FreeBSD/Linux Kernel Cross Reference
sys/netipsec/key.c
1 /* $FreeBSD: releng/9.2/sys/netipsec/key.c 252693 2013-07-04 08:59:34Z ae $ */
2 /* $KAME: key.c,v 1.191 2001/06/27 10:46:49 sakane Exp $ */
3
4 /*-
5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of the project nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 */
32
33 /*
34 * This code is referd to RFC 2367
35 */
36
37 #include "opt_inet.h"
38 #include "opt_inet6.h"
39 #include "opt_ipsec.h"
40
41 #include <sys/types.h>
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/kernel.h>
45 #include <sys/lock.h>
46 #include <sys/mutex.h>
47 #include <sys/mbuf.h>
48 #include <sys/domain.h>
49 #include <sys/protosw.h>
50 #include <sys/malloc.h>
51 #include <sys/socket.h>
52 #include <sys/socketvar.h>
53 #include <sys/sysctl.h>
54 #include <sys/errno.h>
55 #include <sys/proc.h>
56 #include <sys/queue.h>
57 #include <sys/refcount.h>
58 #include <sys/syslog.h>
59
60 #include <net/if.h>
61 #include <net/route.h>
62 #include <net/raw_cb.h>
63 #include <net/vnet.h>
64
65 #include <netinet/in.h>
66 #include <netinet/in_systm.h>
67 #include <netinet/ip.h>
68 #include <netinet/in_var.h>
69
70 #ifdef INET6
71 #include <netinet/ip6.h>
72 #include <netinet6/in6_var.h>
73 #include <netinet6/ip6_var.h>
74 #endif /* INET6 */
75
76 #if defined(INET) || defined(INET6)
77 #include <netinet/in_pcb.h>
78 #endif
79 #ifdef INET6
80 #include <netinet6/in6_pcb.h>
81 #endif /* INET6 */
82
83 #include <net/pfkeyv2.h>
84 #include <netipsec/keydb.h>
85 #include <netipsec/key.h>
86 #include <netipsec/keysock.h>
87 #include <netipsec/key_debug.h>
88
89 #include <netipsec/ipsec.h>
90 #ifdef INET6
91 #include <netipsec/ipsec6.h>
92 #endif
93
94 #include <netipsec/xform.h>
95
96 #include <machine/stdarg.h>
97
98 /* randomness */
99 #include <sys/random.h>
100
101 #define FULLMASK 0xff
102 #define _BITS(bytes) ((bytes) << 3)
103
104 /*
105 * Note on SA reference counting:
106 * - SAs that are not in DEAD state will have (total external reference + 1)
107 * following value in reference count field. they cannot be freed and are
108 * referenced from SA header.
109 * - SAs that are in DEAD state will have (total external reference)
110 * in reference count field. they are ready to be freed. reference from
111 * SA header will be removed in key_delsav(), when the reference count
112 * field hits 0 (= no external reference other than from SA header.
113 */
114
115 VNET_DEFINE(u_int32_t, key_debug_level) = 0;
116 static VNET_DEFINE(u_int, key_spi_trycnt) = 1000;
117 static VNET_DEFINE(u_int32_t, key_spi_minval) = 0x100;
118 static VNET_DEFINE(u_int32_t, key_spi_maxval) = 0x0fffffff; /* XXX */
119 static VNET_DEFINE(u_int32_t, policy_id) = 0;
120 /*interval to initialize randseed,1(m)*/
121 static VNET_DEFINE(u_int, key_int_random) = 60;
122 /* interval to expire acquiring, 30(s)*/
123 static VNET_DEFINE(u_int, key_larval_lifetime) = 30;
124 /* counter for blocking SADB_ACQUIRE.*/
125 static VNET_DEFINE(int, key_blockacq_count) = 10;
126 /* lifetime for blocking SADB_ACQUIRE.*/
127 static VNET_DEFINE(int, key_blockacq_lifetime) = 20;
128 /* preferred old sa rather than new sa.*/
129 static VNET_DEFINE(int, key_preferred_oldsa) = 1;
130 #define V_key_spi_trycnt VNET(key_spi_trycnt)
131 #define V_key_spi_minval VNET(key_spi_minval)
132 #define V_key_spi_maxval VNET(key_spi_maxval)
133 #define V_policy_id VNET(policy_id)
134 #define V_key_int_random VNET(key_int_random)
135 #define V_key_larval_lifetime VNET(key_larval_lifetime)
136 #define V_key_blockacq_count VNET(key_blockacq_count)
137 #define V_key_blockacq_lifetime VNET(key_blockacq_lifetime)
138 #define V_key_preferred_oldsa VNET(key_preferred_oldsa)
139
140 static VNET_DEFINE(u_int32_t, acq_seq) = 0;
141 #define V_acq_seq VNET(acq_seq)
142
143 /* SPD */
144 static VNET_DEFINE(LIST_HEAD(_sptree, secpolicy), sptree[IPSEC_DIR_MAX]);
145 #define V_sptree VNET(sptree)
146 static struct mtx sptree_lock;
147 #define SPTREE_LOCK_INIT() \
148 mtx_init(&sptree_lock, "sptree", \
149 "fast ipsec security policy database", MTX_DEF)
150 #define SPTREE_LOCK_DESTROY() mtx_destroy(&sptree_lock)
151 #define SPTREE_LOCK() mtx_lock(&sptree_lock)
152 #define SPTREE_UNLOCK() mtx_unlock(&sptree_lock)
153 #define SPTREE_LOCK_ASSERT() mtx_assert(&sptree_lock, MA_OWNED)
154
155 static VNET_DEFINE(LIST_HEAD(_sahtree, secashead), sahtree); /* SAD */
156 #define V_sahtree VNET(sahtree)
157 static struct mtx sahtree_lock;
158 #define SAHTREE_LOCK_INIT() \
159 mtx_init(&sahtree_lock, "sahtree", \
160 "fast ipsec security association database", MTX_DEF)
161 #define SAHTREE_LOCK_DESTROY() mtx_destroy(&sahtree_lock)
162 #define SAHTREE_LOCK() mtx_lock(&sahtree_lock)
163 #define SAHTREE_UNLOCK() mtx_unlock(&sahtree_lock)
164 #define SAHTREE_LOCK_ASSERT() mtx_assert(&sahtree_lock, MA_OWNED)
165
166 /* registed list */
167 static VNET_DEFINE(LIST_HEAD(_regtree, secreg), regtree[SADB_SATYPE_MAX + 1]);
168 #define V_regtree VNET(regtree)
169 static struct mtx regtree_lock;
170 #define REGTREE_LOCK_INIT() \
171 mtx_init(®tree_lock, "regtree", "fast ipsec regtree", MTX_DEF)
172 #define REGTREE_LOCK_DESTROY() mtx_destroy(®tree_lock)
173 #define REGTREE_LOCK() mtx_lock(®tree_lock)
174 #define REGTREE_UNLOCK() mtx_unlock(®tree_lock)
175 #define REGTREE_LOCK_ASSERT() mtx_assert(®tree_lock, MA_OWNED)
176
177 static VNET_DEFINE(LIST_HEAD(_acqtree, secacq), acqtree); /* acquiring list */
178 #define V_acqtree VNET(acqtree)
179 static struct mtx acq_lock;
180 #define ACQ_LOCK_INIT() \
181 mtx_init(&acq_lock, "acqtree", "fast ipsec acquire list", MTX_DEF)
182 #define ACQ_LOCK_DESTROY() mtx_destroy(&acq_lock)
183 #define ACQ_LOCK() mtx_lock(&acq_lock)
184 #define ACQ_UNLOCK() mtx_unlock(&acq_lock)
185 #define ACQ_LOCK_ASSERT() mtx_assert(&acq_lock, MA_OWNED)
186
187 /* SP acquiring list */
188 static VNET_DEFINE(LIST_HEAD(_spacqtree, secspacq), spacqtree);
189 #define V_spacqtree VNET(spacqtree)
190 static struct mtx spacq_lock;
191 #define SPACQ_LOCK_INIT() \
192 mtx_init(&spacq_lock, "spacqtree", \
193 "fast ipsec security policy acquire list", MTX_DEF)
194 #define SPACQ_LOCK_DESTROY() mtx_destroy(&spacq_lock)
195 #define SPACQ_LOCK() mtx_lock(&spacq_lock)
196 #define SPACQ_UNLOCK() mtx_unlock(&spacq_lock)
197 #define SPACQ_LOCK_ASSERT() mtx_assert(&spacq_lock, MA_OWNED)
198
199 /* search order for SAs */
200 static const u_int saorder_state_valid_prefer_old[] = {
201 SADB_SASTATE_DYING, SADB_SASTATE_MATURE,
202 };
203 static const u_int saorder_state_valid_prefer_new[] = {
204 SADB_SASTATE_MATURE, SADB_SASTATE_DYING,
205 };
206 static const u_int saorder_state_alive[] = {
207 /* except DEAD */
208 SADB_SASTATE_MATURE, SADB_SASTATE_DYING, SADB_SASTATE_LARVAL
209 };
210 static const u_int saorder_state_any[] = {
211 SADB_SASTATE_MATURE, SADB_SASTATE_DYING,
212 SADB_SASTATE_LARVAL, SADB_SASTATE_DEAD
213 };
214
215 static const int minsize[] = {
216 sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */
217 sizeof(struct sadb_sa), /* SADB_EXT_SA */
218 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */
219 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */
220 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */
221 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_SRC */
222 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_DST */
223 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_PROXY */
224 sizeof(struct sadb_key), /* SADB_EXT_KEY_AUTH */
225 sizeof(struct sadb_key), /* SADB_EXT_KEY_ENCRYPT */
226 sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_SRC */
227 sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_DST */
228 sizeof(struct sadb_sens), /* SADB_EXT_SENSITIVITY */
229 sizeof(struct sadb_prop), /* SADB_EXT_PROPOSAL */
230 sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_AUTH */
231 sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_ENCRYPT */
232 sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */
233 0, /* SADB_X_EXT_KMPRIVATE */
234 sizeof(struct sadb_x_policy), /* SADB_X_EXT_POLICY */
235 sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */
236 sizeof(struct sadb_x_nat_t_type),/* SADB_X_EXT_NAT_T_TYPE */
237 sizeof(struct sadb_x_nat_t_port),/* SADB_X_EXT_NAT_T_SPORT */
238 sizeof(struct sadb_x_nat_t_port),/* SADB_X_EXT_NAT_T_DPORT */
239 sizeof(struct sadb_address), /* SADB_X_EXT_NAT_T_OAI */
240 sizeof(struct sadb_address), /* SADB_X_EXT_NAT_T_OAR */
241 sizeof(struct sadb_x_nat_t_frag),/* SADB_X_EXT_NAT_T_FRAG */
242 };
243 static const int maxsize[] = {
244 sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */
245 sizeof(struct sadb_sa), /* SADB_EXT_SA */
246 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */
247 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */
248 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */
249 0, /* SADB_EXT_ADDRESS_SRC */
250 0, /* SADB_EXT_ADDRESS_DST */
251 0, /* SADB_EXT_ADDRESS_PROXY */
252 0, /* SADB_EXT_KEY_AUTH */
253 0, /* SADB_EXT_KEY_ENCRYPT */
254 0, /* SADB_EXT_IDENTITY_SRC */
255 0, /* SADB_EXT_IDENTITY_DST */
256 0, /* SADB_EXT_SENSITIVITY */
257 0, /* SADB_EXT_PROPOSAL */
258 0, /* SADB_EXT_SUPPORTED_AUTH */
259 0, /* SADB_EXT_SUPPORTED_ENCRYPT */
260 sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */
261 0, /* SADB_X_EXT_KMPRIVATE */
262 0, /* SADB_X_EXT_POLICY */
263 sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */
264 sizeof(struct sadb_x_nat_t_type),/* SADB_X_EXT_NAT_T_TYPE */
265 sizeof(struct sadb_x_nat_t_port),/* SADB_X_EXT_NAT_T_SPORT */
266 sizeof(struct sadb_x_nat_t_port),/* SADB_X_EXT_NAT_T_DPORT */
267 0, /* SADB_X_EXT_NAT_T_OAI */
268 0, /* SADB_X_EXT_NAT_T_OAR */
269 sizeof(struct sadb_x_nat_t_frag),/* SADB_X_EXT_NAT_T_FRAG */
270 };
271
272 static VNET_DEFINE(int, ipsec_esp_keymin) = 256;
273 static VNET_DEFINE(int, ipsec_esp_auth) = 0;
274 static VNET_DEFINE(int, ipsec_ah_keymin) = 128;
275
276 #define V_ipsec_esp_keymin VNET(ipsec_esp_keymin)
277 #define V_ipsec_esp_auth VNET(ipsec_esp_auth)
278 #define V_ipsec_ah_keymin VNET(ipsec_ah_keymin)
279
280 #ifdef SYSCTL_DECL
281 SYSCTL_DECL(_net_key);
282 #endif
283
284 SYSCTL_VNET_INT(_net_key, KEYCTL_DEBUG_LEVEL, debug,
285 CTLFLAG_RW, &VNET_NAME(key_debug_level), 0, "");
286
287 /* max count of trial for the decision of spi value */
288 SYSCTL_VNET_INT(_net_key, KEYCTL_SPI_TRY, spi_trycnt,
289 CTLFLAG_RW, &VNET_NAME(key_spi_trycnt), 0, "");
290
291 /* minimum spi value to allocate automatically. */
292 SYSCTL_VNET_INT(_net_key, KEYCTL_SPI_MIN_VALUE,
293 spi_minval, CTLFLAG_RW, &VNET_NAME(key_spi_minval), 0, "");
294
295 /* maximun spi value to allocate automatically. */
296 SYSCTL_VNET_INT(_net_key, KEYCTL_SPI_MAX_VALUE,
297 spi_maxval, CTLFLAG_RW, &VNET_NAME(key_spi_maxval), 0, "");
298
299 /* interval to initialize randseed */
300 SYSCTL_VNET_INT(_net_key, KEYCTL_RANDOM_INT,
301 int_random, CTLFLAG_RW, &VNET_NAME(key_int_random), 0, "");
302
303 /* lifetime for larval SA */
304 SYSCTL_VNET_INT(_net_key, KEYCTL_LARVAL_LIFETIME,
305 larval_lifetime, CTLFLAG_RW, &VNET_NAME(key_larval_lifetime), 0, "");
306
307 /* counter for blocking to send SADB_ACQUIRE to IKEd */
308 SYSCTL_VNET_INT(_net_key, KEYCTL_BLOCKACQ_COUNT,
309 blockacq_count, CTLFLAG_RW, &VNET_NAME(key_blockacq_count), 0, "");
310
311 /* lifetime for blocking to send SADB_ACQUIRE to IKEd */
312 SYSCTL_VNET_INT(_net_key, KEYCTL_BLOCKACQ_LIFETIME,
313 blockacq_lifetime, CTLFLAG_RW, &VNET_NAME(key_blockacq_lifetime), 0, "");
314
315 /* ESP auth */
316 SYSCTL_VNET_INT(_net_key, KEYCTL_ESP_AUTH, esp_auth,
317 CTLFLAG_RW, &VNET_NAME(ipsec_esp_auth), 0, "");
318
319 /* minimum ESP key length */
320 SYSCTL_VNET_INT(_net_key, KEYCTL_ESP_KEYMIN,
321 esp_keymin, CTLFLAG_RW, &VNET_NAME(ipsec_esp_keymin), 0, "");
322
323 /* minimum AH key length */
324 SYSCTL_VNET_INT(_net_key, KEYCTL_AH_KEYMIN, ah_keymin,
325 CTLFLAG_RW, &VNET_NAME(ipsec_ah_keymin), 0, "");
326
327 /* perfered old SA rather than new SA */
328 SYSCTL_VNET_INT(_net_key, KEYCTL_PREFERED_OLDSA,
329 preferred_oldsa, CTLFLAG_RW, &VNET_NAME(key_preferred_oldsa), 0, "");
330
331 #define __LIST_CHAINED(elm) \
332 (!((elm)->chain.le_next == NULL && (elm)->chain.le_prev == NULL))
333 #define LIST_INSERT_TAIL(head, elm, type, field) \
334 do {\
335 struct type *curelm = LIST_FIRST(head); \
336 if (curelm == NULL) {\
337 LIST_INSERT_HEAD(head, elm, field); \
338 } else { \
339 while (LIST_NEXT(curelm, field)) \
340 curelm = LIST_NEXT(curelm, field);\
341 LIST_INSERT_AFTER(curelm, elm, field);\
342 }\
343 } while (0)
344
345 #define KEY_CHKSASTATE(head, sav, name) \
346 do { \
347 if ((head) != (sav)) { \
348 ipseclog((LOG_DEBUG, "%s: state mismatched (TREE=%d SA=%d)\n", \
349 (name), (head), (sav))); \
350 continue; \
351 } \
352 } while (0)
353
354 #define KEY_CHKSPDIR(head, sp, name) \
355 do { \
356 if ((head) != (sp)) { \
357 ipseclog((LOG_DEBUG, "%s: direction mismatched (TREE=%d SP=%d), " \
358 "anyway continue.\n", \
359 (name), (head), (sp))); \
360 } \
361 } while (0)
362
363 MALLOC_DEFINE(M_IPSEC_SA, "secasvar", "ipsec security association");
364 MALLOC_DEFINE(M_IPSEC_SAH, "sahead", "ipsec sa head");
365 MALLOC_DEFINE(M_IPSEC_SP, "ipsecpolicy", "ipsec security policy");
366 MALLOC_DEFINE(M_IPSEC_SR, "ipsecrequest", "ipsec security request");
367 MALLOC_DEFINE(M_IPSEC_MISC, "ipsec-misc", "ipsec miscellaneous");
368 MALLOC_DEFINE(M_IPSEC_SAQ, "ipsec-saq", "ipsec sa acquire");
369 MALLOC_DEFINE(M_IPSEC_SAR, "ipsec-reg", "ipsec sa acquire");
370
371 /*
372 * set parameters into secpolicyindex buffer.
373 * Must allocate secpolicyindex buffer passed to this function.
374 */
375 #define KEY_SETSECSPIDX(_dir, s, d, ps, pd, ulp, idx) \
376 do { \
377 bzero((idx), sizeof(struct secpolicyindex)); \
378 (idx)->dir = (_dir); \
379 (idx)->prefs = (ps); \
380 (idx)->prefd = (pd); \
381 (idx)->ul_proto = (ulp); \
382 bcopy((s), &(idx)->src, ((const struct sockaddr *)(s))->sa_len); \
383 bcopy((d), &(idx)->dst, ((const struct sockaddr *)(d))->sa_len); \
384 } while (0)
385
386 /*
387 * set parameters into secasindex buffer.
388 * Must allocate secasindex buffer before calling this function.
389 */
390 #define KEY_SETSECASIDX(p, m, r, s, d, idx) \
391 do { \
392 bzero((idx), sizeof(struct secasindex)); \
393 (idx)->proto = (p); \
394 (idx)->mode = (m); \
395 (idx)->reqid = (r); \
396 bcopy((s), &(idx)->src, ((const struct sockaddr *)(s))->sa_len); \
397 bcopy((d), &(idx)->dst, ((const struct sockaddr *)(d))->sa_len); \
398 } while (0)
399
400 /* key statistics */
401 struct _keystat {
402 u_long getspi_count; /* the avarage of count to try to get new SPI */
403 } keystat;
404
405 struct sadb_msghdr {
406 struct sadb_msg *msg;
407 struct sadb_ext *ext[SADB_EXT_MAX + 1];
408 int extoff[SADB_EXT_MAX + 1];
409 int extlen[SADB_EXT_MAX + 1];
410 };
411
412 static struct secasvar *key_allocsa_policy __P((const struct secasindex *));
413 static void key_freesp_so __P((struct secpolicy **));
414 static struct secasvar *key_do_allocsa_policy __P((struct secashead *, u_int));
415 static void key_delsp __P((struct secpolicy *));
416 static struct secpolicy *key_getsp __P((struct secpolicyindex *));
417 static void _key_delsp(struct secpolicy *sp);
418 static struct secpolicy *key_getspbyid __P((u_int32_t));
419 static u_int32_t key_newreqid __P((void));
420 static struct mbuf *key_gather_mbuf __P((struct mbuf *,
421 const struct sadb_msghdr *, int, int, ...));
422 static int key_spdadd __P((struct socket *, struct mbuf *,
423 const struct sadb_msghdr *));
424 static u_int32_t key_getnewspid __P((void));
425 static int key_spddelete __P((struct socket *, struct mbuf *,
426 const struct sadb_msghdr *));
427 static int key_spddelete2 __P((struct socket *, struct mbuf *,
428 const struct sadb_msghdr *));
429 static int key_spdget __P((struct socket *, struct mbuf *,
430 const struct sadb_msghdr *));
431 static int key_spdflush __P((struct socket *, struct mbuf *,
432 const struct sadb_msghdr *));
433 static int key_spddump __P((struct socket *, struct mbuf *,
434 const struct sadb_msghdr *));
435 static struct mbuf *key_setdumpsp __P((struct secpolicy *,
436 u_int8_t, u_int32_t, u_int32_t));
437 static u_int key_getspreqmsglen __P((struct secpolicy *));
438 static int key_spdexpire __P((struct secpolicy *));
439 static struct secashead *key_newsah __P((struct secasindex *));
440 static void key_delsah __P((struct secashead *));
441 static struct secasvar *key_newsav __P((struct mbuf *,
442 const struct sadb_msghdr *, struct secashead *, int *,
443 const char*, int));
444 #define KEY_NEWSAV(m, sadb, sah, e) \
445 key_newsav(m, sadb, sah, e, __FILE__, __LINE__)
446 static void key_delsav __P((struct secasvar *));
447 static struct secashead *key_getsah __P((struct secasindex *));
448 static struct secasvar *key_checkspidup __P((struct secasindex *, u_int32_t));
449 static struct secasvar *key_getsavbyspi __P((struct secashead *, u_int32_t));
450 static int key_setsaval __P((struct secasvar *, struct mbuf *,
451 const struct sadb_msghdr *));
452 static int key_mature __P((struct secasvar *));
453 static struct mbuf *key_setdumpsa __P((struct secasvar *, u_int8_t,
454 u_int8_t, u_int32_t, u_int32_t));
455 static struct mbuf *key_setsadbmsg __P((u_int8_t, u_int16_t, u_int8_t,
456 u_int32_t, pid_t, u_int16_t));
457 static struct mbuf *key_setsadbsa __P((struct secasvar *));
458 static struct mbuf *key_setsadbaddr __P((u_int16_t,
459 const struct sockaddr *, u_int8_t, u_int16_t));
460 #ifdef IPSEC_NAT_T
461 static struct mbuf *key_setsadbxport(u_int16_t, u_int16_t);
462 static struct mbuf *key_setsadbxtype(u_int16_t);
463 #endif
464 static void key_porttosaddr(struct sockaddr *, u_int16_t);
465 #define KEY_PORTTOSADDR(saddr, port) \
466 key_porttosaddr((struct sockaddr *)(saddr), (port))
467 static struct mbuf *key_setsadbxsa2 __P((u_int8_t, u_int32_t, u_int32_t));
468 static struct mbuf *key_setsadbxpolicy __P((u_int16_t, u_int8_t,
469 u_int32_t));
470 static struct seckey *key_dup_keymsg(const struct sadb_key *, u_int,
471 struct malloc_type *);
472 static struct seclifetime *key_dup_lifemsg(const struct sadb_lifetime *src,
473 struct malloc_type *type);
474 #ifdef INET6
475 static int key_ismyaddr6 __P((struct sockaddr_in6 *));
476 #endif
477
478 /* flags for key_cmpsaidx() */
479 #define CMP_HEAD 1 /* protocol, addresses. */
480 #define CMP_MODE_REQID 2 /* additionally HEAD, reqid, mode. */
481 #define CMP_REQID 3 /* additionally HEAD, reaid. */
482 #define CMP_EXACTLY 4 /* all elements. */
483 static int key_cmpsaidx
484 __P((const struct secasindex *, const struct secasindex *, int));
485
486 static int key_cmpspidx_exactly
487 __P((struct secpolicyindex *, struct secpolicyindex *));
488 static int key_cmpspidx_withmask
489 __P((struct secpolicyindex *, struct secpolicyindex *));
490 static int key_sockaddrcmp __P((const struct sockaddr *, const struct sockaddr *, int));
491 static int key_bbcmp __P((const void *, const void *, u_int));
492 static u_int16_t key_satype2proto __P((u_int8_t));
493 static u_int8_t key_proto2satype __P((u_int16_t));
494
495 static int key_getspi __P((struct socket *, struct mbuf *,
496 const struct sadb_msghdr *));
497 static u_int32_t key_do_getnewspi __P((struct sadb_spirange *,
498 struct secasindex *));
499 static int key_update __P((struct socket *, struct mbuf *,
500 const struct sadb_msghdr *));
501 #ifdef IPSEC_DOSEQCHECK
502 static struct secasvar *key_getsavbyseq __P((struct secashead *, u_int32_t));
503 #endif
504 static int key_add __P((struct socket *, struct mbuf *,
505 const struct sadb_msghdr *));
506 static int key_setident __P((struct secashead *, struct mbuf *,
507 const struct sadb_msghdr *));
508 static struct mbuf *key_getmsgbuf_x1 __P((struct mbuf *,
509 const struct sadb_msghdr *));
510 static int key_delete __P((struct socket *, struct mbuf *,
511 const struct sadb_msghdr *));
512 static int key_get __P((struct socket *, struct mbuf *,
513 const struct sadb_msghdr *));
514
515 static void key_getcomb_setlifetime __P((struct sadb_comb *));
516 static struct mbuf *key_getcomb_esp __P((void));
517 static struct mbuf *key_getcomb_ah __P((void));
518 static struct mbuf *key_getcomb_ipcomp __P((void));
519 static struct mbuf *key_getprop __P((const struct secasindex *));
520
521 static int key_acquire __P((const struct secasindex *, struct secpolicy *));
522 static struct secacq *key_newacq __P((const struct secasindex *));
523 static struct secacq *key_getacq __P((const struct secasindex *));
524 static struct secacq *key_getacqbyseq __P((u_int32_t));
525 static struct secspacq *key_newspacq __P((struct secpolicyindex *));
526 static struct secspacq *key_getspacq __P((struct secpolicyindex *));
527 static int key_acquire2 __P((struct socket *, struct mbuf *,
528 const struct sadb_msghdr *));
529 static int key_register __P((struct socket *, struct mbuf *,
530 const struct sadb_msghdr *));
531 static int key_expire __P((struct secasvar *));
532 static int key_flush __P((struct socket *, struct mbuf *,
533 const struct sadb_msghdr *));
534 static int key_dump __P((struct socket *, struct mbuf *,
535 const struct sadb_msghdr *));
536 static int key_promisc __P((struct socket *, struct mbuf *,
537 const struct sadb_msghdr *));
538 static int key_senderror __P((struct socket *, struct mbuf *, int));
539 static int key_validate_ext __P((const struct sadb_ext *, int));
540 static int key_align __P((struct mbuf *, struct sadb_msghdr *));
541 static struct mbuf *key_setlifetime(struct seclifetime *src,
542 u_int16_t exttype);
543 static struct mbuf *key_setkey(struct seckey *src, u_int16_t exttype);
544
545 #if 0
546 static const char *key_getfqdn __P((void));
547 static const char *key_getuserfqdn __P((void));
548 #endif
549 static void key_sa_chgstate __P((struct secasvar *, u_int8_t));
550 static struct mbuf *key_alloc_mbuf __P((int));
551
552 static __inline void
553 sa_initref(struct secasvar *sav)
554 {
555
556 refcount_init(&sav->refcnt, 1);
557 }
558 static __inline void
559 sa_addref(struct secasvar *sav)
560 {
561
562 refcount_acquire(&sav->refcnt);
563 IPSEC_ASSERT(sav->refcnt != 0, ("SA refcnt overflow"));
564 }
565 static __inline int
566 sa_delref(struct secasvar *sav)
567 {
568
569 IPSEC_ASSERT(sav->refcnt > 0, ("SA refcnt underflow"));
570 return (refcount_release(&sav->refcnt));
571 }
572
573 #define SP_ADDREF(p) do { \
574 (p)->refcnt++; \
575 IPSEC_ASSERT((p)->refcnt != 0, ("SP refcnt overflow")); \
576 } while (0)
577 #define SP_DELREF(p) do { \
578 IPSEC_ASSERT((p)->refcnt > 0, ("SP refcnt underflow")); \
579 (p)->refcnt--; \
580 } while (0)
581
582
583 /*
584 * Update the refcnt while holding the SPTREE lock.
