sadb_sa), /* SADB_EXT_SA */
217 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */
218 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */
219 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */
220 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_SRC */
221 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_DST */
222 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_PROXY */
223 sizeof(struct sadb_key), /* SADB_EXT_KEY_AUTH */
224 sizeof(struct sadb_key), /* SADB_EXT_KEY_ENCRYPT */
225 sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_SRC */
226 sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_DST */
227 sizeof(struct sadb_sens), /* SADB_EXT_SENSITIVITY */
228 sizeof(struct sadb_prop), /* SADB_EXT_PROPOSAL */
229 sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_AUTH */
230 sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_ENCRYPT */
231 sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */
232 0, /* SADB_X_EXT_KMPRIVATE */
233 sizeof(struct sadb_x_policy), /* SADB_X_EXT_POLICY */
234 sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */
235 sizeof(struct sadb_x_nat_t_type),/* SADB_X_EXT_NAT_T_TYPE */
236 sizeof(struct sadb_x_nat_t_port),/* SADB_X_EXT_NAT_T_SPORT */
237 sizeof(struct sadb_x_nat_t_port),/* SADB_X_EXT_NAT_T_DPORT */
238 sizeof(struct sadb_address), /* SADB_X_EXT_NAT_T_OAI */
239 sizeof(struct sadb_address), /* SADB_X_EXT_NAT_T_OAR */
240 sizeof(struct sadb_x_nat_t_frag),/* SADB_X_EXT_NAT_T_FRAG */
241 };
242 static const int maxsize[] = {
243 sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */
244 sizeof(struct sadb_sa), /* SADB_EXT_SA */
245 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */
246 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */
247 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */
248 0, /* SADB_EXT_ADDRESS_SRC */
249 0, /* SADB_EXT_ADDRESS_DST */
250 0, /* SADB_EXT_ADDRESS_PROXY */
251 0, /* SADB_EXT_KEY_AUTH */
252 0, /* SADB_EXT_KEY_ENCRYPT */
253 0, /* SADB_EXT_IDENTITY_SRC */
254 0, /* SADB_EXT_IDENTITY_DST */
255 0, /* SADB_EXT_SENSITIVITY */
256 0, /* SADB_EXT_PROPOSAL */
257 0, /* SADB_EXT_SUPPORTED_AUTH */
258 0, /* SADB_EXT_SUPPORTED_ENCRYPT */
259 sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */
260 0, /* SADB_X_EXT_KMPRIVATE */
261 0, /* SADB_X_EXT_POLICY */
262 sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */
263 sizeof(struct sadb_x_nat_t_type),/* SADB_X_EXT_NAT_T_TYPE */
264 sizeof(struct sadb_x_nat_t_port),/* SADB_X_EXT_NAT_T_SPORT */
265 sizeof(struct sadb_x_nat_t_port),/* SADB_X_EXT_NAT_T_DPORT */
266 0, /* SADB_X_EXT_NAT_T_OAI */
267 0, /* SADB_X_EXT_NAT_T_OAR */
268 sizeof(struct sadb_x_nat_t_frag),/* SADB_X_EXT_NAT_T_FRAG */
269 };
270
271 static VNET_DEFINE(int, ipsec_esp_keymin) = 256;
272 static VNET_DEFINE(int, ipsec_esp_auth) = 0;
273 static VNET_DEFINE(int, ipsec_ah_keymin) = 128;
274
275 #define V_ipsec_esp_keymin VNET(ipsec_esp_keymin)
276 #define V_ipsec_esp_auth VNET(ipsec_esp_auth)
277 #define V_ipsec_ah_keymin VNET(ipsec_ah_keymin)
278
279 #ifdef SYSCTL_DECL
280 SYSCTL_DECL(_net_key);
281 #endif
282
283 SYSCTL_VNET_INT(_net_key, KEYCTL_DEBUG_LEVEL, debug,
284 CTLFLAG_RW, &VNET_NAME(key_debug_level), 0, "");
285
286 /* max count of trial for the decision of spi value */
287 SYSCTL_VNET_INT(_net_key, KEYCTL_SPI_TRY, spi_trycnt,
288 CTLFLAG_RW, &VNET_NAME(key_spi_trycnt), 0, "");
289
290 /* minimum spi value to allocate automatically. */
291 SYSCTL_VNET_INT(_net_key, KEYCTL_SPI_MIN_VALUE,
292 spi_minval, CTLFLAG_RW, &VNET_NAME(key_spi_minval), 0, "");
293
294 /* maximun spi value to allocate automatically. */
295 SYSCTL_VNET_INT(_net_key, KEYCTL_SPI_MAX_VALUE,
296 spi_maxval, CTLFLAG_RW, &VNET_NAME(key_spi_maxval), 0, "");
297
298 /* interval to initialize randseed */
299 SYSCTL_VNET_INT(_net_key, KEYCTL_RANDOM_INT,
300 int_random, CTLFLAG_RW, &VNET_NAME(key_int_random), 0, "");
301
302 /* lifetime for larval SA */
303 SYSCTL_VNET_INT(_net_key, KEYCTL_LARVAL_LIFETIME,
304 larval_lifetime, CTLFLAG_RW, &VNET_NAME(key_larval_lifetime), 0, "");
305
306 /* counter for blocking to send SADB_ACQUIRE to IKEd */
307 SYSCTL_VNET_INT(_net_key, KEYCTL_BLOCKACQ_COUNT,
308 blockacq_count, CTLFLAG_RW, &VNET_NAME(key_blockacq_count), 0, "");
309
310 /* lifetime for blocking to send SADB_ACQUIRE to IKEd */
311 SYSCTL_VNET_INT(_net_key, KEYCTL_BLOCKACQ_LIFETIME,
312 blockacq_lifetime, CTLFLAG_RW, &VNET_NAME(key_blockacq_lifetime), 0, "");
313
314 /* ESP auth */
315 SYSCTL_VNET_INT(_net_key, KEYCTL_ESP_AUTH, esp_auth,
316 CTLFLAG_RW, &VNET_NAME(ipsec_esp_auth), 0, "");
317
318 /* minimum ESP key length */
319 SYSCTL_VNET_INT(_net_key, KEYCTL_ESP_KEYMIN,
320 esp_keymin, CTLFLAG_RW, &VNET_NAME(ipsec_esp_keymin), 0, "");
321
322 /* minimum AH key length */
323 SYSCTL_VNET_INT(_net_key, KEYCTL_AH_KEYMIN, ah_keymin,
324 CTLFLAG_RW, &VNET_NAME(ipsec_ah_keymin), 0, "");
325
326 /* perfered old SA rather than new SA */
327 SYSCTL_VNET_INT(_net_key, KEYCTL_PREFERED_OLDSA,
328 preferred_oldsa, CTLFLAG_RW, &VNET_NAME(key_preferred_oldsa), 0, "");
329
330 #define __LIST_CHAINED(elm) \
331 (!((elm)->chain.le_next == NULL && (elm)->chain.le_prev == NULL))
332 #define LIST_INSERT_TAIL(head, elm, type, field) \
333 do {\
334 struct type *curelm = LIST_FIRST(head); \
335 if (curelm == NULL) {\
336 LIST_INSERT_HEAD(head, elm, field); \
337 } else { \
338 while (LIST_NEXT(curelm, field)) \
339 curelm = LIST_NEXT(curelm, field);\
340 LIST_INSERT_AFTER(curelm, elm, field);\
341 }\
342 } while (0)
343
344 #define KEY_CHKSASTATE(head, sav, name) \
345 do { \
346 if ((head) != (sav)) { \
347 ipseclog((LOG_DEBUG, "%s: state mismatched (TREE=%d SA=%d)\n", \
348 (name), (head), (sav))); \
349 break; \
350 } \
351 } while (0)
352
353 #define KEY_CHKSPDIR(head, sp, name) \
354 do { \
355 if ((head) != (sp)) { \
356 ipseclog((LOG_DEBUG, "%s: direction mismatched (TREE=%d SP=%d), " \
357 "anyway continue.\n", \
358 (name), (head), (sp))); \
359 } \
360 } while (0)
361
362 MALLOC_DEFINE(M_IPSEC_SA, "secasvar", "ipsec security association");
363 MALLOC_DEFINE(M_IPSEC_SAH, "sahead", "ipsec sa head");
364 MALLOC_DEFINE(M_IPSEC_SP, "ipsecpolicy", "ipsec security policy");
365 MALLOC_DEFINE(M_IPSEC_SR, "ipsecrequest", "ipsec security request");
366 MALLOC_DEFINE(M_IPSEC_MISC, "ipsec-misc", "ipsec miscellaneous");
367 MALLOC_DEFINE(M_IPSEC_SAQ, "ipsec-saq", "ipsec sa acquire");
368 MALLOC_DEFINE(M_IPSEC_SAR, "ipsec-reg", "ipsec sa acquire");
369
370 /*
371 * set parameters into secpolicyindex buffer.
372 * Must allocate secpolicyindex buffer passed to this function.
373 */
374 #define KEY_SETSECSPIDX(_dir, s, d, ps, pd, ulp, idx) \
375 do { \
376 bzero((idx), sizeof(struct secpolicyindex)); \
377 (idx)->dir = (_dir); \
378 (idx)->prefs = (ps); \
379 (idx)->prefd = (pd); \
380 (idx)->ul_proto = (ulp); \
381 bcopy((s), &(idx)->src, ((const struct sockaddr *)(s))->sa_len); \
382 bcopy((d), &(idx)->dst, ((const struct sockaddr *)(d))->sa_len); \
383 } while (0)
384
385 /*
386 * set parameters into secasindex buffer.
387 * Must allocate secasindex buffer before calling this function.
388 */
389 #define KEY_SETSECASIDX(p, m, r, s, d, idx) \
390 do { \
391 bzero((idx), sizeof(struct secasindex)); \
392 (idx)->proto = (p); \
393 (idx)->mode = (m); \
394 (idx)->reqid = (r); \
395 bcopy((s), &(idx)->src, ((const struct sockaddr *)(s))->sa_len); \
396 bcopy((d), &(idx)->dst, ((const struct sockaddr *)(d))->sa_len); \
397 } while (0)
398
399 /* key statistics */
400 struct _keystat {
401 u_long getspi_count; /* the avarage of count to try to get new SPI */
402 } keystat;
403
404 struct sadb_msghdr {
405 struct sadb_msg *msg;
406 struct sadb_ext *ext[SADB_EXT_MAX + 1];
407 int extoff[SADB_EXT_MAX + 1];
408 int extlen[SADB_EXT_MAX + 1];
409 };
410
411 static struct secasvar *key_allocsa_policy(const struct secasindex *);
412 static void key_freesp_so(struct secpolicy **);
413 static struct secasvar *key_do_allocsa_policy(struct secashead *, u_int);
414 static void key_delsp(struct secpolicy *);
415 static struct secpolicy *key_getsp(struct secpolicyindex *);
416 static void _key_delsp(struct secpolicy *sp);
417 static struct secpolicy *key_getspbyid(u_int32_t);
418 static u_int32_t key_newreqid(void);
419 static struct mbuf *key_gather_mbuf(struct mbuf *,
420 const struct sadb_msghdr *, int, int, ...);
421 static int key_spdadd(struct socket *, struct mbuf *,
422 const struct sadb_msghdr *);
423 static u_int32_t key_getnewspid(void);
424 static int key_spddelete(struct socket *, struct mbuf *,
425 const struct sadb_msghdr *);
426 static int key_spddelete2(struct socket *, struct mbuf *,
427 const struct sadb_msghdr *);
428 static int key_spdget(struct socket *, struct mbuf *,
429 const struct sadb_msghdr *);
430 static int key_spdflush(struct socket *, struct mbuf *,
431 const struct sadb_msghdr *);
432 static int key_spddump(struct socket *, struct mbuf *,
433 const struct sadb_msghdr *);
434 static struct mbuf *key_setdumpsp(struct secpolicy *,
435 u_int8_t, u_int32_t, u_int32_t);
436 static u_int key_getspreqmsglen(struct secpolicy *);
437 static int key_spdexpire(struct secpolicy *);
438 static struct secashead *key_newsah(struct secasindex *);
439 static void key_delsah(struct secashead *);
440 static struct secasvar *key_newsav(struct mbuf *,
441 const struct sadb_msghdr *, struct secashead *, int *,
442 const char*, int);
443 #define KEY_NEWSAV(m, sadb, sah, e) \
444 key_newsav(m, sadb, sah, e, __FILE__, __LINE__)
445 static void key_delsav(struct secasvar *);
446 static struct secashead *key_getsah(struct secasindex *);
447 static struct secasvar *key_checkspidup(struct secasindex *, u_int32_t);
448 static struct secasvar *key_getsavbyspi(struct secashead *, u_int32_t);
449 static int key_setsaval(struct secasvar *, struct mbuf *,
450 const struct sadb_msghdr *);
451 static int key_mature(struct secasvar *);
452 static struct mbuf *key_setdumpsa(struct secasvar *, u_int8_t,
453 u_int8_t, u_int32_t, u_int32_t);
454 static struct mbuf *key_setsadbmsg(u_int8_t, u_int16_t, u_int8_t,
455 u_int32_t, pid_t, u_int16_t);
456 static struct mbuf *key_setsadbsa(struct secasvar *);
457 static struct mbuf *key_setsadbaddr(u_int16_t,
458 const struct sockaddr *, u_int8_t, u_int16_t);
459 #ifdef IPSEC_NAT_T
460 static struct mbuf *key_setsadbxport(u_int16_t, u_int16_t);
461 static struct mbuf *key_setsadbxtype(u_int16_t);
462 #endif
463 static void key_porttosaddr(struct sockaddr *, u_int16_t);
464 #define KEY_PORTTOSADDR(saddr, port) \
465 key_porttosaddr((struct sockaddr *)(saddr), (port))
466 static struct mbuf *key_setsadbxsa2(u_int8_t, u_int32_t, u_int32_t);
467 static struct mbuf *key_setsadbxpolicy(u_int16_t, u_int8_t,
468 u_int32_t);
469 static struct seckey *key_dup_keymsg(const struct sadb_key *, u_int,
470 struct malloc_type *);
471 static struct seclifetime *key_dup_lifemsg(const struct sadb_lifetime *src,
472 struct malloc_type *type);
473 #ifdef INET6
474 static int key_ismyaddr6(struct sockaddr_in6 *);
475 #endif
476
477 /* flags for key_cmpsaidx() */
478 #define CMP_HEAD 1 /* protocol, addresses. */
479 #define CMP_MODE_REQID 2 /* additionally HEAD, reqid, mode. */
480 #define CMP_REQID 3 /* additionally HEAD, reaid. */
481 #define CMP_EXACTLY 4 /* all elements. */
482 static int key_cmpsaidx(const struct secasindex *,
483 const struct secasindex *, int);
484 static int key_cmpspidx_exactly(struct secpolicyindex *,
485 struct secpolicyindex *);
486 static int key_cmpspidx_withmask(struct secpolicyindex *,
487 struct secpolicyindex *);
488 static int key_sockaddrcmp(const struct sockaddr *,
489 const struct sockaddr *, int);
490 static int key_bbcmp(const void *, const void *, u_int);
491 static u_int16_t key_satype2proto(u_int8_t);
492 static u_int8_t key_proto2satype(u_int16_t);
493
494 static int key_getspi(struct socket *, struct mbuf *,
495 const struct sadb_msghdr *);
496 static u_int32_t key_do_getnewspi(struct sadb_spirange *,
497 struct secasindex *);
498 static int key_update(struct socket *, struct mbuf *,
499 const struct sadb_msghdr *);
500 #ifdef IPSEC_DOSEQCHECK
501 static struct secasvar *key_getsavbyseq(struct secashead *, u_int32_t);
502 #endif
503 static int key_add(struct socket *, struct mbuf *,
504 const struct sadb_msghdr *);
505 static int key_setident(struct secashead *, struct mbuf *,
506 const struct sadb_msghdr *);
507 static struct mbuf *key_getmsgbuf_x1(struct mbuf *,
508 const struct sadb_msghdr *);
509 static int key_delete(struct socket *, struct mbuf *,
510 const struct sadb_msghdr *);
511 static int key_delete_all(struct socket *, struct mbuf *,
512 const struct sadb_msghdr *, u_int16_t);
513 static int key_get(struct socket *, struct mbuf *,
514 const struct sadb_msghdr *);
515
516 static void key_getcomb_setlifetime(struct sadb_comb *);
517 static struct mbuf *key_getcomb_esp(void);
518 static struct mbuf *key_getcomb_ah(void);
519 static struct mbuf *key_getcomb_ipcomp(void);
520 static struct mbuf *key_getprop(const struct secasindex *);
521
522 static int key_acquire(const struct secasindex *, struct secpolicy *);
523 static struct secacq *key_newacq(const struct secasindex *);
524 static struct secacq *key_getacq(const struct secasindex *);
525 static struct secacq *key_getacqbyseq(u_int32_t);
526 static struct secspacq *key_newspacq(struct secpolicyindex *);
527 static struct secspacq *key_getspacq(struct secpolicyindex *);
528 static int key_acquire2(struct socket *, struct mbuf *,
529 const struct sadb_msghdr *);
530 static int key_register(struct socket *, struct mbuf *,
531 const struct sadb_msghdr *);
532 static int key_expire(struct secasvar *, int);
533 static int key_flush(struct socket *, struct mbuf *,
534 const struct sadb_msghdr *);
535 static int key_dump(struct socket *, struct mbuf *,
536 const struct sadb_msghdr *);
537 static int key_promisc(struct socket *, struct mbuf *,
538 const struct sadb_msghdr *);
539 static int key_senderror(struct socket *, struct mbuf *, int);
540 static int key_validate_ext(const struct sadb_ext *, int);
541 static int key_align(struct mbuf *, struct sadb_msghdr *);
542 static struct mbuf *key_setlifetime(struct seclifetime *src,
543 u_int16_t exttype);
544 static struct mbuf *key_setkey(struct seckey *src, u_int16_t exttype);
545
546 #if 0
547 static const char *key_getfqdn(void);
548 static const char *key_getuserfqdn(void);
549 #endif
550 static void key_sa_chgstate(struct secasvar *, u_int8_t);
551
552 static __inline void
553 sa_initref(struct secasvar *sav)
554 {
555
556 refcount_init(&sav->refcnt, 1);
557 }
558 static __inline void
559 sa_addref(struct secasvar *sav)
560 {
561
562 refcount_acquire(&sav->refcnt);
563 IPSEC_ASSERT(sav->refcnt != 0, ("SA refcnt overflow"));
564 }
565 static __inline int
566 sa_delref(struct secasvar *sav)
567 {
568
569 IPSEC_ASSERT(sav->refcnt > 0, ("SA refcnt underflow"));
570 return (refcount_release(&sav->refcnt));
571 }
572
573 #define SP_ADDREF(p) do { \
574 (p)->refcnt++; \
575 IPSEC_ASSERT((p)->refcnt != 0, ("SP refcnt overflow")); \
576 } while (0)
577 #define SP_DELREF(p) do { \
578 IPSEC_ASSERT((p)->refcnt > 0, ("SP refcnt underflow")); \
579 (p)->refcnt--; \
580 } while (0)
581
582
583 /*
584 * Update the refcnt while holding the SPTREE lock.
585 */
586 void
587 key_addref(struct secpolicy *sp)
588 {
589 SPTREE_LOCK();
590 SP_ADDREF(sp);
591 SPTREE_UNLOCK();
592 }
593
594 /*
595 * Return 0 when there are known to be no SP's for the specified
596 * direction. Otherwise return 1. This is used by IPsec code
597 * to optimize performance.
598 */
599 int
600 key_havesp(u_int dir)
601 {
602
603 return (dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND ?
604 LIST_FIRST(&V_sptree[dir]) != NULL : 1);
605 }
606
607 /* %%% IPsec policy management */
608 /*
609 * allocating a SP for OUTBOUND or INBOUND packet.
610 * Must call key_freesp() later.
611 * OUT: NULL: not found
612 * others: found and return the pointer.
613 */
614 struct secpolicy *
615 key_allocsp(struct secpolicyindex *spidx, u_int dir, const char* where,
616 int tag)
617 {
618 struct secpolicy *sp;
619
620 IPSEC_ASSERT(spidx != NULL, ("null spidx"));
621 IPSEC_ASSERT(dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND,
622 ("invalid direction %u", dir));
623
624 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
625 printf("DP %s from %s:%u\n", __func__, where, tag));
626
627 /* get a SP entry */
628 KEYDEBUG(KEYDEBUG_IPSEC_DATA,
629 printf("*** objects\n");
630 kdebug_secpolicyindex(spidx));
631
632 SPTREE_LOCK();
633 LIST_FOREACH(sp, &V_sptree[dir], chain) {
634 KEYDEBUG(KEYDEBUG_IPSEC_DATA,
635 printf("*** in SPD\n");
636 kdebug_secpolicyindex(&sp->spidx));
637
638 if (sp->state == IPSEC_SPSTATE_DEAD)
639 continue;
640 if (key_cmpspidx_withmask(&sp->spidx, spidx))
641 goto found;
642 }
643 sp = NULL;
644 found:
645 if (sp) {
646 /* sanity check */
647 KEY_CHKSPDIR(sp->spidx.dir, dir, __func__);
648
649 /* found a SPD entry */
650 sp->lastused = time_second;
651 SP_ADDREF(sp);
652 }
653 SPTREE_UNLOCK();
654
655 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
656 printf("DP %s return SP:%p (ID=%u) refcnt %u\n", __func__,
657 sp, sp ? sp->id : 0, sp ? sp->refcnt : 0));
658 return sp;
659 }
660
661 /*
662 * allocating a SP for OUTBOUND or INBOUND packet.
663 * Must call key_freesp() later.
664 * OUT: NULL: not found
665 * others: found and return the pointer.
666 */
667 struct secpolicy *
668 key_allocsp2(u_int32_t spi, union sockaddr_union *dst, u_int8_t proto,
669 u_int dir, const char* where, int tag)
670 {
671 struct secpolicy *sp;
672
673 IPSEC_ASSERT(dst != NULL, ("null dst"));
674 IPSEC_ASSERT(dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND,
675 ("invalid direction %u", dir));
676
677 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
678 printf("DP %s from %s:%u\n", __func__, where, tag));
679
680 /* get a SP entry */
681 KEYDEBUG(KEYDEBUG_IPSEC_DATA,
682 printf("*** objects\n");
683 printf("spi %u proto %u dir %u\n", spi, proto, dir);
684 kdebug_sockaddr(&dst->sa));
685
686 SPTREE_LOCK();
687 LIST_FOREACH(sp, &V_sptree[dir], chain) {
688 KEYDEBUG(KEYDEBUG_IPSEC_DATA,
689 printf("*** in SPD\n");
690 kdebug_secpolicyindex(&sp->spidx));
691
692 if (sp->state == IPSEC_SPSTATE_DEAD)
693 continue;
694 /* compare simple values, then dst address */
695 if (sp->spidx.ul_proto != proto)
696 continue;
697 /* NB: spi's must exist and match */
698 if (!sp->req || !sp->req->sav || sp->req->sav->spi != spi)
699 continue;
700 if (key_sockaddrcmp(&sp->spidx.dst.sa, &dst->sa, 1) == 0)
701 goto found;
702 }
703 sp = NULL;
704 found:
705 if (sp) {
706 /* sanity check */
707 KEY_CHKSPDIR(sp->spidx.dir, dir, __func__);
708
709 /* found a SPD entry */
710 sp->lastused = time_second;
711 SP_ADDREF(sp);
712 }
713 SPTREE_UNLOCK();
714
715 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
716 printf("DP %s return SP:%p (ID=%u) refcnt %u\n", __func__,
717 sp, sp ? sp->id : 0, sp ? sp->refcnt : 0));
718 return sp;
719 }
720
721 #if 0
722 /*
723 * return a policy that matches this particular inbound packet.
