The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/netipsec/key.c

Version: -  FREEBSD  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-2  -  FREEBSD-11-1  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-4  -  FREEBSD-10-3  -  FREEBSD-10-2  -  FREEBSD-10-1  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-3  -  FREEBSD-9-2  -  FREEBSD-9-1  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-4  -  FREEBSD-8-3  -  FREEBSD-8-2  -  FREEBSD-8-1  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-4  -  FREEBSD-7-3  -  FREEBSD-7-2  -  FREEBSD-7-1  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-4  -  FREEBSD-6-3  -  FREEBSD-6-2  -  FREEBSD-6-1  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-5  -  FREEBSD-5-4  -  FREEBSD-5-3  -  FREEBSD-5-2  -  FREEBSD-5-1  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  linux-2.6  -  linux-2.4.22  -  MK83  -  MK84  -  PLAN9  -  DFBSD  -  NETBSD  -  NETBSD5  -  NETBSD4  -  NETBSD3  -  NETBSD20  -  OPENBSD  -  xnu-517  -  xnu-792  -  xnu-792.6.70  -  xnu-1228  -  xnu-1456.1.26  -  xnu-1699.24.8  -  xnu-2050.18.24  -  OPENSOLARIS  -  minix-3-1-1 
SearchContext: -  none  -  3  -  10 

    1 /*      $FreeBSD$       */
    2 /*      $KAME: key.c,v 1.191 2001/06/27 10:46:49 sakane Exp $   */
    3 
    4 /*-
    5  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
    6  * All rights reserved.
    7  *
    8  * Redistribution and use in source and binary forms, with or without
    9  * modification, are permitted provided that the following conditions
   10  * are met:
   11  * 1. Redistributions of source code must retain the above copyright
   12  *    notice, this list of conditions and the following disclaimer.
   13  * 2. Redistributions in binary form must reproduce the above copyright
   14  *    notice, this list of conditions and the following disclaimer in the
   15  *    documentation and/or other materials provided with the distribution.
   16  * 3. Neither the name of the project nor the names of its contributors
   17  *    may be used to endorse or promote products derived from this software
   18  *    without specific prior written permission.
   19  *
   20  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
   21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
   24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   30  * SUCH DAMAGE.
   31  */
   32 
   33 /*
   34  * This code is referd to RFC 2367
   35  */
   36 
   37 #include "opt_inet.h"
   38 #include "opt_inet6.h"
   39 #include "opt_ipsec.h"
   40 
   41 #include <sys/types.h>
   42 #include <sys/param.h>
   43 #include <sys/systm.h>
   44 #include <sys/kernel.h>
   45 #include <sys/lock.h>
   46 #include <sys/mutex.h>
   47 #include <sys/mbuf.h>
   48 #include <sys/domain.h>
   49 #include <sys/protosw.h>
   50 #include <sys/malloc.h>
   51 #include <sys/socket.h>
   52 #include <sys/socketvar.h>
   53 #include <sys/sysctl.h>
   54 #include <sys/errno.h>
   55 #include <sys/proc.h>
   56 #include <sys/queue.h>
   57 #include <sys/refcount.h>
   58 #include <sys/syslog.h>
   59 
   60 #include <net/if.h>
   61 #include <net/route.h>
   62 #include <net/raw_cb.h>
   63 
   64 #include <netinet/in.h>
   65 #include <netinet/in_systm.h>
   66 #include <netinet/ip.h>
   67 #include <netinet/in_var.h>
   68 
   69 #ifdef INET6
   70 #include <netinet/ip6.h>
   71 #include <netinet6/in6_var.h>
   72 #include <netinet6/ip6_var.h>
   73 #endif /* INET6 */
   74 
   75 #ifdef INET
   76 #include <netinet/in_pcb.h>
   77 #endif
   78 #ifdef INET6
   79 #include <netinet6/in6_pcb.h>
   80 #endif /* INET6 */
   81 
   82 #include <net/pfkeyv2.h>
   83 #include <netipsec/keydb.h>
   84 #include <netipsec/key.h>
   85 #include <netipsec/keysock.h>
   86 #include <netipsec/key_debug.h>
   87 
   88 #include <netipsec/ipsec.h>
   89 #ifdef INET6
   90 #include <netipsec/ipsec6.h>
   91 #endif
   92 
   93 #include <netipsec/xform.h>
   94 
   95 #include <machine/stdarg.h>
   96 
   97 /* randomness */
   98 #include <sys/random.h>
   99 
  100 #define FULLMASK        0xff
  101 #define _BITS(bytes)    ((bytes) << 3)
  102 
  103 /*
  104  * Note on SA reference counting:
  105  * - SAs that are not in DEAD state will have (total external reference + 1)
  106  *   following value in reference count field.  they cannot be freed and are
  107  *   referenced from SA header.
  108  * - SAs that are in DEAD state will have (total external reference)
  109  *   in reference count field.  they are ready to be freed.  reference from
  110  *   SA header will be removed in key_delsav(), when the reference count
  111  *   field hits 0 (= no external reference other than from SA header.
  112  */
  113 
  114 u_int32_t key_debug_level = 0;
  115 static u_int key_spi_trycnt = 1000;
  116 static u_int32_t key_spi_minval = 0x100;
  117 static u_int32_t key_spi_maxval = 0x0fffffff;   /* XXX */
  118 static u_int32_t policy_id = 0;
  119 static u_int key_int_random = 60;       /*interval to initialize randseed,1(m)*/
  120 static u_int key_larval_lifetime = 30;  /* interval to expire acquiring, 30(s)*/
  121 static int key_blockacq_count = 10;     /* counter for blocking SADB_ACQUIRE.*/
  122 static int key_blockacq_lifetime = 20;  /* lifetime for blocking SADB_ACQUIRE.*/
  123 static int key_preferred_oldsa = 1;     /* preferred old sa rather than new sa.*/
  124 
  125 static u_int32_t acq_seq = 0;
  126 
  127 static LIST_HEAD(_sptree, secpolicy) sptree[IPSEC_DIR_MAX];     /* SPD */
  128 static struct mtx sptree_lock;
  129 #define SPTREE_LOCK_INIT() \
  130         mtx_init(&sptree_lock, "sptree", \
  131                 "fast ipsec security policy database", MTX_DEF)
  132 #define SPTREE_LOCK_DESTROY()   mtx_destroy(&sptree_lock)
  133 #define SPTREE_LOCK()           mtx_lock(&sptree_lock)
  134 #define SPTREE_UNLOCK() mtx_unlock(&sptree_lock)
  135 #define SPTREE_LOCK_ASSERT()    mtx_assert(&sptree_lock, MA_OWNED)
  136 
  137 static LIST_HEAD(_sahtree, secashead) sahtree;                  /* SAD */
  138 static struct mtx sahtree_lock;
  139 #define SAHTREE_LOCK_INIT() \
  140         mtx_init(&sahtree_lock, "sahtree", \
  141                 "fast ipsec security association database", MTX_DEF)
  142 #define SAHTREE_LOCK_DESTROY()  mtx_destroy(&sahtree_lock)
  143 #define SAHTREE_LOCK()          mtx_lock(&sahtree_lock)
  144 #define SAHTREE_UNLOCK()        mtx_unlock(&sahtree_lock)
  145 #define SAHTREE_LOCK_ASSERT()   mtx_assert(&sahtree_lock, MA_OWNED)
  146 
  147                                                         /* registed list */
  148 static LIST_HEAD(_regtree, secreg) regtree[SADB_SATYPE_MAX + 1];
  149 static struct mtx regtree_lock;
  150 #define REGTREE_LOCK_INIT() \
  151         mtx_init(&regtree_lock, "regtree", "fast ipsec regtree", MTX_DEF)
  152 #define REGTREE_LOCK_DESTROY()  mtx_destroy(&regtree_lock)
  153 #define REGTREE_LOCK()          mtx_lock(&regtree_lock)
  154 #define REGTREE_UNLOCK()        mtx_unlock(&regtree_lock)
  155 #define REGTREE_LOCK_ASSERT()   mtx_assert(&regtree_lock, MA_OWNED)
  156 
  157 static LIST_HEAD(_acqtree, secacq) acqtree;             /* acquiring list */
  158 static struct mtx acq_lock;
  159 #define ACQ_LOCK_INIT() \
  160         mtx_init(&acq_lock, "acqtree", "fast ipsec acquire list", MTX_DEF)
  161 #define ACQ_LOCK_DESTROY()      mtx_destroy(&acq_lock)
  162 #define ACQ_LOCK()              mtx_lock(&acq_lock)
  163 #define ACQ_UNLOCK()            mtx_unlock(&acq_lock)
  164 #define ACQ_LOCK_ASSERT()       mtx_assert(&acq_lock, MA_OWNED)
  165 
  166 static LIST_HEAD(_spacqtree, secspacq) spacqtree;       /* SP acquiring list */
  167 static struct mtx spacq_lock;
  168 #define SPACQ_LOCK_INIT() \
  169         mtx_init(&spacq_lock, "spacqtree", \
  170                 "fast ipsec security policy acquire list", MTX_DEF)
  171 #define SPACQ_LOCK_DESTROY()    mtx_destroy(&spacq_lock)
  172 #define SPACQ_LOCK()            mtx_lock(&spacq_lock)
  173 #define SPACQ_UNLOCK()          mtx_unlock(&spacq_lock)
  174 #define SPACQ_LOCK_ASSERT()     mtx_assert(&spacq_lock, MA_OWNED)
  175 
  176 /* search order for SAs */
  177 static const u_int saorder_state_valid_prefer_old[] = {
  178         SADB_SASTATE_DYING, SADB_SASTATE_MATURE,
  179 };
  180 static const u_int saorder_state_valid_prefer_new[] = {
  181         SADB_SASTATE_MATURE, SADB_SASTATE_DYING,
  182 };
  183 static u_int saorder_state_alive[] = {
  184         /* except DEAD */
  185         SADB_SASTATE_MATURE, SADB_SASTATE_DYING, SADB_SASTATE_LARVAL
  186 };
  187 static u_int saorder_state_any[] = {
  188         SADB_SASTATE_MATURE, SADB_SASTATE_DYING,
  189         SADB_SASTATE_LARVAL, SADB_SASTATE_DEAD
  190 };
  191 
  192 static const int minsize[] = {
  193         sizeof(struct sadb_msg),        /* SADB_EXT_RESERVED */
  194         sizeof(struct sadb_sa),         /* SADB_EXT_SA */
  195         sizeof(struct sadb_lifetime),   /* SADB_EXT_LIFETIME_CURRENT */
  196         sizeof(struct sadb_lifetime),   /* SADB_EXT_LIFETIME_HARD */
  197         sizeof(struct sadb_lifetime),   /* SADB_EXT_LIFETIME_SOFT */
  198         sizeof(struct sadb_address),    /* SADB_EXT_ADDRESS_SRC */
  199         sizeof(struct sadb_address),    /* SADB_EXT_ADDRESS_DST */
  200         sizeof(struct sadb_address),    /* SADB_EXT_ADDRESS_PROXY */
  201         sizeof(struct sadb_key),        /* SADB_EXT_KEY_AUTH */
  202         sizeof(struct sadb_key),        /* SADB_EXT_KEY_ENCRYPT */
  203         sizeof(struct sadb_ident),      /* SADB_EXT_IDENTITY_SRC */
  204         sizeof(struct sadb_ident),      /* SADB_EXT_IDENTITY_DST */
  205         sizeof(struct sadb_sens),       /* SADB_EXT_SENSITIVITY */
  206         sizeof(struct sadb_prop),       /* SADB_EXT_PROPOSAL */
  207         sizeof(struct sadb_supported),  /* SADB_EXT_SUPPORTED_AUTH */
  208         sizeof(struct sadb_supported),  /* SADB_EXT_SUPPORTED_ENCRYPT */
  209         sizeof(struct sadb_spirange),   /* SADB_EXT_SPIRANGE */
  210         0,                              /* SADB_X_EXT_KMPRIVATE */
  211         sizeof(struct sadb_x_policy),   /* SADB_X_EXT_POLICY */
  212         sizeof(struct sadb_x_sa2),      /* SADB_X_SA2 */
  213 };
  214 static const int maxsize[] = {
  215         sizeof(struct sadb_msg),        /* SADB_EXT_RESERVED */
  216         sizeof(struct sadb_sa),         /* SADB_EXT_SA */
  217         sizeof(struct sadb_lifetime),   /* SADB_EXT_LIFETIME_CURRENT */
  218         sizeof(struct sadb_lifetime),   /* SADB_EXT_LIFETIME_HARD */
  219         sizeof(struct sadb_lifetime),   /* SADB_EXT_LIFETIME_SOFT */
  220         0,                              /* SADB_EXT_ADDRESS_SRC */
  221         0,                              /* SADB_EXT_ADDRESS_DST */
  222         0,                              /* SADB_EXT_ADDRESS_PROXY */
  223         0,                              /* SADB_EXT_KEY_AUTH */
  224         0,                              /* SADB_EXT_KEY_ENCRYPT */
  225         0,                              /* SADB_EXT_IDENTITY_SRC */
  226         0,                              /* SADB_EXT_IDENTITY_DST */
  227         0,                              /* SADB_EXT_SENSITIVITY */
  228         0,                              /* SADB_EXT_PROPOSAL */
  229         0,                              /* SADB_EXT_SUPPORTED_AUTH */
  230         0,                              /* SADB_EXT_SUPPORTED_ENCRYPT */
  231         sizeof(struct sadb_spirange),   /* SADB_EXT_SPIRANGE */
  232         0,                              /* SADB_X_EXT_KMPRIVATE */
  233         0,                              /* SADB_X_EXT_POLICY */
  234         sizeof(struct sadb_x_sa2),      /* SADB_X_SA2 */
  235 };
  236 
  237 static int ipsec_esp_keymin = 256;
  238 static int ipsec_esp_auth = 0;
  239 static int ipsec_ah_keymin = 128;
  240 
  241 #ifdef SYSCTL_DECL
  242 SYSCTL_DECL(_net_key);
  243 #endif
  244 
  245 SYSCTL_INT(_net_key, KEYCTL_DEBUG_LEVEL,        debug,  CTLFLAG_RW, \
  246         &key_debug_level,       0,      "");
  247 
  248 /* max count of trial for the decision of spi value */
  249 SYSCTL_INT(_net_key, KEYCTL_SPI_TRY,            spi_trycnt,     CTLFLAG_RW, \
  250         &key_spi_trycnt,        0,      "");
  251 
  252 /* minimum spi value to allocate automatically. */
  253 SYSCTL_INT(_net_key, KEYCTL_SPI_MIN_VALUE,      spi_minval,     CTLFLAG_RW, \
  254         &key_spi_minval,        0,      "");
  255 
  256 /* maximun spi value to allocate automatically. */
  257 SYSCTL_INT(_net_key, KEYCTL_SPI_MAX_VALUE,      spi_maxval,     CTLFLAG_RW, \
  258         &key_spi_maxval,        0,      "");
  259 
  260 /* interval to initialize randseed */
  261 SYSCTL_INT(_net_key, KEYCTL_RANDOM_INT, int_random,     CTLFLAG_RW, \
  262         &key_int_random,        0,      "");
  263 
  264 /* lifetime for larval SA */
  265 SYSCTL_INT(_net_key, KEYCTL_LARVAL_LIFETIME,    larval_lifetime, CTLFLAG_RW, \
  266         &key_larval_lifetime,   0,      "");
  267 
  268 /* counter for blocking to send SADB_ACQUIRE to IKEd */
  269 SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_COUNT,     blockacq_count, CTLFLAG_RW, \
  270         &key_blockacq_count,    0,      "");
  271 
  272 /* lifetime for blocking to send SADB_ACQUIRE to IKEd */
  273 SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_LIFETIME,  blockacq_lifetime, CTLFLAG_RW, \
  274         &key_blockacq_lifetime, 0,      "");
  275 
  276 /* ESP auth */
  277 SYSCTL_INT(_net_key, KEYCTL_ESP_AUTH,   esp_auth, CTLFLAG_RW, \
  278         &ipsec_esp_auth,        0,      "");
  279 
  280 /* minimum ESP key length */
  281 SYSCTL_INT(_net_key, KEYCTL_ESP_KEYMIN, esp_keymin, CTLFLAG_RW, \
  282         &ipsec_esp_keymin,      0,      "");
  283 
  284 /* minimum AH key length */
  285 SYSCTL_INT(_net_key, KEYCTL_AH_KEYMIN,  ah_keymin, CTLFLAG_RW, \
  286         &ipsec_ah_keymin,       0,      "");
  287 
  288 /* perfered old SA rather than new SA */
  289 SYSCTL_INT(_net_key, KEYCTL_PREFERED_OLDSA,     preferred_oldsa, CTLFLAG_RW,\
  290         &key_preferred_oldsa,   0,      "");
  291 
  292 #define __LIST_CHAINED(elm) \
  293         (!((elm)->chain.le_next == NULL && (elm)->chain.le_prev == NULL))
  294 #define LIST_INSERT_TAIL(head, elm, type, field) \
  295 do {\
  296         struct type *curelm = LIST_FIRST(head); \
  297         if (curelm == NULL) {\
  298                 LIST_INSERT_HEAD(head, elm, field); \
  299         } else { \
  300                 while (LIST_NEXT(curelm, field)) \
  301                         curelm = LIST_NEXT(curelm, field);\
  302                 LIST_INSERT_AFTER(curelm, elm, field);\
  303         }\
  304 } while (0)
  305 
  306 #define KEY_CHKSASTATE(head, sav, name) \
  307 do { \
  308         if ((head) != (sav)) {                                          \
  309                 ipseclog((LOG_DEBUG, "%s: state mismatched (TREE=%d SA=%d)\n", \
  310                         (name), (head), (sav)));                        \
  311                 continue;                                               \
  312         }                                                               \
  313 } while (0)
  314 
  315 #define KEY_CHKSPDIR(head, sp, name) \
  316 do { \
  317         if ((head) != (sp)) {                                           \
  318                 ipseclog((LOG_DEBUG, "%s: direction mismatched (TREE=%d SP=%d), " \
  319                         "anyway continue.\n",                           \
  320                         (name), (head), (sp)));                         \
  321         }                                                               \
  322 } while (0)
  323 
  324 MALLOC_DEFINE(M_IPSEC_SA, "secasvar", "ipsec security association");
  325 MALLOC_DEFINE(M_IPSEC_SAH, "sahead", "ipsec sa head");
  326 MALLOC_DEFINE(M_IPSEC_SP, "ipsecpolicy", "ipsec security policy");
  327 MALLOC_DEFINE(M_IPSEC_SR, "ipsecrequest", "ipsec security request");
  328 MALLOC_DEFINE(M_IPSEC_MISC, "ipsec-misc", "ipsec miscellaneous");
  329 MALLOC_DEFINE(M_IPSEC_SAQ, "ipsec-saq", "ipsec sa acquire");
  330 MALLOC_DEFINE(M_IPSEC_SAR, "ipsec-reg", "ipsec sa acquire");
  331 
  332 /*
  333  * set parameters into secpolicyindex buffer.
  334  * Must allocate secpolicyindex buffer passed to this function.
  335  */
  336 #define KEY_SETSECSPIDX(_dir, s, d, ps, pd, ulp, idx) \
  337 do { \
  338         bzero((idx), sizeof(struct secpolicyindex));                         \
  339         (idx)->dir = (_dir);                                                 \
  340         (idx)->prefs = (ps);                                                 \
  341         (idx)->prefd = (pd);                                                 \
  342         (idx)->ul_proto = (ulp);                                             \
  343         bcopy((s), &(idx)->src, ((const struct sockaddr *)(s))->sa_len);     \
  344         bcopy((d), &(idx)->dst, ((const struct sockaddr *)(d))->sa_len);     \
  345 } while (0)
  346 
  347 /*
  348  * set parameters into secasindex buffer.
  349  * Must allocate secasindex buffer before calling this function.
  350  */
  351 #define KEY_SETSECASIDX(p, m, r, s, d, idx) \
  352 do { \
  353         bzero((idx), sizeof(struct secasindex));                             \
  354         (idx)->proto = (p);                                                  \
  355         (idx)->mode = (m);                                                   \
  356         (idx)->reqid = (r);                                                  \
  357         bcopy((s), &(idx)->src, ((const struct sockaddr *)(s))->sa_len);     \
  358         bcopy((d), &(idx)->dst, ((const struct sockaddr *)(d))->sa_len);     \
  359 } while (0)
  360 
  361 /* key statistics */
  362 struct _keystat {
  363         u_long getspi_count; /* the avarage of count to try to get new SPI */
  364 } keystat;
  365 
  366 struct sadb_msghdr {
  367         struct sadb_msg *msg;
  368         struct sadb_ext *ext[SADB_EXT_MAX + 1];
  369         int extoff[SADB_EXT_MAX + 1];
  370         int extlen[SADB_EXT_MAX + 1];
  371 };
  372 
  373 static struct secasvar *key_allocsa_policy __P((const struct secasindex *));
  374 static void key_freesp_so __P((struct secpolicy **));
  375 static struct secasvar *key_do_allocsa_policy __P((struct secashead *, u_int));
  376 static void key_delsp __P((struct secpolicy *));
  377 static struct secpolicy *key_getsp __P((struct secpolicyindex *));
  378 static void _key_delsp(struct secpolicy *sp);
  379 static struct secpolicy *key_getspbyid __P((u_int32_t));
  380 static u_int32_t key_newreqid __P((void));
  381 static struct mbuf *key_gather_mbuf __P((struct mbuf *,
  382         const struct sadb_msghdr *, int, int, ...));
  383 static int key_spdadd __P((struct socket *, struct mbuf *,
  384         const struct sadb_msghdr *));
  385 static u_int32_t key_getnewspid __P((void));
  386 static int key_spddelete __P((struct socket *, struct mbuf *,
  387         const struct sadb_msghdr *));
  388 static int key_spddelete2 __P((struct socket *, struct mbuf *,
  389         const struct sadb_msghdr *));
  390 static int key_spdget __P((struct socket *, struct mbuf *,
  391         const struct sadb_msghdr *));
  392 static int key_spdflush __P((struct socket *, struct mbuf *,
  393         const struct sadb_msghdr *));
  394 static int key_spddump __P((struct socket *, struct mbuf *,
  395         const struct sadb_msghdr *));
  396 static struct mbuf *key_setdumpsp __P((struct secpolicy *,
  397         u_int8_t, u_int32_t, u_int32_t));
  398 static u_int key_getspreqmsglen __P((struct secpolicy *));
  399 static int key_spdexpire __P((struct secpolicy *));
  400 static struct secashead *key_newsah __P((struct secasindex *));
  401 static void key_delsah __P((struct secashead *));
  402 static struct secasvar *key_newsav __P((struct mbuf *,
  403         const struct sadb_msghdr *, struct secashead *, int *,
  404         const char*, int));
  405 #define KEY_NEWSAV(m, sadb, sah, e)                             \
  406         key_newsav(m, sadb, sah, e, __FILE__, __LINE__)
  407 static void key_delsav __P((struct secasvar *));
  408 static struct secashead *key_getsah __P((struct secasindex *));
  409 static struct secasvar *key_checkspidup __P((struct secasindex *, u_int32_t));
  410 static struct secasvar *key_getsavbyspi __P((struct secashead *, u_int32_t));
  411 static int key_setsaval __P((struct secasvar *, struct mbuf *,
  412         const struct sadb_msghdr *));
  413 static int key_mature __P((struct secasvar *));
  414 static struct mbuf *key_setdumpsa __P((struct secasvar *, u_int8_t,
  415         u_int8_t, u_int32_t, u_int32_t));
  416 static struct mbuf *key_setsadbmsg __P((u_int8_t, u_int16_t, u_int8_t,
  417         u_int32_t, pid_t, u_int16_t));
  418 static struct mbuf *key_setsadbsa __P((struct secasvar *));
  419 static struct mbuf *key_setsadbaddr __P((u_int16_t,
  420         const struct sockaddr *, u_int8_t, u_int16_t));
  421 static struct mbuf *key_setsadbxsa2 __P((u_int8_t, u_int32_t, u_int32_t));
  422 static struct mbuf *key_setsadbxpolicy __P((u_int16_t, u_int8_t,
  423         u_int32_t));
  424 static void *key_dup(const void *, u_int, struct malloc_type *);
  425 #ifdef INET6
  426 static int key_ismyaddr6 __P((struct sockaddr_in6 *));
  427 #endif
  428 
  429 /* flags for key_cmpsaidx() */
  430 #define CMP_HEAD        1       /* protocol, addresses. */
  431 #define CMP_MODE_REQID  2       /* additionally HEAD, reqid, mode. */
  432 #define CMP_REQID       3       /* additionally HEAD, reaid. */
  433 #define CMP_EXACTLY     4       /* all elements. */
  434 static int key_cmpsaidx
  435         __P((const struct secasindex *, const struct secasindex *, int));
  436 
  437 static int key_cmpspidx_exactly
  438         __P((struct secpolicyindex *, struct secpolicyindex *));
  439 static int key_cmpspidx_withmask
  440         __P((struct secpolicyindex *, struct secpolicyindex *));
  441 static int key_sockaddrcmp __P((const struct sockaddr *, const struct sockaddr *, int));
  442 static int key_bbcmp __P((const void *, const void *, u_int));
  443 static u_int16_t key_satype2proto __P((u_int8_t));
  444 static u_int8_t key_proto2satype __P((u_int16_t));
  445 
  446 static int key_getspi __P((struct socket *, struct mbuf *,
  447         const struct sadb_msghdr *));
  448 static u_int32_t key_do_getnewspi __P((struct sadb_spirange *,
  449                                         struct secasindex *));
  450 static int key_update __P((struct socket *, struct mbuf *,
  451         const struct sadb_msghdr *));
  452 #ifdef IPSEC_DOSEQCHECK
  453 static struct secasvar *key_getsavbyseq __P((struct secashead *, u_int32_t));
  454 #endif
  455 static int key_add __P((struct socket *, struct mbuf *,
  456         const struct sadb_msghdr *));
  457 static int key_setident __P((struct secashead *, struct mbuf *,
  458         const struct sadb_msghdr *));
  459 static struct mbuf *key_getmsgbuf_x1 __P((struct mbuf *,
  460         const struct sadb_msghdr *));
  461 static int key_delete __P((struct socket *, struct mbuf *,
  462         const struct sadb_msghdr *));
  463 static int key_get __P((struct socket *, struct mbuf *,
  464         const struct sadb_msghdr *));
  465 
  466 static void key_getcomb_setlifetime __P((struct sadb_comb *));
  467 static struct mbuf *key_getcomb_esp __P((void));
  468 static struct mbuf *key_getcomb_ah __P((void));
  469 static struct mbuf *key_getcomb_ipcomp __P((void));
  470 static struct mbuf *key_getprop __P((const struct secasindex *));
  471 
  472 static int key_acquire __P((const struct secasindex *, struct secpolicy *));
  473 static struct secacq *key_newacq __P((const struct secasindex *));
  474 static struct secacq *key_getacq __P((const struct secasindex *));
  475 static struct secacq *key_getacqbyseq __P((u_int32_t));
  476 static struct secspacq *key_newspacq __P((struct secpolicyindex *));
  477 static struct secspacq *key_getspacq __P((struct secpolicyindex *));
  478 static int key_acquire2 __P((struct socket *, struct mbuf *,
  479         const struct sadb_msghdr *));
  480 static int key_register __P((struct socket *, struct mbuf *,
  481         const struct sadb_msghdr *));
  482 static int key_expire __P((struct secasvar *));
  483 static int key_flush __P((struct socket *, struct mbuf *,
  484         const struct sadb_msghdr *));
  485 static int key_dump __P((struct socket *, struct mbuf *,
  486         const struct sadb_msghdr *));
  487 static int key_promisc __P((struct socket *, struct mbuf *,
  488         const struct sadb_msghdr *));
  489 static int key_senderror __P((struct socket *, struct mbuf *, int));
  490 static int key_validate_ext __P((const struct sadb_ext *, int));
  491 static int key_align __P((struct mbuf *, struct sadb_msghdr *));
  492 #if 0
  493 static const char *key_getfqdn __P((void));
  494 static const char *key_getuserfqdn __P((void));
  495 #endif
  496 static void key_sa_chgstate __P((struct secasvar *, u_int8_t));
  497 static struct mbuf *key_alloc_mbuf __P((int));
  498 
  499 static __inline void
  500 sa_initref(struct secasvar *sav)
  501 {
  502 
  503         refcount_init(&sav->refcnt, 1);
  504 }
  505 static __inline void
  506 sa_addref(struct secasvar *sav)
  507 {
  508 
  509         refcount_acquire(&sav->refcnt);
  510         IPSEC_ASSERT(sav->refcnt != 0, ("SA refcnt overflow"));
  511 }
  512 static __inline int
  513 sa_delref(struct secasvar *sav)
  514 {
  515 
  516         IPSEC_ASSERT(sav->refcnt > 0, ("SA refcnt underflow"));
  517         return (refcount_release(&sav->refcnt));
  518 }
  519 
  520 #define SP_ADDREF(p) do {                                               \
  521         (p)->refcnt++;                                                  \
  522         IPSEC_ASSERT((p)->refcnt != 0, ("SP refcnt overflow"));         \
  523 } while (0)
  524 #define SP_DELREF(p) do {                                               \
  525         IPSEC_ASSERT((p)->refcnt > 0, ("SP refcnt underflow"));         \
  526         (p)->refcnt--;                                                  \
  527 } while (0)
  528  
  529 
  530 /*
  531  * Update the refcnt while holding the SPTREE lock.