585 */
586 void
587 key_addref(struct secpolicy *sp)
588 {
589 SPTREE_LOCK();
590 SP_ADDREF(sp);
591 SPTREE_UNLOCK();
592 }
593
594 /*
595 * Return 0 when there are known to be no SP's for the specified
596 * direction. Otherwise return 1. This is used by IPsec code
597 * to optimize performance.
598 */
599 int
600 key_havesp(u_int dir)
601 {
602
603 return (dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND ?
604 LIST_FIRST(&V_sptree[dir]) != NULL : 1);
605 }
606
607 /* %%% IPsec policy management */
608 /*
609 * allocating a SP for OUTBOUND or INBOUND packet.
610 * Must call key_freesp() later.
611 * OUT: NULL: not found
612 * others: found and return the pointer.
613 */
614 struct secpolicy *
615 key_allocsp(struct secpolicyindex *spidx, u_int dir, const char* where, int tag)
616 {
617 struct secpolicy *sp;
618
619 IPSEC_ASSERT(spidx != NULL, ("null spidx"));
620 IPSEC_ASSERT(dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND,
621 ("invalid direction %u", dir));
622
623 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
624 printf("DP %s from %s:%u\n", __func__, where, tag));
625
626 /* get a SP entry */
627 KEYDEBUG(KEYDEBUG_IPSEC_DATA,
628 printf("*** objects\n");
629 kdebug_secpolicyindex(spidx));
630
631 SPTREE_LOCK();
632 LIST_FOREACH(sp, &V_sptree[dir], chain) {
633 KEYDEBUG(KEYDEBUG_IPSEC_DATA,
634 printf("*** in SPD\n");
635 kdebug_secpolicyindex(&sp->spidx));
636
637 if (sp->state == IPSEC_SPSTATE_DEAD)
638 continue;
639 if (key_cmpspidx_withmask(&sp->spidx, spidx))
640 goto found;
641 }
642 sp = NULL;
643 found:
644 if (sp) {
645 /* sanity check */
646 KEY_CHKSPDIR(sp->spidx.dir, dir, __func__);
647
648 /* found a SPD entry */
649 sp->lastused = time_second;
650 SP_ADDREF(sp);
651 }
652 SPTREE_UNLOCK();
653
654 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
655 printf("DP %s return SP:%p (ID=%u) refcnt %u\n", __func__,
656 sp, sp ? sp->id : 0, sp ? sp->refcnt : 0));
657 return sp;
658 }
659
660 /*
661 * allocating a SP for OUTBOUND or INBOUND packet.
662 * Must call key_freesp() later.
663 * OUT: NULL: not found
664 * others: found and return the pointer.
665 */
666 struct secpolicy *
667 key_allocsp2(u_int32_t spi,
668 union sockaddr_union *dst,
669 u_int8_t proto,
670 u_int dir,
671 const char* where, int tag)
672 {
673 struct secpolicy *sp;
674
675 IPSEC_ASSERT(dst != NULL, ("null dst"));
676 IPSEC_ASSERT(dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND,
677 ("invalid direction %u", dir));
678
679 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
680 printf("DP %s from %s:%u\n", __func__, where, tag));
681
682 /* get a SP entry */
683 KEYDEBUG(KEYDEBUG_IPSEC_DATA,
684 printf("*** objects\n");
685 printf("spi %u proto %u dir %u\n", spi, proto, dir);
686 kdebug_sockaddr(&dst->sa));
687
688 SPTREE_LOCK();
689 LIST_FOREACH(sp, &V_sptree[dir], chain) {
690 KEYDEBUG(KEYDEBUG_IPSEC_DATA,
691 printf("*** in SPD\n");
692 kdebug_secpolicyindex(&sp->spidx));
693
694 if (sp->state == IPSEC_SPSTATE_DEAD)
695 continue;
696 /* compare simple values, then dst address */
697 if (sp->spidx.ul_proto != proto)
698 continue;
699 /* NB: spi's must exist and match */
700 if (!sp->req || !sp->req->sav || sp->req->sav->spi != spi)
701 continue;
702 if (key_sockaddrcmp(&sp->spidx.dst.sa, &dst->sa, 1) == 0)
703 goto found;
704 }
705 sp = NULL;
706 found:
707 if (sp) {
708 /* sanity check */
709 KEY_CHKSPDIR(sp->spidx.dir, dir, __func__);
710
711 /* found a SPD entry */
712 sp->lastused = time_second;
713 SP_ADDREF(sp);
714 }
715 SPTREE_UNLOCK();
716
717 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
718 printf("DP %s return SP:%p (ID=%u) refcnt %u\n", __func__,
719 sp, sp ? sp->id : 0, sp ? sp->refcnt : 0));
720 return sp;
721 }
722
723 #if 0
724 /*
725 * return a policy that matches this particular inbound packet.
726 * XXX slow
727 */
728 struct secpolicy *
729 key_gettunnel(const struct sockaddr *osrc,
730 const struct sockaddr *odst,
731 const struct sockaddr *isrc,
732 const struct sockaddr *idst,
733 const char* where, int tag)
734 {
735 struct secpolicy *sp;
736 const int dir = IPSEC_DIR_INBOUND;
737 struct ipsecrequest *r1, *r2, *p;
738 struct secpolicyindex spidx;
739
740 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
741 printf("DP %s from %s:%u\n", __func__, where, tag));
742
743 if (isrc->sa_family != idst->sa_family) {
744 ipseclog((LOG_ERR, "%s: protocol family mismatched %d != %d\n.",
745 __func__, isrc->sa_family, idst->sa_family));
746 sp = NULL;
747 goto done;
748 }
749
750 SPTREE_LOCK();
751 LIST_FOREACH(sp, &V_sptree[dir], chain) {
752 if (sp->state == IPSEC_SPSTATE_DEAD)
753 continue;
754
755 r1 = r2 = NULL;
756 for (p = sp->req; p; p = p->next) {
757 if (p->saidx.mode != IPSEC_MODE_TUNNEL)
758 continue;
759
760 r1 = r2;
761 r2 = p;
762
763 if (!r1) {
764 /* here we look at address matches only */
765 spidx = sp->spidx;
766 if (isrc->sa_len > sizeof(spidx.src) ||
767 idst->sa_len > sizeof(spidx.dst))
768 continue;
769 bcopy(isrc, &spidx.src, isrc->sa_len);
770 bcopy(idst, &spidx.dst, idst->sa_len);
771 if (!key_cmpspidx_withmask(&sp->spidx, &spidx))
772 continue;
773 } else {
774 if (key_sockaddrcmp(&r1->saidx.src.sa, isrc, 0) ||
775 key_sockaddrcmp(&r1->saidx.dst.sa, idst, 0))
776 continue;
777 }
778
779 if (key_sockaddrcmp(&r2->saidx.src.sa, osrc, 0) ||
780 key_sockaddrcmp(&r2->saidx.dst.sa, odst, 0))
781 continue;
782
783 goto found;
784 }
785 }
786 sp = NULL;
787 found:
788 if (sp) {
789 sp->lastused = time_second;
790 SP_ADDREF(sp);
791 }
792 SPTREE_UNLOCK();
793 done:
794 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
795 printf("DP %s return SP:%p (ID=%u) refcnt %u\n", __func__,
796 sp, sp ? sp->id : 0, sp ? sp->refcnt : 0));
797 return sp;
798 }
799 #endif
800
801 /*
802 * allocating an SA entry for an *OUTBOUND* packet.
803 * checking each request entries in SP, and acquire an SA if need.
804 * OUT: 0: there are valid requests.
805 * ENOENT: policy may be valid, but SA with REQUIRE is on acquiring.
806 */
807 int
808 key_checkrequest(struct ipsecrequest *isr, const struct secasindex *saidx)
809 {
810 u_int level;
811 int error;
812 struct secasvar *sav;
813
814 IPSEC_ASSERT(isr != NULL, ("null isr"));
815 IPSEC_ASSERT(saidx != NULL, ("null saidx"));
816 IPSEC_ASSERT(saidx->mode == IPSEC_MODE_TRANSPORT ||
817 saidx->mode == IPSEC_MODE_TUNNEL,
818 ("unexpected policy %u", saidx->mode));
819
820 /*
821 * XXX guard against protocol callbacks from the crypto
822 * thread as they reference ipsecrequest.sav which we
823 * temporarily null out below. Need to rethink how we
824 * handle bundled SA's in the callback thread.
825 */
826 IPSECREQUEST_LOCK_ASSERT(isr);
827
828 /* get current level */
829 level = ipsec_get_reqlevel(isr);
830
831 /*
832 * We check new SA in the IPsec request because a different
833 * SA may be involved each time this request is checked, either
834 * because new SAs are being configured, or this request is
835 * associated with an unconnected datagram socket, or this request
836 * is associated with a system default policy.
837 *
838 * key_allocsa_policy should allocate the oldest SA available.
839 * See key_do_allocsa_policy(), and draft-jenkins-ipsec-rekeying-03.txt.
840 */
841 sav = key_allocsa_policy(saidx);
842 if (sav != isr->sav) {
843 /* SA need to be updated. */
844 if (!IPSECREQUEST_UPGRADE(isr)) {
845 /* Kick everyone off. */
846 IPSECREQUEST_UNLOCK(isr);
847 IPSECREQUEST_WLOCK(isr);
848 }
849 if (isr->sav != NULL)
850 KEY_FREESAV(&isr->sav);
851 isr->sav = sav;
852 IPSECREQUEST_DOWNGRADE(isr);
853 } else if (sav != NULL)
854 KEY_FREESAV(&sav);
855
856 /* When there is SA. */
857 if (isr->sav != NULL) {
858 if (isr->sav->state != SADB_SASTATE_MATURE &&
859 isr->sav->state != SADB_SASTATE_DYING)
860 return EINVAL;
861 return 0;
862 }
863
864 /* there is no SA */
865 error = key_acquire(saidx, isr->sp);
866 if (error != 0) {
867 /* XXX What should I do ? */
868 ipseclog((LOG_DEBUG, "%s: error %d returned from key_acquire\n",
869 __func__, error));
870 return error;
871 }
872
873 if (level != IPSEC_LEVEL_REQUIRE) {
874 /* XXX sigh, the interface to this routine is botched */
875 IPSEC_ASSERT(isr->sav == NULL, ("unexpected SA"));
876 return 0;
877 } else {
878 return ENOENT;
879 }
880 }
881
882 /*
883 * allocating a SA for policy entry from SAD.
884 * NOTE: searching SAD of aliving state.
885 * OUT: NULL: not found.
886 * others: found and return the pointer.
887 */
888 static struct secasvar *
889 key_allocsa_policy(const struct secasindex *saidx)
890 {
891 #define N(a) _ARRAYLEN(a)
892 struct secashead *sah;
893 struct secasvar *sav;
894 u_int stateidx, arraysize;
895 const u_int *state_valid;
896
897 state_valid = NULL; /* silence gcc */
898 arraysize = 0; /* silence gcc */
899
900 SAHTREE_LOCK();
901 LIST_FOREACH(sah, &V_sahtree, chain) {
902 if (sah->state == SADB_SASTATE_DEAD)
903 continue;
904 if (key_cmpsaidx(&sah->saidx, saidx, CMP_MODE_REQID)) {
905 if (V_key_preferred_oldsa) {
906 state_valid = saorder_state_valid_prefer_old;
907 arraysize = N(saorder_state_valid_prefer_old);
908 } else {
909 state_valid = saorder_state_valid_prefer_new;
910 arraysize = N(saorder_state_valid_prefer_new);
911 }
912 break;
913 }
914 }
915 SAHTREE_UNLOCK();
916 if (sah == NULL)
917 return NULL;
918
919 /* search valid state */
920 for (stateidx = 0; stateidx < arraysize; stateidx++) {
921 sav = key_do_allocsa_policy(sah, state_valid[stateidx]);
922 if (sav != NULL)
923 return sav;
924 }
925
926 return NULL;
927 #undef N
928 }
929
930 /*
931 * searching SAD with direction, protocol, mode and state.
932 * called by key_allocsa_policy().
933 * OUT:
934 * NULL : not found
935 * others : found, pointer to a SA.
936 */
937 static struct secasvar *
938 key_do_allocsa_policy(struct secashead *sah, u_int state)
939 {
940 struct secasvar *sav, *nextsav, *candidate, *d;
941
942 /* initilize */
943 candidate = NULL;
944
945 SAHTREE_LOCK();
946 for (sav = LIST_FIRST(&sah->savtree[state]);
947 sav != NULL;
948 sav = nextsav) {
949
950 nextsav = LIST_NEXT(sav, chain);
951
952 /* sanity check */
953 KEY_CHKSASTATE(sav->state, state, __func__);
954
955 /* initialize */
956 if (candidate == NULL) {
957 candidate = sav;
958 continue;
959 }
960
961 /* Which SA is the better ? */
962
963 IPSEC_ASSERT(candidate->lft_c != NULL,
964 ("null candidate lifetime"));
965 IPSEC_ASSERT(sav->lft_c != NULL, ("null sav lifetime"));
966
967 /* What the best method is to compare ? */
968 if (V_key_preferred_oldsa) {
969 if (candidate->lft_c->addtime >
970 sav->lft_c->addtime) {
971 candidate = sav;
972 }
973 continue;
974 /*NOTREACHED*/
975 }
976
977 /* preferred new sa rather than old sa */
978 if (candidate->lft_c->addtime <
979 sav->lft_c->addtime) {
980 d = candidate;
981 candidate = sav;
982 } else
983 d = sav;
984
985 /*
986 * prepared to delete the SA when there is more
987 * suitable candidate and the lifetime of the SA is not
988 * permanent.
989 */
990 if (d->lft_h->addtime != 0) {
991 struct mbuf *m, *result;
992 u_int8_t satype;
993
994 key_sa_chgstate(d, SADB_SASTATE_DEAD);
995
996 IPSEC_ASSERT(d->refcnt > 0, ("bogus ref count"));
997
998 satype = key_proto2satype(d->sah->saidx.proto);
999 if (satype == 0)
1000 goto msgfail;
1001
1002 m = key_setsadbmsg(SADB_DELETE, 0,
1003 satype, 0, 0, d->refcnt - 1);
1004 if (!m)
1005 goto msgfail;
1006 result = m;
1007
1008 /* set sadb_address for saidx's. */
1009 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
1010 &d->sah->saidx.src.sa,
1011 d->sah->saidx.src.sa.sa_len << 3,
1012 IPSEC_ULPROTO_ANY);
1013 if (!m)
1014 goto msgfail;
1015 m_cat(result, m);
1016
1017 /* set sadb_address for saidx's. */
1018 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
1019 &d->sah->saidx.dst.sa,
1020 d->sah->saidx.dst.sa.sa_len << 3,
1021 IPSEC_ULPROTO_ANY);
1022 if (!m)
1023 goto msgfail;
1024 m_cat(result, m);
1025
1026 /* create SA extension */
1027 m = key_setsadbsa(d);
1028 if (!m)
1029 goto msgfail;
1030 m_cat(result, m);
1031
1032 if (result->m_len < sizeof(struct sadb_msg)) {
1033 result = m_pullup(result,
1034 sizeof(struct sadb_msg));
1035 if (result == NULL)
1036 goto msgfail;
1037 }
1038
1039 result->m_pkthdr.len = 0;
1040 for (m = result; m; m = m->m_next)
1041 result->m_pkthdr.len += m->m_len;
1042 mtod(result, struct sadb_msg *)->sadb_msg_len =
1043 PFKEY_UNIT64(result->m_pkthdr.len);
1044
1045 if (key_sendup_mbuf(NULL, result,
1046 KEY_SENDUP_REGISTERED))
1047 goto msgfail;
1048 msgfail:
1049 KEY_FREESAV(&d);
1050 }
1051 }
1052 if (candidate) {
1053 sa_addref(candidate);
1054 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1055 printf("DP %s cause refcnt++:%d SA:%p\n",
1056 __func__, candidate->refcnt, candidate));
1057 }
1058 SAHTREE_UNLOCK();
1059
1060 return candidate;
1061 }
1062
1063 /*
1064 * allocating a usable SA entry for a *INBOUND* packet.
1065 * Must call key_freesav() later.
1066 * OUT: positive: pointer to a usable sav (i.e. MATURE or DYING state).
1067 * NULL: not found, or error occured.
1068 *
1069 * In the comparison, no source address is used--for RFC2401 conformance.
1070 * To quote, from section 4.1:
1071 * A security association is uniquely identified by a triple consisting
1072 * of a Security Parameter Index (SPI), an IP Destination Address, and a
1073 * security protocol (AH or ESP) identifier.
1074 * Note that, however, we do need to keep source address in IPsec SA.
1075 * IKE specification and PF_KEY specification do assume that we
1076 * keep source address in IPsec SA. We see a tricky situation here.
1077 */
1078 struct secasvar *
1079 key_allocsa(
1080 union sockaddr_union *dst,
1081 u_int proto,
1082 u_int32_t spi,
1083 const char* where, int tag)
1084 {
1085 struct secashead *sah;
1086 struct secasvar *sav;
1087 u_int stateidx, arraysize, state;
1088 const u_int *saorder_state_valid;
1089 int chkport;
1090
1091 IPSEC_ASSERT(dst != NULL, ("null dst address"));
1092
1093 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1094 printf("DP %s from %s:%u\n", __func__, where, tag));
1095
1096 #ifdef IPSEC_NAT_T
1097 chkport = (dst->sa.sa_family == AF_INET &&
1098 dst->sa.sa_len == sizeof(struct sockaddr_in) &&
1099 dst->sin.sin_port != 0);
1100 #else
1101 chkport = 0;
1102 #endif
1103
1104 /*
1105 * searching SAD.
1106 * XXX: to be checked internal IP header somewhere. Also when
1107 * IPsec tunnel packet is received. But ESP tunnel mode is
1108 * encrypted so we can't check internal IP header.
1109 */
1110 SAHTREE_LOCK();
1111 if (V_key_preferred_oldsa) {
1112 saorder_state_valid = saorder_state_valid_prefer_old;
1113 arraysize = _ARRAYLEN(saorder_state_valid_prefer_old);
1114 } else {
1115 saorder_state_valid = saorder_state_valid_prefer_new;
1116 arraysize = _ARRAYLEN(saorder_state_valid_prefer_new);
1117 }
1118 LIST_FOREACH(sah, &V_sahtree, chain) {
1119 /* search valid state */
1120 for (stateidx = 0; stateidx < arraysize; stateidx++) {
1121 state = saorder_state_valid[stateidx];
1122 LIST_FOREACH(sav, &sah->savtree[state], chain) {
1123 /* sanity check */
1124 KEY_CHKSASTATE(sav->state, state, __func__);
1125 /* do not return entries w/ unusable state */
1126 if (sav->state != SADB_SASTATE_MATURE &&
1127 sav->state != SADB_SASTATE_DYING)
1128 continue;
1129 if (proto != sav->sah->saidx.proto)
1130 continue;
1131 if (spi != sav->spi)
1132 continue;
1133 #if 0 /* don't check src */
1134 /* check src address */
1135 if (key_sockaddrcmp(&src->sa, &sav->sah->saidx.src.sa, chkport) != 0)
1136 continue;
1137 #endif
1138 /* check dst address */
1139 if (key_sockaddrcmp(&dst->sa, &sav->sah->saidx.dst.sa, chkport) != 0)
1140 continue;
1141 sa_addref(sav);
1142 goto done;
1143 }
1144 }
1145 }
1146 sav = NULL;
1147 done:
1148 SAHTREE_UNLOCK();
1149
1150 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1151 printf("DP %s return SA:%p; refcnt %u\n", __func__,
1152 sav, sav ? sav->refcnt : 0));
1153 return sav;
1154 }
1155
1156 /*
1157 * Must be called after calling key_allocsp().
1158 * For both the packet without socket and key_freeso().
1159 */
1160 void
1161 _key_freesp(struct secpolicy **spp, const char* where, int tag)
1162 {
1163 struct secpolicy *sp = *spp;
1164
1165 IPSEC_ASSERT(sp != NULL, ("null sp"));
1166
1167 SPTREE_LOCK();
1168 SP_DELREF(sp);
1169
1170 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1171 printf("DP %s SP:%p (ID=%u) from %s:%u; refcnt now %u\n",
1172 __func__, sp, sp->id, where, tag, sp->refcnt));
1173
1174 if (sp->refcnt == 0) {
1175 *spp = NULL;
1176 key_delsp(sp);
1177 }
1178 SPTREE_UNLOCK();
1179 }
1180
1181 /*
1182 * Must be called after calling key_allocsp().
1183 * For the packet with socket.
1184 */
1185 void
1186 key_freeso(struct socket *so)
1187 {
1188 IPSEC_ASSERT(so != NULL, ("null so"));
1189
1190 switch (so->so_proto->pr_domain->dom_family) {
1191 #if defined(INET) || defined(INET6)
1192 #ifdef INET
1193 case PF_INET:
1194 #endif
1195 #ifdef INET6
1196 case PF_INET6:
1197 #endif
1198 {
1199 struct inpcb *pcb = sotoinpcb(so);
1200
1201 /* Does it have a PCB ? */
1202 if (pcb == NULL)
1203 return;
1204 key_freesp_so(&pcb->inp_sp->sp_in);
1205 key_freesp_so(&pcb->inp_sp->sp_out);
1206 }
1207 break;
1208 #endif /* INET || INET6 */
1209 default:
1210 ipseclog((LOG_DEBUG, "%s: unknown address family=%d.\n",
1211 __func__, so->so_proto->pr_domain->dom_family));
1212 return;
1213 }
1214 }
1215
1216 static void
1217 key_freesp_so(struct secpolicy **sp)
1218 {
1219 IPSEC_ASSERT(sp != NULL && *sp != NULL, ("null sp"));
1220
1221 if ((*sp)->policy == IPSEC_POLICY_ENTRUST ||
1222 (*sp)->policy == IPSEC_POLICY_BYPASS)
1223 return;
1224
1225 IPSEC_ASSERT((*sp)->policy == IPSEC_POLICY_IPSEC,
1226 ("invalid policy %u", (*sp)->policy));
1227 KEY_FREESP(sp);
1228 }
1229
1230 void
1231 key_addrefsa(struct secasvar *sav, const char* where, int tag)
1232 {
1233
1234 IPSEC_ASSERT(sav != NULL, ("null sav"));
1235 IPSEC_ASSERT(sav->refcnt > 0, ("refcount must exist"));
1236
1237 sa_addref(sav);
1238 }
1239
1240 /*
1241 * Must be called after calling key_allocsa().
1242 * This function is called by key_freesp() to free some SA allocated
1243 * for a policy.
1244 */
1245 void
1246 key_freesav(struct secasvar **psav, const char* where, int tag)
1247 {
1248 struct secasvar *sav = *psav;
1249
1250 IPSEC_ASSERT(sav != NULL, ("null sav"));
1251
1252 if (sa_delref(sav)) {
1253 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1254 printf("DP %s SA:%p (SPI %u) from %s:%u; refcnt now %u\n",
1255 __func__, sav, ntohl(sav->spi), where, tag, sav->refcnt));
1256 *psav = NULL;
1257 key_delsav(sav);
1258 } else {
1259 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1260 printf("DP %s SA:%p (SPI %u) from %s:%u; refcnt now %u\n",
1261 __func__, sav, ntohl(sav->spi), where, tag, sav->refcnt));
1262 }
1263 }
1264
1265 /* %%% SPD management */
1266 /*
1267 * free security policy entry.
1268 */
1269 static void
1270 key_delsp(struct secpolicy *sp)
1271 {
1272 struct ipsecrequest *isr, *nextisr;
1273
1274 IPSEC_ASSERT(sp != NULL, ("null sp"));
1275 SPTREE_LOCK_ASSERT();
1276
1277 sp->state = IPSEC_SPSTATE_DEAD;
1278
1279 IPSEC_ASSERT(sp->refcnt == 0,
1280 ("SP with references deleted (refcnt %u)", sp->refcnt));
1281
1282 /* remove from SP index */
1283 if (__LIST_CHAINED(sp))
1284 LIST_REMOVE(sp, chain);
1285
1286 for (isr = sp->req; isr != NULL; isr = nextisr) {
1287 if (isr->sav != NULL) {
1288 KEY_FREESAV(&isr->sav);
1289 isr->sav = NULL;
1290 }
1291
1292 nextisr = isr->next;
1293 ipsec_delisr(isr);
1294 }
1295 _key_delsp(sp);
1296 }
1297
1298 /*
1299 * search SPD
1300 * OUT: NULL : not found
1301 * others : found, pointer to a SP.
1302 */
1303 static struct secpolicy *
1304 key_getsp(struct secpolicyindex *spidx)
1305 {
1306 struct secpolicy *sp;
1307
1308 IPSEC_ASSERT(spidx != NULL, ("null spidx"));
1309
1310 SPTREE_LOCK();
1311 LIST_FOREACH(sp, &V_sptree[spidx->dir], chain) {
1312 if (sp->state == IPSEC_SPSTATE_DEAD)
1313 continue;
1314 if (key_cmpspidx_exactly(spidx, &sp->spidx)) {
1315 SP_ADDREF(sp);
1316 break;
1317 }
1318 }
1319 SPTREE_UNLOCK();
1320
1321 return sp;
1322 }
1323
1324 /*
1325 * get SP by index.
1326 * OUT: NULL : not found
1327 * others : found, pointer to a SP.
1328 */
1329 static struct secpolicy *
1330 key_getspbyid(u_int32_t id)
1331 {
1332 struct secpolicy *sp;
1333
1334 SPTREE_LOCK();
1335 LIST_FOREACH(sp, &V_sptree[IPSEC_DIR_INBOUND], chain) {
1336 if (sp->state == IPSEC_SPSTATE_DEAD)
1337 continue;
1338 if (sp->id == id) {
1339 SP_ADDREF(sp);
1340 goto done;
1341 }
1342 }
1343
1344 LIST_FOREACH(sp, &V_sptree[IPSEC_DIR_OUTBOUND], chain) {
1345 if (sp->state == IPSEC_SPSTATE_DEAD)
1346 continue;
1347 if (sp->id == id) {
1348 SP_ADDREF(sp);
1349 goto done;
1350 }
1351 }
1352 done:
1353 SPTREE_UNLOCK();
1354
1355 return sp;
1356 }
1357
1358 struct secpolicy *
1359 key_newsp(const char* where, int tag)
1360 {
1361 struct secpolicy *newsp = NULL;
1362
1363 newsp = (struct secpolicy *)
1364 malloc(sizeof(struct secpolicy), M_IPSEC_SP, M_NOWAIT|M_ZERO);
1365 if (newsp) {
1366 SECPOLICY_LOCK_INIT(newsp);
1367 newsp->refcnt = 1;
1368 newsp->req = NULL;
1369 }
1370
1371 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1372 printf("DP %s from %s:%u return SP:%p\n", __func__,
1373 where, tag, newsp));
1374 return newsp;
1375 }
1376
1377 static void
1378 _key_delsp(struct secpolicy *sp)
1379 {
1380 SECPOLICY_LOCK_DESTROY(sp);
1381 free(sp, M_IPSEC_SP);
1382 }
1383
1384 /*
1385 * create secpolicy structure from sadb_x_policy structure.