724 * XXX slow
725 */
726 struct secpolicy *
727 key_gettunnel(const struct sockaddr *osrc,
728 const struct sockaddr *odst,
729 const struct sockaddr *isrc,
730 const struct sockaddr *idst,
731 const char* where, int tag)
732 {
733 struct secpolicy *sp;
734 const int dir = IPSEC_DIR_INBOUND;
735 struct ipsecrequest *r1, *r2, *p;
736 struct secpolicyindex spidx;
737
738 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
739 printf("DP %s from %s:%u\n", __func__, where, tag));
740
741 if (isrc->sa_family != idst->sa_family) {
742 ipseclog((LOG_ERR, "%s: protocol family mismatched %d != %d\n.",
743 __func__, isrc->sa_family, idst->sa_family));
744 sp = NULL;
745 goto done;
746 }
747
748 SPTREE_LOCK();
749 LIST_FOREACH(sp, &V_sptree[dir], chain) {
750 if (sp->state == IPSEC_SPSTATE_DEAD)
751 continue;
752
753 r1 = r2 = NULL;
754 for (p = sp->req; p; p = p->next) {
755 if (p->saidx.mode != IPSEC_MODE_TUNNEL)
756 continue;
757
758 r1 = r2;
759 r2 = p;
760
761 if (!r1) {
762 /* here we look at address matches only */
763 spidx = sp->spidx;
764 if (isrc->sa_len > sizeof(spidx.src) ||
765 idst->sa_len > sizeof(spidx.dst))
766 continue;
767 bcopy(isrc, &spidx.src, isrc->sa_len);
768 bcopy(idst, &spidx.dst, idst->sa_len);
769 if (!key_cmpspidx_withmask(&sp->spidx, &spidx))
770 continue;
771 } else {
772 if (key_sockaddrcmp(&r1->saidx.src.sa, isrc, 0) ||
773 key_sockaddrcmp(&r1->saidx.dst.sa, idst, 0))
774 continue;
775 }
776
777 if (key_sockaddrcmp(&r2->saidx.src.sa, osrc, 0) ||
778 key_sockaddrcmp(&r2->saidx.dst.sa, odst, 0))
779 continue;
780
781 goto found;
782 }
783 }
784 sp = NULL;
785 found:
786 if (sp) {
787 sp->lastused = time_second;
788 SP_ADDREF(sp);
789 }
790 SPTREE_UNLOCK();
791 done:
792 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
793 printf("DP %s return SP:%p (ID=%u) refcnt %u\n", __func__,
794 sp, sp ? sp->id : 0, sp ? sp->refcnt : 0));
795 return sp;
796 }
797 #endif
798
799 /*
800 * allocating an SA entry for an *OUTBOUND* packet.
801 * checking each request entries in SP, and acquire an SA if need.
802 * OUT: 0: there are valid requests.
803 * ENOENT: policy may be valid, but SA with REQUIRE is on acquiring.
804 */
805 int
806 key_checkrequest(struct ipsecrequest *isr, const struct secasindex *saidx)
807 {
808 u_int level;
809 int error;
810 struct secasvar *sav;
811
812 IPSEC_ASSERT(isr != NULL, ("null isr"));
813 IPSEC_ASSERT(saidx != NULL, ("null saidx"));
814 IPSEC_ASSERT(saidx->mode == IPSEC_MODE_TRANSPORT ||
815 saidx->mode == IPSEC_MODE_TUNNEL,
816 ("unexpected policy %u", saidx->mode));
817
818 /*
819 * XXX guard against protocol callbacks from the crypto
820 * thread as they reference ipsecrequest.sav which we
821 * temporarily null out below. Need to rethink how we
822 * handle bundled SA's in the callback thread.
823 */
824 IPSECREQUEST_LOCK_ASSERT(isr);
825
826 /* get current level */
827 level = ipsec_get_reqlevel(isr);
828
829 /*
830 * We check new SA in the IPsec request because a different
831 * SA may be involved each time this request is checked, either
832 * because new SAs are being configured, or this request is
833 * associated with an unconnected datagram socket, or this request
834 * is associated with a system default policy.
835 *
836 * key_allocsa_policy should allocate the oldest SA available.
837 * See key_do_allocsa_policy(), and draft-jenkins-ipsec-rekeying-03.txt.
838 */
839 sav = key_allocsa_policy(saidx);
840 if (sav != isr->sav) {
841 /* SA need to be updated. */
842 if (!IPSECREQUEST_UPGRADE(isr)) {
843 /* Kick everyone off. */
844 IPSECREQUEST_UNLOCK(isr);
845 IPSECREQUEST_WLOCK(isr);
846 }
847 if (isr->sav != NULL)
848 KEY_FREESAV(&isr->sav);
849 isr->sav = sav;
850 IPSECREQUEST_DOWNGRADE(isr);
851 } else if (sav != NULL)
852 KEY_FREESAV(&sav);
853
854 /* When there is SA. */
855 if (isr->sav != NULL) {
856 if (isr->sav->state != SADB_SASTATE_MATURE &&
857 isr->sav->state != SADB_SASTATE_DYING)
858 return EINVAL;
859 return 0;
860 }
861
862 /* there is no SA */
863 error = key_acquire(saidx, isr->sp);
864 if (error != 0) {
865 /* XXX What should I do ? */
866 ipseclog((LOG_DEBUG, "%s: error %d returned from key_acquire\n",
867 __func__, error));
868 return error;
869 }
870
871 if (level != IPSEC_LEVEL_REQUIRE) {
872 /* XXX sigh, the interface to this routine is botched */
873 IPSEC_ASSERT(isr->sav == NULL, ("unexpected SA"));
874 return 0;
875 } else {
876 return ENOENT;
877 }
878 }
879
880 /*
881 * allocating a SA for policy entry from SAD.
882 * NOTE: searching SAD of aliving state.
883 * OUT: NULL: not found.
884 * others: found and return the pointer.
885 */
886 static struct secasvar *
887 key_allocsa_policy(const struct secasindex *saidx)
888 {
889 #define N(a) _ARRAYLEN(a)
890 struct secashead *sah;
891 struct secasvar *sav;
892 u_int stateidx, arraysize;
893 const u_int *state_valid;
894
895 state_valid = NULL; /* silence gcc */
896 arraysize = 0; /* silence gcc */
897
898 SAHTREE_LOCK();
899 LIST_FOREACH(sah, &V_sahtree, chain) {
900 if (sah->state == SADB_SASTATE_DEAD)
901 continue;
902 if (key_cmpsaidx(&sah->saidx, saidx, CMP_MODE_REQID)) {
903 if (V_key_preferred_oldsa) {
904 state_valid = saorder_state_valid_prefer_old;
905 arraysize = N(saorder_state_valid_prefer_old);
906 } else {
907 state_valid = saorder_state_valid_prefer_new;
908 arraysize = N(saorder_state_valid_prefer_new);
909 }
910 break;
911 }
912 }
913 SAHTREE_UNLOCK();
914 if (sah == NULL)
915 return NULL;
916
917 /* search valid state */
918 for (stateidx = 0; stateidx < arraysize; stateidx++) {
919 sav = key_do_allocsa_policy(sah, state_valid[stateidx]);
920 if (sav != NULL)
921 return sav;
922 }
923
924 return NULL;
925 #undef N
926 }
927
928 /*
929 * searching SAD with direction, protocol, mode and state.
930 * called by key_allocsa_policy().
931 * OUT:
932 * NULL : not found
933 * others : found, pointer to a SA.
934 */
935 static struct secasvar *
936 key_do_allocsa_policy(struct secashead *sah, u_int state)
937 {
938 struct secasvar *sav, *nextsav, *candidate, *d;
939
940 /* initilize */
941 candidate = NULL;
942
943 SAHTREE_LOCK();
944 for (sav = LIST_FIRST(&sah->savtree[state]);
945 sav != NULL;
946 sav = nextsav) {
947
948 nextsav = LIST_NEXT(sav, chain);
949
950 /* sanity check */
951 KEY_CHKSASTATE(sav->state, state, __func__);
952
953 /* initialize */
954 if (candidate == NULL) {
955 candidate = sav;
956 continue;
957 }
958
959 /* Which SA is the better ? */
960
961 IPSEC_ASSERT(candidate->lft_c != NULL,
962 ("null candidate lifetime"));
963 IPSEC_ASSERT(sav->lft_c != NULL, ("null sav lifetime"));
964
965 /* What the best method is to compare ? */
966 if (V_key_preferred_oldsa) {
967 if (candidate->lft_c->addtime >
968 sav->lft_c->addtime) {
969 candidate = sav;
970 }
971 continue;
972 /*NOTREACHED*/
973 }
974
975 /* preferred new sa rather than old sa */
976 if (candidate->lft_c->addtime <
977 sav->lft_c->addtime) {
978 d = candidate;
979 candidate = sav;
980 } else
981 d = sav;
982
983 /*
984 * prepared to delete the SA when there is more
985 * suitable candidate and the lifetime of the SA is not
986 * permanent.
987 */
988 if (d->lft_h->addtime != 0) {
989 struct mbuf *m, *result;
990 u_int8_t satype;
991
992 key_sa_chgstate(d, SADB_SASTATE_DEAD);
993
994 IPSEC_ASSERT(d->refcnt > 0, ("bogus ref count"));
995
996 satype = key_proto2satype(d->sah->saidx.proto);
997 if (satype == 0)
998 goto msgfail;
999
1000 m = key_setsadbmsg(SADB_DELETE, 0,
1001 satype, 0, 0, d->refcnt - 1);
1002 if (!m)
1003 goto msgfail;
1004 result = m;
1005
1006 /* set sadb_address for saidx's. */
1007 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
1008 &d->sah->saidx.src.sa,
1009 d->sah->saidx.src.sa.sa_len << 3,
1010 IPSEC_ULPROTO_ANY);
1011 if (!m)
1012 goto msgfail;
1013 m_cat(result, m);
1014
1015 /* set sadb_address for saidx's. */
1016 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
1017 &d->sah->saidx.dst.sa,
1018 d->sah->saidx.dst.sa.sa_len << 3,
1019 IPSEC_ULPROTO_ANY);
1020 if (!m)
1021 goto msgfail;
1022 m_cat(result, m);
1023
1024 /* create SA extension */
1025 m = key_setsadbsa(d);
1026 if (!m)
1027 goto msgfail;
1028 m_cat(result, m);
1029
1030 if (result->m_len < sizeof(struct sadb_msg)) {
1031 result = m_pullup(result,
1032 sizeof(struct sadb_msg));
1033 if (result == NULL)
1034 goto msgfail;
1035 }
1036
1037 result->m_pkthdr.len = 0;
1038 for (m = result; m; m = m->m_next)
1039 result->m_pkthdr.len += m->m_len;
1040 mtod(result, struct sadb_msg *)->sadb_msg_len =
1041 PFKEY_UNIT64(result->m_pkthdr.len);
1042
1043 if (key_sendup_mbuf(NULL, result,
1044 KEY_SENDUP_REGISTERED))
1045 goto msgfail;
1046 msgfail:
1047 KEY_FREESAV(&d);
1048 }
1049 }
1050 if (candidate) {
1051 sa_addref(candidate);
1052 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1053 printf("DP %s cause refcnt++:%d SA:%p\n",
1054 __func__, candidate->refcnt, candidate));
1055 }
1056 SAHTREE_UNLOCK();
1057
1058 return candidate;
1059 }
1060
1061 /*
1062 * allocating a usable SA entry for a *INBOUND* packet.
1063 * Must call key_freesav() later.
1064 * OUT: positive: pointer to a usable sav (i.e. MATURE or DYING state).
1065 * NULL: not found, or error occured.
1066 *
1067 * In the comparison, no source address is used--for RFC2401 conformance.
1068 * To quote, from section 4.1:
1069 * A security association is uniquely identified by a triple consisting
1070 * of a Security Parameter Index (SPI), an IP Destination Address, and a
1071 * security protocol (AH or ESP) identifier.
1072 * Note that, however, we do need to keep source address in IPsec SA.
1073 * IKE specification and PF_KEY specification do assume that we
1074 * keep source address in IPsec SA. We see a tricky situation here.
1075 */
1076 struct secasvar *
1077 key_allocsa(union sockaddr_union *dst, u_int proto, u_int32_t spi,
1078 const char* where, int tag)
1079 {
1080 struct secashead *sah;
1081 struct secasvar *sav;
1082 u_int stateidx, arraysize, state;
1083 const u_int *saorder_state_valid;
1084 #ifdef IPSEC_NAT_T
1085 int natt_chkport;
1086 #endif
1087
1088 IPSEC_ASSERT(dst != NULL, ("null dst address"));
1089
1090 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1091 printf("DP %s from %s:%u\n", __func__, where, tag));
1092
1093 #ifdef IPSEC_NAT_T
1094 natt_chkport = (dst->sa.sa_family == AF_INET &&
1095 dst->sa.sa_len == sizeof(struct sockaddr_in) &&
1096 dst->sin.sin_port != 0);
1097 #endif
1098
1099 /*
1100 * searching SAD.
1101 * XXX: to be checked internal IP header somewhere. Also when
1102 * IPsec tunnel packet is received. But ESP tunnel mode is
1103 * encrypted so we can't check internal IP header.
1104 */
1105 SAHTREE_LOCK();
1106 if (V_key_preferred_oldsa) {
1107 saorder_state_valid = saorder_state_valid_prefer_old;
1108 arraysize = _ARRAYLEN(saorder_state_valid_prefer_old);
1109 } else {
1110 saorder_state_valid = saorder_state_valid_prefer_new;
1111 arraysize = _ARRAYLEN(saorder_state_valid_prefer_new);
1112 }
1113 LIST_FOREACH(sah, &V_sahtree, chain) {
1114 int checkport;
1115
1116 /* search valid state */
1117 for (stateidx = 0; stateidx < arraysize; stateidx++) {
1118 state = saorder_state_valid[stateidx];
1119 LIST_FOREACH(sav, &sah->savtree[state], chain) {
1120 /* sanity check */
1121 KEY_CHKSASTATE(sav->state, state, __func__);
1122 /* do not return entries w/ unusable state */
1123 if (sav->state != SADB_SASTATE_MATURE &&
1124 sav->state != SADB_SASTATE_DYING)
1125 continue;
1126 if (proto != sav->sah->saidx.proto)
1127 continue;
1128 if (spi != sav->spi)
1129 continue;
1130 checkport = 0;
1131 #ifdef IPSEC_NAT_T
1132 /*
1133 * Really only check ports when this is a NAT-T
1134 * SA. Otherwise other lookups providing ports
1135 * might suffer.
1136 */
1137 if (sav->natt_type && natt_chkport)
1138 checkport = 1;
1139 #endif
1140 #if 0 /* don't check src */
1141 /* check src address */
1142 if (key_sockaddrcmp(&src->sa,
1143 &sav->sah->saidx.src.sa, checkport) != 0)
1144 continue;
1145 #endif
1146 /* check dst address */
1147 if (key_sockaddrcmp(&dst->sa,
1148 &sav->sah->saidx.dst.sa, checkport) != 0)
1149 continue;
1150 sa_addref(sav);
1151 goto done;
1152 }
1153 }
1154 }
1155 sav = NULL;
1156 done:
1157 SAHTREE_UNLOCK();
1158
1159 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1160 printf("DP %s return SA:%p; refcnt %u\n", __func__,
1161 sav, sav ? sav->refcnt : 0));
1162 return sav;
1163 }
1164
1165 /*
1166 * Must be called after calling key_allocsp().
1167 * For both the packet without socket and key_freeso().
1168 */
1169 void
1170 _key_freesp(struct secpolicy **spp, const char* where, int tag)
1171 {
1172 struct secpolicy *sp = *spp;
1173
1174 IPSEC_ASSERT(sp != NULL, ("null sp"));
1175
1176 SPTREE_LOCK();
1177 SP_DELREF(sp);
1178
1179 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1180 printf("DP %s SP:%p (ID=%u) from %s:%u; refcnt now %u\n",
1181 __func__, sp, sp->id, where, tag, sp->refcnt));
1182
1183 if (sp->refcnt == 0) {
1184 *spp = NULL;
1185 key_delsp(sp);
1186 }
1187 SPTREE_UNLOCK();
1188 }
1189
1190 /*
1191 * Must be called after calling key_allocsp().
1192 * For the packet with socket.
1193 */
1194 void
1195 key_freeso(struct socket *so)
1196 {
1197 IPSEC_ASSERT(so != NULL, ("null so"));
1198
1199 switch (so->so_proto->pr_domain->dom_family) {
1200 #if defined(INET) || defined(INET6)
1201 #ifdef INET
1202 case PF_INET:
1203 #endif
1204 #ifdef INET6
1205 case PF_INET6:
1206 #endif
1207 {
1208 struct inpcb *pcb = sotoinpcb(so);
1209
1210 /* Does it have a PCB ? */
1211 if (pcb == NULL)
1212 return;
1213 key_freesp_so(&pcb->inp_sp->sp_in);
1214 key_freesp_so(&pcb->inp_sp->sp_out);
1215 }
1216 break;
1217 #endif /* INET || INET6 */
1218 default:
1219 ipseclog((LOG_DEBUG, "%s: unknown address family=%d.\n",
1220 __func__, so->so_proto->pr_domain->dom_family));
1221 return;
1222 }
1223 }
1224
1225 static void
1226 key_freesp_so(struct secpolicy **sp)
1227 {
1228 IPSEC_ASSERT(sp != NULL && *sp != NULL, ("null sp"));
1229
1230 if ((*sp)->policy == IPSEC_POLICY_ENTRUST ||
1231 (*sp)->policy == IPSEC_POLICY_BYPASS)
1232 return;
1233
1234 IPSEC_ASSERT((*sp)->policy == IPSEC_POLICY_IPSEC,
1235 ("invalid policy %u", (*sp)->policy));
1236 KEY_FREESP(sp);
1237 }
1238
1239 void
1240 key_addrefsa(struct secasvar *sav, const char* where, int tag)
1241 {
1242
1243 IPSEC_ASSERT(sav != NULL, ("null sav"));
1244 IPSEC_ASSERT(sav->refcnt > 0, ("refcount must exist"));
1245
1246 sa_addref(sav);
1247 }
1248
1249 /*
1250 * Must be called after calling key_allocsa().
1251 * This function is called by key_freesp() to free some SA allocated
1252 * for a policy.
1253 */
1254 void
1255 key_freesav(struct secasvar **psav, const char* where, int tag)
1256 {
1257 struct secasvar *sav = *psav;
1258
1259 IPSEC_ASSERT(sav != NULL, ("null sav"));
1260
1261 if (sa_delref(sav)) {
1262 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1263 printf("DP %s SA:%p (SPI %u) from %s:%u; refcnt now %u\n",
1264 __func__, sav, ntohl(sav->spi), where, tag, sav->refcnt));
1265 *psav = NULL;
1266 key_delsav(sav);
1267 } else {
1268 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1269 printf("DP %s SA:%p (SPI %u) from %s:%u; refcnt now %u\n",
1270 __func__, sav, ntohl(sav->spi), where, tag, sav->refcnt));
1271 }
1272 }
1273
1274 /* %%% SPD management */
1275 /*
1276 * free security policy entry.
1277 */
1278 static void
1279 key_delsp(struct secpolicy *sp)
1280 {
1281 struct ipsecrequest *isr, *nextisr;
1282
1283 IPSEC_ASSERT(sp != NULL, ("null sp"));
1284 SPTREE_LOCK_ASSERT();
1285
1286 sp->state = IPSEC_SPSTATE_DEAD;
1287
1288 IPSEC_ASSERT(sp->refcnt == 0,
1289 ("SP with references deleted (refcnt %u)", sp->refcnt));
1290
1291 /* remove from SP index */
1292 if (__LIST_CHAINED(sp))
1293 LIST_REMOVE(sp, chain);
1294
1295 for (isr = sp->req; isr != NULL; isr = nextisr) {
1296 if (isr->sav != NULL) {
1297 KEY_FREESAV(&isr->sav);
1298 isr->sav = NULL;
1299 }
1300
1301 nextisr = isr->next;
1302 ipsec_delisr(isr);
1303 }
1304 _key_delsp(sp);
1305 }
1306
1307 /*
1308 * search SPD
1309 * OUT: NULL : not found
1310 * others : found, pointer to a SP.
1311 */
1312 static struct secpolicy *
1313 key_getsp(struct secpolicyindex *spidx)
1314 {
1315 struct secpolicy *sp;
1316
1317 IPSEC_ASSERT(spidx != NULL, ("null spidx"));
1318
1319 SPTREE_LOCK();
1320 LIST_FOREACH(sp, &V_sptree[spidx->dir], chain) {
1321 if (sp->state == IPSEC_SPSTATE_DEAD)
1322 continue;
1323 if (key_cmpspidx_exactly(spidx, &sp->spidx)) {
1324 SP_ADDREF(sp);
1325 break;
1326 }
1327 }
1328 SPTREE_UNLOCK();
1329
1330 return sp;
1331 }
1332
1333 /*
1334 * get SP by index.
1335 * OUT: NULL : not found
1336 * others : found, pointer to a SP.
1337 */
1338 static struct secpolicy *
1339 key_getspbyid(u_int32_t id)
1340 {
1341 struct secpolicy *sp;
1342
1343 SPTREE_LOCK();
1344 LIST_FOREACH(sp, &V_sptree[IPSEC_DIR_INBOUND], chain) {
1345 if (sp->state == IPSEC_SPSTATE_DEAD)
1346 continue;
1347 if (sp->id == id) {
1348 SP_ADDREF(sp);
1349 goto done;
1350 }
1351 }
1352
1353 LIST_FOREACH(sp, &V_sptree[IPSEC_DIR_OUTBOUND], chain) {
1354 if (sp->state == IPSEC_SPSTATE_DEAD)
1355 continue;
1356 if (sp->id == id) {
1357 SP_ADDREF(sp);
1358 goto done;
1359 }
1360 }
1361 done:
1362 SPTREE_UNLOCK();
1363
1364 return sp;
1365 }
1366
1367 struct secpolicy *
1368 key_newsp(const char* where, int tag)
1369 {
1370 struct secpolicy *newsp = NULL;
1371
1372 newsp = (struct secpolicy *)
1373 malloc(sizeof(struct secpolicy), M_IPSEC_SP, M_NOWAIT|M_ZERO);
1374 if (newsp) {
1375 SECPOLICY_LOCK_INIT(newsp);
1376 newsp->refcnt = 1;
1377 newsp->req = NULL;
1378 }
1379
1380 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1381 printf("DP %s from %s:%u return SP:%p\n", __func__,
1382 where, tag, newsp));
1383 return newsp;
1384 }
1385
1386 static void
1387 _key_delsp(struct secpolicy *sp)
1388 {
1389 SECPOLICY_LOCK_DESTROY(sp);
1390 free(sp, M_IPSEC_SP);
1391 }
1392
1393 /*
1394 * create secpolicy structure from sadb_x_policy structure.
1395 * NOTE: `state', `secpolicyindex' in secpolicy structure are not set,
1396 * so must be set properly later.
1397 */
1398 struct secpolicy *
1399 key_msg2sp(struct sadb_x_policy *xpl0, size_t len, int *error)
1400 {
1401 struct secpolicy *newsp;
1402
1403 IPSEC_ASSERT(xpl0 != NULL, ("null xpl0"));
1404 IPSEC_ASSERT(len >= sizeof(*xpl0), ("policy too short: %zu", len));
1405
1406 if (len != PFKEY_EXTLEN(xpl0)) {
1407 ipseclog((LOG_DEBUG, "%s: Invalid msg length.\n", __func__));
1408 *error = EINVAL;
1409 return NULL;
1410 }
1411
1412 if ((newsp = KEY_NEWSP()) == NULL) {
1413 *error = ENOBUFS;
1414 return NULL;
1415 }
1416
1417 newsp->spidx.dir = xpl0->sadb_x_policy_dir;
1418 newsp->policy = xpl0->sadb_x_policy_type;
1419
1420 /* check policy */
1421 switch (xpl0->sadb_x_policy_type) {
1422 case IPSEC_POLICY_DISCARD:
1423 case IPSEC_POLICY_NONE:
1424 case IPSEC_POLICY_ENTRUST:
1425 case IPSEC_POLICY_BYPASS:
1426 newsp->req = NULL;
1427 break;
1428
1429 case IPSEC_POLICY_IPSEC:
1430 {
1431 int tlen;
1432 struct sadb_x_ipsecrequest *xisr;
1433 struct ipsecrequest **p_isr = &newsp->req;
1434
1435 /* validity check */
1436 if (PFKEY_EXTLEN(xpl0) < sizeof(*xpl0)) {
1437 ipseclog((LOG_DEBUG, "%s: Invalid msg length.\n",
1438 __func__));
1439 KEY_FREESP(&newsp);
1440 *error = EINVAL;
1441 return NULL;
1442 }
1443
1444 tlen = PFKEY_EXTLEN(xpl0) - sizeof(*xpl0);
1445 xisr = (struct sadb_x_ipsecrequest *)(xpl0 + 1);
1446
1447 while (tlen > 0) {
1448 /* length check */
1449 if (xisr->sadb_x_ipsecrequest_len < sizeof(*xisr)) {
1450 ipseclog((LOG_DEBUG, "%s: invalid ipsecrequest "
1451 "length.\n", __func__));
1452 KEY_FREESP(&newsp);
1453 *error = EINVAL;
1454 return NULL;
1455 }
1456
1457 /* allocate request buffer */
1458 /* NB: data structure is zero'd */
1459 *p_isr = ipsec_newisr();
1460 if ((*p_isr) == NULL) {
1461 ipseclog((LOG_DEBUG,
1462 "%s: No more memory.\n", __func__));
1463 KEY_FREESP(&newsp);
1464 *error = ENOBUFS;
1465 return NULL;
1466 }
1467
1468 /* set values */
1469 switch (xisr->sadb_x_ipsecrequest_proto) {
1470 case IPPROTO_ESP:
1471 case IPPROTO_AH:
1472 case IPPROTO_IPCOMP:
1473 break;
1474 default:
1475 ipseclog((LOG_DEBUG,
1476 "%s: invalid proto type=%u\n", __func__,
1477 xisr->sadb_x_ipsecrequest_proto));
1478 KEY_FREESP(&newsp);
1479 *error = EPROTONOSUPPORT;
1480 return NULL;
1481 }
1482 (*p_isr)->saidx.proto = xisr->sadb_x_ipsecrequest_proto;
1483
1484 switch (xisr->sadb_x_ipsecrequest_mode) {
1485 case IPSEC_MODE_TRANSPORT:
1486 case IPSEC_MODE_TUNNEL:
1487 break;
1488 case IPSEC_MODE_ANY:
1489 default:
1490 ipseclog((LOG_DEBUG,
1491 "%s: invalid mode=%u\n", __func__,
1492 xisr->sadb_x_ipsecrequest_mode));
1493 KEY_FREESP(&newsp);
1494 *error = EINVAL;
1495 return NULL;
1496 }
1497 (*p_isr)->saidx.mode = xisr->sadb_x_ipsecrequest_mode;
1498
1499 switch (xisr->sadb_x_ipsecrequest_level) {
1500 case IPSEC_LEVEL_DEFAULT:
1501 case IPSEC_LEVEL_USE:
1502 case IPSEC_LEVEL_REQUIRE:
1503 break;
1504 case IPSEC_LEVEL_UNIQUE:
1505 /* validity check */
1506 /*
1507 * If range violation of reqid, kernel will
1508 * update it, don't refuse it.