  532  */
  533 void
  534 key_addref(struct secpolicy *sp)
  535 {
  536         SPTREE_LOCK();
  537         SP_ADDREF(sp);
  538         SPTREE_UNLOCK();
  539 }
  540 
  541 /*
  542  * Return 0 when there are known to be no SP's for the specified
  543  * direction.  Otherwise return 1.  This is used by IPsec code
  544  * to optimize performance.
  545  */
  546 int
  547 key_havesp(u_int dir)
  548 {
  549         return (dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND ?
  550                 LIST_FIRST(&sptree[dir]) != NULL : 1);
  551 }
  552 
  553 /* %%% IPsec policy management */
  554 /*
  555  * allocating a SP for OUTBOUND or INBOUND packet.
  556  * Must call key_freesp() later.
  557  * OUT: NULL:   not found
  558  *      others: found and return the pointer.
  559  */
  560 struct secpolicy *
  561 key_allocsp(struct secpolicyindex *spidx, u_int dir, const char* where, int tag)
  562 {
  563         struct secpolicy *sp;
  564 
  565         IPSEC_ASSERT(spidx != NULL, ("null spidx"));
  566         IPSEC_ASSERT(dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND,
  567                 ("invalid direction %u", dir));
  568 
  569         KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
  570                 printf("DP %s from %s:%u\n", __func__, where, tag));
  571 
  572         /* get a SP entry */
  573         KEYDEBUG(KEYDEBUG_IPSEC_DATA,
  574                 printf("*** objects\n");
  575                 kdebug_secpolicyindex(spidx));
  576 
  577         SPTREE_LOCK();
  578         LIST_FOREACH(sp, &sptree[dir], chain) {
  579                 KEYDEBUG(KEYDEBUG_IPSEC_DATA,
  580                         printf("*** in SPD\n");
  581                         kdebug_secpolicyindex(&sp->spidx));
  582 
  583                 if (sp->state == IPSEC_SPSTATE_DEAD)
  584                         continue;
  585                 if (key_cmpspidx_withmask(&sp->spidx, spidx))
  586                         goto found;
  587         }
  588         sp = NULL;
  589 found:
  590         if (sp) {
  591                 /* sanity check */
  592                 KEY_CHKSPDIR(sp->spidx.dir, dir, __func__);
  593 
  594                 /* found a SPD entry */
  595                 sp->lastused = time_second;
  596                 SP_ADDREF(sp);
  597         }
  598         SPTREE_UNLOCK();
  599 
  600         KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
  601                 printf("DP %s return SP:%p (ID=%u) refcnt %u\n", __func__,
  602                         sp, sp ? sp->id : 0, sp ? sp->refcnt : 0));
  603         return sp;
  604 }
  605 
  606 /*
  607  * allocating a SP for OUTBOUND or INBOUND packet.
  608  * Must call key_freesp() later.
  609  * OUT: NULL:   not found
  610  *      others: found and return the pointer.
  611  */
  612 struct secpolicy *
  613 key_allocsp2(u_int32_t spi,
  614              union sockaddr_union *dst,
  615              u_int8_t proto,
  616              u_int dir,
  617              const char* where, int tag)
  618 {
  619         struct secpolicy *sp;
  620 
  621         IPSEC_ASSERT(dst != NULL, ("null dst"));
  622         IPSEC_ASSERT(dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND,
  623                 ("invalid direction %u", dir));
  624 
  625         KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
  626                 printf("DP %s from %s:%u\n", __func__, where, tag));
  627 
  628         /* get a SP entry */
  629         KEYDEBUG(KEYDEBUG_IPSEC_DATA,
  630                 printf("*** objects\n");
  631                 printf("spi %u proto %u dir %u\n", spi, proto, dir);
  632                 kdebug_sockaddr(&dst->sa));
  633 
  634         SPTREE_LOCK();
  635         LIST_FOREACH(sp, &sptree[dir], chain) {
  636                 KEYDEBUG(KEYDEBUG_IPSEC_DATA,
  637                         printf("*** in SPD\n");
  638                         kdebug_secpolicyindex(&sp->spidx));
  639 
  640                 if (sp->state == IPSEC_SPSTATE_DEAD)
  641                         continue;
  642                 /* compare simple values, then dst address */
  643                 if (sp->spidx.ul_proto != proto)
  644                         continue;
  645                 /* NB: spi's must exist and match */
  646                 if (!sp->req || !sp->req->sav || sp->req->sav->spi != spi)
  647                         continue;
  648                 if (key_sockaddrcmp(&sp->spidx.dst.sa, &dst->sa, 1) == 0)
  649                         goto found;
  650         }
  651         sp = NULL;
  652 found:
  653         if (sp) {
  654                 /* sanity check */
  655                 KEY_CHKSPDIR(sp->spidx.dir, dir, __func__);
  656 
  657                 /* found a SPD entry */
  658                 sp->lastused = time_second;
  659                 SP_ADDREF(sp);
  660         }
  661         SPTREE_UNLOCK();
  662 
  663         KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
  664                 printf("DP %s return SP:%p (ID=%u) refcnt %u\n", __func__,
  665                         sp, sp ? sp->id : 0, sp ? sp->refcnt : 0));
  666         return sp;
  667 }
  668 
  669 /*
  670  * return a policy that matches this particular inbound packet.
  671  * XXX slow
  672  */
  673 struct secpolicy *
  674 key_gettunnel(const struct sockaddr *osrc,
  675               const struct sockaddr *odst,
  676               const struct sockaddr *isrc,
  677               const struct sockaddr *idst,
  678               const char* where, int tag)
  679 {
  680         struct secpolicy *sp;
  681         const int dir = IPSEC_DIR_INBOUND;
  682         struct ipsecrequest *r1, *r2, *p;
  683         struct secpolicyindex spidx;
  684 
  685         KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
  686                 printf("DP %s from %s:%u\n", __func__, where, tag));
  687 
  688         if (isrc->sa_family != idst->sa_family) {
  689                 ipseclog((LOG_ERR, "%s: protocol family mismatched %d != %d\n.",
  690                         __func__, isrc->sa_family, idst->sa_family));
  691                 sp = NULL;
  692                 goto done;
  693         }
  694 
  695         SPTREE_LOCK();
  696         LIST_FOREACH(sp, &sptree[dir], chain) {
  697                 if (sp->state == IPSEC_SPSTATE_DEAD)
  698                         continue;
  699 
  700                 r1 = r2 = NULL;
  701                 for (p = sp->req; p; p = p->next) {
  702                         if (p->saidx.mode != IPSEC_MODE_TUNNEL)
  703                                 continue;
  704 
  705                         r1 = r2;
  706                         r2 = p;
  707 
  708                         if (!r1) {
  709                                 /* here we look at address matches only */
  710                                 spidx = sp->spidx;
  711                                 if (isrc->sa_len > sizeof(spidx.src) ||
  712                                     idst->sa_len > sizeof(spidx.dst))
  713                                         continue;
  714                                 bcopy(isrc, &spidx.src, isrc->sa_len);
  715                                 bcopy(idst, &spidx.dst, idst->sa_len);
  716                                 if (!key_cmpspidx_withmask(&sp->spidx, &spidx))
  717                                         continue;
  718                         } else {
  719                                 if (key_sockaddrcmp(&r1->saidx.src.sa, isrc, 0) ||
  720                                     key_sockaddrcmp(&r1->saidx.dst.sa, idst, 0))
  721                                         continue;
  722                         }
  723 
  724                         if (key_sockaddrcmp(&r2->saidx.src.sa, osrc, 0) ||
  725                             key_sockaddrcmp(&r2->saidx.dst.sa, odst, 0))
  726                                 continue;
  727 
  728                         goto found;
  729                 }
  730         }
  731         sp = NULL;
  732 found:
  733         if (sp) {
  734                 sp->lastused = time_second;
  735                 SP_ADDREF(sp);
  736         }
  737         SPTREE_UNLOCK();
  738 done:
  739         KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
  740                 printf("DP %s return SP:%p (ID=%u) refcnt %u\n", __func__,
  741                         sp, sp ? sp->id : 0, sp ? sp->refcnt : 0));
  742         return sp;
  743 }
  744 
  745 /*
  746  * allocating an SA entry for an *OUTBOUND* packet.
  747  * checking each request entries in SP, and acquire an SA if need.
  748  * OUT: 0: there are valid requests.
  749  *      ENOENT: policy may be valid, but SA with REQUIRE is on acquiring.
  750  */
  751 int
  752 key_checkrequest(struct ipsecrequest *isr, const struct secasindex *saidx)
  753 {
  754         u_int level;
  755         int error;
  756 
  757         IPSEC_ASSERT(isr != NULL, ("null isr"));
  758         IPSEC_ASSERT(saidx != NULL, ("null saidx"));
  759         IPSEC_ASSERT(saidx->mode == IPSEC_MODE_TRANSPORT ||
  760                 saidx->mode == IPSEC_MODE_TUNNEL,
  761                 ("unexpected policy %u", saidx->mode));
  762 
  763         /*
  764          * XXX guard against protocol callbacks from the crypto
  765          * thread as they reference ipsecrequest.sav which we
  766          * temporarily null out below.  Need to rethink how we
  767          * handle bundled SA's in the callback thread.
  768          */
  769         IPSECREQUEST_LOCK_ASSERT(isr);
  770 
  771         /* get current level */
  772         level = ipsec_get_reqlevel(isr);
  773 #if 0
  774         /*
  775          * We do allocate new SA only if the state of SA in the holder is
  776          * SADB_SASTATE_DEAD.  The SA for outbound must be the oldest.
  777          */
  778         if (isr->sav != NULL) {
  779                 if (isr->sav->sah == NULL)
  780                         panic("%s: sah is null.\n", __func__);
  781                 if (isr->sav == (struct secasvar *)LIST_FIRST(
  782                             &isr->sav->sah->savtree[SADB_SASTATE_DEAD])) {
  783                         KEY_FREESAV(&isr->sav);
  784                         isr->sav = NULL;
  785                 }
  786         }
  787 #else
  788         /*
  789          * we free any SA stashed in the IPsec request because a different
  790          * SA may be involved each time this request is checked, either
  791          * because new SAs are being configured, or this request is
  792          * associated with an unconnected datagram socket, or this request
  793          * is associated with a system default policy.
  794          *
  795          * The operation may have negative impact to performance.  We may
  796          * want to check cached SA carefully, rather than picking new SA
  797          * every time.
  798          */
  799         if (isr->sav != NULL) {
  800                 KEY_FREESAV(&isr->sav);
  801                 isr->sav = NULL;
  802         }
  803 #endif
  804 
  805         /*
  806          * new SA allocation if no SA found.
  807          * key_allocsa_policy should allocate the oldest SA available.
  808          * See key_do_allocsa_policy(), and draft-jenkins-ipsec-rekeying-03.txt.
  809          */
  810         if (isr->sav == NULL)
  811                 isr->sav = key_allocsa_policy(saidx);
  812 
  813         /* When there is SA. */
  814         if (isr->sav != NULL) {
  815                 if (isr->sav->state != SADB_SASTATE_MATURE &&
  816                     isr->sav->state != SADB_SASTATE_DYING)
  817                         return EINVAL;
  818                 return 0;
  819         }
  820 
  821         /* there is no SA */
  822         error = key_acquire(saidx, isr->sp);
  823         if (error != 0) {
  824                 /* XXX What should I do ? */
  825                 ipseclog((LOG_DEBUG, "%s: error %d returned from key_acquire\n",
  826                         __func__, error));
  827                 return error;
  828         }
  829 
  830         if (level != IPSEC_LEVEL_REQUIRE) {
  831                 /* XXX sigh, the interface to this routine is botched */
  832                 IPSEC_ASSERT(isr->sav == NULL, ("unexpected SA"));
  833                 return 0;
  834         } else {
  835                 return ENOENT;
  836         }
  837 }
  838 
  839 /*
  840  * allocating a SA for policy entry from SAD.
  841  * NOTE: searching SAD of aliving state.
  842  * OUT: NULL:   not found.
  843  *      others: found and return the pointer.
  844  */
  845 static struct secasvar *
  846 key_allocsa_policy(const struct secasindex *saidx)
  847 {
  848 #define N(a)    _ARRAYLEN(a)
  849         struct secashead *sah;
  850         struct secasvar *sav;
  851         u_int stateidx, arraysize;
  852         const u_int *state_valid;
  853 
  854         SAHTREE_LOCK();
  855         LIST_FOREACH(sah, &sahtree, chain) {
  856                 if (sah->state == SADB_SASTATE_DEAD)
  857                         continue;
  858                 if (key_cmpsaidx(&sah->saidx, saidx, CMP_MODE_REQID)) {
  859                         if (key_preferred_oldsa) {
  860                                 state_valid = saorder_state_valid_prefer_old;
  861                                 arraysize = N(saorder_state_valid_prefer_old);
  862                         } else {
  863                                 state_valid = saorder_state_valid_prefer_new;
  864                                 arraysize = N(saorder_state_valid_prefer_new);
  865                         }
  866                         SAHTREE_UNLOCK();
  867                         goto found;
  868                 }
  869         }
  870         SAHTREE_UNLOCK();
  871 
  872         return NULL;
  873 
  874     found:
  875         /* search valid state */
  876         for (stateidx = 0; stateidx < arraysize; stateidx++) {
  877                 sav = key_do_allocsa_policy(sah, state_valid[stateidx]);
  878                 if (sav != NULL)
  879                         return sav;
  880         }
  881 
  882         return NULL;
  883 #undef N
  884 }
  885 
  886 /*
  887  * searching SAD with direction, protocol, mode and state.
  888  * called by key_allocsa_policy().
  889  * OUT:
  890  *      NULL    : not found
  891  *      others  : found, pointer to a SA.
  892  */
  893 static struct secasvar *
  894 key_do_allocsa_policy(struct secashead *sah, u_int state)
  895 {
  896         struct secasvar *sav, *nextsav, *candidate, *d;
  897 
  898         /* initilize */
  899         candidate = NULL;
  900 
  901         SAHTREE_LOCK();
  902         for (sav = LIST_FIRST(&sah->savtree[state]);
  903              sav != NULL;
  904              sav = nextsav) {
  905 
  906                 nextsav = LIST_NEXT(sav, chain);
  907 
  908                 /* sanity check */
  909                 KEY_CHKSASTATE(sav->state, state, __func__);
  910 
  911                 /* initialize */
  912                 if (candidate == NULL) {
  913                         candidate = sav;
  914                         continue;
  915                 }
  916 
  917                 /* Which SA is the better ? */
  918 
  919                 IPSEC_ASSERT(candidate->lft_c != NULL,
  920                         ("null candidate lifetime"));
  921                 IPSEC_ASSERT(sav->lft_c != NULL, ("null sav lifetime"));
  922 
  923                 /* What the best method is to compare ? */
  924                 if (key_preferred_oldsa) {
  925                         if (candidate->lft_c->sadb_lifetime_addtime >
  926                                         sav->lft_c->sadb_lifetime_addtime) {
  927                                 candidate = sav;
  928                         }
  929                         continue;
  930                         /*NOTREACHED*/
  931                 }
  932 
  933                 /* preferred new sa rather than old sa */
  934                 if (candidate->lft_c->sadb_lifetime_addtime <
  935                                 sav->lft_c->sadb_lifetime_addtime) {
  936                         d = candidate;
  937                         candidate = sav;
  938                 } else
  939                         d = sav;
  940 
  941                 /*
  942                  * prepared to delete the SA when there is more
  943                  * suitable candidate and the lifetime of the SA is not
  944                  * permanent.
  945                  */
  946                 if (d->lft_h->sadb_lifetime_addtime != 0) {
  947                         struct mbuf *m, *result;
  948                         u_int8_t satype;
  949 
  950                         key_sa_chgstate(d, SADB_SASTATE_DEAD);
  951 
  952                         IPSEC_ASSERT(d->refcnt > 0, ("bogus ref count"));
  953 
  954                         satype = key_proto2satype(d->sah->saidx.proto);
  955                         if (satype == 0)
  956                                 goto msgfail;
  957 
  958                         m = key_setsadbmsg(SADB_DELETE, 0,
  959                             satype, 0, 0, d->refcnt - 1);
  960                         if (!m)
  961                                 goto msgfail;
  962                         result = m;
  963 
  964                         /* set sadb_address for saidx's. */
  965                         m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
  966                                 &d->sah->saidx.src.sa,
  967                                 d->sah->saidx.src.sa.sa_len << 3,
  968                                 IPSEC_ULPROTO_ANY);
  969                         if (!m)
  970                                 goto msgfail;
  971                         m_cat(result, m);
  972 
  973                         /* set sadb_address for saidx's. */
  974                         m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
  975                                 &d->sah->saidx.dst.sa,
  976                                 d->sah->saidx.dst.sa.sa_len << 3,
  977                                 IPSEC_ULPROTO_ANY);
  978                         if (!m)
  979                                 goto msgfail;
  980                         m_cat(result, m);
  981 
  982                         /* create SA extension */
  983                         m = key_setsadbsa(d);
  984                         if (!m)
  985                                 goto msgfail;
  986                         m_cat(result, m);
  987 
  988                         if (result->m_len < sizeof(struct sadb_msg)) {
  989                                 result = m_pullup(result,
  990                                                 sizeof(struct sadb_msg));
  991                                 if (result == NULL)
  992                                         goto msgfail;
  993                         }
  994 
  995                         result->m_pkthdr.len = 0;
  996                         for (m = result; m; m = m->m_next)
  997                                 result->m_pkthdr.len += m->m_len;
  998                         mtod(result, struct sadb_msg *)->sadb_msg_len =
  999                                 PFKEY_UNIT64(result->m_pkthdr.len);
 1000 
 1001                         if (key_sendup_mbuf(NULL, result,
 1002                                         KEY_SENDUP_REGISTERED))
 1003                                 goto msgfail;
 1004                  msgfail:
 1005                         KEY_FREESAV(&d);
 1006                 }
 1007         }
 1008         if (candidate) {
 1009                 sa_addref(candidate);
 1010                 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
 1011                         printf("DP %s cause refcnt++:%d SA:%p\n",
 1012                                 __func__, candidate->refcnt, candidate));
 1013         }
 1014         SAHTREE_UNLOCK();
 1015 
 1016         return candidate;
 1017 }
 1018 
 1019 /*
 1020  * allocating a usable SA entry for a *INBOUND* packet.
 1021  * Must call key_freesav() later.
 1022  * OUT: positive:       pointer to a usable sav (i.e. MATURE or DYING state).
 1023  *      NULL:           not found, or error occured.
 1024  *
 1025  * In the comparison, no source address is used--for RFC2401 conformance.
 1026  * To quote, from section 4.1:
 1027  *      A security association is uniquely identified by a triple consisting
 1028  *      of a Security Parameter Index (SPI), an IP Destination Address, and a
 1029  *      security protocol (AH or ESP) identifier.
 1030  * Note that, however, we do need to keep source address in IPsec SA.
 1031  * IKE specification and PF_KEY specification do assume that we
 1032  * keep source address in IPsec SA.  We see a tricky situation here.
 1033  */
 1034 struct secasvar *
 1035 key_allocsa(
 1036         union sockaddr_union *dst,
 1037         u_int proto,
 1038         u_int32_t spi,
 1039         const char* where, int tag)
 1040 {
 1041         struct secashead *sah;
 1042         struct secasvar *sav;
 1043         u_int stateidx, arraysize, state;
 1044         const u_int *saorder_state_valid;
 1045 
 1046         IPSEC_ASSERT(dst != NULL, ("null dst address"));
 1047 
 1048         KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
 1049                 printf("DP %s from %s:%u\n", __func__, where, tag));
 1050 
 1051         /*
 1052          * searching SAD.
 1053          * XXX: to be checked internal IP header somewhere.  Also when
 1054          * IPsec tunnel packet is received.  But ESP tunnel mode is
 1055          * encrypted so we can't check internal IP header.
 1056          */
 1057         SAHTREE_LOCK();
 1058         if (key_preferred_oldsa) {
 1059                 saorder_state_valid = saorder_state_valid_prefer_old;
 1060                 arraysize = _ARRAYLEN(saorder_state_valid_prefer_old);
 1061         } else {
 1062                 saorder_state_valid = saorder_state_valid_prefer_new;
 1063                 arraysize = _ARRAYLEN(saorder_state_valid_prefer_new);
 1064         }
 1065         LIST_FOREACH(sah, &sahtree, chain) {
 1066                 /* search valid state */
 1067                 for (stateidx = 0; stateidx < arraysize; stateidx++) {
 1068                         state = saorder_state_valid[stateidx];
 1069                         LIST_FOREACH(sav, &sah->savtree[state], chain) {
 1070                                 /* sanity check */
 1071                                 KEY_CHKSASTATE(sav->state, state, __func__);
 1072                                 /* do not return entries w/ unusable state */
 1073                                 if (sav->state != SADB_SASTATE_MATURE &&
 1074                                     sav->state != SADB_SASTATE_DYING)
 1075                                         continue;
 1076                                 if (proto != sav->sah->saidx.proto)
 1077                                         continue;
 1078                                 if (spi != sav->spi)
 1079                                         continue;
 1080 #if 0   /* don't check src */
 1081                                 /* check src address */
 1082                                 if (key_sockaddrcmp(&src->sa, &sav->sah->saidx.src.sa, 0) != 0)
 1083                                         continue;
 1084 #endif
 1085                                 /* check dst address */
 1086                                 if (key_sockaddrcmp(&dst->sa, &sav->sah->saidx.dst.sa, 0) != 0)
 1087                                         continue;
 1088                                 sa_addref(sav);
 1089                                 goto done;
 1090                         }
 1091                 }
 1092         }
 1093         sav = NULL;
 1094 done:
 1095         SAHTREE_UNLOCK();
 1096 
 1097         KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
 1098                 printf("DP %s return SA:%p; refcnt %u\n", __func__,
 1099                         sav, sav ? sav->refcnt : 0));
 1100         return sav;
 1101 }
 1102 
 1103 /*
 1104  * Must be called after calling key_allocsp().
 1105  * For both the packet without socket and key_freeso().
 1106  */
 1107 void
 1108 _key_freesp(struct secpolicy **spp, const char* where, int tag)
 1109 {
 1110         struct secpolicy *sp = *spp;
 1111 
 1112         IPSEC_ASSERT(sp != NULL, ("null sp"));
 1113 
 1114         SPTREE_LOCK();
 1115         SP_DELREF(sp);
 1116 
 1117         KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
 1118                 printf("DP %s SP:%p (ID=%u) from %s:%u; refcnt now %u\n",
 1119                         __func__, sp, sp->id, where, tag, sp->refcnt));
 1120 
 1121         if (sp->refcnt == 0) {
 1122                 *spp = NULL;
 1123                 key_delsp(sp);
 1124         }
 1125         SPTREE_UNLOCK();
 1126 }
 1127 
 1128 /*
 1129  * Must be called after calling key_allocsp().
 1130  * For the packet with socket.
 1131  */
 1132 void
 1133 key_freeso(struct socket *so)
 1134 {
 1135         IPSEC_ASSERT(so != NULL, ("null so"));
 1136 
 1137         switch (so->so_proto->pr_domain->dom_family) {
 1138 #ifdef INET
 1139         case PF_INET:
 1140             {
 1141                 struct inpcb *pcb = sotoinpcb(so);
 1142 
 1143                 /* Does it have a PCB ? */
 1144                 if (pcb == NULL)
 1145                         return;
 1146                 key_freesp_so(&pcb->inp_sp->sp_in);
 1147                 key_freesp_so(&pcb->inp_sp->sp_out);
 1148             }
 1149                 break;
 1150 #endif
 1151 #ifdef INET6
 1152         case PF_INET6:
 1153             {
 1154 #ifdef HAVE_NRL_INPCB
 1155                 struct inpcb *pcb  = sotoinpcb(so);
 1156 
 1157                 /* Does it have a PCB ? */
 1158                 if (pcb == NULL)
 1159                         return;
 1160                 key_freesp_so(&pcb->inp_sp->sp_in);
 1161                 key_freesp_so(&pcb->inp_sp->sp_out);
 1162 #else
 1163                 struct in6pcb *pcb  = sotoin6pcb(so);
 1164 
 1165                 /* Does it have a PCB ? */
 1166                 if (pcb == NULL)
 1167                         return;
 1168                 key_freesp_so(&pcb->in6p_sp->sp_in);
 1169                 key_freesp_so(&pcb->in6p_sp->sp_out);
 1170 #endif
 1171             }
 1172                 break;
 1173 #endif /* INET6 */
 1174         default:
 1175                 ipseclog((LOG_DEBUG, "%s: unknown address family=%d.\n",
 1176                     __func__, so->so_proto->pr_domain->dom_family));
 1177                 return;
 1178         }
 1179 }
 1180 
 1181 static void
 1182 key_freesp_so(struct secpolicy **sp)
 1183 {
 1184         IPSEC_ASSERT(sp != NULL && *sp != NULL, ("null sp"));
 1185 
 1186         if ((*sp)->policy == IPSEC_POLICY_ENTRUST ||
 1187             (*sp)->policy == IPSEC_POLICY_BYPASS)
 1188                 return;
 1189 
 1190         IPSEC_ASSERT((*sp)->policy == IPSEC_POLICY_IPSEC,
 1191                 ("invalid policy %u", (*sp)->policy));
 1192         KEY_FREESP(sp);
 1193 }
 1194 
 1195 /*
 1196  * Must be called after calling key_allocsa().