1386 * NOTE: `state', `secpolicyindex' in secpolicy structure are not set,
1387 * so must be set properly later.
1388 */
1389 struct secpolicy *
1390 key_msg2sp(xpl0, len, error)
1391 struct sadb_x_policy *xpl0;
1392 size_t len;
1393 int *error;
1394 {
1395 struct secpolicy *newsp;
1396
1397 IPSEC_ASSERT(xpl0 != NULL, ("null xpl0"));
1398 IPSEC_ASSERT(len >= sizeof(*xpl0), ("policy too short: %zu", len));
1399
1400 if (len != PFKEY_EXTLEN(xpl0)) {
1401 ipseclog((LOG_DEBUG, "%s: Invalid msg length.\n", __func__));
1402 *error = EINVAL;
1403 return NULL;
1404 }
1405
1406 if ((newsp = KEY_NEWSP()) == NULL) {
1407 *error = ENOBUFS;
1408 return NULL;
1409 }
1410
1411 newsp->spidx.dir = xpl0->sadb_x_policy_dir;
1412 newsp->policy = xpl0->sadb_x_policy_type;
1413
1414 /* check policy */
1415 switch (xpl0->sadb_x_policy_type) {
1416 case IPSEC_POLICY_DISCARD:
1417 case IPSEC_POLICY_NONE:
1418 case IPSEC_POLICY_ENTRUST:
1419 case IPSEC_POLICY_BYPASS:
1420 newsp->req = NULL;
1421 break;
1422
1423 case IPSEC_POLICY_IPSEC:
1424 {
1425 int tlen;
1426 struct sadb_x_ipsecrequest *xisr;
1427 struct ipsecrequest **p_isr = &newsp->req;
1428
1429 /* validity check */
1430 if (PFKEY_EXTLEN(xpl0) < sizeof(*xpl0)) {
1431 ipseclog((LOG_DEBUG, "%s: Invalid msg length.\n",
1432 __func__));
1433 KEY_FREESP(&newsp);
1434 *error = EINVAL;
1435 return NULL;
1436 }
1437
1438 tlen = PFKEY_EXTLEN(xpl0) - sizeof(*xpl0);
1439 xisr = (struct sadb_x_ipsecrequest *)(xpl0 + 1);
1440
1441 while (tlen > 0) {
1442 /* length check */
1443 if (xisr->sadb_x_ipsecrequest_len < sizeof(*xisr)) {
1444 ipseclog((LOG_DEBUG, "%s: invalid ipsecrequest "
1445 "length.\n", __func__));
1446 KEY_FREESP(&newsp);
1447 *error = EINVAL;
1448 return NULL;
1449 }
1450
1451 /* allocate request buffer */
1452 /* NB: data structure is zero'd */
1453 *p_isr = ipsec_newisr();
1454 if ((*p_isr) == NULL) {
1455 ipseclog((LOG_DEBUG,
1456 "%s: No more memory.\n", __func__));
1457 KEY_FREESP(&newsp);
1458 *error = ENOBUFS;
1459 return NULL;
1460 }
1461
1462 /* set values */
1463 switch (xisr->sadb_x_ipsecrequest_proto) {
1464 case IPPROTO_ESP:
1465 case IPPROTO_AH:
1466 case IPPROTO_IPCOMP:
1467 break;
1468 default:
1469 ipseclog((LOG_DEBUG,
1470 "%s: invalid proto type=%u\n", __func__,
1471 xisr->sadb_x_ipsecrequest_proto));
1472 KEY_FREESP(&newsp);
1473 *error = EPROTONOSUPPORT;
1474 return NULL;
1475 }
1476 (*p_isr)->saidx.proto = xisr->sadb_x_ipsecrequest_proto;
1477
1478 switch (xisr->sadb_x_ipsecrequest_mode) {
1479 case IPSEC_MODE_TRANSPORT:
1480 case IPSEC_MODE_TUNNEL:
1481 break;
1482 case IPSEC_MODE_ANY:
1483 default:
1484 ipseclog((LOG_DEBUG,
1485 "%s: invalid mode=%u\n", __func__,
1486 xisr->sadb_x_ipsecrequest_mode));
1487 KEY_FREESP(&newsp);
1488 *error = EINVAL;
1489 return NULL;
1490 }
1491 (*p_isr)->saidx.mode = xisr->sadb_x_ipsecrequest_mode;
1492
1493 switch (xisr->sadb_x_ipsecrequest_level) {
1494 case IPSEC_LEVEL_DEFAULT:
1495 case IPSEC_LEVEL_USE:
1496 case IPSEC_LEVEL_REQUIRE:
1497 break;
1498 case IPSEC_LEVEL_UNIQUE:
1499 /* validity check */
1500 /*
1501 * If range violation of reqid, kernel will
1502 * update it, don't refuse it.
1503 */
1504 if (xisr->sadb_x_ipsecrequest_reqid
1505 > IPSEC_MANUAL_REQID_MAX) {
1506 ipseclog((LOG_DEBUG,
1507 "%s: reqid=%d range "
1508 "violation, updated by kernel.\n",
1509 __func__,
1510 xisr->sadb_x_ipsecrequest_reqid));
1511 xisr->sadb_x_ipsecrequest_reqid = 0;
1512 }
1513
1514 /* allocate new reqid id if reqid is zero. */
1515 if (xisr->sadb_x_ipsecrequest_reqid == 0) {
1516 u_int32_t reqid;
1517 if ((reqid = key_newreqid()) == 0) {
1518 KEY_FREESP(&newsp);
1519 *error = ENOBUFS;
1520 return NULL;
1521 }
1522 (*p_isr)->saidx.reqid = reqid;
1523 xisr->sadb_x_ipsecrequest_reqid = reqid;
1524 } else {
1525 /* set it for manual keying. */
1526 (*p_isr)->saidx.reqid =
1527 xisr->sadb_x_ipsecrequest_reqid;
1528 }
1529 break;
1530
1531 default:
1532 ipseclog((LOG_DEBUG, "%s: invalid level=%u\n",
1533 __func__,
1534 xisr->sadb_x_ipsecrequest_level));
1535 KEY_FREESP(&newsp);
1536 *error = EINVAL;
1537 return NULL;
1538 }
1539 (*p_isr)->level = xisr->sadb_x_ipsecrequest_level;
1540
1541 /* set IP addresses if there */
1542 if (xisr->sadb_x_ipsecrequest_len > sizeof(*xisr)) {
1543 struct sockaddr *paddr;
1544
1545 paddr = (struct sockaddr *)(xisr + 1);
1546
1547 /* validity check */
1548 if (paddr->sa_len
1549 > sizeof((*p_isr)->saidx.src)) {
1550 ipseclog((LOG_DEBUG, "%s: invalid "
1551 "request address length.\n",
1552 __func__));
1553 KEY_FREESP(&newsp);
1554 *error = EINVAL;
1555 return NULL;
1556 }
1557 bcopy(paddr, &(*p_isr)->saidx.src,
1558 paddr->sa_len);
1559
1560 paddr = (struct sockaddr *)((caddr_t)paddr
1561 + paddr->sa_len);
1562
1563 /* validity check */
1564 if (paddr->sa_len
1565 > sizeof((*p_isr)->saidx.dst)) {
1566 ipseclog((LOG_DEBUG, "%s: invalid "
1567 "request address length.\n",
1568 __func__));
1569 KEY_FREESP(&newsp);
1570 *error = EINVAL;
1571 return NULL;
1572 }
1573 bcopy(paddr, &(*p_isr)->saidx.dst,
1574 paddr->sa_len);
1575 }
1576
1577 (*p_isr)->sp = newsp;
1578
1579 /* initialization for the next. */
1580 p_isr = &(*p_isr)->next;
1581 tlen -= xisr->sadb_x_ipsecrequest_len;
1582
1583 /* validity check */
1584 if (tlen < 0) {
1585 ipseclog((LOG_DEBUG, "%s: becoming tlen < 0.\n",
1586 __func__));
1587 KEY_FREESP(&newsp);
1588 *error = EINVAL;
1589 return NULL;
1590 }
1591
1592 xisr = (struct sadb_x_ipsecrequest *)((caddr_t)xisr
1593 + xisr->sadb_x_ipsecrequest_len);
1594 }
1595 }
1596 break;
1597 default:
1598 ipseclog((LOG_DEBUG, "%s: invalid policy type.\n", __func__));
1599 KEY_FREESP(&newsp);
1600 *error = EINVAL;
1601 return NULL;
1602 }
1603
1604 *error = 0;
1605 return newsp;
1606 }
1607
1608 static u_int32_t
1609 key_newreqid()
1610 {
1611 static u_int32_t auto_reqid = IPSEC_MANUAL_REQID_MAX + 1;
1612
1613 auto_reqid = (auto_reqid == ~0
1614 ? IPSEC_MANUAL_REQID_MAX + 1 : auto_reqid + 1);
1615
1616 /* XXX should be unique check */
1617
1618 return auto_reqid;
1619 }
1620
1621 /*
1622 * copy secpolicy struct to sadb_x_policy structure indicated.
1623 */
1624 struct mbuf *
1625 key_sp2msg(sp)
1626 struct secpolicy *sp;
1627 {
1628 struct sadb_x_policy *xpl;
1629 int tlen;
1630 caddr_t p;
1631 struct mbuf *m;
1632
1633 IPSEC_ASSERT(sp != NULL, ("null policy"));
1634
1635 tlen = key_getspreqmsglen(sp);
1636
1637 m = key_alloc_mbuf(tlen);
1638 if (!m || m->m_next) { /*XXX*/
1639 if (m)
1640 m_freem(m);
1641 return NULL;
1642 }
1643
1644 m->m_len = tlen;
1645 m->m_next = NULL;
1646 xpl = mtod(m, struct sadb_x_policy *);
1647 bzero(xpl, tlen);
1648
1649 xpl->sadb_x_policy_len = PFKEY_UNIT64(tlen);
1650 xpl->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
1651 xpl->sadb_x_policy_type = sp->policy;
1652 xpl->sadb_x_policy_dir = sp->spidx.dir;
1653 xpl->sadb_x_policy_id = sp->id;
1654 p = (caddr_t)xpl + sizeof(*xpl);
1655
1656 /* if is the policy for ipsec ? */
1657 if (sp->policy == IPSEC_POLICY_IPSEC) {
1658 struct sadb_x_ipsecrequest *xisr;
1659 struct ipsecrequest *isr;
1660
1661 for (isr = sp->req; isr != NULL; isr = isr->next) {
1662
1663 xisr = (struct sadb_x_ipsecrequest *)p;
1664
1665 xisr->sadb_x_ipsecrequest_proto = isr->saidx.proto;
1666 xisr->sadb_x_ipsecrequest_mode = isr->saidx.mode;
1667 xisr->sadb_x_ipsecrequest_level = isr->level;
1668 xisr->sadb_x_ipsecrequest_reqid = isr->saidx.reqid;
1669
1670 p += sizeof(*xisr);
1671 bcopy(&isr->saidx.src, p, isr->saidx.src.sa.sa_len);
1672 p += isr->saidx.src.sa.sa_len;
1673 bcopy(&isr->saidx.dst, p, isr->saidx.dst.sa.sa_len);
1674 p += isr->saidx.src.sa.sa_len;
1675
1676 xisr->sadb_x_ipsecrequest_len =
1677 PFKEY_ALIGN8(sizeof(*xisr)
1678 + isr->saidx.src.sa.sa_len
1679 + isr->saidx.dst.sa.sa_len);
1680 }
1681 }
1682
1683 return m;
1684 }
1685
1686 /* m will not be freed nor modified */
1687 static struct mbuf *
1688 #ifdef __STDC__
1689 key_gather_mbuf(struct mbuf *m, const struct sadb_msghdr *mhp,
1690 int ndeep, int nitem, ...)
1691 #else
1692 key_gather_mbuf(m, mhp, ndeep, nitem, va_alist)
1693 struct mbuf *m;
1694 const struct sadb_msghdr *mhp;
1695 int ndeep;
1696 int nitem;
1697 va_dcl
1698 #endif
1699 {
1700 va_list ap;
1701 int idx;
1702 int i;
1703 struct mbuf *result = NULL, *n;
1704 int len;
1705
1706 IPSEC_ASSERT(m != NULL, ("null mbuf"));
1707 IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
1708
1709 va_start(ap, nitem);
1710 for (i = 0; i < nitem; i++) {
1711 idx = va_arg(ap, int);
1712 if (idx < 0 || idx > SADB_EXT_MAX)
1713 goto fail;
1714 /* don't attempt to pull empty extension */
1715 if (idx == SADB_EXT_RESERVED && mhp->msg == NULL)
1716 continue;
1717 if (idx != SADB_EXT_RESERVED &&
1718 (mhp->ext[idx] == NULL || mhp->extlen[idx] == 0))
1719 continue;
1720
1721 if (idx == SADB_EXT_RESERVED) {
1722 len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
1723
1724 IPSEC_ASSERT(len <= MHLEN, ("header too big %u", len));
1725
1726 MGETHDR(n, M_DONTWAIT, MT_DATA);
1727 if (!n)
1728 goto fail;
1729 n->m_len = len;
1730 n->m_next = NULL;
1731 m_copydata(m, 0, sizeof(struct sadb_msg),
1732 mtod(n, caddr_t));
1733 } else if (i < ndeep) {
1734 len = mhp->extlen[idx];
1735 n = key_alloc_mbuf(len);
1736 if (!n || n->m_next) { /*XXX*/
1737 if (n)
1738 m_freem(n);
1739 goto fail;
1740 }
1741 m_copydata(m, mhp->extoff[idx], mhp->extlen[idx],
1742 mtod(n, caddr_t));
1743 } else {
1744 n = m_copym(m, mhp->extoff[idx], mhp->extlen[idx],
1745 M_DONTWAIT);
1746 }
1747 if (n == NULL)
1748 goto fail;
1749
1750 if (result)
1751 m_cat(result, n);
1752 else
1753 result = n;
1754 }
1755 va_end(ap);
1756
1757 if ((result->m_flags & M_PKTHDR) != 0) {
1758 result->m_pkthdr.len = 0;
1759 for (n = result; n; n = n->m_next)
1760 result->m_pkthdr.len += n->m_len;
1761 }
1762
1763 return result;
1764
1765 fail:
1766 m_freem(result);
1767 va_end(ap);
1768 return NULL;
1769 }
1770
1771 /*
1772 * SADB_X_SPDADD, SADB_X_SPDSETIDX or SADB_X_SPDUPDATE processing
1773 * add an entry to SP database, when received
1774 * <base, address(SD), (lifetime(H),) policy>
1775 * from the user(?).
1776 * Adding to SP database,
1777 * and send
1778 * <base, address(SD), (lifetime(H),) policy>
1779 * to the socket which was send.
1780 *
1781 * SPDADD set a unique policy entry.
1782 * SPDSETIDX like SPDADD without a part of policy requests.
1783 * SPDUPDATE replace a unique policy entry.
1784 *
1785 * m will always be freed.
1786 */
1787 static int
1788 key_spdadd(so, m, mhp)
1789 struct socket *so;
1790 struct mbuf *m;
1791 const struct sadb_msghdr *mhp;
1792 {
1793 struct sadb_address *src0, *dst0;
1794 struct sadb_x_policy *xpl0, *xpl;
1795 struct sadb_lifetime *lft = NULL;
1796 struct secpolicyindex spidx;
1797 struct secpolicy *newsp;
1798 int error;
1799
1800 IPSEC_ASSERT(so != NULL, ("null socket"));
1801 IPSEC_ASSERT(m != NULL, ("null mbuf"));
1802 IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
1803 IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
1804
1805 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
1806 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
1807 mhp->ext[SADB_X_EXT_POLICY] == NULL) {
1808 ipseclog((LOG_DEBUG, "key_spdadd: invalid message is passed.\n"));
1809 return key_senderror(so, m, EINVAL);
1810 }
1811 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
1812 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
1813 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
1814 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
1815 __func__));
1816 return key_senderror(so, m, EINVAL);
1817 }
1818 if (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL) {
1819 if (mhp->extlen[SADB_EXT_LIFETIME_HARD]
1820 < sizeof(struct sadb_lifetime)) {
1821 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
1822 __func__));
1823 return key_senderror(so, m, EINVAL);
1824 }
1825 lft = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD];
1826 }
1827
1828 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
1829 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
1830 xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY];
1831
1832 /*
1833 * Note: do not parse SADB_X_EXT_NAT_T_* here:
1834 * we are processing traffic endpoints.
1835 */
1836
1837 /* make secindex */
1838 /* XXX boundary check against sa_len */
1839 KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir,
1840 src0 + 1,
1841 dst0 + 1,
1842 src0->sadb_address_prefixlen,
1843 dst0->sadb_address_prefixlen,
1844 src0->sadb_address_proto,
1845 &spidx);
1846
1847 /* checking the direciton. */
1848 switch (xpl0->sadb_x_policy_dir) {
1849 case IPSEC_DIR_INBOUND:
1850 case IPSEC_DIR_OUTBOUND:
1851 break;
1852 default:
1853 ipseclog((LOG_DEBUG, "%s: Invalid SP direction.\n", __func__));
1854 mhp->msg->sadb_msg_errno = EINVAL;
1855 return 0;
1856 }
1857
1858 /* check policy */
1859 /* key_spdadd() accepts DISCARD, NONE and IPSEC. */
1860 if (xpl0->sadb_x_policy_type == IPSEC_POLICY_ENTRUST
1861 || xpl0->sadb_x_policy_type == IPSEC_POLICY_BYPASS) {
1862 ipseclog((LOG_DEBUG, "%s: Invalid policy type.\n", __func__));
1863 return key_senderror(so, m, EINVAL);
1864 }
1865
1866 /* policy requests are mandatory when action is ipsec. */
1867 if (mhp->msg->sadb_msg_type != SADB_X_SPDSETIDX
1868 && xpl0->sadb_x_policy_type == IPSEC_POLICY_IPSEC
1869 && mhp->extlen[SADB_X_EXT_POLICY] <= sizeof(*xpl0)) {
1870 ipseclog((LOG_DEBUG, "%s: some policy requests part required\n",
1871 __func__));
1872 return key_senderror(so, m, EINVAL);
1873 }
1874
1875 /*
1876 * checking there is SP already or not.
1877 * SPDUPDATE doesn't depend on whether there is a SP or not.
1878 * If the type is either SPDADD or SPDSETIDX AND a SP is found,
1879 * then error.
1880 */
1881 newsp = key_getsp(&spidx);
1882 if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) {
1883 if (newsp) {
1884 SPTREE_LOCK();
1885 newsp->state = IPSEC_SPSTATE_DEAD;
1886 SPTREE_UNLOCK();
1887 KEY_FREESP(&newsp);
1888 }
1889 } else {
1890 if (newsp != NULL) {
1891 KEY_FREESP(&newsp);
1892 ipseclog((LOG_DEBUG, "%s: a SP entry exists already.\n",
1893 __func__));
1894 return key_senderror(so, m, EEXIST);
1895 }
1896 }
1897
1898 /* allocation new SP entry */
1899 if ((newsp = key_msg2sp(xpl0, PFKEY_EXTLEN(xpl0), &error)) == NULL) {
1900 return key_senderror(so, m, error);
1901 }
1902
1903 if ((newsp->id = key_getnewspid()) == 0) {
1904 _key_delsp(newsp);
1905 return key_senderror(so, m, ENOBUFS);
1906 }
1907
1908 /* XXX boundary check against sa_len */
1909 KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir,
1910 src0 + 1,
1911 dst0 + 1,
1912 src0->sadb_address_prefixlen,
1913 dst0->sadb_address_prefixlen,
1914 src0->sadb_address_proto,
1915 &newsp->spidx);
1916
1917 /* sanity check on addr pair */
1918 if (((struct sockaddr *)(src0 + 1))->sa_family !=
1919 ((struct sockaddr *)(dst0+ 1))->sa_family) {
1920 _key_delsp(newsp);
1921 return key_senderror(so, m, EINVAL);
1922 }
1923 if (((struct sockaddr *)(src0 + 1))->sa_len !=
1924 ((struct sockaddr *)(dst0+ 1))->sa_len) {
1925 _key_delsp(newsp);
1926 return key_senderror(so, m, EINVAL);
1927 }
1928 #if 1
1929 if (newsp->req && newsp->req->saidx.src.sa.sa_family && newsp->req->saidx.dst.sa.sa_family) {
1930 if (newsp->req->saidx.src.sa.sa_family != newsp->req->saidx.dst.sa.sa_family) {
1931 _key_delsp(newsp);
1932 return key_senderror(so, m, EINVAL);
1933 }
1934 }
1935 #endif
1936
1937 newsp->created = time_second;
1938 newsp->lastused = newsp->created;
1939 newsp->lifetime = lft ? lft->sadb_lifetime_addtime : 0;
1940 newsp->validtime = lft ? lft->sadb_lifetime_usetime : 0;
1941
1942 newsp->refcnt = 1; /* do not reclaim until I say I do */
1943 newsp->state = IPSEC_SPSTATE_ALIVE;
1944 LIST_INSERT_TAIL(&V_sptree[newsp->spidx.dir], newsp, secpolicy, chain);
1945
1946 /* delete the entry in spacqtree */
1947 if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) {
1948 struct secspacq *spacq = key_getspacq(&spidx);
1949 if (spacq != NULL) {
1950 /* reset counter in order to deletion by timehandler. */
1951 spacq->created = time_second;
1952 spacq->count = 0;
1953 SPACQ_UNLOCK();
1954 }
1955 }
1956
1957 {
1958 struct mbuf *n, *mpolicy;
1959 struct sadb_msg *newmsg;
1960 int off;
1961
1962 /*
1963 * Note: do not send SADB_X_EXT_NAT_T_* here:
1964 * we are sending traffic endpoints.
1965 */
1966
1967 /* create new sadb_msg to reply. */
1968 if (lft) {
1969 n = key_gather_mbuf(m, mhp, 2, 5, SADB_EXT_RESERVED,
1970 SADB_X_EXT_POLICY, SADB_EXT_LIFETIME_HARD,
1971 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
1972 } else {
1973 n = key_gather_mbuf(m, mhp, 2, 4, SADB_EXT_RESERVED,
1974 SADB_X_EXT_POLICY,
1975 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
1976 }
1977 if (!n)
1978 return key_senderror(so, m, ENOBUFS);
1979
1980 if (n->m_len < sizeof(*newmsg)) {
1981 n = m_pullup(n, sizeof(*newmsg));
1982 if (!n)
1983 return key_senderror(so, m, ENOBUFS);
1984 }
1985 newmsg = mtod(n, struct sadb_msg *);
1986 newmsg->sadb_msg_errno = 0;
1987 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
1988
1989 off = 0;
1990 mpolicy = m_pulldown(n, PFKEY_ALIGN8(sizeof(struct sadb_msg)),
1991 sizeof(*xpl), &off);
1992 if (mpolicy == NULL) {
1993 /* n is already freed */
1994 return key_senderror(so, m, ENOBUFS);
1995 }
1996 xpl = (struct sadb_x_policy *)(mtod(mpolicy, caddr_t) + off);
1997 if (xpl->sadb_x_policy_exttype != SADB_X_EXT_POLICY) {
1998 m_freem(n);
1999 return key_senderror(so, m, EINVAL);
2000 }
2001 xpl->sadb_x_policy_id = newsp->id;
2002
2003 m_freem(m);
2004 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2005 }
2006 }
2007
2008 /*
2009 * get new policy id.
2010 * OUT:
2011 * 0: failure.
2012 * others: success.
2013 */
2014 static u_int32_t
2015 key_getnewspid()
2016 {
2017 u_int32_t newid = 0;
2018 int count = V_key_spi_trycnt; /* XXX */
2019 struct secpolicy *sp;
2020
2021 /* when requesting to allocate spi ranged */
2022 while (count--) {
2023 newid = (V_policy_id = (V_policy_id == ~0 ? 1 : V_policy_id + 1));
2024
2025 if ((sp = key_getspbyid(newid)) == NULL)
2026 break;
2027
2028 KEY_FREESP(&sp);
2029 }
2030
2031 if (count == 0 || newid == 0) {
2032 ipseclog((LOG_DEBUG, "%s: to allocate policy id is failed.\n",
2033 __func__));
2034 return 0;
2035 }
2036
2037 return newid;
2038 }
2039
2040 /*
2041 * SADB_SPDDELETE processing
2042 * receive
2043 * <base, address(SD), policy(*)>
2044 * from the user(?), and set SADB_SASTATE_DEAD,
2045 * and send,
2046 * <base, address(SD), policy(*)>
2047 * to the ikmpd.
2048 * policy(*) including direction of policy.
2049 *
2050 * m will always be freed.
2051 */
2052 static int
2053 key_spddelete(so, m, mhp)
2054 struct socket *so;
2055 struct mbuf *m;
2056 const struct sadb_msghdr *mhp;
2057 {
2058 struct sadb_address *src0, *dst0;
2059 struct sadb_x_policy *xpl0;
2060 struct secpolicyindex spidx;
2061 struct secpolicy *sp;
2062
2063 IPSEC_ASSERT(so != NULL, ("null so"));
2064 IPSEC_ASSERT(m != NULL, ("null mbuf"));
2065 IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2066 IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2067
2068 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
2069 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
2070 mhp->ext[SADB_X_EXT_POLICY] == NULL) {
2071 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
2072 __func__));
2073 return key_senderror(so, m, EINVAL);
2074 }
2075 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
2076 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
2077 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2078 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
2079 __func__));
2080 return key_senderror(so, m, EINVAL);
2081 }
2082
2083 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
2084 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
2085 xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY];
2086
2087 /*
2088 * Note: do not parse SADB_X_EXT_NAT_T_* here:
2089 * we are processing traffic endpoints.
2090 */
2091
2092 /* make secindex */
2093 /* XXX boundary check against sa_len */
2094 KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir,
2095 src0 + 1,
2096 dst0 + 1,
2097 src0->sadb_address_prefixlen,
2098 dst0->sadb_address_prefixlen,
2099 src0->sadb_address_proto,
2100 &spidx);
2101
2102 /* checking the direciton. */
2103 switch (xpl0->sadb_x_policy_dir) {
2104 case IPSEC_DIR_INBOUND:
2105 case IPSEC_DIR_OUTBOUND:
2106 break;
2107 default:
2108 ipseclog((LOG_DEBUG, "%s: Invalid SP direction.\n", __func__));
2109 return key_senderror(so, m, EINVAL);
2110 }
2111
2112 /* Is there SP in SPD ? */
2113 if ((sp = key_getsp(&spidx)) == NULL) {
2114 ipseclog((LOG_DEBUG, "%s: no SP found.\n", __func__));
2115 return key_senderror(so, m, EINVAL);
2116 }
2117
2118 /* save policy id to buffer to be returned. */
2119 xpl0->sadb_x_policy_id = sp->id;
2120
2121 SPTREE_LOCK();
2122 sp->state = IPSEC_SPSTATE_DEAD;
2123 SPTREE_UNLOCK();
2124 KEY_FREESP(&sp);
2125
2126 {
2127 struct mbuf *n;
2128 struct sadb_msg *newmsg;
2129
2130 /*
2131 * Note: do not send SADB_X_EXT_NAT_T_* here:
2132 * we are sending traffic endpoints.