1509 */
1510 if (xisr->sadb_x_ipsecrequest_reqid
1511 > IPSEC_MANUAL_REQID_MAX) {
1512 ipseclog((LOG_DEBUG,
1513 "%s: reqid=%d range "
1514 "violation, updated by kernel.\n",
1515 __func__,
1516 xisr->sadb_x_ipsecrequest_reqid));
1517 xisr->sadb_x_ipsecrequest_reqid = 0;
1518 }
1519
1520 /* allocate new reqid id if reqid is zero. */
1521 if (xisr->sadb_x_ipsecrequest_reqid == 0) {
1522 u_int32_t reqid;
1523 if ((reqid = key_newreqid()) == 0) {
1524 KEY_FREESP(&newsp);
1525 *error = ENOBUFS;
1526 return NULL;
1527 }
1528 (*p_isr)->saidx.reqid = reqid;
1529 xisr->sadb_x_ipsecrequest_reqid = reqid;
1530 } else {
1531 /* set it for manual keying. */
1532 (*p_isr)->saidx.reqid =
1533 xisr->sadb_x_ipsecrequest_reqid;
1534 }
1535 break;
1536
1537 default:
1538 ipseclog((LOG_DEBUG, "%s: invalid level=%u\n",
1539 __func__,
1540 xisr->sadb_x_ipsecrequest_level));
1541 KEY_FREESP(&newsp);
1542 *error = EINVAL;
1543 return NULL;
1544 }
1545 (*p_isr)->level = xisr->sadb_x_ipsecrequest_level;
1546
1547 /* set IP addresses if there */
1548 if (xisr->sadb_x_ipsecrequest_len > sizeof(*xisr)) {
1549 struct sockaddr *paddr;
1550
1551 paddr = (struct sockaddr *)(xisr + 1);
1552
1553 /* validity check */
1554 if (paddr->sa_len
1555 > sizeof((*p_isr)->saidx.src)) {
1556 ipseclog((LOG_DEBUG, "%s: invalid "
1557 "request address length.\n",
1558 __func__));
1559 KEY_FREESP(&newsp);
1560 *error = EINVAL;
1561 return NULL;
1562 }
1563 bcopy(paddr, &(*p_isr)->saidx.src,
1564 paddr->sa_len);
1565
1566 paddr = (struct sockaddr *)((caddr_t)paddr
1567 + paddr->sa_len);
1568
1569 /* validity check */
1570 if (paddr->sa_len
1571 > sizeof((*p_isr)->saidx.dst)) {
1572 ipseclog((LOG_DEBUG, "%s: invalid "
1573 "request address length.\n",
1574 __func__));
1575 KEY_FREESP(&newsp);
1576 *error = EINVAL;
1577 return NULL;
1578 }
1579 bcopy(paddr, &(*p_isr)->saidx.dst,
1580 paddr->sa_len);
1581 }
1582
1583 (*p_isr)->sp = newsp;
1584
1585 /* initialization for the next. */
1586 p_isr = &(*p_isr)->next;
1587 tlen -= xisr->sadb_x_ipsecrequest_len;
1588
1589 /* validity check */
1590 if (tlen < 0) {
1591 ipseclog((LOG_DEBUG, "%s: becoming tlen < 0.\n",
1592 __func__));
1593 KEY_FREESP(&newsp);
1594 *error = EINVAL;
1595 return NULL;
1596 }
1597
1598 xisr = (struct sadb_x_ipsecrequest *)((caddr_t)xisr
1599 + xisr->sadb_x_ipsecrequest_len);
1600 }
1601 }
1602 break;
1603 default:
1604 ipseclog((LOG_DEBUG, "%s: invalid policy type.\n", __func__));
1605 KEY_FREESP(&newsp);
1606 *error = EINVAL;
1607 return NULL;
1608 }
1609
1610 *error = 0;
1611 return newsp;
1612 }
1613
1614 static u_int32_t
1615 key_newreqid()
1616 {
1617 static u_int32_t auto_reqid = IPSEC_MANUAL_REQID_MAX + 1;
1618
1619 auto_reqid = (auto_reqid == ~0
1620 ? IPSEC_MANUAL_REQID_MAX + 1 : auto_reqid + 1);
1621
1622 /* XXX should be unique check */
1623
1624 return auto_reqid;
1625 }
1626
1627 /*
1628 * copy secpolicy struct to sadb_x_policy structure indicated.
1629 */
1630 struct mbuf *
1631 key_sp2msg(struct secpolicy *sp)
1632 {
1633 struct sadb_x_policy *xpl;
1634 int tlen;
1635 caddr_t p;
1636 struct mbuf *m;
1637
1638 IPSEC_ASSERT(sp != NULL, ("null policy"));
1639
1640 tlen = key_getspreqmsglen(sp);
1641
1642 m = m_get2(tlen, M_NOWAIT, MT_DATA, 0);
1643 if (m == NULL)
1644 return (NULL);
1645 m_align(m, tlen);
1646 m->m_len = tlen;
1647 xpl = mtod(m, struct sadb_x_policy *);
1648 bzero(xpl, tlen);
1649
1650 xpl->sadb_x_policy_len = PFKEY_UNIT64(tlen);
1651 xpl->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
1652 xpl->sadb_x_policy_type = sp->policy;
1653 xpl->sadb_x_policy_dir = sp->spidx.dir;
1654 xpl->sadb_x_policy_id = sp->id;
1655 p = (caddr_t)xpl + sizeof(*xpl);
1656
1657 /* if is the policy for ipsec ? */
1658 if (sp->policy == IPSEC_POLICY_IPSEC) {
1659 struct sadb_x_ipsecrequest *xisr;
1660 struct ipsecrequest *isr;
1661
1662 for (isr = sp->req; isr != NULL; isr = isr->next) {
1663
1664 xisr = (struct sadb_x_ipsecrequest *)p;
1665
1666 xisr->sadb_x_ipsecrequest_proto = isr->saidx.proto;
1667 xisr->sadb_x_ipsecrequest_mode = isr->saidx.mode;
1668 xisr->sadb_x_ipsecrequest_level = isr->level;
1669 xisr->sadb_x_ipsecrequest_reqid = isr->saidx.reqid;
1670
1671 p += sizeof(*xisr);
1672 bcopy(&isr->saidx.src, p, isr->saidx.src.sa.sa_len);
1673 p += isr->saidx.src.sa.sa_len;
1674 bcopy(&isr->saidx.dst, p, isr->saidx.dst.sa.sa_len);
1675 p += isr->saidx.src.sa.sa_len;
1676
1677 xisr->sadb_x_ipsecrequest_len =
1678 PFKEY_ALIGN8(sizeof(*xisr)
1679 + isr->saidx.src.sa.sa_len
1680 + isr->saidx.dst.sa.sa_len);
1681 }
1682 }
1683
1684 return m;
1685 }
1686
1687 /* m will not be freed nor modified */
1688 static struct mbuf *
1689 key_gather_mbuf(struct mbuf *m, const struct sadb_msghdr *mhp,
1690 int ndeep, int nitem, ...)
1691 {
1692 va_list ap;
1693 int idx;
1694 int i;
1695 struct mbuf *result = NULL, *n;
1696 int len;
1697
1698 IPSEC_ASSERT(m != NULL, ("null mbuf"));
1699 IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
1700
1701 va_start(ap, nitem);
1702 for (i = 0; i < nitem; i++) {
1703 idx = va_arg(ap, int);
1704 if (idx < 0 || idx > SADB_EXT_MAX)
1705 goto fail;
1706 /* don't attempt to pull empty extension */
1707 if (idx == SADB_EXT_RESERVED && mhp->msg == NULL)
1708 continue;
1709 if (idx != SADB_EXT_RESERVED &&
1710 (mhp->ext[idx] == NULL || mhp->extlen[idx] == 0))
1711 continue;
1712
1713 if (idx == SADB_EXT_RESERVED) {
1714 len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
1715
1716 IPSEC_ASSERT(len <= MHLEN, ("header too big %u", len));
1717
1718 MGETHDR(n, M_NOWAIT, MT_DATA);
1719 if (!n)
1720 goto fail;
1721 n->m_len = len;
1722 n->m_next = NULL;
1723 m_copydata(m, 0, sizeof(struct sadb_msg),
1724 mtod(n, caddr_t));
1725 } else if (i < ndeep) {
1726 len = mhp->extlen[idx];
1727 n = m_get2(len, M_NOWAIT, MT_DATA, 0);
1728 if (n == NULL)
1729 goto fail;
1730 m_align(n, len);
1731 n->m_len = len;
1732 m_copydata(m, mhp->extoff[idx], mhp->extlen[idx],
1733 mtod(n, caddr_t));
1734 } else {
1735 n = m_copym(m, mhp->extoff[idx], mhp->extlen[idx],
1736 M_NOWAIT);
1737 }
1738 if (n == NULL)
1739 goto fail;
1740
1741 if (result)
1742 m_cat(result, n);
1743 else
1744 result = n;
1745 }
1746 va_end(ap);
1747
1748 if ((result->m_flags & M_PKTHDR) != 0) {
1749 result->m_pkthdr.len = 0;
1750 for (n = result; n; n = n->m_next)
1751 result->m_pkthdr.len += n->m_len;
1752 }
1753
1754 return result;
1755
1756 fail:
1757 m_freem(result);
1758 va_end(ap);
1759 return NULL;
1760 }
1761
1762 /*
1763 * SADB_X_SPDADD, SADB_X_SPDSETIDX or SADB_X_SPDUPDATE processing
1764 * add an entry to SP database, when received
1765 * <base, address(SD), (lifetime(H),) policy>
1766 * from the user(?).
1767 * Adding to SP database,
1768 * and send
1769 * <base, address(SD), (lifetime(H),) policy>
1770 * to the socket which was send.
1771 *
1772 * SPDADD set a unique policy entry.
1773 * SPDSETIDX like SPDADD without a part of policy requests.
1774 * SPDUPDATE replace a unique policy entry.
1775 *
1776 * m will always be freed.
1777 */
1778 static int
1779 key_spdadd(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp)
1780 {
1781 struct sadb_address *src0, *dst0;
1782 struct sadb_x_policy *xpl0, *xpl;
1783 struct sadb_lifetime *lft = NULL;
1784 struct secpolicyindex spidx;
1785 struct secpolicy *newsp;
1786 int error;
1787
1788 IPSEC_ASSERT(so != NULL, ("null socket"));
1789 IPSEC_ASSERT(m != NULL, ("null mbuf"));
1790 IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
1791 IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
1792
1793 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
1794 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
1795 mhp->ext[SADB_X_EXT_POLICY] == NULL) {
1796 ipseclog((LOG_DEBUG, "key_spdadd: invalid message is passed.\n"));
1797 return key_senderror(so, m, EINVAL);
1798 }
1799 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
1800 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
1801 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
1802 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
1803 __func__));
1804 return key_senderror(so, m, EINVAL);
1805 }
1806 if (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL) {
1807 if (mhp->extlen[SADB_EXT_LIFETIME_HARD]
1808 < sizeof(struct sadb_lifetime)) {
1809 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
1810 __func__));
1811 return key_senderror(so, m, EINVAL);
1812 }
1813 lft = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD];
1814 }
1815
1816 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
1817 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
1818 xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY];
1819
1820 /*
1821 * Note: do not parse SADB_X_EXT_NAT_T_* here:
1822 * we are processing traffic endpoints.
1823 */
1824
1825 /* make secindex */
1826 /* XXX boundary check against sa_len */
1827 KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir,
1828 src0 + 1,
1829 dst0 + 1,
1830 src0->sadb_address_prefixlen,
1831 dst0->sadb_address_prefixlen,
1832 src0->sadb_address_proto,
1833 &spidx);
1834
1835 /* checking the direciton. */
1836 switch (xpl0->sadb_x_policy_dir) {
1837 case IPSEC_DIR_INBOUND:
1838 case IPSEC_DIR_OUTBOUND:
1839 break;
1840 default:
1841 ipseclog((LOG_DEBUG, "%s: Invalid SP direction.\n", __func__));
1842 mhp->msg->sadb_msg_errno = EINVAL;
1843 return 0;
1844 }
1845
1846 /* check policy */
1847 /* key_spdadd() accepts DISCARD, NONE and IPSEC. */
1848 if (xpl0->sadb_x_policy_type == IPSEC_POLICY_ENTRUST
1849 || xpl0->sadb_x_policy_type == IPSEC_POLICY_BYPASS) {
1850 ipseclog((LOG_DEBUG, "%s: Invalid policy type.\n", __func__));
1851 return key_senderror(so, m, EINVAL);
1852 }
1853
1854 /* policy requests are mandatory when action is ipsec. */
1855 if (mhp->msg->sadb_msg_type != SADB_X_SPDSETIDX
1856 && xpl0->sadb_x_policy_type == IPSEC_POLICY_IPSEC
1857 && mhp->extlen[SADB_X_EXT_POLICY] <= sizeof(*xpl0)) {
1858 ipseclog((LOG_DEBUG, "%s: some policy requests part required\n",
1859 __func__));
1860 return key_senderror(so, m, EINVAL);
1861 }
1862
1863 /*
1864 * checking there is SP already or not.
1865 * SPDUPDATE doesn't depend on whether there is a SP or not.
1866 * If the type is either SPDADD or SPDSETIDX AND a SP is found,
1867 * then error.
1868 */
1869 newsp = key_getsp(&spidx);
1870 if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) {
1871 if (newsp) {
1872 SPTREE_LOCK();
1873 newsp->state = IPSEC_SPSTATE_DEAD;
1874 SPTREE_UNLOCK();
1875 KEY_FREESP(&newsp);
1876 }
1877 } else {
1878 if (newsp != NULL) {
1879 KEY_FREESP(&newsp);
1880 ipseclog((LOG_DEBUG, "%s: a SP entry exists already.\n",
1881 __func__));
1882 return key_senderror(so, m, EEXIST);
1883 }
1884 }
1885
1886 /* allocation new SP entry */
1887 if ((newsp = key_msg2sp(xpl0, PFKEY_EXTLEN(xpl0), &error)) == NULL) {
1888 return key_senderror(so, m, error);
1889 }
1890
1891 if ((newsp->id = key_getnewspid()) == 0) {
1892 _key_delsp(newsp);
1893 return key_senderror(so, m, ENOBUFS);
1894 }
1895
1896 /* XXX boundary check against sa_len */
1897 KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir,
1898 src0 + 1,
1899 dst0 + 1,
1900 src0->sadb_address_prefixlen,
1901 dst0->sadb_address_prefixlen,
1902 src0->sadb_address_proto,
1903 &newsp->spidx);
1904
1905 /* sanity check on addr pair */
1906 if (((struct sockaddr *)(src0 + 1))->sa_family !=
1907 ((struct sockaddr *)(dst0+ 1))->sa_family) {
1908 _key_delsp(newsp);
1909 return key_senderror(so, m, EINVAL);
1910 }
1911 if (((struct sockaddr *)(src0 + 1))->sa_len !=
1912 ((struct sockaddr *)(dst0+ 1))->sa_len) {
1913 _key_delsp(newsp);
1914 return key_senderror(so, m, EINVAL);
1915 }
1916 #if 1
1917 if (newsp->req && newsp->req->saidx.src.sa.sa_family && newsp->req->saidx.dst.sa.sa_family) {
1918 if (newsp->req->saidx.src.sa.sa_family != newsp->req->saidx.dst.sa.sa_family) {
1919 _key_delsp(newsp);
1920 return key_senderror(so, m, EINVAL);
1921 }
1922 }
1923 #endif
1924
1925 newsp->created = time_second;
1926 newsp->lastused = newsp->created;
1927 newsp->lifetime = lft ? lft->sadb_lifetime_addtime : 0;
1928 newsp->validtime = lft ? lft->sadb_lifetime_usetime : 0;
1929
1930 newsp->refcnt = 1; /* do not reclaim until I say I do */
1931 newsp->state = IPSEC_SPSTATE_ALIVE;
1932 LIST_INSERT_TAIL(&V_sptree[newsp->spidx.dir], newsp, secpolicy, chain);
1933
1934 /* delete the entry in spacqtree */
1935 if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) {
1936 struct secspacq *spacq = key_getspacq(&spidx);
1937 if (spacq != NULL) {
1938 /* reset counter in order to deletion by timehandler. */
1939 spacq->created = time_second;
1940 spacq->count = 0;
1941 SPACQ_UNLOCK();
1942 }
1943 }
1944
1945 {
1946 struct mbuf *n, *mpolicy;
1947 struct sadb_msg *newmsg;
1948 int off;
1949
1950 /*
1951 * Note: do not send SADB_X_EXT_NAT_T_* here:
1952 * we are sending traffic endpoints.
1953 */
1954
1955 /* create new sadb_msg to reply. */
1956 if (lft) {
1957 n = key_gather_mbuf(m, mhp, 2, 5, SADB_EXT_RESERVED,
1958 SADB_X_EXT_POLICY, SADB_EXT_LIFETIME_HARD,
1959 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
1960 } else {
1961 n = key_gather_mbuf(m, mhp, 2, 4, SADB_EXT_RESERVED,
1962 SADB_X_EXT_POLICY,
1963 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
1964 }
1965 if (!n)
1966 return key_senderror(so, m, ENOBUFS);
1967
1968 if (n->m_len < sizeof(*newmsg)) {
1969 n = m_pullup(n, sizeof(*newmsg));
1970 if (!n)
1971 return key_senderror(so, m, ENOBUFS);
1972 }
1973 newmsg = mtod(n, struct sadb_msg *);
1974 newmsg->sadb_msg_errno = 0;
1975 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
1976
1977 off = 0;
1978 mpolicy = m_pulldown(n, PFKEY_ALIGN8(sizeof(struct sadb_msg)),
1979 sizeof(*xpl), &off);
1980 if (mpolicy == NULL) {
1981 /* n is already freed */
1982 return key_senderror(so, m, ENOBUFS);
1983 }
1984 xpl = (struct sadb_x_policy *)(mtod(mpolicy, caddr_t) + off);
1985 if (xpl->sadb_x_policy_exttype != SADB_X_EXT_POLICY) {
1986 m_freem(n);
1987 return key_senderror(so, m, EINVAL);
1988 }
1989 xpl->sadb_x_policy_id = newsp->id;
1990
1991 m_freem(m);
1992 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
1993 }
1994 }
1995
1996 /*
1997 * get new policy id.
1998 * OUT:
1999 * 0: failure.
2000 * others: success.
2001 */
2002 static u_int32_t
2003 key_getnewspid()
2004 {
2005 u_int32_t newid = 0;
2006 int count = V_key_spi_trycnt; /* XXX */
2007 struct secpolicy *sp;
2008
2009 /* when requesting to allocate spi ranged */
2010 while (count--) {
2011 newid = (V_policy_id = (V_policy_id == ~0 ? 1 : V_policy_id + 1));
2012
2013 if ((sp = key_getspbyid(newid)) == NULL)
2014 break;
2015
2016 KEY_FREESP(&sp);
2017 }
2018
2019 if (count == 0 || newid == 0) {
2020 ipseclog((LOG_DEBUG, "%s: to allocate policy id is failed.\n",
2021 __func__));
2022 return 0;
2023 }
2024
2025 return newid;
2026 }
2027
2028 /*
2029 * SADB_SPDDELETE processing
2030 * receive
2031 * <base, address(SD), policy(*)>
2032 * from the user(?), and set SADB_SASTATE_DEAD,
2033 * and send,
2034 * <base, address(SD), policy(*)>
2035 * to the ikmpd.
2036 * policy(*) including direction of policy.
2037 *
2038 * m will always be freed.
2039 */
2040 static int
2041 key_spddelete(struct socket *so, struct mbuf *m,
2042 const struct sadb_msghdr *mhp)
2043 {
2044 struct sadb_address *src0, *dst0;
2045 struct sadb_x_policy *xpl0;
2046 struct secpolicyindex spidx;
2047 struct secpolicy *sp;
2048
2049 IPSEC_ASSERT(so != NULL, ("null so"));
2050 IPSEC_ASSERT(m != NULL, ("null mbuf"));
2051 IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2052 IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2053
2054 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
2055 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
2056 mhp->ext[SADB_X_EXT_POLICY] == NULL) {
2057 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
2058 __func__));
2059 return key_senderror(so, m, EINVAL);
2060 }
2061 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
2062 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
2063 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2064 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
2065 __func__));
2066 return key_senderror(so, m, EINVAL);
2067 }
2068
2069 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
2070 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
2071 xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY];
2072
2073 /*
2074 * Note: do not parse SADB_X_EXT_NAT_T_* here:
2075 * we are processing traffic endpoints.
2076 */
2077
2078 /* make secindex */
2079 /* XXX boundary check against sa_len */
2080 KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir,
2081 src0 + 1,
2082 dst0 + 1,
2083 src0->sadb_address_prefixlen,
2084 dst0->sadb_address_prefixlen,
2085 src0->sadb_address_proto,
2086 &spidx);
2087
2088 /* checking the direciton. */
2089 switch (xpl0->sadb_x_policy_dir) {
2090 case IPSEC_DIR_INBOUND:
2091 case IPSEC_DIR_OUTBOUND:
2092 break;
2093 default:
2094 ipseclog((LOG_DEBUG, "%s: Invalid SP direction.\n", __func__));
2095 return key_senderror(so, m, EINVAL);
2096 }
2097
2098 /* Is there SP in SPD ? */
2099 if ((sp = key_getsp(&spidx)) == NULL) {
2100 ipseclog((LOG_DEBUG, "%s: no SP found.\n", __func__));
2101 return key_senderror(so, m, EINVAL);
2102 }
2103
2104 /* save policy id to buffer to be returned. */
2105 xpl0->sadb_x_policy_id = sp->id;
2106
2107 SPTREE_LOCK();
2108 sp->state = IPSEC_SPSTATE_DEAD;
2109 SPTREE_UNLOCK();
2110 KEY_FREESP(&sp);
2111
2112 {
2113 struct mbuf *n;
2114 struct sadb_msg *newmsg;
2115
2116 /*
2117 * Note: do not send SADB_X_EXT_NAT_T_* here:
2118 * we are sending traffic endpoints.
2119 */
2120
2121 /* create new sadb_msg to reply. */
2122 n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED,
2123 SADB_X_EXT_POLICY, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
2124 if (!n)
2125 return key_senderror(so, m, ENOBUFS);
2126
2127 newmsg = mtod(n, struct sadb_msg *);
2128 newmsg->sadb_msg_errno = 0;
2129 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
2130
2131 m_freem(m);
2132 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2133 }
2134 }
2135
2136 /*
2137 * SADB_SPDDELETE2 processing
2138 * receive
2139 * <base, policy(*)>
2140 * from the user(?), and set SADB_SASTATE_DEAD,
2141 * and send,
2142 * <base, policy(*)>
2143 * to the ikmpd.
2144 * policy(*) including direction of policy.
2145 *
2146 * m will always be freed.