 1197  * This function is called by key_freesp() to free some SA allocated
 1198  * for a policy.
 1199  */
 1200 void
 1201 key_freesav(struct secasvar **psav, const char* where, int tag)
 1202 {
 1203         struct secasvar *sav = *psav;
 1204 
 1205         IPSEC_ASSERT(sav != NULL, ("null sav"));
 1206 
 1207         if (sa_delref(sav)) {
 1208                 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
 1209                         printf("DP %s SA:%p (SPI %u) from %s:%u; refcnt now %u\n",
 1210                                 __func__, sav, ntohl(sav->spi), where, tag, sav->refcnt));
 1211                 *psav = NULL;
 1212                 key_delsav(sav);
 1213         } else {
 1214                 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
 1215                         printf("DP %s SA:%p (SPI %u) from %s:%u; refcnt now %u\n",
 1216                                 __func__, sav, ntohl(sav->spi), where, tag, sav->refcnt));
 1217         }
 1218 }
 1219 
 1220 /* %%% SPD management */
 1221 /*
 1222  * free security policy entry.
 1223  */
 1224 static void
 1225 key_delsp(struct secpolicy *sp)
 1226 {
 1227         struct ipsecrequest *isr, *nextisr;
 1228 
 1229         IPSEC_ASSERT(sp != NULL, ("null sp"));
 1230         SPTREE_LOCK_ASSERT();
 1231 
 1232         sp->state = IPSEC_SPSTATE_DEAD;
 1233 
 1234         IPSEC_ASSERT(sp->refcnt == 0,
 1235                 ("SP with references deleted (refcnt %u)", sp->refcnt));
 1236 
 1237         /* remove from SP index */
 1238         if (__LIST_CHAINED(sp))
 1239                 LIST_REMOVE(sp, chain);
 1240 
 1241         for (isr = sp->req; isr != NULL; isr = nextisr) {
 1242                 if (isr->sav != NULL) {
 1243                         KEY_FREESAV(&isr->sav);
 1244                         isr->sav = NULL;
 1245                 }
 1246 
 1247                 nextisr = isr->next;
 1248                 ipsec_delisr(isr);
 1249         }
 1250         _key_delsp(sp);
 1251 }
 1252 
 1253 /*
 1254  * search SPD
 1255  * OUT: NULL    : not found
 1256  *      others  : found, pointer to a SP.
 1257  */
 1258 static struct secpolicy *
 1259 key_getsp(struct secpolicyindex *spidx)
 1260 {
 1261         struct secpolicy *sp;
 1262 
 1263         IPSEC_ASSERT(spidx != NULL, ("null spidx"));
 1264 
 1265         SPTREE_LOCK();
 1266         LIST_FOREACH(sp, &sptree[spidx->dir], chain) {
 1267                 if (sp->state == IPSEC_SPSTATE_DEAD)
 1268                         continue;
 1269                 if (key_cmpspidx_exactly(spidx, &sp->spidx)) {
 1270                         SP_ADDREF(sp);
 1271                         break;
 1272                 }
 1273         }
 1274         SPTREE_UNLOCK();
 1275 
 1276         return sp;
 1277 }
 1278 
 1279 /*
 1280  * get SP by index.
 1281  * OUT: NULL    : not found
 1282  *      others  : found, pointer to a SP.
 1283  */
 1284 static struct secpolicy *
 1285 key_getspbyid(u_int32_t id)
 1286 {
 1287         struct secpolicy *sp;
 1288 
 1289         SPTREE_LOCK();
 1290         LIST_FOREACH(sp, &sptree[IPSEC_DIR_INBOUND], chain) {
 1291                 if (sp->state == IPSEC_SPSTATE_DEAD)
 1292                         continue;
 1293                 if (sp->id == id) {
 1294                         SP_ADDREF(sp);
 1295                         goto done;
 1296                 }
 1297         }
 1298 
 1299         LIST_FOREACH(sp, &sptree[IPSEC_DIR_OUTBOUND], chain) {
 1300                 if (sp->state == IPSEC_SPSTATE_DEAD)
 1301                         continue;
 1302                 if (sp->id == id) {
 1303                         SP_ADDREF(sp);
 1304                         goto done;
 1305                 }
 1306         }
 1307 done:
 1308         SPTREE_UNLOCK();
 1309 
 1310         return sp;
 1311 }
 1312 
 1313 struct secpolicy *
 1314 key_newsp(const char* where, int tag)
 1315 {
 1316         struct secpolicy *newsp = NULL;
 1317 
 1318         newsp = (struct secpolicy *)
 1319                 malloc(sizeof(struct secpolicy), M_IPSEC_SP, M_NOWAIT|M_ZERO);
 1320         if (newsp) {
 1321                 SECPOLICY_LOCK_INIT(newsp);
 1322                 newsp->refcnt = 1;
 1323                 newsp->req = NULL;
 1324         }
 1325 
 1326         KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
 1327                 printf("DP %s from %s:%u return SP:%p\n", __func__,
 1328                         where, tag, newsp));
 1329         return newsp;
 1330 }
 1331 
 1332 static void
 1333 _key_delsp(struct secpolicy *sp)
 1334 {
 1335         SECPOLICY_LOCK_DESTROY(sp);
 1336         free(sp, M_IPSEC_SP);
 1337 }
 1338 
 1339 /*
 1340  * create secpolicy structure from sadb_x_policy structure.
 1341  * NOTE: `state', `secpolicyindex' in secpolicy structure are not set,
 1342  * so must be set properly later.
 1343  */
 1344 struct secpolicy *
 1345 key_msg2sp(xpl0, len, error)
 1346         struct sadb_x_policy *xpl0;
 1347         size_t len;
 1348         int *error;
 1349 {
 1350         struct secpolicy *newsp;
 1351 
 1352         IPSEC_ASSERT(xpl0 != NULL, ("null xpl0"));
 1353         IPSEC_ASSERT(len >= sizeof(*xpl0), ("policy too short: %zu", len));
 1354 
 1355         if (len != PFKEY_EXTLEN(xpl0)) {
 1356                 ipseclog((LOG_DEBUG, "%s: Invalid msg length.\n", __func__));
 1357                 *error = EINVAL;
 1358                 return NULL;
 1359         }
 1360 
 1361         if ((newsp = KEY_NEWSP()) == NULL) {
 1362                 *error = ENOBUFS;
 1363                 return NULL;
 1364         }
 1365 
 1366         newsp->spidx.dir = xpl0->sadb_x_policy_dir;
 1367         newsp->policy = xpl0->sadb_x_policy_type;
 1368 
 1369         /* check policy */
 1370         switch (xpl0->sadb_x_policy_type) {
 1371         case IPSEC_POLICY_DISCARD:
 1372         case IPSEC_POLICY_NONE:
 1373         case IPSEC_POLICY_ENTRUST:
 1374         case IPSEC_POLICY_BYPASS:
 1375                 newsp->req = NULL;
 1376                 break;
 1377 
 1378         case IPSEC_POLICY_IPSEC:
 1379             {
 1380                 int tlen;
 1381                 struct sadb_x_ipsecrequest *xisr;
 1382                 struct ipsecrequest **p_isr = &newsp->req;
 1383 
 1384                 /* validity check */
 1385                 if (PFKEY_EXTLEN(xpl0) < sizeof(*xpl0)) {
 1386                         ipseclog((LOG_DEBUG, "%s: Invalid msg length.\n",
 1387                                 __func__));
 1388                         KEY_FREESP(&newsp);
 1389                         *error = EINVAL;
 1390                         return NULL;
 1391                 }
 1392 
 1393                 tlen = PFKEY_EXTLEN(xpl0) - sizeof(*xpl0);
 1394                 xisr = (struct sadb_x_ipsecrequest *)(xpl0 + 1);
 1395 
 1396                 while (tlen > 0) {
 1397                         /* length check */
 1398                         if (xisr->sadb_x_ipsecrequest_len < sizeof(*xisr)) {
 1399                                 ipseclog((LOG_DEBUG, "%s: invalid ipsecrequest "
 1400                                         "length.\n", __func__));
 1401                                 KEY_FREESP(&newsp);
 1402                                 *error = EINVAL;
 1403                                 return NULL;
 1404                         }
 1405 
 1406                         /* allocate request buffer */
 1407                         /* NB: data structure is zero'd */
 1408                         *p_isr = ipsec_newisr();
 1409                         if ((*p_isr) == NULL) {
 1410                                 ipseclog((LOG_DEBUG,
 1411                                     "%s: No more memory.\n", __func__));
 1412                                 KEY_FREESP(&newsp);
 1413                                 *error = ENOBUFS;
 1414                                 return NULL;
 1415                         }
 1416 
 1417                         /* set values */
 1418                         switch (xisr->sadb_x_ipsecrequest_proto) {
 1419                         case IPPROTO_ESP:
 1420                         case IPPROTO_AH:
 1421                         case IPPROTO_IPCOMP:
 1422                                 break;
 1423                         default:
 1424                                 ipseclog((LOG_DEBUG,
 1425                                     "%s: invalid proto type=%u\n", __func__,
 1426                                     xisr->sadb_x_ipsecrequest_proto));
 1427                                 KEY_FREESP(&newsp);
 1428                                 *error = EPROTONOSUPPORT;
 1429                                 return NULL;
 1430                         }
 1431                         (*p_isr)->saidx.proto = xisr->sadb_x_ipsecrequest_proto;
 1432 
 1433                         switch (xisr->sadb_x_ipsecrequest_mode) {
 1434                         case IPSEC_MODE_TRANSPORT:
 1435                         case IPSEC_MODE_TUNNEL:
 1436                                 break;
 1437                         case IPSEC_MODE_ANY:
 1438                         default:
 1439                                 ipseclog((LOG_DEBUG,
 1440                                     "%s: invalid mode=%u\n", __func__,
 1441                                     xisr->sadb_x_ipsecrequest_mode));
 1442                                 KEY_FREESP(&newsp);
 1443                                 *error = EINVAL;
 1444                                 return NULL;
 1445                         }
 1446                         (*p_isr)->saidx.mode = xisr->sadb_x_ipsecrequest_mode;
 1447 
 1448                         switch (xisr->sadb_x_ipsecrequest_level) {
 1449                         case IPSEC_LEVEL_DEFAULT:
 1450                         case IPSEC_LEVEL_USE:
 1451                         case IPSEC_LEVEL_REQUIRE:
 1452                                 break;
 1453                         case IPSEC_LEVEL_UNIQUE:
 1454                                 /* validity check */
 1455                                 /*
 1456                                  * If range violation of reqid, kernel will
 1457                                  * update it, don't refuse it.
 1458                                  */
 1459                                 if (xisr->sadb_x_ipsecrequest_reqid
 1460                                                 > IPSEC_MANUAL_REQID_MAX) {
 1461                                         ipseclog((LOG_DEBUG,
 1462                                             "%s: reqid=%d range "
 1463                                             "violation, updated by kernel.\n",
 1464                                             __func__,
 1465                                             xisr->sadb_x_ipsecrequest_reqid));
 1466                                         xisr->sadb_x_ipsecrequest_reqid = 0;
 1467                                 }
 1468 
 1469                                 /* allocate new reqid id if reqid is zero. */
 1470                                 if (xisr->sadb_x_ipsecrequest_reqid == 0) {
 1471                                         u_int32_t reqid;
 1472                                         if ((reqid = key_newreqid()) == 0) {
 1473                                                 KEY_FREESP(&newsp);
 1474                                                 *error = ENOBUFS;
 1475                                                 return NULL;
 1476                                         }
 1477                                         (*p_isr)->saidx.reqid = reqid;
 1478                                         xisr->sadb_x_ipsecrequest_reqid = reqid;
 1479                                 } else {
 1480                                 /* set it for manual keying. */
 1481                                         (*p_isr)->saidx.reqid =
 1482                                                 xisr->sadb_x_ipsecrequest_reqid;
 1483                                 }
 1484                                 break;
 1485 
 1486                         default:
 1487                                 ipseclog((LOG_DEBUG, "%s: invalid level=%u\n",
 1488                                         __func__,
 1489                                         xisr->sadb_x_ipsecrequest_level));
 1490                                 KEY_FREESP(&newsp);
 1491                                 *error = EINVAL;
 1492                                 return NULL;
 1493                         }
 1494                         (*p_isr)->level = xisr->sadb_x_ipsecrequest_level;
 1495 
 1496                         /* set IP addresses if there */
 1497                         if (xisr->sadb_x_ipsecrequest_len > sizeof(*xisr)) {
 1498                                 struct sockaddr *paddr;
 1499 
 1500                                 paddr = (struct sockaddr *)(xisr + 1);
 1501 
 1502                                 /* validity check */
 1503                                 if (paddr->sa_len
 1504                                     > sizeof((*p_isr)->saidx.src)) {
 1505                                         ipseclog((LOG_DEBUG, "%s: invalid "
 1506                                                 "request address length.\n",
 1507                                                 __func__));
 1508                                         KEY_FREESP(&newsp);
 1509                                         *error = EINVAL;
 1510                                         return NULL;
 1511                                 }
 1512                                 bcopy(paddr, &(*p_isr)->saidx.src,
 1513                                         paddr->sa_len);
 1514 
 1515                                 paddr = (struct sockaddr *)((caddr_t)paddr
 1516                                                         + paddr->sa_len);
 1517 
 1518                                 /* validity check */
 1519                                 if (paddr->sa_len
 1520                                     > sizeof((*p_isr)->saidx.dst)) {
 1521                                         ipseclog((LOG_DEBUG, "%s: invalid "
 1522                                                 "request address length.\n",
 1523                                                 __func__));
 1524                                         KEY_FREESP(&newsp);
 1525                                         *error = EINVAL;
 1526                                         return NULL;
 1527                                 }
 1528                                 bcopy(paddr, &(*p_isr)->saidx.dst,
 1529                                         paddr->sa_len);
 1530                         }
 1531 
 1532                         (*p_isr)->sp = newsp;
 1533 
 1534                         /* initialization for the next. */
 1535                         p_isr = &(*p_isr)->next;
 1536                         tlen -= xisr->sadb_x_ipsecrequest_len;
 1537 
 1538                         /* validity check */
 1539                         if (tlen < 0) {
 1540                                 ipseclog((LOG_DEBUG, "%s: becoming tlen < 0.\n",
 1541                                         __func__));
 1542                                 KEY_FREESP(&newsp);
 1543                                 *error = EINVAL;
 1544                                 return NULL;
 1545                         }
 1546 
 1547                         xisr = (struct sadb_x_ipsecrequest *)((caddr_t)xisr
 1548                                          + xisr->sadb_x_ipsecrequest_len);
 1549                 }
 1550             }
 1551                 break;
 1552         default:
 1553                 ipseclog((LOG_DEBUG, "%s: invalid policy type.\n", __func__));
 1554                 KEY_FREESP(&newsp);
 1555                 *error = EINVAL;
 1556                 return NULL;
 1557         }
 1558 
 1559         *error = 0;
 1560         return newsp;
 1561 }
 1562 
 1563 static u_int32_t
 1564 key_newreqid()
 1565 {
 1566         static u_int32_t auto_reqid = IPSEC_MANUAL_REQID_MAX + 1;
 1567 
 1568         auto_reqid = (auto_reqid == ~0
 1569                         ? IPSEC_MANUAL_REQID_MAX + 1 : auto_reqid + 1);
 1570 
 1571         /* XXX should be unique check */
 1572 
 1573         return auto_reqid;
 1574 }
 1575 
 1576 /*
 1577  * copy secpolicy struct to sadb_x_policy structure indicated.
 1578  */
 1579 struct mbuf *
 1580 key_sp2msg(sp)
 1581         struct secpolicy *sp;
 1582 {
 1583         struct sadb_x_policy *xpl;
 1584         int tlen;
 1585         caddr_t p;
 1586         struct mbuf *m;
 1587 
 1588         IPSEC_ASSERT(sp != NULL, ("null policy"));
 1589 
 1590         tlen = key_getspreqmsglen(sp);
 1591 
 1592         m = key_alloc_mbuf(tlen);
 1593         if (!m || m->m_next) {  /*XXX*/
 1594                 if (m)
 1595                         m_freem(m);
 1596                 return NULL;
 1597         }
 1598 
 1599         m->m_len = tlen;
 1600         m->m_next = NULL;
 1601         xpl = mtod(m, struct sadb_x_policy *);
 1602         bzero(xpl, tlen);
 1603 
 1604         xpl->sadb_x_policy_len = PFKEY_UNIT64(tlen);
 1605         xpl->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
 1606         xpl->sadb_x_policy_type = sp->policy;
 1607         xpl->sadb_x_policy_dir = sp->spidx.dir;
 1608         xpl->sadb_x_policy_id = sp->id;
 1609         p = (caddr_t)xpl + sizeof(*xpl);
 1610 
 1611         /* if is the policy for ipsec ? */
 1612         if (sp->policy == IPSEC_POLICY_IPSEC) {
 1613                 struct sadb_x_ipsecrequest *xisr;
 1614                 struct ipsecrequest *isr;
 1615 
 1616                 for (isr = sp->req; isr != NULL; isr = isr->next) {
 1617 
 1618                         xisr = (struct sadb_x_ipsecrequest *)p;
 1619 
 1620                         xisr->sadb_x_ipsecrequest_proto = isr->saidx.proto;
 1621                         xisr->sadb_x_ipsecrequest_mode = isr->saidx.mode;
 1622                         xisr->sadb_x_ipsecrequest_level = isr->level;
 1623                         xisr->sadb_x_ipsecrequest_reqid = isr->saidx.reqid;
 1624 
 1625                         p += sizeof(*xisr);
 1626                         bcopy(&isr->saidx.src, p, isr->saidx.src.sa.sa_len);
 1627                         p += isr->saidx.src.sa.sa_len;
 1628                         bcopy(&isr->saidx.dst, p, isr->saidx.dst.sa.sa_len);
 1629                         p += isr->saidx.src.sa.sa_len;
 1630 
 1631                         xisr->sadb_x_ipsecrequest_len =
 1632                                 PFKEY_ALIGN8(sizeof(*xisr)
 1633                                         + isr->saidx.src.sa.sa_len
 1634                                         + isr->saidx.dst.sa.sa_len);
 1635                 }
 1636         }
 1637 
 1638         return m;
 1639 }
 1640 
 1641 /* m will not be freed nor modified */
 1642 static struct mbuf *
 1643 #ifdef __STDC__
 1644 key_gather_mbuf(struct mbuf *m, const struct sadb_msghdr *mhp,
 1645         int ndeep, int nitem, ...)
 1646 #else
 1647 key_gather_mbuf(m, mhp, ndeep, nitem, va_alist)
 1648         struct mbuf *m;
 1649         const struct sadb_msghdr *mhp;
 1650         int ndeep;
 1651         int nitem;
 1652         va_dcl
 1653 #endif
 1654 {
 1655         va_list ap;
 1656         int idx;
 1657         int i;
 1658         struct mbuf *result = NULL, *n;
 1659         int len;
 1660 
 1661         IPSEC_ASSERT(m != NULL, ("null mbuf"));
 1662         IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
 1663 
 1664         va_start(ap, nitem);
 1665         for (i = 0; i < nitem; i++) {
 1666                 idx = va_arg(ap, int);
 1667                 if (idx < 0 || idx > SADB_EXT_MAX)
 1668                         goto fail;
 1669                 /* don't attempt to pull empty extension */
 1670                 if (idx == SADB_EXT_RESERVED && mhp->msg == NULL)
 1671                         continue;
 1672                 if (idx != SADB_EXT_RESERVED  &&
 1673                     (mhp->ext[idx] == NULL || mhp->extlen[idx] == 0))
 1674                         continue;
 1675 
 1676                 if (idx == SADB_EXT_RESERVED) {
 1677                         len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
 1678 
 1679                         IPSEC_ASSERT(len <= MHLEN, ("header too big %u", len));
 1680 
 1681                         MGETHDR(n, M_DONTWAIT, MT_DATA);
 1682                         if (!n)
 1683                                 goto fail;
 1684                         n->m_len = len;
 1685                         n->m_next = NULL;
 1686                         m_copydata(m, 0, sizeof(struct sadb_msg),
 1687                             mtod(n, caddr_t));
 1688                 } else if (i < ndeep) {
 1689                         len = mhp->extlen[idx];
 1690                         n = key_alloc_mbuf(len);
 1691                         if (!n || n->m_next) {  /*XXX*/
 1692                                 if (n)
 1693                                         m_freem(n);
 1694                                 goto fail;
 1695                         }
 1696                         m_copydata(m, mhp->extoff[idx], mhp->extlen[idx],
 1697                             mtod(n, caddr_t));
 1698                 } else {
 1699                         n = m_copym(m, mhp->extoff[idx], mhp->extlen[idx],
 1700                             M_DONTWAIT);
 1701                 }
 1702                 if (n == NULL)
 1703                         goto fail;
 1704 
 1705                 if (result)
 1706                         m_cat(result, n);
 1707                 else
 1708                         result = n;
 1709         }
 1710         va_end(ap);
 1711 
 1712         if ((result->m_flags & M_PKTHDR) != 0) {
 1713                 result->m_pkthdr.len = 0;
 1714                 for (n = result; n; n = n->m_next)
 1715                         result->m_pkthdr.len += n->m_len;
 1716         }
 1717 
 1718         return result;
 1719 
 1720 fail:
 1721         m_freem(result);
 1722         return NULL;
 1723 }
 1724 
 1725 /*
 1726  * SADB_X_SPDADD, SADB_X_SPDSETIDX or SADB_X_SPDUPDATE processing
 1727  * add an entry to SP database, when received
 1728  *   <base, address(SD), (lifetime(H),) policy>
 1729  * from the user(?).
 1730  * Adding to SP database,
 1731  * and send
 1732  *   <base, address(SD), (lifetime(H),) policy>
 1733  * to the socket which was send.
 1734  *
 1735  * SPDADD set a unique policy entry.
 1736  * SPDSETIDX like SPDADD without a part of policy requests.
 1737  * SPDUPDATE replace a unique policy entry.
 1738  *
 1739  * m will always be freed.
 1740  */
 1741 static int
 1742 key_spdadd(so, m, mhp)
 1743         struct socket *so;
 1744         struct mbuf *m;
 1745         const struct sadb_msghdr *mhp;
 1746 {
 1747         struct sadb_address *src0, *dst0;
 1748         struct sadb_x_policy *xpl0, *xpl;
 1749         struct sadb_lifetime *lft = NULL;
 1750         struct secpolicyindex spidx;
 1751         struct secpolicy *newsp;
 1752         int error;
 1753 
 1754         IPSEC_ASSERT(so != NULL, ("null socket"));
 1755         IPSEC_ASSERT(m != NULL, ("null mbuf"));
 1756         IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
 1757         IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
 1758 
 1759         if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
 1760             mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
 1761             mhp->ext[SADB_X_EXT_POLICY] == NULL) {
 1762                 ipseclog((LOG_DEBUG, "key_spdadd: invalid message is passed.\n"));
 1763                 return key_senderror(so, m, EINVAL);
 1764         }
 1765         if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
 1766             mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
 1767             mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
 1768                 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
 1769                         __func__));
 1770                 return key_senderror(so, m, EINVAL);
 1771         }
 1772         if (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL) {
 1773                 if (mhp->extlen[SADB_EXT_LIFETIME_HARD]
 1774                         < sizeof(struct sadb_lifetime)) {
 1775                         ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
 1776                                 __func__));
 1777                         return key_senderror(so, m, EINVAL);
 1778                 }
 1779                 lft = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD];
 1780         }
 1781 
 1782         src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
 1783         dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
 1784         xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY];
 1785 
 1786         /* make secindex */
 1787         /* XXX boundary check against sa_len */
 1788         KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir,
 1789                         src0 + 1,
 1790                         dst0 + 1,
 1791                         src0->sadb_address_prefixlen,
 1792                         dst0->sadb_address_prefixlen,
 1793                         src0->sadb_address_proto,
 1794                         &spidx);
 1795 
 1796         /* checking the direciton. */
 1797         switch (xpl0->sadb_x_policy_dir) {
 1798         case IPSEC_DIR_INBOUND:
 1799         case IPSEC_DIR_OUTBOUND:
 1800                 break;
 1801         default:
 1802                 ipseclog((LOG_DEBUG, "%s: Invalid SP direction.\n", __func__));
 1803                 mhp->msg->sadb_msg_errno = EINVAL;
 1804                 return 0;
 1805         }
 1806 
 1807         /* check policy */
 1808         /* key_spdadd() accepts DISCARD, NONE and IPSEC. */
 1809         if (xpl0->sadb_x_policy_type == IPSEC_POLICY_ENTRUST
 1810          || xpl0->sadb_x_policy_type == IPSEC_POLICY_BYPASS) {
 1811                 ipseclog((LOG_DEBUG, "%s: Invalid policy type.\n", __func__));
 1812                 return key_senderror(so, m, EINVAL);
 1813         }
 1814 
 1815         /* policy requests are mandatory when action is ipsec. */
 1816         if (mhp->msg->sadb_msg_type != SADB_X_SPDSETIDX
 1817          && xpl0->sadb_x_policy_type == IPSEC_POLICY_IPSEC
 1818          && mhp->extlen[SADB_X_EXT_POLICY] <= sizeof(*xpl0)) {
 1819                 ipseclog((LOG_DEBUG, "%s: some policy requests part required\n",
 1820                         __func__));
 1821                 return key_senderror(so, m, EINVAL);
 1822         }
 1823 
 1824         /*
 1825          * checking there is SP already or not.
 1826          * SPDUPDATE doesn't depend on whether there is a SP or not.
 1827          * If the type is either SPDADD or SPDSETIDX AND a SP is found,
 1828          * then error.