2133 */
2134
2135 /* create new sadb_msg to reply. */
2136 n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED,
2137 SADB_X_EXT_POLICY, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
2138 if (!n)
2139 return key_senderror(so, m, ENOBUFS);
2140
2141 newmsg = mtod(n, struct sadb_msg *);
2142 newmsg->sadb_msg_errno = 0;
2143 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
2144
2145 m_freem(m);
2146 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2147 }
2148 }
2149
2150 /*
2151 * SADB_SPDDELETE2 processing
2152 * receive
2153 * <base, policy(*)>
2154 * from the user(?), and set SADB_SASTATE_DEAD,
2155 * and send,
2156 * <base, policy(*)>
2157 * to the ikmpd.
2158 * policy(*) including direction of policy.
2159 *
2160 * m will always be freed.
2161 */
2162 static int
2163 key_spddelete2(so, m, mhp)
2164 struct socket *so;
2165 struct mbuf *m;
2166 const struct sadb_msghdr *mhp;
2167 {
2168 u_int32_t id;
2169 struct secpolicy *sp;
2170
2171 IPSEC_ASSERT(so != NULL, ("null socket"));
2172 IPSEC_ASSERT(m != NULL, ("null mbuf"));
2173 IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2174 IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2175
2176 if (mhp->ext[SADB_X_EXT_POLICY] == NULL ||
2177 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2178 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", __func__));
2179 return key_senderror(so, m, EINVAL);
2180 }
2181
2182 id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id;
2183
2184 /* Is there SP in SPD ? */
2185 if ((sp = key_getspbyid(id)) == NULL) {
2186 ipseclog((LOG_DEBUG, "%s: no SP found id:%u.\n", __func__, id));
2187 return key_senderror(so, m, EINVAL);
2188 }
2189
2190 SPTREE_LOCK();
2191 sp->state = IPSEC_SPSTATE_DEAD;
2192 SPTREE_UNLOCK();
2193 KEY_FREESP(&sp);
2194
2195 {
2196 struct mbuf *n, *nn;
2197 struct sadb_msg *newmsg;
2198 int off, len;
2199
2200 /* create new sadb_msg to reply. */
2201 len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
2202
2203 MGETHDR(n, M_DONTWAIT, MT_DATA);
2204 if (n && len > MHLEN) {
2205 MCLGET(n, M_DONTWAIT);
2206 if ((n->m_flags & M_EXT) == 0) {
2207 m_freem(n);
2208 n = NULL;
2209 }
2210 }
2211 if (!n)
2212 return key_senderror(so, m, ENOBUFS);
2213
2214 n->m_len = len;
2215 n->m_next = NULL;
2216 off = 0;
2217
2218 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off);
2219 off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
2220
2221 IPSEC_ASSERT(off == len, ("length inconsistency (off %u len %u)",
2222 off, len));
2223
2224 n->m_next = m_copym(m, mhp->extoff[SADB_X_EXT_POLICY],
2225 mhp->extlen[SADB_X_EXT_POLICY], M_DONTWAIT);
2226 if (!n->m_next) {
2227 m_freem(n);
2228 return key_senderror(so, m, ENOBUFS);
2229 }
2230
2231 n->m_pkthdr.len = 0;
2232 for (nn = n; nn; nn = nn->m_next)
2233 n->m_pkthdr.len += nn->m_len;
2234
2235 newmsg = mtod(n, struct sadb_msg *);
2236 newmsg->sadb_msg_errno = 0;
2237 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
2238
2239 m_freem(m);
2240 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2241 }
2242 }
2243
2244 /*
2245 * SADB_X_GET processing
2246 * receive
2247 * <base, policy(*)>
2248 * from the user(?),
2249 * and send,
2250 * <base, address(SD), policy>
2251 * to the ikmpd.
2252 * policy(*) including direction of policy.
2253 *
2254 * m will always be freed.
2255 */
2256 static int
2257 key_spdget(so, m, mhp)
2258 struct socket *so;
2259 struct mbuf *m;
2260 const struct sadb_msghdr *mhp;
2261 {
2262 u_int32_t id;
2263 struct secpolicy *sp;
2264 struct mbuf *n;
2265
2266 IPSEC_ASSERT(so != NULL, ("null socket"));
2267 IPSEC_ASSERT(m != NULL, ("null mbuf"));
2268 IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2269 IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2270
2271 if (mhp->ext[SADB_X_EXT_POLICY] == NULL ||
2272 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2273 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
2274 __func__));
2275 return key_senderror(so, m, EINVAL);
2276 }
2277
2278 id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id;
2279
2280 /* Is there SP in SPD ? */
2281 if ((sp = key_getspbyid(id)) == NULL) {
2282 ipseclog((LOG_DEBUG, "%s: no SP found id:%u.\n", __func__, id));
2283 return key_senderror(so, m, ENOENT);
2284 }
2285
2286 n = key_setdumpsp(sp, SADB_X_SPDGET, 0, mhp->msg->sadb_msg_pid);
2287 KEY_FREESP(&sp);
2288 if (n != NULL) {
2289 m_freem(m);
2290 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
2291 } else
2292 return key_senderror(so, m, ENOBUFS);
2293 }
2294
2295 /*
2296 * SADB_X_SPDACQUIRE processing.
2297 * Acquire policy and SA(s) for a *OUTBOUND* packet.
2298 * send
2299 * <base, policy(*)>
2300 * to KMD, and expect to receive
2301 * <base> with SADB_X_SPDACQUIRE if error occured,
2302 * or
2303 * <base, policy>
2304 * with SADB_X_SPDUPDATE from KMD by PF_KEY.
2305 * policy(*) is without policy requests.
2306 *
2307 * 0 : succeed
2308 * others: error number
2309 */
2310 int
2311 key_spdacquire(sp)
2312 struct secpolicy *sp;
2313 {
2314 struct mbuf *result = NULL, *m;
2315 struct secspacq *newspacq;
2316
2317 IPSEC_ASSERT(sp != NULL, ("null secpolicy"));
2318 IPSEC_ASSERT(sp->req == NULL, ("policy exists"));
2319 IPSEC_ASSERT(sp->policy == IPSEC_POLICY_IPSEC,
2320 ("policy not IPSEC %u", sp->policy));
2321
2322 /* Get an entry to check whether sent message or not. */
2323 newspacq = key_getspacq(&sp->spidx);
2324 if (newspacq != NULL) {
2325 if (V_key_blockacq_count < newspacq->count) {
2326 /* reset counter and do send message. */
2327 newspacq->count = 0;
2328 } else {
2329 /* increment counter and do nothing. */
2330 newspacq->count++;
2331 return 0;
2332 }
2333 SPACQ_UNLOCK();
2334 } else {
2335 /* make new entry for blocking to send SADB_ACQUIRE. */
2336 newspacq = key_newspacq(&sp->spidx);
2337 if (newspacq == NULL)
2338 return ENOBUFS;
2339 }
2340
2341 /* create new sadb_msg to reply. */
2342 m = key_setsadbmsg(SADB_X_SPDACQUIRE, 0, 0, 0, 0, 0);
2343 if (!m)
2344 return ENOBUFS;
2345
2346 result = m;
2347
2348 result->m_pkthdr.len = 0;
2349 for (m = result; m; m = m->m_next)
2350 result->m_pkthdr.len += m->m_len;
2351
2352 mtod(result, struct sadb_msg *)->sadb_msg_len =
2353 PFKEY_UNIT64(result->m_pkthdr.len);
2354
2355 return key_sendup_mbuf(NULL, m, KEY_SENDUP_REGISTERED);
2356 }
2357
2358 /*
2359 * SADB_SPDFLUSH processing
2360 * receive
2361 * <base>
2362 * from the user, and free all entries in secpctree.
2363 * and send,
2364 * <base>
2365 * to the user.
2366 * NOTE: what to do is only marking SADB_SASTATE_DEAD.
2367 *
2368 * m will always be freed.
2369 */
2370 static int
2371 key_spdflush(so, m, mhp)
2372 struct socket *so;
2373 struct mbuf *m;
2374 const struct sadb_msghdr *mhp;
2375 {
2376 struct sadb_msg *newmsg;
2377 struct secpolicy *sp;
2378 u_int dir;
2379
2380 IPSEC_ASSERT(so != NULL, ("null socket"));
2381 IPSEC_ASSERT(m != NULL, ("null mbuf"));
2382 IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2383 IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2384
2385 if (m->m_len != PFKEY_ALIGN8(sizeof(struct sadb_msg)))
2386 return key_senderror(so, m, EINVAL);
2387
2388 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2389 SPTREE_LOCK();
2390 LIST_FOREACH(sp, &V_sptree[dir], chain)
2391 sp->state = IPSEC_SPSTATE_DEAD;
2392 SPTREE_UNLOCK();
2393 }
2394
2395 if (sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) {
2396 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
2397 return key_senderror(so, m, ENOBUFS);
2398 }
2399
2400 if (m->m_next)
2401 m_freem(m->m_next);
2402 m->m_next = NULL;
2403 m->m_pkthdr.len = m->m_len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
2404 newmsg = mtod(m, struct sadb_msg *);
2405 newmsg->sadb_msg_errno = 0;
2406 newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len);
2407
2408 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
2409 }
2410
2411 /*
2412 * SADB_SPDDUMP processing
2413 * receive
2414 * <base>
2415 * from the user, and dump all SP leaves
2416 * and send,
2417 * <base> .....
2418 * to the ikmpd.
2419 *
2420 * m will always be freed.
2421 */
2422 static int
2423 key_spddump(so, m, mhp)
2424 struct socket *so;
2425 struct mbuf *m;
2426 const struct sadb_msghdr *mhp;
2427 {
2428 struct secpolicy *sp;
2429 int cnt;
2430 u_int dir;
2431 struct mbuf *n;
2432
2433 IPSEC_ASSERT(so != NULL, ("null socket"));
2434 IPSEC_ASSERT(m != NULL, ("null mbuf"));
2435 IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2436 IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2437
2438 /* search SPD entry and get buffer size. */
2439 cnt = 0;
2440 SPTREE_LOCK();
2441 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2442 LIST_FOREACH(sp, &V_sptree[dir], chain) {
2443 cnt++;
2444 }
2445 }
2446
2447 if (cnt == 0) {
2448 SPTREE_UNLOCK();
2449 return key_senderror(so, m, ENOENT);
2450 }
2451
2452 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2453 LIST_FOREACH(sp, &V_sptree[dir], chain) {
2454 --cnt;
2455 n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt,
2456 mhp->msg->sadb_msg_pid);
2457
2458 if (n)
2459 key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
2460 }
2461 }
2462
2463 SPTREE_UNLOCK();
2464 m_freem(m);
2465 return 0;
2466 }
2467
2468 static struct mbuf *
2469 key_setdumpsp(struct secpolicy *sp, u_int8_t type, u_int32_t seq, u_int32_t pid)
2470 {
2471 struct mbuf *result = NULL, *m;
2472 struct seclifetime lt;
2473
2474 m = key_setsadbmsg(type, 0, SADB_SATYPE_UNSPEC, seq, pid, sp->refcnt);
2475 if (!m)
2476 goto fail;
2477 result = m;
2478
2479 /*
2480 * Note: do not send SADB_X_EXT_NAT_T_* here:
2481 * we are sending traffic endpoints.
2482 */
2483 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
2484 &sp->spidx.src.sa, sp->spidx.prefs,
2485 sp->spidx.ul_proto);
2486 if (!m)
2487 goto fail;
2488 m_cat(result, m);
2489
2490 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
2491 &sp->spidx.dst.sa, sp->spidx.prefd,
2492 sp->spidx.ul_proto);
2493 if (!m)
2494 goto fail;
2495 m_cat(result, m);
2496
2497 m = key_sp2msg(sp);
2498 if (!m)
2499 goto fail;
2500 m_cat(result, m);
2501
2502 if(sp->lifetime){
2503 lt.addtime=sp->created;
2504 lt.usetime= sp->lastused;
2505 m = key_setlifetime(<, SADB_EXT_LIFETIME_CURRENT);
2506 if (!m)
2507 goto fail;
2508 m_cat(result, m);
2509
2510 lt.addtime=sp->lifetime;
2511 lt.usetime= sp->validtime;
2512 m = key_setlifetime(<, SADB_EXT_LIFETIME_HARD);
2513 if (!m)
2514 goto fail;
2515 m_cat(result, m);
2516 }
2517
2518 if ((result->m_flags & M_PKTHDR) == 0)
2519 goto fail;
2520
2521 if (result->m_len < sizeof(struct sadb_msg)) {
2522 result = m_pullup(result, sizeof(struct sadb_msg));
2523 if (result == NULL)
2524 goto fail;
2525 }
2526
2527 result->m_pkthdr.len = 0;
2528 for (m = result; m; m = m->m_next)
2529 result->m_pkthdr.len += m->m_len;
2530
2531 mtod(result, struct sadb_msg *)->sadb_msg_len =
2532 PFKEY_UNIT64(result->m_pkthdr.len);
2533
2534 return result;
2535
2536 fail:
2537 m_freem(result);
2538 return NULL;
2539 }
2540
2541 /*
2542 * get PFKEY message length for security policy and request.
2543 */
2544 static u_int
2545 key_getspreqmsglen(sp)
2546 struct secpolicy *sp;
2547 {
2548 u_int tlen;
2549
2550 tlen = sizeof(struct sadb_x_policy);
2551
2552 /* if is the policy for ipsec ? */
2553 if (sp->policy != IPSEC_POLICY_IPSEC)
2554 return tlen;
2555
2556 /* get length of ipsec requests */
2557 {
2558 struct ipsecrequest *isr;
2559 int len;
2560
2561 for (isr = sp->req; isr != NULL; isr = isr->next) {
2562 len = sizeof(struct sadb_x_ipsecrequest)
2563 + isr->saidx.src.sa.sa_len
2564 + isr->saidx.dst.sa.sa_len;
2565
2566 tlen += PFKEY_ALIGN8(len);
2567 }
2568 }
2569
2570 return tlen;
2571 }
2572
2573 /*
2574 * SADB_SPDEXPIRE processing
2575 * send
2576 * <base, address(SD), lifetime(CH), policy>
2577 * to KMD by PF_KEY.
2578 *
2579 * OUT: 0 : succeed
2580 * others : error number
2581 */
2582 static int
2583 key_spdexpire(sp)
2584 struct secpolicy *sp;
2585 {
2586 struct mbuf *result = NULL, *m;
2587 int len;
2588 int error = -1;
2589 struct sadb_lifetime *lt;
2590
2591 /* XXX: Why do we lock ? */
2592
2593 IPSEC_ASSERT(sp != NULL, ("null secpolicy"));
2594
2595 /* set msg header */
2596 m = key_setsadbmsg(SADB_X_SPDEXPIRE, 0, 0, 0, 0, 0);
2597 if (!m) {
2598 error = ENOBUFS;
2599 goto fail;
2600 }
2601 result = m;
2602
2603 /* create lifetime extension (current and hard) */
2604 len = PFKEY_ALIGN8(sizeof(*lt)) * 2;
2605 m = key_alloc_mbuf(len);
2606 if (!m || m->m_next) { /*XXX*/
2607 if (m)
2608 m_freem(m);
2609 error = ENOBUFS;
2610 goto fail;
2611 }
2612 bzero(mtod(m, caddr_t), len);
2613 lt = mtod(m, struct sadb_lifetime *);
2614 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
2615 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
2616 lt->sadb_lifetime_allocations = 0;
2617 lt->sadb_lifetime_bytes = 0;
2618 lt->sadb_lifetime_addtime = sp->created;
2619 lt->sadb_lifetime_usetime = sp->lastused;
2620 lt = (struct sadb_lifetime *)(mtod(m, caddr_t) + len / 2);
2621 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
2622 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
2623 lt->sadb_lifetime_allocations = 0;
2624 lt->sadb_lifetime_bytes = 0;
2625 lt->sadb_lifetime_addtime = sp->lifetime;
2626 lt->sadb_lifetime_usetime = sp->validtime;
2627 m_cat(result, m);
2628
2629 /*
2630 * Note: do not send SADB_X_EXT_NAT_T_* here:
2631 * we are sending traffic endpoints.
2632 */
2633
2634 /* set sadb_address for source */
2635 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
2636 &sp->spidx.src.sa,
2637 sp->spidx.prefs, sp->spidx.ul_proto);
2638 if (!m) {
2639 error = ENOBUFS;
2640 goto fail;
2641 }
2642 m_cat(result, m);
2643
2644 /* set sadb_address for destination */
2645 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
2646 &sp->spidx.dst.sa,
2647 sp->spidx.prefd, sp->spidx.ul_proto);
2648 if (!m) {
2649 error = ENOBUFS;
2650 goto fail;
2651 }
2652 m_cat(result, m);
2653
2654 /* set secpolicy */
2655 m = key_sp2msg(sp);
2656 if (!m) {
2657 error = ENOBUFS;
2658 goto fail;
2659 }
2660 m_cat(result, m);
2661
2662 if ((result->m_flags & M_PKTHDR) == 0) {
2663 error = EINVAL;
2664 goto fail;
2665 }
2666
2667 if (result->m_len < sizeof(struct sadb_msg)) {
2668 result = m_pullup(result, sizeof(struct sadb_msg));
2669 if (result == NULL) {
2670 error = ENOBUFS;
2671 goto fail;
2672 }
2673 }
2674
2675 result->m_pkthdr.len = 0;
2676 for (m = result; m; m = m->m_next)
2677 result->m_pkthdr.len += m->m_len;
2678
2679 mtod(result, struct sadb_msg *)->sadb_msg_len =
2680 PFKEY_UNIT64(result->m_pkthdr.len);
2681
2682 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
2683
2684 fail:
2685 if (result)
2686 m_freem(result);
2687 return error;
2688 }
2689
2690 /* %%% SAD management */
2691 /*
2692 * allocating a memory for new SA head, and copy from the values of mhp.
2693 * OUT: NULL : failure due to the lack of memory.
2694 * others : pointer to new SA head.
2695 */
2696 static struct secashead *
2697 key_newsah(saidx)
2698 struct secasindex *saidx;
2699 {
2700 struct secashead *newsah;
2701
2702 IPSEC_ASSERT(saidx != NULL, ("null saidx"));
2703
2704 newsah = malloc(sizeof(struct secashead), M_IPSEC_SAH, M_NOWAIT|M_ZERO);
2705 if (newsah != NULL) {
2706 int i;
2707 for (i = 0; i < sizeof(newsah->savtree)/sizeof(newsah->savtree[0]); i++)
2708 LIST_INIT(&newsah->savtree[i]);
2709 newsah->saidx = *saidx;
2710
2711 /* add to saidxtree */
2712 newsah->state = SADB_SASTATE_MATURE;
2713
2714 SAHTREE_LOCK();
2715 LIST_INSERT_HEAD(&V_sahtree, newsah, chain);
2716 SAHTREE_UNLOCK();
2717 }
2718 return(newsah);
2719 }
2720
2721 /*
2722 * delete SA index and all SA registerd.
2723 */
2724 static void
2725 key_delsah(sah)
2726 struct secashead *sah;
2727 {
2728 struct secasvar *sav, *nextsav;
2729 u_int stateidx;
2730 int zombie = 0;
2731
2732 IPSEC_ASSERT(sah != NULL, ("NULL sah"));
2733 SAHTREE_LOCK_ASSERT();
2734
2735 /* searching all SA registerd in the secindex. */
2736 for (stateidx = 0;
2737 stateidx < _ARRAYLEN(saorder_state_any);
2738 stateidx++) {
2739 u_int state = saorder_state_any[stateidx];
2740 LIST_FOREACH_SAFE(sav, &sah->savtree[state], chain, nextsav) {
2741 if (sav->refcnt == 0) {
2742 /* sanity check */
2743 KEY_CHKSASTATE(state, sav->state, __func__);
2744 /*
2745 * do NOT call KEY_FREESAV here:
2746 * it will only delete the sav if refcnt == 1,
2747 * where we already know that refcnt == 0
2748 */
2749 key_delsav(sav);
2750 } else {
2751 /* give up to delete this sa */
2752 zombie++;
2753 }
2754 }
2755 }
2756 if (!zombie) { /* delete only if there are savs */
2757 /* remove from tree of SA index */
2758 if (__LIST_CHAINED(sah))
2759 LIST_REMOVE(sah, chain);
2760 if (sah->route_cache.sa_route.ro_rt) {
2761 RTFREE(sah->route_cache.sa_route.ro_rt);
2762 sah->route_cache.sa_route.ro_rt = (struct rtentry *)NULL;
2763 }
2764 free(sah, M_IPSEC_SAH);
2765 }
2766 }
2767
2768 /*
2769 * allocating a new SA with LARVAL state. key_add() and key_getspi() call,
2770 * and copy the values of mhp into new buffer.
2771 * When SAD message type is GETSPI:
2772 * to set sequence number from acq_seq++,
2773 * to set zero to SPI.
2774 * not to call key_setsava().
2775 * OUT: NULL : fail
2776 * others : pointer to new secasvar.
2777 *
2778 * does not modify mbuf. does not free mbuf on error.
2779 */
2780 static struct secasvar *
2781 key_newsav(m, mhp, sah, errp, where, tag)
2782 struct mbuf *m;
2783 const struct sadb_msghdr *mhp;
2784 struct secashead *sah;
2785 int *errp;
2786 const char* where;
2787 int tag;
2788 {
2789 struct secasvar *newsav;
2790 const struct sadb_sa *xsa;
2791
2792 IPSEC_ASSERT(m != NULL, ("null mbuf"));
2793 IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2794 IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2795 IPSEC_ASSERT(sah != NULL, ("null secashead"));
2796
2797 newsav = malloc(sizeof(struct secasvar), M_IPSEC_SA, M_NOWAIT|M_ZERO);
2798 if (newsav == NULL) {
2799 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
2800 *errp = ENOBUFS;
2801 goto done;
2802 }
2803
2804 switch (mhp->msg->sadb_msg_type) {
2805 case SADB_GETSPI:
2806 newsav->spi = 0;
2807
2808 #ifdef IPSEC_DOSEQCHECK
2809 /* sync sequence number */
2810 if (mhp->msg->sadb_msg_seq == 0)
2811 newsav->seq =
2812 (V_acq_seq = (V_acq_seq == ~0 ? 1 : ++V_acq_seq));
2813 else
2814 #endif
2815 newsav->seq = mhp->msg->sadb_msg_seq;
2816 break;
2817
2818 case SADB_ADD:
2819 /* sanity check */
2820 if (mhp->ext[SADB_EXT_SA] == NULL) {
2821 free(newsav, M_IPSEC_SA);
2822 newsav = NULL;
2823 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
2824 __func__));
2825 *errp = EINVAL;
2826 goto done;
2827 }
2828 xsa = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA];
2829 newsav->spi = xsa->sadb_sa_spi;
2830 newsav->seq = mhp->msg->sadb_msg_seq;
2831 break;
2832 default:
2833 free(newsav, M_IPSEC_SA);
2834 newsav = NULL;
2835 *errp = EINVAL;
2836 goto done;
2837 }
2838
2839
2840 /* copy sav values */
2841 if (mhp->msg->sadb_msg_type != SADB_GETSPI) {
2842 *errp = key_setsaval(newsav, m, mhp);
2843 if (*errp) {
2844 free(newsav, M_IPSEC_SA);
2845 newsav = NULL;
2846 goto done;
2847 }
2848 }
2849
2850 SECASVAR_LOCK_INIT(newsav);
2851
2852 /* reset created */
2853 newsav->created = time_second;
2854 newsav->pid = mhp->msg->sadb_msg_pid;
2855
2856 /* add to satree */
2857 newsav->sah = sah;
2858 sa_initref(newsav);
2859 newsav->state = SADB_SASTATE_LARVAL;
2860
2861 SAHTREE_LOCK();
2862 LIST_INSERT_TAIL(&sah->savtree[SADB_SASTATE_LARVAL], newsav,
2863 secasvar, chain);
2864 SAHTREE_UNLOCK();
2865 done:
2866 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
2867 printf("DP %s from %s:%u return SP:%p\n", __func__,
2868 where, tag, newsav));
2869
2870 return newsav;
2871 }
2872
2873 /*
2874 * free() SA variable entry.
2875 */
2876 static void
2877 key_cleansav(struct secasvar *sav)
2878 {
2879 /*
2880 * Cleanup xform state. Note that zeroize'ing causes the
2881 * keys to be cleared; otherwise we must do it ourself.
2882 */
2883 if (sav->tdb_xform != NULL) {
2884 sav->tdb_xform->xf_zeroize(sav);
2885 sav->tdb_xform = NULL;
2886 } else {
2887 KASSERT(sav->iv == NULL, ("iv but no xform"));
2888 if (sav->key_auth != NULL)
2889 bzero(sav->key_auth->key_data, _KEYLEN(sav->key_auth));
2890 if (sav->key_enc != NULL)
2891 bzero(sav->key_enc->key_data, _KEYLEN(sav->key_enc));
2892 }
2893 if (sav->key_auth != NULL) {
2894 if (sav->key_auth->key_data != NULL)
2895 free(sav->key_auth->key_data, M_IPSEC_MISC);
2896 free(sav->key_auth, M_IPSEC_MISC);
2897 sav->key_auth = NULL;
2898 }
2899 if (sav->key_enc != NULL) {
2900 if (sav->key_enc->key_data != NULL)
2901 free(sav->key_enc->key_data, M_IPSEC_MISC);
2902 free(sav->key_enc, M_IPSEC_MISC);
2903 sav->key_enc = NULL;
2904 }
2905 if (sav->sched) {
2906 bzero(sav->sched, sav->schedlen);
2907 free(sav->sched, M_IPSEC_MISC);
2908 sav->sched = NULL;
2909 }
2910 if (sav->replay != NULL) {
2911 free(sav->replay, M_IPSEC_MISC);
2912 sav->replay = NULL;
2913 }
2914 if (sav->lft_c != NULL) {
2915 free(sav->lft_c, M_IPSEC_MISC);
2916 sav->lft_c = NULL;
2917 }
2918 if (sav->lft_h != NULL) {
2919 free(sav->lft_h, M_IPSEC_MISC);
2920 sav->lft_h = NULL;
2921 }
2922 if (sav->lft_s != NULL) {
2923 free(sav->lft_s, M_IPSEC_MISC);
2924 sav->lft_s = NULL;
2925 }
2926 }
2927
2928 /*
2929 * free() SA variable entry.
2930 */
2931 static void
2932 key_delsav(sav)
2933 struct secasvar *sav;
2934 {
2935 IPSEC_ASSERT(sav != NULL, ("null sav"));
2936 IPSEC_ASSERT(sav->refcnt == 0, ("reference count %u > 0", sav->refcnt));
2937
2938 /* remove from SA header */
2939 if (__LIST_CHAINED(sav))
2940 LIST_REMOVE(sav, chain);
2941 key_cleansav(sav);
2942 SECASVAR_LOCK_DESTROY(sav);
2943 free(sav, M_IPSEC_SA);
2944 }
2945
2946 /*
2947 * search SAD.