2147 */
2148 static int
2149 key_spddelete2(struct socket *so, struct mbuf *m,
2150 const struct sadb_msghdr *mhp)
2151 {
2152 u_int32_t id;
2153 struct secpolicy *sp;
2154
2155 IPSEC_ASSERT(so != NULL, ("null socket"));
2156 IPSEC_ASSERT(m != NULL, ("null mbuf"));
2157 IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2158 IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2159
2160 if (mhp->ext[SADB_X_EXT_POLICY] == NULL ||
2161 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2162 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", __func__));
2163 return key_senderror(so, m, EINVAL);
2164 }
2165
2166 id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id;
2167
2168 /* Is there SP in SPD ? */
2169 if ((sp = key_getspbyid(id)) == NULL) {
2170 ipseclog((LOG_DEBUG, "%s: no SP found id:%u.\n", __func__, id));
2171 return key_senderror(so, m, EINVAL);
2172 }
2173
2174 SPTREE_LOCK();
2175 sp->state = IPSEC_SPSTATE_DEAD;
2176 SPTREE_UNLOCK();
2177 KEY_FREESP(&sp);
2178
2179 {
2180 struct mbuf *n, *nn;
2181 struct sadb_msg *newmsg;
2182 int off, len;
2183
2184 /* create new sadb_msg to reply. */
2185 len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
2186
2187 MGETHDR(n, M_NOWAIT, MT_DATA);
2188 if (n && len > MHLEN) {
2189 MCLGET(n, M_NOWAIT);
2190 if ((n->m_flags & M_EXT) == 0) {
2191 m_freem(n);
2192 n = NULL;
2193 }
2194 }
2195 if (!n)
2196 return key_senderror(so, m, ENOBUFS);
2197
2198 n->m_len = len;
2199 n->m_next = NULL;
2200 off = 0;
2201
2202 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off);
2203 off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
2204
2205 IPSEC_ASSERT(off == len, ("length inconsistency (off %u len %u)",
2206 off, len));
2207
2208 n->m_next = m_copym(m, mhp->extoff[SADB_X_EXT_POLICY],
2209 mhp->extlen[SADB_X_EXT_POLICY], M_NOWAIT);
2210 if (!n->m_next) {
2211 m_freem(n);
2212 return key_senderror(so, m, ENOBUFS);
2213 }
2214
2215 n->m_pkthdr.len = 0;
2216 for (nn = n; nn; nn = nn->m_next)
2217 n->m_pkthdr.len += nn->m_len;
2218
2219 newmsg = mtod(n, struct sadb_msg *);
2220 newmsg->sadb_msg_errno = 0;
2221 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
2222
2223 m_freem(m);
2224 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2225 }
2226 }
2227
2228 /*
2229 * SADB_X_SPDGET processing
2230 * receive
2231 * <base, policy(*)>
2232 * from the user(?),
2233 * and send,
2234 * <base, address(SD), policy>
2235 * to the ikmpd.
2236 * policy(*) including direction of policy.
2237 *
2238 * m will always be freed.
2239 */
2240 static int
2241 key_spdget(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp)
2242 {
2243 u_int32_t id;
2244 struct secpolicy *sp;
2245 struct mbuf *n;
2246
2247 IPSEC_ASSERT(so != NULL, ("null socket"));
2248 IPSEC_ASSERT(m != NULL, ("null mbuf"));
2249 IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2250 IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2251
2252 if (mhp->ext[SADB_X_EXT_POLICY] == NULL ||
2253 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2254 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
2255 __func__));
2256 return key_senderror(so, m, EINVAL);
2257 }
2258
2259 id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id;
2260
2261 /* Is there SP in SPD ? */
2262 if ((sp = key_getspbyid(id)) == NULL) {
2263 ipseclog((LOG_DEBUG, "%s: no SP found id:%u.\n", __func__, id));
2264 return key_senderror(so, m, ENOENT);
2265 }
2266
2267 n = key_setdumpsp(sp, SADB_X_SPDGET, mhp->msg->sadb_msg_seq,
2268 mhp->msg->sadb_msg_pid);
2269 KEY_FREESP(&sp);
2270 if (n != NULL) {
2271 m_freem(m);
2272 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
2273 } else
2274 return key_senderror(so, m, ENOBUFS);
2275 }
2276
2277 /*
2278 * SADB_X_SPDACQUIRE processing.
2279 * Acquire policy and SA(s) for a *OUTBOUND* packet.
2280 * send
2281 * <base, policy(*)>
2282 * to KMD, and expect to receive
2283 * <base> with SADB_X_SPDACQUIRE if error occured,
2284 * or
2285 * <base, policy>
2286 * with SADB_X_SPDUPDATE from KMD by PF_KEY.
2287 * policy(*) is without policy requests.
2288 *
2289 * 0 : succeed
2290 * others: error number
2291 */
2292 int
2293 key_spdacquire(struct secpolicy *sp)
2294 {
2295 struct mbuf *result = NULL, *m;
2296 struct secspacq *newspacq;
2297
2298 IPSEC_ASSERT(sp != NULL, ("null secpolicy"));
2299 IPSEC_ASSERT(sp->req == NULL, ("policy exists"));
2300 IPSEC_ASSERT(sp->policy == IPSEC_POLICY_IPSEC,
2301 ("policy not IPSEC %u", sp->policy));
2302
2303 /* Get an entry to check whether sent message or not. */
2304 newspacq = key_getspacq(&sp->spidx);
2305 if (newspacq != NULL) {
2306 if (V_key_blockacq_count < newspacq->count) {
2307 /* reset counter and do send message. */
2308 newspacq->count = 0;
2309 } else {
2310 /* increment counter and do nothing. */
2311 newspacq->count++;
2312 SPACQ_UNLOCK();
2313 return (0);
2314 }
2315 SPACQ_UNLOCK();
2316 } else {
2317 /* make new entry for blocking to send SADB_ACQUIRE. */
2318 newspacq = key_newspacq(&sp->spidx);
2319 if (newspacq == NULL)
2320 return ENOBUFS;
2321 }
2322
2323 /* create new sadb_msg to reply. */
2324 m = key_setsadbmsg(SADB_X_SPDACQUIRE, 0, 0, 0, 0, 0);
2325 if (!m)
2326 return ENOBUFS;
2327
2328 result = m;
2329
2330 result->m_pkthdr.len = 0;
2331 for (m = result; m; m = m->m_next)
2332 result->m_pkthdr.len += m->m_len;
2333
2334 mtod(result, struct sadb_msg *)->sadb_msg_len =
2335 PFKEY_UNIT64(result->m_pkthdr.len);
2336
2337 return key_sendup_mbuf(NULL, m, KEY_SENDUP_REGISTERED);
2338 }
2339
2340 /*
2341 * SADB_SPDFLUSH processing
2342 * receive
2343 * <base>
2344 * from the user, and free all entries in secpctree.
2345 * and send,
2346 * <base>
2347 * to the user.
2348 * NOTE: what to do is only marking SADB_SASTATE_DEAD.
2349 *
2350 * m will always be freed.
2351 */
2352 static int
2353 key_spdflush(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp)
2354 {
2355 struct sadb_msg *newmsg;
2356 struct secpolicy *sp;
2357 u_int dir;
2358
2359 IPSEC_ASSERT(so != NULL, ("null socket"));
2360 IPSEC_ASSERT(m != NULL, ("null mbuf"));
2361 IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2362 IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2363
2364 if (m->m_len != PFKEY_ALIGN8(sizeof(struct sadb_msg)))
2365 return key_senderror(so, m, EINVAL);
2366
2367 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2368 SPTREE_LOCK();
2369 LIST_FOREACH(sp, &V_sptree[dir], chain)
2370 sp->state = IPSEC_SPSTATE_DEAD;
2371 SPTREE_UNLOCK();
2372 }
2373
2374 if (sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) {
2375 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
2376 return key_senderror(so, m, ENOBUFS);
2377 }
2378
2379 if (m->m_next)
2380 m_freem(m->m_next);
2381 m->m_next = NULL;
2382 m->m_pkthdr.len = m->m_len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
2383 newmsg = mtod(m, struct sadb_msg *);
2384 newmsg->sadb_msg_errno = 0;
2385 newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len);
2386
2387 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
2388 }
2389
2390 /*
2391 * SADB_SPDDUMP processing
2392 * receive
2393 * <base>
2394 * from the user, and dump all SP leaves
2395 * and send,
2396 * <base> .....
2397 * to the ikmpd.
2398 *
2399 * m will always be freed.
2400 */
2401 static int
2402 key_spddump(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp)
2403 {
2404 struct secpolicy *sp;
2405 int cnt;
2406 u_int dir;
2407 struct mbuf *n;
2408
2409 IPSEC_ASSERT(so != NULL, ("null socket"));
2410 IPSEC_ASSERT(m != NULL, ("null mbuf"));
2411 IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2412 IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2413
2414 /* search SPD entry and get buffer size. */
2415 cnt = 0;
2416 SPTREE_LOCK();
2417 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2418 LIST_FOREACH(sp, &V_sptree[dir], chain) {
2419 cnt++;
2420 }
2421 }
2422
2423 if (cnt == 0) {
2424 SPTREE_UNLOCK();
2425 return key_senderror(so, m, ENOENT);
2426 }
2427
2428 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2429 LIST_FOREACH(sp, &V_sptree[dir], chain) {
2430 --cnt;
2431 n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt,
2432 mhp->msg->sadb_msg_pid);
2433
2434 if (n)
2435 key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
2436 }
2437 }
2438
2439 SPTREE_UNLOCK();
2440 m_freem(m);
2441 return 0;
2442 }
2443
2444 static struct mbuf *
2445 key_setdumpsp(struct secpolicy *sp, u_int8_t type, u_int32_t seq,
2446 u_int32_t pid)
2447 {
2448 struct mbuf *result = NULL, *m;
2449 struct seclifetime lt;
2450
2451 m = key_setsadbmsg(type, 0, SADB_SATYPE_UNSPEC, seq, pid, sp->refcnt);
2452 if (!m)
2453 goto fail;
2454 result = m;
2455
2456 /*
2457 * Note: do not send SADB_X_EXT_NAT_T_* here:
2458 * we are sending traffic endpoints.
2459 */
2460 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
2461 &sp->spidx.src.sa, sp->spidx.prefs,
2462 sp->spidx.ul_proto);
2463 if (!m)
2464 goto fail;
2465 m_cat(result, m);
2466
2467 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
2468 &sp->spidx.dst.sa, sp->spidx.prefd,
2469 sp->spidx.ul_proto);
2470 if (!m)
2471 goto fail;
2472 m_cat(result, m);
2473
2474 m = key_sp2msg(sp);
2475 if (!m)
2476 goto fail;
2477 m_cat(result, m);
2478
2479 if(sp->lifetime){
2480 lt.addtime=sp->created;
2481 lt.usetime= sp->lastused;
2482 m = key_setlifetime(<, SADB_EXT_LIFETIME_CURRENT);
2483 if (!m)
2484 goto fail;
2485 m_cat(result, m);
2486
2487 lt.addtime=sp->lifetime;
2488 lt.usetime= sp->validtime;
2489 m = key_setlifetime(<, SADB_EXT_LIFETIME_HARD);
2490 if (!m)
2491 goto fail;
2492 m_cat(result, m);
2493 }
2494
2495 if ((result->m_flags & M_PKTHDR) == 0)
2496 goto fail;
2497
2498 if (result->m_len < sizeof(struct sadb_msg)) {
2499 result = m_pullup(result, sizeof(struct sadb_msg));
2500 if (result == NULL)
2501 goto fail;
2502 }
2503
2504 result->m_pkthdr.len = 0;
2505 for (m = result; m; m = m->m_next)
2506 result->m_pkthdr.len += m->m_len;
2507
2508 mtod(result, struct sadb_msg *)->sadb_msg_len =
2509 PFKEY_UNIT64(result->m_pkthdr.len);
2510
2511 return result;
2512
2513 fail:
2514 m_freem(result);
2515 return NULL;
2516 }
2517
2518 /*
2519 * get PFKEY message length for security policy and request.
2520 */
2521 static u_int
2522 key_getspreqmsglen(struct secpolicy *sp)
2523 {
2524 u_int tlen;
2525
2526 tlen = sizeof(struct sadb_x_policy);
2527
2528 /* if is the policy for ipsec ? */
2529 if (sp->policy != IPSEC_POLICY_IPSEC)
2530 return tlen;
2531
2532 /* get length of ipsec requests */
2533 {
2534 struct ipsecrequest *isr;
2535 int len;
2536
2537 for (isr = sp->req; isr != NULL; isr = isr->next) {
2538 len = sizeof(struct sadb_x_ipsecrequest)
2539 + isr->saidx.src.sa.sa_len
2540 + isr->saidx.dst.sa.sa_len;
2541
2542 tlen += PFKEY_ALIGN8(len);
2543 }
2544 }
2545
2546 return tlen;
2547 }
2548
2549 /*
2550 * SADB_SPDEXPIRE processing
2551 * send
2552 * <base, address(SD), lifetime(CH), policy>
2553 * to KMD by PF_KEY.
2554 *
2555 * OUT: 0 : succeed
2556 * others : error number
2557 */
2558 static int
2559 key_spdexpire(struct secpolicy *sp)
2560 {
2561 struct mbuf *result = NULL, *m;
2562 int len;
2563 int error = -1;
2564 struct sadb_lifetime *lt;
2565
2566 /* XXX: Why do we lock ? */
2567
2568 IPSEC_ASSERT(sp != NULL, ("null secpolicy"));
2569
2570 /* set msg header */
2571 m = key_setsadbmsg(SADB_X_SPDEXPIRE, 0, 0, 0, 0, 0);
2572 if (!m) {
2573 error = ENOBUFS;
2574 goto fail;
2575 }
2576 result = m;
2577
2578 /* create lifetime extension (current and hard) */
2579 len = PFKEY_ALIGN8(sizeof(*lt)) * 2;
2580 m = m_get2(len, M_NOWAIT, MT_DATA, 0);
2581 if (m == NULL) {
2582 error = ENOBUFS;
2583 goto fail;
2584 }
2585 m_align(m, len);
2586 m->m_len = len;
2587 bzero(mtod(m, caddr_t), len);
2588 lt = mtod(m, struct sadb_lifetime *);
2589 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
2590 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
2591 lt->sadb_lifetime_allocations = 0;
2592 lt->sadb_lifetime_bytes = 0;
2593 lt->sadb_lifetime_addtime = sp->created;
2594 lt->sadb_lifetime_usetime = sp->lastused;
2595 lt = (struct sadb_lifetime *)(mtod(m, caddr_t) + len / 2);
2596 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
2597 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
2598 lt->sadb_lifetime_allocations = 0;
2599 lt->sadb_lifetime_bytes = 0;
2600 lt->sadb_lifetime_addtime = sp->lifetime;
2601 lt->sadb_lifetime_usetime = sp->validtime;
2602 m_cat(result, m);
2603
2604 /*
2605 * Note: do not send SADB_X_EXT_NAT_T_* here:
2606 * we are sending traffic endpoints.
2607 */
2608
2609 /* set sadb_address for source */
2610 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
2611 &sp->spidx.src.sa,
2612 sp->spidx.prefs, sp->spidx.ul_proto);
2613 if (!m) {
2614 error = ENOBUFS;
2615 goto fail;
2616 }
2617 m_cat(result, m);
2618
2619 /* set sadb_address for destination */
2620 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
2621 &sp->spidx.dst.sa,
2622 sp->spidx.prefd, sp->spidx.ul_proto);
2623 if (!m) {
2624 error = ENOBUFS;
2625 goto fail;
2626 }
2627 m_cat(result, m);
2628
2629 /* set secpolicy */
2630 m = key_sp2msg(sp);
2631 if (!m) {
2632 error = ENOBUFS;
2633 goto fail;
2634 }
2635 m_cat(result, m);
2636
2637 if ((result->m_flags & M_PKTHDR) == 0) {
2638 error = EINVAL;
2639 goto fail;
2640 }
2641
2642 if (result->m_len < sizeof(struct sadb_msg)) {
2643 result = m_pullup(result, sizeof(struct sadb_msg));
2644 if (result == NULL) {
2645 error = ENOBUFS;
2646 goto fail;
2647 }
2648 }
2649
2650 result->m_pkthdr.len = 0;
2651 for (m = result; m; m = m->m_next)
2652 result->m_pkthdr.len += m->m_len;
2653
2654 mtod(result, struct sadb_msg *)->sadb_msg_len =
2655 PFKEY_UNIT64(result->m_pkthdr.len);
2656
2657 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
2658
2659 fail:
2660 if (result)
2661 m_freem(result);
2662 return error;
2663 }
2664
2665 /* %%% SAD management */
2666 /*
2667 * allocating a memory for new SA head, and copy from the values of mhp.
2668 * OUT: NULL : failure due to the lack of memory.
2669 * others : pointer to new SA head.
2670 */
2671 static struct secashead *
2672 key_newsah(struct secasindex *saidx)
2673 {
2674 struct secashead *newsah;
2675
2676 IPSEC_ASSERT(saidx != NULL, ("null saidx"));
2677
2678 newsah = malloc(sizeof(struct secashead), M_IPSEC_SAH, M_NOWAIT|M_ZERO);
2679 if (newsah != NULL) {
2680 int i;
2681 for (i = 0; i < sizeof(newsah->savtree)/sizeof(newsah->savtree[0]); i++)
2682 LIST_INIT(&newsah->savtree[i]);
2683 newsah->saidx = *saidx;
2684
2685 /* add to saidxtree */
2686 newsah->state = SADB_SASTATE_MATURE;
2687
2688 SAHTREE_LOCK();
2689 LIST_INSERT_HEAD(&V_sahtree, newsah, chain);
2690 SAHTREE_UNLOCK();
2691 }
2692 return(newsah);
2693 }
2694
2695 /*
2696 * delete SA index and all SA registerd.
2697 */
2698 static void
2699 key_delsah(struct secashead *sah)
2700 {
2701 struct secasvar *sav, *nextsav;
2702 u_int stateidx;
2703 int zombie = 0;
2704
2705 IPSEC_ASSERT(sah != NULL, ("NULL sah"));
2706 SAHTREE_LOCK_ASSERT();
2707
2708 /* searching all SA registerd in the secindex. */
2709 for (stateidx = 0;
2710 stateidx < _ARRAYLEN(saorder_state_any);
2711 stateidx++) {
2712 u_int state = saorder_state_any[stateidx];
2713 LIST_FOREACH_SAFE(sav, &sah->savtree[state], chain, nextsav) {
2714 if (sav->refcnt == 0) {
2715 /* sanity check */
2716 KEY_CHKSASTATE(state, sav->state, __func__);
2717 /*
2718 * do NOT call KEY_FREESAV here:
2719 * it will only delete the sav if refcnt == 1,
2720 * where we already know that refcnt == 0
2721 */
2722 key_delsav(sav);
2723 } else {
2724 /* give up to delete this sa */
2725 zombie++;
2726 }
2727 }
2728 }
2729 if (!zombie) { /* delete only if there are savs */
2730 /* remove from tree of SA index */
2731 if (__LIST_CHAINED(sah))
2732 LIST_REMOVE(sah, chain);
2733 free(sah, M_IPSEC_SAH);
2734 }
2735 }
2736
2737 /*
2738 * allocating a new SA with LARVAL state. key_add() and key_getspi() call,
2739 * and copy the values of mhp into new buffer.
2740 * When SAD message type is GETSPI:
2741 * to set sequence number from acq_seq++,
2742 * to set zero to SPI.
2743 * not to call key_setsava().
2744 * OUT: NULL : fail
2745 * others : pointer to new secasvar.
2746 *
2747 * does not modify mbuf. does not free mbuf on error.
2748 */
2749 static struct secasvar *
2750 key_newsav(struct mbuf *m, const struct sadb_msghdr *mhp,
2751 struct secashead *sah, int *errp, const char *where, int tag)
2752 {
2753 struct secasvar *newsav;
2754 const struct sadb_sa *xsa;
2755
2756 IPSEC_ASSERT(m != NULL, ("null mbuf"));
2757 IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2758 IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2759 IPSEC_ASSERT(sah != NULL, ("null secashead"));
2760
2761 newsav = malloc(sizeof(struct secasvar), M_IPSEC_SA, M_NOWAIT|M_ZERO);
2762 if (newsav == NULL) {
2763 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
2764 *errp = ENOBUFS;
2765 goto done;
2766 }
2767
2768 switch (mhp->msg->sadb_msg_type) {
2769 case SADB_GETSPI:
2770 newsav->spi = 0;
2771
2772 #ifdef IPSEC_DOSEQCHECK
2773 /* sync sequence number */
2774 if (mhp->msg->sadb_msg_seq == 0)
2775 newsav->seq =
2776 (V_acq_seq = (V_acq_seq == ~0 ? 1 : ++V_acq_seq));
2777 else
2778 #endif
2779 newsav->seq = mhp->msg->sadb_msg_seq;
2780 break;
2781
2782 case SADB_ADD:
2783 /* sanity check */
2784 if (mhp->ext[SADB_EXT_SA] == NULL) {
2785 free(newsav, M_IPSEC_SA);
2786 newsav = NULL;
2787 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
2788 __func__));
2789 *errp = EINVAL;
2790 goto done;
2791 }
2792 xsa = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA];
2793 newsav->spi = xsa->sadb_sa_spi;
2794 newsav->seq = mhp->msg->sadb_msg_seq;
2795 break;
2796 default:
2797 free(newsav, M_IPSEC_SA);
2798 newsav = NULL;
2799 *errp = EINVAL;
2800 goto done;
2801 }
2802
2803
2804 /* copy sav values */
2805 if (mhp->msg->sadb_msg_type != SADB_GETSPI) {
2806 *errp = key_setsaval(newsav, m, mhp);
2807 if (*errp) {
2808 free(newsav, M_IPSEC_SA);
2809 newsav = NULL;
2810 goto done;
2811 }
2812 }
2813
2814 SECASVAR_LOCK_INIT(newsav);
2815
2816 /* reset created */
2817 newsav->created = time_second;
2818 newsav->pid = mhp->msg->sadb_msg_pid;
2819
2820 /* add to satree */
2821 newsav->sah = sah;
2822 sa_initref(newsav);
2823 newsav->state = SADB_SASTATE_LARVAL;
2824
2825 SAHTREE_LOCK();
2826 LIST_INSERT_TAIL(&sah->savtree[SADB_SASTATE_LARVAL], newsav,
2827 secasvar, chain);
2828 SAHTREE_UNLOCK();
2829 done:
2830 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
2831 printf("DP %s from %s:%u return SP:%p\n", __func__,
2832 where, tag, newsav));
2833
2834 return newsav;
2835 }
2836
2837 /*
2838 * free() SA variable entry.
2839 */
2840 static void
2841 key_cleansav(struct secasvar *sav)
2842 {
2843 /*
2844 * Cleanup xform state. Note that zeroize'ing causes the
2845 * keys to be cleared; otherwise we must do it ourself.
2846 */
2847 if (sav->tdb_xform != NULL) {
2848 sav->tdb_xform->xf_zeroize(sav);
2849 sav->tdb_xform = NULL;
2850 } else {
2851 KASSERT(sav->iv == NULL, ("iv but no xform"));
2852 if (sav->key_auth != NULL)
2853 bzero(sav->key_auth->key_data, _KEYLEN(sav->key_auth));
2854 if (sav->key_enc != NULL)
2855 bzero(sav->key_enc->key_data, _KEYLEN(sav->key_enc));
2856 }
2857 if (sav->key_auth != NULL) {
2858 if (sav->key_auth->key_data != NULL)
2859 free(sav->key_auth->key_data, M_IPSEC_MISC);
2860 free(sav->key_auth, M_IPSEC_MISC);
2861 sav->key_auth = NULL;
2862 }
2863 if (sav->key_enc != NULL) {
2864 if (sav->key_enc->key_data != NULL)
2865 free(sav->key_enc->key_data, M_IPSEC_MISC);
2866 free(sav->key_enc, M_IPSEC_MISC);
2867 sav->key_enc = NULL;
2868 }
2869 if (sav->sched) {
2870 bzero(sav->sched, sav->schedlen);
2871 free(sav->sched, M_IPSEC_MISC);
2872 sav->sched = NULL;
2873 }
2874 if (sav->replay != NULL) {
2875 free(sav->replay, M_IPSEC_MISC);
2876 sav->replay = NULL;
2877 }
2878 if (sav->lft_c != NULL) {
2879 free(sav->lft_c, M_IPSEC_MISC);
2880 sav->lft_c = NULL;
2881 }
2882 if (sav->lft_h != NULL) {
2883 free(sav->lft_h, M_IPSEC_MISC);
2884 sav->lft_h = NULL;
2885 }
2886 if (sav->lft_s != NULL) {
2887 free(sav->lft_s, M_IPSEC_MISC);
2888 sav->lft_s = NULL;
2889 }
2890 }
2891
2892 /*
2893 * free() SA variable entry.
2894 */
2895 static void
2896 key_delsav(struct secasvar *sav)
2897 {
2898 IPSEC_ASSERT(sav != NULL, ("null sav"));
2899 IPSEC_ASSERT(sav->refcnt == 0, ("reference count %u > 0", sav->refcnt));
2900
2901 /* remove from SA header */
2902 if (__LIST_CHAINED(sav))
2903 LIST_REMOVE(sav, chain);
2904 key_cleansav(sav);
2905 SECASVAR_LOCK_DESTROY(sav);
2906 free(sav, M_IPSEC_SA);
2907 }
2908
2909 /*
2910 * search SAD.
2911 * OUT:
2912 * NULL : not found
2913 * others : found, pointer to a SA.
