FreeBSD/Linux Kernel Cross Reference
sys/netkey/key.c
1 /* $FreeBSD$ */
2 /* $KAME: key.c,v 1.191 2001/06/27 10:46:49 sakane Exp $ */
3
4 /*
5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of the project nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 */
32
33 /*
34 * This code is referd to RFC 2367
35 */
36
37 #include "opt_inet.h"
38 #include "opt_inet6.h"
39 #include "opt_ipsec.h"
40
41 #include <sys/types.h>
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/kernel.h>
45 #include <sys/mbuf.h>
46 #include <sys/domain.h>
47 #include <sys/protosw.h>
48 #include <sys/malloc.h>
49 #include <sys/socket.h>
50 #include <sys/socketvar.h>
51 #include <sys/sysctl.h>
52 #include <sys/errno.h>
53 #include <sys/proc.h>
54 #include <sys/queue.h>
55 #include <sys/syslog.h>
56
57 #include <net/if.h>
58 #include <net/route.h>
59 #include <net/raw_cb.h>
60
61 #include <netinet/in.h>
62 #include <netinet/in_systm.h>
63 #include <netinet/ip.h>
64 #include <netinet/in_var.h>
65
66 #ifdef INET6
67 #include <netinet/ip6.h>
68 #include <netinet6/in6_var.h>
69 #include <netinet6/ip6_var.h>
70 #endif /* INET6 */
71
72 #ifdef INET
73 #include <netinet/in_pcb.h>
74 #endif
75 #ifdef INET6
76 #include <netinet6/in6_pcb.h>
77 #endif /* INET6 */
78
79 #include <net/pfkeyv2.h>
80 #include <netkey/keydb.h>
81 #include <netkey/key.h>
82 #include <netkey/keysock.h>
83 #include <netkey/key_debug.h>
84
85 #include <netinet6/ipsec.h>
86 #ifdef INET6
87 #include <netinet6/ipsec6.h>
88 #endif
89 #include <netinet6/ah.h>
90 #ifdef INET6
91 #include <netinet6/ah6.h>
92 #endif
93 #ifdef IPSEC_ESP
94 #include <netinet6/esp.h>
95 #ifdef INET6
96 #include <netinet6/esp6.h>
97 #endif
98 #endif
99 #include <netinet6/ipcomp.h>
100 #ifdef INET6
101 #include <netinet6/ipcomp6.h>
102 #endif
103
104 #include <machine/stdarg.h>
105
106 /* randomness */
107 #include <sys/random.h>
108
109 #include <net/net_osdep.h>
110
111 #ifndef satosin
112 #define satosin(s) ((struct sockaddr_in *)s)
113 #endif
114
115 #define FULLMASK 0xff
116
117 /*
118 * Note on SA reference counting:
119 * - SAs that are not in DEAD state will have (total external reference + 1)
120 * following value in reference count field. they cannot be freed and are
121 * referenced from SA header.
122 * - SAs that are in DEAD state will have (total external reference)
123 * in reference count field. they are ready to be freed. reference from
124 * SA header will be removed in key_delsav(), when the reference count
125 * field hits 0 (= no external reference other than from SA header.
126 */
127
128 u_int32_t key_debug_level = 0;
129 static u_int key_spi_trycnt = 1000;
130 static u_int32_t key_spi_minval = 0x100;
131 static u_int32_t key_spi_maxval = 0x0fffffff; /* XXX */
132 static u_int32_t policy_id = 0;
133 static u_int key_int_random = 60; /*interval to initialize randseed,1(m)*/
134 static u_int key_larval_lifetime = 30; /* interval to expire acquiring, 30(s)*/
135 static int key_blockacq_count = 10; /* counter for blocking SADB_ACQUIRE.*/
136 static int key_blockacq_lifetime = 20; /* lifetime for blocking SADB_ACQUIRE.*/
137 static int key_preferred_oldsa = 1; /* preferred old sa rather than new sa.*/
138
139 static u_int32_t acq_seq = 0;
140 static int key_tick_init_random = 0;
141
142 static LIST_HEAD(_sptree, secpolicy) sptree[IPSEC_DIR_MAX]; /* SPD */
143 static LIST_HEAD(_sahtree, secashead) sahtree; /* SAD */
144 static LIST_HEAD(_regtree, secreg) regtree[SADB_SATYPE_MAX + 1];
145 /* registed list */
146 #ifndef IPSEC_NONBLOCK_ACQUIRE
147 static LIST_HEAD(_acqtree, secacq) acqtree; /* acquiring list */
148 #endif
149 static LIST_HEAD(_spacqtree, secspacq) spacqtree; /* SP acquiring list */
150
151 struct key_cb key_cb;
152
153 /* search order for SAs */
154 static const u_int saorder_state_valid_prefer_old[] = {
155 SADB_SASTATE_DYING, SADB_SASTATE_MATURE,
156 };
157 static const u_int saorder_state_valid_prefer_new[] = {
158 SADB_SASTATE_MATURE, SADB_SASTATE_DYING,
159 };
160 static const u_int saorder_state_alive[] = {
161 /* except DEAD */
162 SADB_SASTATE_MATURE, SADB_SASTATE_DYING, SADB_SASTATE_LARVAL
163 };
164 static const u_int saorder_state_any[] = {
165 SADB_SASTATE_MATURE, SADB_SASTATE_DYING,
166 SADB_SASTATE_LARVAL, SADB_SASTATE_DEAD
167 };
168
169 static const int minsize[] = {
170 sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */
171 sizeof(struct sadb_sa), /* SADB_EXT_SA */
172 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */
173 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */
174 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */
175 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_SRC */
176 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_DST */
177 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_PROXY */
178 sizeof(struct sadb_key), /* SADB_EXT_KEY_AUTH */
179 sizeof(struct sadb_key), /* SADB_EXT_KEY_ENCRYPT */
180 sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_SRC */
181 sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_DST */
182 sizeof(struct sadb_sens), /* SADB_EXT_SENSITIVITY */
183 sizeof(struct sadb_prop), /* SADB_EXT_PROPOSAL */
184 sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_AUTH */
185 sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_ENCRYPT */
186 sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */
187 0, /* SADB_X_EXT_KMPRIVATE */
188 sizeof(struct sadb_x_policy), /* SADB_X_EXT_POLICY */
189 sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */
190 };
191 static const int maxsize[] = {
192 sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */
193 sizeof(struct sadb_sa), /* SADB_EXT_SA */
194 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */
195 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */
196 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */
197 0, /* SADB_EXT_ADDRESS_SRC */
198 0, /* SADB_EXT_ADDRESS_DST */
199 0, /* SADB_EXT_ADDRESS_PROXY */
200 0, /* SADB_EXT_KEY_AUTH */
201 0, /* SADB_EXT_KEY_ENCRYPT */
202 0, /* SADB_EXT_IDENTITY_SRC */
203 0, /* SADB_EXT_IDENTITY_DST */
204 0, /* SADB_EXT_SENSITIVITY */
205 0, /* SADB_EXT_PROPOSAL */
206 0, /* SADB_EXT_SUPPORTED_AUTH */
207 0, /* SADB_EXT_SUPPORTED_ENCRYPT */
208 sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */
209 0, /* SADB_X_EXT_KMPRIVATE */
210 0, /* SADB_X_EXT_POLICY */
211 sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */
212 };
213
214 static int ipsec_esp_keymin = 256;
215 static int ipsec_esp_auth = 0;
216 static int ipsec_ah_keymin = 128;
217
218 #ifdef SYSCTL_DECL
219 SYSCTL_DECL(_net_key);
220 #endif
221
222 SYSCTL_INT(_net_key, KEYCTL_DEBUG_LEVEL, debug, CTLFLAG_RW, \
223 &key_debug_level, 0, "");
224
225 /* max count of trial for the decision of spi value */
226 SYSCTL_INT(_net_key, KEYCTL_SPI_TRY, spi_trycnt, CTLFLAG_RW, \
227 &key_spi_trycnt, 0, "");
228
229 /* minimum spi value to allocate automatically. */
230 SYSCTL_INT(_net_key, KEYCTL_SPI_MIN_VALUE, spi_minval, CTLFLAG_RW, \
231 &key_spi_minval, 0, "");
232
233 /* maximun spi value to allocate automatically. */
234 SYSCTL_INT(_net_key, KEYCTL_SPI_MAX_VALUE, spi_maxval, CTLFLAG_RW, \
235 &key_spi_maxval, 0, "");
236
237 /* interval to initialize randseed */
238 SYSCTL_INT(_net_key, KEYCTL_RANDOM_INT, int_random, CTLFLAG_RW, \
239 &key_int_random, 0, "");
240
241 /* lifetime for larval SA */
242 SYSCTL_INT(_net_key, KEYCTL_LARVAL_LIFETIME, larval_lifetime, CTLFLAG_RW, \
243 &key_larval_lifetime, 0, "");
244
245 /* counter for blocking to send SADB_ACQUIRE to IKEd */
246 SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_COUNT, blockacq_count, CTLFLAG_RW, \
247 &key_blockacq_count, 0, "");
248
249 /* lifetime for blocking to send SADB_ACQUIRE to IKEd */
250 SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_LIFETIME, blockacq_lifetime, CTLFLAG_RW, \
251 &key_blockacq_lifetime, 0, "");
252
253 /* ESP auth */
254 SYSCTL_INT(_net_key, KEYCTL_ESP_AUTH, esp_auth, CTLFLAG_RW, \
255 &ipsec_esp_auth, 0, "");
256
257 /* minimum ESP key length */
258 SYSCTL_INT(_net_key, KEYCTL_ESP_KEYMIN, esp_keymin, CTLFLAG_RW, \
259 &ipsec_esp_keymin, 0, "");
260
261 /* minimum AH key length */
262 SYSCTL_INT(_net_key, KEYCTL_AH_KEYMIN, ah_keymin, CTLFLAG_RW, \
263 &ipsec_ah_keymin, 0, "");
264
265 /* perfered old SA rather than new SA */
266 SYSCTL_INT(_net_key, KEYCTL_PREFERED_OLDSA, prefered_oldsa, CTLFLAG_RW,\
267 &key_preferred_oldsa, 0, "");
268
269 #ifndef LIST_FOREACH
270 #define LIST_FOREACH(elm, head, field) \
271 for (elm = LIST_FIRST(head); elm; elm = LIST_NEXT(elm, field))
272 #endif
273 #define __LIST_CHAINED(elm) \
274 (!((elm)->chain.le_next == NULL && (elm)->chain.le_prev == NULL))
275 #define LIST_INSERT_TAIL(head, elm, type, field) \
276 do {\
277 struct type *curelm = LIST_FIRST(head); \
278 if (curelm == NULL) {\
279 LIST_INSERT_HEAD(head, elm, field); \
280 } else { \
281 while (LIST_NEXT(curelm, field)) \
282 curelm = LIST_NEXT(curelm, field);\
283 LIST_INSERT_AFTER(curelm, elm, field);\
284 }\
285 } while (0)
286
287 #define KEY_CHKSASTATE(head, sav, name) \
288 do { \
289 if ((head) != (sav)) { \
290 ipseclog((LOG_DEBUG, "%s: state mismatched (TREE=%d SA=%d)\n", \
291 (name), (head), (sav))); \
292 continue; \
293 } \
294 } while (0)
295
296 #define KEY_CHKSPDIR(head, sp, name) \
297 do { \
298 if ((head) != (sp)) { \
299 ipseclog((LOG_DEBUG, "%s: direction mismatched (TREE=%d SP=%d), " \
300 "anyway continue.\n", \
301 (name), (head), (sp))); \
302 } \
303 } while (0)
304
305 #if 1
306 #define KMALLOC(p, t, n) \
307 ((p) = (t) malloc((unsigned long)(n), M_SECA, M_NOWAIT))
308 #define KFREE(p) \
309 free((caddr_t)(p), M_SECA);
310 #else
311 #define KMALLOC(p, t, n) \
312 do { \
313 ((p) = (t)malloc((unsigned long)(n), M_SECA, M_NOWAIT)); \
314 printf("%s %d: %p <- KMALLOC(%s, %d)\n", \
315 __FILE__, __LINE__, (p), #t, n); \
316 } while (0)
317
318 #define KFREE(p) \
319 do { \
320 printf("%s %d: %p -> KFREE()\n", __FILE__, __LINE__, (p)); \
321 free((caddr_t)(p), M_SECA); \
322 } while (0)
323 #endif
324
325 /*
326 * set parameters into secpolicyindex buffer.
327 * Must allocate secpolicyindex buffer passed to this function.
328 */
329 #define KEY_SETSECSPIDX(_dir, s, d, ps, pd, ulp, idx) \
330 do { \
331 bzero((idx), sizeof(struct secpolicyindex)); \
332 (idx)->dir = (_dir); \
333 (idx)->prefs = (ps); \
334 (idx)->prefd = (pd); \
335 (idx)->ul_proto = (ulp); \
336 bcopy((s), &(idx)->src, ((struct sockaddr *)(s))->sa_len); \
337 bcopy((d), &(idx)->dst, ((struct sockaddr *)(d))->sa_len); \
338 } while (0)
339
340 /*
341 * set parameters into secasindex buffer.
342 * Must allocate secasindex buffer before calling this function.
343 */
344 #define KEY_SETSECASIDX(p, m, r, s, d, idx) \
345 do { \
346 bzero((idx), sizeof(struct secasindex)); \
347 (idx)->proto = (p); \
348 (idx)->mode = (m); \
349 (idx)->reqid = (r); \
350 bcopy((s), &(idx)->src, ((struct sockaddr *)(s))->sa_len); \
351 bcopy((d), &(idx)->dst, ((struct sockaddr *)(d))->sa_len); \
352 } while (0)
353
354 /* key statistics */
355 struct _keystat {
356 u_long getspi_count; /* the avarage of count to try to get new SPI */
357 } keystat;
358
359 struct sadb_msghdr {
360 struct sadb_msg *msg;
361 struct sadb_ext *ext[SADB_EXT_MAX + 1];
362 int extoff[SADB_EXT_MAX + 1];
363 int extlen[SADB_EXT_MAX + 1];
364 };
365
366 static struct secasvar *key_allocsa_policy __P((struct secasindex *));
367 static void key_freesp_so __P((struct secpolicy **));
368 static struct secasvar *key_do_allocsa_policy __P((struct secashead *, u_int));
369 static void key_delsp __P((struct secpolicy *));
370 static struct secpolicy *key_getsp __P((struct secpolicyindex *));
371 static struct secpolicy *key_getspbyid __P((u_int32_t));
372 static u_int32_t key_newreqid __P((void));
373 static struct mbuf *key_gather_mbuf __P((struct mbuf *,
374 const struct sadb_msghdr *, int, int, ...));
375 static int key_spdadd __P((struct socket *, struct mbuf *,
376 const struct sadb_msghdr *));
377 static u_int32_t key_getnewspid __P((void));
378 static int key_spddelete __P((struct socket *, struct mbuf *,
379 const struct sadb_msghdr *));
380 static int key_spddelete2 __P((struct socket *, struct mbuf *,
381 const struct sadb_msghdr *));
382 static int key_spdget __P((struct socket *, struct mbuf *,
383 const struct sadb_msghdr *));
384 static int key_spdflush __P((struct socket *, struct mbuf *,
385 const struct sadb_msghdr *));
386 static int key_spddump __P((struct socket *, struct mbuf *,
387 const struct sadb_msghdr *));
388 static struct mbuf *key_setdumpsp __P((struct secpolicy *,
389 u_int8_t, u_int32_t, u_int32_t));
390 static u_int key_getspreqmsglen __P((struct secpolicy *));
391 static int key_spdexpire __P((struct secpolicy *));
392 static struct secashead *key_newsah __P((struct secasindex *));
393 static void key_delsah __P((struct secashead *));
394 static struct secasvar *key_newsav __P((struct mbuf *,
395 const struct sadb_msghdr *, struct secashead *, int *));
396 static void key_delsav __P((struct secasvar *));
397 static struct secashead *key_getsah __P((struct secasindex *));
398 static struct secasvar *key_checkspidup __P((struct secasindex *, u_int32_t));
399 static struct secasvar *key_getsavbyspi __P((struct secashead *, u_int32_t));
400 static int key_setsaval __P((struct secasvar *, struct mbuf *,
401 const struct sadb_msghdr *));
402 static int key_mature __P((struct secasvar *));
403 static struct mbuf *key_setdumpsa __P((struct secasvar *, u_int8_t,
404 u_int8_t, u_int32_t, u_int32_t));
405 static struct mbuf *key_setsadbmsg __P((u_int8_t, u_int16_t, u_int8_t,
406 u_int32_t, pid_t, u_int16_t));
407 static struct mbuf *key_setsadbsa __P((struct secasvar *));
408 static struct mbuf *key_setsadbaddr __P((u_int16_t,
409 struct sockaddr *, u_int8_t, u_int16_t));
410 #if 0
411 static struct mbuf *key_setsadbident __P((u_int16_t, u_int16_t, caddr_t,
412 int, u_int64_t));
413 #endif
414 static struct mbuf *key_setsadbxsa2 __P((u_int8_t, u_int32_t, u_int32_t));
415 static struct mbuf *key_setsadbxpolicy __P((u_int16_t, u_int8_t,
416 u_int32_t));
417 static void *key_newbuf __P((const void *, u_int));
418 #ifdef INET6
419 static int key_ismyaddr6 __P((struct sockaddr_in6 *));
420 #endif
421
422 /* flags for key_cmpsaidx() */
423 #define CMP_HEAD 1 /* protocol, addresses. */
424 #define CMP_MODE_REQID 2 /* additionally HEAD, reqid, mode. */
425 #define CMP_REQID 3 /* additionally HEAD, reaid. */
426 #define CMP_EXACTLY 4 /* all elements. */
427 static int key_cmpsaidx
428 __P((struct secasindex *, struct secasindex *, int));
429
430 static int key_cmpspidx_exactly
431 __P((struct secpolicyindex *, struct secpolicyindex *));
432 static int key_cmpspidx_withmask
433 __P((struct secpolicyindex *, struct secpolicyindex *));
434 static int key_sockaddrcmp __P((struct sockaddr *, struct sockaddr *, int));
435 static int key_bbcmp __P((caddr_t, caddr_t, u_int));
436 static void key_srandom __P((void));
437 static u_int16_t key_satype2proto __P((u_int8_t));
438 static u_int8_t key_proto2satype __P((u_int16_t));
439
440 static int key_getspi __P((struct socket *, struct mbuf *,
441 const struct sadb_msghdr *));
442 static u_int32_t key_do_getnewspi __P((struct sadb_spirange *,
443 struct secasindex *));
444 static int key_update __P((struct socket *, struct mbuf *,
445 const struct sadb_msghdr *));
446 #ifdef IPSEC_DOSEQCHECK
447 static struct secasvar *key_getsavbyseq __P((struct secashead *, u_int32_t));
448 #endif
449 static int key_add __P((struct socket *, struct mbuf *,
450 const struct sadb_msghdr *));
451 static int key_setident __P((struct secashead *, struct mbuf *,
452 const struct sadb_msghdr *));
453 static struct mbuf *key_getmsgbuf_x1 __P((struct mbuf *,
454 const struct sadb_msghdr *));
455 static int key_delete __P((struct socket *, struct mbuf *,
456 const struct sadb_msghdr *));
457 static int key_get __P((struct socket *, struct mbuf *,
458 const struct sadb_msghdr *));
459
460 static void key_getcomb_setlifetime __P((struct sadb_comb *));
461 #ifdef IPSEC_ESP
462 static struct mbuf *key_getcomb_esp __P((void));
463 #endif
464 static struct mbuf *key_getcomb_ah __P((void));
465 static struct mbuf *key_getcomb_ipcomp __P((void));
466 static struct mbuf *key_getprop __P((const struct secasindex *));
467
468 static int key_acquire __P((struct secasindex *, struct secpolicy *));
469 #ifndef IPSEC_NONBLOCK_ACQUIRE
470 static struct secacq *key_newacq __P((struct secasindex *));
471 static struct secacq *key_getacq __P((struct secasindex *));
472 static struct secacq *key_getacqbyseq __P((u_int32_t));
473 #endif
474 static struct secspacq *key_newspacq __P((struct secpolicyindex *));
475 static struct secspacq *key_getspacq __P((struct secpolicyindex *));
476 static int key_acquire2 __P((struct socket *, struct mbuf *,
477 const struct sadb_msghdr *));
478 static int key_register __P((struct socket *, struct mbuf *,
479 const struct sadb_msghdr *));
480 static int key_expire __P((struct secasvar *));
481 static int key_flush __P((struct socket *, struct mbuf *,
482 const struct sadb_msghdr *));
483 static int key_dump __P((struct socket *, struct mbuf *,
484 const struct sadb_msghdr *));
485 static int key_promisc __P((struct socket *, struct mbuf *,
486 const struct sadb_msghdr *));
487 static int key_senderror __P((struct socket *, struct mbuf *, int));
488 static int key_validate_ext __P((const struct sadb_ext *, int));
489 static int key_align __P((struct mbuf *, struct sadb_msghdr *));
490 #if 0
491 static const char *key_getfqdn __P((void));
492 static const char *key_getuserfqdn __P((void));
493 #endif
494 static void key_sa_chgstate __P((struct secasvar *, u_int8_t));
495 static struct mbuf *key_alloc_mbuf __P((int));
496
497 /* %%% IPsec policy management */
498 /*
499 * allocating a SP for OUTBOUND or INBOUND packet.