 1829          */
 1830         newsp = key_getsp(&spidx);
 1831         if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) {
 1832                 if (newsp) {
 1833                         newsp->state = IPSEC_SPSTATE_DEAD;
 1834                         KEY_FREESP(&newsp);
 1835                 }
 1836         } else {
 1837                 if (newsp != NULL) {
 1838                         KEY_FREESP(&newsp);
 1839                         ipseclog((LOG_DEBUG, "%s: a SP entry exists already.\n",
 1840                                 __func__));
 1841                         return key_senderror(so, m, EEXIST);
 1842                 }
 1843         }
 1844 
 1845         /* allocation new SP entry */
 1846         if ((newsp = key_msg2sp(xpl0, PFKEY_EXTLEN(xpl0), &error)) == NULL) {
 1847                 return key_senderror(so, m, error);
 1848         }
 1849 
 1850         if ((newsp->id = key_getnewspid()) == 0) {
 1851                 _key_delsp(newsp);
 1852                 return key_senderror(so, m, ENOBUFS);
 1853         }
 1854 
 1855         /* XXX boundary check against sa_len */
 1856         KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir,
 1857                         src0 + 1,
 1858                         dst0 + 1,
 1859                         src0->sadb_address_prefixlen,
 1860                         dst0->sadb_address_prefixlen,
 1861                         src0->sadb_address_proto,
 1862                         &newsp->spidx);
 1863 
 1864         /* sanity check on addr pair */
 1865         if (((struct sockaddr *)(src0 + 1))->sa_family !=
 1866                         ((struct sockaddr *)(dst0+ 1))->sa_family) {
 1867                 _key_delsp(newsp);
 1868                 return key_senderror(so, m, EINVAL);
 1869         }
 1870         if (((struct sockaddr *)(src0 + 1))->sa_len !=
 1871                         ((struct sockaddr *)(dst0+ 1))->sa_len) {
 1872                 _key_delsp(newsp);
 1873                 return key_senderror(so, m, EINVAL);
 1874         }
 1875 #if 1
 1876         if (newsp->req && newsp->req->saidx.src.sa.sa_family) {
 1877                 struct sockaddr *sa;
 1878                 sa = (struct sockaddr *)(src0 + 1);
 1879                 if (sa->sa_family != newsp->req->saidx.src.sa.sa_family) {
 1880                         _key_delsp(newsp);
 1881                         return key_senderror(so, m, EINVAL);
 1882                 }
 1883         }
 1884         if (newsp->req && newsp->req->saidx.dst.sa.sa_family) {
 1885                 struct sockaddr *sa;
 1886                 sa = (struct sockaddr *)(dst0 + 1);
 1887                 if (sa->sa_family != newsp->req->saidx.dst.sa.sa_family) {
 1888                         _key_delsp(newsp);
 1889                         return key_senderror(so, m, EINVAL);
 1890                 }
 1891         }
 1892 #endif
 1893 
 1894         newsp->created = time_second;
 1895         newsp->lastused = newsp->created;
 1896         newsp->lifetime = lft ? lft->sadb_lifetime_addtime : 0;
 1897         newsp->validtime = lft ? lft->sadb_lifetime_usetime : 0;
 1898 
 1899         newsp->refcnt = 1;      /* do not reclaim until I say I do */
 1900         newsp->state = IPSEC_SPSTATE_ALIVE;
 1901         LIST_INSERT_TAIL(&sptree[newsp->spidx.dir], newsp, secpolicy, chain);
 1902 
 1903         /* delete the entry in spacqtree */
 1904         if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) {
 1905                 struct secspacq *spacq = key_getspacq(&spidx);
 1906                 if (spacq != NULL) {
 1907                         /* reset counter in order to deletion by timehandler. */
 1908                         spacq->created = time_second;
 1909                         spacq->count = 0;
 1910                         SPACQ_UNLOCK();
 1911                 }
 1912         }
 1913 
 1914     {
 1915         struct mbuf *n, *mpolicy;
 1916         struct sadb_msg *newmsg;
 1917         int off;
 1918 
 1919         /* create new sadb_msg to reply. */
 1920         if (lft) {
 1921                 n = key_gather_mbuf(m, mhp, 2, 5, SADB_EXT_RESERVED,
 1922                     SADB_X_EXT_POLICY, SADB_EXT_LIFETIME_HARD,
 1923                     SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
 1924         } else {
 1925                 n = key_gather_mbuf(m, mhp, 2, 4, SADB_EXT_RESERVED,
 1926                     SADB_X_EXT_POLICY,
 1927                     SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
 1928         }
 1929         if (!n)
 1930                 return key_senderror(so, m, ENOBUFS);
 1931 
 1932         if (n->m_len < sizeof(*newmsg)) {
 1933                 n = m_pullup(n, sizeof(*newmsg));
 1934                 if (!n)
 1935                         return key_senderror(so, m, ENOBUFS);
 1936         }
 1937         newmsg = mtod(n, struct sadb_msg *);
 1938         newmsg->sadb_msg_errno = 0;
 1939         newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
 1940 
 1941         off = 0;
 1942         mpolicy = m_pulldown(n, PFKEY_ALIGN8(sizeof(struct sadb_msg)),
 1943             sizeof(*xpl), &off);
 1944         if (mpolicy == NULL) {
 1945                 /* n is already freed */
 1946                 return key_senderror(so, m, ENOBUFS);
 1947         }
 1948         xpl = (struct sadb_x_policy *)(mtod(mpolicy, caddr_t) + off);
 1949         if (xpl->sadb_x_policy_exttype != SADB_X_EXT_POLICY) {
 1950                 m_freem(n);
 1951                 return key_senderror(so, m, EINVAL);
 1952         }
 1953         xpl->sadb_x_policy_id = newsp->id;
 1954 
 1955         m_freem(m);
 1956         return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
 1957     }
 1958 }
 1959 
 1960 /*
 1961  * get new policy id.
 1962  * OUT:
 1963  *      0:      failure.
 1964  *      others: success.
 1965  */
 1966 static u_int32_t
 1967 key_getnewspid()
 1968 {
 1969         u_int32_t newid = 0;
 1970         int count = key_spi_trycnt;     /* XXX */
 1971         struct secpolicy *sp;
 1972 
 1973         /* when requesting to allocate spi ranged */
 1974         while (count--) {
 1975                 newid = (policy_id = (policy_id == ~0 ? 1 : policy_id + 1));
 1976 
 1977                 if ((sp = key_getspbyid(newid)) == NULL)
 1978                         break;
 1979 
 1980                 KEY_FREESP(&sp);
 1981         }
 1982 
 1983         if (count == 0 || newid == 0) {
 1984                 ipseclog((LOG_DEBUG, "%s: to allocate policy id is failed.\n",
 1985                         __func__));
 1986                 return 0;
 1987         }
 1988 
 1989         return newid;
 1990 }
 1991 
 1992 /*
 1993  * SADB_SPDDELETE processing
 1994  * receive
 1995  *   <base, address(SD), policy(*)>
 1996  * from the user(?), and set SADB_SASTATE_DEAD,
 1997  * and send,
 1998  *   <base, address(SD), policy(*)>
 1999  * to the ikmpd.
 2000  * policy(*) including direction of policy.
 2001  *
 2002  * m will always be freed.
 2003  */
 2004 static int
 2005 key_spddelete(so, m, mhp)
 2006         struct socket *so;
 2007         struct mbuf *m;
 2008         const struct sadb_msghdr *mhp;
 2009 {
 2010         struct sadb_address *src0, *dst0;
 2011         struct sadb_x_policy *xpl0;
 2012         struct secpolicyindex spidx;
 2013         struct secpolicy *sp;
 2014 
 2015         IPSEC_ASSERT(so != NULL, ("null so"));
 2016         IPSEC_ASSERT(m != NULL, ("null mbuf"));
 2017         IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
 2018         IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
 2019 
 2020         if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
 2021             mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
 2022             mhp->ext[SADB_X_EXT_POLICY] == NULL) {
 2023                 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
 2024                         __func__));
 2025                 return key_senderror(so, m, EINVAL);
 2026         }
 2027         if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
 2028             mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
 2029             mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
 2030                 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
 2031                         __func__));
 2032                 return key_senderror(so, m, EINVAL);
 2033         }
 2034 
 2035         src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
 2036         dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
 2037         xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY];
 2038 
 2039         /* make secindex */
 2040         /* XXX boundary check against sa_len */
 2041         KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir,
 2042                         src0 + 1,
 2043                         dst0 + 1,
 2044                         src0->sadb_address_prefixlen,
 2045                         dst0->sadb_address_prefixlen,
 2046                         src0->sadb_address_proto,
 2047                         &spidx);
 2048 
 2049         /* checking the direciton. */
 2050         switch (xpl0->sadb_x_policy_dir) {
 2051         case IPSEC_DIR_INBOUND:
 2052         case IPSEC_DIR_OUTBOUND:
 2053                 break;
 2054         default:
 2055                 ipseclog((LOG_DEBUG, "%s: Invalid SP direction.\n", __func__));
 2056                 return key_senderror(so, m, EINVAL);
 2057         }
 2058 
 2059         /* Is there SP in SPD ? */
 2060         if ((sp = key_getsp(&spidx)) == NULL) {
 2061                 ipseclog((LOG_DEBUG, "%s: no SP found.\n", __func__));
 2062                 return key_senderror(so, m, EINVAL);
 2063         }
 2064 
 2065         /* save policy id to buffer to be returned. */
 2066         xpl0->sadb_x_policy_id = sp->id;
 2067 
 2068         sp->state = IPSEC_SPSTATE_DEAD;
 2069         KEY_FREESP(&sp);
 2070 
 2071     {
 2072         struct mbuf *n;
 2073         struct sadb_msg *newmsg;
 2074 
 2075         /* create new sadb_msg to reply. */
 2076         n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED,
 2077             SADB_X_EXT_POLICY, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
 2078         if (!n)
 2079                 return key_senderror(so, m, ENOBUFS);
 2080 
 2081         newmsg = mtod(n, struct sadb_msg *);
 2082         newmsg->sadb_msg_errno = 0;
 2083         newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
 2084 
 2085         m_freem(m);
 2086         return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
 2087     }
 2088 }
 2089 
 2090 /*
 2091  * SADB_SPDDELETE2 processing
 2092  * receive
 2093  *   <base, policy(*)>
 2094  * from the user(?), and set SADB_SASTATE_DEAD,
 2095  * and send,
 2096  *   <base, policy(*)>
 2097  * to the ikmpd.
 2098  * policy(*) including direction of policy.
 2099  *
 2100  * m will always be freed.
 2101  */
 2102 static int
 2103 key_spddelete2(so, m, mhp)
 2104         struct socket *so;
 2105         struct mbuf *m;
 2106         const struct sadb_msghdr *mhp;
 2107 {
 2108         u_int32_t id;
 2109         struct secpolicy *sp;
 2110 
 2111         IPSEC_ASSERT(so != NULL, ("null socket"));
 2112         IPSEC_ASSERT(m != NULL, ("null mbuf"));
 2113         IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
 2114         IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
 2115 
 2116         if (mhp->ext[SADB_X_EXT_POLICY] == NULL ||
 2117             mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
 2118                 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", __func__));
 2119                 return key_senderror(so, m, EINVAL);
 2120         }
 2121 
 2122         id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id;
 2123 
 2124         /* Is there SP in SPD ? */
 2125         if ((sp = key_getspbyid(id)) == NULL) {
 2126                 ipseclog((LOG_DEBUG, "%s: no SP found id:%u.\n", __func__, id));
 2127                 return key_senderror(so, m, EINVAL);
 2128         }
 2129 
 2130         sp->state = IPSEC_SPSTATE_DEAD;
 2131         KEY_FREESP(&sp);
 2132 
 2133     {
 2134         struct mbuf *n, *nn;
 2135         struct sadb_msg *newmsg;
 2136         int off, len;
 2137 
 2138         /* create new sadb_msg to reply. */
 2139         len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
 2140 
 2141         if (len > MCLBYTES)
 2142                 return key_senderror(so, m, ENOBUFS);
 2143         MGETHDR(n, M_DONTWAIT, MT_DATA);
 2144         if (n && len > MHLEN) {
 2145                 MCLGET(n, M_DONTWAIT);
 2146                 if ((n->m_flags & M_EXT) == 0) {
 2147                         m_freem(n);
 2148                         n = NULL;
 2149                 }
 2150         }
 2151         if (!n)
 2152                 return key_senderror(so, m, ENOBUFS);
 2153 
 2154         n->m_len = len;
 2155         n->m_next = NULL;
 2156         off = 0;
 2157 
 2158         m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off);
 2159         off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
 2160 
 2161         IPSEC_ASSERT(off == len, ("length inconsistency (off %u len %u)",
 2162                 off, len));
 2163 
 2164         n->m_next = m_copym(m, mhp->extoff[SADB_X_EXT_POLICY],
 2165             mhp->extlen[SADB_X_EXT_POLICY], M_DONTWAIT);
 2166         if (!n->m_next) {
 2167                 m_freem(n);
 2168                 return key_senderror(so, m, ENOBUFS);
 2169         }
 2170 
 2171         n->m_pkthdr.len = 0;
 2172         for (nn = n; nn; nn = nn->m_next)
 2173                 n->m_pkthdr.len += nn->m_len;
 2174 
 2175         newmsg = mtod(n, struct sadb_msg *);
 2176         newmsg->sadb_msg_errno = 0;
 2177         newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
 2178 
 2179         m_freem(m);
 2180         return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
 2181     }
 2182 }
 2183 
 2184 /*
 2185  * SADB_X_GET processing
 2186  * receive
 2187  *   <base, policy(*)>
 2188  * from the user(?),
 2189  * and send,
 2190  *   <base, address(SD), policy>
 2191  * to the ikmpd.
 2192  * policy(*) including direction of policy.
 2193  *
 2194  * m will always be freed.
 2195  */
 2196 static int
 2197 key_spdget(so, m, mhp)
 2198         struct socket *so;
 2199         struct mbuf *m;
 2200         const struct sadb_msghdr *mhp;
 2201 {
 2202         u_int32_t id;
 2203         struct secpolicy *sp;
 2204         struct mbuf *n;
 2205 
 2206         IPSEC_ASSERT(so != NULL, ("null socket"));
 2207         IPSEC_ASSERT(m != NULL, ("null mbuf"));
 2208         IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
 2209         IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
 2210 
 2211         if (mhp->ext[SADB_X_EXT_POLICY] == NULL ||
 2212             mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
 2213                 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
 2214                         __func__));
 2215                 return key_senderror(so, m, EINVAL);
 2216         }
 2217 
 2218         id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id;
 2219 
 2220         /* Is there SP in SPD ? */
 2221         if ((sp = key_getspbyid(id)) == NULL) {
 2222                 ipseclog((LOG_DEBUG, "%s: no SP found id:%u.\n", __func__, id));
 2223                 return key_senderror(so, m, ENOENT);
 2224         }
 2225 
 2226         n = key_setdumpsp(sp, SADB_X_SPDGET, 0, mhp->msg->sadb_msg_pid);
 2227         if (n != NULL) {
 2228                 m_freem(m);
 2229                 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
 2230         } else
 2231                 return key_senderror(so, m, ENOBUFS);
 2232 }
 2233 
 2234 /*
 2235  * SADB_X_SPDACQUIRE processing.
 2236  * Acquire policy and SA(s) for a *OUTBOUND* packet.
 2237  * send
 2238  *   <base, policy(*)>
 2239  * to KMD, and expect to receive
 2240  *   <base> with SADB_X_SPDACQUIRE if error occured,
 2241  * or
 2242  *   <base, policy>
 2243  * with SADB_X_SPDUPDATE from KMD by PF_KEY.
 2244  * policy(*) is without policy requests.
 2245  *
 2246  *    0     : succeed
 2247  *    others: error number
 2248  */
 2249 int
 2250 key_spdacquire(sp)
 2251         struct secpolicy *sp;
 2252 {
 2253         struct mbuf *result = NULL, *m;
 2254         struct secspacq *newspacq;
 2255 
 2256         IPSEC_ASSERT(sp != NULL, ("null secpolicy"));
 2257         IPSEC_ASSERT(sp->req == NULL, ("policy exists"));
 2258         IPSEC_ASSERT(sp->policy == IPSEC_POLICY_IPSEC,
 2259                 ("policy not IPSEC %u", sp->policy));
 2260 
 2261         /* Get an entry to check whether sent message or not. */
 2262         newspacq = key_getspacq(&sp->spidx);
 2263         if (newspacq != NULL) {
 2264                 if (key_blockacq_count < newspacq->count) {
 2265                         /* reset counter and do send message. */
 2266                         newspacq->count = 0;
 2267                 } else {
 2268                         /* increment counter and do nothing. */
 2269                         newspacq->count++;
 2270                         return 0;
 2271                 }
 2272                 SPACQ_UNLOCK();
 2273         } else {
 2274                 /* make new entry for blocking to send SADB_ACQUIRE. */
 2275                 newspacq = key_newspacq(&sp->spidx);
 2276                 if (newspacq == NULL)
 2277                         return ENOBUFS;
 2278         }
 2279 
 2280         /* create new sadb_msg to reply. */
 2281         m = key_setsadbmsg(SADB_X_SPDACQUIRE, 0, 0, 0, 0, 0);
 2282         if (!m)
 2283                 return ENOBUFS;
 2284 
 2285         result = m;
 2286 
 2287         result->m_pkthdr.len = 0;
 2288         for (m = result; m; m = m->m_next)
 2289                 result->m_pkthdr.len += m->m_len;
 2290 
 2291         mtod(result, struct sadb_msg *)->sadb_msg_len =
 2292             PFKEY_UNIT64(result->m_pkthdr.len);
 2293 
 2294         return key_sendup_mbuf(NULL, m, KEY_SENDUP_REGISTERED);
 2295 }
 2296 
 2297 /*
 2298  * SADB_SPDFLUSH processing
 2299  * receive
 2300  *   <base>
 2301  * from the user, and free all entries in secpctree.
 2302  * and send,
 2303  *   <base>
 2304  * to the user.
 2305  * NOTE: what to do is only marking SADB_SASTATE_DEAD.
 2306  *
 2307  * m will always be freed.
 2308  */
 2309 static int
 2310 key_spdflush(so, m, mhp)
 2311         struct socket *so;
 2312         struct mbuf *m;
 2313         const struct sadb_msghdr *mhp;
 2314 {
 2315         struct sadb_msg *newmsg;
 2316         struct secpolicy *sp;
 2317         u_int dir;
 2318 
 2319         IPSEC_ASSERT(so != NULL, ("null socket"));
 2320         IPSEC_ASSERT(m != NULL, ("null mbuf"));
 2321         IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
 2322         IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
 2323 
 2324         if (m->m_len != PFKEY_ALIGN8(sizeof(struct sadb_msg)))
 2325                 return key_senderror(so, m, EINVAL);
 2326 
 2327         for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
 2328                 SPTREE_LOCK();
 2329                 LIST_FOREACH(sp, &sptree[dir], chain)
 2330                         sp->state = IPSEC_SPSTATE_DEAD;
 2331                 SPTREE_UNLOCK();
 2332         }
 2333 
 2334         if (sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) {
 2335                 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
 2336                 return key_senderror(so, m, ENOBUFS);
 2337         }
 2338 
 2339         if (m->m_next)
 2340                 m_freem(m->m_next);
 2341         m->m_next = NULL;
 2342         m->m_pkthdr.len = m->m_len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
 2343         newmsg = mtod(m, struct sadb_msg *);
 2344         newmsg->sadb_msg_errno = 0;
 2345         newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len);
 2346 
 2347         return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
 2348 }
 2349 
 2350 /*
 2351  * SADB_SPDDUMP processing
 2352  * receive
 2353  *   <base>
 2354  * from the user, and dump all SP leaves
 2355  * and send,
 2356  *   <base> .....
 2357  * to the ikmpd.
 2358  *
 2359  * m will always be freed.
 2360  */
 2361 static int
 2362 key_spddump(so, m, mhp)
 2363         struct socket *so;
 2364         struct mbuf *m;
 2365         const struct sadb_msghdr *mhp;
 2366 {
 2367         struct secpolicy *sp;
 2368         int cnt;
 2369         u_int dir;
 2370         struct mbuf *n;
 2371 
 2372         IPSEC_ASSERT(so != NULL, ("null socket"));
 2373         IPSEC_ASSERT(m != NULL, ("null mbuf"));
 2374         IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
 2375         IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
 2376 
 2377         /* search SPD entry and get buffer size. */
 2378         cnt = 0;
 2379         for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
 2380                 LIST_FOREACH(sp, &sptree[dir], chain) {
 2381                         cnt++;
 2382                 }
 2383         }
 2384 
 2385         if (cnt == 0)
 2386                 return key_senderror(so, m, ENOENT);
 2387 
 2388         for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
 2389                 LIST_FOREACH(sp, &sptree[dir], chain) {
 2390                         --cnt;
 2391                         n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt,
 2392                             mhp->msg->sadb_msg_pid);
 2393 
 2394                         if (n)
 2395                                 key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
 2396                 }
 2397         }
 2398 
 2399         m_freem(m);
 2400         return 0;
 2401 }
 2402 
 2403 static struct mbuf *
 2404 key_setdumpsp(sp, type, seq, pid)
 2405         struct secpolicy *sp;
 2406         u_int8_t type;
 2407         u_int32_t seq, pid;
 2408 {
 2409         struct mbuf *result = NULL, *m;
 2410 
 2411         m = key_setsadbmsg(type, 0, SADB_SATYPE_UNSPEC, seq, pid, sp->refcnt);
 2412         if (!m)
 2413                 goto fail;
 2414         result = m;
 2415 
 2416         m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
 2417             &sp->spidx.src.sa, sp->spidx.prefs,
 2418             sp->spidx.ul_proto);
 2419         if (!m)
 2420                 goto fail;
 2421         m_cat(result, m);
 2422 
 2423         m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
 2424             &sp->spidx.dst.sa, sp->spidx.prefd,
 2425             sp->spidx.ul_proto);
 2426         if (!m)
 2427                 goto fail;
 2428         m_cat(result, m);
 2429 
 2430         m = key_sp2msg(sp);
 2431         if (!m)
 2432                 goto fail;
 2433         m_cat(result, m);
 2434 
 2435         if ((result->m_flags & M_PKTHDR) == 0)
 2436                 goto fail;
 2437 
 2438         if (result->m_len < sizeof(struct sadb_msg)) {
 2439                 result = m_pullup(result, sizeof(struct sadb_msg));
 2440                 if (result == NULL)
 2441                         goto fail;
 2442         }
 2443 
 2444         result->m_pkthdr.len = 0;
 2445         for (m = result; m; m = m->m_next)
 2446                 result->m_pkthdr.len += m->m_len;
 2447 
 2448         mtod(result, struct sadb_msg *)->sadb_msg_len =
 2449             PFKEY_UNIT64(result->m_pkthdr.len);
 2450 
 2451         return result;
 2452 
 2453 fail:
 2454         m_freem(result);
 2455         return NULL;
 2456 }
 2457 
 2458 /*
 2459  * get PFKEY message length for security policy and request.
 2460  */
 2461 static u_int
 2462 key_getspreqmsglen(sp)
 2463         struct secpolicy *sp;
 2464 {
 2465         u_int tlen;
 2466 
 2467         tlen = sizeof(struct sadb_x_policy);
 2468 
 2469         /* if is the policy for ipsec ? */
 2470         if (sp->policy != IPSEC_POLICY_IPSEC)
 2471                 return tlen;
 2472 
 2473         /* get length of ipsec requests */
 2474     {
 2475         struct ipsecrequest *isr;
 2476         int len;
 2477 
 2478         for (isr = sp->req; isr != NULL; isr = isr->next) {
 2479                 len = sizeof(struct sadb_x_ipsecrequest)
 2480                         + isr->saidx.src.sa.sa_len
 2481                         + isr->saidx.dst.sa.sa_len;
 2482 
 2483                 tlen += PFKEY_ALIGN8(len);
 2484         }
 2485     }
 2486 
 2487         return tlen;
 2488 }
 2489 
 2490 /*
 2491  * SADB_SPDEXPIRE processing
 2492  * send
 2493  *   <base, address(SD), lifetime(CH), policy>
 2494  * to KMD by PF_KEY.
 2495  *
 2496  * OUT: 0       : succeed
 2497  *      others  : error number
 2498  */
 2499 static int
 2500 key_spdexpire(sp)
 2501         struct secpolicy *sp;
 2502 {
 2503         struct mbuf *result = NULL, *m;
 2504         int len;
 2505         int error = -1;
 2506         struct sadb_lifetime *lt;
 2507 
 2508         /* XXX: Why do we lock ? */
 2509 
 2510         IPSEC_ASSERT(sp != NULL, ("null secpolicy"));
 2511 
 2512         /* set msg header */
 2513         m = key_setsadbmsg(SADB_X_SPDEXPIRE, 0, 0, 0, 0, 0);
 2514         if (!m) {
 2515                 error = ENOBUFS;
 2516                 goto fail;
 2517         }
 2518         result = m;
 2519 
 2520         /* create lifetime extension (current and hard) */
 2521         len = PFKEY_ALIGN8(sizeof(*lt)) * 2;
 2522         m = key_alloc_mbuf(len);
 2523         if (!m || m->m_next) {  /*XXX*/
 2524                 if (m)
 2525                         m_freem(m);
 2526                 error = ENOBUFS;
 2527                 goto fail;
 2528         }
 2529         bzero(mtod(m, caddr_t), len);
 2530         lt = mtod(m, struct sadb_lifetime *);
 2531         lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
 2532         lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
 2533         lt->sadb_lifetime_allocations = 0;
 2534         lt->sadb_lifetime_bytes = 0;
 2535         lt->sadb_lifetime_addtime = sp->created;
 2536         lt->sadb_lifetime_usetime = sp->lastused;
 2537         lt = (struct sadb_lifetime *)(mtod(m, caddr_t) + len / 2);
 2538         lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
 2539         lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
 2540         lt->sadb_lifetime_allocations = 0;
 2541         lt->sadb_lifetime_bytes = 0;
 2542         lt->sadb_lifetime_addtime = sp->lifetime;
 2543         lt->sadb_lifetime_usetime = sp->validtime;
 2544         m_cat(result, m);
 2545 
 2546         /* set sadb_address for source */
 2547         m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
 2548             &sp->spidx.src.sa,
 2549             sp->spidx.prefs, sp->spidx.ul_proto);
 2550         if (!m) {
 2551                 error = ENOBUFS;
 2552                 goto fail;
 2553         }
 2554         m_cat(result, m);
 2555 
 2556         /* set sadb_address for destination */
 2557         m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
 2558             &sp->spidx.dst.sa,
 2559             sp->spidx.prefd, sp->spidx.ul_proto);
 2560         if (!m) {
 2561                 error = ENOBUFS;
 2562                 goto fail;
 2563         }
 2564         m_cat(result, m);
 2565 
 2566         /* set secpolicy */
 2567         m = key_sp2msg(sp);
 2568         if (!m) {
 2569                 error = ENOBUFS;
 2570                 goto fail;
 2571         }
 2572         m_cat(result, m);
 2573 
 2574         if ((result->m_flags & M_PKTHDR) == 0) {
 2575                 error = EINVAL;
 2576                 goto fail;
 2577         }
 2578 
 2579         if (result->m_len < sizeof(struct sadb_msg)) {
 2580                 result = m_pullup(result, sizeof(struct sadb_msg));
 2581                 if (result == NULL) {
 2582                         error = ENOBUFS;
 2583                         goto fail;
 2584                 }
 2585         }
 2586 
 2587         result->m_pkthdr.len = 0;
 2588         for (m = result; m; m = m->m_next)
 2589                 result->m_pkthdr.len += m->m_len;
 2590 
 2591         mtod(result, struct sadb_msg *)->sadb_msg_len =
 2592             PFKEY_UNIT64(result->m_pkthdr.len);
 2593 
 2594         return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
 2595 
 2596  fail:
 2597         if (result)
 2598                 m_freem(result);
 2599         return error;
 2600 }
 2601 
 2602 /* %%% SAD management */
 2603 /*
 2604  * allocating a memory for new SA head, and copy from the values of mhp.