2914 */
2915 static struct secashead *
2916 key_getsah(struct secasindex *saidx)
2917 {
2918 struct secashead *sah;
2919
2920 SAHTREE_LOCK();
2921 LIST_FOREACH(sah, &V_sahtree, chain) {
2922 if (sah->state == SADB_SASTATE_DEAD)
2923 continue;
2924 if (key_cmpsaidx(&sah->saidx, saidx, CMP_REQID))
2925 break;
2926 }
2927 SAHTREE_UNLOCK();
2928
2929 return sah;
2930 }
2931
2932 /*
2933 * check not to be duplicated SPI.
2934 * NOTE: this function is too slow due to searching all SAD.
2935 * OUT:
2936 * NULL : not found
2937 * others : found, pointer to a SA.
2938 */
2939 static struct secasvar *
2940 key_checkspidup(struct secasindex *saidx, u_int32_t spi)
2941 {
2942 struct secashead *sah;
2943 struct secasvar *sav;
2944
2945 /* check address family */
2946 if (saidx->src.sa.sa_family != saidx->dst.sa.sa_family) {
2947 ipseclog((LOG_DEBUG, "%s: address family mismatched.\n",
2948 __func__));
2949 return NULL;
2950 }
2951
2952 sav = NULL;
2953 /* check all SAD */
2954 SAHTREE_LOCK();
2955 LIST_FOREACH(sah, &V_sahtree, chain) {
2956 if (!key_ismyaddr((struct sockaddr *)&sah->saidx.dst))
2957 continue;
2958 sav = key_getsavbyspi(sah, spi);
2959 if (sav != NULL)
2960 break;
2961 }
2962 SAHTREE_UNLOCK();
2963
2964 return sav;
2965 }
2966
2967 /*
2968 * search SAD litmited alive SA, protocol, SPI.
2969 * OUT:
2970 * NULL : not found
2971 * others : found, pointer to a SA.
2972 */
2973 static struct secasvar *
2974 key_getsavbyspi(struct secashead *sah, u_int32_t spi)
2975 {
2976 struct secasvar *sav;
2977 u_int stateidx, state;
2978
2979 sav = NULL;
2980 SAHTREE_LOCK_ASSERT();
2981 /* search all status */
2982 for (stateidx = 0;
2983 stateidx < _ARRAYLEN(saorder_state_alive);
2984 stateidx++) {
2985
2986 state = saorder_state_alive[stateidx];
2987 LIST_FOREACH(sav, &sah->savtree[state], chain) {
2988
2989 /* sanity check */
2990 if (sav->state != state) {
2991 ipseclog((LOG_DEBUG, "%s: "
2992 "invalid sav->state (queue: %d SA: %d)\n",
2993 __func__, state, sav->state));
2994 continue;
2995 }
2996
2997 if (sav->spi == spi)
2998 return sav;
2999 }
3000 }
3001
3002 return NULL;
3003 }
3004
3005 /*
3006 * copy SA values from PF_KEY message except *SPI, SEQ, PID, STATE and TYPE*.
3007 * You must update these if need.
3008 * OUT: 0: success.
3009 * !0: failure.
3010 *
3011 * does not modify mbuf. does not free mbuf on error.
3012 */
3013 static int
3014 key_setsaval(struct secasvar *sav, struct mbuf *m,
3015 const struct sadb_msghdr *mhp)
3016 {
3017 int error = 0;
3018
3019 IPSEC_ASSERT(m != NULL, ("null mbuf"));
3020 IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
3021 IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
3022
3023 /* initialization */
3024 sav->replay = NULL;
3025 sav->key_auth = NULL;
3026 sav->key_enc = NULL;
3027 sav->sched = NULL;
3028 sav->schedlen = 0;
3029 sav->iv = NULL;
3030 sav->lft_c = NULL;
3031 sav->lft_h = NULL;
3032 sav->lft_s = NULL;
3033 sav->tdb_xform = NULL; /* transform */
3034 sav->tdb_encalgxform = NULL; /* encoding algorithm */
3035 sav->tdb_authalgxform = NULL; /* authentication algorithm */
3036 sav->tdb_compalgxform = NULL; /* compression algorithm */
3037 /* Initialize even if NAT-T not compiled in: */
3038 sav->natt_type = 0;
3039 sav->natt_esp_frag_len = 0;
3040
3041 /* SA */
3042 if (mhp->ext[SADB_EXT_SA] != NULL) {
3043 const struct sadb_sa *sa0;
3044
3045 sa0 = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA];
3046 if (mhp->extlen[SADB_EXT_SA] < sizeof(*sa0)) {
3047 error = EINVAL;
3048 goto fail;
3049 }
3050
3051 sav->alg_auth = sa0->sadb_sa_auth;
3052 sav->alg_enc = sa0->sadb_sa_encrypt;
3053 sav->flags = sa0->sadb_sa_flags;
3054
3055 /* replay window */
3056 if ((sa0->sadb_sa_flags & SADB_X_EXT_OLD) == 0) {
3057 sav->replay = (struct secreplay *)
3058 malloc(sizeof(struct secreplay)+sa0->sadb_sa_replay, M_IPSEC_MISC, M_NOWAIT|M_ZERO);
3059 if (sav->replay == NULL) {
3060 ipseclog((LOG_DEBUG, "%s: No more memory.\n",
3061 __func__));
3062 error = ENOBUFS;
3063 goto fail;
3064 }
3065 if (sa0->sadb_sa_replay != 0)
3066 sav->replay->bitmap = (caddr_t)(sav->replay+1);
3067 sav->replay->wsize = sa0->sadb_sa_replay;
3068 }
3069 }
3070
3071 /* Authentication keys */
3072 if (mhp->ext[SADB_EXT_KEY_AUTH] != NULL) {
3073 const struct sadb_key *key0;
3074 int len;
3075
3076 key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_AUTH];
3077 len = mhp->extlen[SADB_EXT_KEY_AUTH];
3078
3079 error = 0;
3080 if (len < sizeof(*key0)) {
3081 error = EINVAL;
3082 goto fail;
3083 }
3084 switch (mhp->msg->sadb_msg_satype) {
3085 case SADB_SATYPE_AH:
3086 case SADB_SATYPE_ESP:
3087 case SADB_X_SATYPE_TCPSIGNATURE:
3088 if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) &&
3089 sav->alg_auth != SADB_X_AALG_NULL)
3090 error = EINVAL;
3091 break;
3092 case SADB_X_SATYPE_IPCOMP:
3093 default:
3094 error = EINVAL;
3095 break;
3096 }
3097 if (error) {
3098 ipseclog((LOG_DEBUG, "%s: invalid key_auth values.\n",
3099 __func__));
3100 goto fail;
3101 }
3102
3103 sav->key_auth = (struct seckey *)key_dup_keymsg(key0, len,
3104 M_IPSEC_MISC);
3105 if (sav->key_auth == NULL ) {
3106 ipseclog((LOG_DEBUG, "%s: No more memory.\n",
3107 __func__));
3108 error = ENOBUFS;
3109 goto fail;
3110 }
3111 }
3112
3113 /* Encryption key */
3114 if (mhp->ext[SADB_EXT_KEY_ENCRYPT] != NULL) {
3115 const struct sadb_key *key0;
3116 int len;
3117
3118 key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_ENCRYPT];
3119 len = mhp->extlen[SADB_EXT_KEY_ENCRYPT];
3120
3121 error = 0;
3122 if (len < sizeof(*key0)) {
3123 error = EINVAL;
3124 goto fail;
3125 }
3126 switch (mhp->msg->sadb_msg_satype) {
3127 case SADB_SATYPE_ESP:
3128 if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) &&
3129 sav->alg_enc != SADB_EALG_NULL) {
3130 error = EINVAL;
3131 break;
3132 }
3133 sav->key_enc = (struct seckey *)key_dup_keymsg(key0,
3134 len,
3135 M_IPSEC_MISC);
3136 if (sav->key_enc == NULL) {
3137 ipseclog((LOG_DEBUG, "%s: No more memory.\n",
3138 __func__));
3139 error = ENOBUFS;
3140 goto fail;
3141 }
3142 break;
3143 case SADB_X_SATYPE_IPCOMP:
3144 if (len != PFKEY_ALIGN8(sizeof(struct sadb_key)))
3145 error = EINVAL;
3146 sav->key_enc = NULL; /*just in case*/
3147 break;
3148 case SADB_SATYPE_AH:
3149 case SADB_X_SATYPE_TCPSIGNATURE:
3150 default:
3151 error = EINVAL;
3152 break;
3153 }
3154 if (error) {
3155 ipseclog((LOG_DEBUG, "%s: invalid key_enc value.\n",
3156 __func__));
3157 goto fail;
3158 }
3159 }
3160
3161 /* set iv */
3162 sav->ivlen = 0;
3163
3164 switch (mhp->msg->sadb_msg_satype) {
3165 case SADB_SATYPE_AH:
3166 error = xform_init(sav, XF_AH);
3167 break;
3168 case SADB_SATYPE_ESP:
3169 error = xform_init(sav, XF_ESP);
3170 break;
3171 case SADB_X_SATYPE_IPCOMP:
3172 error = xform_init(sav, XF_IPCOMP);
3173 break;
3174 case SADB_X_SATYPE_TCPSIGNATURE:
3175 error = xform_init(sav, XF_TCPSIGNATURE);
3176 break;
3177 }
3178 if (error) {
3179 ipseclog((LOG_DEBUG, "%s: unable to initialize SA type %u.\n",
3180 __func__, mhp->msg->sadb_msg_satype));
3181 goto fail;
3182 }
3183
3184 /* reset created */
3185 sav->created = time_second;
3186
3187 /* make lifetime for CURRENT */
3188 sav->lft_c = malloc(sizeof(struct seclifetime), M_IPSEC_MISC, M_NOWAIT);
3189 if (sav->lft_c == NULL) {
3190 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
3191 error = ENOBUFS;
3192 goto fail;
3193 }
3194
3195 sav->lft_c->allocations = 0;
3196 sav->lft_c->bytes = 0;
3197 sav->lft_c->addtime = time_second;
3198 sav->lft_c->usetime = 0;
3199
3200 /* lifetimes for HARD and SOFT */
3201 {
3202 const struct sadb_lifetime *lft0;
3203
3204 lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD];
3205 if (lft0 != NULL) {
3206 if (mhp->extlen[SADB_EXT_LIFETIME_HARD] < sizeof(*lft0)) {
3207 error = EINVAL;
3208 goto fail;
3209 }
3210 sav->lft_h = key_dup_lifemsg(lft0, M_IPSEC_MISC);
3211 if (sav->lft_h == NULL) {
3212 ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__));
3213 error = ENOBUFS;
3214 goto fail;
3215 }
3216 /* to be initialize ? */
3217 }
3218
3219 lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_SOFT];
3220 if (lft0 != NULL) {
3221 if (mhp->extlen[SADB_EXT_LIFETIME_SOFT] < sizeof(*lft0)) {
3222 error = EINVAL;
3223 goto fail;
3224 }
3225 sav->lft_s = key_dup_lifemsg(lft0, M_IPSEC_MISC);
3226 if (sav->lft_s == NULL) {
3227 ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__));
3228 error = ENOBUFS;
3229 goto fail;
3230 }
3231 /* to be initialize ? */
3232 }
3233 }
3234
3235 return 0;
3236
3237 fail:
3238 /* initialization */
3239 key_cleansav(sav);
3240
3241 return error;
3242 }
3243
3244 /*
3245 * validation with a secasvar entry, and set SADB_SATYPE_MATURE.
3246 * OUT: 0: valid
3247 * other: errno
3248 */
3249 static int
3250 key_mature(struct secasvar *sav)
3251 {
3252 int error;
3253
3254 /* check SPI value */
3255 switch (sav->sah->saidx.proto) {
3256 case IPPROTO_ESP:
3257 case IPPROTO_AH:
3258 /*
3259 * RFC 4302, 2.4. Security Parameters Index (SPI), SPI values
3260 * 1-255 reserved by IANA for future use,
3261 * 0 for implementation specific, local use.
3262 */
3263 if (ntohl(sav->spi) <= 255) {
3264 ipseclog((LOG_DEBUG, "%s: illegal range of SPI %u.\n",
3265 __func__, (u_int32_t)ntohl(sav->spi)));
3266 return EINVAL;
3267 }
3268 break;
3269 }
3270
3271 /* check satype */
3272 switch (sav->sah->saidx.proto) {
3273 case IPPROTO_ESP:
3274 /* check flags */
3275 if ((sav->flags & (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) ==
3276 (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) {
3277 ipseclog((LOG_DEBUG, "%s: invalid flag (derived) "
3278 "given to old-esp.\n", __func__));
3279 return EINVAL;
3280 }
3281 error = xform_init(sav, XF_ESP);
3282 break;
3283 case IPPROTO_AH:
3284 /* check flags */
3285 if (sav->flags & SADB_X_EXT_DERIV) {
3286 ipseclog((LOG_DEBUG, "%s: invalid flag (derived) "
3287 "given to AH SA.\n", __func__));
3288 return EINVAL;
3289 }
3290 if (sav->alg_enc != SADB_EALG_NONE) {
3291 ipseclog((LOG_DEBUG, "%s: protocol and algorithm "
3292 "mismated.\n", __func__));
3293 return(EINVAL);
3294 }
3295 error = xform_init(sav, XF_AH);
3296 break;
3297 case IPPROTO_IPCOMP:
3298 if (sav->alg_auth != SADB_AALG_NONE) {
3299 ipseclog((LOG_DEBUG, "%s: protocol and algorithm "
3300 "mismated.\n", __func__));
3301 return(EINVAL);
3302 }
3303 if ((sav->flags & SADB_X_EXT_RAWCPI) == 0
3304 && ntohl(sav->spi) >= 0x10000) {
3305 ipseclog((LOG_DEBUG, "%s: invalid cpi for IPComp.\n",
3306 __func__));
3307 return(EINVAL);
3308 }
3309 error = xform_init(sav, XF_IPCOMP);
3310 break;
3311 case IPPROTO_TCP:
3312 if (sav->alg_enc != SADB_EALG_NONE) {
3313 ipseclog((LOG_DEBUG, "%s: protocol and algorithm "
3314 "mismated.\n", __func__));
3315 return(EINVAL);
3316 }
3317 error = xform_init(sav, XF_TCPSIGNATURE);
3318 break;
3319 default:
3320 ipseclog((LOG_DEBUG, "%s: Invalid satype.\n", __func__));
3321 error = EPROTONOSUPPORT;
3322 break;
3323 }
3324 if (error == 0) {
3325 SAHTREE_LOCK();
3326 key_sa_chgstate(sav, SADB_SASTATE_MATURE);
3327 SAHTREE_UNLOCK();
3328 }
3329 return (error);
3330 }
3331
3332 /*
3333 * subroutine for SADB_GET and SADB_DUMP.
3334 */
3335 static struct mbuf *
3336 key_setdumpsa(struct secasvar *sav, u_int8_t type, u_int8_t satype,
3337 u_int32_t seq, u_int32_t pid)
3338 {
3339 struct mbuf *result = NULL, *tres = NULL, *m;
3340 int i;
3341 int dumporder[] = {
3342 SADB_EXT_SA, SADB_X_EXT_SA2,
3343 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT,
3344 SADB_EXT_LIFETIME_CURRENT, SADB_EXT_ADDRESS_SRC,
3345 SADB_EXT_ADDRESS_DST, SADB_EXT_ADDRESS_PROXY, SADB_EXT_KEY_AUTH,
3346 SADB_EXT_KEY_ENCRYPT, SADB_EXT_IDENTITY_SRC,
3347 SADB_EXT_IDENTITY_DST, SADB_EXT_SENSITIVITY,
3348 #ifdef IPSEC_NAT_T
3349 SADB_X_EXT_NAT_T_TYPE,
3350 SADB_X_EXT_NAT_T_SPORT, SADB_X_EXT_NAT_T_DPORT,
3351 SADB_X_EXT_NAT_T_OAI, SADB_X_EXT_NAT_T_OAR,
3352 SADB_X_EXT_NAT_T_FRAG,
3353 #endif
3354 };
3355
3356 m = key_setsadbmsg(type, 0, satype, seq, pid, sav->refcnt);
3357 if (m == NULL)
3358 goto fail;
3359 result = m;
3360
3361 for (i = sizeof(dumporder)/sizeof(dumporder[0]) - 1; i >= 0; i--) {
3362 m = NULL;
3363 switch (dumporder[i]) {
3364 case SADB_EXT_SA:
3365 m = key_setsadbsa(sav);
3366 if (!m)
3367 goto fail;
3368 break;
3369
3370 case SADB_X_EXT_SA2:
3371 m = key_setsadbxsa2(sav->sah->saidx.mode,
3372 sav->replay ? sav->replay->count : 0,
3373 sav->sah->saidx.reqid);
3374 if (!m)
3375 goto fail;
3376 break;
3377
3378 case SADB_EXT_ADDRESS_SRC:
3379 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
3380 &sav->sah->saidx.src.sa,
3381 FULLMASK, IPSEC_ULPROTO_ANY);
3382 if (!m)
3383 goto fail;
3384 break;
3385
3386 case SADB_EXT_ADDRESS_DST:
3387 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
3388 &sav->sah->saidx.dst.sa,
3389 FULLMASK, IPSEC_ULPROTO_ANY);
3390 if (!m)
3391 goto fail;
3392 break;
3393
3394 case SADB_EXT_KEY_AUTH:
3395 if (!sav->key_auth)
3396 continue;
3397 m = key_setkey(sav->key_auth, SADB_EXT_KEY_AUTH);
3398 if (!m)
3399 goto fail;
3400 break;
3401
3402 case SADB_EXT_KEY_ENCRYPT:
3403 if (!sav->key_enc)
3404 continue;
3405 m = key_setkey(sav->key_enc, SADB_EXT_KEY_ENCRYPT);
3406 if (!m)
3407 goto fail;
3408 break;
3409
3410 case SADB_EXT_LIFETIME_CURRENT:
3411 if (!sav->lft_c)
3412 continue;
3413 m = key_setlifetime(sav->lft_c,
3414 SADB_EXT_LIFETIME_CURRENT);
3415 if (!m)
3416 goto fail;
3417 break;
3418
3419 case SADB_EXT_LIFETIME_HARD:
3420 if (!sav->lft_h)
3421 continue;
3422 m = key_setlifetime(sav->lft_h,
3423 SADB_EXT_LIFETIME_HARD);
3424 if (!m)
3425 goto fail;
3426 break;
3427
3428 case SADB_EXT_LIFETIME_SOFT:
3429 if (!sav->lft_s)
3430 continue;
3431 m = key_setlifetime(sav->lft_s,
3432 SADB_EXT_LIFETIME_SOFT);
3433
3434 if (!m)
3435 goto fail;
3436 break;
3437
3438 #ifdef IPSEC_NAT_T
3439 case SADB_X_EXT_NAT_T_TYPE:
3440 m = key_setsadbxtype(sav->natt_type);
3441 if (!m)
3442 goto fail;
3443 break;
3444
3445 case SADB_X_EXT_NAT_T_DPORT:
3446 m = key_setsadbxport(
3447 KEY_PORTFROMSADDR(&sav->sah->saidx.dst),
3448 SADB_X_EXT_NAT_T_DPORT);
3449 if (!m)
3450 goto fail;
3451 break;
3452
3453 case SADB_X_EXT_NAT_T_SPORT:
3454 m = key_setsadbxport(
3455 KEY_PORTFROMSADDR(&sav->sah->saidx.src),
3456 SADB_X_EXT_NAT_T_SPORT);
3457 if (!m)
3458 goto fail;
3459 break;
3460
3461 case SADB_X_EXT_NAT_T_OAI:
3462 case SADB_X_EXT_NAT_T_OAR:
3463 case SADB_X_EXT_NAT_T_FRAG:
3464 /* We do not (yet) support those. */
3465 continue;
3466 #endif
3467
3468 case SADB_EXT_ADDRESS_PROXY:
3469 case SADB_EXT_IDENTITY_SRC:
3470 case SADB_EXT_IDENTITY_DST:
3471 /* XXX: should we brought from SPD ? */
3472 case SADB_EXT_SENSITIVITY:
3473 default:
3474 continue;
3475 }
3476
3477 if (!m)
3478 goto fail;
3479 if (tres)
3480 m_cat(m, tres);
3481 tres = m;
3482
3483 }
3484
3485 m_cat(result, tres);
3486 if (result->m_len < sizeof(struct sadb_msg)) {
3487 result = m_pullup(result, sizeof(struct sadb_msg));
3488 if (result == NULL)
3489 goto fail;
3490 }
3491
3492 result->m_pkthdr.len = 0;
3493 for (m = result; m; m = m->m_next)
3494 result->m_pkthdr.len += m->m_len;
3495
3496 mtod(result, struct sadb_msg *)->sadb_msg_len =
3497 PFKEY_UNIT64(result->m_pkthdr.len);
3498
3499 return result;
3500
3501 fail:
3502 m_freem(result);
3503 m_freem(tres);
3504 return NULL;
3505 }
3506
3507 /*
3508 * set data into sadb_msg.
3509 */
3510 static struct mbuf *
3511 key_setsadbmsg(u_int8_t type, u_int16_t tlen, u_int8_t satype, u_int32_t seq,
3512 pid_t pid, u_int16_t reserved)
3513 {
3514 struct mbuf *m;
3515 struct sadb_msg *p;
3516 int len;
3517
3518 len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
3519 if (len > MCLBYTES)
3520 return NULL;
3521 MGETHDR(m, M_NOWAIT, MT_DATA);
3522 if (m && len > MHLEN) {
3523 MCLGET(m, M_NOWAIT);
3524 if ((m->m_flags & M_EXT) == 0) {
3525 m_freem(m);
3526 m = NULL;
3527 }
3528 }
3529 if (!m)
3530 return NULL;
3531 m->m_pkthdr.len = m->m_len = len;
3532 m->m_next = NULL;
3533
3534 p = mtod(m, struct sadb_msg *);
3535
3536 bzero(p, len);
3537 p->sadb_msg_version = PF_KEY_V2;
3538 p->sadb_msg_type = type;
3539 p->sadb_msg_errno = 0;
3540 p->sadb_msg_satype = satype;
3541 p->sadb_msg_len = PFKEY_UNIT64(tlen);
3542 p->sadb_msg_reserved = reserved;
3543 p->sadb_msg_seq = seq;
3544 p->sadb_msg_pid = (u_int32_t)pid;
3545
3546 return m;
3547 }
3548
3549 /*
3550 * copy secasvar data into sadb_address.
3551 */
3552 static struct mbuf *
3553 key_setsadbsa(struct secasvar *sav)
3554 {
3555 struct mbuf *m;
3556 struct sadb_sa *p;
3557 int len;
3558
3559 len = PFKEY_ALIGN8(sizeof(struct sadb_sa));
3560 m = m_get2(len, M_NOWAIT, MT_DATA, 0);
3561 if (m == NULL)
3562 return (NULL);
3563 m_align(m, len);
3564 m->m_len = len;
3565 p = mtod(m, struct sadb_sa *);
3566 bzero(p, len);
3567 p->sadb_sa_len = PFKEY_UNIT64(len);
3568 p->sadb_sa_exttype = SADB_EXT_SA;
3569 p->sadb_sa_spi = sav->spi;
3570 p->sadb_sa_replay = (sav->replay != NULL ? sav->replay->wsize : 0);
3571 p->sadb_sa_state = sav->state;
3572 p->sadb_sa_auth = sav->alg_auth;
3573 p->sadb_sa_encrypt = sav->alg_enc;
3574 p->sadb_sa_flags = sav->flags;
3575
3576 return m;
3577 }
3578
3579 /*
3580 * set data into sadb_address.
3581 */
3582 static struct mbuf *
3583 key_setsadbaddr(u_int16_t exttype, const struct sockaddr *saddr,
3584 u_int8_t prefixlen, u_int16_t ul_proto)
3585 {
3586 struct mbuf *m;
3587 struct sadb_address *p;
3588 size_t len;
3589
3590 len = PFKEY_ALIGN8(sizeof(struct sadb_address)) +
3591 PFKEY_ALIGN8(saddr->sa_len);
3592 m = m_get2(len, M_NOWAIT, MT_DATA, 0);
3593 if (m == NULL)
3594 return (NULL);
3595 m_align(m, len);
3596 m->m_len = len;
3597 p = mtod(m, struct sadb_address *);
3598
3599 bzero(p, len);
3600 p->sadb_address_len = PFKEY_UNIT64(len);
3601 p->sadb_address_exttype = exttype;
3602 p->sadb_address_proto = ul_proto;
3603 if (prefixlen == FULLMASK) {
3604 switch (saddr->sa_family) {
3605 case AF_INET:
3606 prefixlen = sizeof(struct in_addr) << 3;
3607 break;
3608 case AF_INET6:
3609 prefixlen = sizeof(struct in6_addr) << 3;
3610 break;
3611 default:
3612 ; /*XXX*/
3613 }
3614 }
3615 p->sadb_address_prefixlen = prefixlen;
3616 p->sadb_address_reserved = 0;
3617
3618 bcopy(saddr,
3619 mtod(m, caddr_t) + PFKEY_ALIGN8(sizeof(struct sadb_address)),
3620 saddr->sa_len);
3621
3622 return m;
3623 }
3624
3625 /*
3626 * set data into sadb_x_sa2.