500 * Must call key_freesp() later.
501 * OUT: NULL: not found
502 * others: found and return the pointer.
503 */
504 struct secpolicy *
505 key_allocsp(spidx, dir)
506 struct secpolicyindex *spidx;
507 u_int dir;
508 {
509 struct secpolicy *sp;
510 struct timeval tv;
511 int s;
512
513 /* sanity check */
514 if (spidx == NULL)
515 panic("key_allocsp: NULL pointer is passed.\n");
516
517 /* check direction */
518 switch (dir) {
519 case IPSEC_DIR_INBOUND:
520 case IPSEC_DIR_OUTBOUND:
521 break;
522 default:
523 panic("key_allocsp: Invalid direction is passed.\n");
524 }
525
526 /* get a SP entry */
527 s = splnet(); /*called from softclock()*/
528 KEYDEBUG(KEYDEBUG_IPSEC_DATA,
529 printf("*** objects\n");
530 kdebug_secpolicyindex(spidx));
531
532 LIST_FOREACH(sp, &sptree[dir], chain) {
533 KEYDEBUG(KEYDEBUG_IPSEC_DATA,
534 printf("*** in SPD\n");
535 kdebug_secpolicyindex(&sp->spidx));
536
537 if (sp->state == IPSEC_SPSTATE_DEAD)
538 continue;
539 if (key_cmpspidx_withmask(&sp->spidx, spidx))
540 goto found;
541 }
542
543 splx(s);
544 return NULL;
545
546 found:
547 /* sanity check */
548 KEY_CHKSPDIR(sp->spidx.dir, dir, "key_allocsp");
549
550 /* found a SPD entry */
551 microtime(&tv);
552 sp->lastused = tv.tv_sec;
553 sp->refcnt++;
554 splx(s);
555 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
556 printf("DP key_allocsp cause refcnt++:%d SP:%p\n",
557 sp->refcnt, sp));
558
559 return sp;
560 }
561
562 /*
563 * return a policy that matches this particular inbound packet.
564 * XXX slow
565 */
566 struct secpolicy *
567 key_gettunnel(osrc, odst, isrc, idst)
568 struct sockaddr *osrc, *odst, *isrc, *idst;
569 {
570 struct secpolicy *sp;
571 const int dir = IPSEC_DIR_INBOUND;
572 struct timeval tv;
573 int s;
574 struct ipsecrequest *r1, *r2, *p;
575 struct sockaddr *os, *od, *is, *id;
576 struct secpolicyindex spidx;
577
578 if (isrc->sa_family != idst->sa_family) {
579 ipseclog((LOG_ERR, "protocol family mismatched %d != %d\n.",
580 isrc->sa_family, idst->sa_family));
581 return NULL;
582 }
583
584 s = splnet(); /*called from softclock()*/
585 LIST_FOREACH(sp, &sptree[dir], chain) {
586 if (sp->state == IPSEC_SPSTATE_DEAD)
587 continue;
588
589 r1 = r2 = NULL;
590 for (p = sp->req; p; p = p->next) {
591 if (p->saidx.mode != IPSEC_MODE_TUNNEL)
592 continue;
593
594 r1 = r2;
595 r2 = p;
596
597 if (!r1) {
598 /* here we look at address matches only */
599 spidx = sp->spidx;
600 if (isrc->sa_len > sizeof(spidx.src) ||
601 idst->sa_len > sizeof(spidx.dst))
602 continue;
603 bcopy(isrc, &spidx.src, isrc->sa_len);
604 bcopy(idst, &spidx.dst, idst->sa_len);
605 if (!key_cmpspidx_withmask(&sp->spidx, &spidx))
606 continue;
607 } else {
608 is = (struct sockaddr *)&r1->saidx.src;
609 id = (struct sockaddr *)&r1->saidx.dst;
610 if (key_sockaddrcmp(is, isrc, 0) ||
611 key_sockaddrcmp(id, idst, 0))
612 continue;
613 }
614
615 os = (struct sockaddr *)&r2->saidx.src;
616 od = (struct sockaddr *)&r2->saidx.dst;
617 if (key_sockaddrcmp(os, osrc, 0) ||
618 key_sockaddrcmp(od, odst, 0))
619 continue;
620
621 goto found;
622 }
623 }
624 splx(s);
625 return NULL;
626
627 found:
628 microtime(&tv);
629 sp->lastused = tv.tv_sec;
630 sp->refcnt++;
631 splx(s);
632 return sp;
633 }
634
635 /*
636 * allocating an SA entry for an *OUTBOUND* packet.
637 * checking each request entries in SP, and acquire an SA if need.
638 * OUT: 0: there are valid requests.
639 * ENOENT: policy may be valid, but SA with REQUIRE is on acquiring.
640 */
641 int
642 key_checkrequest(isr, saidx)
643 struct ipsecrequest *isr;
644 struct secasindex *saidx;
645 {
646 u_int level;
647 int error;
648
649 /* sanity check */
650 if (isr == NULL || saidx == NULL)
651 panic("key_checkrequest: NULL pointer is passed.\n");
652
653 /* check mode */
654 switch (saidx->mode) {
655 case IPSEC_MODE_TRANSPORT:
656 case IPSEC_MODE_TUNNEL:
657 break;
658 case IPSEC_MODE_ANY:
659 default:
660 panic("key_checkrequest: Invalid policy defined.\n");
661 }
662
663 /* get current level */
664 level = ipsec_get_reqlevel(isr);
665
666 #if 0
667 /*
668 * We do allocate new SA only if the state of SA in the holder is
669 * SADB_SASTATE_DEAD. The SA for outbound must be the oldest.
670 */
671 if (isr->sav != NULL) {
672 if (isr->sav->sah == NULL)
673 panic("key_checkrequest: sah is null.\n");
674 if (isr->sav == (struct secasvar *)LIST_FIRST(
675 &isr->sav->sah->savtree[SADB_SASTATE_DEAD])) {
676 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
677 printf("DP checkrequest calls free SA:%p\n",
678 isr->sav));
679 key_freesav(isr->sav);
680 isr->sav = NULL;
681 }
682 }
683 #else
684 /*
685 * we free any SA stashed in the IPsec request because a different
686 * SA may be involved each time this request is checked, either
687 * because new SAs are being configured, or this request is
688 * associated with an unconnected datagram socket, or this request
689 * is associated with a system default policy.
690 *
691 * The operation may have negative impact to performance. We may
692 * want to check cached SA carefully, rather than picking new SA
693 * every time.
694 */
695 if (isr->sav != NULL) {
696 key_freesav(isr->sav);
697 isr->sav = NULL;
698 }
699 #endif
700
701 /*
702 * new SA allocation if no SA found.
703 * key_allocsa_policy should allocate the oldest SA available.
704 * See key_do_allocsa_policy(), and draft-jenkins-ipsec-rekeying-03.txt.
705 */
706 if (isr->sav == NULL)
707 isr->sav = key_allocsa_policy(saidx);
708
709 /* When there is SA. */
710 if (isr->sav != NULL)
711 return 0;
712
713 /* there is no SA */
714 if ((error = key_acquire(saidx, isr->sp)) != 0) {
715 /* XXX What should I do ? */
716 ipseclog((LOG_DEBUG, "key_checkrequest: error %d returned "
717 "from key_acquire.\n", error));
718 return error;
719 }
720
721 return level == IPSEC_LEVEL_REQUIRE ? ENOENT : 0;
722 }
723
724 /*
725 * allocating a SA for policy entry from SAD.
726 * NOTE: searching SAD of aliving state.
727 * OUT: NULL: not found.
728 * others: found and return the pointer.
729 */
730 static struct secasvar *
731 key_allocsa_policy(saidx)
732 struct secasindex *saidx;
733 {
734 struct secashead *sah;
735 struct secasvar *sav;
736 u_int stateidx, state;
737 const u_int *saorder_state_valid;
738 int arraysize;
739
740 LIST_FOREACH(sah, &sahtree, chain) {
741 if (sah->state == SADB_SASTATE_DEAD)
742 continue;
743 if (key_cmpsaidx(&sah->saidx, saidx, CMP_MODE_REQID))
744 goto found;
745 }
746
747 return NULL;
748
749 found:
750
751 /*
752 * search a valid state list for outbound packet.
753 * This search order is important.
754 */
755 if (key_preferred_oldsa) {
756 saorder_state_valid = saorder_state_valid_prefer_old;
757 arraysize = _ARRAYLEN(saorder_state_valid_prefer_old);
758 } else {
759 saorder_state_valid = saorder_state_valid_prefer_new;
760 arraysize = _ARRAYLEN(saorder_state_valid_prefer_new);
761 }
762
763 for (stateidx = 0; stateidx < arraysize; stateidx++) {
764
765 state = saorder_state_valid[stateidx];
766
767 sav = key_do_allocsa_policy(sah, state);
768 if (sav != NULL)
769 return sav;
770 }
771
772 return NULL;
773 }
774
775 /*
776 * searching SAD with direction, protocol, mode and state.
777 * called by key_allocsa_policy().
778 * OUT:
779 * NULL : not found
780 * others : found, pointer to a SA.
781 */
782 static struct secasvar *
783 key_do_allocsa_policy(sah, state)
784 struct secashead *sah;
785 u_int state;
786 {
787 struct secasvar *sav, *nextsav, *candidate, *d;
788
789 /* initilize */
790 candidate = NULL;
791
792 for (sav = LIST_FIRST(&sah->savtree[state]);
793 sav != NULL;
794 sav = nextsav) {
795
796 nextsav = LIST_NEXT(sav, chain);
797
798 /* sanity check */
799 KEY_CHKSASTATE(sav->state, state, "key_do_allocsa_policy");
800
801 /* initialize */
802 if (candidate == NULL) {
803 candidate = sav;
804 continue;
805 }
806
807 /* Which SA is the better ? */
808
809 /* sanity check 2 */
810 if (candidate->lft_c == NULL || sav->lft_c == NULL)
811 panic("key_do_allocsa_policy: "
812 "lifetime_current is NULL.\n");
813
814 /* What the best method is to compare ? */
815 if (key_preferred_oldsa) {
816 if (candidate->lft_c->sadb_lifetime_addtime >
817 sav->lft_c->sadb_lifetime_addtime) {
818 candidate = sav;
819 }
820 continue;
821 /*NOTREACHED*/
822 }
823
824 /* prefered new sa rather than old sa */
825 if (candidate->lft_c->sadb_lifetime_addtime <
826 sav->lft_c->sadb_lifetime_addtime) {
827 d = candidate;
828 candidate = sav;
829 } else
830 d = sav;
831
832 /*
833 * prepared to delete the SA when there is more
834 * suitable candidate and the lifetime of the SA is not
835 * permanent.
836 */
837 if (d->lft_c->sadb_lifetime_addtime != 0) {
838 struct mbuf *m, *result;
839
840 key_sa_chgstate(d, SADB_SASTATE_DEAD);
841
842 m = key_setsadbmsg(SADB_DELETE, 0,
843 d->sah->saidx.proto, 0, 0, d->refcnt - 1);
844 if (!m)
845 goto msgfail;
846 result = m;
847
848 /* set sadb_address for saidx's. */
849 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
850 (struct sockaddr *)&d->sah->saidx.src,
851 d->sah->saidx.src.ss_len << 3,
852 IPSEC_ULPROTO_ANY);
853 if (!m)
854 goto msgfail;
855 m_cat(result, m);
856
857 /* set sadb_address for saidx's. */
858 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
859 (struct sockaddr *)&d->sah->saidx.src,
860 d->sah->saidx.src.ss_len << 3,
861 IPSEC_ULPROTO_ANY);
862 if (!m)
863 goto msgfail;
864 m_cat(result, m);
865
866 /* create SA extension */
867 m = key_setsadbsa(d);
868 if (!m)
869 goto msgfail;
870 m_cat(result, m);
871
872 if (result->m_len < sizeof(struct sadb_msg)) {
873 result = m_pullup(result,
874 sizeof(struct sadb_msg));
875 if (result == NULL)
876 goto msgfail;
877 }
878
879 result->m_pkthdr.len = 0;
880 for (m = result; m; m = m->m_next)
881 result->m_pkthdr.len += m->m_len;
882 mtod(result, struct sadb_msg *)->sadb_msg_len =
883 PFKEY_UNIT64(result->m_pkthdr.len);
884
885 if (key_sendup_mbuf(NULL, result,
886 KEY_SENDUP_REGISTERED))
887 goto msgfail;
888 msgfail:
889 key_freesav(d);
890 }
891 }
892
893 if (candidate) {
894 candidate->refcnt++;
895 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
896 printf("DP allocsa_policy cause "
897 "refcnt++:%d SA:%p\n",
898 candidate->refcnt, candidate));
899 }
900 return candidate;
901 }
902
903 /*
904 * allocating a SA entry for a *INBOUND* packet.
905 * Must call key_freesav() later.
906 * OUT: positive: pointer to a sav.
907 * NULL: not found, or error occured.
908 *
909 * In the comparison, source address will be ignored for RFC2401 conformance.
910 * To quote, from section 4.1:
911 * A security association is uniquely identified by a triple consisting
912 * of a Security Parameter Index (SPI), an IP Destination Address, and a
913 * security protocol (AH or ESP) identifier.
914 * Note that, however, we do need to keep source address in IPsec SA.
915 * IKE specification and PF_KEY specification do assume that we
916 * keep source address in IPsec SA. We see a tricky situation here.
917 */
918 struct secasvar *
919 key_allocsa(family, src, dst, proto, spi)
920 u_int family, proto;
921 caddr_t src, dst;
922 u_int32_t spi;
923 {
924 struct secashead *sah;
925 struct secasvar *sav;
926 u_int stateidx, state;
927 struct sockaddr_in sin;
928 struct sockaddr_in6 sin6;
929 int s;
930 const u_int *saorder_state_valid;
931 int arraysize;
932
933 /* sanity check */
934 if (src == NULL || dst == NULL)
935 panic("key_allocsa: NULL pointer is passed.\n");
936
937 /*
938 * when both systems employ similar strategy to use a SA.
939 * the search order is important even in the inbound case.
940 */
941 if (key_preferred_oldsa) {
942 saorder_state_valid = saorder_state_valid_prefer_old;
943 arraysize = _ARRAYLEN(saorder_state_valid_prefer_old);
944 } else {
945 saorder_state_valid = saorder_state_valid_prefer_new;
946 arraysize = _ARRAYLEN(saorder_state_valid_prefer_new);
947 }
948
949 /*
950 * searching SAD.
951 * XXX: to be checked internal IP header somewhere. Also when
952 * IPsec tunnel packet is received. But ESP tunnel mode is
953 * encrypted so we can't check internal IP header.
954 */
955 s = splnet(); /*called from softclock()*/
956 LIST_FOREACH(sah, &sahtree, chain) {
957 /*
958 * search a valid state list for inbound packet.
959 * the search order is not important.
960 */
961 for (stateidx = 0; stateidx < arraysize; stateidx++) {
962 state = saorder_state_valid[stateidx];
963 LIST_FOREACH(sav, &sah->savtree[state], chain) {
964 /* sanity check */
965 KEY_CHKSASTATE(sav->state, state, "key_allocsav");
966 if (proto != sav->sah->saidx.proto)
967 continue;
968 if (spi != sav->spi)
969 continue;
970 if (family != sav->sah->saidx.src.ss_family ||
971 family != sav->sah->saidx.dst.ss_family)
972 continue;
973
974 #if 0 /* don't check src */
975 /* check src address */
976 switch (family) {
977 case AF_INET:
978 bzero(&sin, sizeof(sin));
979 sin.sin_family = AF_INET;
980 sin.sin_len = sizeof(sin);
981 bcopy(src, &sin.sin_addr,
982 sizeof(sin.sin_addr));
983 if (key_sockaddrcmp((struct sockaddr*)&sin,
984 (struct sockaddr *)&sav->sah->saidx.src, 0) != 0)
985 continue;
986
987 break;
988 case AF_INET6:
989 bzero(&sin6, sizeof(sin6));
990 sin6.sin6_family = AF_INET6;
991 sin6.sin6_len = sizeof(sin6);
992 bcopy(src, &sin6.sin6_addr,
993 sizeof(sin6.sin6_addr));
994 if (IN6_IS_SCOPE_LINKLOCAL(&sin6.sin6_addr)) {
995 /* kame fake scopeid */
996 sin6.sin6_scope_id =
997 ntohs(sin6.sin6_addr.s6_addr16[1]);
998 sin6.sin6_addr.s6_addr16[1] = 0;
999 }
1000 if (key_sockaddrcmp((struct sockaddr*)&sin6,
1001 (struct sockaddr *)&sav->sah->saidx.src, 0) != 0)
1002 continue;
1003 break;
1004 default:
1005 ipseclog((LOG_DEBUG, "key_allocsa: "
1006 "unknown address family=%d.\n",
1007 family));
1008 continue;
1009 }
1010
1011 #endif
1012 /* check dst address */
1013 switch (family) {
1014 case AF_INET:
1015 bzero(&sin, sizeof(sin));
1016 sin.sin_family = AF_INET;
1017 sin.sin_len = sizeof(sin);
1018 bcopy(dst, &sin.sin_addr,
1019 sizeof(sin.sin_addr));
1020 if (key_sockaddrcmp((struct sockaddr*)&sin,
1021 (struct sockaddr *)&sav->sah->saidx.dst, 0) != 0)
1022 continue;
1023
1024 break;
1025 case AF_INET6:
1026 bzero(&sin6, sizeof(sin6));
1027 sin6.sin6_family = AF_INET6;
1028 sin6.sin6_len = sizeof(sin6);
1029 bcopy(dst, &sin6.sin6_addr,
1030 sizeof(sin6.sin6_addr));
1031 if (IN6_IS_SCOPE_LINKLOCAL(&sin6.sin6_addr)) {
1032 /* kame fake scopeid */
1033 sin6.sin6_scope_id =
1034 ntohs(sin6.sin6_addr.s6_addr16[1]);
1035 sin6.sin6_addr.s6_addr16[1] = 0;
1036 }
1037 if (key_sockaddrcmp((struct sockaddr*)&sin6,
1038 (struct sockaddr *)&sav->sah->saidx.dst, 0) != 0)
1039 continue;
1040 break;
1041 default:
1042 ipseclog((LOG_DEBUG, "key_allocsa: "
1043 "unknown address family=%d.\n",
1044 family));
1045 continue;
1046 }
1047
1048 goto found;
1049 }
1050 }
1051 }
1052
1053 /* not found */
1054 splx(s);
1055 return NULL;
1056
1057 found:
1058 sav->refcnt++;
1059 splx(s);
1060 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1061 printf("DP allocsa cause refcnt++:%d SA:%p\n",
1062 sav->refcnt, sav));
1063 return sav;
1064 }
1065
1066 /*
1067 * Must be called after calling key_allocsp().