 2605  * OUT: NULL    : failure due to the lack of memory.
 2606  *      others  : pointer to new SA head.
 2607  */
 2608 static struct secashead *
 2609 key_newsah(saidx)
 2610         struct secasindex *saidx;
 2611 {
 2612         struct secashead *newsah;
 2613 
 2614         IPSEC_ASSERT(saidx != NULL, ("null saidx"));
 2615 
 2616         newsah = malloc(sizeof(struct secashead), M_IPSEC_SAH, M_NOWAIT|M_ZERO);
 2617         if (newsah != NULL) {
 2618                 int i;
 2619                 for (i = 0; i < sizeof(newsah->savtree)/sizeof(newsah->savtree[0]); i++)
 2620                         LIST_INIT(&newsah->savtree[i]);
 2621                 newsah->saidx = *saidx;
 2622 
 2623                 /* add to saidxtree */
 2624                 newsah->state = SADB_SASTATE_MATURE;
 2625 
 2626                 SAHTREE_LOCK();
 2627                 LIST_INSERT_HEAD(&sahtree, newsah, chain);
 2628                 SAHTREE_UNLOCK();
 2629         }
 2630         return(newsah);
 2631 }
 2632 
 2633 /*
 2634  * delete SA index and all SA registerd.
 2635  */
 2636 static void
 2637 key_delsah(sah)
 2638         struct secashead *sah;
 2639 {
 2640         struct secasvar *sav, *nextsav;
 2641         u_int stateidx;
 2642         int zombie = 0;
 2643 
 2644         IPSEC_ASSERT(sah != NULL, ("NULL sah"));
 2645         SAHTREE_LOCK_ASSERT();
 2646 
 2647         /* searching all SA registerd in the secindex. */
 2648         for (stateidx = 0;
 2649              stateidx < _ARRAYLEN(saorder_state_any);
 2650              stateidx++) {
 2651                 u_int state = saorder_state_any[stateidx];
 2652                 LIST_FOREACH_SAFE(sav, &sah->savtree[state], chain, nextsav) {
 2653                         if (sav->refcnt == 0) {
 2654                                 /* sanity check */
 2655                                 KEY_CHKSASTATE(state, sav->state, __func__);
 2656                                 KEY_FREESAV(&sav);
 2657                         } else {
 2658                                 /* give up to delete this sa */
 2659                                 zombie++;
 2660                         }
 2661                 }
 2662         }
 2663         if (!zombie) {          /* delete only if there are savs */
 2664                 /* remove from tree of SA index */
 2665                 if (__LIST_CHAINED(sah))
 2666                         LIST_REMOVE(sah, chain);
 2667                 if (sah->sa_route.ro_rt) {
 2668                         RTFREE(sah->sa_route.ro_rt);
 2669                         sah->sa_route.ro_rt = (struct rtentry *)NULL;
 2670                 }
 2671                 free(sah, M_IPSEC_SAH);
 2672         }
 2673 }
 2674 
 2675 /*
 2676  * allocating a new SA with LARVAL state.  key_add() and key_getspi() call,
 2677  * and copy the values of mhp into new buffer.
 2678  * When SAD message type is GETSPI:
 2679  *      to set sequence number from acq_seq++,
 2680  *      to set zero to SPI.
 2681  *      not to call key_setsava().
 2682  * OUT: NULL    : fail
 2683  *      others  : pointer to new secasvar.
 2684  *
 2685  * does not modify mbuf.  does not free mbuf on error.
 2686  */
 2687 static struct secasvar *
 2688 key_newsav(m, mhp, sah, errp, where, tag)
 2689         struct mbuf *m;
 2690         const struct sadb_msghdr *mhp;
 2691         struct secashead *sah;
 2692         int *errp;
 2693         const char* where;
 2694         int tag;
 2695 {
 2696         struct secasvar *newsav;
 2697         const struct sadb_sa *xsa;
 2698 
 2699         IPSEC_ASSERT(m != NULL, ("null mbuf"));
 2700         IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
 2701         IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
 2702         IPSEC_ASSERT(sah != NULL, ("null secashead"));
 2703 
 2704         newsav = malloc(sizeof(struct secasvar), M_IPSEC_SA, M_NOWAIT|M_ZERO);
 2705         if (newsav == NULL) {
 2706                 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
 2707                 *errp = ENOBUFS;
 2708                 goto done;
 2709         }
 2710 
 2711         switch (mhp->msg->sadb_msg_type) {
 2712         case SADB_GETSPI:
 2713                 newsav->spi = 0;
 2714 
 2715 #ifdef IPSEC_DOSEQCHECK
 2716                 /* sync sequence number */
 2717                 if (mhp->msg->sadb_msg_seq == 0)
 2718                         newsav->seq =
 2719                                 (acq_seq = (acq_seq == ~0 ? 1 : ++acq_seq));
 2720                 else
 2721 #endif
 2722                         newsav->seq = mhp->msg->sadb_msg_seq;
 2723                 break;
 2724 
 2725         case SADB_ADD:
 2726                 /* sanity check */
 2727                 if (mhp->ext[SADB_EXT_SA] == NULL) {
 2728                         free(newsav, M_IPSEC_SA);
 2729                         newsav = NULL;
 2730                         ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
 2731                                 __func__));
 2732                         *errp = EINVAL;
 2733                         goto done;
 2734                 }
 2735                 xsa = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA];
 2736                 newsav->spi = xsa->sadb_sa_spi;
 2737                 newsav->seq = mhp->msg->sadb_msg_seq;
 2738                 break;
 2739         default:
 2740                 free(newsav, M_IPSEC_SA);
 2741                 newsav = NULL;
 2742                 *errp = EINVAL;
 2743                 goto done;
 2744         }
 2745 
 2746 
 2747         /* copy sav values */
 2748         if (mhp->msg->sadb_msg_type != SADB_GETSPI) {
 2749                 *errp = key_setsaval(newsav, m, mhp);
 2750                 if (*errp) {
 2751                         free(newsav, M_IPSEC_SA);
 2752                         newsav = NULL;
 2753                         goto done;
 2754                 }
 2755         }
 2756 
 2757         SECASVAR_LOCK_INIT(newsav);
 2758 
 2759         /* reset created */
 2760         newsav->created = time_second;
 2761         newsav->pid = mhp->msg->sadb_msg_pid;
 2762 
 2763         /* add to satree */
 2764         newsav->sah = sah;
 2765         sa_initref(newsav);
 2766         newsav->state = SADB_SASTATE_LARVAL;
 2767 
 2768         /* XXX locking??? */
 2769         LIST_INSERT_TAIL(&sah->savtree[SADB_SASTATE_LARVAL], newsav,
 2770                         secasvar, chain);
 2771 done:
 2772         KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
 2773                 printf("DP %s from %s:%u return SP:%p\n", __func__,
 2774                         where, tag, newsav));
 2775 
 2776         return newsav;
 2777 }
 2778 
 2779 /*
 2780  * free() SA variable entry.
 2781  */
 2782 static void
 2783 key_cleansav(struct secasvar *sav)
 2784 {
 2785         /*
 2786          * Cleanup xform state.  Note that zeroize'ing causes the
 2787          * keys to be cleared; otherwise we must do it ourself.
 2788          */
 2789         if (sav->tdb_xform != NULL) {
 2790                 sav->tdb_xform->xf_zeroize(sav);
 2791                 sav->tdb_xform = NULL;
 2792         } else {
 2793                 KASSERT(sav->iv == NULL, ("iv but no xform"));
 2794                 if (sav->key_auth != NULL)
 2795                         bzero(_KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth));
 2796                 if (sav->key_enc != NULL)
 2797                         bzero(_KEYBUF(sav->key_enc), _KEYLEN(sav->key_enc));
 2798         }
 2799         if (sav->key_auth != NULL) {
 2800                 free(sav->key_auth, M_IPSEC_MISC);
 2801                 sav->key_auth = NULL;
 2802         }
 2803         if (sav->key_enc != NULL) {
 2804                 free(sav->key_enc, M_IPSEC_MISC);
 2805                 sav->key_enc = NULL;
 2806         }
 2807         if (sav->sched) {
 2808                 bzero(sav->sched, sav->schedlen);
 2809                 free(sav->sched, M_IPSEC_MISC);
 2810                 sav->sched = NULL;
 2811         }
 2812         if (sav->replay != NULL) {
 2813                 free(sav->replay, M_IPSEC_MISC);
 2814                 sav->replay = NULL;
 2815         }
 2816         if (sav->lft_c != NULL) {
 2817                 free(sav->lft_c, M_IPSEC_MISC);
 2818                 sav->lft_c = NULL;
 2819         }
 2820         if (sav->lft_h != NULL) {
 2821                 free(sav->lft_h, M_IPSEC_MISC);
 2822                 sav->lft_h = NULL;
 2823         }
 2824         if (sav->lft_s != NULL) {
 2825                 free(sav->lft_s, M_IPSEC_MISC);
 2826                 sav->lft_s = NULL;
 2827         }
 2828 }
 2829 
 2830 /*
 2831  * free() SA variable entry.
 2832  */
 2833 static void
 2834 key_delsav(sav)
 2835         struct secasvar *sav;
 2836 {
 2837         IPSEC_ASSERT(sav != NULL, ("null sav"));
 2838         IPSEC_ASSERT(sav->refcnt == 0, ("reference count %u > 0", sav->refcnt));
 2839 
 2840         /* remove from SA header */
 2841         if (__LIST_CHAINED(sav))
 2842                 LIST_REMOVE(sav, chain);
 2843         key_cleansav(sav);
 2844         SECASVAR_LOCK_DESTROY(sav);
 2845         free(sav, M_IPSEC_SA);
 2846 }
 2847 
 2848 /*
 2849  * search SAD.
 2850  * OUT:
 2851  *      NULL    : not found
 2852  *      others  : found, pointer to a SA.
 2853  */
 2854 static struct secashead *
 2855 key_getsah(saidx)
 2856         struct secasindex *saidx;
 2857 {
 2858         struct secashead *sah;
 2859 
 2860         SAHTREE_LOCK();
 2861         LIST_FOREACH(sah, &sahtree, chain) {
 2862                 if (sah->state == SADB_SASTATE_DEAD)
 2863                         continue;
 2864                 if (key_cmpsaidx(&sah->saidx, saidx, CMP_REQID))
 2865                         break;
 2866         }
 2867         SAHTREE_UNLOCK();
 2868 
 2869         return sah;
 2870 }
 2871 
 2872 /*
 2873  * check not to be duplicated SPI.
 2874  * NOTE: this function is too slow due to searching all SAD.
 2875  * OUT:
 2876  *      NULL    : not found
 2877  *      others  : found, pointer to a SA.
 2878  */
 2879 static struct secasvar *
 2880 key_checkspidup(saidx, spi)
 2881         struct secasindex *saidx;
 2882         u_int32_t spi;
 2883 {
 2884         struct secashead *sah;
 2885         struct secasvar *sav;
 2886 
 2887         /* check address family */
 2888         if (saidx->src.sa.sa_family != saidx->dst.sa.sa_family) {
 2889                 ipseclog((LOG_DEBUG, "%s: address family mismatched.\n",
 2890                         __func__));
 2891                 return NULL;
 2892         }
 2893 
 2894         sav = NULL;
 2895         /* check all SAD */
 2896         SAHTREE_LOCK();
 2897         LIST_FOREACH(sah, &sahtree, chain) {
 2898                 if (!key_ismyaddr((struct sockaddr *)&sah->saidx.dst))
 2899                         continue;
 2900                 sav = key_getsavbyspi(sah, spi);
 2901                 if (sav != NULL)
 2902                         break;
 2903         }
 2904         SAHTREE_UNLOCK();
 2905 
 2906         return sav;
 2907 }
 2908 
 2909 /*
 2910  * search SAD litmited alive SA, protocol, SPI.
 2911  * OUT:
 2912  *      NULL    : not found
 2913  *      others  : found, pointer to a SA.
 2914  */
 2915 static struct secasvar *
 2916 key_getsavbyspi(sah, spi)
 2917         struct secashead *sah;
 2918         u_int32_t spi;
 2919 {
 2920         struct secasvar *sav;
 2921         u_int stateidx, state;
 2922 
 2923         sav = NULL;
 2924         SAHTREE_LOCK_ASSERT();
 2925         /* search all status */
 2926         for (stateidx = 0;
 2927              stateidx < _ARRAYLEN(saorder_state_alive);
 2928              stateidx++) {
 2929 
 2930                 state = saorder_state_alive[stateidx];
 2931                 LIST_FOREACH(sav, &sah->savtree[state], chain) {
 2932 
 2933                         /* sanity check */
 2934                         if (sav->state != state) {
 2935                                 ipseclog((LOG_DEBUG, "%s: "
 2936                                     "invalid sav->state (queue: %d SA: %d)\n",
 2937                                     __func__, state, sav->state));
 2938                                 continue;
 2939                         }
 2940 
 2941                         if (sav->spi == spi)
 2942                                 return sav;
 2943                 }
 2944         }
 2945 
 2946         return NULL;
 2947 }
 2948 
 2949 /*
 2950  * copy SA values from PF_KEY message except *SPI, SEQ, PID, STATE and TYPE*.
 2951  * You must update these if need.
 2952  * OUT: 0:      success.
 2953  *      !0:     failure.
 2954  *
 2955  * does not modify mbuf.  does not free mbuf on error.
 2956  */
 2957 static int
 2958 key_setsaval(sav, m, mhp)
 2959         struct secasvar *sav;
 2960         struct mbuf *m;
 2961         const struct sadb_msghdr *mhp;
 2962 {
 2963         int error = 0;
 2964 
 2965         IPSEC_ASSERT(m != NULL, ("null mbuf"));
 2966         IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
 2967         IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
 2968 
 2969         /* initialization */
 2970         sav->replay = NULL;
 2971         sav->key_auth = NULL;
 2972         sav->key_enc = NULL;
 2973         sav->sched = NULL;
 2974         sav->schedlen = 0;
 2975         sav->iv = NULL;
 2976         sav->lft_c = NULL;
 2977         sav->lft_h = NULL;
 2978         sav->lft_s = NULL;
 2979         sav->tdb_xform = NULL;          /* transform */
 2980         sav->tdb_encalgxform = NULL;    /* encoding algorithm */
 2981         sav->tdb_authalgxform = NULL;   /* authentication algorithm */
 2982         sav->tdb_compalgxform = NULL;   /* compression algorithm */
 2983 
 2984         /* SA */
 2985         if (mhp->ext[SADB_EXT_SA] != NULL) {
 2986                 const struct sadb_sa *sa0;
 2987 
 2988                 sa0 = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA];
 2989                 if (mhp->extlen[SADB_EXT_SA] < sizeof(*sa0)) {
 2990                         error = EINVAL;
 2991                         goto fail;
 2992                 }
 2993 
 2994                 sav->alg_auth = sa0->sadb_sa_auth;
 2995                 sav->alg_enc = sa0->sadb_sa_encrypt;
 2996                 sav->flags = sa0->sadb_sa_flags;
 2997 
 2998                 /* replay window */
 2999                 if ((sa0->sadb_sa_flags & SADB_X_EXT_OLD) == 0) {
 3000                         sav->replay = (struct secreplay *)
 3001                                 malloc(sizeof(struct secreplay)+sa0->sadb_sa_replay, M_IPSEC_MISC, M_NOWAIT|M_ZERO);
 3002                         if (sav->replay == NULL) {
 3003                                 ipseclog((LOG_DEBUG, "%s: No more memory.\n",
 3004                                         __func__));
 3005                                 error = ENOBUFS;
 3006                                 goto fail;
 3007                         }
 3008                         if (sa0->sadb_sa_replay != 0)
 3009                                 sav->replay->bitmap = (caddr_t)(sav->replay+1);
 3010                         sav->replay->wsize = sa0->sadb_sa_replay;
 3011                 }
 3012         }
 3013 
 3014         /* Authentication keys */
 3015         if (mhp->ext[SADB_EXT_KEY_AUTH] != NULL) {
 3016                 const struct sadb_key *key0;
 3017                 int len;
 3018 
 3019                 key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_AUTH];
 3020                 len = mhp->extlen[SADB_EXT_KEY_AUTH];
 3021 
 3022                 error = 0;
 3023                 if (len < sizeof(*key0)) {
 3024                         error = EINVAL;
 3025                         goto fail;
 3026                 }
 3027                 switch (mhp->msg->sadb_msg_satype) {
 3028                 case SADB_SATYPE_AH:
 3029                 case SADB_SATYPE_ESP:
 3030                 case SADB_X_SATYPE_TCPSIGNATURE:
 3031                         if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) &&
 3032                             sav->alg_auth != SADB_X_AALG_NULL)
 3033                                 error = EINVAL;
 3034                         break;
 3035                 case SADB_X_SATYPE_IPCOMP:
 3036                 default:
 3037                         error = EINVAL;
 3038                         break;
 3039                 }
 3040                 if (error) {
 3041                         ipseclog((LOG_DEBUG, "%s: invalid key_auth values.\n",
 3042                                 __func__));
 3043                         goto fail;
 3044                 }
 3045 
 3046                 sav->key_auth = key_dup(key0, len, M_IPSEC_MISC);
 3047                 if (sav->key_auth == NULL) {
 3048                         ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__));
 3049                         error = ENOBUFS;
 3050                         goto fail;
 3051                 }
 3052         }
 3053 
 3054         /* Encryption key */
 3055         if (mhp->ext[SADB_EXT_KEY_ENCRYPT] != NULL) {
 3056                 const struct sadb_key *key0;
 3057                 int len;
 3058 
 3059                 key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_ENCRYPT];
 3060                 len = mhp->extlen[SADB_EXT_KEY_ENCRYPT];
 3061 
 3062                 error = 0;
 3063                 if (len < sizeof(*key0)) {
 3064                         error = EINVAL;
 3065                         goto fail;
 3066                 }
 3067                 switch (mhp->msg->sadb_msg_satype) {
 3068                 case SADB_SATYPE_ESP:
 3069                         if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) &&
 3070                             sav->alg_enc != SADB_EALG_NULL) {
 3071                                 error = EINVAL;
 3072                                 break;
 3073                         }
 3074                         sav->key_enc = key_dup(key0, len, M_IPSEC_MISC);
 3075                         if (sav->key_enc == NULL) {
 3076                                 ipseclog((LOG_DEBUG, "%s: No more memory.\n",
 3077                                         __func__));
 3078                                 error = ENOBUFS;
 3079                                 goto fail;
 3080                         }
 3081                         break;
 3082                 case SADB_X_SATYPE_IPCOMP:
 3083                         if (len != PFKEY_ALIGN8(sizeof(struct sadb_key)))
 3084                                 error = EINVAL;
 3085                         sav->key_enc = NULL;    /*just in case*/
 3086                         break;
 3087                 case SADB_SATYPE_AH:
 3088                 case SADB_X_SATYPE_TCPSIGNATURE:
 3089                 default:
 3090                         error = EINVAL;
 3091                         break;
 3092                 }
 3093                 if (error) {
 3094                         ipseclog((LOG_DEBUG, "%s: invalid key_enc value.\n",
 3095                                 __func__));
 3096                         goto fail;
 3097                 }
 3098         }
 3099 
 3100         /* set iv */
 3101         sav->ivlen = 0;
 3102 
 3103         switch (mhp->msg->sadb_msg_satype) {
 3104         case SADB_SATYPE_AH:
 3105                 error = xform_init(sav, XF_AH);
 3106                 break;
 3107         case SADB_SATYPE_ESP:
 3108                 error = xform_init(sav, XF_ESP);
 3109                 break;
 3110         case SADB_X_SATYPE_IPCOMP:
 3111                 error = xform_init(sav, XF_IPCOMP);
 3112                 break;
 3113         case SADB_X_SATYPE_TCPSIGNATURE:
 3114                 error = xform_init(sav, XF_TCPSIGNATURE);
 3115                 break;
 3116         }
 3117         if (error) {
 3118                 ipseclog((LOG_DEBUG, "%s: unable to initialize SA type %u.\n",
 3119                         __func__, mhp->msg->sadb_msg_satype));
 3120                 goto fail;
 3121         }
 3122 
 3123         /* reset created */
 3124         sav->created = time_second;
 3125 
 3126         /* make lifetime for CURRENT */
 3127         sav->lft_c = malloc(sizeof(struct sadb_lifetime), M_IPSEC_MISC, M_NOWAIT);
 3128         if (sav->lft_c == NULL) {
 3129                 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
 3130                 error = ENOBUFS;
 3131                 goto fail;
 3132         }
 3133 
 3134         sav->lft_c->sadb_lifetime_len =
 3135             PFKEY_UNIT64(sizeof(struct sadb_lifetime));
 3136         sav->lft_c->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
 3137         sav->lft_c->sadb_lifetime_allocations = 0;
 3138         sav->lft_c->sadb_lifetime_bytes = 0;
 3139         sav->lft_c->sadb_lifetime_addtime = time_second;
 3140         sav->lft_c->sadb_lifetime_usetime = 0;
 3141 
 3142         /* lifetimes for HARD and SOFT */
 3143     {
 3144         const struct sadb_lifetime *lft0;
 3145 
 3146         lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD];
 3147         if (lft0 != NULL) {
 3148                 if (mhp->extlen[SADB_EXT_LIFETIME_HARD] < sizeof(*lft0)) {
 3149                         error = EINVAL;
 3150                         goto fail;
 3151                 }
 3152                 sav->lft_h = key_dup(lft0, sizeof(*lft0), M_IPSEC_MISC);
 3153                 if (sav->lft_h == NULL) {
 3154                         ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__));
 3155                         error = ENOBUFS;
 3156                         goto fail;
 3157                 }
 3158                 /* to be initialize ? */
 3159         }
 3160 
 3161         lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_SOFT];
 3162         if (lft0 != NULL) {
 3163                 if (mhp->extlen[SADB_EXT_LIFETIME_SOFT] < sizeof(*lft0)) {
 3164                         error = EINVAL;
 3165                         goto fail;
 3166                 }
 3167                 sav->lft_s = key_dup(lft0, sizeof(*lft0), M_IPSEC_MISC);
 3168                 if (sav->lft_s == NULL) {
 3169                         ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__));
 3170                         error = ENOBUFS;
 3171                         goto fail;
 3172                 }
 3173                 /* to be initialize ? */
 3174         }
 3175     }
 3176 
 3177         return 0;
 3178 
 3179  fail:
 3180         /* initialization */
 3181         key_cleansav(sav);
 3182 
 3183         return error;
 3184 }
 3185 
 3186 /*
 3187  * validation with a secasvar entry, and set SADB_SATYPE_MATURE.
 3188  * OUT: 0:      valid
 3189  *      other:  errno
 3190  */
 3191 static int
 3192 key_mature(struct secasvar *sav)
 3193 {
 3194         int error;
 3195 
 3196         /* check SPI value */
 3197         switch (sav->sah->saidx.proto) {
 3198         case IPPROTO_ESP:
 3199         case IPPROTO_AH:
 3200                 /*
 3201                  * RFC 4302, 2.4. Security Parameters Index (SPI), SPI values
 3202                  * 1-255 reserved by IANA for future use,
 3203                  * 0 for implementation specific, local use.
 3204                  */
 3205                 if (ntohl(sav->spi) <= 255) {
 3206                         ipseclog((LOG_DEBUG, "%s: illegal range of SPI %u.\n",
 3207                             __func__, (u_int32_t)ntohl(sav->spi)));
 3208                         return EINVAL;
 3209                 }
 3210                 break;
 3211         }
 3212 
 3213         /* check satype */
 3214         switch (sav->sah->saidx.proto) {
 3215         case IPPROTO_ESP:
 3216                 /* check flags */
 3217                 if ((sav->flags & (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) ==
 3218                     (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) {
 3219                         ipseclog((LOG_DEBUG, "%s: invalid flag (derived) "
 3220                                 "given to old-esp.\n", __func__));
 3221                         return EINVAL;
 3222                 }
 3223                 error = xform_init(sav, XF_ESP);
 3224                 break;
 3225         case IPPROTO_AH:
 3226                 /* check flags */
 3227                 if (sav->flags & SADB_X_EXT_DERIV) {
 3228                         ipseclog((LOG_DEBUG, "%s: invalid flag (derived) "
 3229                                 "given to AH SA.\n", __func__));
 3230                         return EINVAL;
 3231                 }
 3232                 if (sav->alg_enc != SADB_EALG_NONE) {
 3233                         ipseclog((LOG_DEBUG, "%s: protocol and algorithm "
 3234                                 "mismated.\n", __func__));
 3235                         return(EINVAL);
 3236                 }
 3237                 error = xform_init(sav, XF_AH);
 3238                 break;
 3239         case IPPROTO_IPCOMP:
 3240                 if (sav->alg_auth != SADB_AALG_NONE) {
 3241                         ipseclog((LOG_DEBUG, "%s: protocol and algorithm "
 3242                                 "mismated.\n", __func__));
 3243                         return(EINVAL);
 3244                 }
 3245                 if ((sav->flags & SADB_X_EXT_RAWCPI) == 0
 3246                  && ntohl(sav->spi) >= 0x10000) {
 3247                         ipseclog((LOG_DEBUG, "%s: invalid cpi for IPComp.\n",
 3248                                 __func__));
 3249                         return(EINVAL);
 3250                 }
 3251                 error = xform_init(sav, XF_IPCOMP);
 3252                 break;
 3253         case IPPROTO_TCP:
 3254                 if (sav->alg_enc != SADB_EALG_NONE) {
 3255                         ipseclog((LOG_DEBUG, "%s: protocol and algorithm "
 3256                                 "mismated.\n", __func__));
 3257                         return(EINVAL);
 3258                 }
 3259                 error = xform_init(sav, XF_TCPSIGNATURE);
 3260                 break;
 3261         default:
 3262                 ipseclog((LOG_DEBUG, "%s: Invalid satype.\n", __func__));
 3263                 error = EPROTONOSUPPORT;
 3264                 break;
 3265         }
 3266         if (error == 0) {
 3267                 SAHTREE_LOCK();
 3268                 key_sa_chgstate(sav, SADB_SASTATE_MATURE);
 3269                 SAHTREE_UNLOCK();
 3270         }
 3271         return (error);
 3272 }
 3273 
 3274 /*
 3275  * subroutine for SADB_GET and SADB_DUMP.