3627 */
3628 static struct mbuf *
3629 key_setsadbxsa2(u_int8_t mode, u_int32_t seq, u_int32_t reqid)
3630 {
3631 struct mbuf *m;
3632 struct sadb_x_sa2 *p;
3633 size_t len;
3634
3635 len = PFKEY_ALIGN8(sizeof(struct sadb_x_sa2));
3636 m = m_get2(len, M_NOWAIT, MT_DATA, 0);
3637 if (m == NULL)
3638 return (NULL);
3639 m_align(m, len);
3640 m->m_len = len;
3641 p = mtod(m, struct sadb_x_sa2 *);
3642
3643 bzero(p, len);
3644 p->sadb_x_sa2_len = PFKEY_UNIT64(len);
3645 p->sadb_x_sa2_exttype = SADB_X_EXT_SA2;
3646 p->sadb_x_sa2_mode = mode;
3647 p->sadb_x_sa2_reserved1 = 0;
3648 p->sadb_x_sa2_reserved2 = 0;
3649 p->sadb_x_sa2_sequence = seq;
3650 p->sadb_x_sa2_reqid = reqid;
3651
3652 return m;
3653 }
3654
3655 #ifdef IPSEC_NAT_T
3656 /*
3657 * Set a type in sadb_x_nat_t_type.
3658 */
3659 static struct mbuf *
3660 key_setsadbxtype(u_int16_t type)
3661 {
3662 struct mbuf *m;
3663 size_t len;
3664 struct sadb_x_nat_t_type *p;
3665
3666 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_type));
3667
3668 m = m_get2(len, M_NOWAIT, MT_DATA, 0);
3669 if (m == NULL)
3670 return (NULL);
3671 m_align(m, len);
3672 m->m_len = len;
3673 p = mtod(m, struct sadb_x_nat_t_type *);
3674
3675 bzero(p, len);
3676 p->sadb_x_nat_t_type_len = PFKEY_UNIT64(len);
3677 p->sadb_x_nat_t_type_exttype = SADB_X_EXT_NAT_T_TYPE;
3678 p->sadb_x_nat_t_type_type = type;
3679
3680 return (m);
3681 }
3682 /*
3683 * Set a port in sadb_x_nat_t_port.
3684 * In contrast to default RFC 2367 behaviour, port is in network byte order.
3685 */
3686 static struct mbuf *
3687 key_setsadbxport(u_int16_t port, u_int16_t type)
3688 {
3689 struct mbuf *m;
3690 size_t len;
3691 struct sadb_x_nat_t_port *p;
3692
3693 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_port));
3694
3695 m = m_get2(len, M_NOWAIT, MT_DATA, 0);
3696 if (m == NULL)
3697 return (NULL);
3698 m_align(m, len);
3699 m->m_len = len;
3700 p = mtod(m, struct sadb_x_nat_t_port *);
3701
3702 bzero(p, len);
3703 p->sadb_x_nat_t_port_len = PFKEY_UNIT64(len);
3704 p->sadb_x_nat_t_port_exttype = type;
3705 p->sadb_x_nat_t_port_port = port;
3706
3707 return (m);
3708 }
3709
3710 /*
3711 * Get port from sockaddr. Port is in network byte order.
3712 */
3713 u_int16_t
3714 key_portfromsaddr(struct sockaddr *sa)
3715 {
3716
3717 switch (sa->sa_family) {
3718 #ifdef INET
3719 case AF_INET:
3720 return ((struct sockaddr_in *)sa)->sin_port;
3721 #endif
3722 #ifdef INET6
3723 case AF_INET6:
3724 return ((struct sockaddr_in6 *)sa)->sin6_port;
3725 #endif
3726 }
3727 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
3728 printf("DP %s unexpected address family %d\n",
3729 __func__, sa->sa_family));
3730 return (0);
3731 }
3732 #endif /* IPSEC_NAT_T */
3733
3734 /*
3735 * Set port in struct sockaddr. Port is in network byte order.
3736 */
3737 static void
3738 key_porttosaddr(struct sockaddr *sa, u_int16_t port)
3739 {
3740
3741 switch (sa->sa_family) {
3742 #ifdef INET
3743 case AF_INET:
3744 ((struct sockaddr_in *)sa)->sin_port = port;
3745 break;
3746 #endif
3747 #ifdef INET6
3748 case AF_INET6:
3749 ((struct sockaddr_in6 *)sa)->sin6_port = port;
3750 break;
3751 #endif
3752 default:
3753 ipseclog((LOG_DEBUG, "%s: unexpected address family %d.\n",
3754 __func__, sa->sa_family));
3755 break;
3756 }
3757 }
3758
3759 /*
3760 * set data into sadb_x_policy
3761 */
3762 static struct mbuf *
3763 key_setsadbxpolicy(u_int16_t type, u_int8_t dir, u_int32_t id)
3764 {
3765 struct mbuf *m;
3766 struct sadb_x_policy *p;
3767 size_t len;
3768
3769 len = PFKEY_ALIGN8(sizeof(struct sadb_x_policy));
3770 m = m_get2(len, M_NOWAIT, MT_DATA, 0);
3771 if (m == NULL)
3772 return (NULL);
3773 m_align(m, len);
3774 m->m_len = len;
3775 p = mtod(m, struct sadb_x_policy *);
3776
3777 bzero(p, len);
3778 p->sadb_x_policy_len = PFKEY_UNIT64(len);
3779 p->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
3780 p->sadb_x_policy_type = type;
3781 p->sadb_x_policy_dir = dir;
3782 p->sadb_x_policy_id = id;
3783
3784 return m;
3785 }
3786
3787 /* %%% utilities */
3788 /* Take a key message (sadb_key) from the socket and turn it into one
3789 * of the kernel's key structures (seckey).
3790 *
3791 * IN: pointer to the src
3792 * OUT: NULL no more memory
3793 */
3794 struct seckey *
3795 key_dup_keymsg(const struct sadb_key *src, u_int len,
3796 struct malloc_type *type)
3797 {
3798 struct seckey *dst;
3799 dst = (struct seckey *)malloc(sizeof(struct seckey), type, M_NOWAIT);
3800 if (dst != NULL) {
3801 dst->bits = src->sadb_key_bits;
3802 dst->key_data = (char *)malloc(len, type, M_NOWAIT);
3803 if (dst->key_data != NULL) {
3804 bcopy((const char *)src + sizeof(struct sadb_key),
3805 dst->key_data, len);
3806 } else {
3807 ipseclog((LOG_DEBUG, "%s: No more memory.\n",
3808 __func__));
3809 free(dst, type);
3810 dst = NULL;
3811 }
3812 } else {
3813 ipseclog((LOG_DEBUG, "%s: No more memory.\n",
3814 __func__));
3815
3816 }
3817 return dst;
3818 }
3819
3820 /* Take a lifetime message (sadb_lifetime) passed in on a socket and
3821 * turn it into one of the kernel's lifetime structures (seclifetime).
3822 *
3823 * IN: pointer to the destination, source and malloc type
3824 * OUT: NULL, no more memory
3825 */
3826
3827 static struct seclifetime *
3828 key_dup_lifemsg(const struct sadb_lifetime *src, struct malloc_type *type)
3829 {
3830 struct seclifetime *dst = NULL;
3831
3832 dst = (struct seclifetime *)malloc(sizeof(struct seclifetime),
3833 type, M_NOWAIT);
3834 if (dst == NULL) {
3835 /* XXX counter */
3836 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
3837 } else {
3838 dst->allocations = src->sadb_lifetime_allocations;
3839 dst->bytes = src->sadb_lifetime_bytes;
3840 dst->addtime = src->sadb_lifetime_addtime;
3841 dst->usetime = src->sadb_lifetime_usetime;
3842 }
3843 return dst;
3844 }
3845
3846 /* compare my own address
3847 * OUT: 1: true, i.e. my address.
3848 * 0: false
3849 */
3850 int
3851 key_ismyaddr(struct sockaddr *sa)
3852 {
3853
3854 IPSEC_ASSERT(sa != NULL, ("null sockaddr"));
3855 switch (sa->sa_family) {
3856 #ifdef INET
3857 case AF_INET:
3858 return (in_localip(satosin(sa)->sin_addr));
3859 #endif
3860 #ifdef INET6
3861 case AF_INET6:
3862 return key_ismyaddr6((struct sockaddr_in6 *)sa);
3863 #endif
3864 }
3865
3866 return 0;
3867 }
3868
3869 #ifdef INET6
3870 /*
3871 * compare my own address for IPv6.
3872 * 1: ours
3873 * 0: other
3874 * NOTE: derived ip6_input() in KAME. This is necessary to modify more.
3875 */
3876 #include <netinet6/in6_var.h>
3877
3878 static int
3879 key_ismyaddr6(struct sockaddr_in6 *sin6)
3880 {
3881 struct in6_ifaddr *ia;
3882 #if 0
3883 struct in6_multi *in6m;
3884 #endif
3885
3886 IN6_IFADDR_RLOCK();
3887 TAILQ_FOREACH(ia, &V_in6_ifaddrhead, ia_link) {
3888 if (key_sockaddrcmp((struct sockaddr *)sin6,
3889 (struct sockaddr *)&ia->ia_addr, 0) == 0) {
3890 IN6_IFADDR_RUNLOCK();
3891 return 1;
3892 }
3893
3894 #if 0
3895 /*
3896 * XXX Multicast
3897 * XXX why do we care about multlicast here while we don't care
3898 * about IPv4 multicast??
3899 * XXX scope
3900 */
3901 in6m = NULL;
3902 IN6_LOOKUP_MULTI(sin6->sin6_addr, ia->ia_ifp, in6m);
3903 if (in6m) {
3904 IN6_IFADDR_RUNLOCK();
3905 return 1;
3906 }
3907 #endif
3908 }
3909 IN6_IFADDR_RUNLOCK();
3910
3911 /* loopback, just for safety */
3912 if (IN6_IS_ADDR_LOOPBACK(&sin6->sin6_addr))
3913 return 1;
3914
3915 return 0;
3916 }
3917 #endif /*INET6*/
3918
3919 /*
3920 * compare two secasindex structure.
3921 * flag can specify to compare 2 saidxes.
3922 * compare two secasindex structure without both mode and reqid.
3923 * don't compare port.
3924 * IN:
3925 * saidx0: source, it can be in SAD.
3926 * saidx1: object.
3927 * OUT:
3928 * 1 : equal
3929 * 0 : not equal
3930 */
3931 static int
3932 key_cmpsaidx(const struct secasindex *saidx0, const struct secasindex *saidx1,
3933 int flag)
3934 {
3935 int chkport = 0;
3936
3937 /* sanity */
3938 if (saidx0 == NULL && saidx1 == NULL)
3939 return 1;
3940
3941 if (saidx0 == NULL || saidx1 == NULL)
3942 return 0;
3943
3944 if (saidx0->proto != saidx1->proto)
3945 return 0;
3946
3947 if (flag == CMP_EXACTLY) {
3948 if (saidx0->mode != saidx1->mode)
3949 return 0;
3950 if (saidx0->reqid != saidx1->reqid)
3951 return 0;
3952 if (bcmp(&saidx0->src, &saidx1->src, saidx0->src.sa.sa_len) != 0 ||
3953 bcmp(&saidx0->dst, &saidx1->dst, saidx0->dst.sa.sa_len) != 0)
3954 return 0;
3955 } else {
3956
3957 /* CMP_MODE_REQID, CMP_REQID, CMP_HEAD */
3958 if (flag == CMP_MODE_REQID
3959 ||flag == CMP_REQID) {
3960 /*
3961 * If reqid of SPD is non-zero, unique SA is required.
3962 * The result must be of same reqid in this case.
3963 */
3964 if (saidx1->reqid != 0 && saidx0->reqid != saidx1->reqid)
3965 return 0;
3966 }
3967
3968 if (flag == CMP_MODE_REQID) {
3969 if (saidx0->mode != IPSEC_MODE_ANY
3970 && saidx0->mode != saidx1->mode)
3971 return 0;
3972 }
3973
3974 #ifdef IPSEC_NAT_T
3975 /*
3976 * If NAT-T is enabled, check ports for tunnel mode.
3977 * Do not check ports if they are set to zero in the SPD.
3978 * Also do not do it for native transport mode, as there
3979 * is no port information available in the SP.
3980 */
3981 if ((saidx1->mode == IPSEC_MODE_TUNNEL ||
3982 (saidx1->mode == IPSEC_MODE_TRANSPORT &&
3983 saidx1->proto == IPPROTO_ESP)) &&
3984 saidx1->src.sa.sa_family == AF_INET &&
3985 saidx1->dst.sa.sa_family == AF_INET &&
3986 ((const struct sockaddr_in *)(&saidx1->src))->sin_port &&
3987 ((const struct sockaddr_in *)(&saidx1->dst))->sin_port)
3988 chkport = 1;
3989 #endif /* IPSEC_NAT_T */
3990
3991 if (key_sockaddrcmp(&saidx0->src.sa, &saidx1->src.sa, chkport) != 0) {
3992 return 0;
3993 }
3994 if (key_sockaddrcmp(&saidx0->dst.sa, &saidx1->dst.sa, chkport) != 0) {
3995 return 0;
3996 }
3997 }
3998
3999 return 1;
4000 }
4001
4002 /*
4003 * compare two secindex structure exactly.
4004 * IN:
4005 * spidx0: source, it is often in SPD.
4006 * spidx1: object, it is often from PFKEY message.
4007 * OUT:
4008 * 1 : equal
4009 * 0 : not equal
4010 */
4011 static int
4012 key_cmpspidx_exactly(struct secpolicyindex *spidx0,
4013 struct secpolicyindex *spidx1)
4014 {
4015 /* sanity */
4016 if (spidx0 == NULL && spidx1 == NULL)
4017 return 1;
4018
4019 if (spidx0 == NULL || spidx1 == NULL)
4020 return 0;
4021
4022 if (spidx0->prefs != spidx1->prefs
4023 || spidx0->prefd != spidx1->prefd
4024 || spidx0->ul_proto != spidx1->ul_proto)
4025 return 0;
4026
4027 return key_sockaddrcmp(&spidx0->src.sa, &spidx1->src.sa, 1) == 0 &&
4028 key_sockaddrcmp(&spidx0->dst.sa, &spidx1->dst.sa, 1) == 0;
4029 }
4030
4031 /*
4032 * compare two secindex structure with mask.
4033 * IN:
4034 * spidx0: source, it is often in SPD.
4035 * spidx1: object, it is often from IP header.
4036 * OUT:
4037 * 1 : equal
4038 * 0 : not equal
4039 */
4040 static int
4041 key_cmpspidx_withmask(struct secpolicyindex *spidx0,
4042 struct secpolicyindex *spidx1)
4043 {
4044 /* sanity */
4045 if (spidx0 == NULL && spidx1 == NULL)
4046 return 1;
4047
4048 if (spidx0 == NULL || spidx1 == NULL)
4049 return 0;
4050
4051 if (spidx0->src.sa.sa_family != spidx1->src.sa.sa_family ||
4052 spidx0->dst.sa.sa_family != spidx1->dst.sa.sa_family ||
4053 spidx0->src.sa.sa_len != spidx1->src.sa.sa_len ||
4054 spidx0->dst.sa.sa_len != spidx1->dst.sa.sa_len)
4055 return 0;
4056
4057 /* if spidx.ul_proto == IPSEC_ULPROTO_ANY, ignore. */
4058 if (spidx0->ul_proto != (u_int16_t)IPSEC_ULPROTO_ANY
4059 && spidx0->ul_proto != spidx1->ul_proto)
4060 return 0;
4061
4062 switch (spidx0->src.sa.sa_family) {
4063 case AF_INET:
4064 if (spidx0->src.sin.sin_port != IPSEC_PORT_ANY
4065 && spidx0->src.sin.sin_port != spidx1->src.sin.sin_port)
4066 return 0;
4067 if (!key_bbcmp(&spidx0->src.sin.sin_addr,
4068 &spidx1->src.sin.sin_addr, spidx0->prefs))
4069 return 0;
4070 break;
4071 case AF_INET6:
4072 if (spidx0->src.sin6.sin6_port != IPSEC_PORT_ANY
4073 && spidx0->src.sin6.sin6_port != spidx1->src.sin6.sin6_port)
4074 return 0;
4075 /*
4076 * scope_id check. if sin6_scope_id is 0, we regard it
4077 * as a wildcard scope, which matches any scope zone ID.
4078 */
4079 if (spidx0->src.sin6.sin6_scope_id &&
4080 spidx1->src.sin6.sin6_scope_id &&
4081 spidx0->src.sin6.sin6_scope_id != spidx1->src.sin6.sin6_scope_id)
4082 return 0;
4083 if (!key_bbcmp(&spidx0->src.sin6.sin6_addr,
4084 &spidx1->src.sin6.sin6_addr, spidx0->prefs))
4085 return 0;
4086 break;
4087 default:
4088 /* XXX */
4089 if (bcmp(&spidx0->src, &spidx1->src, spidx0->src.sa.sa_len) != 0)
4090 return 0;
4091 break;
4092 }
4093
4094 switch (spidx0->dst.sa.sa_family) {
4095 case AF_INET:
4096 if (spidx0->dst.sin.sin_port != IPSEC_PORT_ANY
4097 && spidx0->dst.sin.sin_port != spidx1->dst.sin.sin_port)
4098 return 0;
4099 if (!key_bbcmp(&spidx0->dst.sin.sin_addr,
4100 &spidx1->dst.sin.sin_addr, spidx0->prefd))
4101 return 0;
4102 break;
4103 case AF_INET6:
4104 if (spidx0->dst.sin6.sin6_port != IPSEC_PORT_ANY
4105 && spidx0->dst.sin6.sin6_port != spidx1->dst.sin6.sin6_port)
4106 return 0;
4107 /*
4108 * scope_id check. if sin6_scope_id is 0, we regard it
4109 * as a wildcard scope, which matches any scope zone ID.
4110 */
4111 if (spidx0->dst.sin6.sin6_scope_id &&
4112 spidx1->dst.sin6.sin6_scope_id &&
4113 spidx0->dst.sin6.sin6_scope_id != spidx1->dst.sin6.sin6_scope_id)
4114 return 0;
4115 if (!key_bbcmp(&spidx0->dst.sin6.sin6_addr,
4116 &spidx1->dst.sin6.sin6_addr, spidx0->prefd))
4117 return 0;
4118 break;
4119 default:
4120 /* XXX */
4121 if (bcmp(&spidx0->dst, &spidx1->dst, spidx0->dst.sa.sa_len) != 0)
4122 return 0;
4123 break;
4124 }
4125
4126 /* XXX Do we check other field ? e.g. flowinfo */
4127
4128 return 1;
4129 }
4130
4131 /* returns 0 on match */
4132 static int
4133 key_sockaddrcmp(const struct sockaddr *sa1, const struct sockaddr *sa2,
4134 int port)
4135 {
4136 #ifdef satosin
4137 #undef satosin
4138 #endif
4139 #define satosin(s) ((const struct sockaddr_in *)s)
4140 #ifdef satosin6
4141 #undef satosin6
4142 #endif
4143 #define satosin6(s) ((const struct sockaddr_in6 *)s)
4144 if (sa1->sa_family != sa2->sa_family || sa1->sa_len != sa2->sa_len)
4145 return 1;
4146
4147 switch (sa1->sa_family) {
4148 case AF_INET:
4149 if (sa1->sa_len != sizeof(struct sockaddr_in))
4150 return 1;
4151 if (satosin(sa1)->sin_addr.s_addr !=
4152 satosin(sa2)->sin_addr.s_addr) {
4153 return 1;
4154 }
4155 if (port && satosin(sa1)->sin_port != satosin(sa2)->sin_port)
4156 return 1;
4157 break;
4158 case AF_INET6:
4159 if (sa1->sa_len != sizeof(struct sockaddr_in6))
4160 return 1; /*EINVAL*/
4161 if (satosin6(sa1)->sin6_scope_id !=
4162 satosin6(sa2)->sin6_scope_id) {
4163 return 1;
4164 }
4165 if (!IN6_ARE_ADDR_EQUAL(&satosin6(sa1)->sin6_addr,
4166 &satosin6(sa2)->sin6_addr)) {
4167 return 1;
4168 }
4169 if (port &&
4170 satosin6(sa1)->sin6_port != satosin6(sa2)->sin6_port) {
4171 return 1;
4172 }
4173 break;
4174 default:
4175 if (bcmp(sa1, sa2, sa1->sa_len) != 0)
4176 return 1;
4177 break;
4178 }
4179
4180 return 0;
4181 #undef satosin
4182 #undef satosin6
4183 }
4184
4185 /*
4186 * compare two buffers with mask.
4187 * IN:
4188 * addr1: source
4189 * addr2: object
4190 * bits: Number of bits to compare
4191 * OUT:
4192 * 1 : equal
4193 * 0 : not equal
4194 */
4195 static int
4196 key_bbcmp(const void *a1, const void *a2, u_int bits)
4197 {
4198 const unsigned char *p1 = a1;
4199 const unsigned char *p2 = a2;
4200
4201 /* XXX: This could be considerably faster if we compare a word
4202 * at a time, but it is complicated on LSB Endian machines */
4203
4204 /* Handle null pointers */
4205 if (p1 == NULL || p2 == NULL)
4206 return (p1 == p2);
4207
4208 while (bits >= 8) {
4209 if (*p1++ != *p2++)
4210 return 0;
4211 bits -= 8;
4212 }
4213
4214 if (bits > 0) {
4215 u_int8_t mask = ~((1<<(8-bits))-1);
4216 if ((*p1 & mask) != (*p2 & mask))
4217 return 0;
4218 }
4219 return 1; /* Match! */
4220 }
4221
4222 static void
4223 key_flush_spd(time_t now)
4224 {
4225 static u_int16_t sptree_scangen = 0;
4226 u_int16_t gen = sptree_scangen++;
4227 struct secpolicy *sp;
4228 u_int dir;
4229
4230 /* SPD */
4231 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
4232 restart:
4233 SPTREE_LOCK();
4234 LIST_FOREACH(sp, &V_sptree[dir], chain) {
4235 if (sp->scangen == gen) /* previously handled */
4236 continue;
4237 sp->scangen = gen;
4238 if (sp->state == IPSEC_SPSTATE_DEAD &&
4239 sp->refcnt == 1) {
4240 /*
4241 * Ensure that we only decrease refcnt once,
4242 * when we're the last consumer.
4243 * Directly call SP_DELREF/key_delsp instead
4244 * of KEY_FREESP to avoid unlocking/relocking
4245 * SPTREE_LOCK before key_delsp: may refcnt
4246 * be increased again during that time ?
4247 * NB: also clean entries created by
4248 * key_spdflush
4249 */
4250 SP_DELREF(sp);
4251 key_delsp(sp);
4252 SPTREE_UNLOCK();
4253 goto restart;
4254 }
4255 if (sp->lifetime == 0 && sp->validtime == 0)
4256 continue;
4257 if ((sp->lifetime && now - sp->created > sp->lifetime)
4258 || (sp->validtime && now - sp->lastused > sp->validtime)) {
4259 sp->state = IPSEC_SPSTATE_DEAD;
4260 SPTREE_UNLOCK();
4261 key_spdexpire(sp);
4262 goto restart;
4263 }
4264 }
4265 SPTREE_UNLOCK();
4266 }
4267 }
4268
4269 static void
4270 key_flush_sad(time_t now)
4271 {
4272 struct secashead *sah, *nextsah;
4273 struct secasvar *sav, *nextsav;
4274
4275 /* SAD */
4276 SAHTREE_LOCK();
4277 LIST_FOREACH_SAFE(sah, &V_sahtree, chain, nextsah) {
4278 /* if sah has been dead, then delete it and process next sah. */
4279 if (sah->state == SADB_SASTATE_DEAD) {
4280 key_delsah(sah);
4281 continue;
4282 }
4283
4284 /* if LARVAL entry doesn't become MATURE, delete it. */
4285 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_LARVAL], chain, nextsav) {
4286 /* Need to also check refcnt for a larval SA ??? */
4287 if (now - sav->created > V_key_larval_lifetime)
4288 KEY_FREESAV(&sav);
4289 }
4290
4291 /*
4292 * check MATURE entry to start to send expire message
4293 * whether or not.
4294 */
4295 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_MATURE], chain, nextsav) {
4296 /* we don't need to check. */
4297 if (sav->lft_s == NULL)
4298 continue;
4299
4300 /* sanity check */
4301 if (sav->lft_c == NULL) {
4302 ipseclog((LOG_DEBUG,"%s: there is no CURRENT "
4303 "time, why?\n", __func__));
4304 continue;
4305 }
4306 /*
4307 * RFC 2367:
4308 * HARD lifetimes MUST take precedence over SOFT
4309 * lifetimes, meaning if the HARD and SOFT lifetimes
4310 * are the same, the HARD lifetime will appear on the
4311 * EXPIRE message.