2948 * OUT:
2949 * NULL : not found
2950 * others : found, pointer to a SA.
2951 */
2952 static struct secashead *
2953 key_getsah(saidx)
2954 struct secasindex *saidx;
2955 {
2956 struct secashead *sah;
2957
2958 SAHTREE_LOCK();
2959 LIST_FOREACH(sah, &V_sahtree, chain) {
2960 if (sah->state == SADB_SASTATE_DEAD)
2961 continue;
2962 if (key_cmpsaidx(&sah->saidx, saidx, CMP_REQID))
2963 break;
2964 }
2965 SAHTREE_UNLOCK();
2966
2967 return sah;
2968 }
2969
2970 /*
2971 * check not to be duplicated SPI.
2972 * NOTE: this function is too slow due to searching all SAD.
2973 * OUT:
2974 * NULL : not found
2975 * others : found, pointer to a SA.
2976 */
2977 static struct secasvar *
2978 key_checkspidup(saidx, spi)
2979 struct secasindex *saidx;
2980 u_int32_t spi;
2981 {
2982 struct secashead *sah;
2983 struct secasvar *sav;
2984
2985 /* check address family */
2986 if (saidx->src.sa.sa_family != saidx->dst.sa.sa_family) {
2987 ipseclog((LOG_DEBUG, "%s: address family mismatched.\n",
2988 __func__));
2989 return NULL;
2990 }
2991
2992 sav = NULL;
2993 /* check all SAD */
2994 SAHTREE_LOCK();
2995 LIST_FOREACH(sah, &V_sahtree, chain) {
2996 if (!key_ismyaddr((struct sockaddr *)&sah->saidx.dst))
2997 continue;
2998 sav = key_getsavbyspi(sah, spi);
2999 if (sav != NULL)
3000 break;
3001 }
3002 SAHTREE_UNLOCK();
3003
3004 return sav;
3005 }
3006
3007 /*
3008 * search SAD litmited alive SA, protocol, SPI.
3009 * OUT:
3010 * NULL : not found
3011 * others : found, pointer to a SA.
3012 */
3013 static struct secasvar *
3014 key_getsavbyspi(sah, spi)
3015 struct secashead *sah;
3016 u_int32_t spi;
3017 {
3018 struct secasvar *sav;
3019 u_int stateidx, state;
3020
3021 sav = NULL;
3022 SAHTREE_LOCK_ASSERT();
3023 /* search all status */
3024 for (stateidx = 0;
3025 stateidx < _ARRAYLEN(saorder_state_alive);
3026 stateidx++) {
3027
3028 state = saorder_state_alive[stateidx];
3029 LIST_FOREACH(sav, &sah->savtree[state], chain) {
3030
3031 /* sanity check */
3032 if (sav->state != state) {
3033 ipseclog((LOG_DEBUG, "%s: "
3034 "invalid sav->state (queue: %d SA: %d)\n",
3035 __func__, state, sav->state));
3036 continue;
3037 }
3038
3039 if (sav->spi == spi)
3040 return sav;
3041 }
3042 }
3043
3044 return NULL;
3045 }
3046
3047 /*
3048 * copy SA values from PF_KEY message except *SPI, SEQ, PID, STATE and TYPE*.
3049 * You must update these if need.
3050 * OUT: 0: success.
3051 * !0: failure.
3052 *
3053 * does not modify mbuf. does not free mbuf on error.
3054 */
3055 static int
3056 key_setsaval(sav, m, mhp)
3057 struct secasvar *sav;
3058 struct mbuf *m;
3059 const struct sadb_msghdr *mhp;
3060 {
3061 int error = 0;
3062
3063 IPSEC_ASSERT(m != NULL, ("null mbuf"));
3064 IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
3065 IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
3066
3067 /* initialization */
3068 sav->replay = NULL;
3069 sav->key_auth = NULL;
3070 sav->key_enc = NULL;
3071 sav->sched = NULL;
3072 sav->schedlen = 0;
3073 sav->iv = NULL;
3074 sav->lft_c = NULL;
3075 sav->lft_h = NULL;
3076 sav->lft_s = NULL;
3077 sav->tdb_xform = NULL; /* transform */
3078 sav->tdb_encalgxform = NULL; /* encoding algorithm */
3079 sav->tdb_authalgxform = NULL; /* authentication algorithm */
3080 sav->tdb_compalgxform = NULL; /* compression algorithm */
3081 /* Initialize even if NAT-T not compiled in: */
3082 sav->natt_type = 0;
3083 sav->natt_esp_frag_len = 0;
3084
3085 /* SA */
3086 if (mhp->ext[SADB_EXT_SA] != NULL) {
3087 const struct sadb_sa *sa0;
3088
3089 sa0 = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA];
3090 if (mhp->extlen[SADB_EXT_SA] < sizeof(*sa0)) {
3091 error = EINVAL;
3092 goto fail;
3093 }
3094
3095 sav->alg_auth = sa0->sadb_sa_auth;
3096 sav->alg_enc = sa0->sadb_sa_encrypt;
3097 sav->flags = sa0->sadb_sa_flags;
3098
3099 /* replay window */
3100 if ((sa0->sadb_sa_flags & SADB_X_EXT_OLD) == 0) {
3101 sav->replay = (struct secreplay *)
3102 malloc(sizeof(struct secreplay)+sa0->sadb_sa_replay, M_IPSEC_MISC, M_NOWAIT|M_ZERO);
3103 if (sav->replay == NULL) {
3104 ipseclog((LOG_DEBUG, "%s: No more memory.\n",
3105 __func__));
3106 error = ENOBUFS;
3107 goto fail;
3108 }
3109 if (sa0->sadb_sa_replay != 0)
3110 sav->replay->bitmap = (caddr_t)(sav->replay+1);
3111 sav->replay->wsize = sa0->sadb_sa_replay;
3112 }
3113 }
3114
3115 /* Authentication keys */
3116 if (mhp->ext[SADB_EXT_KEY_AUTH] != NULL) {
3117 const struct sadb_key *key0;
3118 int len;
3119
3120 key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_AUTH];
3121 len = mhp->extlen[SADB_EXT_KEY_AUTH];
3122
3123 error = 0;
3124 if (len < sizeof(*key0)) {
3125 error = EINVAL;
3126 goto fail;
3127 }
3128 switch (mhp->msg->sadb_msg_satype) {
3129 case SADB_SATYPE_AH:
3130 case SADB_SATYPE_ESP:
3131 case SADB_X_SATYPE_TCPSIGNATURE:
3132 if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) &&
3133 sav->alg_auth != SADB_X_AALG_NULL)
3134 error = EINVAL;
3135 break;
3136 case SADB_X_SATYPE_IPCOMP:
3137 default:
3138 error = EINVAL;
3139 break;
3140 }
3141 if (error) {
3142 ipseclog((LOG_DEBUG, "%s: invalid key_auth values.\n",
3143 __func__));
3144 goto fail;
3145 }
3146
3147 sav->key_auth = (struct seckey *)key_dup_keymsg(key0, len,
3148 M_IPSEC_MISC);
3149 if (sav->key_auth == NULL ) {
3150 ipseclog((LOG_DEBUG, "%s: No more memory.\n",
3151 __func__));
3152 error = ENOBUFS;
3153 goto fail;
3154 }
3155 }
3156
3157 /* Encryption key */
3158 if (mhp->ext[SADB_EXT_KEY_ENCRYPT] != NULL) {
3159 const struct sadb_key *key0;
3160 int len;
3161
3162 key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_ENCRYPT];
3163 len = mhp->extlen[SADB_EXT_KEY_ENCRYPT];
3164
3165 error = 0;
3166 if (len < sizeof(*key0)) {
3167 error = EINVAL;
3168 goto fail;
3169 }
3170 switch (mhp->msg->sadb_msg_satype) {
3171 case SADB_SATYPE_ESP:
3172 if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) &&
3173 sav->alg_enc != SADB_EALG_NULL) {
3174 error = EINVAL;
3175 break;
3176 }
3177 sav->key_enc = (struct seckey *)key_dup_keymsg(key0,
3178 len,
3179 M_IPSEC_MISC);
3180 if (sav->key_enc == NULL) {
3181 ipseclog((LOG_DEBUG, "%s: No more memory.\n",
3182 __func__));
3183 error = ENOBUFS;
3184 goto fail;
3185 }
3186 break;
3187 case SADB_X_SATYPE_IPCOMP:
3188 if (len != PFKEY_ALIGN8(sizeof(struct sadb_key)))
3189 error = EINVAL;
3190 sav->key_enc = NULL; /*just in case*/
3191 break;
3192 case SADB_SATYPE_AH:
3193 case SADB_X_SATYPE_TCPSIGNATURE:
3194 default:
3195 error = EINVAL;
3196 break;
3197 }
3198 if (error) {
3199 ipseclog((LOG_DEBUG, "%s: invalid key_enc value.\n",
3200 __func__));
3201 goto fail;
3202 }
3203 }
3204
3205 /* set iv */
3206 sav->ivlen = 0;
3207
3208 switch (mhp->msg->sadb_msg_satype) {
3209 case SADB_SATYPE_AH:
3210 error = xform_init(sav, XF_AH);
3211 break;
3212 case SADB_SATYPE_ESP:
3213 error = xform_init(sav, XF_ESP);
3214 break;
3215 case SADB_X_SATYPE_IPCOMP:
3216 error = xform_init(sav, XF_IPCOMP);
3217 break;
3218 case SADB_X_SATYPE_TCPSIGNATURE:
3219 error = xform_init(sav, XF_TCPSIGNATURE);
3220 break;
3221 }
3222 if (error) {
3223 ipseclog((LOG_DEBUG, "%s: unable to initialize SA type %u.\n",
3224 __func__, mhp->msg->sadb_msg_satype));
3225 goto fail;
3226 }
3227
3228 /* reset created */
3229 sav->created = time_second;
3230
3231 /* make lifetime for CURRENT */
3232 sav->lft_c = malloc(sizeof(struct seclifetime), M_IPSEC_MISC, M_NOWAIT);
3233 if (sav->lft_c == NULL) {
3234 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
3235 error = ENOBUFS;
3236 goto fail;
3237 }
3238
3239 sav->lft_c->allocations = 0;
3240 sav->lft_c->bytes = 0;
3241 sav->lft_c->addtime = time_second;
3242 sav->lft_c->usetime = 0;
3243
3244 /* lifetimes for HARD and SOFT */
3245 {
3246 const struct sadb_lifetime *lft0;
3247
3248 lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD];
3249 if (lft0 != NULL) {
3250 if (mhp->extlen[SADB_EXT_LIFETIME_HARD] < sizeof(*lft0)) {
3251 error = EINVAL;
3252 goto fail;
3253 }
3254 sav->lft_h = key_dup_lifemsg(lft0, M_IPSEC_MISC);
3255 if (sav->lft_h == NULL) {
3256 ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__));
3257 error = ENOBUFS;
3258 goto fail;
3259 }
3260 /* to be initialize ? */
3261 }
3262
3263 lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_SOFT];
3264 if (lft0 != NULL) {
3265 if (mhp->extlen[SADB_EXT_LIFETIME_SOFT] < sizeof(*lft0)) {
3266 error = EINVAL;
3267 goto fail;
3268 }
3269 sav->lft_s = key_dup_lifemsg(lft0, M_IPSEC_MISC);
3270 if (sav->lft_s == NULL) {
3271 ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__));
3272 error = ENOBUFS;
3273 goto fail;
3274 }
3275 /* to be initialize ? */
3276 }
3277 }
3278
3279 return 0;
3280
3281 fail:
3282 /* initialization */
3283 key_cleansav(sav);
3284
3285 return error;
3286 }
3287
3288 /*
3289 * validation with a secasvar entry, and set SADB_SATYPE_MATURE.
3290 * OUT: 0: valid
3291 * other: errno
3292 */
3293 static int
3294 key_mature(struct secasvar *sav)
3295 {
3296 int error;
3297
3298 /* check SPI value */
3299 switch (sav->sah->saidx.proto) {
3300 case IPPROTO_ESP:
3301 case IPPROTO_AH:
3302 /*
3303 * RFC 4302, 2.4. Security Parameters Index (SPI), SPI values
3304 * 1-255 reserved by IANA for future use,
3305 * 0 for implementation specific, local use.
3306 */
3307 if (ntohl(sav->spi) <= 255) {
3308 ipseclog((LOG_DEBUG, "%s: illegal range of SPI %u.\n",
3309 __func__, (u_int32_t)ntohl(sav->spi)));
3310 return EINVAL;
3311 }
3312 break;
3313 }
3314
3315 /* check satype */
3316 switch (sav->sah->saidx.proto) {
3317 case IPPROTO_ESP:
3318 /* check flags */
3319 if ((sav->flags & (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) ==
3320 (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) {
3321 ipseclog((LOG_DEBUG, "%s: invalid flag (derived) "
3322 "given to old-esp.\n", __func__));
3323 return EINVAL;
3324 }
3325 error = xform_init(sav, XF_ESP);
3326 break;
3327 case IPPROTO_AH:
3328 /* check flags */
3329 if (sav->flags & SADB_X_EXT_DERIV) {
3330 ipseclog((LOG_DEBUG, "%s: invalid flag (derived) "
3331 "given to AH SA.\n", __func__));
3332 return EINVAL;
3333 }
3334 if (sav->alg_enc != SADB_EALG_NONE) {
3335 ipseclog((LOG_DEBUG, "%s: protocol and algorithm "
3336 "mismated.\n", __func__));
3337 return(EINVAL);
3338 }
3339 error = xform_init(sav, XF_AH);
3340 break;
3341 case IPPROTO_IPCOMP:
3342 if (sav->alg_auth != SADB_AALG_NONE) {
3343 ipseclog((LOG_DEBUG, "%s: protocol and algorithm "
3344 "mismated.\n", __func__));
3345 return(EINVAL);
3346 }
3347 if ((sav->flags & SADB_X_EXT_RAWCPI) == 0
3348 && ntohl(sav->spi) >= 0x10000) {
3349 ipseclog((LOG_DEBUG, "%s: invalid cpi for IPComp.\n",
3350 __func__));
3351 return(EINVAL);
3352 }
3353 error = xform_init(sav, XF_IPCOMP);
3354 break;
3355 case IPPROTO_TCP:
3356 if (sav->alg_enc != SADB_EALG_NONE) {
3357 ipseclog((LOG_DEBUG, "%s: protocol and algorithm "
3358 "mismated.\n", __func__));
3359 return(EINVAL);
3360 }
3361 error = xform_init(sav, XF_TCPSIGNATURE);
3362 break;
3363 default:
3364 ipseclog((LOG_DEBUG, "%s: Invalid satype.\n", __func__));
3365 error = EPROTONOSUPPORT;
3366 break;
3367 }
3368 if (error == 0) {
3369 SAHTREE_LOCK();
3370 key_sa_chgstate(sav, SADB_SASTATE_MATURE);
3371 SAHTREE_UNLOCK();
3372 }
3373 return (error);
3374 }
3375
3376 /*
3377 * subroutine for SADB_GET and SADB_DUMP.
3378 */
3379 static struct mbuf *
3380 key_setdumpsa(struct secasvar *sav, u_int8_t type, u_int8_t satype,
3381 u_int32_t seq, u_int32_t pid)
3382 {
3383 struct mbuf *result = NULL, *tres = NULL, *m;
3384 int i;
3385 int dumporder[] = {
3386 SADB_EXT_SA, SADB_X_EXT_SA2,
3387 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT,
3388 SADB_EXT_LIFETIME_CURRENT, SADB_EXT_ADDRESS_SRC,
3389 SADB_EXT_ADDRESS_DST, SADB_EXT_ADDRESS_PROXY, SADB_EXT_KEY_AUTH,
3390 SADB_EXT_KEY_ENCRYPT, SADB_EXT_IDENTITY_SRC,
3391 SADB_EXT_IDENTITY_DST, SADB_EXT_SENSITIVITY,
3392 #ifdef IPSEC_NAT_T
3393 SADB_X_EXT_NAT_T_TYPE,
3394 SADB_X_EXT_NAT_T_SPORT, SADB_X_EXT_NAT_T_DPORT,
3395 SADB_X_EXT_NAT_T_OAI, SADB_X_EXT_NAT_T_OAR,
3396 SADB_X_EXT_NAT_T_FRAG,
3397 #endif
3398 };
3399
3400 m = key_setsadbmsg(type, 0, satype, seq, pid, sav->refcnt);
3401 if (m == NULL)
3402 goto fail;
3403 result = m;
3404
3405 for (i = sizeof(dumporder)/sizeof(dumporder[0]) - 1; i >= 0; i--) {
3406 m = NULL;
3407 switch (dumporder[i]) {
3408 case SADB_EXT_SA:
3409 m = key_setsadbsa(sav);
3410 if (!m)
3411 goto fail;
3412 break;
3413
3414 case SADB_X_EXT_SA2:
3415 m = key_setsadbxsa2(sav->sah->saidx.mode,
3416 sav->replay ? sav->replay->count : 0,
3417 sav->sah->saidx.reqid);
3418 if (!m)
3419 goto fail;
3420 break;
3421
3422 case SADB_EXT_ADDRESS_SRC:
3423 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
3424 &sav->sah->saidx.src.sa,
3425 FULLMASK, IPSEC_ULPROTO_ANY);
3426 if (!m)
3427 goto fail;
3428 break;
3429
3430 case SADB_EXT_ADDRESS_DST:
3431 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
3432 &sav->sah->saidx.dst.sa,
3433 FULLMASK, IPSEC_ULPROTO_ANY);
3434 if (!m)
3435 goto fail;
3436 break;
3437
3438 case SADB_EXT_KEY_AUTH:
3439 if (!sav->key_auth)
3440 continue;
3441 m = key_setkey(sav->key_auth, SADB_EXT_KEY_AUTH);
3442 if (!m)
3443 goto fail;
3444 break;
3445
3446 case SADB_EXT_KEY_ENCRYPT:
3447 if (!sav->key_enc)
3448 continue;
3449 m = key_setkey(sav->key_enc, SADB_EXT_KEY_ENCRYPT);
3450 if (!m)
3451 goto fail;
3452 break;
3453
3454 case SADB_EXT_LIFETIME_CURRENT:
3455 if (!sav->lft_c)
3456 continue;
3457 m = key_setlifetime(sav->lft_c,
3458 SADB_EXT_LIFETIME_CURRENT);
3459 if (!m)
3460 goto fail;
3461 break;
3462
3463 case SADB_EXT_LIFETIME_HARD:
3464 if (!sav->lft_h)
3465 continue;
3466 m = key_setlifetime(sav->lft_h,
3467 SADB_EXT_LIFETIME_HARD);
3468 if (!m)
3469 goto fail;
3470 break;
3471
3472 case SADB_EXT_LIFETIME_SOFT:
3473 if (!sav->lft_s)
3474 continue;
3475 m = key_setlifetime(sav->lft_s,
3476 SADB_EXT_LIFETIME_SOFT);
3477
3478 if (!m)
3479 goto fail;
3480 break;
3481
3482 #ifdef IPSEC_NAT_T
3483 case SADB_X_EXT_NAT_T_TYPE:
3484 m = key_setsadbxtype(sav->natt_type);
3485 if (!m)
3486 goto fail;
3487 break;
3488
3489 case SADB_X_EXT_NAT_T_DPORT:
3490 m = key_setsadbxport(
3491 KEY_PORTFROMSADDR(&sav->sah->saidx.dst),
3492 SADB_X_EXT_NAT_T_DPORT);
3493 if (!m)
3494 goto fail;
3495 break;
3496
3497 case SADB_X_EXT_NAT_T_SPORT:
3498 m = key_setsadbxport(
3499 KEY_PORTFROMSADDR(&sav->sah->saidx.src),
3500 SADB_X_EXT_NAT_T_SPORT);
3501 if (!m)
3502 goto fail;
3503 break;
3504
3505 case SADB_X_EXT_NAT_T_OAI:
3506 case SADB_X_EXT_NAT_T_OAR:
3507 case SADB_X_EXT_NAT_T_FRAG:
3508 /* We do not (yet) support those. */
3509 continue;
3510 #endif
3511
3512 case SADB_EXT_ADDRESS_PROXY:
3513 case SADB_EXT_IDENTITY_SRC:
3514 case SADB_EXT_IDENTITY_DST:
3515 /* XXX: should we brought from SPD ? */
3516 case SADB_EXT_SENSITIVITY:
3517 default:
3518 continue;
3519 }
3520
3521 if (!m)
3522 goto fail;
3523 if (tres)
3524 m_cat(m, tres);
3525 tres = m;
3526
3527 }
3528
3529 m_cat(result, tres);
3530 if (result->m_len < sizeof(struct sadb_msg)) {
3531 result = m_pullup(result, sizeof(struct sadb_msg));
3532 if (result == NULL)
3533 goto fail;
3534 }
3535
3536 result->m_pkthdr.len = 0;
3537 for (m = result; m; m = m->m_next)
3538 result->m_pkthdr.len += m->m_len;
3539
3540 mtod(result, struct sadb_msg *)->sadb_msg_len =
3541 PFKEY_UNIT64(result->m_pkthdr.len);
3542
3543 return result;
3544
3545 fail:
3546 m_freem(result);
3547 m_freem(tres);
3548 return NULL;
3549 }
3550
3551 /*
3552 * set data into sadb_msg.
3553 */
3554 static struct mbuf *
3555 key_setsadbmsg(u_int8_t type, u_int16_t tlen, u_int8_t satype, u_int32_t seq,
3556 pid_t pid, u_int16_t reserved)
3557 {
3558 struct mbuf *m;
3559 struct sadb_msg *p;
3560 int len;
3561
3562 len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
3563 if (len > MCLBYTES)
3564 return NULL;
3565 MGETHDR(m, M_DONTWAIT, MT_DATA);
3566 if (m && len > MHLEN) {
3567 MCLGET(m, M_DONTWAIT);
3568 if ((m->m_flags & M_EXT) == 0) {
3569 m_freem(m);
3570 m = NULL;
3571 }
3572 }
3573 if (!m)
3574 return NULL;
3575 m->m_pkthdr.len = m->m_len = len;
3576 m->m_next = NULL;
3577
3578 p = mtod(m, struct sadb_msg *);
3579
3580 bzero(p, len);
3581 p->sadb_msg_version = PF_KEY_V2;
3582 p->sadb_msg_type = type;
3583 p->sadb_msg_errno = 0;
3584 p->sadb_msg_satype = satype;
3585 p->sadb_msg_len = PFKEY_UNIT64(tlen);
3586 p->sadb_msg_reserved = reserved;
3587 p->sadb_msg_seq = seq;
3588 p->sadb_msg_pid = (u_int32_t)pid;
3589
3590 return m;
3591 }
3592
3593 /*
3594 * copy secasvar data into sadb_address.
3595 */
3596 static struct mbuf *
3597 key_setsadbsa(sav)
3598 struct secasvar *sav;
3599 {
3600 struct mbuf *m;
3601 struct sadb_sa *p;
3602 int len;
3603
3604 len = PFKEY_ALIGN8(sizeof(struct sadb_sa));
3605 m = key_alloc_mbuf(len);
3606 if (!m || m->m_next) { /*XXX*/
3607 if (m)
3608 m_freem(m);
3609 return NULL;
3610 }
3611
3612 p = mtod(m, struct sadb_sa *);
3613
3614 bzero(p, len);
3615 p->sadb_sa_len = PFKEY_UNIT64(len);
3616 p->sadb_sa_exttype = SADB_EXT_SA;
3617 p->sadb_sa_spi = sav->spi;
3618 p->sadb_sa_replay = (sav->replay != NULL ? sav->replay->wsize : 0);
3619 p->sadb_sa_state = sav->state;
3620 p->sadb_sa_auth = sav->alg_auth;
3621 p->sadb_sa_encrypt = sav->alg_enc;
3622 p->sadb_sa_flags = sav->flags;
3623
3624 return m;
3625 }
3626
3627 /*
3628 * set data into sadb_address.
3629 */
3630 static struct mbuf *
3631 key_setsadbaddr(u_int16_t exttype, const struct sockaddr *saddr, u_int8_t prefixlen, u_int16_t ul_proto)
3632 {
3633 struct mbuf *m;
3634 struct sadb_address *p;
3635 size_t len;
3636
3637 len = PFKEY_ALIGN8(sizeof(struct sadb_address)) +
3638 PFKEY_ALIGN8(saddr->sa_len);
3639 m = key_alloc_mbuf(len);
3640 if (!m || m->m_next) { /*XXX*/
3641 if (m)
3642 m_freem(m);
3643 return NULL;
3644 }
3645
3646 p = mtod(m, struct sadb_address *);
3647
3648 bzero(p, len);
3649 p->sadb_address_len = PFKEY_UNIT64(len);
3650 p->sadb_address_exttype = exttype;
3651 p->sadb_address_proto = ul_proto;
3652 if (prefixlen == FULLMASK) {
3653 switch (saddr->sa_family) {
3654 case AF_INET:
3655 prefixlen = sizeof(struct in_addr) << 3;
3656 break;
3657 case AF_INET6:
3658 prefixlen = sizeof(struct in6_addr) << 3;
3659 break;
3660 default:
3661 ; /*XXX*/
3662 }
3663 }
3664 p->sadb_address_prefixlen = prefixlen;
3665 p->sadb_address_reserved = 0;
3666
3667 bcopy(saddr,
3668 mtod(m, caddr_t) + PFKEY_ALIGN8(sizeof(struct sadb_address)),
3669 saddr->sa_len);
3670
3671 return m;
3672 }
3673
3674 /*
3675 * set data into sadb_x_sa2.
3676 */
3677 static struct mbuf *
3678 key_setsadbxsa2(u_int8_t mode, u_int32_t seq, u_int32_t reqid)
3679 {
3680 struct mbuf *m;
3681 struct sadb_x_sa2 *p;
3682 size_t len;
3683
3684 len = PFKEY_ALIGN8(sizeof(struct sadb_x_sa2));
3685 m = key_alloc_mbuf(len);
3686 if (!m || m->m_next) { /*XXX*/
3687 if (m)
3688 m_freem(m);
3689 return NULL;
3690 }
3691
3692 p = mtod(m, struct sadb_x_sa2 *);
3693
3694 bzero(p, len);
3695 p->sadb_x_sa2_len = PFKEY_UNIT64(len);
3696 p->sadb_x_sa2_exttype = SADB_X_EXT_SA2;
3697 p->sadb_x_sa2_mode = mode;
3698 p->sadb_x_sa2_reserved1 = 0;
3699 p->sadb_x_sa2_reserved2 = 0;
3700 p->sadb_x_sa2_sequence = seq;
3701 p->sadb_x_sa2_reqid = reqid;
3702
3703 return m;
3704 }
3705
3706 #ifdef IPSEC_NAT_T
3707 /*
3708 * Set a type in sadb_x_nat_t_type.
3709 */
3710 static struct mbuf *
3711 key_setsadbxtype(u_int16_t type)
3712 {
3713 struct mbuf *m;
3714 size_t len;
3715 struct sadb_x_nat_t_type *p;
3716
3717 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_type));
3718
3719 m = key_alloc_mbuf(len);
3720 if (!m || m->m_next) { /*XXX*/
3721 if (m)
3722 m_freem(m);
3723 return (NULL);
3724 }
3725
3726 p = mtod(m, struct sadb_x_nat_t_type *);
3727
3728 bzero(p, len);
3729 p->sadb_x_nat_t_type_len = PFKEY_UNIT64(len);
3730 p->sadb_x_nat_t_type_exttype = SADB_X_EXT_NAT_T_TYPE;
3731 p->sadb_x_nat_t_type_type = type;
3732
3733 return (m);
3734 }
3735 /*
3736 * Set a port in sadb_x_nat_t_port.