 3276  */
 3277 static struct mbuf *
 3278 key_setdumpsa(sav, type, satype, seq, pid)
 3279         struct secasvar *sav;
 3280         u_int8_t type, satype;
 3281         u_int32_t seq, pid;
 3282 {
 3283         struct mbuf *result = NULL, *tres = NULL, *m;
 3284         int l = 0;
 3285         int i;
 3286         void *p;
 3287         int dumporder[] = {
 3288                 SADB_EXT_SA, SADB_X_EXT_SA2,
 3289                 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT,
 3290                 SADB_EXT_LIFETIME_CURRENT, SADB_EXT_ADDRESS_SRC,
 3291                 SADB_EXT_ADDRESS_DST, SADB_EXT_ADDRESS_PROXY, SADB_EXT_KEY_AUTH,
 3292                 SADB_EXT_KEY_ENCRYPT, SADB_EXT_IDENTITY_SRC,
 3293                 SADB_EXT_IDENTITY_DST, SADB_EXT_SENSITIVITY,
 3294         };
 3295 
 3296         m = key_setsadbmsg(type, 0, satype, seq, pid, sav->refcnt);
 3297         if (m == NULL)
 3298                 goto fail;
 3299         result = m;
 3300 
 3301         for (i = sizeof(dumporder)/sizeof(dumporder[0]) - 1; i >= 0; i--) {
 3302                 m = NULL;
 3303                 p = NULL;
 3304                 switch (dumporder[i]) {
 3305                 case SADB_EXT_SA:
 3306                         m = key_setsadbsa(sav);
 3307                         if (!m)
 3308                                 goto fail;
 3309                         break;
 3310 
 3311                 case SADB_X_EXT_SA2:
 3312                         m = key_setsadbxsa2(sav->sah->saidx.mode,
 3313                                         sav->replay ? sav->replay->count : 0,
 3314                                         sav->sah->saidx.reqid);
 3315                         if (!m)
 3316                                 goto fail;
 3317                         break;
 3318 
 3319                 case SADB_EXT_ADDRESS_SRC:
 3320                         m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
 3321                             &sav->sah->saidx.src.sa,
 3322                             FULLMASK, IPSEC_ULPROTO_ANY);
 3323                         if (!m)
 3324                                 goto fail;
 3325                         break;
 3326 
 3327                 case SADB_EXT_ADDRESS_DST:
 3328                         m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
 3329                             &sav->sah->saidx.dst.sa,
 3330                             FULLMASK, IPSEC_ULPROTO_ANY);
 3331                         if (!m)
 3332                                 goto fail;
 3333                         break;
 3334 
 3335                 case SADB_EXT_KEY_AUTH:
 3336                         if (!sav->key_auth)
 3337                                 continue;
 3338                         l = PFKEY_UNUNIT64(sav->key_auth->sadb_key_len);
 3339                         p = sav->key_auth;
 3340                         break;
 3341 
 3342                 case SADB_EXT_KEY_ENCRYPT:
 3343                         if (!sav->key_enc)
 3344                                 continue;
 3345                         l = PFKEY_UNUNIT64(sav->key_enc->sadb_key_len);
 3346                         p = sav->key_enc;
 3347                         break;
 3348 
 3349                 case SADB_EXT_LIFETIME_CURRENT:
 3350                         if (!sav->lft_c)
 3351                                 continue;
 3352                         l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_c)->sadb_ext_len);
 3353                         p = sav->lft_c;
 3354                         break;
 3355 
 3356                 case SADB_EXT_LIFETIME_HARD:
 3357                         if (!sav->lft_h)
 3358                                 continue;
 3359                         l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_h)->sadb_ext_len);
 3360                         p = sav->lft_h;
 3361                         break;
 3362 
 3363                 case SADB_EXT_LIFETIME_SOFT:
 3364                         if (!sav->lft_s)
 3365                                 continue;
 3366                         l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_s)->sadb_ext_len);
 3367                         p = sav->lft_s;
 3368                         break;
 3369 
 3370                 case SADB_EXT_ADDRESS_PROXY:
 3371                 case SADB_EXT_IDENTITY_SRC:
 3372                 case SADB_EXT_IDENTITY_DST:
 3373                         /* XXX: should we brought from SPD ? */
 3374                 case SADB_EXT_SENSITIVITY:
 3375                 default:
 3376                         continue;
 3377                 }
 3378 
 3379                 if ((!m && !p) || (m && p))
 3380                         goto fail;
 3381                 if (p && tres) {
 3382                         M_PREPEND(tres, l, M_DONTWAIT);
 3383                         if (!tres)
 3384                                 goto fail;
 3385                         bcopy(p, mtod(tres, caddr_t), l);
 3386                         continue;
 3387                 }
 3388                 if (p) {
 3389                         m = key_alloc_mbuf(l);
 3390                         if (!m)
 3391                                 goto fail;
 3392                         m_copyback(m, 0, l, p);
 3393                 }
 3394 
 3395                 if (tres)
 3396                         m_cat(m, tres);
 3397                 tres = m;
 3398         }
 3399 
 3400         m_cat(result, tres);
 3401 
 3402         if (result->m_len < sizeof(struct sadb_msg)) {
 3403                 result = m_pullup(result, sizeof(struct sadb_msg));
 3404                 if (result == NULL)
 3405                         goto fail;
 3406         }
 3407 
 3408         result->m_pkthdr.len = 0;
 3409         for (m = result; m; m = m->m_next)
 3410                 result->m_pkthdr.len += m->m_len;
 3411 
 3412         mtod(result, struct sadb_msg *)->sadb_msg_len =
 3413             PFKEY_UNIT64(result->m_pkthdr.len);
 3414 
 3415         return result;
 3416 
 3417 fail:
 3418         m_freem(result);
 3419         m_freem(tres);
 3420         return NULL;
 3421 }
 3422 
 3423 /*
 3424  * set data into sadb_msg.
 3425  */
 3426 static struct mbuf *
 3427 key_setsadbmsg(type, tlen, satype, seq, pid, reserved)
 3428         u_int8_t type, satype;
 3429         u_int16_t tlen;
 3430         u_int32_t seq;
 3431         pid_t pid;
 3432         u_int16_t reserved;
 3433 {
 3434         struct mbuf *m;
 3435         struct sadb_msg *p;
 3436         int len;
 3437 
 3438         len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
 3439         if (len > MCLBYTES)
 3440                 return NULL;
 3441         MGETHDR(m, M_DONTWAIT, MT_DATA);
 3442         if (m && len > MHLEN) {
 3443                 MCLGET(m, M_DONTWAIT);
 3444                 if ((m->m_flags & M_EXT) == 0) {
 3445                         m_freem(m);
 3446                         m = NULL;
 3447                 }
 3448         }
 3449         if (!m)
 3450                 return NULL;
 3451         m->m_pkthdr.len = m->m_len = len;
 3452         m->m_next = NULL;
 3453 
 3454         p = mtod(m, struct sadb_msg *);
 3455 
 3456         bzero(p, len);
 3457         p->sadb_msg_version = PF_KEY_V2;
 3458         p->sadb_msg_type = type;
 3459         p->sadb_msg_errno = 0;
 3460         p->sadb_msg_satype = satype;
 3461         p->sadb_msg_len = PFKEY_UNIT64(tlen);
 3462         p->sadb_msg_reserved = reserved;
 3463         p->sadb_msg_seq = seq;
 3464         p->sadb_msg_pid = (u_int32_t)pid;
 3465 
 3466         return m;
 3467 }
 3468 
 3469 /*
 3470  * copy secasvar data into sadb_address.
 3471  */
 3472 static struct mbuf *
 3473 key_setsadbsa(sav)
 3474         struct secasvar *sav;
 3475 {
 3476         struct mbuf *m;
 3477         struct sadb_sa *p;
 3478         int len;
 3479 
 3480         len = PFKEY_ALIGN8(sizeof(struct sadb_sa));
 3481         m = key_alloc_mbuf(len);
 3482         if (!m || m->m_next) {  /*XXX*/
 3483                 if (m)
 3484                         m_freem(m);
 3485                 return NULL;
 3486         }
 3487 
 3488         p = mtod(m, struct sadb_sa *);
 3489 
 3490         bzero(p, len);
 3491         p->sadb_sa_len = PFKEY_UNIT64(len);
 3492         p->sadb_sa_exttype = SADB_EXT_SA;
 3493         p->sadb_sa_spi = sav->spi;
 3494         p->sadb_sa_replay = (sav->replay != NULL ? sav->replay->wsize : 0);
 3495         p->sadb_sa_state = sav->state;
 3496         p->sadb_sa_auth = sav->alg_auth;
 3497         p->sadb_sa_encrypt = sav->alg_enc;
 3498         p->sadb_sa_flags = sav->flags;
 3499 
 3500         return m;
 3501 }
 3502 
 3503 /*
 3504  * set data into sadb_address.
 3505  */
 3506 static struct mbuf *
 3507 key_setsadbaddr(exttype, saddr, prefixlen, ul_proto)
 3508         u_int16_t exttype;
 3509         const struct sockaddr *saddr;
 3510         u_int8_t prefixlen;
 3511         u_int16_t ul_proto;
 3512 {
 3513         struct mbuf *m;
 3514         struct sadb_address *p;
 3515         size_t len;
 3516 
 3517         len = PFKEY_ALIGN8(sizeof(struct sadb_address)) +
 3518             PFKEY_ALIGN8(saddr->sa_len);
 3519         m = key_alloc_mbuf(len);
 3520         if (!m || m->m_next) {  /*XXX*/
 3521                 if (m)
 3522                         m_freem(m);
 3523                 return NULL;
 3524         }
 3525 
 3526         p = mtod(m, struct sadb_address *);
 3527 
 3528         bzero(p, len);
 3529         p->sadb_address_len = PFKEY_UNIT64(len);
 3530         p->sadb_address_exttype = exttype;
 3531         p->sadb_address_proto = ul_proto;
 3532         if (prefixlen == FULLMASK) {
 3533                 switch (saddr->sa_family) {
 3534                 case AF_INET:
 3535                         prefixlen = sizeof(struct in_addr) << 3;
 3536                         break;
 3537                 case AF_INET6:
 3538                         prefixlen = sizeof(struct in6_addr) << 3;
 3539                         break;
 3540                 default:
 3541                         ; /*XXX*/
 3542                 }
 3543         }
 3544         p->sadb_address_prefixlen = prefixlen;
 3545         p->sadb_address_reserved = 0;
 3546 
 3547         bcopy(saddr,
 3548             mtod(m, caddr_t) + PFKEY_ALIGN8(sizeof(struct sadb_address)),
 3549             saddr->sa_len);
 3550 
 3551         return m;
 3552 }
 3553 
 3554 /*
 3555  * set data into sadb_x_sa2.
 3556  */
 3557 static struct mbuf *
 3558 key_setsadbxsa2(mode, seq, reqid)
 3559         u_int8_t mode;
 3560         u_int32_t seq, reqid;
 3561 {
 3562         struct mbuf *m;
 3563         struct sadb_x_sa2 *p;
 3564         size_t len;
 3565 
 3566         len = PFKEY_ALIGN8(sizeof(struct sadb_x_sa2));
 3567         m = key_alloc_mbuf(len);
 3568         if (!m || m->m_next) {  /*XXX*/
 3569                 if (m)
 3570                         m_freem(m);
 3571                 return NULL;
 3572         }
 3573 
 3574         p = mtod(m, struct sadb_x_sa2 *);
 3575 
 3576         bzero(p, len);
 3577         p->sadb_x_sa2_len = PFKEY_UNIT64(len);
 3578         p->sadb_x_sa2_exttype = SADB_X_EXT_SA2;
 3579         p->sadb_x_sa2_mode = mode;
 3580         p->sadb_x_sa2_reserved1 = 0;
 3581         p->sadb_x_sa2_reserved2 = 0;
 3582         p->sadb_x_sa2_sequence = seq;
 3583         p->sadb_x_sa2_reqid = reqid;
 3584 
 3585         return m;
 3586 }
 3587 
 3588 /*
 3589  * set data into sadb_x_policy
 3590  */
 3591 static struct mbuf *
 3592 key_setsadbxpolicy(type, dir, id)
 3593         u_int16_t type;
 3594         u_int8_t dir;
 3595         u_int32_t id;
 3596 {
 3597         struct mbuf *m;
 3598         struct sadb_x_policy *p;
 3599         size_t len;
 3600 
 3601         len = PFKEY_ALIGN8(sizeof(struct sadb_x_policy));
 3602         m = key_alloc_mbuf(len);
 3603         if (!m || m->m_next) {  /*XXX*/
 3604                 if (m)
 3605                         m_freem(m);
 3606                 return NULL;
 3607         }
 3608 
 3609         p = mtod(m, struct sadb_x_policy *);
 3610 
 3611         bzero(p, len);
 3612         p->sadb_x_policy_len = PFKEY_UNIT64(len);
 3613         p->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
 3614         p->sadb_x_policy_type = type;
 3615         p->sadb_x_policy_dir = dir;
 3616         p->sadb_x_policy_id = id;
 3617 
 3618         return m;
 3619 }
 3620 
 3621 /* %%% utilities */
 3622 /*
 3623  * copy a buffer into the new buffer allocated.
 3624  */
 3625 static void *
 3626 key_dup(const void *src, u_int len, struct malloc_type *type)
 3627 {
 3628         void *copy;
 3629 
 3630         copy = malloc(len, type, M_NOWAIT);
 3631         if (copy == NULL) {
 3632                 /* XXX counter */
 3633                 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
 3634         } else
 3635                 bcopy(src, copy, len);
 3636         return copy;
 3637 }
 3638 
 3639 /* compare my own address
 3640  * OUT: 1: true, i.e. my address.
 3641  *      0: false
 3642  */
 3643 int
 3644 key_ismyaddr(sa)
 3645         struct sockaddr *sa;
 3646 {
 3647 #ifdef INET
 3648         struct sockaddr_in *sin;
 3649         struct in_ifaddr *ia;
 3650 #endif
 3651 
 3652         IPSEC_ASSERT(sa != NULL, ("null sockaddr"));
 3653 
 3654         switch (sa->sa_family) {
 3655 #ifdef INET
 3656         case AF_INET:
 3657                 sin = (struct sockaddr_in *)sa;
 3658                 for (ia = in_ifaddrhead.tqh_first; ia;
 3659                      ia = ia->ia_link.tqe_next)
 3660                 {
 3661                         if (sin->sin_family == ia->ia_addr.sin_family &&
 3662                             sin->sin_len == ia->ia_addr.sin_len &&
 3663                             sin->sin_addr.s_addr == ia->ia_addr.sin_addr.s_addr)
 3664                         {
 3665                                 return 1;
 3666                         }
 3667                 }
 3668                 break;
 3669 #endif
 3670 #ifdef INET6
 3671         case AF_INET6:
 3672                 return key_ismyaddr6((struct sockaddr_in6 *)sa);
 3673 #endif
 3674         }
 3675 
 3676         return 0;
 3677 }
 3678 
 3679 #ifdef INET6
 3680 /*
 3681  * compare my own address for IPv6.
 3682  * 1: ours
 3683  * 0: other
 3684  * NOTE: derived ip6_input() in KAME. This is necessary to modify more.
 3685  */
 3686 #include <netinet6/in6_var.h>
 3687 
 3688 static int
 3689 key_ismyaddr6(sin6)
 3690         struct sockaddr_in6 *sin6;
 3691 {
 3692         struct in6_ifaddr *ia;
 3693         struct in6_multi *in6m;
 3694 
 3695         for (ia = in6_ifaddr; ia; ia = ia->ia_next) {
 3696                 if (key_sockaddrcmp((struct sockaddr *)&sin6,
 3697                     (struct sockaddr *)&ia->ia_addr, 0) == 0)
 3698                         return 1;
 3699 
 3700                 /*
 3701                  * XXX Multicast
 3702                  * XXX why do we care about multlicast here while we don't care
 3703                  * about IPv4 multicast??
 3704                  * XXX scope
 3705                  */
 3706                 in6m = NULL;
 3707                 IN6_LOOKUP_MULTI(sin6->sin6_addr, ia->ia_ifp, in6m);
 3708                 if (in6m)
 3709                         return 1;
 3710         }
 3711 
 3712         /* loopback, just for safety */
 3713         if (IN6_IS_ADDR_LOOPBACK(&sin6->sin6_addr))
 3714                 return 1;
 3715 
 3716         return 0;
 3717 }
 3718 #endif /*INET6*/
 3719 
 3720 /*
 3721  * compare two secasindex structure.
 3722  * flag can specify to compare 2 saidxes.
 3723  * compare two secasindex structure without both mode and reqid.
 3724  * don't compare port.
 3725  * IN:  
 3726  *      saidx0: source, it can be in SAD.
 3727  *      saidx1: object.
 3728  * OUT: 
 3729  *      1 : equal
 3730  *      0 : not equal
 3731  */
 3732 static int
 3733 key_cmpsaidx(
 3734         const struct secasindex *saidx0,
 3735         const struct secasindex *saidx1,
 3736         int flag)
 3737 {
 3738         /* sanity */
 3739         if (saidx0 == NULL && saidx1 == NULL)
 3740                 return 1;
 3741 
 3742         if (saidx0 == NULL || saidx1 == NULL)
 3743                 return 0;
 3744 
 3745         if (saidx0->proto != saidx1->proto)
 3746                 return 0;
 3747 
 3748         if (flag == CMP_EXACTLY) {
 3749                 if (saidx0->mode != saidx1->mode)
 3750                         return 0;
 3751                 if (saidx0->reqid != saidx1->reqid)
 3752                         return 0;
 3753                 if (bcmp(&saidx0->src, &saidx1->src, saidx0->src.sa.sa_len) != 0 ||
 3754                     bcmp(&saidx0->dst, &saidx1->dst, saidx0->dst.sa.sa_len) != 0)
 3755                         return 0;
 3756         } else {
 3757 
 3758                 /* CMP_MODE_REQID, CMP_REQID, CMP_HEAD */
 3759                 if (flag == CMP_MODE_REQID
 3760                   ||flag == CMP_REQID) {
 3761                         /*
 3762                          * If reqid of SPD is non-zero, unique SA is required.
 3763                          * The result must be of same reqid in this case.
 3764                          */
 3765                         if (saidx1->reqid != 0 && saidx0->reqid != saidx1->reqid)
 3766                                 return 0;
 3767                 }
 3768 
 3769                 if (flag == CMP_MODE_REQID) {
 3770                         if (saidx0->mode != IPSEC_MODE_ANY
 3771                          && saidx0->mode != saidx1->mode)
 3772                                 return 0;
 3773                 }
 3774 
 3775                 if (key_sockaddrcmp(&saidx0->src.sa, &saidx1->src.sa, 0) != 0) {
 3776                         return 0;
 3777                 }
 3778                 if (key_sockaddrcmp(&saidx0->dst.sa, &saidx1->dst.sa, 0) != 0) {
 3779                         return 0;
 3780                 }
 3781         }
 3782 
 3783         return 1;
 3784 }
 3785 
 3786 /*
 3787  * compare two secindex structure exactly.
 3788  * IN:
 3789  *      spidx0: source, it is often in SPD.
 3790  *      spidx1: object, it is often from PFKEY message.
 3791  * OUT:
 3792  *      1 : equal
 3793  *      0 : not equal
 3794  */
 3795 static int
 3796 key_cmpspidx_exactly(
 3797         struct secpolicyindex *spidx0,
 3798         struct secpolicyindex *spidx1)
 3799 {
 3800         /* sanity */
 3801         if (spidx0 == NULL && spidx1 == NULL)
 3802                 return 1;
 3803 
 3804         if (spidx0 == NULL || spidx1 == NULL)
 3805                 return 0;
 3806 
 3807         if (spidx0->prefs != spidx1->prefs
 3808          || spidx0->prefd != spidx1->prefd
 3809          || spidx0->ul_proto != spidx1->ul_proto)
 3810                 return 0;
 3811 
 3812         return key_sockaddrcmp(&spidx0->src.sa, &spidx1->src.sa, 1) == 0 &&
 3813                key_sockaddrcmp(&spidx0->dst.sa, &spidx1->dst.sa, 1) == 0;
 3814 }
 3815 
 3816 /*
 3817  * compare two secindex structure with mask.
 3818  * IN:
 3819  *      spidx0: source, it is often in SPD.
 3820  *      spidx1: object, it is often from IP header.
 3821  * OUT:
 3822  *      1 : equal
 3823  *      0 : not equal
 3824  */
 3825 static int
 3826 key_cmpspidx_withmask(
 3827         struct secpolicyindex *spidx0,
 3828         struct secpolicyindex *spidx1)
 3829 {
 3830         /* sanity */
 3831         if (spidx0 == NULL && spidx1 == NULL)
 3832                 return 1;
 3833 
 3834         if (spidx0 == NULL || spidx1 == NULL)
 3835                 return 0;
 3836 
 3837         if (spidx0->src.sa.sa_family != spidx1->src.sa.sa_family ||
 3838             spidx0->dst.sa.sa_family != spidx1->dst.sa.sa_family ||
 3839             spidx0->src.sa.sa_len != spidx1->src.sa.sa_len ||
 3840             spidx0->dst.sa.sa_len != spidx1->dst.sa.sa_len)
 3841                 return 0;
 3842 
 3843         /* if spidx.ul_proto == IPSEC_ULPROTO_ANY, ignore. */
 3844         if (spidx0->ul_proto != (u_int16_t)IPSEC_ULPROTO_ANY
 3845          && spidx0->ul_proto != spidx1->ul_proto)
 3846                 return 0;
 3847 
 3848         switch (spidx0->src.sa.sa_family) {
 3849         case AF_INET:
 3850                 if (spidx0->src.sin.sin_port != IPSEC_PORT_ANY
 3851                  && spidx0->src.sin.sin_port != spidx1->src.sin.sin_port)
 3852                         return 0;
 3853                 if (!key_bbcmp(&spidx0->src.sin.sin_addr,
 3854                     &spidx1->src.sin.sin_addr, spidx0->prefs))
 3855                         return 0;
 3856                 break;
 3857         case AF_INET6:
 3858                 if (spidx0->src.sin6.sin6_port != IPSEC_PORT_ANY
 3859                  && spidx0->src.sin6.sin6_port != spidx1->src.sin6.sin6_port)
 3860                         return 0;
 3861                 /*
 3862                  * scope_id check. if sin6_scope_id is 0, we regard it
 3863                  * as a wildcard scope, which matches any scope zone ID. 
 3864                  */
 3865                 if (spidx0->src.sin6.sin6_scope_id &&
 3866                     spidx1->src.sin6.sin6_scope_id &&
 3867                     spidx0->src.sin6.sin6_scope_id != spidx1->src.sin6.sin6_scope_id)
 3868                         return 0;
 3869                 if (!key_bbcmp(&spidx0->src.sin6.sin6_addr,
 3870                     &spidx1->src.sin6.sin6_addr, spidx0->prefs))
 3871                         return 0;
 3872                 break;
 3873         default:
 3874                 /* XXX */
 3875                 if (bcmp(&spidx0->src, &spidx1->src, spidx0->src.sa.sa_len) != 0)
 3876                         return 0;
 3877                 break;
 3878         }
 3879 
 3880         switch (spidx0->dst.sa.sa_family) {
 3881         case AF_INET:
 3882                 if (spidx0->dst.sin.sin_port != IPSEC_PORT_ANY
 3883                  && spidx0->dst.sin.sin_port != spidx1->dst.sin.sin_port)
 3884                         return 0;
 3885                 if (!key_bbcmp(&spidx0->dst.sin.sin_addr,
 3886                     &spidx1->dst.sin.sin_addr, spidx0->prefd))
 3887                         return 0;
 3888                 break;
 3889         case AF_INET6:
 3890                 if (spidx0->dst.sin6.sin6_port != IPSEC_PORT_ANY
 3891                  && spidx0->dst.sin6.sin6_port != spidx1->dst.sin6.sin6_port)
 3892                         return 0;
 3893                 /*
 3894                  * scope_id check. if sin6_scope_id is 0, we regard it
 3895                  * as a wildcard scope, which matches any scope zone ID. 
 3896                  */
 3897                 if (spidx0->dst.sin6.sin6_scope_id &&
 3898                     spidx1->dst.sin6.sin6_scope_id &&
 3899                     spidx0->dst.sin6.sin6_scope_id != spidx1->dst.sin6.sin6_scope_id)
 3900                         return 0;
 3901                 if (!key_bbcmp(&spidx0->dst.sin6.sin6_addr,
 3902                     &spidx1->dst.sin6.sin6_addr, spidx0->prefd))
 3903                         return 0;
 3904                 break;
 3905         default:
 3906                 /* XXX */
 3907                 if (bcmp(&spidx0->dst, &spidx1->dst, spidx0->dst.sa.sa_len) != 0)
 3908                         return 0;
 3909                 break;
 3910         }
 3911 
 3912         /* XXX Do we check other field ?  e.g. flowinfo */
 3913 
 3914         return 1;
 3915 }
 3916 
 3917 /* returns 0 on match */
 3918 static int
 3919 key_sockaddrcmp(
 3920         const struct sockaddr *sa1,
 3921         const struct sockaddr *sa2,
 3922         int port)
 3923 {
 3924 #ifdef satosin
 3925 #undef satosin
 3926 #endif
 3927 #define satosin(s) ((const struct sockaddr_in *)s)
 3928 #ifdef satosin6
 3929 #undef satosin6
 3930 #endif
 3931 #define satosin6(s) ((const struct sockaddr_in6 *)s)
 3932         if (sa1->sa_family != sa2->sa_family || sa1->sa_len != sa2->sa_len)
 3933                 return 1;
 3934 
 3935         switch (sa1->sa_family) {
 3936         case AF_INET:
 3937                 if (sa1->sa_len != sizeof(struct sockaddr_in))
 3938                         return 1;
 3939                 if (satosin(sa1)->sin_addr.s_addr !=
 3940                     satosin(sa2)->sin_addr.s_addr) {
 3941                         return 1;
 3942                 }
 3943                 if (port && satosin(sa1)->sin_port != satosin(sa2)->sin_port)
 3944                         return 1;
 3945                 break;
 3946         case AF_INET6:
 3947                 if (sa1->sa_len != sizeof(struct sockaddr_in6))
 3948                         return 1;       /*EINVAL*/
 3949                 if (satosin6(sa1)->sin6_scope_id !=
 3950                     satosin6(sa2)->sin6_scope_id) {
 3951                         return 1;
 3952                 }
 3953                 if (!IN6_ARE_ADDR_EQUAL(&satosin6(sa1)->sin6_addr,
 3954                     &satosin6(sa2)->sin6_addr)) {
 3955                         return 1;
 3956                 }
 3957                 if (port &&
 3958                     satosin6(sa1)->sin6_port != satosin6(sa2)->sin6_port) {
 3959                         return 1;
 3960                 }
 3961                 break;
 3962         default:
 3963                 if (bcmp(sa1, sa2, sa1->sa_len) != 0)
 3964                         return 1;
 3965                 break;
 3966         }
 3967 
 3968         return 0;
 3969 #undef satosin
 3970 #undef satosin6
 3971 }
 3972 
 3973 /*
 3974  * compare two buffers with mask.