4312 */
4313 /* check HARD lifetime */
4314 if ((sav->lft_h->addtime != 0 &&
4315 now - sav->created > sav->lft_h->addtime) ||
4316 (sav->lft_h->bytes != 0 &&
4317 sav->lft_h->bytes < sav->lft_c->bytes)) {
4318 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4319 key_expire(sav, 1);
4320 KEY_FREESAV(&sav);
4321 }
4322 /* check SOFT lifetime */
4323 else if ((sav->lft_s->addtime != 0 &&
4324 now - sav->created > sav->lft_s->addtime) ||
4325 (sav->lft_s->bytes != 0 &&
4326 sav->lft_s->bytes < sav->lft_c->bytes)) {
4327 key_sa_chgstate(sav, SADB_SASTATE_DYING);
4328 key_expire(sav, 0);
4329 }
4330 }
4331
4332 /* check DYING entry to change status to DEAD. */
4333 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_DYING], chain, nextsav) {
4334 /* we don't need to check. */
4335 if (sav->lft_h == NULL)
4336 continue;
4337
4338 /* sanity check */
4339 if (sav->lft_c == NULL) {
4340 ipseclog((LOG_DEBUG, "%s: there is no CURRENT "
4341 "time, why?\n", __func__));
4342 continue;
4343 }
4344
4345 if (sav->lft_h->addtime != 0 &&
4346 now - sav->created > sav->lft_h->addtime) {
4347 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4348 key_expire(sav, 1);
4349 KEY_FREESAV(&sav);
4350 }
4351 #if 0 /* XXX Should we keep to send expire message until HARD lifetime ? */
4352 else if (sav->lft_s != NULL
4353 && sav->lft_s->addtime != 0
4354 && now - sav->created > sav->lft_s->addtime) {
4355 /*
4356 * XXX: should be checked to be
4357 * installed the valid SA.
4358 */
4359
4360 /*
4361 * If there is no SA then sending
4362 * expire message.
4363 */
4364 key_expire(sav, 0);
4365 }
4366 #endif
4367 /* check HARD lifetime by bytes */
4368 else if (sav->lft_h->bytes != 0 &&
4369 sav->lft_h->bytes < sav->lft_c->bytes) {
4370 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4371 key_expire(sav, 1);
4372 KEY_FREESAV(&sav);
4373 }
4374 }
4375
4376 /* delete entry in DEAD */
4377 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_DEAD], chain, nextsav) {
4378 /* sanity check */
4379 if (sav->state != SADB_SASTATE_DEAD) {
4380 ipseclog((LOG_DEBUG, "%s: invalid sav->state "
4381 "(queue: %d SA: %d): kill it anyway\n",
4382 __func__,
4383 SADB_SASTATE_DEAD, sav->state));
4384 }
4385 /*
4386 * do not call key_freesav() here.
4387 * sav should already be freed, and sav->refcnt
4388 * shows other references to sav
4389 * (such as from SPD).
4390 */
4391 }
4392 }
4393 SAHTREE_UNLOCK();
4394 }
4395
4396 static void
4397 key_flush_acq(time_t now)
4398 {
4399 struct secacq *acq, *nextacq;
4400
4401 /* ACQ tree */
4402 ACQ_LOCK();
4403 for (acq = LIST_FIRST(&V_acqtree); acq != NULL; acq = nextacq) {
4404 nextacq = LIST_NEXT(acq, chain);
4405 if (now - acq->created > V_key_blockacq_lifetime
4406 && __LIST_CHAINED(acq)) {
4407 LIST_REMOVE(acq, chain);
4408 free(acq, M_IPSEC_SAQ);
4409 }
4410 }
4411 ACQ_UNLOCK();
4412 }
4413
4414 static void
4415 key_flush_spacq(time_t now)
4416 {
4417 struct secspacq *acq, *nextacq;
4418
4419 /* SP ACQ tree */
4420 SPACQ_LOCK();
4421 for (acq = LIST_FIRST(&V_spacqtree); acq != NULL; acq = nextacq) {
4422 nextacq = LIST_NEXT(acq, chain);
4423 if (now - acq->created > V_key_blockacq_lifetime
4424 && __LIST_CHAINED(acq)) {
4425 LIST_REMOVE(acq, chain);
4426 free(acq, M_IPSEC_SAQ);
4427 }
4428 }
4429 SPACQ_UNLOCK();
4430 }
4431
4432 /*
4433 * time handler.
4434 * scanning SPD and SAD to check status for each entries,
4435 * and do to remove or to expire.
4436 * XXX: year 2038 problem may remain.
4437 */
4438 void
4439 key_timehandler(void)
4440 {
4441 VNET_ITERATOR_DECL(vnet_iter);
4442 time_t now = time_second;
4443
4444 VNET_LIST_RLOCK_NOSLEEP();
4445 VNET_FOREACH(vnet_iter) {
4446 CURVNET_SET(vnet_iter);
4447 key_flush_spd(now);
4448 key_flush_sad(now);
4449 key_flush_acq(now);
4450 key_flush_spacq(now);
4451 CURVNET_RESTORE();
4452 }
4453 VNET_LIST_RUNLOCK_NOSLEEP();
4454
4455 #ifndef IPSEC_DEBUG2
4456 /* do exchange to tick time !! */
4457 (void)timeout((void *)key_timehandler, (void *)0, hz);
4458 #endif /* IPSEC_DEBUG2 */
4459 }
4460
4461 u_long
4462 key_random()
4463 {
4464 u_long value;
4465
4466 key_randomfill(&value, sizeof(value));
4467 return value;
4468 }
4469
4470 void
4471 key_randomfill(void *p, size_t l)
4472 {
4473 size_t n;
4474 u_long v;
4475 static int warn = 1;
4476
4477 n = 0;
4478 n = (size_t)read_random(p, (u_int)l);
4479 /* last resort */
4480 while (n < l) {
4481 v = random();
4482 bcopy(&v, (u_int8_t *)p + n,
4483 l - n < sizeof(v) ? l - n : sizeof(v));
4484 n += sizeof(v);
4485
4486 if (warn) {
4487 printf("WARNING: pseudo-random number generator "
4488 "used for IPsec processing\n");
4489 warn = 0;
4490 }
4491 }
4492 }
4493
4494 /*
4495 * map SADB_SATYPE_* to IPPROTO_*.
4496 * if satype == SADB_SATYPE then satype is mapped to ~0.
4497 * OUT:
4498 * 0: invalid satype.
4499 */
4500 static u_int16_t
4501 key_satype2proto(u_int8_t satype)
4502 {
4503 switch (satype) {
4504 case SADB_SATYPE_UNSPEC:
4505 return IPSEC_PROTO_ANY;
4506 case SADB_SATYPE_AH:
4507 return IPPROTO_AH;
4508 case SADB_SATYPE_ESP:
4509 return IPPROTO_ESP;
4510 case SADB_X_SATYPE_IPCOMP:
4511 return IPPROTO_IPCOMP;
4512 case SADB_X_SATYPE_TCPSIGNATURE:
4513 return IPPROTO_TCP;
4514 default:
4515 return 0;
4516 }
4517 /* NOTREACHED */
4518 }
4519
4520 /*
4521 * map IPPROTO_* to SADB_SATYPE_*
4522 * OUT:
4523 * 0: invalid protocol type.
4524 */
4525 static u_int8_t
4526 key_proto2satype(u_int16_t proto)
4527 {
4528 switch (proto) {
4529 case IPPROTO_AH:
4530 return SADB_SATYPE_AH;
4531 case IPPROTO_ESP:
4532 return SADB_SATYPE_ESP;
4533 case IPPROTO_IPCOMP:
4534 return SADB_X_SATYPE_IPCOMP;
4535 case IPPROTO_TCP:
4536 return SADB_X_SATYPE_TCPSIGNATURE;
4537 default:
4538 return 0;
4539 }
4540 /* NOTREACHED */
4541 }
4542
4543 /* %%% PF_KEY */
4544 /*
4545 * SADB_GETSPI processing is to receive
4546 * <base, (SA2), src address, dst address, (SPI range)>
4547 * from the IKMPd, to assign a unique spi value, to hang on the INBOUND
4548 * tree with the status of LARVAL, and send
4549 * <base, SA(*), address(SD)>
4550 * to the IKMPd.
4551 *
4552 * IN: mhp: pointer to the pointer to each header.
4553 * OUT: NULL if fail.
4554 * other if success, return pointer to the message to send.
4555 */
4556 static int
4557 key_getspi(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp)
4558 {
4559 struct sadb_address *src0, *dst0;
4560 struct secasindex saidx;
4561 struct secashead *newsah;
4562 struct secasvar *newsav;
4563 u_int8_t proto;
4564 u_int32_t spi;
4565 u_int8_t mode;
4566 u_int32_t reqid;
4567 int error;
4568
4569 IPSEC_ASSERT(so != NULL, ("null socket"));
4570 IPSEC_ASSERT(m != NULL, ("null mbuf"));
4571 IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
4572 IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
4573
4574 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
4575 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
4576 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
4577 __func__));
4578 return key_senderror(so, m, EINVAL);
4579 }
4580 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
4581 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
4582 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
4583 __func__));
4584 return key_senderror(so, m, EINVAL);
4585 }
4586 if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
4587 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
4588 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
4589 } else {
4590 mode = IPSEC_MODE_ANY;
4591 reqid = 0;
4592 }
4593
4594 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
4595 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
4596
4597 /* map satype to proto */
4598 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
4599 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
4600 __func__));
4601 return key_senderror(so, m, EINVAL);
4602 }
4603
4604 /*
4605 * Make sure the port numbers are zero.
4606 * In case of NAT-T we will update them later if needed.
4607 */
4608 switch (((struct sockaddr *)(src0 + 1))->sa_family) {
4609 case AF_INET:
4610 if (((struct sockaddr *)(src0 + 1))->sa_len !=
4611 sizeof(struct sockaddr_in))
4612 return key_senderror(so, m, EINVAL);
4613 ((struct sockaddr_in *)(src0 + 1))->sin_port = 0;
4614 break;
4615 case AF_INET6:
4616 if (((struct sockaddr *)(src0 + 1))->sa_len !=
4617 sizeof(struct sockaddr_in6))
4618 return key_senderror(so, m, EINVAL);
4619 ((struct sockaddr_in6 *)(src0 + 1))->sin6_port = 0;
4620 break;
4621 default:
4622 ; /*???*/
4623 }
4624 switch (((struct sockaddr *)(dst0 + 1))->sa_family) {
4625 case AF_INET:
4626 if (((struct sockaddr *)(dst0 + 1))->sa_len !=
4627 sizeof(struct sockaddr_in))
4628 return key_senderror(so, m, EINVAL);
4629 ((struct sockaddr_in *)(dst0 + 1))->sin_port = 0;
4630 break;
4631 case AF_INET6:
4632 if (((struct sockaddr *)(dst0 + 1))->sa_len !=
4633 sizeof(struct sockaddr_in6))
4634 return key_senderror(so, m, EINVAL);
4635 ((struct sockaddr_in6 *)(dst0 + 1))->sin6_port = 0;
4636 break;
4637 default:
4638 ; /*???*/
4639 }
4640
4641 /* XXX boundary check against sa_len */
4642 KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx);
4643
4644 #ifdef IPSEC_NAT_T
4645 /*
4646 * Handle NAT-T info if present.
4647 * We made sure the port numbers are zero above, so we do
4648 * not have to worry in case we do not update them.
4649 */
4650 if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL)
4651 ipseclog((LOG_DEBUG, "%s: NAT-T OAi present\n", __func__));
4652 if (mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL)
4653 ipseclog((LOG_DEBUG, "%s: NAT-T OAr present\n", __func__));
4654
4655 if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] != NULL &&
4656 mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL &&
4657 mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) {
4658 struct sadb_x_nat_t_type *type;
4659 struct sadb_x_nat_t_port *sport, *dport;
4660
4661 if (mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type) ||
4662 mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) ||
4663 mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) {
4664 ipseclog((LOG_DEBUG, "%s: invalid nat-t message "
4665 "passed.\n", __func__));
4666 return key_senderror(so, m, EINVAL);
4667 }
4668
4669 sport = (struct sadb_x_nat_t_port *)
4670 mhp->ext[SADB_X_EXT_NAT_T_SPORT];
4671 dport = (struct sadb_x_nat_t_port *)
4672 mhp->ext[SADB_X_EXT_NAT_T_DPORT];
4673
4674 if (sport)
4675 KEY_PORTTOSADDR(&saidx.src, sport->sadb_x_nat_t_port_port);
4676 if (dport)
4677 KEY_PORTTOSADDR(&saidx.dst, dport->sadb_x_nat_t_port_port);
4678 }
4679 #endif
4680
4681 /* SPI allocation */
4682 spi = key_do_getnewspi((struct sadb_spirange *)mhp->ext[SADB_EXT_SPIRANGE],
4683 &saidx);
4684 if (spi == 0)
4685 return key_senderror(so, m, EINVAL);
4686
4687 /* get a SA index */
4688 if ((newsah = key_getsah(&saidx)) == NULL) {
4689 /* create a new SA index */
4690 if ((newsah = key_newsah(&saidx)) == NULL) {
4691 ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__));
4692 return key_senderror(so, m, ENOBUFS);
4693 }
4694 }
4695
4696 /* get a new SA */
4697 /* XXX rewrite */
4698 newsav = KEY_NEWSAV(m, mhp, newsah, &error);
4699 if (newsav == NULL) {
4700 /* XXX don't free new SA index allocated in above. */
4701 return key_senderror(so, m, error);
4702 }
4703
4704 /* set spi */
4705 newsav->spi = htonl(spi);
4706
4707 /* delete the entry in acqtree */
4708 if (mhp->msg->sadb_msg_seq != 0) {
4709 struct secacq *acq;
4710 if ((acq = key_getacqbyseq(mhp->msg->sadb_msg_seq)) != NULL) {
4711 /* reset counter in order to deletion by timehandler. */
4712 acq->created = time_second;
4713 acq->count = 0;
4714 }
4715 }
4716
4717 {
4718 struct mbuf *n, *nn;
4719 struct sadb_sa *m_sa;
4720 struct sadb_msg *newmsg;
4721 int off, len;
4722
4723 /* create new sadb_msg to reply. */
4724 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)) +
4725 PFKEY_ALIGN8(sizeof(struct sadb_sa));
4726
4727 MGETHDR(n, M_NOWAIT, MT_DATA);
4728 if (len > MHLEN) {
4729 MCLGET(n, M_NOWAIT);
4730 if ((n->m_flags & M_EXT) == 0) {
4731 m_freem(n);
4732 n = NULL;
4733 }
4734 }
4735 if (!n)
4736 return key_senderror(so, m, ENOBUFS);
4737
4738 n->m_len = len;
4739 n->m_next = NULL;
4740 off = 0;
4741
4742 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off);
4743 off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
4744
4745 m_sa = (struct sadb_sa *)(mtod(n, caddr_t) + off);
4746 m_sa->sadb_sa_len = PFKEY_UNIT64(sizeof(struct sadb_sa));
4747 m_sa->sadb_sa_exttype = SADB_EXT_SA;
4748 m_sa->sadb_sa_spi = htonl(spi);
4749 off += PFKEY_ALIGN8(sizeof(struct sadb_sa));
4750
4751 IPSEC_ASSERT(off == len,
4752 ("length inconsistency (off %u len %u)", off, len));
4753
4754 n->m_next = key_gather_mbuf(m, mhp, 0, 2, SADB_EXT_ADDRESS_SRC,
4755 SADB_EXT_ADDRESS_DST);
4756 if (!n->m_next) {
4757 m_freem(n);
4758 return key_senderror(so, m, ENOBUFS);
4759 }
4760
4761 if (n->m_len < sizeof(struct sadb_msg)) {
4762 n = m_pullup(n, sizeof(struct sadb_msg));
4763 if (n == NULL)
4764 return key_sendup_mbuf(so, m, KEY_SENDUP_ONE);
4765 }
4766
4767 n->m_pkthdr.len = 0;
4768 for (nn = n; nn; nn = nn->m_next)
4769 n->m_pkthdr.len += nn->m_len;
4770
4771 newmsg = mtod(n, struct sadb_msg *);
4772 newmsg->sadb_msg_seq = newsav->seq;
4773 newmsg->sadb_msg_errno = 0;
4774 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
4775
4776 m_freem(m);
4777 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
4778 }
4779 }
4780
4781 /*
4782 * allocating new SPI
4783 * called by key_getspi().
4784 * OUT:
4785 * 0: failure.
4786 * others: success.
4787 */
4788 static u_int32_t
4789 key_do_getnewspi(struct sadb_spirange *spirange, struct secasindex *saidx)
4790 {
4791 u_int32_t newspi;
4792 u_int32_t min, max;
4793 int count = V_key_spi_trycnt;
4794
4795 /* set spi range to allocate */
4796 if (spirange != NULL) {
4797 min = spirange->sadb_spirange_min;
4798 max = spirange->sadb_spirange_max;
4799 } else {
4800 min = V_key_spi_minval;
4801 max = V_key_spi_maxval;
4802 }
4803 /* IPCOMP needs 2-byte SPI */
4804 if (saidx->proto == IPPROTO_IPCOMP) {
4805 u_int32_t t;
4806 if (min >= 0x10000)
4807 min = 0xffff;
4808 if (max >= 0x10000)
4809 max = 0xffff;
4810 if (min > max) {
4811 t = min; min = max; max = t;
4812 }
4813 }
4814
4815 if (min == max) {
4816 if (key_checkspidup(saidx, min) != NULL) {
4817 ipseclog((LOG_DEBUG, "%s: SPI %u exists already.\n",
4818 __func__, min));
4819 return 0;
4820 }
4821
4822 count--; /* taking one cost. */
4823 newspi = min;
4824
4825 } else {
4826
4827 /* init SPI */
4828 newspi = 0;
4829
4830 /* when requesting to allocate spi ranged */
4831 while (count--) {
4832 /* generate pseudo-random SPI value ranged. */
4833 newspi = min + (key_random() % (max - min + 1));
4834
4835 if (key_checkspidup(saidx, newspi) == NULL)
4836 break;
4837 }
4838
4839 if (count == 0 || newspi == 0) {
4840 ipseclog((LOG_DEBUG, "%s: to allocate spi is failed.\n",
4841 __func__));
4842 return 0;
4843 }
4844 }
4845
4846 /* statistics */
4847 keystat.getspi_count =
4848 (keystat.getspi_count + V_key_spi_trycnt - count) / 2;
4849
4850 return newspi;
4851 }
4852
4853 /*
4854 * SADB_UPDATE processing
4855 * receive
4856 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
4857 * key(AE), (identity(SD),) (sensitivity)>
4858 * from the ikmpd, and update a secasvar entry whose status is SADB_SASTATE_LARVAL.
4859 * and send
4860 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
4861 * (identity(SD),) (sensitivity)>
4862 * to the ikmpd.
4863 *
4864 * m will always be freed.
4865 */
4866 static int
4867 key_update(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp)
4868 {
4869 struct sadb_sa *sa0;
4870 struct sadb_address *src0, *dst0;
4871 #ifdef IPSEC_NAT_T
4872 struct sadb_x_nat_t_type *type;
4873 struct sadb_x_nat_t_port *sport, *dport;
4874 struct sadb_address *iaddr, *raddr;
4875 struct sadb_x_nat_t_frag *frag;
4876 #endif
4877 struct secasindex saidx;
4878 struct secashead *sah;
4879 struct secasvar *sav;
4880 u_int16_t proto;
4881 u_int8_t mode;
4882 u_int32_t reqid;
4883 int error;
4884
4885 IPSEC_ASSERT(so != NULL, ("null socket"));
4886 IPSEC_ASSERT(m != NULL, ("null mbuf"));
4887 IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
4888 IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
4889
4890 /* map satype to proto */
4891 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
4892 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
4893 __func__));
4894 return key_senderror(so, m, EINVAL);
4895 }
4896
4897 if (mhp->ext[SADB_EXT_SA] == NULL ||
4898 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
4899 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
4900 (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP &&
4901 mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) ||
4902 (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH &&
4903 mhp->ext[SADB_EXT_KEY_AUTH] == NULL) ||
4904 (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL &&
4905 mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) ||
4906 (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL &&
4907 mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) {
4908 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
4909 __func__));
4910 return key_senderror(so, m, EINVAL);
4911 }
4912 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
4913 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
4914 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
4915 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
4916 __func__));
4917 return key_senderror(so, m, EINVAL);
4918 }
4919 if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
4920 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
4921 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
4922 } else {
4923 mode = IPSEC_MODE_ANY;
4924 reqid = 0;
4925 }
4926 /* XXX boundary checking for other extensions */
4927
4928 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
4929 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
4930 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
4931
4932 /* XXX boundary check against sa_len */
4933 KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx);
4934
4935 /*
4936 * Make sure the port numbers are zero.
4937 * In case of NAT-T we will update them later if needed.
4938 */
4939 KEY_PORTTOSADDR(&saidx.src, 0);
4940 KEY_PORTTOSADDR(&saidx.dst, 0);
4941
4942 #ifdef IPSEC_NAT_T
4943 /*
4944 * Handle NAT-T info if present.
4945 */
4946 if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] != NULL &&
4947 mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL &&
4948 mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) {
4949
4950 if (mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type) ||
4951 mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) ||
4952 mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) {
4953 ipseclog((LOG_DEBUG, "%s: invalid message.\n",
4954 __func__));
4955 return key_senderror(so, m, EINVAL);
4956 }
4957
4958 type = (struct sadb_x_nat_t_type *)
4959 mhp->ext[SADB_X_EXT_NAT_T_TYPE];
4960 sport = (struct sadb_x_nat_t_port *)
4961 mhp->ext[SADB_X_EXT_NAT_T_SPORT];
4962 dport = (struct sadb_x_nat_t_port *)
4963 mhp->ext[SADB_X_EXT_NAT_T_DPORT];
4964 } else {
4965 type = 0;
4966 sport = dport = 0;
4967 }
4968 if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL &&
4969 mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) {
4970 if (mhp->extlen[SADB_X_EXT_NAT_T_OAI] < sizeof(*iaddr) ||
4971 mhp->extlen[SADB_X_EXT_NAT_T_OAR] < sizeof(*raddr)) {
4972 ipseclog((LOG_DEBUG, "%s: invalid message\n",
4973 __func__));
4974 return key_senderror(so, m, EINVAL);
4975 }
4976 iaddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAI];
4977 raddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAR];
4978 ipseclog((LOG_DEBUG, "%s: NAT-T OAi/r present\n", __func__));
4979 } else {
4980 iaddr = raddr = NULL;
4981 }
4982 if (mhp->ext[SADB_X_EXT_NAT_T_FRAG] != NULL) {
4983 if (mhp->extlen[SADB_X_EXT_NAT_T_FRAG] < sizeof(*frag)) {
4984 ipseclog((LOG_DEBUG, "%s: invalid message\n",
4985 __func__));
4986 return key_senderror(so, m, EINVAL);
4987 }
4988 frag = (struct sadb_x_nat_t_frag *)
4989 mhp->ext[SADB_X_EXT_NAT_T_FRAG];
4990 } else {
4991 frag = 0;
4992 }
4993 #endif
4994
4995 /* get a SA header */
4996 if ((sah = key_getsah(&saidx)) == NULL) {
4997 ipseclog((LOG_DEBUG, "%s: no SA index found.\n", __func__));
4998 return key_senderror(so, m, ENOENT);
4999 }
5000
5001 /* set spidx if there */
5002 /* XXX rewrite */
5003 error = key_setident(sah, m, mhp);
5004 if (error)
5005 return key_senderror(so, m, error);
5006
5007 /* find a SA with sequence number. */
5008 #ifdef IPSEC_DOSEQCHECK
5009 if (mhp->msg->sadb_msg_seq != 0
5010 && (sav = key_getsavbyseq(sah, mhp->msg->sadb_msg_seq)) == NULL) {
5011 ipseclog((LOG_DEBUG, "%s: no larval SA with sequence %u "
5012 "exists.\n", __func__, mhp->msg->sadb_msg_seq));
5013 return key_senderror(so, m, ENOENT);
5014 }
5015 #else
5016 SAHTREE_LOCK();
5017 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
5018 SAHTREE_UNLOCK();
5019 if (sav == NULL) {
5020 ipseclog((LOG_DEBUG, "%s: no such a SA found (spi:%u)\n",
5021 __func__, (u_int32_t)ntohl(sa0->sadb_sa_spi)));
5022 return key_senderror(so, m, EINVAL);
5023 }
5024 #endif
5025
5026 /* validity check */
5027 if (sav->sah->saidx.proto != proto) {
5028 ipseclog((LOG_DEBUG, "%s: protocol mismatched "
5029 "(DB=%u param=%u)\n", __func__,
5030 sav->sah->saidx.proto, proto));
5031 return key_senderror(so, m, EINVAL);
5032 }
5033 #ifdef IPSEC_DOSEQCHECK
5034 if (sav->spi != sa0->sadb_sa_spi) {
5035 ipseclog((LOG_DEBUG, "%s: SPI mismatched (DB:%u param:%u)\n",
5036 __func__,
5037 (u_int32_t)ntohl(sav->spi),
5038 (u_int32_t)ntohl(sa0->sadb_sa_spi)));
5039 return key_senderror(so, m, EINVAL);
5040 }
5041 #endif
5042 if (sav->pid != mhp->msg->sadb_msg_pid) {
5043 ipseclog((LOG_DEBUG, "%s: pid mismatched (DB:%u param:%u)\n",
5044 __func__, sav->pid, mhp->msg->sadb_msg_pid));
5045 return key_senderror(so, m, EINVAL);
5046 }
5047
5048 /* copy sav values */
5049 error = key_setsaval(sav, m, mhp);
5050 if (error) {
5051 KEY_FREESAV(&sav);
5052 return key_senderror(so, m, error);
5053 }
5054
5055 #ifdef IPSEC_NAT_T
5056 /*
5057 * Handle more NAT-T info if present,
5058 * now that we have a sav to fill.