3737 * In contrast to default RFC 2367 behaviour, port is in network byte order.
3738 */
3739 static struct mbuf *
3740 key_setsadbxport(u_int16_t port, u_int16_t type)
3741 {
3742 struct mbuf *m;
3743 size_t len;
3744 struct sadb_x_nat_t_port *p;
3745
3746 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_port));
3747
3748 m = key_alloc_mbuf(len);
3749 if (!m || m->m_next) { /*XXX*/
3750 if (m)
3751 m_freem(m);
3752 return (NULL);
3753 }
3754
3755 p = mtod(m, struct sadb_x_nat_t_port *);
3756
3757 bzero(p, len);
3758 p->sadb_x_nat_t_port_len = PFKEY_UNIT64(len);
3759 p->sadb_x_nat_t_port_exttype = type;
3760 p->sadb_x_nat_t_port_port = port;
3761
3762 return (m);
3763 }
3764
3765 /*
3766 * Get port from sockaddr. Port is in network byte order.
3767 */
3768 u_int16_t
3769 key_portfromsaddr(struct sockaddr *sa)
3770 {
3771
3772 switch (sa->sa_family) {
3773 #ifdef INET
3774 case AF_INET:
3775 return ((struct sockaddr_in *)sa)->sin_port;
3776 #endif
3777 #ifdef INET6
3778 case AF_INET6:
3779 return ((struct sockaddr_in6 *)sa)->sin6_port;
3780 #endif
3781 }
3782 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
3783 printf("DP %s unexpected address family %d\n",
3784 __func__, sa->sa_family));
3785 return (0);
3786 }
3787 #endif /* IPSEC_NAT_T */
3788
3789 /*
3790 * Set port in struct sockaddr. Port is in network byte order.
3791 */
3792 static void
3793 key_porttosaddr(struct sockaddr *sa, u_int16_t port)
3794 {
3795
3796 switch (sa->sa_family) {
3797 #ifdef INET
3798 case AF_INET:
3799 ((struct sockaddr_in *)sa)->sin_port = port;
3800 break;
3801 #endif
3802 #ifdef INET6
3803 case AF_INET6:
3804 ((struct sockaddr_in6 *)sa)->sin6_port = port;
3805 break;
3806 #endif
3807 default:
3808 ipseclog((LOG_DEBUG, "%s: unexpected address family %d.\n",
3809 __func__, sa->sa_family));
3810 break;
3811 }
3812 }
3813
3814 /*
3815 * set data into sadb_x_policy
3816 */
3817 static struct mbuf *
3818 key_setsadbxpolicy(u_int16_t type, u_int8_t dir, u_int32_t id)
3819 {
3820 struct mbuf *m;
3821 struct sadb_x_policy *p;
3822 size_t len;
3823
3824 len = PFKEY_ALIGN8(sizeof(struct sadb_x_policy));
3825 m = key_alloc_mbuf(len);
3826 if (!m || m->m_next) { /*XXX*/
3827 if (m)
3828 m_freem(m);
3829 return NULL;
3830 }
3831
3832 p = mtod(m, struct sadb_x_policy *);
3833
3834 bzero(p, len);
3835 p->sadb_x_policy_len = PFKEY_UNIT64(len);
3836 p->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
3837 p->sadb_x_policy_type = type;
3838 p->sadb_x_policy_dir = dir;
3839 p->sadb_x_policy_id = id;
3840
3841 return m;
3842 }
3843
3844 /* %%% utilities */
3845 /* Take a key message (sadb_key) from the socket and turn it into one
3846 * of the kernel's key structures (seckey).
3847 *
3848 * IN: pointer to the src
3849 * OUT: NULL no more memory
3850 */
3851 struct seckey *
3852 key_dup_keymsg(const struct sadb_key *src, u_int len,
3853 struct malloc_type *type)
3854 {
3855 struct seckey *dst;
3856 dst = (struct seckey *)malloc(sizeof(struct seckey), type, M_NOWAIT);
3857 if (dst != NULL) {
3858 dst->bits = src->sadb_key_bits;
3859 dst->key_data = (char *)malloc(len, type, M_NOWAIT);
3860 if (dst->key_data != NULL) {
3861 bcopy((const char *)src + sizeof(struct sadb_key),
3862 dst->key_data, len);
3863 } else {
3864 ipseclog((LOG_DEBUG, "%s: No more memory.\n",
3865 __func__));
3866 free(dst, type);
3867 dst = NULL;
3868 }
3869 } else {
3870 ipseclog((LOG_DEBUG, "%s: No more memory.\n",
3871 __func__));
3872
3873 }
3874 return dst;
3875 }
3876
3877 /* Take a lifetime message (sadb_lifetime) passed in on a socket and
3878 * turn it into one of the kernel's lifetime structures (seclifetime).
3879 *
3880 * IN: pointer to the destination, source and malloc type
3881 * OUT: NULL, no more memory
3882 */
3883
3884 static struct seclifetime *
3885 key_dup_lifemsg(const struct sadb_lifetime *src,
3886 struct malloc_type *type)
3887 {
3888 struct seclifetime *dst = NULL;
3889
3890 dst = (struct seclifetime *)malloc(sizeof(struct seclifetime),
3891 type, M_NOWAIT);
3892 if (dst == NULL) {
3893 /* XXX counter */
3894 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
3895 } else {
3896 dst->allocations = src->sadb_lifetime_allocations;
3897 dst->bytes = src->sadb_lifetime_bytes;
3898 dst->addtime = src->sadb_lifetime_addtime;
3899 dst->usetime = src->sadb_lifetime_usetime;
3900 }
3901 return dst;
3902 }
3903
3904 /* compare my own address
3905 * OUT: 1: true, i.e. my address.
3906 * 0: false
3907 */
3908 int
3909 key_ismyaddr(sa)
3910 struct sockaddr *sa;
3911 {
3912 #ifdef INET
3913 struct sockaddr_in *sin;
3914 struct in_ifaddr *ia;
3915 #endif
3916
3917 IPSEC_ASSERT(sa != NULL, ("null sockaddr"));
3918
3919 switch (sa->sa_family) {
3920 #ifdef INET
3921 case AF_INET:
3922 sin = (struct sockaddr_in *)sa;
3923 IN_IFADDR_RLOCK();
3924 for (ia = V_in_ifaddrhead.tqh_first; ia;
3925 ia = ia->ia_link.tqe_next)
3926 {
3927 if (sin->sin_family == ia->ia_addr.sin_family &&
3928 sin->sin_len == ia->ia_addr.sin_len &&
3929 sin->sin_addr.s_addr == ia->ia_addr.sin_addr.s_addr)
3930 {
3931 IN_IFADDR_RUNLOCK();
3932 return 1;
3933 }
3934 }
3935 IN_IFADDR_RUNLOCK();
3936 break;
3937 #endif
3938 #ifdef INET6
3939 case AF_INET6:
3940 return key_ismyaddr6((struct sockaddr_in6 *)sa);
3941 #endif
3942 }
3943
3944 return 0;
3945 }
3946
3947 #ifdef INET6
3948 /*
3949 * compare my own address for IPv6.
3950 * 1: ours
3951 * 0: other
3952 * NOTE: derived ip6_input() in KAME. This is necessary to modify more.
3953 */
3954 #include <netinet6/in6_var.h>
3955
3956 static int
3957 key_ismyaddr6(sin6)
3958 struct sockaddr_in6 *sin6;
3959 {
3960 struct in6_ifaddr *ia;
3961 #if 0
3962 struct in6_multi *in6m;
3963 #endif
3964
3965 IN6_IFADDR_RLOCK();
3966 TAILQ_FOREACH(ia, &V_in6_ifaddrhead, ia_link) {
3967 if (key_sockaddrcmp((struct sockaddr *)&sin6,
3968 (struct sockaddr *)&ia->ia_addr, 0) == 0) {
3969 IN6_IFADDR_RUNLOCK();
3970 return 1;
3971 }
3972
3973 #if 0
3974 /*
3975 * XXX Multicast
3976 * XXX why do we care about multlicast here while we don't care
3977 * about IPv4 multicast??
3978 * XXX scope
3979 */
3980 in6m = NULL;
3981 IN6_LOOKUP_MULTI(sin6->sin6_addr, ia->ia_ifp, in6m);
3982 if (in6m) {
3983 IN6_IFADDR_RUNLOCK();
3984 return 1;
3985 }
3986 #endif
3987 }
3988 IN6_IFADDR_RUNLOCK();
3989
3990 /* loopback, just for safety */
3991 if (IN6_IS_ADDR_LOOPBACK(&sin6->sin6_addr))
3992 return 1;
3993
3994 return 0;
3995 }
3996 #endif /*INET6*/
3997
3998 /*
3999 * compare two secasindex structure.
4000 * flag can specify to compare 2 saidxes.
4001 * compare two secasindex structure without both mode and reqid.
4002 * don't compare port.
4003 * IN:
4004 * saidx0: source, it can be in SAD.
4005 * saidx1: object.
4006 * OUT:
4007 * 1 : equal
4008 * 0 : not equal
4009 */
4010 static int
4011 key_cmpsaidx(
4012 const struct secasindex *saidx0,
4013 const struct secasindex *saidx1,
4014 int flag)
4015 {
4016 int chkport = 0;
4017
4018 /* sanity */
4019 if (saidx0 == NULL && saidx1 == NULL)
4020 return 1;
4021
4022 if (saidx0 == NULL || saidx1 == NULL)
4023 return 0;
4024
4025 if (saidx0->proto != saidx1->proto)
4026 return 0;
4027
4028 if (flag == CMP_EXACTLY) {
4029 if (saidx0->mode != saidx1->mode)
4030 return 0;
4031 if (saidx0->reqid != saidx1->reqid)
4032 return 0;
4033 if (bcmp(&saidx0->src, &saidx1->src, saidx0->src.sa.sa_len) != 0 ||
4034 bcmp(&saidx0->dst, &saidx1->dst, saidx0->dst.sa.sa_len) != 0)
4035 return 0;
4036 } else {
4037
4038 /* CMP_MODE_REQID, CMP_REQID, CMP_HEAD */
4039 if (flag == CMP_MODE_REQID
4040 ||flag == CMP_REQID) {
4041 /*
4042 * If reqid of SPD is non-zero, unique SA is required.
4043 * The result must be of same reqid in this case.
4044 */
4045 if (saidx1->reqid != 0 && saidx0->reqid != saidx1->reqid)
4046 return 0;
4047 }
4048
4049 if (flag == CMP_MODE_REQID) {
4050 if (saidx0->mode != IPSEC_MODE_ANY
4051 && saidx0->mode != saidx1->mode)
4052 return 0;
4053 }
4054
4055 #ifdef IPSEC_NAT_T
4056 /*
4057 * If NAT-T is enabled, check ports for tunnel mode.
4058 * Do not check ports if they are set to zero in the SPD.
4059 * Also do not do it for transport mode, as there is no
4060 * port information available in the SP.
4061 */
4062 if (saidx1->mode == IPSEC_MODE_TUNNEL &&
4063 saidx1->src.sa.sa_family == AF_INET &&
4064 saidx1->dst.sa.sa_family == AF_INET &&
4065 ((const struct sockaddr_in *)(&saidx1->src))->sin_port &&
4066 ((const struct sockaddr_in *)(&saidx1->dst))->sin_port)
4067 chkport = 1;
4068 #endif /* IPSEC_NAT_T */
4069
4070 if (key_sockaddrcmp(&saidx0->src.sa, &saidx1->src.sa, chkport) != 0) {
4071 return 0;
4072 }
4073 if (key_sockaddrcmp(&saidx0->dst.sa, &saidx1->dst.sa, chkport) != 0) {
4074 return 0;
4075 }
4076 }
4077
4078 return 1;
4079 }
4080
4081 /*
4082 * compare two secindex structure exactly.
4083 * IN:
4084 * spidx0: source, it is often in SPD.
4085 * spidx1: object, it is often from PFKEY message.
4086 * OUT:
4087 * 1 : equal
4088 * 0 : not equal
4089 */
4090 static int
4091 key_cmpspidx_exactly(
4092 struct secpolicyindex *spidx0,
4093 struct secpolicyindex *spidx1)
4094 {
4095 /* sanity */
4096 if (spidx0 == NULL && spidx1 == NULL)
4097 return 1;
4098
4099 if (spidx0 == NULL || spidx1 == NULL)
4100 return 0;
4101
4102 if (spidx0->prefs != spidx1->prefs
4103 || spidx0->prefd != spidx1->prefd
4104 || spidx0->ul_proto != spidx1->ul_proto)
4105 return 0;
4106
4107 return key_sockaddrcmp(&spidx0->src.sa, &spidx1->src.sa, 1) == 0 &&
4108 key_sockaddrcmp(&spidx0->dst.sa, &spidx1->dst.sa, 1) == 0;
4109 }
4110
4111 /*
4112 * compare two secindex structure with mask.
4113 * IN:
4114 * spidx0: source, it is often in SPD.
4115 * spidx1: object, it is often from IP header.
4116 * OUT:
4117 * 1 : equal
4118 * 0 : not equal
4119 */
4120 static int
4121 key_cmpspidx_withmask(
4122 struct secpolicyindex *spidx0,
4123 struct secpolicyindex *spidx1)
4124 {
4125 /* sanity */
4126 if (spidx0 == NULL && spidx1 == NULL)
4127 return 1;
4128
4129 if (spidx0 == NULL || spidx1 == NULL)
4130 return 0;
4131
4132 if (spidx0->src.sa.sa_family != spidx1->src.sa.sa_family ||
4133 spidx0->dst.sa.sa_family != spidx1->dst.sa.sa_family ||
4134 spidx0->src.sa.sa_len != spidx1->src.sa.sa_len ||
4135 spidx0->dst.sa.sa_len != spidx1->dst.sa.sa_len)
4136 return 0;
4137
4138 /* if spidx.ul_proto == IPSEC_ULPROTO_ANY, ignore. */
4139 if (spidx0->ul_proto != (u_int16_t)IPSEC_ULPROTO_ANY
4140 && spidx0->ul_proto != spidx1->ul_proto)
4141 return 0;
4142
4143 switch (spidx0->src.sa.sa_family) {
4144 case AF_INET:
4145 if (spidx0->src.sin.sin_port != IPSEC_PORT_ANY
4146 && spidx0->src.sin.sin_port != spidx1->src.sin.sin_port)
4147 return 0;
4148 if (!key_bbcmp(&spidx0->src.sin.sin_addr,
4149 &spidx1->src.sin.sin_addr, spidx0->prefs))
4150 return 0;
4151 break;
4152 case AF_INET6:
4153 if (spidx0->src.sin6.sin6_port != IPSEC_PORT_ANY
4154 && spidx0->src.sin6.sin6_port != spidx1->src.sin6.sin6_port)
4155 return 0;
4156 /*
4157 * scope_id check. if sin6_scope_id is 0, we regard it
4158 * as a wildcard scope, which matches any scope zone ID.
4159 */
4160 if (spidx0->src.sin6.sin6_scope_id &&
4161 spidx1->src.sin6.sin6_scope_id &&
4162 spidx0->src.sin6.sin6_scope_id != spidx1->src.sin6.sin6_scope_id)
4163 return 0;
4164 if (!key_bbcmp(&spidx0->src.sin6.sin6_addr,
4165 &spidx1->src.sin6.sin6_addr, spidx0->prefs))
4166 return 0;
4167 break;
4168 default:
4169 /* XXX */
4170 if (bcmp(&spidx0->src, &spidx1->src, spidx0->src.sa.sa_len) != 0)
4171 return 0;
4172 break;
4173 }
4174
4175 switch (spidx0->dst.sa.sa_family) {
4176 case AF_INET:
4177 if (spidx0->dst.sin.sin_port != IPSEC_PORT_ANY
4178 && spidx0->dst.sin.sin_port != spidx1->dst.sin.sin_port)
4179 return 0;
4180 if (!key_bbcmp(&spidx0->dst.sin.sin_addr,
4181 &spidx1->dst.sin.sin_addr, spidx0->prefd))
4182 return 0;
4183 break;
4184 case AF_INET6:
4185 if (spidx0->dst.sin6.sin6_port != IPSEC_PORT_ANY
4186 && spidx0->dst.sin6.sin6_port != spidx1->dst.sin6.sin6_port)
4187 return 0;
4188 /*
4189 * scope_id check. if sin6_scope_id is 0, we regard it
4190 * as a wildcard scope, which matches any scope zone ID.
4191 */
4192 if (spidx0->dst.sin6.sin6_scope_id &&
4193 spidx1->dst.sin6.sin6_scope_id &&
4194 spidx0->dst.sin6.sin6_scope_id != spidx1->dst.sin6.sin6_scope_id)
4195 return 0;
4196 if (!key_bbcmp(&spidx0->dst.sin6.sin6_addr,
4197 &spidx1->dst.sin6.sin6_addr, spidx0->prefd))
4198 return 0;
4199 break;
4200 default:
4201 /* XXX */
4202 if (bcmp(&spidx0->dst, &spidx1->dst, spidx0->dst.sa.sa_len) != 0)
4203 return 0;
4204 break;
4205 }
4206
4207 /* XXX Do we check other field ? e.g. flowinfo */
4208
4209 return 1;
4210 }
4211
4212 /* returns 0 on match */
4213 static int
4214 key_sockaddrcmp(
4215 const struct sockaddr *sa1,
4216 const struct sockaddr *sa2,
4217 int port)
4218 {
4219 #ifdef satosin
4220 #undef satosin
4221 #endif
4222 #define satosin(s) ((const struct sockaddr_in *)s)
4223 #ifdef satosin6
4224 #undef satosin6
4225 #endif
4226 #define satosin6(s) ((const struct sockaddr_in6 *)s)
4227 if (sa1->sa_family != sa2->sa_family || sa1->sa_len != sa2->sa_len)
4228 return 1;
4229
4230 switch (sa1->sa_family) {
4231 case AF_INET:
4232 if (sa1->sa_len != sizeof(struct sockaddr_in))
4233 return 1;
4234 if (satosin(sa1)->sin_addr.s_addr !=
4235 satosin(sa2)->sin_addr.s_addr) {
4236 return 1;
4237 }
4238 if (port && satosin(sa1)->sin_port != satosin(sa2)->sin_port)
4239 return 1;
4240 break;
4241 case AF_INET6:
4242 if (sa1->sa_len != sizeof(struct sockaddr_in6))
4243 return 1; /*EINVAL*/
4244 if (satosin6(sa1)->sin6_scope_id !=
4245 satosin6(sa2)->sin6_scope_id) {
4246 return 1;
4247 }
4248 if (!IN6_ARE_ADDR_EQUAL(&satosin6(sa1)->sin6_addr,
4249 &satosin6(sa2)->sin6_addr)) {
4250 return 1;
4251 }
4252 if (port &&
4253 satosin6(sa1)->sin6_port != satosin6(sa2)->sin6_port) {
4254 return 1;
4255 }
4256 break;
4257 default:
4258 if (bcmp(sa1, sa2, sa1->sa_len) != 0)
4259 return 1;
4260 break;
4261 }
4262
4263 return 0;
4264 #undef satosin
4265 #undef satosin6
4266 }
4267
4268 /*
4269 * compare two buffers with mask.
4270 * IN:
4271 * addr1: source
4272 * addr2: object
4273 * bits: Number of bits to compare
4274 * OUT:
4275 * 1 : equal
4276 * 0 : not equal
4277 */
4278 static int
4279 key_bbcmp(const void *a1, const void *a2, u_int bits)
4280 {
4281 const unsigned char *p1 = a1;
4282 const unsigned char *p2 = a2;
4283
4284 /* XXX: This could be considerably faster if we compare a word
4285 * at a time, but it is complicated on LSB Endian machines */
4286
4287 /* Handle null pointers */
4288 if (p1 == NULL || p2 == NULL)
4289 return (p1 == p2);
4290
4291 while (bits >= 8) {
4292 if (*p1++ != *p2++)
4293 return 0;
4294 bits -= 8;
4295 }
4296
4297 if (bits > 0) {
4298 u_int8_t mask = ~((1<<(8-bits))-1);
4299 if ((*p1 & mask) != (*p2 & mask))
4300 return 0;
4301 }
4302 return 1; /* Match! */
4303 }
4304
4305 static void
4306 key_flush_spd(time_t now)
4307 {
4308 static u_int16_t sptree_scangen = 0;
4309 u_int16_t gen = sptree_scangen++;
4310 struct secpolicy *sp;
4311 u_int dir;
4312
4313 /* SPD */
4314 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
4315 restart:
4316 SPTREE_LOCK();
4317 LIST_FOREACH(sp, &V_sptree[dir], chain) {
4318 if (sp->scangen == gen) /* previously handled */
4319 continue;
4320 sp->scangen = gen;
4321 if (sp->state == IPSEC_SPSTATE_DEAD &&
4322 sp->refcnt == 1) {
4323 /*
4324 * Ensure that we only decrease refcnt once,
4325 * when we're the last consumer.
4326 * Directly call SP_DELREF/key_delsp instead
4327 * of KEY_FREESP to avoid unlocking/relocking
4328 * SPTREE_LOCK before key_delsp: may refcnt
4329 * be increased again during that time ?
4330 * NB: also clean entries created by
4331 * key_spdflush
4332 */
4333 SP_DELREF(sp);
4334 key_delsp(sp);
4335 SPTREE_UNLOCK();
4336 goto restart;
4337 }
4338 if (sp->lifetime == 0 && sp->validtime == 0)
4339 continue;
4340 if ((sp->lifetime && now - sp->created > sp->lifetime)
4341 || (sp->validtime && now - sp->lastused > sp->validtime)) {
4342 sp->state = IPSEC_SPSTATE_DEAD;
4343 SPTREE_UNLOCK();
4344 key_spdexpire(sp);
4345 goto restart;
4346 }
4347 }
4348 SPTREE_UNLOCK();
4349 }
4350 }
4351
4352 static void
4353 key_flush_sad(time_t now)
4354 {
4355 struct secashead *sah, *nextsah;
4356 struct secasvar *sav, *nextsav;
4357
4358 /* SAD */
4359 SAHTREE_LOCK();
4360 LIST_FOREACH_SAFE(sah, &V_sahtree, chain, nextsah) {
4361 /* if sah has been dead, then delete it and process next sah. */
4362 if (sah->state == SADB_SASTATE_DEAD) {
4363 key_delsah(sah);
4364 continue;
4365 }
4366
4367 /* if LARVAL entry doesn't become MATURE, delete it. */
4368 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_LARVAL], chain, nextsav) {
4369 /* Need to also check refcnt for a larval SA ??? */
4370 if (now - sav->created > V_key_larval_lifetime)
4371 KEY_FREESAV(&sav);
4372 }
4373
4374 /*
4375 * check MATURE entry to start to send expire message
4376 * whether or not.
4377 */
4378 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_MATURE], chain, nextsav) {
4379 /* we don't need to check. */
4380 if (sav->lft_s == NULL)
4381 continue;
4382
4383 /* sanity check */
4384 if (sav->lft_c == NULL) {
4385 ipseclog((LOG_DEBUG,"%s: there is no CURRENT "
4386 "time, why?\n", __func__));
4387 continue;
4388 }
4389
4390 /* check SOFT lifetime */
4391 if (sav->lft_s->addtime != 0 &&
4392 now - sav->created > sav->lft_s->addtime) {
4393 key_sa_chgstate(sav, SADB_SASTATE_DYING);
4394 /*
4395 * Actually, only send expire message if
4396 * SA has been used, as it was done before,
4397 * but should we always send such message,
4398 * and let IKE daemon decide if it should be
4399 * renegotiated or not ?
4400 * XXX expire message will actually NOT be
4401 * sent if SA is only used after soft
4402 * lifetime has been reached, see below
4403 * (DYING state)
4404 */
4405 if (sav->lft_c->usetime != 0)
4406 key_expire(sav);
4407 }
4408 /* check SOFT lifetime by bytes */
4409 /*
4410 * XXX I don't know the way to delete this SA
4411 * when new SA is installed. Caution when it's
4412 * installed too big lifetime by time.
4413 */
4414 else if (sav->lft_s->bytes != 0 &&
4415 sav->lft_s->bytes < sav->lft_c->bytes) {
4416
4417 key_sa_chgstate(sav, SADB_SASTATE_DYING);
4418 /*
4419 * XXX If we keep to send expire
4420 * message in the status of
4421 * DYING. Do remove below code.
4422 */
4423 key_expire(sav);
4424 }
4425 }
4426
4427 /* check DYING entry to change status to DEAD. */
4428 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_DYING], chain, nextsav) {
4429 /* we don't need to check. */
4430 if (sav->lft_h == NULL)
4431 continue;
4432
4433 /* sanity check */
4434 if (sav->lft_c == NULL) {
4435 ipseclog((LOG_DEBUG, "%s: there is no CURRENT "
4436 "time, why?\n", __func__));
4437 continue;
4438 }
4439
4440 if (sav->lft_h->addtime != 0 &&
4441 now - sav->created > sav->lft_h->addtime) {
4442 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4443 KEY_FREESAV(&sav);
4444 }
4445 #if 0 /* XXX Should we keep to send expire message until HARD lifetime ? */
4446 else if (sav->lft_s != NULL
4447 && sav->lft_s->addtime != 0
4448 && now - sav->created > sav->lft_s->addtime) {
4449 /*
4450 * XXX: should be checked to be
4451 * installed the valid SA.
4452 */
4453
4454 /*
4455 * If there is no SA then sending
4456 * expire message.
4457 */
4458 key_expire(sav);
4459 }
4460 #endif
4461 /* check HARD lifetime by bytes */
4462 else if (sav->lft_h->bytes != 0 &&
4463 sav->lft_h->bytes < sav->lft_c->bytes) {
4464 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4465 KEY_FREESAV(&sav);
4466 }
4467 }
4468
4469 /* delete entry in DEAD */
4470 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_DEAD], chain, nextsav) {
4471 /* sanity check */
4472 if (sav->state != SADB_SASTATE_DEAD) {
4473 ipseclog((LOG_DEBUG, "%s: invalid sav->state "
4474 "(queue: %d SA: %d): kill it anyway\n",
4475 __func__,
4476 SADB_SASTATE_DEAD, sav->state));
4477 }
4478 /*
4479 * do not call key_freesav() here.
4480 * sav should already be freed, and sav->refcnt
4481 * shows other references to sav
4482 * (such as from SPD).
4483 */
4484 }
4485 }
4486 SAHTREE_UNLOCK();
4487 }
4488
4489 static void
4490 key_flush_acq(time_t now)
4491 {
4492 struct secacq *acq, *nextacq;
4493
4494 /* ACQ tree */
4495 ACQ_LOCK();
4496 for (acq = LIST_FIRST(&V_acqtree); acq != NULL; acq = nextacq) {
4497 nextacq = LIST_NEXT(acq, chain);
4498 if (now - acq->created > V_key_blockacq_lifetime
4499 && __LIST_CHAINED(acq)) {
4500 LIST_REMOVE(acq, chain);
4501 free(acq, M_IPSEC_SAQ);
4502 }
4503 }
4504 ACQ_UNLOCK();
4505 }
4506
4507 static void
4508 key_flush_spacq(time_t now)
4509 {
4510 struct secspacq *acq, *nextacq;
4511
4512 /* SP ACQ tree */
4513 SPACQ_LOCK();
4514 for (acq = LIST_FIRST(&V_spacqtree); acq != NULL; acq = nextacq) {
4515 nextacq = LIST_NEXT(acq, chain);
4516 if (now - acq->created > V_key_blockacq_lifetime
4517 && __LIST_CHAINED(acq)) {
4518 LIST_REMOVE(acq, chain);
4519 free(acq, M_IPSEC_SAQ);
4520 }
4521 }
4522 SPACQ_UNLOCK();
4523 }
4524
4525 /*
4526 * time handler.