 3975  * IN:
 3976  *      addr1: source
 3977  *      addr2: object
 3978  *      bits:  Number of bits to compare
 3979  * OUT:
 3980  *      1 : equal
 3981  *      0 : not equal
 3982  */
 3983 static int
 3984 key_bbcmp(const void *a1, const void *a2, u_int bits)
 3985 {
 3986         const unsigned char *p1 = a1;
 3987         const unsigned char *p2 = a2;
 3988 
 3989         /* XXX: This could be considerably faster if we compare a word
 3990          * at a time, but it is complicated on LSB Endian machines */
 3991 
 3992         /* Handle null pointers */
 3993         if (p1 == NULL || p2 == NULL)
 3994                 return (p1 == p2);
 3995 
 3996         while (bits >= 8) {
 3997                 if (*p1++ != *p2++)
 3998                         return 0;
 3999                 bits -= 8;
 4000         }
 4001 
 4002         if (bits > 0) {
 4003                 u_int8_t mask = ~((1<<(8-bits))-1);
 4004                 if ((*p1 & mask) != (*p2 & mask))
 4005                         return 0;
 4006         }
 4007         return 1;       /* Match! */
 4008 }
 4009 
 4010 static void
 4011 key_flush_spd(time_t now)
 4012 {
 4013         static u_int16_t sptree_scangen = 0;
 4014         u_int16_t gen = sptree_scangen++;
 4015         struct secpolicy *sp;
 4016         u_int dir;
 4017 
 4018         /* SPD */
 4019         for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
 4020 restart:
 4021                 SPTREE_LOCK();
 4022                 LIST_FOREACH(sp, &sptree[dir], chain) {
 4023                         if (sp->scangen == gen)         /* previously handled */
 4024                                 continue;
 4025                         sp->scangen = gen;
 4026                         if (sp->state == IPSEC_SPSTATE_DEAD) {
 4027                                 /* NB: clean entries created by key_spdflush */
 4028                                 SPTREE_UNLOCK();
 4029                                 KEY_FREESP(&sp);
 4030                                 goto restart;
 4031                         }
 4032                         if (sp->lifetime == 0 && sp->validtime == 0)
 4033                                 continue;
 4034                         if ((sp->lifetime && now - sp->created > sp->lifetime)
 4035                          || (sp->validtime && now - sp->lastused > sp->validtime)) {
 4036                                 sp->state = IPSEC_SPSTATE_DEAD;
 4037                                 SPTREE_UNLOCK();
 4038                                 key_spdexpire(sp);
 4039                                 KEY_FREESP(&sp);
 4040                                 goto restart;
 4041                         }
 4042                 }
 4043                 SPTREE_UNLOCK();
 4044         }
 4045 }
 4046 
 4047 static void
 4048 key_flush_sad(time_t now)
 4049 {
 4050         struct secashead *sah, *nextsah;
 4051         struct secasvar *sav, *nextsav;
 4052 
 4053         /* SAD */
 4054         SAHTREE_LOCK();
 4055         LIST_FOREACH_SAFE(sah, &sahtree, chain, nextsah) {
 4056                 /* if sah has been dead, then delete it and process next sah. */
 4057                 if (sah->state == SADB_SASTATE_DEAD) {
 4058                         key_delsah(sah);
 4059                         continue;
 4060                 }
 4061 
 4062                 /* if LARVAL entry doesn't become MATURE, delete it. */
 4063                 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_LARVAL], chain, nextsav) {
 4064                         if (now - sav->created > key_larval_lifetime)
 4065                                 KEY_FREESAV(&sav);
 4066                 }
 4067 
 4068                 /*
 4069                  * check MATURE entry to start to send expire message
 4070                  * whether or not.
 4071                  */
 4072                 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_MATURE], chain, nextsav) {
 4073                         /* we don't need to check. */
 4074                         if (sav->lft_s == NULL)
 4075                                 continue;
 4076 
 4077                         /* sanity check */
 4078                         if (sav->lft_c == NULL) {
 4079                                 ipseclog((LOG_DEBUG,"%s: there is no CURRENT "
 4080                                         "time, why?\n", __func__));
 4081                                 continue;
 4082                         }
 4083 
 4084                         /* check SOFT lifetime */
 4085                         if (sav->lft_s->sadb_lifetime_addtime != 0 &&
 4086                             now - sav->created > sav->lft_s->sadb_lifetime_addtime) {
 4087                                 /*
 4088                                  * check SA to be used whether or not.
 4089                                  * when SA hasn't been used, delete it.
 4090                                  */
 4091                                 if (sav->lft_c->sadb_lifetime_usetime == 0) {
 4092                                         key_sa_chgstate(sav, SADB_SASTATE_DEAD);
 4093                                         KEY_FREESAV(&sav);
 4094                                 } else {
 4095                                         key_sa_chgstate(sav, SADB_SASTATE_DYING);
 4096                                         /*
 4097                                          * XXX If we keep to send expire
 4098                                          * message in the status of
 4099                                          * DYING. Do remove below code.
 4100                                          */
 4101                                         key_expire(sav);
 4102                                 }
 4103                         }
 4104                         /* check SOFT lifetime by bytes */
 4105                         /*
 4106                          * XXX I don't know the way to delete this SA
 4107                          * when new SA is installed.  Caution when it's
 4108                          * installed too big lifetime by time.
 4109                          */
 4110                         else if (sav->lft_s->sadb_lifetime_bytes != 0 &&
 4111                             sav->lft_s->sadb_lifetime_bytes < sav->lft_c->sadb_lifetime_bytes) {
 4112 
 4113                                 key_sa_chgstate(sav, SADB_SASTATE_DYING);
 4114                                 /*
 4115                                  * XXX If we keep to send expire
 4116                                  * message in the status of
 4117                                  * DYING. Do remove below code.
 4118                                  */
 4119                                 key_expire(sav);
 4120                         }
 4121                 }
 4122 
 4123                 /* check DYING entry to change status to DEAD. */
 4124                 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_DYING], chain, nextsav) {
 4125                         /* we don't need to check. */
 4126                         if (sav->lft_h == NULL)
 4127                                 continue;
 4128 
 4129                         /* sanity check */
 4130                         if (sav->lft_c == NULL) {
 4131                                 ipseclog((LOG_DEBUG, "%s: there is no CURRENT "
 4132                                         "time, why?\n", __func__));
 4133                                 continue;
 4134                         }
 4135 
 4136                         if (sav->lft_h->sadb_lifetime_addtime != 0 &&
 4137                             now - sav->created > sav->lft_h->sadb_lifetime_addtime) {
 4138                                 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
 4139                                 KEY_FREESAV(&sav);
 4140                         }
 4141 #if 0   /* XXX Should we keep to send expire message until HARD lifetime ? */
 4142                         else if (sav->lft_s != NULL
 4143                               && sav->lft_s->sadb_lifetime_addtime != 0
 4144                               && now - sav->created > sav->lft_s->sadb_lifetime_addtime) {
 4145                                 /*
 4146                                  * XXX: should be checked to be
 4147                                  * installed the valid SA.
 4148                                  */
 4149 
 4150                                 /*
 4151                                  * If there is no SA then sending
 4152                                  * expire message.
 4153                                  */
 4154                                 key_expire(sav);
 4155                         }
 4156 #endif
 4157                         /* check HARD lifetime by bytes */
 4158                         else if (sav->lft_h->sadb_lifetime_bytes != 0 &&
 4159                             sav->lft_h->sadb_lifetime_bytes < sav->lft_c->sadb_lifetime_bytes) {
 4160                                 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
 4161                                 KEY_FREESAV(&sav);
 4162                         }
 4163                 }
 4164 
 4165                 /* delete entry in DEAD */
 4166                 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_DEAD], chain, nextsav) {
 4167                         /* sanity check */
 4168                         if (sav->state != SADB_SASTATE_DEAD) {
 4169                                 ipseclog((LOG_DEBUG, "%s: invalid sav->state "
 4170                                         "(queue: %d SA: %d): kill it anyway\n",
 4171                                         __func__,
 4172                                         SADB_SASTATE_DEAD, sav->state));
 4173                         }
 4174                         /*
 4175                          * do not call key_freesav() here.
 4176                          * sav should already be freed, and sav->refcnt
 4177                          * shows other references to sav
 4178                          * (such as from SPD).
 4179                          */
 4180                 }
 4181         }
 4182         SAHTREE_UNLOCK();
 4183 }
 4184 
 4185 static void
 4186 key_flush_acq(time_t now)
 4187 {
 4188         struct secacq *acq, *nextacq;
 4189 
 4190         /* ACQ tree */
 4191         ACQ_LOCK();
 4192         for (acq = LIST_FIRST(&acqtree); acq != NULL; acq = nextacq) {
 4193                 nextacq = LIST_NEXT(acq, chain);
 4194                 if (now - acq->created > key_blockacq_lifetime
 4195                  && __LIST_CHAINED(acq)) {
 4196                         LIST_REMOVE(acq, chain);
 4197                         free(acq, M_IPSEC_SAQ);
 4198                 }
 4199         }
 4200         ACQ_UNLOCK();
 4201 }
 4202 
 4203 static void
 4204 key_flush_spacq(time_t now)
 4205 {
 4206         struct secspacq *acq, *nextacq;
 4207 
 4208         /* SP ACQ tree */
 4209         SPACQ_LOCK();
 4210         for (acq = LIST_FIRST(&spacqtree); acq != NULL; acq = nextacq) {
 4211                 nextacq = LIST_NEXT(acq, chain);
 4212                 if (now - acq->created > key_blockacq_lifetime
 4213                  && __LIST_CHAINED(acq)) {
 4214                         LIST_REMOVE(acq, chain);
 4215                         free(acq, M_IPSEC_SAQ);
 4216                 }
 4217         }
 4218         SPACQ_UNLOCK();
 4219 }
 4220 
 4221 /*
 4222  * time handler.
 4223  * scanning SPD and SAD to check status for each entries,
 4224  * and do to remove or to expire.
 4225  * XXX: year 2038 problem may remain.
 4226  */
 4227 void
 4228 key_timehandler(void)
 4229 {
 4230         time_t now = time_second;
 4231 
 4232         key_flush_spd(now);
 4233         key_flush_sad(now);
 4234         key_flush_acq(now);
 4235         key_flush_spacq(now);
 4236 
 4237 #ifndef IPSEC_DEBUG2
 4238         /* do exchange to tick time !! */
 4239         (void)timeout((void *)key_timehandler, (void *)0, hz);
 4240 #endif /* IPSEC_DEBUG2 */
 4241 }
 4242 
 4243 u_long
 4244 key_random()
 4245 {
 4246         u_long value;
 4247 
 4248         key_randomfill(&value, sizeof(value));
 4249         return value;
 4250 }
 4251 
 4252 void
 4253 key_randomfill(p, l)
 4254         void *p;
 4255         size_t l;
 4256 {
 4257         size_t n;
 4258         u_long v;
 4259         static int warn = 1;
 4260 
 4261         n = 0;
 4262         n = (size_t)read_random(p, (u_int)l);
 4263         /* last resort */
 4264         while (n < l) {
 4265                 v = random();
 4266                 bcopy(&v, (u_int8_t *)p + n,
 4267                     l - n < sizeof(v) ? l - n : sizeof(v));
 4268                 n += sizeof(v);
 4269 
 4270                 if (warn) {
 4271                         printf("WARNING: pseudo-random number generator "
 4272                             "used for IPsec processing\n");
 4273                         warn = 0;
 4274                 }
 4275         }
 4276 }
 4277 
 4278 /*
 4279  * map SADB_SATYPE_* to IPPROTO_*.
 4280  * if satype == SADB_SATYPE then satype is mapped to ~0.
 4281  * OUT:
 4282  *      0: invalid satype.
 4283  */
 4284 static u_int16_t
 4285 key_satype2proto(satype)
 4286         u_int8_t satype;
 4287 {
 4288         switch (satype) {
 4289         case SADB_SATYPE_UNSPEC:
 4290                 return IPSEC_PROTO_ANY;
 4291         case SADB_SATYPE_AH:
 4292                 return IPPROTO_AH;
 4293         case SADB_SATYPE_ESP:
 4294                 return IPPROTO_ESP;
 4295         case SADB_X_SATYPE_IPCOMP:
 4296                 return IPPROTO_IPCOMP;
 4297         case SADB_X_SATYPE_TCPSIGNATURE:
 4298                 return IPPROTO_TCP;
 4299         default:
 4300                 return 0;
 4301         }
 4302         /* NOTREACHED */
 4303 }
 4304 
 4305 /*
 4306  * map IPPROTO_* to SADB_SATYPE_*
 4307  * OUT:
 4308  *      0: invalid protocol type.
 4309  */
 4310 static u_int8_t
 4311 key_proto2satype(proto)
 4312         u_int16_t proto;
 4313 {
 4314         switch (proto) {
 4315         case IPPROTO_AH:
 4316                 return SADB_SATYPE_AH;
 4317         case IPPROTO_ESP:
 4318                 return SADB_SATYPE_ESP;
 4319         case IPPROTO_IPCOMP:
 4320                 return SADB_X_SATYPE_IPCOMP;
 4321         case IPPROTO_TCP:
 4322                 return SADB_X_SATYPE_TCPSIGNATURE;
 4323         default:
 4324                 return 0;
 4325         }
 4326         /* NOTREACHED */
 4327 }
 4328 
 4329 /* %%% PF_KEY */
 4330 /*
 4331  * SADB_GETSPI processing is to receive
 4332  *      <base, (SA2), src address, dst address, (SPI range)>
 4333  * from the IKMPd, to assign a unique spi value, to hang on the INBOUND
 4334  * tree with the status of LARVAL, and send
 4335  *      <base, SA(*), address(SD)>
 4336  * to the IKMPd.
 4337  *
 4338  * IN:  mhp: pointer to the pointer to each header.
 4339  * OUT: NULL if fail.
 4340  *      other if success, return pointer to the message to send.
 4341  */
 4342 static int
 4343 key_getspi(so, m, mhp)
 4344         struct socket *so;
 4345         struct mbuf *m;
 4346         const struct sadb_msghdr *mhp;
 4347 {
 4348         struct sadb_address *src0, *dst0;
 4349         struct secasindex saidx;
 4350         struct secashead *newsah;
 4351         struct secasvar *newsav;
 4352         u_int8_t proto;
 4353         u_int32_t spi;
 4354         u_int8_t mode;
 4355         u_int32_t reqid;
 4356         int error;
 4357 
 4358         IPSEC_ASSERT(so != NULL, ("null socket"));
 4359         IPSEC_ASSERT(m != NULL, ("null mbuf"));
 4360         IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
 4361         IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
 4362 
 4363         if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
 4364             mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
 4365                 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
 4366                         __func__));
 4367                 return key_senderror(so, m, EINVAL);
 4368         }
 4369         if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
 4370             mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
 4371                 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
 4372                         __func__));
 4373                 return key_senderror(so, m, EINVAL);
 4374         }
 4375         if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
 4376                 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
 4377                 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
 4378         } else {
 4379                 mode = IPSEC_MODE_ANY;
 4380                 reqid = 0;
 4381         }
 4382 
 4383         src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
 4384         dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
 4385 
 4386         /* map satype to proto */
 4387         if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
 4388                 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
 4389                         __func__));
 4390                 return key_senderror(so, m, EINVAL);
 4391         }
 4392 
 4393         /* make sure if port number is zero. */
 4394         switch (((struct sockaddr *)(src0 + 1))->sa_family) {
 4395         case AF_INET:
 4396                 if (((struct sockaddr *)(src0 + 1))->sa_len !=
 4397                     sizeof(struct sockaddr_in))
 4398                         return key_senderror(so, m, EINVAL);
 4399                 ((struct sockaddr_in *)(src0 + 1))->sin_port = 0;
 4400                 break;
 4401         case AF_INET6:
 4402                 if (((struct sockaddr *)(src0 + 1))->sa_len !=
 4403                     sizeof(struct sockaddr_in6))
 4404                         return key_senderror(so, m, EINVAL);
 4405                 ((struct sockaddr_in6 *)(src0 + 1))->sin6_port = 0;
 4406                 break;
 4407         default:
 4408                 ; /*???*/
 4409         }
 4410         switch (((struct sockaddr *)(dst0 + 1))->sa_family) {
 4411         case AF_INET:
 4412                 if (((struct sockaddr *)(dst0 + 1))->sa_len !=
 4413                     sizeof(struct sockaddr_in))
 4414                         return key_senderror(so, m, EINVAL);
 4415                 ((struct sockaddr_in *)(dst0 + 1))->sin_port = 0;
 4416                 break;
 4417         case AF_INET6:
 4418                 if (((struct sockaddr *)(dst0 + 1))->sa_len !=
 4419                     sizeof(struct sockaddr_in6))
 4420                         return key_senderror(so, m, EINVAL);
 4421                 ((struct sockaddr_in6 *)(dst0 + 1))->sin6_port = 0;
 4422                 break;
 4423         default:
 4424                 ; /*???*/
 4425         }
 4426 
 4427         /* XXX boundary check against sa_len */
 4428         KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx);
 4429 
 4430         /* SPI allocation */
 4431         spi = key_do_getnewspi((struct sadb_spirange *)mhp->ext[SADB_EXT_SPIRANGE],
 4432                                &saidx);
 4433         if (spi == 0)
 4434                 return key_senderror(so, m, EINVAL);
 4435 
 4436         /* get a SA index */
 4437         if ((newsah = key_getsah(&saidx)) == NULL) {
 4438                 /* create a new SA index */
 4439                 if ((newsah = key_newsah(&saidx)) == NULL) {
 4440                         ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__));
 4441                         return key_senderror(so, m, ENOBUFS);
 4442                 }
 4443         }
 4444 
 4445         /* get a new SA */
 4446         /* XXX rewrite */
 4447         newsav = KEY_NEWSAV(m, mhp, newsah, &error);
 4448         if (newsav == NULL) {
 4449                 /* XXX don't free new SA index allocated in above. */
 4450                 return key_senderror(so, m, error);
 4451         }
 4452 
 4453         /* set spi */
 4454         newsav->spi = htonl(spi);
 4455 
 4456         /* delete the entry in acqtree */
 4457         if (mhp->msg->sadb_msg_seq != 0) {
 4458                 struct secacq *acq;
 4459                 if ((acq = key_getacqbyseq(mhp->msg->sadb_msg_seq)) != NULL) {
 4460                         /* reset counter in order to deletion by timehandler. */
 4461                         acq->created = time_second;
 4462                         acq->count = 0;
 4463                 }
 4464         }
 4465 
 4466     {
 4467         struct mbuf *n, *nn;
 4468         struct sadb_sa *m_sa;
 4469         struct sadb_msg *newmsg;
 4470         int off, len;
 4471 
 4472         /* create new sadb_msg to reply. */
 4473         len = PFKEY_ALIGN8(sizeof(struct sadb_msg)) +
 4474             PFKEY_ALIGN8(sizeof(struct sadb_sa));
 4475         if (len > MCLBYTES)
 4476                 return key_senderror(so, m, ENOBUFS);
 4477 
 4478         MGETHDR(n, M_DONTWAIT, MT_DATA);
 4479         if (len > MHLEN) {
 4480                 MCLGET(n, M_DONTWAIT);
 4481                 if ((n->m_flags & M_EXT) == 0) {
 4482                         m_freem(n);
 4483                         n = NULL;
 4484                 }
 4485         }
 4486         if (!n)
 4487                 return key_senderror(so, m, ENOBUFS);
 4488 
 4489         n->m_len = len;
 4490         n->m_next = NULL;
 4491         off = 0;
 4492 
 4493         m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off);
 4494         off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
 4495 
 4496         m_sa = (struct sadb_sa *)(mtod(n, caddr_t) + off);
 4497         m_sa->sadb_sa_len = PFKEY_UNIT64(sizeof(struct sadb_sa));
 4498         m_sa->sadb_sa_exttype = SADB_EXT_SA;
 4499         m_sa->sadb_sa_spi = htonl(spi);
 4500         off += PFKEY_ALIGN8(sizeof(struct sadb_sa));
 4501 
 4502         IPSEC_ASSERT(off == len,
 4503                 ("length inconsistency (off %u len %u)", off, len));
 4504 
 4505         n->m_next = key_gather_mbuf(m, mhp, 0, 2, SADB_EXT_ADDRESS_SRC,
 4506             SADB_EXT_ADDRESS_DST);
 4507         if (!n->m_next) {
 4508                 m_freem(n);
 4509                 return key_senderror(so, m, ENOBUFS);
 4510         }
 4511 
 4512         if (n->m_len < sizeof(struct sadb_msg)) {
 4513                 n = m_pullup(n, sizeof(struct sadb_msg));
 4514                 if (n == NULL)
 4515                         return key_sendup_mbuf(so, m, KEY_SENDUP_ONE);
 4516         }
 4517 
 4518         n->m_pkthdr.len = 0;
 4519         for (nn = n; nn; nn = nn->m_next)
 4520                 n->m_pkthdr.len += nn->m_len;
 4521 
 4522         newmsg = mtod(n, struct sadb_msg *);
 4523         newmsg->sadb_msg_seq = newsav->seq;
 4524         newmsg->sadb_msg_errno = 0;
 4525         newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
 4526 
 4527         m_freem(m);
 4528         return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
 4529     }
 4530 }
 4531 
 4532 /*
 4533  * allocating new SPI
 4534  * called by key_getspi().
 4535  * OUT:
 4536  *      0:      failure.
 4537  *      others: success.
 4538  */
 4539 static u_int32_t
 4540 key_do_getnewspi(spirange, saidx)
 4541         struct sadb_spirange *spirange;
 4542         struct secasindex *saidx;
 4543 {
 4544         u_int32_t newspi;
 4545         u_int32_t min, max;
 4546         int count = key_spi_trycnt;
 4547 
 4548         /* set spi range to allocate */
 4549         if (spirange != NULL) {
 4550                 min = spirange->sadb_spirange_min;
 4551                 max = spirange->sadb_spirange_max;
 4552         } else {
 4553                 min = key_spi_minval;
 4554                 max = key_spi_maxval;
 4555         }
 4556         /* IPCOMP needs 2-byte SPI */
 4557         if (saidx->proto == IPPROTO_IPCOMP) {
 4558                 u_int32_t t;
 4559                 if (min >= 0x10000)
 4560                         min = 0xffff;
 4561                 if (max >= 0x10000)
 4562                         max = 0xffff;
 4563                 if (min > max) {
 4564                         t = min; min = max; max = t;
 4565                 }
 4566         }
 4567 
 4568         if (min == max) {
 4569                 if (key_checkspidup(saidx, min) != NULL) {
 4570                         ipseclog((LOG_DEBUG, "%s: SPI %u exists already.\n",
 4571                                 __func__, min));
 4572                         return 0;
 4573                 }
 4574 
 4575                 count--; /* taking one cost. */
 4576                 newspi = min;
 4577 
 4578         } else {
 4579 
 4580                 /* init SPI */
 4581                 newspi = 0;
 4582 
 4583                 /* when requesting to allocate spi ranged */
 4584                 while (count--) {
 4585                         /* generate pseudo-random SPI value ranged. */
 4586                         newspi = min + (key_random() % (max - min + 1));
 4587 
 4588                         if (key_checkspidup(saidx, newspi) == NULL)
 4589                                 break;
 4590                 }
 4591 
 4592                 if (count == 0 || newspi == 0) {
 4593                         ipseclog((LOG_DEBUG, "%s: to allocate spi is failed.\n",
 4594                                 __func__));
 4595                         return 0;
 4596                 }
 4597         }
 4598 
 4599         /* statistics */
 4600         keystat.getspi_count =
 4601                 (keystat.getspi_count + key_spi_trycnt - count) / 2;
 4602 
 4603         return newspi;
 4604 }
 4605 
 4606 /*
 4607  * SADB_UPDATE processing
 4608  * receive
 4609  *   <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
 4610  *       key(AE), (identity(SD),) (sensitivity)>
 4611  * from the ikmpd, and update a secasvar entry whose status is SADB_SASTATE_LARVAL.
 4612  * and send
 4613  *   <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
 4614  *       (identity(SD),) (sensitivity)>
 4615  * to the ikmpd.
 4616  *
 4617  * m will always be freed.