5059 */
5060 if (type)
5061 sav->natt_type = type->sadb_x_nat_t_type_type;
5062
5063 if (sport)
5064 KEY_PORTTOSADDR(&sav->sah->saidx.src,
5065 sport->sadb_x_nat_t_port_port);
5066 if (dport)
5067 KEY_PORTTOSADDR(&sav->sah->saidx.dst,
5068 dport->sadb_x_nat_t_port_port);
5069
5070 #if 0
5071 /*
5072 * In case SADB_X_EXT_NAT_T_FRAG was not given, leave it at 0.
5073 * We should actually check for a minimum MTU here, if we
5074 * want to support it in ip_output.
5075 */
5076 if (frag)
5077 sav->natt_esp_frag_len = frag->sadb_x_nat_t_frag_fraglen;
5078 #endif
5079 #endif
5080
5081 /* check SA values to be mature. */
5082 if ((mhp->msg->sadb_msg_errno = key_mature(sav)) != 0) {
5083 KEY_FREESAV(&sav);
5084 return key_senderror(so, m, 0);
5085 }
5086
5087 {
5088 struct mbuf *n;
5089
5090 /* set msg buf from mhp */
5091 n = key_getmsgbuf_x1(m, mhp);
5092 if (n == NULL) {
5093 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
5094 return key_senderror(so, m, ENOBUFS);
5095 }
5096
5097 m_freem(m);
5098 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5099 }
5100 }
5101
5102 /*
5103 * search SAD with sequence for a SA which state is SADB_SASTATE_LARVAL.
5104 * only called by key_update().
5105 * OUT:
5106 * NULL : not found
5107 * others : found, pointer to a SA.
5108 */
5109 #ifdef IPSEC_DOSEQCHECK
5110 static struct secasvar *
5111 key_getsavbyseq(struct secashead *sah, u_int32_t seq)
5112 {
5113 struct secasvar *sav;
5114 u_int state;
5115
5116 state = SADB_SASTATE_LARVAL;
5117
5118 /* search SAD with sequence number ? */
5119 LIST_FOREACH(sav, &sah->savtree[state], chain) {
5120
5121 KEY_CHKSASTATE(state, sav->state, __func__);
5122
5123 if (sav->seq == seq) {
5124 sa_addref(sav);
5125 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
5126 printf("DP %s cause refcnt++:%d SA:%p\n",
5127 __func__, sav->refcnt, sav));
5128 return sav;
5129 }
5130 }
5131
5132 return NULL;
5133 }
5134 #endif
5135
5136 /*
5137 * SADB_ADD processing
5138 * add an entry to SA database, when received
5139 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5140 * key(AE), (identity(SD),) (sensitivity)>
5141 * from the ikmpd,
5142 * and send
5143 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5144 * (identity(SD),) (sensitivity)>
5145 * to the ikmpd.
5146 *
5147 * IGNORE identity and sensitivity messages.
5148 *
5149 * m will always be freed.
5150 */
5151 static int
5152 key_add(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp)
5153 {
5154 struct sadb_sa *sa0;
5155 struct sadb_address *src0, *dst0;
5156 #ifdef IPSEC_NAT_T
5157 struct sadb_x_nat_t_type *type;
5158 struct sadb_address *iaddr, *raddr;
5159 struct sadb_x_nat_t_frag *frag;
5160 #endif
5161 struct secasindex saidx;
5162 struct secashead *newsah;
5163 struct secasvar *newsav;
5164 u_int16_t proto;
5165 u_int8_t mode;
5166 u_int32_t reqid;
5167 int error;
5168
5169 IPSEC_ASSERT(so != NULL, ("null socket"));
5170 IPSEC_ASSERT(m != NULL, ("null mbuf"));
5171 IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
5172 IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
5173
5174 /* map satype to proto */
5175 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
5176 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
5177 __func__));
5178 return key_senderror(so, m, EINVAL);
5179 }
5180
5181 if (mhp->ext[SADB_EXT_SA] == NULL ||
5182 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5183 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
5184 (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP &&
5185 mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) ||
5186 (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH &&
5187 mhp->ext[SADB_EXT_KEY_AUTH] == NULL) ||
5188 (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL &&
5189 mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) ||
5190 (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL &&
5191 mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) {
5192 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5193 __func__));
5194 return key_senderror(so, m, EINVAL);
5195 }
5196 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
5197 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5198 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5199 /* XXX need more */
5200 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5201 __func__));
5202 return key_senderror(so, m, EINVAL);
5203 }
5204 if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
5205 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
5206 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
5207 } else {
5208 mode = IPSEC_MODE_ANY;
5209 reqid = 0;
5210 }
5211
5212 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5213 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
5214 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
5215
5216 /* XXX boundary check against sa_len */
5217 KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx);
5218
5219 /*
5220 * Make sure the port numbers are zero.
5221 * In case of NAT-T we will update them later if needed.
5222 */
5223 KEY_PORTTOSADDR(&saidx.src, 0);
5224 KEY_PORTTOSADDR(&saidx.dst, 0);
5225
5226 #ifdef IPSEC_NAT_T
5227 /*
5228 * Handle NAT-T info if present.
5229 */
5230 if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] != NULL &&
5231 mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL &&
5232 mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) {
5233 struct sadb_x_nat_t_port *sport, *dport;
5234
5235 if (mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type) ||
5236 mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) ||
5237 mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) {
5238 ipseclog((LOG_DEBUG, "%s: invalid message.\n",
5239 __func__));
5240 return key_senderror(so, m, EINVAL);
5241 }
5242
5243 type = (struct sadb_x_nat_t_type *)
5244 mhp->ext[SADB_X_EXT_NAT_T_TYPE];
5245 sport = (struct sadb_x_nat_t_port *)
5246 mhp->ext[SADB_X_EXT_NAT_T_SPORT];
5247 dport = (struct sadb_x_nat_t_port *)
5248 mhp->ext[SADB_X_EXT_NAT_T_DPORT];
5249
5250 if (sport)
5251 KEY_PORTTOSADDR(&saidx.src,
5252 sport->sadb_x_nat_t_port_port);
5253 if (dport)
5254 KEY_PORTTOSADDR(&saidx.dst,
5255 dport->sadb_x_nat_t_port_port);
5256 } else {
5257 type = 0;
5258 }
5259 if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL &&
5260 mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) {
5261 if (mhp->extlen[SADB_X_EXT_NAT_T_OAI] < sizeof(*iaddr) ||
5262 mhp->extlen[SADB_X_EXT_NAT_T_OAR] < sizeof(*raddr)) {
5263 ipseclog((LOG_DEBUG, "%s: invalid message\n",
5264 __func__));
5265 return key_senderror(so, m, EINVAL);
5266 }
5267 iaddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAI];
5268 raddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAR];
5269 ipseclog((LOG_DEBUG, "%s: NAT-T OAi/r present\n", __func__));
5270 } else {
5271 iaddr = raddr = NULL;
5272 }
5273 if (mhp->ext[SADB_X_EXT_NAT_T_FRAG] != NULL) {
5274 if (mhp->extlen[SADB_X_EXT_NAT_T_FRAG] < sizeof(*frag)) {
5275 ipseclog((LOG_DEBUG, "%s: invalid message\n",
5276 __func__));
5277 return key_senderror(so, m, EINVAL);
5278 }
5279 frag = (struct sadb_x_nat_t_frag *)
5280 mhp->ext[SADB_X_EXT_NAT_T_FRAG];
5281 } else {
5282 frag = 0;
5283 }
5284 #endif
5285
5286 /* get a SA header */
5287 if ((newsah = key_getsah(&saidx)) == NULL) {
5288 /* create a new SA header */
5289 if ((newsah = key_newsah(&saidx)) == NULL) {
5290 ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__));
5291 return key_senderror(so, m, ENOBUFS);
5292 }
5293 }
5294
5295 /* set spidx if there */
5296 /* XXX rewrite */
5297 error = key_setident(newsah, m, mhp);
5298 if (error) {
5299 return key_senderror(so, m, error);
5300 }
5301
5302 /* create new SA entry. */
5303 /* We can create new SA only if SPI is differenct. */
5304 SAHTREE_LOCK();
5305 newsav = key_getsavbyspi(newsah, sa0->sadb_sa_spi);
5306 SAHTREE_UNLOCK();
5307 if (newsav != NULL) {
5308 ipseclog((LOG_DEBUG, "%s: SA already exists.\n", __func__));
5309 return key_senderror(so, m, EEXIST);
5310 }
5311 newsav = KEY_NEWSAV(m, mhp, newsah, &error);
5312 if (newsav == NULL) {
5313 return key_senderror(so, m, error);
5314 }
5315
5316 #ifdef IPSEC_NAT_T
5317 /*
5318 * Handle more NAT-T info if present,
5319 * now that we have a sav to fill.
5320 */
5321 if (type)
5322 newsav->natt_type = type->sadb_x_nat_t_type_type;
5323
5324 #if 0
5325 /*
5326 * In case SADB_X_EXT_NAT_T_FRAG was not given, leave it at 0.
5327 * We should actually check for a minimum MTU here, if we
5328 * want to support it in ip_output.
5329 */
5330 if (frag)
5331 newsav->natt_esp_frag_len = frag->sadb_x_nat_t_frag_fraglen;
5332 #endif
5333 #endif
5334
5335 /* check SA values to be mature. */
5336 if ((error = key_mature(newsav)) != 0) {
5337 KEY_FREESAV(&newsav);
5338 return key_senderror(so, m, error);
5339 }
5340
5341 /*
5342 * don't call key_freesav() here, as we would like to keep the SA
5343 * in the database on success.
5344 */
5345
5346 {
5347 struct mbuf *n;
5348
5349 /* set msg buf from mhp */
5350 n = key_getmsgbuf_x1(m, mhp);
5351 if (n == NULL) {
5352 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
5353 return key_senderror(so, m, ENOBUFS);
5354 }
5355
5356 m_freem(m);
5357 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5358 }
5359 }
5360
5361 /* m is retained */
5362 static int
5363 key_setident(struct secashead *sah, struct mbuf *m,
5364 const struct sadb_msghdr *mhp)
5365 {
5366 const struct sadb_ident *idsrc, *iddst;
5367 int idsrclen, iddstlen;
5368
5369 IPSEC_ASSERT(sah != NULL, ("null secashead"));
5370 IPSEC_ASSERT(m != NULL, ("null mbuf"));
5371 IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
5372 IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
5373
5374 /* don't make buffer if not there */
5375 if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL &&
5376 mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) {
5377 sah->idents = NULL;
5378 sah->identd = NULL;
5379 return 0;
5380 }
5381
5382 if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL ||
5383 mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) {
5384 ipseclog((LOG_DEBUG, "%s: invalid identity.\n", __func__));
5385 return EINVAL;
5386 }
5387
5388 idsrc = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_SRC];
5389 iddst = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_DST];
5390 idsrclen = mhp->extlen[SADB_EXT_IDENTITY_SRC];
5391 iddstlen = mhp->extlen[SADB_EXT_IDENTITY_DST];
5392
5393 /* validity check */
5394 if (idsrc->sadb_ident_type != iddst->sadb_ident_type) {
5395 ipseclog((LOG_DEBUG, "%s: ident type mismatch.\n", __func__));
5396 return EINVAL;
5397 }
5398
5399 switch (idsrc->sadb_ident_type) {
5400 case SADB_IDENTTYPE_PREFIX:
5401 case SADB_IDENTTYPE_FQDN:
5402 case SADB_IDENTTYPE_USERFQDN:
5403 default:
5404 /* XXX do nothing */
5405 sah->idents = NULL;
5406 sah->identd = NULL;
5407 return 0;
5408 }
5409
5410 /* make structure */
5411 sah->idents = malloc(sizeof(struct secident), M_IPSEC_MISC, M_NOWAIT);
5412 if (sah->idents == NULL) {
5413 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
5414 return ENOBUFS;
5415 }
5416 sah->identd = malloc(sizeof(struct secident), M_IPSEC_MISC, M_NOWAIT);
5417 if (sah->identd == NULL) {
5418 free(sah->idents, M_IPSEC_MISC);
5419 sah->idents = NULL;
5420 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
5421 return ENOBUFS;
5422 }
5423 sah->idents->type = idsrc->sadb_ident_type;
5424 sah->idents->id = idsrc->sadb_ident_id;
5425
5426 sah->identd->type = iddst->sadb_ident_type;
5427 sah->identd->id = iddst->sadb_ident_id;
5428
5429 return 0;
5430 }
5431
5432 /*
5433 * m will not be freed on return.
5434 * it is caller's responsibility to free the result.
5435 */
5436 static struct mbuf *
5437 key_getmsgbuf_x1(struct mbuf *m, const struct sadb_msghdr *mhp)
5438 {
5439 struct mbuf *n;
5440
5441 IPSEC_ASSERT(m != NULL, ("null mbuf"));
5442 IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
5443 IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
5444
5445 /* create new sadb_msg to reply. */
5446 n = key_gather_mbuf(m, mhp, 1, 9, SADB_EXT_RESERVED,
5447 SADB_EXT_SA, SADB_X_EXT_SA2,
5448 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST,
5449 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT,
5450 SADB_EXT_IDENTITY_SRC, SADB_EXT_IDENTITY_DST);
5451 if (!n)
5452 return NULL;
5453
5454 if (n->m_len < sizeof(struct sadb_msg)) {
5455 n = m_pullup(n, sizeof(struct sadb_msg));
5456 if (n == NULL)
5457 return NULL;
5458 }
5459 mtod(n, struct sadb_msg *)->sadb_msg_errno = 0;
5460 mtod(n, struct sadb_msg *)->sadb_msg_len =
5461 PFKEY_UNIT64(n->m_pkthdr.len);
5462
5463 return n;
5464 }
5465
5466 /*
5467 * SADB_DELETE processing
5468 * receive
5469 * <base, SA(*), address(SD)>
5470 * from the ikmpd, and set SADB_SASTATE_DEAD,
5471 * and send,
5472 * <base, SA(*), address(SD)>
5473 * to the ikmpd.
5474 *
5475 * m will always be freed.
5476 */
5477 static int
5478 key_delete(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp)
5479 {
5480 struct sadb_sa *sa0;
5481 struct sadb_address *src0, *dst0;
5482 struct secasindex saidx;
5483 struct secashead *sah;
5484 struct secasvar *sav = NULL;
5485 u_int16_t proto;
5486
5487 IPSEC_ASSERT(so != NULL, ("null socket"));
5488 IPSEC_ASSERT(m != NULL, ("null mbuf"));
5489 IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
5490 IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
5491
5492 /* map satype to proto */
5493 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
5494 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
5495 __func__));
5496 return key_senderror(so, m, EINVAL);
5497 }
5498
5499 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5500 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
5501 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5502 __func__));
5503 return key_senderror(so, m, EINVAL);
5504 }
5505
5506 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5507 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5508 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5509 __func__));
5510 return key_senderror(so, m, EINVAL);
5511 }
5512
5513 if (mhp->ext[SADB_EXT_SA] == NULL) {
5514 /*
5515 * Caller wants us to delete all non-LARVAL SAs
5516 * that match the src/dst. This is used during
5517 * IKE INITIAL-CONTACT.
5518 */
5519 ipseclog((LOG_DEBUG, "%s: doing delete all.\n", __func__));
5520 return key_delete_all(so, m, mhp, proto);
5521 } else if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa)) {
5522 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5523 __func__));
5524 return key_senderror(so, m, EINVAL);
5525 }
5526
5527 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5528 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
5529 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
5530
5531 /* XXX boundary check against sa_len */
5532 KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx);
5533
5534 /*
5535 * Make sure the port numbers are zero.
5536 * In case of NAT-T we will update them later if needed.
5537 */
5538 KEY_PORTTOSADDR(&saidx.src, 0);
5539 KEY_PORTTOSADDR(&saidx.dst, 0);
5540
5541 #ifdef IPSEC_NAT_T
5542 /*
5543 * Handle NAT-T info if present.
5544 */
5545 if (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL &&
5546 mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) {
5547 struct sadb_x_nat_t_port *sport, *dport;
5548
5549 if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) ||
5550 mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) {
5551 ipseclog((LOG_DEBUG, "%s: invalid message.\n",
5552 __func__));
5553 return key_senderror(so, m, EINVAL);
5554 }
5555
5556 sport = (struct sadb_x_nat_t_port *)
5557 mhp->ext[SADB_X_EXT_NAT_T_SPORT];
5558 dport = (struct sadb_x_nat_t_port *)
5559 mhp->ext[SADB_X_EXT_NAT_T_DPORT];
5560
5561 if (sport)
5562 KEY_PORTTOSADDR(&saidx.src,
5563 sport->sadb_x_nat_t_port_port);
5564 if (dport)
5565 KEY_PORTTOSADDR(&saidx.dst,
5566 dport->sadb_x_nat_t_port_port);
5567 }
5568 #endif
5569
5570 /* get a SA header */
5571 SAHTREE_LOCK();
5572 LIST_FOREACH(sah, &V_sahtree, chain) {
5573 if (sah->state == SADB_SASTATE_DEAD)
5574 continue;
5575 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0)
5576 continue;
5577
5578 /* get a SA with SPI. */
5579 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
5580 if (sav)
5581 break;
5582 }
5583 if (sah == NULL) {
5584 SAHTREE_UNLOCK();
5585 ipseclog((LOG_DEBUG, "%s: no SA found.\n", __func__));
5586 return key_senderror(so, m, ENOENT);
5587 }
5588
5589 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
5590 KEY_FREESAV(&sav);
5591 SAHTREE_UNLOCK();
5592
5593 {
5594 struct mbuf *n;
5595 struct sadb_msg *newmsg;
5596
5597 /* create new sadb_msg to reply. */
5598 /* XXX-BZ NAT-T extensions? */
5599 n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED,
5600 SADB_EXT_SA, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
5601 if (!n)
5602 return key_senderror(so, m, ENOBUFS);
5603
5604 if (n->m_len < sizeof(struct sadb_msg)) {
5605 n = m_pullup(n, sizeof(struct sadb_msg));
5606 if (n == NULL)
5607 return key_senderror(so, m, ENOBUFS);
5608 }
5609 newmsg = mtod(n, struct sadb_msg *);
5610 newmsg->sadb_msg_errno = 0;
5611 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
5612
5613 m_freem(m);
5614 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5615 }
5616 }
5617
5618 /*
5619 * delete all SAs for src/dst. Called from key_delete().
5620 */
5621 static int
5622 key_delete_all(struct socket *so, struct mbuf *m,
5623 const struct sadb_msghdr *mhp, u_int16_t proto)
5624 {
5625 struct sadb_address *src0, *dst0;
5626 struct secasindex saidx;
5627 struct secashead *sah;
5628 struct secasvar *sav, *nextsav;
5629 u_int stateidx, state;
5630
5631 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
5632 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
5633
5634 /* XXX boundary check against sa_len */
5635 KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx);
5636
5637 /*
5638 * Make sure the port numbers are zero.
5639 * In case of NAT-T we will update them later if needed.
5640 */
5641 KEY_PORTTOSADDR(&saidx.src, 0);
5642 KEY_PORTTOSADDR(&saidx.dst, 0);
5643
5644 #ifdef IPSEC_NAT_T
5645 /*
5646 * Handle NAT-T info if present.
5647 */
5648
5649 if (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL &&
5650 mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) {
5651 struct sadb_x_nat_t_port *sport, *dport;
5652
5653 if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) ||
5654 mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) {
5655 ipseclog((LOG_DEBUG, "%s: invalid message.\n",
5656 __func__));
5657 return key_senderror(so, m, EINVAL);
5658 }
5659
5660 sport = (struct sadb_x_nat_t_port *)
5661 mhp->ext[SADB_X_EXT_NAT_T_SPORT];
5662 dport = (struct sadb_x_nat_t_port *)
5663 mhp->ext[SADB_X_EXT_NAT_T_DPORT];
5664
5665 if (sport)
5666 KEY_PORTTOSADDR(&saidx.src,
5667 sport->sadb_x_nat_t_port_port);
5668 if (dport)
5669 KEY_PORTTOSADDR(&saidx.dst,
5670 dport->sadb_x_nat_t_port_port);
5671 }
5672 #endif
5673
5674 SAHTREE_LOCK();
5675 LIST_FOREACH(sah, &V_sahtree, chain) {
5676 if (sah->state == SADB_SASTATE_DEAD)
5677 continue;
5678 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0)
5679 continue;
5680
5681 /* Delete all non-LARVAL SAs. */
5682 for (stateidx = 0;
5683 stateidx < _ARRAYLEN(saorder_state_alive);
5684 stateidx++) {
5685 state = saorder_state_alive[stateidx];
5686 if (state == SADB_SASTATE_LARVAL)
5687 continue;
5688 for (sav = LIST_FIRST(&sah->savtree[state]);
5689 sav != NULL; sav = nextsav) {
5690 nextsav = LIST_NEXT(sav, chain);
5691 /* sanity check */
5692 if (sav->state != state) {
5693 ipseclog((LOG_DEBUG, "%s: invalid "
5694 "sav->state (queue %d SA %d)\n",
5695 __func__, state, sav->state));
5696 continue;
5697 }
5698
5699 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
5700 KEY_FREESAV(&sav);
5701 }
5702 }
5703 }
5704 SAHTREE_UNLOCK();
5705 {
5706 struct mbuf *n;
5707 struct sadb_msg *newmsg;
5708
5709 /* create new sadb_msg to reply. */
5710 /* XXX-BZ NAT-T extensions? */
5711 n = key_gather_mbuf(m, mhp, 1, 3, SADB_EXT_RESERVED,
5712 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
5713 if (!n)
5714 return key_senderror(so, m, ENOBUFS);
5715
5716 if (n->m_len < sizeof(struct sadb_msg)) {
5717 n = m_pullup(n, sizeof(struct sadb_msg));
5718 if (n == NULL)
5719 return key_senderror(so, m, ENOBUFS);
5720 }
5721 newmsg = mtod(n, struct sadb_msg *);
5722 newmsg->sadb_msg_errno = 0;
5723 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
5724
5725 m_freem(m);
5726 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5727 }
5728 }
5729
5730 /*
5731 * SADB_GET processing
5732 * receive
5733 * <base, SA(*), address(SD)>
5734 * from the ikmpd, and get a SP and a SA to respond,
5735 * and send,
5736 * <base, SA, (lifetime(HSC),) address(SD), (address(P),) key(AE),
5737 * (identity(SD),) (sensitivity)>
5738 * to the ikmpd.
5739 *
5740 * m will always be freed.
5741 */
5742 static int
5743 key_get(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp)
5744 {
5745 struct sadb_sa *sa0;
5746 struct sadb_address *src0, *dst0;
5747 struct secasindex saidx;
5748 struct secashead *sah;
5749 struct secasvar *sav = NULL;
5750 u_int16_t proto;
5751
5752 IPSEC_ASSERT(so != NULL, ("null socket"));
5753 IPSEC_ASSERT(m != NULL, ("null mbuf"));
5754 IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
5755 IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
5756
5757 /* map satype to proto */
5758 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
5759 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
5760 __func__));
5761 return key_senderror(so, m, EINVAL);
5762 }
5763
5764 if (mhp->ext[SADB_EXT_SA] == NULL ||
5765 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5766 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
5767 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5768 __func__));
5769 return key_senderror(so, m, EINVAL);
5770 }
5771 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
5772 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5773 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5774 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5775 __func__));
5776 return key_senderror(so, m, EINVAL);
5777 }
5778
5779 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5780 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
5781 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
5782
5783 /* XXX boundary check against sa_len */
5784 KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx);
5785
5786 /*
5787 * Make sure the port numbers are zero.
5788 * In case of NAT-T we will update them later if needed.
5789 */
5790 KEY_PORTTOSADDR(&saidx.src, 0);
5791 KEY_PORTTOSADDR(&saidx.dst, 0);
5792
5793 #ifdef IPSEC_NAT_T
5794 /*
5795 * Handle NAT-T info if present.
5796 */
5797
5798 if (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL &&
5799 mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) {
5800 struct sadb_x_nat_t_port *sport, *dport;
5801
5802 if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) ||
5803 mhp->extlen[ |