4527 * scanning SPD and SAD to check status for each entries,
4528 * and do to remove or to expire.
4529 * XXX: year 2038 problem may remain.
4530 */
4531 void
4532 key_timehandler(void)
4533 {
4534 VNET_ITERATOR_DECL(vnet_iter);
4535 time_t now = time_second;
4536
4537 VNET_LIST_RLOCK_NOSLEEP();
4538 VNET_FOREACH(vnet_iter) {
4539 CURVNET_SET(vnet_iter);
4540 key_flush_spd(now);
4541 key_flush_sad(now);
4542 key_flush_acq(now);
4543 key_flush_spacq(now);
4544 CURVNET_RESTORE();
4545 }
4546 VNET_LIST_RUNLOCK_NOSLEEP();
4547
4548 #ifndef IPSEC_DEBUG2
4549 /* do exchange to tick time !! */
4550 (void)timeout((void *)key_timehandler, (void *)0, hz);
4551 #endif /* IPSEC_DEBUG2 */
4552 }
4553
4554 u_long
4555 key_random()
4556 {
4557 u_long value;
4558
4559 key_randomfill(&value, sizeof(value));
4560 return value;
4561 }
4562
4563 void
4564 key_randomfill(p, l)
4565 void *p;
4566 size_t l;
4567 {
4568 size_t n;
4569 u_long v;
4570 static int warn = 1;
4571
4572 n = 0;
4573 n = (size_t)read_random(p, (u_int)l);
4574 /* last resort */
4575 while (n < l) {
4576 v = random();
4577 bcopy(&v, (u_int8_t *)p + n,
4578 l - n < sizeof(v) ? l - n : sizeof(v));
4579 n += sizeof(v);
4580
4581 if (warn) {
4582 printf("WARNING: pseudo-random number generator "
4583 "used for IPsec processing\n");
4584 warn = 0;
4585 }
4586 }
4587 }
4588
4589 /*
4590 * map SADB_SATYPE_* to IPPROTO_*.
4591 * if satype == SADB_SATYPE then satype is mapped to ~0.
4592 * OUT:
4593 * 0: invalid satype.
4594 */
4595 static u_int16_t
4596 key_satype2proto(u_int8_t satype)
4597 {
4598 switch (satype) {
4599 case SADB_SATYPE_UNSPEC:
4600 return IPSEC_PROTO_ANY;
4601 case SADB_SATYPE_AH:
4602 return IPPROTO_AH;
4603 case SADB_SATYPE_ESP:
4604 return IPPROTO_ESP;
4605 case SADB_X_SATYPE_IPCOMP:
4606 return IPPROTO_IPCOMP;
4607 case SADB_X_SATYPE_TCPSIGNATURE:
4608 return IPPROTO_TCP;
4609 default:
4610 return 0;
4611 }
4612 /* NOTREACHED */
4613 }
4614
4615 /*
4616 * map IPPROTO_* to SADB_SATYPE_*
4617 * OUT:
4618 * 0: invalid protocol type.
4619 */
4620 static u_int8_t
4621 key_proto2satype(u_int16_t proto)
4622 {
4623 switch (proto) {
4624 case IPPROTO_AH:
4625 return SADB_SATYPE_AH;
4626 case IPPROTO_ESP:
4627 return SADB_SATYPE_ESP;
4628 case IPPROTO_IPCOMP:
4629 return SADB_X_SATYPE_IPCOMP;
4630 case IPPROTO_TCP:
4631 return SADB_X_SATYPE_TCPSIGNATURE;
4632 default:
4633 return 0;
4634 }
4635 /* NOTREACHED */
4636 }
4637
4638 /* %%% PF_KEY */
4639 /*
4640 * SADB_GETSPI processing is to receive
4641 * <base, (SA2), src address, dst address, (SPI range)>
4642 * from the IKMPd, to assign a unique spi value, to hang on the INBOUND
4643 * tree with the status of LARVAL, and send
4644 * <base, SA(*), address(SD)>
4645 * to the IKMPd.
4646 *
4647 * IN: mhp: pointer to the pointer to each header.
4648 * OUT: NULL if fail.
4649 * other if success, return pointer to the message to send.
4650 */
4651 static int
4652 key_getspi(so, m, mhp)
4653 struct socket *so;
4654 struct mbuf *m;
4655 const struct sadb_msghdr *mhp;
4656 {
4657 struct sadb_address *src0, *dst0;
4658 struct secasindex saidx;
4659 struct secashead *newsah;
4660 struct secasvar *newsav;
4661 u_int8_t proto;
4662 u_int32_t spi;
4663 u_int8_t mode;
4664 u_int32_t reqid;
4665 int error;
4666
4667 IPSEC_ASSERT(so != NULL, ("null socket"));
4668 IPSEC_ASSERT(m != NULL, ("null mbuf"));
4669 IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
4670 IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
4671
4672 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
4673 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
4674 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
4675 __func__));
4676 return key_senderror(so, m, EINVAL);
4677 }
4678 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
4679 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
4680 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
4681 __func__));
4682 return key_senderror(so, m, EINVAL);
4683 }
4684 if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
4685 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
4686 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
4687 } else {
4688 mode = IPSEC_MODE_ANY;
4689 reqid = 0;
4690 }
4691
4692 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
4693 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
4694
4695 /* map satype to proto */
4696 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
4697 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
4698 __func__));
4699 return key_senderror(so, m, EINVAL);
4700 }
4701
4702 /*
4703 * Make sure the port numbers are zero.
4704 * In case of NAT-T we will update them later if needed.
4705 */
4706 switch (((struct sockaddr *)(src0 + 1))->sa_family) {
4707 case AF_INET:
4708 if (((struct sockaddr *)(src0 + 1))->sa_len !=
4709 sizeof(struct sockaddr_in))
4710 return key_senderror(so, m, EINVAL);
4711 ((struct sockaddr_in *)(src0 + 1))->sin_port = 0;
4712 break;
4713 case AF_INET6:
4714 if (((struct sockaddr *)(src0 + 1))->sa_len !=
4715 sizeof(struct sockaddr_in6))
4716 return key_senderror(so, m, EINVAL);
4717 ((struct sockaddr_in6 *)(src0 + 1))->sin6_port = 0;
4718 break;
4719 default:
4720 ; /*???*/
4721 }
4722 switch (((struct sockaddr *)(dst0 + 1))->sa_family) {
4723 case AF_INET:
4724 if (((struct sockaddr *)(dst0 + 1))->sa_len !=
4725 sizeof(struct sockaddr_in))
4726 return key_senderror(so, m, EINVAL);
4727 ((struct sockaddr_in *)(dst0 + 1))->sin_port = 0;
4728 break;
4729 case AF_INET6:
4730 if (((struct sockaddr *)(dst0 + 1))->sa_len !=
4731 sizeof(struct sockaddr_in6))
4732 return key_senderror(so, m, EINVAL);
4733 ((struct sockaddr_in6 *)(dst0 + 1))->sin6_port = 0;
4734 break;
4735 default:
4736 ; /*???*/
4737 }
4738
4739 /* XXX boundary check against sa_len */
4740 KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx);
4741
4742 #ifdef IPSEC_NAT_T
4743 /*
4744 * Handle NAT-T info if present.
4745 * We made sure the port numbers are zero above, so we do
4746 * not have to worry in case we do not update them.
4747 */
4748 if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL)
4749 ipseclog((LOG_DEBUG, "%s: NAT-T OAi present\n", __func__));
4750 if (mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL)
4751 ipseclog((LOG_DEBUG, "%s: NAT-T OAr present\n", __func__));
4752
4753 if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] != NULL &&
4754 mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL &&
4755 mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) {
4756 struct sadb_x_nat_t_type *type;
4757 struct sadb_x_nat_t_port *sport, *dport;
4758
4759 if (mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type) ||
4760 mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) ||
4761 mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) {
4762 ipseclog((LOG_DEBUG, "%s: invalid nat-t message "
4763 "passed.\n", __func__));
4764 return key_senderror(so, m, EINVAL);
4765 }
4766
4767 sport = (struct sadb_x_nat_t_port *)
4768 mhp->ext[SADB_X_EXT_NAT_T_SPORT];
4769 dport = (struct sadb_x_nat_t_port *)
4770 mhp->ext[SADB_X_EXT_NAT_T_DPORT];
4771
4772 if (sport)
4773 KEY_PORTTOSADDR(&saidx.src, sport->sadb_x_nat_t_port_port);
4774 if (dport)
4775 KEY_PORTTOSADDR(&saidx.dst, dport->sadb_x_nat_t_port_port);
4776 }
4777 #endif
4778
4779 /* SPI allocation */
4780 spi = key_do_getnewspi((struct sadb_spirange *)mhp->ext[SADB_EXT_SPIRANGE],
4781 &saidx);
4782 if (spi == 0)
4783 return key_senderror(so, m, EINVAL);
4784
4785 /* get a SA index */
4786 if ((newsah = key_getsah(&saidx)) == NULL) {
4787 /* create a new SA index */
4788 if ((newsah = key_newsah(&saidx)) == NULL) {
4789 ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__));
4790 return key_senderror(so, m, ENOBUFS);
4791 }
4792 }
4793
4794 /* get a new SA */
4795 /* XXX rewrite */
4796 newsav = KEY_NEWSAV(m, mhp, newsah, &error);
4797 if (newsav == NULL) {
4798 /* XXX don't free new SA index allocated in above. */
4799 return key_senderror(so, m, error);
4800 }
4801
4802 /* set spi */
4803 newsav->spi = htonl(spi);
4804
4805 /* delete the entry in acqtree */
4806 if (mhp->msg->sadb_msg_seq != 0) {
4807 struct secacq *acq;
4808 if ((acq = key_getacqbyseq(mhp->msg->sadb_msg_seq)) != NULL) {
4809 /* reset counter in order to deletion by timehandler. */
4810 acq->created = time_second;
4811 acq->count = 0;
4812 }
4813 }
4814
4815 {
4816 struct mbuf *n, *nn;
4817 struct sadb_sa *m_sa;
4818 struct sadb_msg *newmsg;
4819 int off, len;
4820
4821 /* create new sadb_msg to reply. */
4822 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)) +
4823 PFKEY_ALIGN8(sizeof(struct sadb_sa));
4824
4825 MGETHDR(n, M_DONTWAIT, MT_DATA);
4826 if (len > MHLEN) {
4827 MCLGET(n, M_DONTWAIT);
4828 if ((n->m_flags & M_EXT) == 0) {
4829 m_freem(n);
4830 n = NULL;
4831 }
4832 }
4833 if (!n)
4834 return key_senderror(so, m, ENOBUFS);
4835
4836 n->m_len = len;
4837 n->m_next = NULL;
4838 off = 0;
4839
4840 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off);
4841 off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
4842
4843 m_sa = (struct sadb_sa *)(mtod(n, caddr_t) + off);
4844 m_sa->sadb_sa_len = PFKEY_UNIT64(sizeof(struct sadb_sa));
4845 m_sa->sadb_sa_exttype = SADB_EXT_SA;
4846 m_sa->sadb_sa_spi = htonl(spi);
4847 off += PFKEY_ALIGN8(sizeof(struct sadb_sa));
4848
4849 IPSEC_ASSERT(off == len,
4850 ("length inconsistency (off %u len %u)", off, len));
4851
4852 n->m_next = key_gather_mbuf(m, mhp, 0, 2, SADB_EXT_ADDRESS_SRC,
4853 SADB_EXT_ADDRESS_DST);
4854 if (!n->m_next) {
4855 m_freem(n);
4856 return key_senderror(so, m, ENOBUFS);
4857 }
4858
4859 if (n->m_len < sizeof(struct sadb_msg)) {
4860 n = m_pullup(n, sizeof(struct sadb_msg));
4861 if (n == NULL)
4862 return key_sendup_mbuf(so, m, KEY_SENDUP_ONE);
4863 }
4864
4865 n->m_pkthdr.len = 0;
4866 for (nn = n; nn; nn = nn->m_next)
4867 n->m_pkthdr.len += nn->m_len;
4868
4869 newmsg = mtod(n, struct sadb_msg *);
4870 newmsg->sadb_msg_seq = newsav->seq;
4871 newmsg->sadb_msg_errno = 0;
4872 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
4873
4874 m_freem(m);
4875 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
4876 }
4877 }
4878
4879 /*
4880 * allocating new SPI
4881 * called by key_getspi().
4882 * OUT:
4883 * 0: failure.
4884 * others: success.
4885 */
4886 static u_int32_t
4887 key_do_getnewspi(spirange, saidx)
4888 struct sadb_spirange *spirange;
4889 struct secasindex *saidx;
4890 {
4891 u_int32_t newspi;
4892 u_int32_t min, max;
4893 int count = V_key_spi_trycnt;
4894
4895 /* set spi range to allocate */
4896 if (spirange != NULL) {
4897 min = spirange->sadb_spirange_min;
4898 max = spirange->sadb_spirange_max;
4899 } else {
4900 min = V_key_spi_minval;
4901 max = V_key_spi_maxval;
4902 }
4903 /* IPCOMP needs 2-byte SPI */
4904 if (saidx->proto == IPPROTO_IPCOMP) {
4905 u_int32_t t;
4906 if (min >= 0x10000)
4907 min = 0xffff;
4908 if (max >= 0x10000)
4909 max = 0xffff;
4910 if (min > max) {
4911 t = min; min = max; max = t;
4912 }
4913 }
4914
4915 if (min == max) {
4916 if (key_checkspidup(saidx, min) != NULL) {
4917 ipseclog((LOG_DEBUG, "%s: SPI %u exists already.\n",
4918 __func__, min));
4919 return 0;
4920 }
4921
4922 count--; /* taking one cost. */
4923 newspi = min;
4924
4925 } else {
4926
4927 /* init SPI */
4928 newspi = 0;
4929
4930 /* when requesting to allocate spi ranged */
4931 while (count--) {
4932 /* generate pseudo-random SPI value ranged. */
4933 newspi = min + (key_random() % (max - min + 1));
4934
4935 if (key_checkspidup(saidx, newspi) == NULL)
4936 break;
4937 }
4938
4939 if (count == 0 || newspi == 0) {
4940 ipseclog((LOG_DEBUG, "%s: to allocate spi is failed.\n",
4941 __func__));
4942 return 0;
4943 }
4944 }
4945
4946 /* statistics */
4947 keystat.getspi_count =
4948 (keystat.getspi_count + V_key_spi_trycnt - count) / 2;
4949
4950 return newspi;
4951 }
4952
4953 /*
4954 * SADB_UPDATE processing
4955 * receive
4956 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
4957 * key(AE), (identity(SD),) (sensitivity)>
4958 * from the ikmpd, and update a secasvar entry whose status is SADB_SASTATE_LARVAL.
4959 * and send
4960 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
4961 * (identity(SD),) (sensitivity)>
4962 * to the ikmpd.
4963 *
4964 * m will always be freed.
4965 */
4966 static int
4967 key_update(so, m, mhp)
4968 struct socket *so;
4969 struct mbuf *m;
4970 const struct sadb_msghdr *mhp;
4971 {
4972 struct sadb_sa *sa0;
4973 struct sadb_address *src0, *dst0;
4974 #ifdef IPSEC_NAT_T
4975 struct sadb_x_nat_t_type *type;
4976 struct sadb_x_nat_t_port *sport, *dport;
4977 struct sadb_address *iaddr, *raddr;
4978 struct sadb_x_nat_t_frag *frag;
4979 #endif
4980 struct secasindex saidx;
4981 struct secashead *sah;
4982 struct secasvar *sav;
4983 u_int16_t proto;
4984 u_int8_t mode;
4985 u_int32_t reqid;
4986 int error;
4987
4988 IPSEC_ASSERT(so != NULL, ("null socket"));
4989 IPSEC_ASSERT(m != NULL, ("null mbuf"));
4990 IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
4991 IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
4992
4993 /* map satype to proto */
4994 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
4995 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
4996 __func__));
4997 return key_senderror(so, m, EINVAL);
4998 }
4999
5000 if (mhp->ext[SADB_EXT_SA] == NULL ||
5001 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5002 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
5003 (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP &&
5004 mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) ||
5005 (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH &&
5006 mhp->ext[SADB_EXT_KEY_AUTH] == NULL) ||
5007 (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL &&
5008 mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) ||
5009 (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL &&
5010 mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) {
5011 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5012 __func__));
5013 return key_senderror(so, m, EINVAL);
5014 }
5015 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
5016 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5017 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5018 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5019 __func__));
5020 return key_senderror(so, m, EINVAL);
5021 }
5022 if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
5023 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
5024 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
5025 } else {
5026 mode = IPSEC_MODE_ANY;
5027 reqid = 0;
5028 }
5029 /* XXX boundary checking for other extensions */
5030
5031 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5032 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
5033 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
5034
5035 /* XXX boundary check against sa_len */
5036 KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx);
5037
5038 /*
5039 * Make sure the port numbers are zero.
5040 * In case of NAT-T we will update them later if needed.
5041 */
5042 KEY_PORTTOSADDR(&saidx.src, 0);
5043 KEY_PORTTOSADDR(&saidx.dst, 0);
5044
5045 #ifdef IPSEC_NAT_T
5046 /*
5047 * Handle NAT-T info if present.
5048 */
5049 if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] != NULL &&
5050 mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL &&
5051 mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) {
5052
5053 if (mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type) ||
5054 mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) ||
5055 mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) {
5056 ipseclog((LOG_DEBUG, "%s: invalid message.\n",
5057 __func__));
5058 return key_senderror(so, m, EINVAL);
5059 }
5060
5061 type = (struct sadb_x_nat_t_type *)
5062 mhp->ext[SADB_X_EXT_NAT_T_TYPE];
5063 sport = (struct sadb_x_nat_t_port *)
5064 mhp->ext[SADB_X_EXT_NAT_T_SPORT];
5065 dport = (struct sadb_x_nat_t_port *)
5066 mhp->ext[SADB_X_EXT_NAT_T_DPORT];
5067 } else {
5068 type = 0;
5069 sport = dport = 0;
5070 }
5071 if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL &&
5072 mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) {
5073 if (mhp->extlen[SADB_X_EXT_NAT_T_OAI] < sizeof(*iaddr) ||
5074 mhp->extlen[SADB_X_EXT_NAT_T_OAR] < sizeof(*raddr)) {
5075 ipseclog((LOG_DEBUG, "%s: invalid message\n",
5076 __func__));
5077 return key_senderror(so, m, EINVAL);
5078 }
5079 iaddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAI];
5080 raddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAR];
5081 ipseclog((LOG_DEBUG, "%s: NAT-T OAi/r present\n", __func__));
5082 } else {
5083 iaddr = raddr = NULL;
5084 }
5085 if (mhp->ext[SADB_X_EXT_NAT_T_FRAG] != NULL) {
5086 if (mhp->extlen[SADB_X_EXT_NAT_T_FRAG] < sizeof(*frag)) {
5087 ipseclog((LOG_DEBUG, "%s: invalid message\n",
5088 __func__));
5089 return key_senderror(so, m, EINVAL);
5090 }
5091 frag = (struct sadb_x_nat_t_frag *)
5092 mhp->ext[SADB_X_EXT_NAT_T_FRAG];
5093 } else {
5094 frag = 0;
5095 }
5096 #endif
5097
5098 /* get a SA header */
5099 if ((sah = key_getsah(&saidx)) == NULL) {
5100 ipseclog((LOG_DEBUG, "%s: no SA index found.\n", __func__));
5101 return key_senderror(so, m, ENOENT);
5102 }
5103
5104 /* set spidx if there */
5105 /* XXX rewrite */
5106 error = key_setident(sah, m, mhp);
5107 if (error)
5108 return key_senderror(so, m, error);
5109
5110 /* find a SA with sequence number. */
5111 #ifdef IPSEC_DOSEQCHECK
5112 if (mhp->msg->sadb_msg_seq != 0
5113 && (sav = key_getsavbyseq(sah, mhp->msg->sadb_msg_seq)) == NULL) {
5114 ipseclog((LOG_DEBUG, "%s: no larval SA with sequence %u "
5115 "exists.\n", __func__, mhp->msg->sadb_msg_seq));
5116 return key_senderror(so, m, ENOENT);
5117 }
5118 #else
5119 SAHTREE_LOCK();
5120 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
5121 SAHTREE_UNLOCK();
5122 if (sav == NULL) {
5123 ipseclog((LOG_DEBUG, "%s: no such a SA found (spi:%u)\n",
5124 __func__, (u_int32_t)ntohl(sa0->sadb_sa_spi)));
5125 return key_senderror(so, m, EINVAL);
5126 }
5127 #endif
5128
5129 /* validity check */
5130 if (sav->sah->saidx.proto != proto) {
5131 ipseclog((LOG_DEBUG, "%s: protocol mismatched "
5132 "(DB=%u param=%u)\n", __func__,
5133 sav->sah->saidx.proto, proto));
5134 return key_senderror(so, m, EINVAL);
5135 }
5136 #ifdef IPSEC_DOSEQCHECK
5137 if (sav->spi != sa0->sadb_sa_spi) {
5138 ipseclog((LOG_DEBUG, "%s: SPI mismatched (DB:%u param:%u)\n",
5139 __func__,
5140 (u_int32_t)ntohl(sav->spi),
5141 (u_int32_t)ntohl(sa0->sadb_sa_spi)));
5142 return key_senderror(so, m, EINVAL);
5143 }
5144 #endif
5145 if (sav->pid != mhp->msg->sadb_msg_pid) {
5146 ipseclog((LOG_DEBUG, "%s: pid mismatched (DB:%u param:%u)\n",
5147 __func__, sav->pid, mhp->msg->sadb_msg_pid));
5148 return key_senderror(so, m, EINVAL);
5149 }
5150
5151 /* copy sav values */
5152 error = key_setsaval(sav, m, mhp);
5153 if (error) {
5154 KEY_FREESAV(&sav);
5155 return key_senderror(so, m, error);
5156 }
5157
5158 #ifdef IPSEC_NAT_T
5159 /*
5160 * Handle more NAT-T info if present,
5161 * now that we have a sav to fill.
5162 */
5163 if (type)
5164 sav->natt_type = type->sadb_x_nat_t_type_type;
5165
5166 if (sport)
5167 KEY_PORTTOSADDR(&sav->sah->saidx.src,
5168 sport->sadb_x_nat_t_port_port);
5169 if (dport)
5170 KEY_PORTTOSADDR(&sav->sah->saidx.dst,
5171 dport->sadb_x_nat_t_port_port);
5172
5173 #if 0
5174 /*
5175 * In case SADB_X_EXT_NAT_T_FRAG was not given, leave it at 0.
5176 * We should actually check for a minimum MTU here, if we
5177 * want to support it in ip_output.
5178 */
5179 if (frag)
5180 sav->natt_esp_frag_len = frag->sadb_x_nat_t_frag_fraglen;
5181 #endif
5182 #endif
5183
5184 /* check SA values to be mature. */
5185 if ((mhp->msg->sadb_msg_errno = key_mature(sav)) != 0) {
5186 KEY_FREESAV(&sav);
5187 return key_senderror(so, m, 0);
5188 }
5189
5190 {
5191 struct mbuf *n;
5192
5193 /* set msg buf from mhp */
5194 n = key_getmsgbuf_x1(m, mhp);
5195 if (n == NULL) {
5196 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
5197 return key_senderror(so, m, ENOBUFS);
5198 }
5199
5200 m_freem(m);
5201 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5202 }
5203 }
5204
5205 /*
5206 * search SAD with sequence for a SA which state is SADB_SASTATE_LARVAL.
5207 * only called by key_update().
5208 * OUT:
5209 * NULL : not found
5210 * others : found, pointer to a SA.
5211 */
5212 #ifdef IPSEC_DOSEQCHECK
5213 static struct secasvar *
5214 key_getsavbyseq(sah, seq)
5215 struct secashead *sah;
5216 u_int32_t seq;
5217 {
5218 struct secasvar *sav;
5219 u_int state;
5220
5221 state = SADB_SASTATE_LARVAL;
5222
5223 /* search SAD with sequence number ? */
5224 LIST_FOREACH(sav, &sah->savtree[state], chain) {
5225
5226 KEY_CHKSASTATE(state, sav->state, __func__);
5227
5228 if (sav->seq == seq) {
5229 sa_addref(sav);
5230 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
5231 printf("DP %s cause refcnt++:%d SA:%p\n",
5232 __func__, sav->refcnt, sav));
5233 return sav;
5234 }
5235 }
5236
5237 return NULL;
5238 }
5239 #endif
5240
5241 /*
5242 * SADB_ADD processing
5243 * add an entry to SA database, when received
5244 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5245 * key(AE), (identity(SD),) (sensitivity)>
5246 * from the ikmpd,
5247 * and send
5248 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5249 * (identity(SD),) (sensitivity)>
5250 * to the ikmpd.
5251 *
5252 * IGNORE identity and sensitivity messages.
5253 *
5254 * m will always be freed.
5255 */
5256 static int
5257 key_add(so, m, mhp)
5258 struct socket *so;
5259 struct mbuf *m;
5260 const struct sadb_msghdr *mhp;
5261 {
5262 struct sadb_sa *sa0;
5263 struct sadb_address *src0, *dst0;
5264 #ifdef IPSEC_NAT_T
5265 struct sadb_x_nat_t_type *type;
5266 struct sadb_address *iaddr, *raddr;
5267 struct sadb_x_nat_t_frag *frag;
5268 #endif
5269 struct secasindex saidx;
5270 struct secashead *newsah;
5271 struct secasvar *newsav;
5272 u_int16_t proto;
5273 u_int8_t mode;
5274 u_int32_t reqid;
5275 int error;
5276
5277 IPSEC_ASSERT(so != NULL, ("null socket"));
5278 IPSEC_ASSERT(m != NULL, ("null mbuf"));
5279 IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
5280 IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
5281
5282 /* map satype to proto */
5283 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
5284 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
5285 __func__));
5286 return key_senderror(so, m, EINVAL);
5287 }
5288
5289 if (mhp->ext[SADB_EXT_SA] == NULL ||
5290 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5291 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
5292 (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP &&
5293 mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) ||
5294 (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH &&
5295 mhp->ext[SADB_EXT_KEY_AUTH] == NULL) ||
5296 (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL &&
5297 mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) ||
5298 (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL &&
5299 mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) {
5300 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5301 __func__));
5302 return key_senderror(so, m, EINVAL);
5303 }
5304 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
5305 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5306 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5307 /* XXX need more */
5308 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5309 __func__));
5310 return key_senderror(so, m, EINVAL);
5311 }
5312 if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
5313 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
5314 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
5315 } else {
5316 mode = IPSEC_MODE_ANY;
5317 reqid = 0;
5318 }
5319
5320 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5321 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
5322 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
5323
5324 /* XXX boundary check against sa_len */
5325 KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx);
5326
5327 /*
5328 * Make sure the port numbers are zero.
5329 * In case of NAT-T we will update them later if needed.
5330 */
5331 KEY_PORTTOSADDR(&saidx.src, 0);
5332 KEY_PORTTOSADDR(&saidx.dst, 0);
5333
5334 #ifdef IPSEC_NAT_T
5335 /*
5336 * Handle NAT-T info if present.