1068 * For both the packet without socket and key_freeso().
1069 */
1070 void
1071 key_freesp(sp)
1072 struct secpolicy *sp;
1073 {
1074 /* sanity check */
1075 if (sp == NULL)
1076 panic("key_freesp: NULL pointer is passed.\n");
1077
1078 sp->refcnt--;
1079 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1080 printf("DP freesp cause refcnt--:%d SP:%p\n",
1081 sp->refcnt, sp));
1082
1083 if (sp->refcnt == 0)
1084 key_delsp(sp);
1085
1086 return;
1087 }
1088
1089 /*
1090 * Must be called after calling key_allocsp().
1091 * For the packet with socket.
1092 */
1093 void
1094 key_freeso(so)
1095 struct socket *so;
1096 {
1097 /* sanity check */
1098 if (so == NULL)
1099 panic("key_freeso: NULL pointer is passed.\n");
1100
1101 switch (so->so_proto->pr_domain->dom_family) {
1102 #ifdef INET
1103 case PF_INET:
1104 {
1105 struct inpcb *pcb = sotoinpcb(so);
1106
1107 /* Does it have a PCB ? */
1108 if (pcb == NULL)
1109 return;
1110 key_freesp_so(&pcb->inp_sp->sp_in);
1111 key_freesp_so(&pcb->inp_sp->sp_out);
1112 }
1113 break;
1114 #endif
1115 #ifdef INET6
1116 case PF_INET6:
1117 {
1118 #ifdef HAVE_NRL_INPCB
1119 struct inpcb *pcb = sotoinpcb(so);
1120
1121 /* Does it have a PCB ? */
1122 if (pcb == NULL)
1123 return;
1124 key_freesp_so(&pcb->inp_sp->sp_in);
1125 key_freesp_so(&pcb->inp_sp->sp_out);
1126 #else
1127 struct in6pcb *pcb = sotoin6pcb(so);
1128
1129 /* Does it have a PCB ? */
1130 if (pcb == NULL)
1131 return;
1132 key_freesp_so(&pcb->in6p_sp->sp_in);
1133 key_freesp_so(&pcb->in6p_sp->sp_out);
1134 #endif
1135 }
1136 break;
1137 #endif /* INET6 */
1138 default:
1139 ipseclog((LOG_DEBUG, "key_freeso: unknown address family=%d.\n",
1140 so->so_proto->pr_domain->dom_family));
1141 return;
1142 }
1143
1144 return;
1145 }
1146
1147 static void
1148 key_freesp_so(sp)
1149 struct secpolicy **sp;
1150 {
1151 /* sanity check */
1152 if (sp == NULL || *sp == NULL)
1153 panic("key_freesp_so: sp == NULL\n");
1154
1155 switch ((*sp)->policy) {
1156 case IPSEC_POLICY_IPSEC:
1157 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1158 printf("DP freeso calls free SP:%p\n", *sp));
1159 key_freesp(*sp);
1160 *sp = NULL;
1161 break;
1162 case IPSEC_POLICY_ENTRUST:
1163 case IPSEC_POLICY_BYPASS:
1164 return;
1165 default:
1166 panic("key_freesp_so: Invalid policy found %d", (*sp)->policy);
1167 }
1168
1169 return;
1170 }
1171
1172 /*
1173 * Must be called after calling key_allocsa().
1174 * This function is called by key_freesp() to free some SA allocated
1175 * for a policy.
1176 */
1177 void
1178 key_freesav(sav)
1179 struct secasvar *sav;
1180 {
1181 /* sanity check */
1182 if (sav == NULL)
1183 panic("key_freesav: NULL pointer is passed.\n");
1184
1185 sav->refcnt--;
1186 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1187 printf("DP freesav cause refcnt--:%d SA:%p SPI %u\n",
1188 sav->refcnt, sav, (u_int32_t)ntohl(sav->spi)));
1189
1190 if (sav->refcnt == 0)
1191 key_delsav(sav);
1192
1193 return;
1194 }
1195
1196 /* %%% SPD management */
1197 /*
1198 * free security policy entry.
1199 */
1200 static void
1201 key_delsp(sp)
1202 struct secpolicy *sp;
1203 {
1204 int s;
1205
1206 /* sanity check */
1207 if (sp == NULL)
1208 panic("key_delsp: NULL pointer is passed.\n");
1209
1210 sp->state = IPSEC_SPSTATE_DEAD;
1211
1212 if (sp->refcnt > 0)
1213 return; /* can't free */
1214
1215 s = splnet(); /*called from softclock()*/
1216 /* remove from SP index */
1217 if (__LIST_CHAINED(sp))
1218 LIST_REMOVE(sp, chain);
1219
1220 {
1221 struct ipsecrequest *isr = sp->req, *nextisr;
1222
1223 while (isr != NULL) {
1224 if (isr->sav != NULL) {
1225 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1226 printf("DP delsp calls free SA:%p\n",
1227 isr->sav));
1228 key_freesav(isr->sav);
1229 isr->sav = NULL;
1230 }
1231
1232 nextisr = isr->next;
1233 KFREE(isr);
1234 isr = nextisr;
1235 }
1236 }
1237
1238 keydb_delsecpolicy(sp);
1239
1240 splx(s);
1241
1242 return;
1243 }
1244
1245 /*
1246 * search SPD
1247 * OUT: NULL : not found
1248 * others : found, pointer to a SP.
1249 */
1250 static struct secpolicy *
1251 key_getsp(spidx)
1252 struct secpolicyindex *spidx;
1253 {
1254 struct secpolicy *sp;
1255
1256 /* sanity check */
1257 if (spidx == NULL)
1258 panic("key_getsp: NULL pointer is passed.\n");
1259
1260 LIST_FOREACH(sp, &sptree[spidx->dir], chain) {
1261 if (sp->state == IPSEC_SPSTATE_DEAD)
1262 continue;
1263 if (key_cmpspidx_exactly(spidx, &sp->spidx)) {
1264 sp->refcnt++;
1265 return sp;
1266 }
1267 }
1268
1269 return NULL;
1270 }
1271
1272 /*
1273 * get SP by index.
1274 * OUT: NULL : not found
1275 * others : found, pointer to a SP.
1276 */
1277 static struct secpolicy *
1278 key_getspbyid(id)
1279 u_int32_t id;
1280 {
1281 struct secpolicy *sp;
1282
1283 LIST_FOREACH(sp, &sptree[IPSEC_DIR_INBOUND], chain) {
1284 if (sp->state == IPSEC_SPSTATE_DEAD)
1285 continue;
1286 if (sp->id == id) {
1287 sp->refcnt++;
1288 return sp;
1289 }
1290 }
1291
1292 LIST_FOREACH(sp, &sptree[IPSEC_DIR_OUTBOUND], chain) {
1293 if (sp->state == IPSEC_SPSTATE_DEAD)
1294 continue;
1295 if (sp->id == id) {
1296 sp->refcnt++;
1297 return sp;
1298 }
1299 }
1300
1301 return NULL;
1302 }
1303
1304 struct secpolicy *
1305 key_newsp()
1306 {
1307 struct secpolicy *newsp = NULL;
1308
1309 newsp = keydb_newsecpolicy();
1310 if (!newsp)
1311 return newsp;
1312
1313 newsp->refcnt = 1;
1314 newsp->req = NULL;
1315
1316 return newsp;
1317 }
1318
1319 /*
1320 * create secpolicy structure from sadb_x_policy structure.
1321 * NOTE: `state', `secpolicyindex' in secpolicy structure are not set,
1322 * so must be set properly later.
1323 */
1324 struct secpolicy *
1325 key_msg2sp(xpl0, len, error)
1326 struct sadb_x_policy *xpl0;
1327 size_t len;
1328 int *error;
1329 {
1330 struct secpolicy *newsp;
1331
1332 /* sanity check */
1333 if (xpl0 == NULL)
1334 panic("key_msg2sp: NULL pointer was passed.\n");
1335 if (len < sizeof(*xpl0))
1336 panic("key_msg2sp: invalid length.\n");
1337 if (len != PFKEY_EXTLEN(xpl0)) {
1338 ipseclog((LOG_DEBUG, "key_msg2sp: Invalid msg length.\n"));
1339 *error = EINVAL;
1340 return NULL;
1341 }
1342
1343 if ((newsp = key_newsp()) == NULL) {
1344 *error = ENOBUFS;
1345 return NULL;
1346 }
1347
1348 newsp->spidx.dir = xpl0->sadb_x_policy_dir;
1349 newsp->policy = xpl0->sadb_x_policy_type;
1350
1351 /* check policy */
1352 switch (xpl0->sadb_x_policy_type) {
1353 case IPSEC_POLICY_DISCARD:
1354 case IPSEC_POLICY_NONE:
1355 case IPSEC_POLICY_ENTRUST:
1356 case IPSEC_POLICY_BYPASS:
1357 newsp->req = NULL;
1358 break;
1359
1360 case IPSEC_POLICY_IPSEC:
1361 {
1362 int tlen;
1363 struct sadb_x_ipsecrequest *xisr;
1364 struct ipsecrequest **p_isr = &newsp->req;
1365
1366 /* validity check */
1367 if (PFKEY_EXTLEN(xpl0) < sizeof(*xpl0)) {
1368 ipseclog((LOG_DEBUG,
1369 "key_msg2sp: Invalid msg length.\n"));
1370 key_freesp(newsp);
1371 *error = EINVAL;
1372 return NULL;
1373 }
1374
1375 tlen = PFKEY_EXTLEN(xpl0) - sizeof(*xpl0);
1376 xisr = (struct sadb_x_ipsecrequest *)(xpl0 + 1);
1377
1378 while (tlen > 0) {
1379
1380 /* length check */
1381 if (xisr->sadb_x_ipsecrequest_len < sizeof(*xisr)) {
1382 ipseclog((LOG_DEBUG, "key_msg2sp: "
1383 "invalid ipsecrequest length.\n"));
1384 key_freesp(newsp);
1385 *error = EINVAL;
1386 return NULL;
1387 }
1388
1389 /* allocate request buffer */
1390 KMALLOC(*p_isr, struct ipsecrequest *, sizeof(**p_isr));
1391 if ((*p_isr) == NULL) {
1392 ipseclog((LOG_DEBUG,
1393 "key_msg2sp: No more memory.\n"));
1394 key_freesp(newsp);
1395 *error = ENOBUFS;
1396 return NULL;
1397 }
1398 bzero(*p_isr, sizeof(**p_isr));
1399
1400 /* set values */
1401 (*p_isr)->next = NULL;
1402
1403 switch (xisr->sadb_x_ipsecrequest_proto) {
1404 case IPPROTO_ESP:
1405 case IPPROTO_AH:
1406 case IPPROTO_IPCOMP:
1407 break;
1408 default:
1409 ipseclog((LOG_DEBUG,
1410 "key_msg2sp: invalid proto type=%u\n",
1411 xisr->sadb_x_ipsecrequest_proto));
1412 key_freesp(newsp);
1413 *error = EPROTONOSUPPORT;
1414 return NULL;
1415 }
1416 (*p_isr)->saidx.proto = xisr->sadb_x_ipsecrequest_proto;
1417
1418 switch (xisr->sadb_x_ipsecrequest_mode) {
1419 case IPSEC_MODE_TRANSPORT:
1420 case IPSEC_MODE_TUNNEL:
1421 break;
1422 case IPSEC_MODE_ANY:
1423 default:
1424 ipseclog((LOG_DEBUG,
1425 "key_msg2sp: invalid mode=%u\n",
1426 xisr->sadb_x_ipsecrequest_mode));
1427 key_freesp(newsp);
1428 *error = EINVAL;
1429 return NULL;
1430 }
1431 (*p_isr)->saidx.mode = xisr->sadb_x_ipsecrequest_mode;
1432
1433 switch (xisr->sadb_x_ipsecrequest_level) {
1434 case IPSEC_LEVEL_DEFAULT:
1435 case IPSEC_LEVEL_USE:
1436 case IPSEC_LEVEL_REQUIRE:
1437 break;
1438 case IPSEC_LEVEL_UNIQUE:
1439 /* validity check */
1440 /*
1441 * If range violation of reqid, kernel will
1442 * update it, don't refuse it.
1443 */
1444 if (xisr->sadb_x_ipsecrequest_reqid
1445 > IPSEC_MANUAL_REQID_MAX) {
1446 ipseclog((LOG_DEBUG,
1447 "key_msg2sp: reqid=%d range "
1448 "violation, updated by kernel.\n",
1449 xisr->sadb_x_ipsecrequest_reqid));
1450 xisr->sadb_x_ipsecrequest_reqid = 0;
1451 }
1452
1453 /* allocate new reqid id if reqid is zero. */
1454 if (xisr->sadb_x_ipsecrequest_reqid == 0) {
1455 u_int32_t reqid;
1456 if ((reqid = key_newreqid()) == 0) {
1457 key_freesp(newsp);
1458 *error = ENOBUFS;
1459 return NULL;
1460 }
1461 (*p_isr)->saidx.reqid = reqid;
1462 xisr->sadb_x_ipsecrequest_reqid = reqid;
1463 } else {
1464 /* set it for manual keying. */
1465 (*p_isr)->saidx.reqid =
1466 xisr->sadb_x_ipsecrequest_reqid;
1467 }
1468 break;
1469
1470 default:
1471 ipseclog((LOG_DEBUG, "key_msg2sp: invalid level=%u\n",
1472 xisr->sadb_x_ipsecrequest_level));
1473 key_freesp(newsp);
1474 *error = EINVAL;
1475 return NULL;
1476 }
1477 (*p_isr)->level = xisr->sadb_x_ipsecrequest_level;
1478
1479 /* set IP addresses if there */
1480 if (xisr->sadb_x_ipsecrequest_len > sizeof(*xisr)) {
1481 struct sockaddr *paddr;
1482
1483 paddr = (struct sockaddr *)(xisr + 1);
1484
1485 /* validity check */
1486 if (paddr->sa_len
1487 > sizeof((*p_isr)->saidx.src)) {
1488 ipseclog((LOG_DEBUG, "key_msg2sp: invalid request "
1489 "address length.\n"));
1490 key_freesp(newsp);
1491 *error = EINVAL;
1492 return NULL;
1493 }
1494 bcopy(paddr, &(*p_isr)->saidx.src,
1495 paddr->sa_len);
1496
1497 paddr = (struct sockaddr *)((caddr_t)paddr
1498 + paddr->sa_len);
1499
1500 /* validity check */
1501 if (paddr->sa_len
1502 > sizeof((*p_isr)->saidx.dst)) {
1503 ipseclog((LOG_DEBUG, "key_msg2sp: invalid request "
1504 "address length.\n"));
1505 key_freesp(newsp);
1506 *error = EINVAL;
1507 return NULL;
1508 }
1509 bcopy(paddr, &(*p_isr)->saidx.dst,
1510 paddr->sa_len);
1511 }
1512
1513 (*p_isr)->sav = NULL;
1514 (*p_isr)->sp = newsp;
1515
1516 /* initialization for the next. */
1517 p_isr = &(*p_isr)->next;
1518 tlen -= xisr->sadb_x_ipsecrequest_len;
1519
1520 /* validity check */
1521 if (tlen < 0) {
1522 ipseclog((LOG_DEBUG, "key_msg2sp: becoming tlen < 0.\n"));
1523 key_freesp(newsp);
1524 *error = EINVAL;
1525 return NULL;
1526 }
1527
1528 xisr = (struct sadb_x_ipsecrequest *)((caddr_t)xisr
1529 + xisr->sadb_x_ipsecrequest_len);
1530 }
1531 }
1532 break;
1533 default:
1534 ipseclog((LOG_DEBUG, "key_msg2sp: invalid policy type.\n"));
1535 key_freesp(newsp);
1536 *error = EINVAL;
1537 return NULL;
1538 }
1539
1540 *error = 0;
1541 return newsp;
1542 }
1543
1544 static u_int32_t
1545 key_newreqid()
1546 {
1547 static u_int32_t auto_reqid = IPSEC_MANUAL_REQID_MAX + 1;
1548
1549 auto_reqid = (auto_reqid == ~0
1550 ? IPSEC_MANUAL_REQID_MAX + 1 : auto_reqid + 1);
1551
1552 /* XXX should be unique check */
1553
1554 return auto_reqid;
1555 }
1556
1557 /*
1558 * copy secpolicy struct to sadb_x_policy structure indicated.
1559 */
1560 struct mbuf *
1561 key_sp2msg(sp)
1562 struct secpolicy *sp;
1563 {
1564 struct sadb_x_policy *xpl;
1565 int tlen;
1566 caddr_t p;
1567 struct mbuf *m;
1568
1569 /* sanity check. */
1570 if (sp == NULL)
1571 panic("key_sp2msg: NULL pointer was passed.\n");
1572
1573 tlen = key_getspreqmsglen(sp);
1574
1575 m = key_alloc_mbuf(tlen);
1576 if (!m || m->m_next) { /*XXX*/
1577 if (m)
1578 m_freem(m);
1579 return NULL;
1580 }
1581
1582 m->m_len = tlen;
1583 m->m_next = NULL;
1584 xpl = mtod(m, struct sadb_x_policy *);
1585 bzero(xpl, tlen);
1586
1587 xpl->sadb_x_policy_len = PFKEY_UNIT64(tlen);
1588 xpl->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
1589 xpl->sadb_x_policy_type = sp->policy;
1590 xpl->sadb_x_policy_dir = sp->spidx.dir;
1591 xpl->sadb_x_policy_id = sp->id;
1592 p = (caddr_t)xpl + sizeof(*xpl);
1593
1594 /* if is the policy for ipsec ? */
1595 if (sp->policy == IPSEC_POLICY_IPSEC) {
1596 struct sadb_x_ipsecrequest *xisr;
1597 struct ipsecrequest *isr;
1598
1599 for (isr = sp->req; isr != NULL; isr = isr->next) {
1600
1601 xisr = (struct sadb_x_ipsecrequest *)p;
1602
1603 xisr->sadb_x_ipsecrequest_proto = isr->saidx.proto;
1604 xisr->sadb_x_ipsecrequest_mode = isr->saidx.mode;
1605 xisr->sadb_x_ipsecrequest_level = isr->level;
1606 xisr->sadb_x_ipsecrequest_reqid = isr->saidx.reqid;
1607
1608 p += sizeof(*xisr);
1609 bcopy(&isr->saidx.src, p, isr->saidx.src.ss_len);
1610 p += isr->saidx.src.ss_len;
1611 bcopy(&isr->saidx.dst, p, isr->saidx.dst.ss_len);
1612 p += isr->saidx.src.ss_len;
1613
1614 xisr->sadb_x_ipsecrequest_len =
1615 PFKEY_ALIGN8(sizeof(*xisr)
1616 + isr->saidx.src.ss_len
1617 + isr->saidx.dst.ss_len);
1618 }
1619 }
1620
1621 return m;
1622 }
1623
1624 /* m will not be freed nor modified */
1625 static struct mbuf *
1626 #ifdef __STDC__
1627 key_gather_mbuf(struct mbuf *m, const struct sadb_msghdr *mhp,
1628 int ndeep, int nitem, ...)