 4618  */
 4619 static int
 4620 key_update(so, m, mhp)
 4621         struct socket *so;
 4622         struct mbuf *m;
 4623         const struct sadb_msghdr *mhp;
 4624 {
 4625         struct sadb_sa *sa0;
 4626         struct sadb_address *src0, *dst0;
 4627         struct secasindex saidx;
 4628         struct secashead *sah;
 4629         struct secasvar *sav;
 4630         u_int16_t proto;
 4631         u_int8_t mode;
 4632         u_int32_t reqid;
 4633         int error;
 4634 
 4635         IPSEC_ASSERT(so != NULL, ("null socket"));
 4636         IPSEC_ASSERT(m != NULL, ("null mbuf"));
 4637         IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
 4638         IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
 4639 
 4640         /* map satype to proto */
 4641         if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
 4642                 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
 4643                         __func__));
 4644                 return key_senderror(so, m, EINVAL);
 4645         }
 4646 
 4647         if (mhp->ext[SADB_EXT_SA] == NULL ||
 4648             mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
 4649             mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
 4650             (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP &&
 4651              mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) ||
 4652             (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH &&
 4653              mhp->ext[SADB_EXT_KEY_AUTH] == NULL) ||
 4654             (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL &&
 4655              mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) ||
 4656             (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL &&
 4657              mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) {
 4658                 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
 4659                         __func__));
 4660                 return key_senderror(so, m, EINVAL);
 4661         }
 4662         if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
 4663             mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
 4664             mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
 4665                 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
 4666                         __func__));
 4667                 return key_senderror(so, m, EINVAL);
 4668         }
 4669         if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
 4670                 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
 4671                 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
 4672         } else {
 4673                 mode = IPSEC_MODE_ANY;
 4674                 reqid = 0;
 4675         }
 4676         /* XXX boundary checking for other extensions */
 4677 
 4678         sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
 4679         src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
 4680         dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
 4681 
 4682         /* XXX boundary check against sa_len */
 4683         KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx);
 4684 
 4685         /* get a SA header */
 4686         if ((sah = key_getsah(&saidx)) == NULL) {
 4687                 ipseclog((LOG_DEBUG, "%s: no SA index found.\n", __func__));
 4688                 return key_senderror(so, m, ENOENT);
 4689         }
 4690 
 4691         /* set spidx if there */
 4692         /* XXX rewrite */
 4693         error = key_setident(sah, m, mhp);
 4694         if (error)
 4695                 return key_senderror(so, m, error);
 4696 
 4697         /* find a SA with sequence number. */
 4698 #ifdef IPSEC_DOSEQCHECK
 4699         if (mhp->msg->sadb_msg_seq != 0
 4700          && (sav = key_getsavbyseq(sah, mhp->msg->sadb_msg_seq)) == NULL) {
 4701                 ipseclog((LOG_DEBUG, "%s: no larval SA with sequence %u "
 4702                         "exists.\n", __func__, mhp->msg->sadb_msg_seq));
 4703                 return key_senderror(so, m, ENOENT);
 4704         }
 4705 #else
 4706         SAHTREE_LOCK();
 4707         sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
 4708         SAHTREE_UNLOCK();
 4709         if (sav == NULL) {
 4710                 ipseclog((LOG_DEBUG, "%s: no such a SA found (spi:%u)\n",
 4711                         __func__, (u_int32_t)ntohl(sa0->sadb_sa_spi)));
 4712                 return key_senderror(so, m, EINVAL);
 4713         }
 4714 #endif
 4715 
 4716         /* validity check */
 4717         if (sav->sah->saidx.proto != proto) {
 4718                 ipseclog((LOG_DEBUG, "%s: protocol mismatched "
 4719                         "(DB=%u param=%u)\n", __func__,
 4720                         sav->sah->saidx.proto, proto));
 4721                 return key_senderror(so, m, EINVAL);
 4722         }
 4723 #ifdef IPSEC_DOSEQCHECK
 4724         if (sav->spi != sa0->sadb_sa_spi) {
 4725                 ipseclog((LOG_DEBUG, "%s: SPI mismatched (DB:%u param:%u)\n",
 4726                     __func__,
 4727                     (u_int32_t)ntohl(sav->spi),
 4728                     (u_int32_t)ntohl(sa0->sadb_sa_spi)));
 4729                 return key_senderror(so, m, EINVAL);
 4730         }
 4731 #endif
 4732         if (sav->pid != mhp->msg->sadb_msg_pid) {
 4733                 ipseclog((LOG_DEBUG, "%s: pid mismatched (DB:%u param:%u)\n",
 4734                     __func__, sav->pid, mhp->msg->sadb_msg_pid));
 4735                 return key_senderror(so, m, EINVAL);
 4736         }
 4737 
 4738         /* copy sav values */
 4739         error = key_setsaval(sav, m, mhp);
 4740         if (error) {
 4741                 KEY_FREESAV(&sav);
 4742                 return key_senderror(so, m, error);
 4743         }
 4744 
 4745         /* check SA values to be mature. */
 4746         if ((mhp->msg->sadb_msg_errno = key_mature(sav)) != 0) {
 4747                 KEY_FREESAV(&sav);
 4748                 return key_senderror(so, m, 0);
 4749         }
 4750 
 4751     {
 4752         struct mbuf *n;
 4753 
 4754         /* set msg buf from mhp */
 4755         n = key_getmsgbuf_x1(m, mhp);
 4756         if (n == NULL) {
 4757                 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
 4758                 return key_senderror(so, m, ENOBUFS);
 4759         }
 4760 
 4761         m_freem(m);
 4762         return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
 4763     }
 4764 }
 4765 
 4766 /*
 4767  * search SAD with sequence for a SA which state is SADB_SASTATE_LARVAL.
 4768  * only called by key_update().
 4769  * OUT:
 4770  *      NULL    : not found
 4771  *      others  : found, pointer to a SA.
 4772  */
 4773 #ifdef IPSEC_DOSEQCHECK
 4774 static struct secasvar *
 4775 key_getsavbyseq(sah, seq)
 4776         struct secashead *sah;
 4777         u_int32_t seq;
 4778 {
 4779         struct secasvar *sav;
 4780         u_int state;
 4781 
 4782         state = SADB_SASTATE_LARVAL;
 4783 
 4784         /* search SAD with sequence number ? */
 4785         LIST_FOREACH(sav, &sah->savtree[state], chain) {
 4786 
 4787                 KEY_CHKSASTATE(state, sav->state, __func__);
 4788 
 4789                 if (sav->seq == seq) {
 4790                         sa_addref(sav);
 4791                         KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
 4792                                 printf("DP %s cause refcnt++:%d SA:%p\n",
 4793                                         __func__, sav->refcnt, sav));
 4794                         return sav;
 4795                 }
 4796         }
 4797 
 4798         return NULL;
 4799 }
 4800 #endif
 4801 
 4802 /*
 4803  * SADB_ADD processing
 4804  * add an entry to SA database, when received
 4805  *   <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
 4806  *       key(AE), (identity(SD),) (sensitivity)>
 4807  * from the ikmpd,
 4808  * and send
 4809  *   <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
 4810  *       (identity(SD),) (sensitivity)>
 4811  * to the ikmpd.
 4812  *
 4813  * IGNORE identity and sensitivity messages.
 4814  *
 4815  * m will always be freed.
 4816  */
 4817 static int
 4818 key_add(so, m, mhp)
 4819         struct socket *so;
 4820         struct mbuf *m;
 4821         const struct sadb_msghdr *mhp;
 4822 {
 4823         struct sadb_sa *sa0;
 4824         struct sadb_address *src0, *dst0;
 4825         struct secasindex saidx;
 4826         struct secashead *newsah;
 4827         struct secasvar *newsav;
 4828         u_int16_t proto;
 4829         u_int8_t mode;
 4830         u_int32_t reqid;
 4831         int error;
 4832 
 4833         IPSEC_ASSERT(so != NULL, ("null socket"));
 4834         IPSEC_ASSERT(m != NULL, ("null mbuf"));
 4835         IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
 4836         IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
 4837 
 4838         /* map satype to proto */
 4839         if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
 4840                 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
 4841                         __func__));
 4842                 return key_senderror(so, m, EINVAL);
 4843         }
 4844 
 4845         if (mhp->ext[SADB_EXT_SA] == NULL ||
 4846             mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
 4847             mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
 4848             (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP &&
 4849              mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) ||
 4850             (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH &&
 4851              mhp->ext[SADB_EXT_KEY_AUTH] == NULL) ||
 4852             (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL &&
 4853              mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) ||
 4854             (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL &&
 4855              mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) {
 4856                 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
 4857                         __func__));
 4858                 return key_senderror(so, m, EINVAL);
 4859         }
 4860         if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
 4861             mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
 4862             mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
 4863                 /* XXX need more */
 4864                 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
 4865                         __func__));
 4866                 return key_senderror(so, m, EINVAL);
 4867         }
 4868         if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
 4869                 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
 4870                 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
 4871         } else {
 4872                 mode = IPSEC_MODE_ANY;
 4873                 reqid = 0;
 4874         }
 4875 
 4876         sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
 4877         src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
 4878         dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
 4879 
 4880         /* XXX boundary check against sa_len */
 4881         KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx);
 4882 
 4883         /* get a SA header */
 4884         if ((newsah = key_getsah(&saidx)) == NULL) {
 4885                 /* create a new SA header */
 4886                 if ((newsah = key_newsah(&saidx)) == NULL) {
 4887                         ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__));
 4888                         return key_senderror(so, m, ENOBUFS);
 4889                 }
 4890         }
 4891 
 4892         /* set spidx if there */
 4893         /* XXX rewrite */
 4894         error = key_setident(newsah, m, mhp);
 4895         if (error) {
 4896                 return key_senderror(so, m, error);
 4897         }
 4898 
 4899         /* create new SA entry. */
 4900         /* We can create new SA only if SPI is differenct. */
 4901         SAHTREE_LOCK();
 4902         newsav = key_getsavbyspi(newsah, sa0->sadb_sa_spi);
 4903         SAHTREE_UNLOCK();
 4904         if (newsav != NULL) {
 4905                 ipseclog((LOG_DEBUG, "%s: SA already exists.\n", __func__));
 4906                 return key_senderror(so, m, EEXIST);
 4907         }
 4908         newsav = KEY_NEWSAV(m, mhp, newsah, &error);
 4909         if (newsav == NULL) {
 4910                 return key_senderror(so, m, error);
 4911         }
 4912 
 4913         /* check SA values to be mature. */
 4914         if ((error = key_mature(newsav)) != 0) {
 4915                 KEY_FREESAV(&newsav);
 4916                 return key_senderror(so, m, error);
 4917         }
 4918 
 4919         /*
 4920          * don't call key_freesav() here, as we would like to keep the SA
 4921          * in the database on success.
 4922          */
 4923 
 4924     {
 4925         struct mbuf *n;
 4926 
 4927         /* set msg buf from mhp */
 4928         n = key_getmsgbuf_x1(m, mhp);
 4929         if (n == NULL) {
 4930                 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
 4931                 return key_senderror(so, m, ENOBUFS);
 4932         }
 4933 
 4934         m_freem(m);
 4935         return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
 4936     }
 4937 }
 4938 
 4939 /* m is retained */
 4940 static int
 4941 key_setident(sah, m, mhp)
 4942         struct secashead *sah;
 4943         struct mbuf *m;
 4944         const struct sadb_msghdr *mhp;
 4945 {
 4946         const struct sadb_ident *idsrc, *iddst;
 4947         int idsrclen, iddstlen;
 4948 
 4949         IPSEC_ASSERT(sah != NULL, ("null secashead"));
 4950         IPSEC_ASSERT(m != NULL, ("null mbuf"));
 4951         IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
 4952         IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
 4953 
 4954         /* don't make buffer if not there */
 4955         if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL &&
 4956             mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) {
 4957                 sah->idents = NULL;
 4958                 sah->identd = NULL;
 4959                 return 0;
 4960         }
 4961         
 4962         if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL ||
 4963             mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) {
 4964                 ipseclog((LOG_DEBUG, "%s: invalid identity.\n", __func__));
 4965                 return EINVAL;
 4966         }
 4967 
 4968         idsrc = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_SRC];
 4969         iddst = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_DST];
 4970         idsrclen = mhp->extlen[SADB_EXT_IDENTITY_SRC];
 4971         iddstlen = mhp->extlen[SADB_EXT_IDENTITY_DST];
 4972 
 4973         /* validity check */
 4974         if (idsrc->sadb_ident_type != iddst->sadb_ident_type) {
 4975                 ipseclog((LOG_DEBUG, "%s: ident type mismatch.\n", __func__));
 4976                 return EINVAL;
 4977         }
 4978 
 4979         switch (idsrc->sadb_ident_type) {
 4980         case SADB_IDENTTYPE_PREFIX:
 4981         case SADB_IDENTTYPE_FQDN:
 4982         case SADB_IDENTTYPE_USERFQDN:
 4983         default:
 4984                 /* XXX do nothing */
 4985                 sah->idents = NULL;
 4986                 sah->identd = NULL;
 4987                 return 0;
 4988         }
 4989 
 4990         /* make structure */
 4991         sah->idents = malloc(idsrclen, M_IPSEC_MISC, M_NOWAIT);
 4992         if (sah->idents == NULL) {
 4993                 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
 4994                 return ENOBUFS;
 4995         }
 4996         sah->identd = malloc(iddstlen, M_IPSEC_MISC, M_NOWAIT);
 4997         if (sah->identd == NULL) {
 4998                 free(sah->idents, M_IPSEC_MISC);
 4999                 sah->idents = NULL;
 5000                 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
 5001                 return ENOBUFS;
 5002         }
 5003         bcopy(idsrc, sah->idents, idsrclen);
 5004         bcopy(iddst, sah->identd, iddstlen);
 5005 
 5006         return 0;
 5007 }
 5008 
 5009 /*
 5010  * m will not be freed on return.
 5011  * it is caller's responsibility to free the result. 
 5012  */
 5013 static struct mbuf *
 5014 key_getmsgbuf_x1(m, mhp)
 5015         struct mbuf *m;
 5016         const struct sadb_msghdr *mhp;
 5017 {
 5018         struct mbuf *n;
 5019 
 5020         IPSEC_ASSERT(m != NULL, ("null mbuf"));
 5021         IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
 5022         IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
 5023 
 5024         /* create new sadb_msg to reply. */
 5025         n = key_gather_mbuf(m, mhp, 1, 9, SADB_EXT_RESERVED,
 5026             SADB_EXT_SA, SADB_X_EXT_SA2,
 5027             SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST,
 5028             SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT,
 5029             SADB_EXT_IDENTITY_SRC, SADB_EXT_IDENTITY_DST);
 5030         if (!n)
 5031                 return NULL;
 5032 
 5033         if (n->m_len < sizeof(struct sadb_msg)) {
 5034                 n = m_pullup(n, sizeof(struct sadb_msg));
 5035                 if (n == NULL)
 5036                         return NULL;
 5037         }
 5038         mtod(n, struct sadb_msg *)->sadb_msg_errno = 0;
 5039         mtod(n, struct sadb_msg *)->sadb_msg_len =
 5040             PFKEY_UNIT64(n->m_pkthdr.len);
 5041 
 5042         return n;
 5043 }
 5044 
 5045 static int key_delete_all __P((struct socket *, struct mbuf *,
 5046         const struct sadb_msghdr *, u_int16_t));
 5047 
 5048 /*
 5049  * SADB_DELETE processing
 5050  * receive
 5051  *   <base, SA(*), address(SD)>
 5052  * from the ikmpd, and set SADB_SASTATE_DEAD,
 5053  * and send,
 5054  *   <base, SA(*), address(SD)>
 5055  * to the ikmpd.
 5056  *
 5057  * m will always be freed.
 5058  */
 5059 static int
 5060 key_delete(so, m, mhp)
 5061         struct socket *so;
 5062         struct mbuf *m;
 5063         const struct sadb_msghdr *mhp;
 5064 {
 5065         struct sadb_sa *sa0;
 5066         struct sadb_address *src0, *dst0;
 5067         struct secasindex saidx;
 5068         struct secashead *sah;
 5069         struct secasvar *sav = NULL;
 5070         u_int16_t proto;
 5071 
 5072         IPSEC_ASSERT(so != NULL, ("null socket"));
 5073         IPSEC_ASSERT(m != NULL, ("null mbuf"));
 5074         IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
 5075         IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
 5076 
 5077         /* map satype to proto */
 5078         if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
 5079                 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
 5080                         __func__));
 5081                 return key_senderror(so, m, EINVAL);
 5082         }
 5083 
 5084         if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
 5085             mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
 5086                 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
 5087                         __func__));
 5088                 return key_senderror(so, m, EINVAL);
 5089         }
 5090 
 5091         if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
 5092             mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
 5093                 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
 5094                         __func__));
 5095                 return key_senderror(so, m, EINVAL);
 5096         }
 5097 
 5098         if (mhp->ext[SADB_EXT_SA] == NULL) {
 5099                 /*
 5100                  * Caller wants us to delete all non-LARVAL SAs
 5101                  * that match the src/dst.  This is used during
 5102                  * IKE INITIAL-CONTACT.
 5103                  */
 5104                 ipseclog((LOG_DEBUG, "%s: doing delete all.\n", __func__));
 5105                 return key_delete_all(so, m, mhp, proto);
 5106         } else if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa)) {
 5107                 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
 5108                         __func__));
 5109                 return key_senderror(so, m, EINVAL);
 5110         }
 5111 
 5112         sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
 5113         src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
 5114         dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
 5115 
 5116         /* XXX boundary check against sa_len */
 5117         KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx);
 5118 
 5119         /* get a SA header */
 5120         SAHTREE_LOCK();
 5121         LIST_FOREACH(sah, &sahtree, chain) {
 5122                 if (sah->state == SADB_SASTATE_DEAD)
 5123                         continue;
 5124                 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0)
 5125                         continue;
 5126 
 5127                 /* get a SA with SPI. */
 5128                 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
 5129                 if (sav)
 5130                         break;
 5131         }
 5132         if (sah == NULL) {
 5133                 SAHTREE_UNLOCK();
 5134                 ipseclog((LOG_DEBUG, "%s: no SA found.\n", __func__));
 5135                 return key_senderror(so, m, ENOENT);
 5136         }
 5137 
 5138         key_sa_chgstate(sav, SADB_SASTATE_DEAD);
 5139         SAHTREE_UNLOCK();
 5140         KEY_FREESAV(&sav);
 5141 
 5142     {
 5143         struct mbuf *n;
 5144         struct sadb_msg *newmsg;
 5145 
 5146         /* create new sadb_msg to reply. */
 5147         n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED,
 5148             SADB_EXT_SA, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
 5149         if (!n)
 5150                 return key_senderror(so, m, ENOBUFS);
 5151 
 5152         if (n->m_len < sizeof(struct sadb_msg)) {
 5153                 n = m_pullup(n, sizeof(struct sadb_msg));
 5154                 if (n == NULL)
 5155                         return key_senderror(so, m, ENOBUFS);
 5156         }
 5157         newmsg = mtod(n, struct sadb_msg *);
 5158         newmsg->sadb_msg_errno = 0;
 5159         newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
 5160 
 5161         m_freem(m);
 5162         return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
 5163     }
 5164 }
 5165 
 5166 /*
 5167  * delete all SAs for src/dst.  Called from key_delete().
 5168  */
 5169 static int
 5170 key_delete_all(so, m, mhp, proto)
 5171         struct socket *so;
 5172         struct mbuf *m;
 5173         const struct sadb_msghdr *mhp;
 5174         u_int16_t proto;
 5175 {
 5176         struct sadb_address *src0, *dst0;
 5177         struct secasindex saidx;
 5178         struct secashead *sah;
 5179         struct secasvar *sav, *nextsav;
 5180         u_int stateidx, state;
 5181 
 5182         src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
 5183         dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
 5184 
 5185         /* XXX boundary check against sa_len */
 5186         KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx);
 5187 
 5188         SAHTREE_LOCK();
 5189         LIST_FOREACH(sah, &sahtree, chain) {
 5190                 if (sah->state == SADB_SASTATE_DEAD)
 5191                         continue;
 5192                 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0)
 5193                         continue;
 5194 
 5195                 /* Delete all non-LARVAL SAs. */
 5196                 for (stateidx = 0;
 5197                      stateidx < _ARRAYLEN(saorder_state_alive);
 5198                      stateidx++) {
 5199                         state = saorder_state_alive[stateidx];
 5200                         if (state == SADB_SASTATE_LARVAL)
 5201                                 continue;
 5202                         for (sav = LIST_FIRST(&sah->savtree[state]);
 5203                              sav != NULL; sav = nextsav) {
 5204                                 nextsav = LIST_NEXT(sav, chain);
 5205                                 /* sanity check */
 5206                                 if (sav->state != state) {
 5207                                         ipseclog((LOG_DEBUG, "%s: invalid "
 5208                                                 "sav->state (queue %d SA %d)\n",
 5209                                                 __func__, state, sav->state));
 5210                                         continue;
 5211                                 }
 5212                                 
 5213                                 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
 5214                                 KEY_FREESAV(&sav);
 5215                         }
 5216                 }
 5217         }
 5218         SAHTREE_UNLOCK();
 5219     {
 5220         struct mbuf *n;
 5221         struct sadb_msg *newmsg;
 5222 
 5223         /* create new sadb_msg to reply. */
 5224         n = key_gather_mbuf(m, mhp, 1, 3, SADB_EXT_RESERVED,
 5225             SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
 5226         if (!n)
 5227                 return key_senderror(so, m, ENOBUFS);
 5228 
 5229         if (n->m_len < sizeof(struct sadb_msg)) {
 5230                 n = m_pullup(n, sizeof(struct sadb_msg));
 5231                 if (n == NULL)
 5232                         return key_senderror(so, m, ENOBUFS);
 5233         }
 5234         newmsg = mtod(n, struct sadb_msg *);
 5235         newmsg->sadb_msg_errno = 0;
 5236         newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
 5237 
 5238         m_freem(m);
 5239         return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
 5240     }
 5241 }
 5242 
 5243 /*
 5244  * SADB_GET processing
 5245  * receive
 5246  *   <base, SA(*), address(SD)>
 5247  * from the ikmpd, and get a SP and a SA to respond,
 5248  * and send,
 5249  *   <base, SA, (lifetime(HSC),) address(SD), (address(P),) key(AE),
 5250  *       (identity(SD),) (sensitivity)>
 5251  * to the ikmpd.
 5252  *
 5253  * m will always be freed.
 5254  */
 5255 static int
 5256 key_get(so, m, mhp)
 5257         struct socket *so;
 5258         struct mbuf *m;
 5259         const struct sadb_msghdr *mhp;
 5260 {
 5261         struct sadb_sa *sa0;
 5262         struct sadb_address *src0, *dst0;
 5263         struct secasindex saidx;
 5264         struct secashead *sah;
 5265         struct secasvar *sav = NULL;
 5266         u_int16_t proto;
 5267 
 5268         IPSEC_ASSERT(so != NULL, ("null socket"));
 5269         IPSEC_ASSERT(m != NULL, ("null mbuf"));
 5270         IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
 5271         IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
 5272 
 5273         /* map satype to proto */
 5274         if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
 5275                 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
 5276                         __func__));
 5277                 return key_senderror(so, m, EINVAL);
 5278         }
 5279 
 5280         if (mhp->ext[SADB_EXT_SA] == NULL ||
 5281             mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
 5282             mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
 5283                 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
 5284                         __func__));
 5285                 return key_senderror(so, m, EINVAL);
 5286         }
 5287         if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
 5288             mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
 5289             mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
 5290                 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
 5291                         __func__));
 5292                 return key_senderror(so, m, EINVAL);
 5293         }
 5294 
 5295         sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
 5296         src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
 5297         dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
 5298 
 5299         /* XXX boundary check against sa_len */
 5300         KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx);
 5301 
 5302         /* get a SA header */
 5303         SAHTREE_LOCK();
 5304         LIST_FOREACH(sah, &sahtree, chain) {
 5305                 if (sah->state == SADB_SASTATE_DEAD)
 5306                         continue;
 5307                 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0)
 5308                         continue;
 5309 
 5310                 /* get a SA with SPI. */
 5311                 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
 5312                 if (sav)
 5313                         break;
 5314         }
 5315         SAHTREE_UNLOCK();
 5316         if (sah == NULL) {
 5317                 ipseclog((LOG_DEBUG, "%s: no SA found.\n", __func__));
 5318                 return key_senderror(so, m, ENOENT);
 5319         }
 5320 
 5321     {
 5322         struct mbuf *n;
 5323         u_int8_t satype;
 5324 
 5325         /* map proto to satype */
 5326         if ((satype = key_proto2satype(sah->saidx.proto)) == 0) {
 5327                 ipseclog((LOG_DEBUG, "%s: there was invalid proto in SAD.\n",
 5328                         __func__));
 5329                 return key_senderror(so, m, EINVAL);
 5330         }
 5331 
 5332         /* create new sadb_msg to reply. */
 5333         n = key_setdumpsa(sav, SADB_GET, satype, mhp->msg->sadb_msg_seq,
 5334             mhp->msg->sadb_msg_pid);
 5335         if (!n)
 5336                 return key_senderror(so, m, ENOBUFS);
 5337 
 5338         m_freem(m);
 5339         return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
 5340     }
 5341 }
 5342 
 5343 /* XXX make it sysctl-configurable? */
 5344 static void
 5345 key_getcomb_setlifetime(comb)
 5346         struct sadb_comb *comb;
 5347 {
 5348 
 5349         comb->sadb_comb_soft_allocations = 1;
 5350         comb->sadb_comb_hard_allocations = 1;
 5351         comb->sadb_comb_soft_bytes = 0;
 5352         comb->sadb_comb_hard_bytes = 0;
 5353         comb->sadb_comb_hard_addtime = 86400;   /* 1 day */
 5354         comb->sadb_comb_soft_addtime = comb->sadb_comb_soft_addtime * 80 / 100;
 5355         comb->sadb_comb_soft_usetime = 28800;   /* 8 hours */
 5356         comb->sadb_comb_hard_usetime = comb->sadb_comb_hard_usetime * 80 / 100;
 5357 }
 5358 
 5359 /*
 5360  * XXX reorder combinations by preference
 5361  * XXX no idea if the user wants ESP authentication or not
 5362  */
 5363 static struct mbuf *
 5364 key_getcomb_esp()
 5365 {
 5366         struct sadb_comb *comb;
 5367         struct enc_xform *algo;
 5368         struct mbuf *result = NULL, *m, *n;
 5369         int encmin;
 5370         int i, off, o;
 5371         int totlen;
 5372         const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
 5373 
 5374         m = NULL;
 5375         for (i = 1; i <= SADB_EALG_MAX; i++) {
 5376                 algo = esp_algorithm_lookup(i);
 5377                 if (algo == NULL)
 5378                         continue;
 5379 
 5380                 /* discard algorithms with key size smaller than system min */
 5381                 if (_BITS(algo->maxkey) < ipsec_esp_keymin)
 5382                         continue;
 5383                 if (_BITS(algo->minkey) < ipsec_esp_keymin)
 5384                         encmin = ipsec_esp_keymin;
 5385                 else
 5386                         encmin = _BITS(algo->minkey);
 5387 
 5388                 if (ipsec_esp_auth)
 5389                         m = key_getcomb_ah();
 5390                 else {
 5391                         IPSEC_ASSERT(l <= MLEN,
 5392                                 ("l=%u > MLEN=%lu", l, (u_long) MLEN));
 5393                         MGET(m, M_DONTWAIT, MT_DATA);
 5394                         if (m) {
 5395                                 M_ALIGN(m, l);
 5396                                 m->m_len = l;
 5397                                 m->m_next = NULL;
 5398                                 bzero(mtod(m, caddr_t), m->m_len);
 5399                         }
 5400                 }
 5401                 if (!m)
 5402                         goto fail;
 5403 
 5404                 totlen = 0;
 5405                 for (n = m; n; n = n->m_next)
 5406                         totlen += n->m_len;
 5407                 IPSEC_ASSERT((totlen % l) == 0, ("totlen=%u, l=%u", totlen, l));
 5408 
 5409                 for (off = 0; off < totlen; off += l) {
 5410                         n = m_pulldown(m, off, l, &o);
 5411                         if (!n) {
 5412                                 /* m is already freed */
 5413                                 goto fail;
 5414                         }
 5415                         comb = (struct sadb_comb *)(mtod(n, caddr_t) + o);
 5416                         bzero(comb, sizeof(*comb));
 5417                         key_getcomb_setlifetime(comb);
 5418                         comb->sadb_comb_encrypt = i;
 5419                         comb->sadb_comb_encrypt_minbits = encmin;
 5420                         comb->sadb_comb_encrypt_maxbits = _BITS(algo->maxkey);
 5421                 }
 5422 
 5423                 if (!result)
 5424<