5337 */
5338 if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] != NULL &&
5339 mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL &&
5340 mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) {
5341 struct sadb_x_nat_t_port *sport, *dport;
5342
5343 if (mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type) ||
5344 mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) ||
5345 mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) {
5346 ipseclog((LOG_DEBUG, "%s: invalid message.\n",
5347 __func__));
5348 return key_senderror(so, m, EINVAL);
5349 }
5350
5351 type = (struct sadb_x_nat_t_type *)
5352 mhp->ext[SADB_X_EXT_NAT_T_TYPE];
5353 sport = (struct sadb_x_nat_t_port *)
5354 mhp->ext[SADB_X_EXT_NAT_T_SPORT];
5355 dport = (struct sadb_x_nat_t_port *)
5356 mhp->ext[SADB_X_EXT_NAT_T_DPORT];
5357
5358 if (sport)
5359 KEY_PORTTOSADDR(&saidx.src,
5360 sport->sadb_x_nat_t_port_port);
5361 if (dport)
5362 KEY_PORTTOSADDR(&saidx.dst,
5363 dport->sadb_x_nat_t_port_port);
5364 } else {
5365 type = 0;
5366 }
5367 if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL &&
5368 mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) {
5369 if (mhp->extlen[SADB_X_EXT_NAT_T_OAI] < sizeof(*iaddr) ||
5370 mhp->extlen[SADB_X_EXT_NAT_T_OAR] < sizeof(*raddr)) {
5371 ipseclog((LOG_DEBUG, "%s: invalid message\n",
5372 __func__));
5373 return key_senderror(so, m, EINVAL);
5374 }
5375 iaddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAI];
5376 raddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAR];
5377 ipseclog((LOG_DEBUG, "%s: NAT-T OAi/r present\n", __func__));
5378 } else {
5379 iaddr = raddr = NULL;
5380 }
5381 if (mhp->ext[SADB_X_EXT_NAT_T_FRAG] != NULL) {
5382 if (mhp->extlen[SADB_X_EXT_NAT_T_FRAG] < sizeof(*frag)) {
5383 ipseclog((LOG_DEBUG, "%s: invalid message\n",
5384 __func__));
5385 return key_senderror(so, m, EINVAL);
5386 }
5387 frag = (struct sadb_x_nat_t_frag *)
5388 mhp->ext[SADB_X_EXT_NAT_T_FRAG];
5389 } else {
5390 frag = 0;
5391 }
5392 #endif
5393
5394 /* get a SA header */
5395 if ((newsah = key_getsah(&saidx)) == NULL) {
5396 /* create a new SA header */
5397 if ((newsah = key_newsah(&saidx)) == NULL) {
5398 ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__));
5399 return key_senderror(so, m, ENOBUFS);
5400 }
5401 }
5402
5403 /* set spidx if there */
5404 /* XXX rewrite */
5405 error = key_setident(newsah, m, mhp);
5406 if (error) {
5407 return key_senderror(so, m, error);
5408 }
5409
5410 /* create new SA entry. */
5411 /* We can create new SA only if SPI is differenct. */
5412 SAHTREE_LOCK();
5413 newsav = key_getsavbyspi(newsah, sa0->sadb_sa_spi);
5414 SAHTREE_UNLOCK();
5415 if (newsav != NULL) {
5416 ipseclog((LOG_DEBUG, "%s: SA already exists.\n", __func__));
5417 return key_senderror(so, m, EEXIST);
5418 }
5419 newsav = KEY_NEWSAV(m, mhp, newsah, &error);
5420 if (newsav == NULL) {
5421 return key_senderror(so, m, error);
5422 }
5423
5424 #ifdef IPSEC_NAT_T
5425 /*
5426 * Handle more NAT-T info if present,
5427 * now that we have a sav to fill.
5428 */
5429 if (type)
5430 newsav->natt_type = type->sadb_x_nat_t_type_type;
5431
5432 #if 0
5433 /*
5434 * In case SADB_X_EXT_NAT_T_FRAG was not given, leave it at 0.
5435 * We should actually check for a minimum MTU here, if we
5436 * want to support it in ip_output.
5437 */
5438 if (frag)
5439 newsav->natt_esp_frag_len = frag->sadb_x_nat_t_frag_fraglen;
5440 #endif
5441 #endif
5442
5443 /* check SA values to be mature. */
5444 if ((error = key_mature(newsav)) != 0) {
5445 KEY_FREESAV(&newsav);
5446 return key_senderror(so, m, error);
5447 }
5448
5449 /*
5450 * don't call key_freesav() here, as we would like to keep the SA
5451 * in the database on success.
5452 */
5453
5454 {
5455 struct mbuf *n;
5456
5457 /* set msg buf from mhp */
5458 n = key_getmsgbuf_x1(m, mhp);
5459 if (n == NULL) {
5460 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
5461 return key_senderror(so, m, ENOBUFS);
5462 }
5463
5464 m_freem(m);
5465 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5466 }
5467 }
5468
5469 /* m is retained */
5470 static int
5471 key_setident(sah, m, mhp)
5472 struct secashead *sah;
5473 struct mbuf *m;
5474 const struct sadb_msghdr *mhp;
5475 {
5476 const struct sadb_ident *idsrc, *iddst;
5477 int idsrclen, iddstlen;
5478
5479 IPSEC_ASSERT(sah != NULL, ("null secashead"));
5480 IPSEC_ASSERT(m != NULL, ("null mbuf"));
5481 IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
5482 IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
5483
5484 /* don't make buffer if not there */
5485 if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL &&
5486 mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) {
5487 sah->idents = NULL;
5488 sah->identd = NULL;
5489 return 0;
5490 }
5491
5492 if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL ||
5493 mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) {
5494 ipseclog((LOG_DEBUG, "%s: invalid identity.\n", __func__));
5495 return EINVAL;
5496 }
5497
5498 idsrc = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_SRC];
5499 iddst = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_DST];
5500 idsrclen = mhp->extlen[SADB_EXT_IDENTITY_SRC];
5501 iddstlen = mhp->extlen[SADB_EXT_IDENTITY_DST];
5502
5503 /* validity check */
5504 if (idsrc->sadb_ident_type != iddst->sadb_ident_type) {
5505 ipseclog((LOG_DEBUG, "%s: ident type mismatch.\n", __func__));
5506 return EINVAL;
5507 }
5508
5509 switch (idsrc->sadb_ident_type) {
5510 case SADB_IDENTTYPE_PREFIX:
5511 case SADB_IDENTTYPE_FQDN:
5512 case SADB_IDENTTYPE_USERFQDN:
5513 default:
5514 /* XXX do nothing */
5515 sah->idents = NULL;
5516 sah->identd = NULL;
5517 return 0;
5518 }
5519
5520 /* make structure */
5521 sah->idents = malloc(sizeof(struct secident), M_IPSEC_MISC, M_NOWAIT);
5522 if (sah->idents == NULL) {
5523 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
5524 return ENOBUFS;
5525 }
5526 sah->identd = malloc(sizeof(struct secident), M_IPSEC_MISC, M_NOWAIT);
5527 if (sah->identd == NULL) {
5528 free(sah->idents, M_IPSEC_MISC);
5529 sah->idents = NULL;
5530 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
5531 return ENOBUFS;
5532 }
5533 sah->idents->type = idsrc->sadb_ident_type;
5534 sah->idents->id = idsrc->sadb_ident_id;
5535
5536 sah->identd->type = iddst->sadb_ident_type;
5537 sah->identd->id = iddst->sadb_ident_id;
5538
5539 return 0;
5540 }
5541
5542 /*
5543 * m will not be freed on return.
5544 * it is caller's responsibility to free the result.
5545 */
5546 static struct mbuf *
5547 key_getmsgbuf_x1(m, mhp)
5548 struct mbuf *m;
5549 const struct sadb_msghdr *mhp;
5550 {
5551 struct mbuf *n;
5552
5553 IPSEC_ASSERT(m != NULL, ("null mbuf"));
5554 IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
5555 IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
5556
5557 /* create new sadb_msg to reply. */
5558 n = key_gather_mbuf(m, mhp, 1, 9, SADB_EXT_RESERVED,
5559 SADB_EXT_SA, SADB_X_EXT_SA2,
5560 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST,
5561 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT,
5562 SADB_EXT_IDENTITY_SRC, SADB_EXT_IDENTITY_DST);
5563 if (!n)
5564 return NULL;
5565
5566 if (n->m_len < sizeof(struct sadb_msg)) {
5567 n = m_pullup(n, sizeof(struct sadb_msg));
5568 if (n == NULL)
5569 return NULL;
5570 }
5571 mtod(n, struct sadb_msg *)->sadb_msg_errno = 0;
5572 mtod(n, struct sadb_msg *)->sadb_msg_len =
5573 PFKEY_UNIT64(n->m_pkthdr.len);
5574
5575 return n;
5576 }
5577
5578 static int key_delete_all __P((struct socket *, struct mbuf *,
5579 const struct sadb_msghdr *, u_int16_t));
5580
5581 /*
5582 * SADB_DELETE processing
5583 * receive
5584 * <base, SA(*), address(SD)>
5585 * from the ikmpd, and set SADB_SASTATE_DEAD,
5586 * and send,
5587 * <base, SA(*), address(SD)>
5588 * to the ikmpd.
5589 *
5590 * m will always be freed.
5591 */
5592 static int
5593 key_delete(so, m, mhp)
5594 struct socket *so;
5595 struct mbuf *m;
5596 const struct sadb_msghdr *mhp;
5597 {
5598 struct sadb_sa *sa0;
5599 struct sadb_address *src0, *dst0;
5600 struct secasindex saidx;
5601 struct secashead *sah;
5602 struct secasvar *sav = NULL;
5603 u_int16_t proto;
5604
5605 IPSEC_ASSERT(so != NULL, ("null socket"));
5606 IPSEC_ASSERT(m != NULL, ("null mbuf"));
5607 IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
5608 IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
5609
5610 /* map satype to proto */
5611 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
5612 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
5613 __func__));
5614 return key_senderror(so, m, EINVAL);
5615 }
5616
5617 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5618 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
5619 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5620 __func__));
5621 return key_senderror(so, m, EINVAL);
5622 }
5623
5624 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5625 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5626 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5627 __func__));
5628 return key_senderror(so, m, EINVAL);
5629 }
5630
5631 if (mhp->ext[SADB_EXT_SA] == NULL) {
5632 /*
5633 * Caller wants us to delete all non-LARVAL SAs
5634 * that match the src/dst. This is used during
5635 * IKE INITIAL-CONTACT.
5636 */
5637 ipseclog((LOG_DEBUG, "%s: doing delete all.\n", __func__));
5638 return key_delete_all(so, m, mhp, proto);
5639 } else if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa)) {
5640 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5641 __func__));
5642 return key_senderror(so, m, EINVAL);
5643 }
5644
5645 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5646 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
5647 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
5648
5649 /* XXX boundary check against sa_len */
5650 KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx);
5651
5652 /*
5653 * Make sure the port numbers are zero.
5654 * In case of NAT-T we will update them later if needed.
5655 */
5656 KEY_PORTTOSADDR(&saidx.src, 0);
5657 KEY_PORTTOSADDR(&saidx.dst, 0);
5658
5659 #ifdef IPSEC_NAT_T
5660 /*
5661 * Handle NAT-T info if present.
5662 */
5663 if (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL &&
5664 mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) {
5665 struct sadb_x_nat_t_port *sport, *dport;
5666
5667 if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) ||
5668 mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) {
5669 ipseclog((LOG_DEBUG, "%s: invalid message.\n",
5670 __func__));
5671 return key_senderror(so, m, EINVAL);
5672 }
5673
5674 sport = (struct sadb_x_nat_t_port *)
5675 mhp->ext[SADB_X_EXT_NAT_T_SPORT];
5676 dport = (struct sadb_x_nat_t_port *)
5677 mhp->ext[SADB_X_EXT_NAT_T_DPORT];
5678
5679 if (sport)
5680 KEY_PORTTOSADDR(&saidx.src,
5681 sport->sadb_x_nat_t_port_port);
5682 if (dport)
5683 KEY_PORTTOSADDR(&saidx.dst,
5684 dport->sadb_x_nat_t_port_port);
5685 }
5686 #endif
5687
5688 /* get a SA header */
5689 SAHTREE_LOCK();
5690 LIST_FOREACH(sah, &V_sahtree, chain) {
5691 if (sah->state == SADB_SASTATE_DEAD)
5692 continue;
5693 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0)
5694 continue;
5695
5696 /* get a SA with SPI. */
5697 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
5698 if (sav)
5699 break;
5700 }
5701 if (sah == NULL) {
5702 SAHTREE_UNLOCK();
5703 ipseclog((LOG_DEBUG, "%s: no SA found.\n", __func__));
5704 return key_senderror(so, m, ENOENT);
5705 }
5706
5707 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
5708 KEY_FREESAV(&sav);
5709 SAHTREE_UNLOCK();
5710
5711 {
5712 struct mbuf *n;
5713 struct sadb_msg *newmsg;
5714
5715 /* create new sadb_msg to reply. */
5716 /* XXX-BZ NAT-T extensions? */
5717 n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED,
5718 SADB_EXT_SA, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
5719 if (!n)
5720 return key_senderror(so, m, ENOBUFS);
5721
5722 if (n->m_len < sizeof(struct sadb_msg)) {
5723 n = m_pullup(n, sizeof(struct sadb_msg));
5724 if (n == NULL)
5725 return key_senderror(so, m, ENOBUFS);
5726 }
5727 newmsg = mtod(n, struct sadb_msg *);
5728 newmsg->sadb_msg_errno = 0;
5729 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
5730
5731 m_freem(m);
5732 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5733 }
5734 }
5735
5736 /*
5737 * delete all SAs for src/dst. Called from key_delete().
5738 */
5739 static int
5740 key_delete_all(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp,
5741 u_int16_t proto)
5742 {
5743 struct sadb_address *src0, *dst0;
5744 struct secasindex saidx;
5745 struct secashead *sah;
5746 struct secasvar *sav, *nextsav;
5747 u_int stateidx, state;
5748
5749 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
5750 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
5751
5752 /* XXX boundary check against sa_len */
5753 KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx);
5754
5755 /*
5756 * Make sure the port numbers are zero.
5757 * In case of NAT-T we will update them later if needed.
5758 */
5759 KEY_PORTTOSADDR(&saidx.src, 0);
5760 KEY_PORTTOSADDR(&saidx.dst, 0);
5761
5762 #ifdef IPSEC_NAT_T
5763 /*
5764 * Handle NAT-T info if present.
5765 */
5766
5767 if (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL &&
5768 mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) {
5769 struct sadb_x_nat_t_port *sport, *dport;
5770
5771 if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) ||
5772 mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) {
5773 ipseclog((LOG_DEBUG, "%s: invalid message.\n",
5774 __func__));
5775 return key_senderror(so, m, EINVAL);
5776 }
5777
5778 sport = (struct sadb_x_nat_t_port *)
5779 mhp->ext[SADB_X_EXT_NAT_T_SPORT];
5780 dport = (struct sadb_x_nat_t_port *)
5781 mhp->ext[SADB_X_EXT_NAT_T_DPORT];
5782
5783 if (sport)
5784 KEY_PORTTOSADDR(&saidx.src,
5785 sport->sadb_x_nat_t_port_port);
5786 if (dport)
5787 KEY_PORTTOSADDR(&saidx.dst,
5788 dport->sadb_x_nat_t_port_port);
5789 }
5790 #endif
5791
5792 SAHTREE_LOCK();
5793 LIST_FOREACH(sah, &V_sahtree, chain) {
5794 if (sah->state == SADB_SASTATE_DEAD)
5795 continue;
5796 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0)
5797 continue;
5798
5799 /* Delete all non-LARVAL SAs. */
5800 for (stateidx = 0;
5801 stateidx < _ARRAYLEN(saorder_state_alive);
5802 stateidx++) {
5803 state = saorder_state_alive[stateidx];
5804 if (state == SADB_SASTATE_LARVAL)
5805 continue;
5806 for (sav = LIST_FIRST(&sah->savtree[state]);
5807 sav != NULL; sav = nextsav) {
5808 nextsav = LIST_NEXT(sav, chain);
5809 /* sanity check */
5810 if (sav->state != state) {
5811 ipseclog((LOG_DEBUG, "%s: invalid "
5812 "sav->state (queue %d SA %d)\n",
5813 __func__, state, sav->state));
5814 continue;
5815 }
5816
5817 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
5818 KEY_FREESAV(&sav);
5819 }
5820 }
5821 }
5822 SAHTREE_UNLOCK();
5823 {
5824 struct mbuf *n;
5825 struct sadb_msg *newmsg;
5826
5827 /* create new sadb_msg to reply. */
5828 /* XXX-BZ NAT-T extensions? */
5829 n = key_gather_mbuf(m, mhp, 1, 3, SADB_EXT_RESERVED,
5830 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
5831 if (!n)
5832 return key_senderror(so, m, ENOBUFS);
5833
5834 if (n->m_len < sizeof(struct sadb_msg)) {
5835 n = m_pullup(n, sizeof(struct sadb_msg));
5836 if (n == NULL)
5837 return key_senderror(so, m, ENOBUFS);
5838 }
5839 newmsg = mtod(n, struct sadb_msg *);
5840 newmsg->sadb_msg_errno = 0;
5841 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
5842
5843 m_freem(m);
5844 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5845 }
5846 }
5847
5848 /*
5849 * SADB_GET processing
5850 * receive
5851 * <base, SA(*), address(SD)>
5852 * from the ikmpd, and get a SP and a SA to respond,
5853 * and send,
5854 * <base, SA, (lifetime(HSC),) address(SD), (address(P),) key(AE),
5855 * (identity(SD),) (sensitivity)>
5856 * to the ikmpd.
5857 *
5858 * m will always be freed.
5859 */
5860 static int
5861 key_get(so, m, mhp)
5862 struct socket *so;
5863 struct mbuf *m;
5864 const struct sadb_msghdr *mhp;
5865 {
5866 struct sadb_sa *sa0;
5867 struct sadb_address *src0, *dst0;
5868 struct secasindex saidx;
5869 struct secashead *sah;
5870 struct secasvar *sav = NULL;
5871 u_int16_t proto;
5872
5873 IPSEC_ASSERT(so != NULL, ("null socket"));
5874 IPSEC_ASSERT(m != NULL, ("null mbuf"));
5875 IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
5876 IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
5877
5878 /* map satype to proto */
5879 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
5880 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
5881 __func__));
5882 return key_senderror(so, m, EINVAL);
5883 }
5884
5885 if (mhp->ext[SADB_EXT_SA] == NULL ||
5886 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5887 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
5888 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5889 __func__));
5890 return key_senderror(so, m, EINVAL);
5891 }
5892 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
5893 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5894 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5895 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5896 __func__));
5897 return key_senderror(so, m, EINVAL);
5898 }
5899
5900 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5901 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
5902 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
5903
5904 /* XXX boundary check against sa_len */
5905 KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx);
5906
5907 /*
5908 * Make sure the port numbers are zero.
5909 * In case of NAT-T we will update them later if needed.
5910 */
5911 KEY_PORTTOSADDR(&saidx.src, 0);
5912 KEY_PORTTOSADDR(&saidx.dst, 0);
5913
5914 #ifdef IPSEC_NAT_T
5915 /*
5916 * Handle NAT-T info if present.
5917 */
5918
5919 if (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL &&
5920 mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) {
5921 struct sadb_x_nat_t_port *sport, *dport;
5922
5923 if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) ||
5924 mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) {
5925 ipseclog((LOG_DEBUG, "%s: invalid message.\n",
5926 __func__));
5927 return key_senderror(so, m, EINVAL);
5928 }
5929
5930 sport = (struct sadb_x_nat_t_port *)
5931 mhp->ext[SADB_X_EXT_NAT_T_SPORT];
5932 dport = (struct sadb_x_nat_t_port *)
5933 mhp->ext[SADB_X_EXT_NAT_T_DPORT];
5934
5935 if (sport)
5936 KEY_PORTTOSADDR(&saidx.src,
5937 sport->sadb_x_nat_t_port_port);
5938 if (dport)
5939 KEY_PORTTOSADDR(&saidx.dst,
5940 dport->sadb_x_nat_t_port_port);
5941 }
5942 #endif
5943
5944 /* get a SA header */
5945 SAHTREE_LOCK();
5946 LIST_FOREACH(sah, &V_sahtree, chain) {
5947 if (sah->state == SADB_SASTATE_DEAD)
5948 continue;
5949 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0)
5950 continue;
5951
5952 /* get a SA with SPI. */
5953 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
5954 if (sav)
5955 break;
5956 }
5957 SAHTREE_UNLOCK();
5958 if (sah == NULL) {
5959 ipseclog((LOG_DEBUG, "%s: no SA found.\n", __func__));
5960 return key_senderror(so, m, ENOENT);
5961 }
5962
5963 {
5964 struct mbuf *n;
5965 u_int8_t satype;
5966
5967 /* map proto to satype */
5968 if ((satype = key_proto2satype(sah->saidx.proto)) == 0) {
5969 ipseclog((LOG_DEBUG, "%s: there was invalid proto in SAD.\n",
5970 __func__));
5971 return key_senderror(so, m, EINVAL);
5972 }
5973
5974 /* create new sadb_msg to reply. */
5975 n = key_setdumpsa(sav, SADB_GET, satype, mhp->msg->sadb_msg_seq,
5976 mhp->msg->sadb_msg_pid);
5977 if (!n)
5978 return key_senderror(so, m, ENOBUFS);
5979
5980 m_freem(m);
5981 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
5982 }
5983 }
5984
5985 /* XXX make it sysctl-configurable? */
5986 static void
5987 key_getcomb_setlifetime(comb)
5988 struct sadb_comb *comb;
5989 {
5990
5991 comb->sadb_comb_soft_allocations = 1;
5992 comb->sadb_comb_hard_allocations = 1;
5993 comb->sadb_comb_soft_bytes = 0;
5994 comb->sadb_comb_hard_bytes = 0;
5995 comb->sadb_comb_hard_addtime = 86400; /* 1 day */
5996 comb->sadb_comb_soft_addtime = comb->sadb_comb_soft_addtime * 80 / 100;
5997 comb->sadb_comb_soft_usetime = 28800; /* 8 hours */
5998 comb->sadb_comb_hard_usetime = comb->sadb_comb_hard_usetime * 80 / 100;
5999 }
6000
6001 /*
6002 * XXX reorder combinations by preference
6003 * XXX no idea if the user wants ESP authentication or not
6004 */
6005 static struct mbuf *
6006 key_getcomb_esp()
6007 {
6008 struct sadb_comb *comb;
6009 struct enc_xform *algo;
6010 struct mbuf *result = NULL, *m, *n;
6011 int encmin;
6012 int i, off, o;
6013 int totlen;
6014 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
6015
6016 m = NULL;
6017 for (i = 1; i <= SADB_EALG_MAX; i++) {
6018 algo = esp_algorithm_lookup(i);
6019 if (algo == NULL)
6020 continue;
6021
6022 /* discard algorithms with key size smaller than system min */
6023 if (_BITS(algo->maxkey) < V_ipsec_esp_keymin)
6024 continue;
6025 if (_BITS(algo->minkey) < V_ipsec_esp_keymin)
6026 encmin = V_ipsec_esp_keymin;
6027 else
6028 encmin = _BITS(algo->minkey);
6029
6030 if (V_ipsec_esp_auth)
6031 m = key_getcomb_ah();
6032 else {
6033 IPSEC_ASSERT(l <= MLEN,
6034 ("l=%u > MLEN=%lu", l, (u_long) MLEN));
6035 MGET(m, M_DONTWAIT, MT_DATA);
6036 if (m) {
6037 M_ALIGN(m, l);
6038 m->m_len = l;
6039 m->m_next = NULL;
6040 bzero(mtod(m, caddr_t), m->m_len);
6041 }
6042 }
6043 if (!m)
6044 goto fail;
6045
6046 totlen = 0;
6047 for (n = m; n; n = n->m_next)
6048 totlen += n->m_len;
6049 IPSEC_ASSERT((totlen % l) == 0, ("totlen=%u, l=%u", totlen, l));
6050
6051 for (off = 0; off < totlen; off += l) {
6052 n = m_pulldown(m, off, l, &o);
6053 if (!n) {
6054 /* m is already freed */
6055 goto fail;
6056 }
6057 comb = (struct sadb_comb *)(mtod(n, caddr_t) + o);
6058 bzero(comb, sizeof(*comb));
6059 key_getcomb_setlifetime(comb);
6060 comb->sadb_comb_encrypt = i;
6061 comb->sadb_comb_encrypt_minbits = encmin;
6062 comb->sadb_comb_encrypt_maxbits = _BITS(algo->maxkey);
6063 }
6064
6065 if (!result)
6066 result = m;
6067 else
6068 m_cat(result, m);
6069 }
6070
6071 return result;
6072
6073 fail:
6074 if (result)
6075 m_freem(result);
6076 return NULL;
6077 }
6078
6079 static void
6080 key_getsizes_ah(
6081 const struct auth_hash *ah,
6082 int alg,
6083 u_int16_t* min,
6084 u_int16_t* max)
6085 {
6086
6087 *min = *max = ah->keysize;
6088 if (ah->keysize == 0) {
6089 /*
6090 * Transform takes arbitrary key size but algorithm
6091 * key size is restricted. Enforce this here.
6092 */
6093 switch (alg) {
6094 case SADB_X_AALG_MD5: *min = *max = 16; break;
6095 case SADB_X_AALG_SHA: *min = *max = 20; break;
6096 case SADB_X_AALG_NULL: *min = 1; *max = 256; break;
6097 case SADB_X_AALG_SHA2_256: *min = *max = 32; break;
6098 case SADB_X_AALG_SHA2_384: *min = *max = 48; break;
6099 case SADB_X_AALG_SHA2_512: *min = *max = 64; break;
6100 default:
6101 DPRINTF(("%s: unknown AH algorithm %u\n",
6102 __func__, alg));
6103 break;
6104 }
6105 }
6106 }
6107
6108 /*
6109 * XXX reorder combinations by preference
6110 */
6111 static struct mbuf *
6112 key_getcomb_ah()
6113 {
6114 struct sadb_comb *comb;
6115 struct auth_hash *algo;
6116 struct mbuf *m;
6117 u_int16_t minkeysize, maxkeysize;
6118 int i;
6119 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
6120
6121 m = NULL;
6122 for (i = 1; i <= SADB_AALG_MAX; i++) {
6123 #if 1
6124 /* we prefer HMAC algorithms, not old algorithms */
6125 if (i != SADB_AALG_SHA1HMAC &&
6126 i != SADB_AALG_MD5HMAC &&
6127 i != SADB_X_AALG_SHA2_256 &&
6128 i != SADB_X_AALG_SHA2_384 &&
6129 i != SADB_X_AALG_SHA2_512)
6130 continue;
6131 #endif
6132 algo = ah_algorithm_lookup(i);
6133 if (!algo)
6134 continue;
6135 key_getsizes_ah(algo, i, &minkeysize, &maxkeysize);
6136 /* discard algorithms with key size smaller than system min */
6137 if (_BITS(minkeysize) < V_ipsec_ah_keymin)
6138 continue;
6139
6140 if (!m) {
6141 IPSEC_ASSERT(l <= MLEN,
6142 ("l=%u > MLEN=%lu", l, (u_long) MLEN));
6143 MGET( |