1629 #else
1630 key_gather_mbuf(m, mhp, ndeep, nitem, va_alist)
1631 struct mbuf *m;
1632 const struct sadb_msghdr *mhp;
1633 int ndeep;
1634 int nitem;
1635 va_dcl
1636 #endif
1637 {
1638 va_list ap;
1639 int idx;
1640 int i;
1641 struct mbuf *result = NULL, *n;
1642 int len;
1643
1644 if (m == NULL || mhp == NULL)
1645 panic("null pointer passed to key_gather");
1646
1647 va_start(ap, nitem);
1648 for (i = 0; i < nitem; i++) {
1649 idx = va_arg(ap, int);
1650 if (idx < 0 || idx > SADB_EXT_MAX)
1651 goto fail;
1652 /* don't attempt to pull empty extension */
1653 if (idx == SADB_EXT_RESERVED && mhp->msg == NULL)
1654 continue;
1655 if (idx != SADB_EXT_RESERVED &&
1656 (mhp->ext[idx] == NULL || mhp->extlen[idx] == 0))
1657 continue;
1658
1659 if (idx == SADB_EXT_RESERVED) {
1660 len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
1661 #ifdef DIAGNOSTIC
1662 if (len > MHLEN)
1663 panic("assumption failed");
1664 #endif
1665 MGETHDR(n, M_DONTWAIT, MT_DATA);
1666 if (!n)
1667 goto fail;
1668 n->m_len = len;
1669 n->m_next = NULL;
1670 m_copydata(m, 0, sizeof(struct sadb_msg),
1671 mtod(n, caddr_t));
1672 } else if (i < ndeep) {
1673 len = mhp->extlen[idx];
1674 n = key_alloc_mbuf(len);
1675 if (!n || n->m_next) { /*XXX*/
1676 if (n)
1677 m_freem(n);
1678 goto fail;
1679 }
1680 m_copydata(m, mhp->extoff[idx], mhp->extlen[idx],
1681 mtod(n, caddr_t));
1682 } else {
1683 n = m_copym(m, mhp->extoff[idx], mhp->extlen[idx],
1684 M_DONTWAIT);
1685 }
1686 if (n == NULL)
1687 goto fail;
1688
1689 if (result)
1690 m_cat(result, n);
1691 else
1692 result = n;
1693 }
1694 va_end(ap);
1695
1696 if ((result->m_flags & M_PKTHDR) != 0) {
1697 result->m_pkthdr.len = 0;
1698 for (n = result; n; n = n->m_next)
1699 result->m_pkthdr.len += n->m_len;
1700 }
1701
1702 return result;
1703
1704 fail:
1705 m_freem(result);
1706 return NULL;
1707 }
1708
1709 /*
1710 * SADB_X_SPDADD, SADB_X_SPDSETIDX or SADB_X_SPDUPDATE processing
1711 * add a entry to SP database, when received
1712 * <base, address(SD), (lifetime(H),) policy>
1713 * from the user(?).
1714 * Adding to SP database,
1715 * and send
1716 * <base, address(SD), (lifetime(H),) policy>
1717 * to the socket which was send.
1718 *
1719 * SPDADD set a unique policy entry.
1720 * SPDSETIDX like SPDADD without a part of policy requests.
1721 * SPDUPDATE replace a unique policy entry.
1722 *
1723 * m will always be freed.
1724 */
1725 static int
1726 key_spdadd(so, m, mhp)
1727 struct socket *so;
1728 struct mbuf *m;
1729 const struct sadb_msghdr *mhp;
1730 {
1731 struct sadb_address *src0, *dst0;
1732 struct sadb_x_policy *xpl0, *xpl;
1733 struct sadb_lifetime *lft = NULL;
1734 struct secpolicyindex spidx;
1735 struct secpolicy *newsp;
1736 struct timeval tv;
1737 int error;
1738
1739 /* sanity check */
1740 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL)
1741 panic("key_spdadd: NULL pointer is passed.\n");
1742
1743 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
1744 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
1745 mhp->ext[SADB_X_EXT_POLICY] == NULL) {
1746 ipseclog((LOG_DEBUG, "key_spdadd: invalid message is passed.\n"));
1747 return key_senderror(so, m, EINVAL);
1748 }
1749 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
1750 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
1751 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
1752 ipseclog((LOG_DEBUG, "key_spdadd: invalid message is passed.\n"));
1753 return key_senderror(so, m, EINVAL);
1754 }
1755 if (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL) {
1756 if (mhp->extlen[SADB_EXT_LIFETIME_HARD]
1757 < sizeof(struct sadb_lifetime)) {
1758 ipseclog((LOG_DEBUG, "key_spdadd: invalid message is passed.\n"));
1759 return key_senderror(so, m, EINVAL);
1760 }
1761 lft = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD];
1762 }
1763
1764 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
1765 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
1766 xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY];
1767
1768 /* make secindex */
1769 /* XXX boundary check against sa_len */
1770 KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir,
1771 src0 + 1,
1772 dst0 + 1,
1773 src0->sadb_address_prefixlen,
1774 dst0->sadb_address_prefixlen,
1775 src0->sadb_address_proto,
1776 &spidx);
1777
1778 /* checking the direciton. */
1779 switch (xpl0->sadb_x_policy_dir) {
1780 case IPSEC_DIR_INBOUND:
1781 case IPSEC_DIR_OUTBOUND:
1782 break;
1783 default:
1784 ipseclog((LOG_DEBUG, "key_spdadd: Invalid SP direction.\n"));
1785 mhp->msg->sadb_msg_errno = EINVAL;
1786 return 0;
1787 }
1788
1789 /* check policy */
1790 /* key_spdadd() accepts DISCARD, NONE and IPSEC. */
1791 if (xpl0->sadb_x_policy_type == IPSEC_POLICY_ENTRUST
1792 || xpl0->sadb_x_policy_type == IPSEC_POLICY_BYPASS) {
1793 ipseclog((LOG_DEBUG, "key_spdadd: Invalid policy type.\n"));
1794 return key_senderror(so, m, EINVAL);
1795 }
1796
1797 /* policy requests are mandatory when action is ipsec. */
1798 if (mhp->msg->sadb_msg_type != SADB_X_SPDSETIDX
1799 && xpl0->sadb_x_policy_type == IPSEC_POLICY_IPSEC
1800 && mhp->extlen[SADB_X_EXT_POLICY] <= sizeof(*xpl0)) {
1801 ipseclog((LOG_DEBUG, "key_spdadd: some policy requests part required.\n"));
1802 return key_senderror(so, m, EINVAL);
1803 }
1804
1805 /*
1806 * checking there is SP already or not.
1807 * SPDUPDATE doesn't depend on whether there is a SP or not.
1808 * If the type is either SPDADD or SPDSETIDX AND a SP is found,
1809 * then error.
1810 */
1811 newsp = key_getsp(&spidx);
1812 if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) {
1813 if (newsp) {
1814 newsp->state = IPSEC_SPSTATE_DEAD;
1815 key_freesp(newsp);
1816 }
1817 } else {
1818 if (newsp != NULL) {
1819 key_freesp(newsp);
1820 ipseclog((LOG_DEBUG, "key_spdadd: a SP entry exists already.\n"));
1821 return key_senderror(so, m, EEXIST);
1822 }
1823 }
1824
1825 /* allocation new SP entry */
1826 if ((newsp = key_msg2sp(xpl0, PFKEY_EXTLEN(xpl0), &error)) == NULL) {
1827 return key_senderror(so, m, error);
1828 }
1829
1830 if ((newsp->id = key_getnewspid()) == 0) {
1831 keydb_delsecpolicy(newsp);
1832 return key_senderror(so, m, ENOBUFS);
1833 }
1834
1835 /* XXX boundary check against sa_len */
1836 KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir,
1837 src0 + 1,
1838 dst0 + 1,
1839 src0->sadb_address_prefixlen,
1840 dst0->sadb_address_prefixlen,
1841 src0->sadb_address_proto,
1842 &newsp->spidx);
1843
1844 /* sanity check on addr pair */
1845 if (((struct sockaddr *)(src0 + 1))->sa_family !=
1846 ((struct sockaddr *)(dst0+ 1))->sa_family) {
1847 keydb_delsecpolicy(newsp);
1848 return key_senderror(so, m, EINVAL);
1849 }
1850 if (((struct sockaddr *)(src0 + 1))->sa_len !=
1851 ((struct sockaddr *)(dst0+ 1))->sa_len) {
1852 keydb_delsecpolicy(newsp);
1853 return key_senderror(so, m, EINVAL);
1854 }
1855 #if 1
1856 if (newsp->req && newsp->req->saidx.src.ss_family) {
1857 struct sockaddr *sa;
1858 sa = (struct sockaddr *)(src0 + 1);
1859 if (sa->sa_family != newsp->req->saidx.src.ss_family) {
1860 keydb_delsecpolicy(newsp);
1861 return key_senderror(so, m, EINVAL);
1862 }
1863 }
1864 if (newsp->req && newsp->req->saidx.dst.ss_family) {
1865 struct sockaddr *sa;
1866 sa = (struct sockaddr *)(dst0 + 1);
1867 if (sa->sa_family != newsp->req->saidx.dst.ss_family) {
1868 keydb_delsecpolicy(newsp);
1869 return key_senderror(so, m, EINVAL);
1870 }
1871 }
1872 #endif
1873
1874 microtime(&tv);
1875 newsp->created = tv.tv_sec;
1876 newsp->lastused = tv.tv_sec;
1877 newsp->lifetime = lft ? lft->sadb_lifetime_addtime : 0;
1878 newsp->validtime = lft ? lft->sadb_lifetime_usetime : 0;
1879
1880 newsp->refcnt = 1; /* do not reclaim until I say I do */
1881 newsp->state = IPSEC_SPSTATE_ALIVE;
1882 LIST_INSERT_TAIL(&sptree[newsp->spidx.dir], newsp, secpolicy, chain);
1883
1884 /* delete the entry in spacqtree */
1885 if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) {
1886 struct secspacq *spacq;
1887 if ((spacq = key_getspacq(&spidx)) != NULL) {
1888 /* reset counter in order to deletion by timehandler. */
1889 microtime(&tv);
1890 spacq->created = tv.tv_sec;
1891 spacq->count = 0;
1892 }
1893 }
1894
1895 {
1896 struct mbuf *n, *mpolicy;
1897 struct sadb_msg *newmsg;
1898 int off;
1899
1900 /* create new sadb_msg to reply. */
1901 if (lft) {
1902 n = key_gather_mbuf(m, mhp, 2, 5, SADB_EXT_RESERVED,
1903 SADB_X_EXT_POLICY, SADB_EXT_LIFETIME_HARD,
1904 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
1905 } else {
1906 n = key_gather_mbuf(m, mhp, 2, 4, SADB_EXT_RESERVED,
1907 SADB_X_EXT_POLICY,
1908 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
1909 }
1910 if (!n)
1911 return key_senderror(so, m, ENOBUFS);
1912
1913 if (n->m_len < sizeof(*newmsg)) {
1914 n = m_pullup(n, sizeof(*newmsg));
1915 if (!n)
1916 return key_senderror(so, m, ENOBUFS);
1917 }
1918 newmsg = mtod(n, struct sadb_msg *);
1919 newmsg->sadb_msg_errno = 0;
1920 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
1921
1922 off = 0;
1923 mpolicy = m_pulldown(n, PFKEY_ALIGN8(sizeof(struct sadb_msg)),
1924 sizeof(*xpl), &off);
1925 if (mpolicy == NULL) {
1926 /* n is already freed */
1927 return key_senderror(so, m, ENOBUFS);
1928 }
1929 xpl = (struct sadb_x_policy *)(mtod(mpolicy, caddr_t) + off);
1930 if (xpl->sadb_x_policy_exttype != SADB_X_EXT_POLICY) {
1931 m_freem(n);
1932 return key_senderror(so, m, EINVAL);
1933 }
1934 xpl->sadb_x_policy_id = newsp->id;
1935
1936 m_freem(m);
1937 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
1938 }
1939 }
1940
1941 /*
1942 * get new policy id.
1943 * OUT:
1944 * 0: failure.
1945 * others: success.
1946 */
1947 static u_int32_t
1948 key_getnewspid()
1949 {
1950 u_int32_t newid = 0;
1951 int count = key_spi_trycnt; /* XXX */
1952 struct secpolicy *sp;
1953
1954 /* when requesting to allocate spi ranged */
1955 while (count--) {
1956 newid = (policy_id = (policy_id == ~0 ? 1 : policy_id + 1));
1957
1958 if ((sp = key_getspbyid(newid)) == NULL)
1959 break;
1960
1961 key_freesp(sp);
1962 }
1963
1964 if (count == 0 || newid == 0) {
1965 ipseclog((LOG_DEBUG, "key_getnewspid: to allocate policy id is failed.\n"));
1966 return 0;
1967 }
1968
1969 return newid;
1970 }
1971
1972 /*
1973 * SADB_SPDDELETE processing
1974 * receive
1975 * <base, address(SD), policy(*)>
1976 * from the user(?), and set SADB_SASTATE_DEAD,
1977 * and send,
1978 * <base, address(SD), policy(*)>
1979 * to the ikmpd.
1980 * policy(*) including direction of policy.
1981 *
1982 * m will always be freed.
1983 */
1984 static int
1985 key_spddelete(so, m, mhp)
1986 struct socket *so;
1987 struct mbuf *m;
1988 const struct sadb_msghdr *mhp;
1989 {
1990 struct sadb_address *src0, *dst0;
1991 struct sadb_x_policy *xpl0;
1992 struct secpolicyindex spidx;
1993 struct secpolicy *sp;
1994
1995 /* sanity check */
1996 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL)
1997 panic("key_spddelete: NULL pointer is passed.\n");
1998
1999 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
2000 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
2001 mhp->ext[SADB_X_EXT_POLICY] == NULL) {
2002 ipseclog((LOG_DEBUG, "key_spddelete: invalid message is passed.\n"));
2003 return key_senderror(so, m, EINVAL);
2004 }
2005 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
2006 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
2007 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2008 ipseclog((LOG_DEBUG, "key_spddelete: invalid message is passed.\n"));
2009 return key_senderror(so, m, EINVAL);
2010 }
2011
2012 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
2013 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
2014 xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY];
2015
2016 /* make secindex */
2017 /* XXX boundary check against sa_len */
2018 KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir,
2019 src0 + 1,
2020 dst0 + 1,
2021 src0->sadb_address_prefixlen,
2022 dst0->sadb_address_prefixlen,
2023 src0->sadb_address_proto,
2024 &spidx);
2025
2026 /* checking the direciton. */
2027 switch (xpl0->sadb_x_policy_dir) {
2028 case IPSEC_DIR_INBOUND:
2029 case IPSEC_DIR_OUTBOUND:
2030 break;
2031 default:
2032 ipseclog((LOG_DEBUG, "key_spddelete: Invalid SP direction.\n"));
2033 return key_senderror(so, m, EINVAL);
2034 }
2035
2036 /* Is there SP in SPD ? */
2037 if ((sp = key_getsp(&spidx)) == NULL) {
2038 ipseclog((LOG_DEBUG, "key_spddelete: no SP found.\n"));
2039 return key_senderror(so, m, EINVAL);
2040 }
2041
2042 /* save policy id to buffer to be returned. */
2043 xpl0->sadb_x_policy_id = sp->id;
2044
2045 sp->state = IPSEC_SPSTATE_DEAD;
2046 key_freesp(sp);
2047
2048 {
2049 struct mbuf *n;
2050 struct sadb_msg *newmsg;
2051
2052 /* create new sadb_msg to reply. */
2053 n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED,
2054 SADB_X_EXT_POLICY, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
2055 if (!n)
2056 return key_senderror(so, m, ENOBUFS);
2057
2058 newmsg = mtod(n, struct sadb_msg *);
2059 newmsg->sadb_msg_errno = 0;
2060 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
2061
2062 m_freem(m);
2063 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2064 }
2065 }
2066
2067 /*
2068 * SADB_SPDDELETE2 processing
2069 * receive
2070 * <base, policy(*)>
2071 * from the user(?), and set SADB_SASTATE_DEAD,
2072 * and send,
2073 * <base, policy(*)>
2074 * to the ikmpd.
2075 * policy(*) including direction of policy.
2076 *
2077 * m will always be freed.
2078 */
2079 static int
2080 key_spddelete2(so, m, mhp)
2081 struct socket *so;
2082 struct mbuf *m;
2083 const struct sadb_msghdr *mhp;
2084 {
2085 u_int32_t id;
2086 struct secpolicy *sp;
2087
2088 /* sanity check */
2089 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL)
2090 panic("key_spddelete2: NULL pointer is passed.\n");
2091
2092 if (mhp->ext[SADB_X_EXT_POLICY] == NULL ||
2093 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2094 ipseclog((LOG_DEBUG, "key_spddelete2: invalid message is passed.\n"));
2095 return key_senderror(so, m, EINVAL);
2096 }
2097
2098 id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id;
2099
2100 /* Is there SP in SPD ? */
2101 if ((sp = key_getspbyid(id)) == NULL) {
2102 ipseclog((LOG_DEBUG, "key_spddelete2: no SP found id:%u.\n", id));
2103 return key_senderror(so, m, EINVAL);
2104 }
2105
2106 sp->state = IPSEC_SPSTATE_DEAD;
2107 key_freesp(sp);
2108
2109 {
2110 struct mbuf *n, *nn;
2111 struct sadb_msg *newmsg;
2112 int off, len;
2113
2114 /* create new sadb_msg to reply. */
2115 len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
2116
2117 if (len > MCLBYTES)
2118 return key_senderror(so, m, ENOBUFS);
2119 MGETHDR(n, M_DONTWAIT, MT_DATA);
2120 if (n && len > MHLEN) {
2121 MCLGET(n, M_DONTWAIT);
2122 if ((n->m_flags & M_EXT) == 0) {
2123 m_freem(n);
2124 n = NULL;
2125 }
2126 }
2127 if (!n)
2128 return key_senderror(so, m, ENOBUFS);
2129
2130 n->m_len = len;
2131 n->m_next = NULL;
2132 off = 0;
2133
2134 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off);
2135 off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
2136
2137 #ifdef DIAGNOSTIC
2138 if (off != len)
2139 panic("length inconsistency in key_spddelete2");
2140 #endif
2141
2142 n->m_next = m_copym(m, mhp->extoff[SADB_X_EXT_POLICY],
2143 mhp->extlen[SADB_X_EXT_POLICY], M_DONTWAIT);
2144 if (!n->m_next) {
2145 m_freem(n);
2146 return key_senderror(so, m, ENOBUFS);
2147 }
2148
2149 n->m_pkthdr.len = 0;
2150 for (nn = n; nn; nn = nn->m_next)
2151 n->m_pkthdr.len += nn->m_len;
2152
2153 newmsg = mtod(n, struct sadb_msg *);
2154 newmsg->sadb_msg_errno = 0;
2155 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
2156
2157 m_freem(m);
2158 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2159 }
2160 }
2161
2162 /*
2163 * SADB_X_GET processing
2164 * receive
2165 * <base, policy(*)>
2166 * from the user(?),
2167 * and send,
2168 * <base, address(SD), policy>
2169 * to the ikmpd.
2170 * policy(*) including direction of policy.
2171 *
2172 * m will always be freed.
2173 */
2174 static int
2175 key_spdget(so, m, mhp)
2176 struct socket *so;
2177 struct mbuf *m;
2178 const struct sadb_msghdr *mhp;
2179 {
2180 u_int32_t id;
2181 struct secpolicy *sp;
2182 struct mbuf *n;
2183
2184 /* sanity check */
2185 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL)
2186 panic("key_spdget: NULL pointer is passed.\n");
2187
2188 if (mhp->ext[SADB_X_EXT_POLICY] == NULL ||
2189 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2190 ipseclog((LOG_DEBUG, "key_spdget: invalid message is passed.\n"));
2191 return key_senderror(so, m, EINVAL);
2192 }
2193
2194 id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id;
2195
2196 /* Is there SP in SPD ? */
2197 if ((sp = key_getspbyid(id)) == NULL) {
2198 ipseclog((LOG_DEBUG, "key_spdget: no SP found id:%u.\n", id));
2199 return key_senderror(so, m, ENOENT);
2200 }
2201
2202 n = key_setdumpsp(sp, SADB_X_SPDGET, 0, mhp->msg->sadb_msg_pid);
2203 if (n != NULL) {
2204 m_freem(m);
2205 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
2206 } else
2207 return key_senderror(so, m, ENOBUFS);
2208 }
2209
2210 /*
2211 * SADB_X_SPDACQUIRE processing.
2212 * Acquire policy and SA(s) for a *OUTBOUND* packet.
2213 * send
2214 * <base, policy(*)>
2215 * to KMD, and expect to receive
2216 * <base> with SADB_X_SPDACQUIRE if error occured,
2217 * or
2218 * <base, policy>
2219 * with SADB_X_SPDUPDATE from KMD by PF_KEY.
2220 * policy(*) is without policy requests.
2221 *
2222 * 0 : succeed
2223 * others: error number
2224 */
2225 int
2226 key_spdacquire(sp)
2227 struct secpolicy *sp;
2228 {
2229 struct mbuf *result = NULL, *m;
2230 struct secspacq *newspacq;
2231 int error;
2232
2233 /* sanity check */
2234 if (sp == NULL)
2235 panic("key_spdacquire: NULL pointer is passed.\n");
2236 if (sp->req != NULL)
2237 panic("key_spdacquire: called but there is request.\n");
2238 if (sp->policy != IPSEC_POLICY_IPSEC)
2239 panic("key_spdacquire: policy mismathed. IPsec is expected.\n");
2240
2241 /* get a entry to check whether sent message or not. */
2242 if ((newspacq = key_getspacq(&sp->spidx)) != NULL) {
2243 if (key_blockacq_count < newspacq->count) {
2244 /* reset counter and do send message. */
2245 newspacq->count = 0;
2246 } else {
2247 /* increment counter and do nothing. */
2248 newspacq->count++;
2249 return 0;
2250 }
2251 } else {
2252 /* make new entry for blocking to send SADB_ACQUIRE. */
2253 if ((newspacq = key_newspacq(&sp->spidx)) == NULL)
2254 return ENOBUFS;
2255
2256 /* add to acqtree */
2257 LIST_INSERT_HEAD(&spacqtree, newspacq, chain);
2258 }
2259
2260 /* create new sadb_msg to reply. */
2261 m = key_setsadbmsg(SADB_X_SPDACQUIRE, 0, 0, 0, 0, 0);
2262 if (!m) {
2263 error = ENOBUFS;
2264 goto fail;
2265 }
2266 result = m;
2267
2268 result->m_pkthdr.len = 0;
2269 for (m = result; m; m = m->m_next)
2270 result->m_pkthdr.len += m->m_len;
2271
2272 mtod(result, struct sadb_msg *)->sadb_msg_len =
2273 PFKEY_UNIT64(result->m_pkthdr.len);
2274
2275 return key_sendup_mbuf(NULL, m, KEY_SENDUP_REGISTERED);
2276
2277 fail:
2278 if (result)
2279 m_freem(result);
2280 return error;
2281 }
2282
2283 /*
2284 * SADB_SPDFLUSH processing
2285 * receive
2286 * <base>
2287 * from the user, and free all entries in secpctree.
2288 * and send,
2289 * <base>
2290 * to the user.
2291 * NOTE: what to do is only marking SADB_SASTATE_DEAD.
2292 *
2293 * m will always be freed.
2294 */
2295 static int
2296 key_spdflush(so, m, mhp)
2297 struct socket *so;
2298 struct mbuf *m;
2299 const struct sadb_msghdr *mhp;
2300 {
2301 struct sadb_msg *newmsg;
2302 struct secpolicy *sp;
2303 u_int dir;
2304
2305 /* sanity check */
2306 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL)
2307 panic("key_spdflush: NULL pointer is passed.\n");
2308
2309 if (m->m_len != PFKEY_ALIGN8(sizeof(struct sadb_msg)))
2310 return key_senderror(so, m, EINVAL);
2311
2312 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2313 LIST_FOREACH(sp, &sptree[dir], chain) {
2314 sp->state = IPSEC_SPSTATE_DEAD;
2315 }
2316 }
2317
2318 if (sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) {
2319 ipseclog((LOG_DEBUG, "key_spdflush: No more memory.\n"));
2320 return key_senderror(so, m, ENOBUFS);
2321 }
2322
2323 if (m->m_next)
2324 m_freem(m->m_next);
2325 m->m_next = NULL;
2326 m->m_pkthdr.len = m->m_len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
2327 newmsg = mtod(m, struct sadb_msg *);
2328 newmsg->sadb_msg_errno = 0;
2329 newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len);
2330
2331 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
2332 }
2333
2334 /*
2335 * SADB_SPDDUMP processing
2336 * receive
2337 * <base>
2338 * from the user, and dump all SP leaves
2339 * and send,
2340 * <base> .....
2341 * to the ikmpd.
2342 *
2343 * m will always be freed.
2344 */
2345 static int
2346 key_spddump(so, m, mhp)
2347 struct socket *so;
2348 struct mbuf *m;
2349 const struct sadb_msghdr *mhp;
2350 {
2351 struct secpolicy *sp;
2352 int cnt;
2353 u_int dir;
2354 struct mbuf *n;
2355
2356 /* sanity check */
2357 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL)
2358 panic("key_spddump: NULL pointer is passed.\n");
2359
2360 /* search SPD entry and get buffer size. */
2361 cnt = 0;
2362 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2363 LIST_FOREACH(sp, &sptree[dir], chain) {
2364 cnt++;
2365 }
2366 }
2367
2368 if (cnt == 0)
2369 return key_senderror(so, m, ENOENT);
2370
2371 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2372 LIST_FOREACH(sp, &sptree[dir], chain) {
2373 --cnt;
2374 n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt,
2375 mhp->msg->sadb_msg_pid);
2376
2377 if (n)
2378 key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
2379 }
2380 }
2381
2382 m_freem(m);
2383 return 0;
2384 }
2385
2386 static struct mbuf *
2387 key_setdumpsp(sp, type, seq, pid)
2388 struct secpolicy *sp;
2389 u_int8_t type;
2390 u_int32_t seq, pid;
2391 {
2392 struct mbuf *result = NULL, *m;
2393
2394 m = key_setsadbmsg(type, 0, SADB_SATYPE_UNSPEC, seq, pid, sp->refcnt);
2395 if (!m)
2396 goto fail;
2397 result = m;
2398
2399 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
2400 (struct sockaddr *)&sp->spidx.src, sp->spidx.prefs,
2401 sp->spidx.ul_proto);
2402 if (!m)
2403 goto fail;
2404 m_cat(result, m);
2405
2406 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
2407 (struct sockaddr *)&sp->spidx.dst, sp->spidx.prefd,
2408 sp->spidx.ul_proto);
2409 if (!m)
2410 goto fail;
2411 m_cat(result, m);
2412
2413 m = key_sp2msg(sp);
2414 if (!m)
2415 goto fail;
2416 m_cat(result, m);
2417
2418 if ((result->m_flags & M_PKTHDR) == 0)
2419 goto fail;
2420
2421 if (result->m_len < sizeof(struct sadb_msg)) {
2422 result = m_pullup(result, sizeof(struct sadb_msg));
2423 if (result == NULL)
2424 goto fail;
2425 }
2426
2427 result->m_pkthdr.len = 0;
2428 for (m = result; m; m = m->m_next)
2429 result->m_pkthdr.len += m->m_len;
2430
2431 mtod(result, struct sadb_msg *)->sadb_msg_len =
2432 PFKEY_UNIT64(result->m_pkthdr.len);
2433
2434 return result;
2435
2436 fail:
2437 m_freem(result);
2438 return NULL;
2439 }
2440
2441 /*
2442 * get PFKEY message length for security policy and request.
2443 */
2444 static u_int
2445 key_getspreqmsglen(sp)
2446 struct secpolicy *sp;
2447 {
2448 u_int tlen;
2449
2450 tlen = sizeof(struct sadb_x_policy);
2451
2452 /* if is the policy for ipsec ? */
2453 if (sp->policy != IPSEC_POLICY_IPSEC)
2454 return tlen;
2455
2456 /* get length of ipsec requests */
2457 {
2458 struct ipsecrequest *isr;
2459 int len;
2460
2461 for (isr = sp->req; isr != NULL; isr = isr->next) {
2462 len = sizeof(struct sadb_x_ipsecrequest)
2463 + isr->saidx.src.ss_len
2464 + isr->saidx.dst.ss_len;
2465
2466 tlen += PFKEY_ALIGN8(len);
2467 }
2468 }
2469
2470 return tlen;
2471 }
2472
2473 /*
2474 * SADB_SPDEXPIRE processing
2475 * send
2476 * <base, address(SD), lifetime(CH), policy>
2477 * to KMD by PF_KEY.
2478 *
2479 * OUT: 0 : succeed
2480 * others : error number
2481 */
2482 static int
2483 key_spdexpire(sp)
2484 struct secpolicy *sp;
2485 {
2486 int s;
2487 struct mbuf *result = NULL, *m;
2488 int len;
2489 int error = -1;
2490 struct sadb_lifetime *lt;
2491
2492 /* XXX: Why do we lock ? */
2493 s = splnet(); /*called from softclock()*/
2494
2495 /* sanity check */
2496 if (sp == NULL)
2497 panic("key_spdexpire: NULL pointer is passed.\n");
2498
2499 /* set msg header */
2500 m = key_setsadbmsg(SADB_X_SPDEXPIRE, 0, 0, 0, 0, 0);
2501 if (!m) {
2502 error = ENOBUFS;
2503 goto fail;
2504 }
2505 result = m;
2506
2507 /* create lifetime extension (current and hard) */
2508 len = PFKEY_ALIGN8(sizeof(*lt)) * 2;
2509 m = key_alloc_mbuf(len);
2510 if (!m || m->m_next) { /*XXX*/
2511 if (m)
2512 m_freem(m);
2513 error = ENOBUFS;
2514 goto fail;
2515 }
2516 bzero(mtod(m, caddr_t), len);
2517 lt = mtod(m, struct sadb_lifetime *);
2518 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
2519 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
2520 lt->sadb_lifetime_allocations = 0;
2521 lt->sadb_lifetime_bytes = 0;
2522 lt->sadb_lifetime_addtime = sp->created;
2523 lt->sadb_lifetime_usetime = sp->lastused;
2524 lt = (struct sadb_lifetime *)(mtod(m, caddr_t) + len / 2);
2525 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
2526 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
2527 lt->sadb_lifetime_allocations = 0;
2528 lt->sadb_lifetime_bytes = 0;
2529 lt->sadb_lifetime_addtime = sp->lifetime;
2530 lt->sadb_lifetime_usetime = sp->validtime;
2531 m_cat(result, m);
2532
2533 /* set sadb_address for source */
2534 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
2535 (struct sockaddr *)&sp->spidx.src,
2536 sp->spidx.prefs, sp->spidx.ul_proto);
2537 if (!m) {
2538 error = ENOBUFS;
2539 goto fail;
2540 }
2541 m_cat(result, m);
2542
2543 /* set sadb_address for destination */
2544 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
2545 (struct sockaddr *)&sp->spidx.dst,
2546 sp->spidx.prefd, sp->spidx.ul_proto);
2547 if (!m) {
2548 error = ENOBUFS;
2549 goto fail;
2550 }
2551 m_cat(result, m);
2552
2553 /* set secpolicy */
2554 m = key_sp2msg(sp);
2555 if (!m) {
2556 error = ENOBUFS;
2557 goto fail;
2558 }
2559 m_cat(result, m);
2560
2561 if ((result->m_flags & M_PKTHDR) == 0) {
2562 error = EINVAL;
2563 goto fail;
2564 }
2565
2566 if (result->m_len < sizeof(struct sadb_msg)) {
2567 result = m_pullup(result, sizeof(struct sadb_msg));
2568 if (result == NULL) {
2569 error = ENOBUFS;
2570 goto fail;
2571 }
2572 }
2573
2574 result->m_pkthdr.len = 0;
2575 for (m = result; m; m = m->m_next)
2576 result->m_pkthdr.len += m->m_len;
2577
2578 mtod(result, struct sadb_msg *)->sadb_msg_len =
2579 PFKEY_UNIT64(result->m_pkthdr.len);
2580
2581 splx(s);
2582 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
2583
2584 fail:
2585 if (result)
2586 m_freem(result);
2587 splx(s);
2588 return error;
2589 }
2590
2591 /* %%% SAD management */
2592 /*
2593 * allocating a memory for new SA head, and copy from the values of mhp.
2594 * OUT: NULL : failure due to the lack of memory.
2595 * others : pointer to new SA head.
2596 */
2597 static struct secashead *
2598 key_newsah(saidx)
2599 struct secasindex *saidx;
2600 {
2601 struct secashead *newsah;
2602
2603 /* sanity check */
2604 if (saidx == NULL)
2605 panic("key_newsaidx: NULL pointer is passed.\n");
2606
2607 newsah = keydb_newsecashead();
2608 if (newsah == NULL)
2609 return NULL;
2610
2611 bcopy(saidx, &newsah->saidx, sizeof(newsah->saidx));
2612
2613 /* add to saidxtree */
2614 newsah->state = SADB_SASTATE_MATURE;
2615 LIST_INSERT_HEAD(&sahtree, newsah, chain);
2616
2617 return(newsah);
2618 }
2619
2620 /*
2621 * delete SA index and all SA registerd.
2622 */
2623 static void
2624 key_delsah(sah)
2625 struct secashead *sah;
2626 {
2627 struct secasvar *sav, *nextsav;
2628 u_int stateidx, state;
2629 int s;
2630 int zombie = 0;
2631
2632 /* sanity check */
2633 if (sah == NULL)
2634 panic("key_delsah: NULL pointer is passed.\n");
2635
2636 s = splnet(); /*called from softclock()*/
2637
2638 /* searching all SA registerd in the secindex. */
2639 for (stateidx = 0;
2640 stateidx < _ARRAYLEN(saorder_state_any);
2641 stateidx++) {
2642
2643 state = saorder_state_any[stateidx];
2644 for (sav = (struct secasvar *)LIST_FIRST(&sah->savtree[state]);
2645 sav != NULL;
2646 sav = nextsav) {
2647
2648 nextsav = LIST_NEXT(sav, chain);
2649
2650 if (sav->refcnt > 0) {
2651 /* give up to delete this sa */
2652 zombie++;
2653 continue;
2654 }
2655
2656 /* sanity check */
2657 KEY_CHKSASTATE(state, sav->state, "key_delsah");
2658
2659 key_freesav(sav);
2660
2661 /* remove back pointer */
2662 sav->sah = NULL;
2663 sav = NULL;
2664 }
2665 }
2666
2667 /* don't delete sah only if there are savs. */
2668 if (zombie) {
2669 splx(s);
2670 return;
2671 }
2672
2673 if (sah->sa_route.ro_rt) {
2674 RTFREE(sah->sa_route.ro_rt);
2675 sah->sa_route.ro_rt = (struct rtentry *)NULL;
2676 }
2677
2678 /* remove from tree of SA index */
2679 if (__LIST_CHAINED(sah))
2680 LIST_REMOVE(sah, chain);
2681
2682 KFREE(sah);
2683
2684 splx(s);
2685 return;
2686 }
2687
2688 /*
2689 * allocating a new SA with LARVAL state. key_add() and key_getspi() call,
2690 * and copy the values of mhp into new buffer.
2691 * When SAD message type is GETSPI:
2692 * to set sequence number from acq_seq++,
2693 * to set zero to SPI.
2694 * not to call key_setsava().
2695 * OUT: NULL : fail
2696 * others : pointer to new secasvar.
2697 *
2698 * does not modify mbuf. does not free mbuf on error.
2699 */
2700 static struct secasvar *
2701 key_newsav(m, mhp, sah, errp)
2702 struct mbuf *m;
2703 const struct sadb_msghdr *mhp;
2704 struct secashead *sah;
2705 int *errp;
2706 {
2707 struct secasvar *newsav;
2708 const struct sadb_sa *xsa;
2709
2710 /* sanity check */
2711 if (m == NULL || mhp == NULL || mhp->msg == NULL || sah == NULL)
2712 panic("key_newsa: NULL pointer is passed.\n");
2713
2714 KMALLOC(newsav, struct secasvar *, sizeof(struct secasvar));
2715 if (newsav == NULL) {
2716 ipseclog((LOG_DEBUG, "key_newsa: No more memory.\n"));
2717 *errp = ENOBUFS;
2718 return NULL;
2719 }
2720 bzero((caddr_t)newsav, sizeof(struct secasvar));
2721
2722 switch (mhp->msg->sadb_msg_type) {
2723 case SADB_GETSPI:
2724 newsav->spi = 0;
2725
2726 #ifdef IPSEC_DOSEQCHECK
2727 /* sync sequence number */
2728 if (mhp->msg->sadb_msg_seq == 0)
2729 newsav->seq =
2730 (acq_seq = (acq_seq == ~0 ? 1 : ++acq_seq));
2731 else
2732 #endif
2733 newsav->seq = mhp->msg->sadb_msg_seq;
2734 break;
2735
2736 case SADB_ADD:
2737 /* sanity check */
2738 if (mhp->ext[SADB_EXT_SA] == NULL) {
2739 KFREE(newsav);
2740 ipseclog((LOG_DEBUG, "key_newsa: invalid message is passed.\n"));
2741 *errp = EINVAL;
2742 return NULL;
2743 }
2744 xsa = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA];
2745 newsav->spi = xsa->sadb_sa_spi;
2746 newsav->seq = mhp->msg->sadb_msg_seq;
2747 break;
2748 default:
2749 KFREE(newsav);
2750 *errp = EINVAL;
2751 return NULL;
2752 }
2753
2754 /* copy sav values */
2755 if (mhp->msg->sadb_msg_type != SADB_GETSPI) {
2756 *errp = key_setsaval(newsav, m, mhp);
2757 if (*errp) {
2758 KFREE(newsav);
2759 return NULL;
2760 }
2761 }
2762
2763 /* reset created */
2764 {
2765 struct timeval tv;
2766 microtime(&tv);
2767 newsav->created = tv.tv_sec;
2768 }
2769
2770 newsav->pid = mhp->msg->sadb_msg_pid;
2771
2772 /* add to satree */
2773 newsav->sah = sah;
2774 newsav->refcnt = 1;
2775 newsav->state = SADB_SASTATE_LARVAL;
2776 LIST_INSERT_TAIL(&sah->savtree[SADB_SASTATE_LARVAL], newsav,
2777 secasvar, chain);
2778
2779 return newsav;
2780 }
2781
2782 /*
2783 * free() SA variable entry.
2784 */
2785 static void
2786 key_delsav(sav)
2787 struct secasvar *sav;
2788 {
2789 /* sanity check */
2790 if (sav == NULL)
2791 panic("key_delsav: NULL pointer is passed.\n");
2792
2793 if (sav->refcnt > 0)
2794 return; /* can't free */
2795
2796 /* remove from SA header */
2797 if (__LIST_CHAINED(sav))
2798 LIST_REMOVE(sav, chain);
2799
2800 if (sav->key_auth != NULL) {
2801 bzero(_KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth));
2802 KFREE(sav->key_auth);
2803 sav->key_auth = NULL;
2804 }
2805 if (sav->key_enc != NULL) {
2806 bzero(_KEYBUF(sav->key_enc), _KEYLEN(sav->key_enc));
2807 KFREE(sav->key_enc);
2808 sav->key_enc = NULL;
2809 }
2810 if (sav->sched) {
2811 bzero(sav->sched, sav->schedlen);
2812 KFREE(sav->sched);
2813 sav->sched = NULL;
2814 }
2815 if (sav->replay != NULL) {
2816 keydb_delsecreplay(sav->replay);
2817 sav->replay = NULL;
2818 }
2819 if (sav->lft_c != NULL) {
2820 KFREE(sav->lft_c);
2821 sav->lft_c = NULL;
2822 }
2823 if (sav->lft_h != NULL) {
2824 KFREE(sav->lft_h);
2825 sav->lft_h = NULL;
2826 }
2827 if (sav->lft_s != NULL) {
2828 KFREE(sav->lft_s);
2829 sav->lft_s = NULL;
2830 }
2831 if (sav->iv != NULL) {
2832 KFREE(sav->iv);
2833 sav->iv = NULL;
2834 }
2835
2836 KFREE(sav);
2837
2838 return;
2839 }
2840
2841 /*
2842 * search SAD.
2843 * OUT:
2844 * NULL : not found
2845 * others : found, pointer to a SA.
2846 */
2847 static struct secashead *
2848 key_getsah(saidx)
2849 struct secasindex *saidx;
2850 {
2851 struct secashead *sah;
2852
2853 LIST_FOREACH(sah, &sahtree, chain) {
2854 if (sah->state == SADB_SASTATE_DEAD)
2855 continue;
2856 if (key_cmpsaidx(&sah->saidx, saidx, CMP_REQID))
2857 return sah;
2858 }
2859
2860 return NULL;
2861 }
2862
2863 /*
2864 * check not to be duplicated SPI.
2865 * NOTE: this function is too slow due to searching all SAD.
2866 * OUT:
2867 * NULL : not found
2868 * others : found, pointer to a SA.
2869 */
2870 static struct secasvar *
2871 key_checkspidup(saidx, spi)
2872 struct secasindex *saidx;
2873 u_int32_t spi;
2874 {
2875 struct secashead *sah;
2876 struct secasvar *sav;
2877
2878 /* check address family */
2879 if (saidx->src.ss_family != saidx->dst.ss_family) {
2880 ipseclog((LOG_DEBUG, "key_checkspidup: address family mismatched.\n"));
2881 return NULL;
2882 }
2883
2884 /* check all SAD */
2885 LIST_FOREACH(sah, &sahtree, chain) {
2886 if (!key_ismyaddr((struct sockaddr *)&sah->saidx.dst))
2887 continue;
2888 sav = key_getsavbyspi(sah, spi);
2889 if (sav != NULL)
2890 return sav;
2891 }
2892
2893 return NULL;
2894 }
2895
2896 /*
2897 * search SAD litmited alive SA, protocol, SPI.
2898 * OUT:
2899 * NULL : not found
2900 * others : found, pointer to a SA.
2901 */
2902 static struct secasvar *
2903 key_getsavbyspi(sah, spi)
2904 struct secashead *sah;
2905 u_int32_t spi;
2906 {
2907 struct secasvar *sav;
2908 u_int stateidx, state;
2909
2910 /* search all status */
2911 for (stateidx = 0;
2912 stateidx < _ARRAYLEN(saorder_state_alive);
2913 stateidx++) {
2914
2915 state = saorder_state_alive[stateidx];
2916 LIST_FOREACH(sav, &sah->savtree[state], chain) {
2917
2918 /* sanity check */
2919 if (sav->state != state) {
2920 ipseclog((LOG_DEBUG, "key_getsavbyspi: "
2921 "invalid sav->state (queue: %d SA: %d)\n",
2922 state, sav->state));
2923 continue;
2924 }
2925
2926 if (sav->spi == spi)
2927 return sav;
2928 }
2929 }
2930
2931 return NULL;
2932 }
2933
2934 /*
2935 * copy SA values from PF_KEY message except *SPI, SEQ, PID, STATE and TYPE*.
2936 * You must update these if need.
2937 * OUT: 0: success.
2938 * !0: failure.
2939 *
2940 * does not modify mbuf. does not free mbuf on error.
2941 */
2942 static int
2943 key_setsaval(sav, m, mhp)
2944 struct secasvar *sav;
2945 struct mbuf *m;
2946 const struct sadb_msghdr *mhp;
2947 {
2948 #ifdef IPSEC_ESP
2949 const struct esp_algorithm *algo;
2950 #endif
2951 int error = 0;
2952 struct timeval tv;
2953
2954 /* sanity check */
2955 if (m == NULL || mhp == NULL || mhp->msg == NULL)
2956 panic("key_setsaval: NULL pointer is passed.\n");
2957
2958 /* initialization */
2959 sav->replay = NULL;
2960 sav->key_auth = NULL;
2961 sav->key_enc = NULL;
2962 sav->sched = NULL;
2963 sav->schedlen = 0;
2964 sav->iv = NULL;
2965 sav->lft_c = NULL;
2966 sav->lft_h = NULL;
2967 sav->lft_s = NULL;
2968
2969 /* SA */
2970 if (mhp->ext[SADB_EXT_SA] != NULL) {
2971 const struct sadb_sa *sa0;
2972
2973 sa0 = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA];
2974 if (mhp->extlen[SADB_EXT_SA] < sizeof(*sa0)) {
2975 error = EINVAL;
2976 goto fail;
2977 }
2978
2979 sav->alg_auth = sa0->sadb_sa_auth;
2980 sav->alg_enc = sa0->sadb_sa_encrypt;
2981 sav->flags = sa0->sadb_sa_flags;
2982
2983 /* replay window */
2984 if ((sa0->sadb_sa_flags & SADB_X_EXT_OLD) == 0) {
2985 sav->replay = keydb_newsecreplay(sa0->sadb_sa_replay);
2986 if (sav->replay == NULL) {
2987 ipseclog((LOG_DEBUG, "key_setsaval: No more memory.\n"));
2988 error = ENOBUFS;
2989 goto fail;
2990 }
2991 }
2992 }
2993
2994 /* Authentication keys */
2995 if (mhp->ext[SADB_EXT_KEY_AUTH] != NULL) {
2996 const struct sadb_key *key0;
2997 int len;
2998
2999 key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_AUTH];
3000 len = mhp->extlen[SADB_EXT_KEY_AUTH];
3001
3002 error = 0;
3003 if (len < sizeof(*key0)) {
3004 error = EINVAL;
3005 goto fail;
3006 }
3007 switch (mhp->msg->sadb_msg_satype) {
3008 case SADB_SATYPE_AH:
3009 case SADB_SATYPE_ESP:
3010 if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) &&
3011 sav->alg_auth != SADB_X_AALG_NULL)
3012 error = EINVAL;
3013 break;
3014 case SADB_X_SATYPE_IPCOMP:
3015 default:
3016 error = EINVAL;
3017 break;
3018 }
3019 if (error) {
3020 ipseclog((LOG_DEBUG, "key_setsaval: invalid key_auth values.\n"));
3021 goto fail;
3022 }
3023
3024 sav->key_auth = (struct sadb_key *)key_newbuf(key0, len);
3025 if (sav->key_auth == NULL) {
3026 ipseclog((LOG_DEBUG, "key_setsaval: No more memory.\n"));
3027 error = ENOBUFS;
3028 goto fail;
3029 }
3030 }
3031
3032 /* Encryption key */
3033 if (mhp->ext[SADB_EXT_KEY_ENCRYPT] != NULL) {
3034 const struct sadb_key *key0;
3035 int len;
3036
3037 key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_ENCRYPT];
3038 len = mhp->extlen[SADB_EXT_KEY_ENCRYPT];
3039
3040 error = 0;
3041 if (len < sizeof(*key0)) {
3042 error = EINVAL;
3043 goto fail;
3044 }
3045 switch (mhp->msg->sadb_msg_satype) {
3046 case SADB_SATYPE_ESP:
3047 if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) &&
3048 sav->alg_enc != SADB_EALG_NULL) {
3049 error = EINVAL;
3050 break;
3051 }
3052 sav->key_enc = (struct sadb_key *)key_newbuf(key0, len);
3053 if (sav->key_enc == NULL) {
3054 ipseclog((LOG_DEBUG, "key_setsaval: No more memory.\n"));
3055 error = ENOBUFS;
3056 goto fail;
3057 }
3058 break;
3059 case SADB_X_SATYPE_IPCOMP:
3060 if (len != PFKEY_ALIGN8(sizeof(struct sadb_key)))
3061 error = EINVAL;
3062 sav->key_enc = NULL; /*just in case*/
3063 break;
3064 case SADB_SATYPE_AH:
3065 default:
3066 error = EINVAL;
3067 break;
3068 }
3069 if (error) {
3070 ipseclog((LOG_DEBUG, "key_setsatval: invalid key_enc value.\n"));
3071 goto fail;
3072 }
3073 }
3074
3075 /* set iv */
3076 sav->ivlen = 0;
3077
3078 switch (mhp->msg->sadb_msg_satype) {
3079 case SADB_SATYPE_ESP:
3080 #ifdef IPSEC_ESP
3081 algo = esp_algorithm_lookup(sav->alg_enc);
3082 if (algo && algo->ivlen)
3083 sav->ivlen = (*algo->ivlen)(algo, sav);
3084 if (sav->ivlen == 0)
3085 break;
3086 KMALLOC(sav->iv, caddr_t, sav->ivlen);
3087 if (sav->iv == 0) {
3088 ipseclog((LOG_DEBUG, "key_setsaval: No more memory.\n"));
3089 error = ENOBUFS;
3090 goto fail;
3091 }
3092
3093 /* initialize */
3094 key_randomfill(sav->iv, sav->ivlen);
3095 #endif
3096 break;
3097 case SADB_SATYPE_AH:
3098 case SADB_X_SATYPE_IPCOMP:
3099 break;
3100 default:
3101 ipseclog((LOG_DEBUG, "key_setsaval: invalid SA type.\n"));
3102 error = EINVAL;
3103 goto fail;
3104 }
3105
3106 /* reset created */
3107 microtime(&tv);
3108 sav->created = tv.tv_sec;
3109
3110 /* make lifetime for CURRENT */
3111 KMALLOC(sav->lft_c, struct sadb_lifetime *,
3112 sizeof(struct sadb_lifetime));
3113 if (sav->lft_c == NULL) {
3114 ipseclog((LOG_DEBUG, "key_setsaval: No more memory.\n"));
3115 error = ENOBUFS;
3116 goto fail;
3117 }
3118
3119 microtime(&tv);
3120
3121 sav->lft_c->sadb_lifetime_len =
3122 PFKEY_UNIT64(sizeof(struct sadb_lifetime));
3123 sav->lft_c->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
3124 sav->lft_c->sadb_lifetime_allocations = 0;
3125 sav->lft_c->sadb_lifetime_bytes = 0;
3126 sav->lft_c->sadb_lifetime_addtime = tv.tv_sec;
3127 sav->lft_c->sadb_lifetime_usetime = 0;
3128
3129 /* lifetimes for HARD and SOFT */
3130 {
3131 const struct sadb_lifetime *lft0;
3132
3133 lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD];
3134 if (lft0 != NULL) {
3135 if (mhp->extlen[SADB_EXT_LIFETIME_HARD] < sizeof(*lft0)) {
3136 error = EINVAL;
3137 goto fail;
3138 }
3139 sav->lft_h = (struct sadb_lifetime *)key_newbuf(lft0,
3140 sizeof(*lft0));
3141 if (sav->lft_h == NULL) {
3142 ipseclog((LOG_DEBUG, "key_setsaval: No more memory.\n"));
3143 error = ENOBUFS;
3144 goto fail;
3145 }
3146 /* to be initialize ? */
3147 }
3148
3149 lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_SOFT];
3150 if (lft0 != NULL) {
3151 if (mhp->extlen[SADB_EXT_LIFETIME_SOFT] < sizeof(*lft0)) {
3152 error = EINVAL;
3153 goto fail;
3154 }
3155 sav->lft_s = (struct sadb_lifetime *)key_newbuf(lft0,
3156 sizeof(*lft0));
3157 if (sav->lft_s == NULL) {
3158 ipseclog((LOG_DEBUG, "key_setsaval: No more memory.\n"));
3159 error = ENOBUFS;
3160 goto fail;
3161 }
3162 /* to be initialize ? */
3163 }
3164 }
3165
3166 return 0;
3167
3168 fail:
3169 /* initialization */
3170 if (sav->replay != NULL) {
3171 keydb_delsecreplay(sav->replay);
3172 sav->replay = NULL;
3173 }
3174 if (sav->key_auth != NULL) {
3175 KFREE(sav->key_auth);
3176 sav->key_auth = NULL;
3177 }
3178 if (sav->key_enc != NULL) {
3179 KFREE(sav->key_enc);
3180 sav->key_enc = NULL;
3181 }
3182 if (sav->sched) {
3183 KFREE(sav->sched);
3184 sav->sched = NULL;
3185 }
3186 if (sav->iv != NULL) {
3187 KFREE(sav->iv);
3188 sav->iv = NULL;
3189 }
3190 if (sav->lft_c != NULL) {
3191 KFREE(sav->lft_c);
3192 sav->lft_c = NULL;
3193 }
3194 if (sav->lft_h != NULL) {
3195 KFREE(sav->lft_h);
3196 sav->lft_h = NULL;
3197 }
3198 if (sav->lft_s != NULL) {
3199 KFREE(sav->lft_s);
3200 sav->lft_s = NULL;
3201 }
3202
3203 return error;
3204 }
3205
3206 /*
3207 * validation with a secasvar entry, and set SADB_SATYPE_MATURE.
3208 * OUT: 0: valid
3209 * other: errno
3210 */
3211 static int
3212 key_mature(sav)
3213 struct secasvar *sav;
3214 {
3215 int mature;
3216 int checkmask = 0; /* 2^0: ealg 2^1: aalg 2^2: calg */
3217 int mustmask = 0; /* 2^0: ealg 2^1: aalg 2^2: calg */
3218
3219 mature = 0;
3220
3221 /* check SPI value */
3222 switch (sav->sah->saidx.proto) {
3223 case IPPROTO_ESP:
3224 case IPPROTO_AH:
3225 if (ntohl(sav->spi) >= 0 && ntohl(sav->spi) <= 255) {
3226 ipseclog((LOG_DEBUG,
3227 "key_mature: illegal range of SPI %u.\n",
3228 (u_int32_t)ntohl(sav->spi)));
3229 return EINVAL;
3230 }
3231 break;
3232 }
3233
3234 /* check satype */
3235 switch (sav->sah->saidx.proto) {
3236 case IPPROTO_ESP:
3237 /* check flags */
3238 if ((sav->flags & SADB_X_EXT_OLD)
3239 && (sav->flags & SADB_X_EXT_DERIV)) {
3240 ipseclog((LOG_DEBUG, "key_mature: "
3241 "invalid flag (derived) given to old-esp.\n"));
3242 return EINVAL;
3243 }
3244 if (sav->alg_auth == SADB_AALG_NONE)
3245 checkmask = 1;
3246 else
3247 checkmask = 3;
3248 mustmask = 1;
3249 break;
3250 case IPPROTO_AH:
3251 /* check flags */
3252 if (sav->flags & SADB_X_EXT_DERIV) {
3253 ipseclog((LOG_DEBUG, "key_mature: "
3254 "invalid flag (derived) given to AH SA.\n"));
3255 return EINVAL;
3256 }
3257 if (sav->alg_enc != SADB_EALG_NONE) {
3258 ipseclog((LOG_DEBUG, "key_mature: "
3259 "protocol and algorithm mismated.\n"));
3260 return(EINVAL);
3261 }
3262 checkmask = 2;
3263 mustmask = 2;
3264 break;
3265 case IPPROTO_IPCOMP:
3266 if (sav->alg_auth != SADB_AALG_NONE) {
3267 ipseclog((LOG_DEBUG, "key_mature: "
3268 "protocol and algorithm mismated.\n"));
3269 return(EINVAL);
3270 }
3271 if ((sav->flags & SADB_X_EXT_RAWCPI) == 0
3272 && ntohl(sav->spi) >= 0x10000) {
3273 ipseclog((LOG_DEBUG, "key_mature: invalid cpi for IPComp.\n"));
3274 return(EINVAL);
3275 }
3276 checkmask = 4;
3277 mustmask = 4;
3278 break;
3279 default:
3280 ipseclog((LOG_DEBUG, "key_mature: Invalid satype.\n"));
3281 return EPROTONOSUPPORT;
3282 }
3283
3284 /* check authentication algorithm */
3285 if ((checkmask & 2) != 0) {
3286 const struct ah_algorithm *algo;
3287 int keylen;
3288
3289 algo = ah_algorithm_lookup(sav->alg_auth);
3290 if (!algo) {
3291 ipseclog((LOG_DEBUG,"key_mature: "
3292 "unknown authentication algorithm.\n"));
3293 return EINVAL;
3294 }
3295
3296 /* algorithm-dependent check */
3297 if (sav->key_auth)
3298 keylen = sav->key_auth->sadb_key_bits;
3299 else
3300 keylen = 0;
3301 if (keylen < algo->keymin || algo->keymax < keylen) {
3302 ipseclog((LOG_DEBUG,
3303 "key_mature: invalid AH key length %d "
3304 "(%d-%d allowed)\n",
3305 keylen, algo->keymin, algo->keymax));
3306 return EINVAL;
3307 }
3308
3309 if (algo->mature) {
3310 if ((*algo->mature)(sav)) {
3311 /* message generated in per-algorithm function*/
3312 return EINVAL;
3313 } else
3314 mature = SADB_SATYPE_AH;
3315 }
3316
3317 if ((mustmask & 2) != 0 && mature != SADB_SATYPE_AH) {
3318 ipseclog((LOG_DEBUG, "key_mature: no satisfy algorithm for AH\n"));
3319 return EINVAL;
3320 }
3321 }
3322
3323 /* check encryption algorithm */
3324 if ((checkmask & 1) != 0) {
3325 #ifdef IPSEC_ESP
3326 const struct esp_algorithm *algo;
3327 int keylen;
3328
3329 algo = esp_algorithm_lookup(sav->alg_enc);
3330 if (!algo) {
3331 ipseclog((LOG_DEBUG, "key_mature: unknown encryption algorithm.\n"));
3332 return EINVAL;
3333 }
3334
3335 /* algorithm-dependent check */
3336 if (sav->key_enc)
3337 keylen = sav->key_enc->sadb_key_bits;
3338 else
3339 keylen = 0;
3340 if (keylen < algo->keymin || algo->keymax < keylen) {
3341 ipseclog((LOG_DEBUG,
3342 "key_mature: invalid ESP key length %d "
3343 "(%d-%d allowed)\n",
3344 keylen, algo->keymin, algo->keymax));
3345 return EINVAL;
3346 }
3347
3348 if (algo->mature) {
3349 if ((*algo->mature)(sav)) {
3350 /* message generated in per-algorithm function*/
3351 return EINVAL;
3352 } else
3353 mature = SADB_SATYPE_ESP;
3354 }
3355
3356 if ((mustmask & 1) != 0 && mature != SADB_SATYPE_ESP) {
3357 ipseclog((LOG_DEBUG, "key_mature: no satisfy algorithm for ESP\n"));
3358 return EINVAL;
3359 }
3360 #else /*IPSEC_ESP*/
3361 ipseclog((LOG_DEBUG, "key_mature: ESP not supported in this configuration\n"));
3362 return EINVAL;
3363 #endif
3364 }
3365
3366 /* check compression algorithm */
3367 if ((checkmask & 4) != 0) {
3368 const struct ipcomp_algorithm *algo;
3369
3370 /* algorithm-dependent check */
3371 algo = ipcomp_algorithm_lookup(sav->alg_enc);
3372 if (!algo) {
3373 ipseclog((LOG_DEBUG, "key_mature: unknown compression algorithm.\n"));
3374 return EINVAL;
3375 }
3376 }
3377
3378 key_sa_chgstate(sav, SADB_SASTATE_MATURE);
3379
3380 return 0;
3381 }
3382
3383 /*
3384 * subroutine for SADB_GET and SADB_DUMP.
3385 */
3386 static struct mbuf *
3387 key_setdumpsa(sav, type, satype, seq, pid)
3388 struct secasvar *sav;
3389 u_int8_t type, satype;
3390 u_int32_t seq, pid;
3391 {
3392 struct mbuf *result = NULL, *tres = NULL, *m;
3393 int l = 0;
3394 int i;
3395 void *p;
3396 int dumporder[] = {
3397 SADB_EXT_SA, SADB_X_EXT_SA2,
3398 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT,
3399 SADB_EXT_LIFETIME_CURRENT, SADB_EXT_ADDRESS_SRC,
3400 SADB_EXT_ADDRESS_DST, SADB_EXT_ADDRESS_PROXY, SADB_EXT_KEY_AUTH,
3401 SADB_EXT_KEY_ENCRYPT, SADB_EXT_IDENTITY_SRC,
3402 SADB_EXT_IDENTITY_DST, SADB_EXT_SENSITIVITY,
3403 };
3404
3405 m = key_setsadbmsg(type, 0, satype, seq, pid, sav->refcnt);
3406 if (m == NULL)
3407 goto fail;
3408 result = m;
3409
3410 for (i = sizeof(dumporder)/sizeof(dumporder[0]) - 1; i >= 0; i--) {
3411 m = NULL;
3412 p = NULL;
3413 switch (dumporder[i]) {
3414 case SADB_EXT_SA:
3415 m = key_setsadbsa(sav);
3416 if (!m)
3417 goto fail;
3418 break;
3419
3420 case SADB_X_EXT_SA2:
3421 m = key_setsadbxsa2(sav->sah->saidx.mode,
3422 sav->replay ? sav->replay->count : 0,
3423 sav->sah->saidx.reqid);
3424 if (!m)
3425 goto fail;
3426 break;
3427
3428 case SADB_EXT_ADDRESS_SRC:
3429 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
3430 (struct sockaddr *)&sav->sah->saidx.src,
3431 FULLMASK, IPSEC_ULPROTO_ANY);
3432 if (!m)
3433 goto fail;
3434 break;
3435
3436 case SADB_EXT_ADDRESS_DST:
3437 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
3438 (struct sockaddr *)&sav->sah->saidx.dst,
3439 FULLMASK, IPSEC_ULPROTO_ANY);
3440 if (!m)
3441 goto fail;
3442 break;
3443
3444 case SADB_EXT_KEY_AUTH:
3445 if (!sav->key_auth)
3446 continue;
3447 l = PFKEY_UNUNIT64(sav->key_auth->sadb_key_len);
3448 p = sav->key_auth;
3449 break;
3450
3451 case SADB_EXT_KEY_ENCRYPT:
3452 if (!sav->key_enc)
3453 continue;
3454 l = PFKEY_UNUNIT64(sav->key_enc->sadb_key_len);
3455 p = sav->key_enc;
3456 break;
3457
3458 case SADB_EXT_LIFETIME_CURRENT:
3459 if (!sav->lft_c)
3460 continue;
3461 l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_c)->sadb_ext_len);
3462 p = sav->lft_c;
3463 break;
3464
3465 case SADB_EXT_LIFETIME_HARD:
3466 if (!sav->lft_h)
3467 continue;
3468 l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_h)->sadb_ext_len);
3469 p = sav->lft_h;
3470 break;
3471
3472 case SADB_EXT_LIFETIME_SOFT:
3473 if (!sav->lft_s)
3474 continue;
3475 l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_s)->sadb_ext_len);
3476 p = sav->lft_s;
3477 break;
3478
3479 case SADB_EXT_ADDRESS_PROXY:
3480 case SADB_EXT_IDENTITY_SRC:
3481 case SADB_EXT_IDENTITY_DST:
3482 /* XXX: should we brought from SPD ? */
3483 case SADB_EXT_SENSITIVITY:
3484 default:
3485 continue;
3486 }
3487
3488 if ((!m && !p) || (m && p))
3489 goto fail;
3490 if (p && tres) {
3491 M_PREPEND(tres, l, M_DONTWAIT);
3492 if (!tres)
3493 goto fail;
3494 bcopy(p, mtod(tres, caddr_t), l);
3495 continue;
3496 }
3497 if (p) {
3498 m = key_alloc_mbuf(l);
3499 if (!m)
3500 goto fail;
3501 m_copyback(m, 0, l, p);
3502 }
3503
3504 if (tres)
3505 m_cat(m, tres);
3506 tres = m;
3507 }
3508
3509 m_cat(result, tres);
3510
3511 if (result->m_len < sizeof(struct sadb_msg)) {
3512 result = m_pullup(result, sizeof(struct sadb_msg));
3513 if (result == NULL)
3514 goto fail;
3515 }
3516
3517 result->m_pkthdr.len = 0;
3518 for (m = result; m; m = m->m_next)
3519 result->m_pkthdr.len += m->m_len;
3520
3521 mtod(result, struct sadb_msg *)->sadb_msg_len =
3522 PFKEY_UNIT64(result->m_pkthdr.len);
3523
3524 return result;
3525
3526 fail:
3527 m_freem(result);
3528 m_freem(tres);
3529 return NULL;
3530 }
3531
3532 /*
3533 * set data into sadb_msg.
3534 */
3535 static struct mbuf *
3536 key_setsadbmsg(type, tlen, satype, seq, pid, reserved)
3537 u_int8_t type, satype;
3538 u_int16_t tlen;
3539 u_int32_t seq;
3540 pid_t pid;
3541 u_int16_t reserved;
3542 {
3543 struct mbuf *m;
3544 struct sadb_msg *p;
3545 int len;
3546
3547 len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
3548 if (len > MCLBYTES)
3549 return NULL;
3550 MGETHDR(m, M_DONTWAIT, MT_DATA);
3551 if (m && len > MHLEN) {
3552 MCLGET(m, M_DONTWAIT);
3553 if ((m->m_flags & M_EXT) == 0) {
3554 m_freem(m);
3555 m = NULL;
3556 }
3557 }
3558 if (!m)
3559 return NULL;
3560 m->m_pkthdr.len = m->m_len = len;
3561 m->m_next = NULL;
3562
3563 p = mtod(m, struct sadb_msg *);
3564
3565 bzero(p, len);
3566 p->sadb_msg_version = PF_KEY_V2;
3567 p->sadb_msg_type = type;
3568 p->sadb_msg_errno = 0;
3569 p->sadb_msg_satype = satype;
3570 p->sadb_msg_len = PFKEY_UNIT64(tlen);
3571 p->sadb_msg_reserved = reserved;
3572 p->sadb_msg_seq = seq;
3573 p->sadb_msg_pid = (u_int32_t)pid;
3574
3575 return m;
3576 }
3577
3578 /*
3579 * copy secasvar data into sadb_address.
3580 */
3581 static struct mbuf *
3582 key_setsadbsa(sav)
3583 struct secasvar *sav;
3584 {
3585 struct mbuf *m;
3586 struct sadb_sa *p;
3587 int len;
3588
3589 len = PFKEY_ALIGN8(sizeof(struct sadb_sa));
3590 m = key_alloc_mbuf(len);
3591 if (!m || m->m_next) { /*XXX*/
3592 if (m)
3593 m_freem(m);
3594 return NULL;
3595 }
3596
3597 p = mtod(m, struct sadb_sa *);
3598
3599 bzero(p, len);
3600 p->sadb_sa_len = PFKEY_UNIT64(len);
3601 p->sadb_sa_exttype = SADB_EXT_SA;
3602 p->sadb_sa_spi = sav->spi;
3603 p->sadb_sa_replay = (sav->replay != NULL ? sav->replay->wsize : 0);
3604 p->sadb_sa_state = sav->state;
3605 p->sadb_sa_auth = sav->alg_auth;
3606 p->sadb_sa_encrypt = sav->alg_enc;
3607 p->sadb_sa_flags = sav->flags;
3608
3609 return m;
3610 }
3611
3612 /*
3613 * set data into sadb_address.
3614 */
3615 static struct mbuf *
3616 key_setsadbaddr(exttype, saddr, prefixlen, ul_proto)
3617 u_int16_t exttype;
3618 struct sockaddr *saddr;
3619 u_int8_t prefixlen;
3620 u_int16_t ul_proto;
3621 {
3622 struct mbuf *m;
3623 struct sadb_address *p;
3624 size_t len;
3625
3626 len = PFKEY_ALIGN8(sizeof(struct sadb_address)) +
3627 PFKEY_ALIGN8(saddr->sa_len);
3628 m = key_alloc_mbuf(len);
3629 if (!m || m->m_next) { /*XXX*/
3630 if (m)
3631 m_freem(m);
3632 return NULL;
3633 }
3634
3635 p = mtod(m, struct sadb_address *);
3636
3637 bzero(p, len);
3638 p->sadb_address_len = PFKEY_UNIT64(len);
3639 p->sadb_address_exttype = exttype;
3640 p->sadb_address_proto = ul_proto;
3641 if (prefixlen == FULLMASK) {
3642 switch (saddr->sa_family) {
3643 case AF_INET:
3644 prefixlen = sizeof(struct in_addr) << 3;
3645 break;
3646 case AF_INET6:
3647 prefixlen = sizeof(struct in6_addr) << 3;
3648 break;
3649 default:
3650 ; /*XXX*/
3651 }
3652 }
3653 p->sadb_address_prefixlen = prefixlen;
3654 p->sadb_address_reserved = 0;
3655
3656 bcopy(saddr,
3657 mtod(m, caddr_t) + PFKEY_ALIGN8(sizeof(struct sadb_address)),
3658 saddr->sa_len);
3659
3660 return m;
3661 }
3662
3663 #if 0
3664 /*
3665 * set data into sadb_ident.
3666 */
3667 static struct mbuf *
3668 key_setsadbident(exttype, idtype, string, stringlen, id)
3669 u_int16_t exttype, idtype;
3670 caddr_t string;
3671 int stringlen;
3672 u_int64_t id;
3673 {
3674 struct mbuf *m;
3675 struct sadb_ident *p;
3676 size_t len;
3677
3678 len = PFKEY_ALIGN8(sizeof(struct sadb_ident)) + PFKEY_ALIGN8(stringlen);
3679 m = key_alloc_mbuf(len);
3680 if (!m || m->m_next) { /*XXX*/
3681 if (m)
3682 m_freem(m);
3683 return NULL;
3684 }
3685
3686 p = mtod(m, struct sadb_ident *);
3687
3688 bzero(p, len);
3689 p->sadb_ident_len = PFKEY_UNIT64(len);
3690 p->sadb_ident_exttype = exttype;
3691 p->sadb_ident_type = idtype;
3692 p->sadb_ident_reserved = 0;
3693 p->sadb_ident_id = id;
3694
3695 bcopy(string,
3696 mtod(m, caddr_t) + PFKEY_ALIGN8(sizeof(struct sadb_ident)),
3697 stringlen);
3698
3699 return m;
3700 }
3701 #endif
3702
3703 /*
3704 * set data into sadb_x_sa2.
3705 */
3706 static struct mbuf *
3707 key_setsadbxsa2(mode, seq, reqid)
3708 u_int8_t mode;
3709 u_int32_t seq, reqid;
3710 {
3711 struct mbuf *m;
3712 struct sadb_x_sa2 *p;
3713 size_t len;
3714
3715 len = PFKEY_ALIGN8(sizeof(struct sadb_x_sa2));
3716 m = key_alloc_mbuf(len);
3717 if (!m || m->m_next) { /*XXX*/
3718 if (m)
3719 m_freem(m);
3720 return NULL;
3721 }
3722
3723 p = mtod(m, struct sadb_x_sa2 *);
3724
3725 bzero(p, len);
3726 p->sadb_x_sa2_len = PFKEY_UNIT64(len);
3727 p->sadb_x_sa2_exttype = SADB_X_EXT_SA2;
3728 p->sadb_x_sa2_mode = mode;
3729 p->sadb_x_sa2_reserved1 = 0;
3730 p->sadb_x_sa2_reserved2 = 0;
3731 p->sadb_x_sa2_sequence = seq;
3732 p->sadb_x_sa2_reqid = reqid;
3733
3734 return m;
3735 }
3736
3737 /*
3738 * set data into sadb_x_policy
3739 */
3740 static struct mbuf *
3741 key_setsadbxpolicy(type, dir, id)
3742 u_int16_t type;
3743 u_int8_t dir;
3744 u_int32_t id;
3745 {
3746 struct mbuf *m;
3747 struct sadb_x_policy *p;
3748 size_t len;
3749
3750 len = PFKEY_ALIGN8(sizeof(struct sadb_x_policy));
3751 m = key_alloc_mbuf(len);
3752 if (!m || m->m_next) { /*XXX*/
3753 if (m)
3754 m_freem(m);
3755 return NULL;
3756 }
3757
3758 p = mtod(m, struct sadb_x_policy *);
3759
3760 bzero(p, len);
3761 p->sadb_x_policy_len = PFKEY_UNIT64(len);
3762 p->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
3763 p->sadb_x_policy_type = type;
3764 p->sadb_x_policy_dir = dir;
3765 p->sadb_x_policy_id = id;
3766
3767 return m;
3768 }
3769
3770 /* %%% utilities */
3771 /*
3772 * copy a buffer into the new buffer allocated.
3773 */
3774 static void *
3775 key_newbuf(src, len)
3776 const void *src;
3777 u_int len;
3778 {
3779 caddr_t new;
3780
3781 KMALLOC(new, caddr_t, len);
3782 if (new == NULL) {
3783 ipseclog((LOG_DEBUG, "key_newbuf: No more memory.\n"));
3784 return NULL;
3785 }
3786 bcopy(src, new, len);
3787
3788 return new;
3789 }
3790
3791 /* compare my own address
3792 * OUT: 1: true, i.e. my address.
3793 * 0: false
3794 */
3795 int
3796 key_ismyaddr(sa)
3797 struct sockaddr *sa;
3798 {
3799 #ifdef INET
3800 struct sockaddr_in *sin;
3801 struct in_ifaddr *ia;
3802 #endif
3803
3804 /* sanity check */
3805 if (sa == NULL)
3806 panic("key_ismyaddr: NULL pointer is passed.\n");
3807
3808 switch (sa->sa_family) {
3809 #ifdef INET
3810 case AF_INET:
3811 sin = (struct sockaddr_in *)sa;
3812 for (ia = in_ifaddrhead.tqh_first; ia;
3813 ia = ia->ia_link.tqe_next)
3814 {
3815 if (sin->sin_family == ia->ia_addr.sin_family &&
3816 sin->sin_len == ia->ia_addr.sin_len &&
3817 sin->sin_addr.s_addr == ia->ia_addr.sin_addr.s_addr)
3818 {
3819 return 1;
3820 }
3821 }
3822 break;
3823 #endif
3824 #ifdef INET6
3825 case AF_INET6:
3826 return key_ismyaddr6((struct sockaddr_in6 *)sa);
3827 #endif
3828 }
3829
3830 return 0;
3831 }
3832
3833 #ifdef INET6
3834 /*
3835 * compare my own address for IPv6.
3836 * 1: ours
3837 * 0: other
3838 * NOTE: derived ip6_input() in KAME. This is necessary to modify more.
3839 */
3840 #include <netinet6/in6_var.h>
3841
3842 static int
3843 key_ismyaddr6(sin6)
3844 struct sockaddr_in6 *sin6;
3845 {
3846 struct in6_ifaddr *ia;
3847 struct in6_multi *in6m;
3848
3849 for (ia = in6_ifaddr; ia; ia = ia->ia_next) {
3850 if (key_sockaddrcmp((struct sockaddr *)&sin6,
3851 (struct sockaddr *)&ia->ia_addr, 0) == 0)
3852 return 1;
3853
3854 /*
3855 * XXX Multicast
3856 * XXX why do we care about multlicast here while we don't care
3857 * about IPv4 multicast??
3858 * XXX scope
3859 */
3860 in6m = NULL;
3861 IN6_LOOKUP_MULTI(sin6->sin6_addr, ia->ia_ifp, in6m);
3862 if (in6m)
3863 return 1;
3864 }
3865
3866 /* loopback, just for safety */
3867 if (IN6_IS_ADDR_LOOPBACK(&sin6->sin6_addr))
3868 return 1;
3869
3870 return 0;
3871 }
3872 #endif /*INET6*/
3873
3874 /*
3875 * compare two secasindex structure.
3876 * flag can specify to compare 2 saidxes.
3877 * compare two secasindex structure without both mode and reqid.
3878 * don't compare port.
3879 * IN:
3880 * saidx0: source, it can be in SAD.
3881 * saidx1: object.
3882 * OUT:
3883 * 1 : equal
3884 * 0 : not equal
3885 */
3886 static int
3887 key_cmpsaidx(saidx0, saidx1, flag)
3888 struct secasindex *saidx0, *saidx1;
3889 int flag;
3890 {
3891 /* sanity */
3892 if (saidx0 == NULL && saidx1 == NULL)
3893 return 1;
3894
3895 if (saidx0 == NULL || saidx1 == NULL)
3896 return 0;
3897
3898 if (saidx0->proto != saidx1->proto)
3899 return 0;
3900
3901 if (flag == CMP_EXACTLY) {
3902 if (saidx0->mode != saidx1->mode)
3903 return 0;
3904 if (saidx0->reqid != saidx1->reqid)
3905 return 0;
3906 if (bcmp(&saidx0->src, &saidx1->src, saidx0->src.ss_len) != 0 ||
3907 bcmp(&saidx0->dst, &saidx1->dst, saidx0->dst.ss_len) != 0)
3908 return 0;
3909 } else {
3910
3911 /* CMP_MODE_REQID, CMP_REQID, CMP_HEAD */
3912 if (flag == CMP_MODE_REQID
3913 ||flag == CMP_REQID) {
3914 /*
3915 * If reqid of SPD is non-zero, unique SA is required.
3916 * The result must be of same reqid in this case.
3917 */
3918 if (saidx1->reqid != 0 && saidx0->reqid != saidx1->reqid)
3919 return 0;
3920 }
3921
3922 if (flag == CMP_MODE_REQID) {
3923 if (saidx0->mode != IPSEC_MODE_ANY
3924 && saidx0->mode != saidx1->mode)
3925 return 0;
3926 }
3927
3928 if (key_sockaddrcmp((struct sockaddr *)&saidx0->src,
3929 (struct sockaddr *)&saidx1->src, 0) != 0) {
3930 return 0;
3931 }
3932 if (key_sockaddrcmp((struct sockaddr *)&saidx0->dst,
3933 (struct sockaddr *)&saidx1->dst, 0) != 0) {
3934 return 0;
3935 }
3936 }
3937
3938 return 1;
3939 }
3940
3941 /*
3942 * compare two secindex structure exactly.
3943 * IN:
3944 * spidx0: source, it is often in SPD.
3945 * spidx1: object, it is often from PFKEY message.
3946 * OUT:
3947 * 1 : equal
3948 * 0 : not equal
3949 */
3950 static int
3951 key_cmpspidx_exactly(spidx0, spidx1)
3952 struct secpolicyindex *spidx0, *spidx1;
3953 {
3954 /* sanity */
3955 if (spidx0 == NULL && spidx1 == NULL)
3956 return 1;
3957
3958 if (spidx0 == NULL || spidx1 == NULL)
3959 return 0;
3960
3961 if (spidx0->prefs != spidx1->prefs
3962 || spidx0->prefd != spidx1->prefd
3963 || spidx0->ul_proto != spidx1->ul_proto)
3964 return 0;
3965
3966 if (key_sockaddrcmp((struct sockaddr *)&spidx0->src,
3967 (struct sockaddr *)&spidx1->src, 1) != 0) {
3968 return 0;
3969 }
3970 if (key_sockaddrcmp((struct sockaddr *)&spidx0->dst,
3971 (struct sockaddr *)&spidx1->dst, 1) != 0) {
3972 return 0;
3973 }
3974
3975 return 1;
3976 }
3977
3978 /*
3979 * compare two secindex structure with mask.
3980 * IN:
3981 * spidx0: source, it is often in SPD.
3982 * spidx1: object, it is often from IP header.
3983 * OUT:
3984 * 1 : equal
3985 * 0 : not equal
3986 */
3987 static int
3988 key_cmpspidx_withmask(spidx0, spidx1)
3989 struct secpolicyindex *spidx0, *spidx1;
3990 {
3991 /* sanity */
3992 if (spidx0 == NULL && spidx1 == NULL)
3993 return 1;
3994
3995 if (spidx0 == NULL || spidx1 == NULL)
3996 return 0;
3997
3998 if (spidx0->src.ss_family != spidx1->src.ss_family ||
3999 spidx0->dst.ss_family != spidx1->dst.ss_family ||
4000 spidx0->src.ss_len != spidx1->src.ss_len ||
4001 spidx0->dst.ss_len != spidx1->dst.ss_len)
4002 return 0;
4003
4004 /* if spidx.ul_proto == IPSEC_ULPROTO_ANY, ignore. */
4005 if (spidx0->ul_proto != (u_int16_t)IPSEC_ULPROTO_ANY
4006 && spidx0->ul_proto != spidx1->ul_proto)
4007 return 0;
4008
4009 switch (spidx0->src.ss_family) {
4010 case AF_INET:
4011 if (satosin(&spidx0->src)->sin_port != IPSEC_PORT_ANY
4012 && satosin(&spidx0->src)->sin_port !=
4013 satosin(&spidx1->src)->sin_port)
4014 return 0;
4015 if (!key_bbcmp((caddr_t)&satosin(&spidx0->src)->sin_addr,
4016 (caddr_t)&satosin(&spidx1->src)->sin_addr, spidx0->prefs))
4017 return 0;
4018 break;
4019 case AF_INET6:
4020 if (satosin6(&spidx0->src)->sin6_port != IPSEC_PORT_ANY
4021 && satosin6(&spidx0->src)->sin6_port !=
4022 satosin6(&spidx1->src)->sin6_port)
4023 return 0;
4024 /*
4025 * scope_id check. if sin6_scope_id is 0, we regard it
4026 * as a wildcard scope, which matches any scope zone ID.
4027 */
4028 if (satosin6(&spidx0->src)->sin6_scope_id &&
4029 satosin6(&spidx1->src)->sin6_scope_id &&
4030 satosin6(&spidx0->src)->sin6_scope_id !=
4031 satosin6(&spidx1->src)->sin6_scope_id)
4032 return 0;
4033 if (!key_bbcmp((caddr_t)&satosin6(&spidx0->src)->sin6_addr,
4034 (caddr_t)&satosin6(&spidx1->src)->sin6_addr, spidx0->prefs))
4035 return 0;
4036 break;
4037 default:
4038 /* XXX */
4039 if (bcmp(&spidx0->src, &spidx1->src, spidx0->src.ss_len) != 0)
4040 return 0;
4041 break;
4042 }
4043
4044 switch (spidx0->dst.ss_family) {
4045 case AF_INET:
4046 if (satosin(&spidx0->dst)->sin_port != IPSEC_PORT_ANY
4047 && satosin(&spidx0->dst)->sin_port !=
4048 satosin(&spidx1->dst)->sin_port)
4049 return 0;
4050 if (!key_bbcmp((caddr_t)&satosin(&spidx0->dst)->sin_addr,
4051 (caddr_t)&satosin(&spidx1->dst)->sin_addr, spidx0->prefd))
4052 return 0;
4053 break;
4054 case AF_INET6:
4055 if (satosin6(&spidx0->dst)->sin6_port != IPSEC_PORT_ANY
4056 && satosin6(&spidx0->dst)->sin6_port !=
4057 satosin6(&spidx1->dst)->sin6_port)
4058 return 0;
4059 /*
4060 * scope_id check. if sin6_scope_id is 0, we regard it
4061 * as a wildcard scope, which matches any scope zone ID.
4062 */
4063 if (satosin6(&spidx0->src)->sin6_scope_id &&
4064 satosin6(&spidx1->src)->sin6_scope_id &&
4065 satosin6(&spidx0->dst)->sin6_scope_id !=
4066 satosin6(&spidx1->dst)->sin6_scope_id)
4067 return 0;
4068 if (!key_bbcmp((caddr_t)&satosin6(&spidx0->dst)->sin6_addr,
4069 (caddr_t)&satosin6(&spidx1->dst)->sin6_addr, spidx0->prefd))
4070 return 0;
4071 break;
4072 default:
4073 /* XXX */
4074 if (bcmp(&spidx0->dst, &spidx1->dst, spidx0->dst.ss_len) != 0)
4075 return 0;
4076 break;
4077 }
4078
4079 /* XXX Do we check other field ? e.g. flowinfo */
4080
4081 return 1;
4082 }
4083
4084 /* returns 0 on match */
4085 static int
4086 key_sockaddrcmp(sa1, sa2, port)
4087 struct sockaddr *sa1;
4088 struct sockaddr *sa2;
4089 int port;
4090 {
4091 if (sa1->sa_family != sa2->sa_family || sa1->sa_len != sa2->sa_len)
4092 return 1;
4093
4094 switch (sa1->sa_family) {
4095 case AF_INET:
4096 if (sa1->sa_len != sizeof(struct sockaddr_in))
4097 return 1;
4098 if (satosin(sa1)->sin_addr.s_addr !=
4099 satosin(sa2)->sin_addr.s_addr) {
4100 return 1;
4101 }
4102 if (port && satosin(sa1)->sin_port != satosin(sa2)->sin_port)
4103 return 1;
4104 break;
4105 case AF_INET6:
4106 if (sa1->sa_len != sizeof(struct sockaddr_in6))
4107 return 1; /*EINVAL*/
4108 if (satosin6(sa1)->sin6_scope_id !=
4109 satosin6(sa2)->sin6_scope_id) {
4110 return 1;
4111 }
4112 if (!IN6_ARE_ADDR_EQUAL(&satosin6(sa1)->sin6_addr,
4113 &satosin6(sa2)->sin6_addr)) {
4114 return 1;
4115 }
4116 if (port &&
4117 satosin6(sa1)->sin6_port != satosin6(sa2)->sin6_port) {
4118 return 1;
4119 }
4120 break;
4121 default:
4122 if (bcmp(sa1, sa2, sa1->sa_len) != 0)
4123 return 1;
4124 break;
4125 }
4126
4127 return 0;
4128 }
4129
4130 /*
4131 * compare two buffers with mask.
4132 * IN:
4133 * addr1: source
4134 * addr2: object
4135 * bits: Number of bits to compare
4136 * OUT:
4137 * 1 : equal
4138 * 0 : not equal
4139 */
4140 static int
4141 key_bbcmp(p1, p2, bits)
4142 caddr_t p1, p2;
4143 u_int bits;
4144 {
4145 u_int8_t mask;
4146
4147 /* XXX: This could be considerably faster if we compare a word
4148 * at a time, but it is complicated on LSB Endian machines */
4149
4150 /* Handle null pointers */
4151 if (p1 == NULL || p2 == NULL)
4152 return (p1 == p2);
4153
4154 while (bits >= 8) {
4155 if (*p1++ != *p2++)
4156 return 0;
4157 bits -= 8;
4158 }
4159
4160 if (bits > 0) {
4161 mask = ~((1<<(8-bits))-1);
4162 if ((*p1 & mask) != (*p2 & mask))
4163 return 0;
4164 }
4165 return 1; /* Match! */
4166 }
4167
4168 /*
4169 * time handler.
4170 * scanning SPD and SAD to check status for each entries,
4171 * and do to remove or to expire.
4172 * XXX: year 2038 problem may remain.
4173 */
4174 void
4175 key_timehandler(void)
4176 {
4177 u_int dir;
4178 int s;
4179 struct timeval tv;
4180
4181 microtime(&tv);
4182
4183 s = splnet(); /*called from softclock()*/
4184
4185 /* SPD */
4186 {
4187 struct secpolicy *sp, *nextsp;
4188
4189 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
4190 for (sp = LIST_FIRST(&sptree[dir]);
4191 sp != NULL;
4192 sp = nextsp) {
4193
4194 nextsp = LIST_NEXT(sp, chain);
4195
4196 if (sp->state == IPSEC_SPSTATE_DEAD) {
4197 key_freesp(sp);
4198 continue;
4199 }
4200
4201 if (sp->lifetime == 0 && sp->validtime == 0)
4202 continue;
4203
4204 /* the deletion will occur next time */
4205 if ((sp->lifetime
4206 && tv.tv_sec - sp->created > sp->lifetime)
4207 || (sp->validtime
4208 && tv.tv_sec - sp->lastused > sp->validtime)) {
4209 sp->state = IPSEC_SPSTATE_DEAD;
4210 key_spdexpire(sp);
4211 continue;
4212 }
4213 }
4214 }
4215 }
4216
4217 /* SAD */
4218 {
4219 struct secashead *sah, *nextsah;
4220 struct secasvar *sav, *nextsav;
4221
4222 for (sah = LIST_FIRST(&sahtree);
4223 sah != NULL;
4224 sah = nextsah) {
4225
4226 nextsah = LIST_NEXT(sah, chain);
4227
4228 /* if sah has been dead, then delete it and process next sah. */
4229 if (sah->state == SADB_SASTATE_DEAD) {
4230 key_delsah(sah);
4231 continue;
4232 }
4233
4234 /* if LARVAL entry doesn't become MATURE, delete it. */
4235 for (sav = LIST_FIRST(&sah->savtree[SADB_SASTATE_LARVAL]);
4236 sav != NULL;
4237 sav = nextsav) {
4238
4239 nextsav = LIST_NEXT(sav, chain);
4240
4241 if (tv.tv_sec - sav->created > key_larval_lifetime) {
4242 key_freesav(sav);
4243 }
4244 }
4245
4246 /*
4247 * check MATURE entry to start to send expire message
4248 * whether or not.
4249 */
4250 for (sav = LIST_FIRST(&sah->savtree[SADB_SASTATE_MATURE]);
4251 sav != NULL;
4252 sav = nextsav) {
4253
4254 nextsav = LIST_NEXT(sav, chain);
4255
4256 /* we don't need to check. */
4257 if (sav->lft_s == NULL)
4258 continue;
4259
4260 /* sanity check */
4261 if (sav->lft_c == NULL) {
4262 ipseclog((LOG_DEBUG,"key_timehandler: "
4263 "There is no CURRENT time, why?\n"));
4264 continue;
4265 }
4266
4267 /* check SOFT lifetime */
4268 if (sav->lft_s->sadb_lifetime_addtime != 0
4269 && tv.tv_sec - sav->created > sav->lft_s->sadb_lifetime_addtime) {
4270 /*
4271 * check the SA if it has been used.
4272 * when it hasn't been used, delete it.
4273 * i don't think such SA will be used.
4274 */
4275 if (sav->lft_c->sadb_lifetime_usetime == 0) {
4276 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4277 key_freesav(sav);
4278 sav = NULL;
4279 } else {
4280 key_sa_chgstate(sav, SADB_SASTATE_DYING);
4281 /*
4282 * XXX If we keep to send expire
4283 * message in the status of
4284 * DYING. Do remove below code.
4285 */
4286 key_expire(sav);
4287 }
4288 }
4289
4290 /* check SOFT lifetime by bytes */
4291 /*
4292 * XXX I don't know the way to delete this SA
4293 * when new SA is installed. Caution when it's
4294 * installed too big lifetime by time.
4295 */
4296 else if (sav->lft_s->sadb_lifetime_bytes != 0
4297 && sav->lft_s->sadb_lifetime_bytes < sav->lft_c->sadb_lifetime_bytes) {
4298
4299 key_sa_chgstate(sav, SADB_SASTATE_DYING);
4300 /*
4301 * XXX If we keep to send expire
4302 * message in the status of
4303 * DYING. Do remove below code.
4304 */
4305 key_expire(sav);
4306 }
4307 }
4308
4309 /* check DYING entry to change status to DEAD. */
4310 for (sav = LIST_FIRST(&sah->savtree[SADB_SASTATE_DYING]);
4311 sav != NULL;
4312 sav = nextsav) {
4313
4314 nextsav = LIST_NEXT(sav, chain);
4315
4316 /* we don't need to check. */
4317 if (sav->lft_h == NULL)
4318 continue;
4319
4320 /* sanity check */
4321 if (sav->lft_c == NULL) {
4322 ipseclog((LOG_DEBUG, "key_timehandler: "
4323 "There is no CURRENT time, why?\n"));
4324 continue;
4325 }
4326
4327 if (sav->lft_h->sadb_lifetime_addtime != 0
4328 && tv.tv_sec - sav->created > sav->lft_h->sadb_lifetime_addtime) {
4329 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4330 key_freesav(sav);
4331 sav = NULL;
4332 }
4333 #if 0 /* XXX Should we keep to send expire message until HARD lifetime ? */
4334 else if (sav->lft_s != NULL
4335 && sav->lft_s->sadb_lifetime_addtime != 0
4336 && tv.tv_sec - sav->created > sav->lft_s->sadb_lifetime_addtime) {
4337 /*
4338 * XXX: should be checked to be
4339 * installed the valid SA.
4340 */
4341
4342 /*
4343 * If there is no SA then sending
4344 * expire message.
4345 */
4346 key_expire(sav);
4347 }
4348 #endif
4349 /* check HARD lifetime by bytes */
4350 else if (sav->lft_h->sadb_lifetime_bytes != 0
4351 && sav->lft_h->sadb_lifetime_bytes < sav->lft_c->sadb_lifetime_bytes) {
4352 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4353 key_freesav(sav);
4354 sav = NULL;
4355 }
4356 }
4357
4358 /* delete entry in DEAD */
4359 for (sav = LIST_FIRST(&sah->savtree[SADB_SASTATE_DEAD]);
4360 sav != NULL;
4361 sav = nextsav) {
4362
4363 nextsav = LIST_NEXT(sav, chain);
4364
4365 /* sanity check */
4366 if (sav->state != SADB_SASTATE_DEAD) {
4367 ipseclog((LOG_DEBUG, "key_timehandler: "
4368 "invalid sav->state "
4369 "(queue: %d SA: %d): "
4370 "kill it anyway\n",
4371 SADB_SASTATE_DEAD, sav->state));
4372 }
4373
4374 /*
4375 * do not call key_freesav() here.
4376 * sav should already be freed, and sav->refcnt
4377 * shows other references to sav
4378 * (such as from SPD).
4379 */
4380 }
4381 }
4382 }
4383
4384 #ifndef IPSEC_NONBLOCK_ACQUIRE
4385 /* ACQ tree */
4386 {
4387 struct secacq *acq, *nextacq;
4388
4389 for (acq = LIST_FIRST(&acqtree);
4390 acq != NULL;
4391 acq = nextacq) {
4392
4393 nextacq = LIST_NEXT(acq, chain);
4394
4395 if (tv.tv_sec - acq->created > key_blockacq_lifetime
4396 && __LIST_CHAINED(acq)) {
4397 LIST_REMOVE(acq, chain);
4398 KFREE(acq);
4399 }
4400 }
4401 }
4402 #endif
4403
4404 /* SP ACQ tree */
4405 {
4406 struct secspacq *acq, *nextacq;
4407
4408 for (acq = LIST_FIRST(&spacqtree);
4409 acq != NULL;
4410 acq = nextacq) {
4411
4412 nextacq = LIST_NEXT(acq, chain);
4413
4414 if (tv.tv_sec - acq->created > key_blockacq_lifetime
4415 && __LIST_CHAINED(acq)) {
4416 LIST_REMOVE(acq, chain);
4417 KFREE(acq);
4418 }
4419 }
4420 }
4421
4422 /* initialize random seed */
4423 if (key_tick_init_random++ > key_int_random) {
4424 key_tick_init_random = 0;
4425 key_srandom();
4426 }
4427
4428 #ifndef IPSEC_DEBUG2
4429 /* do exchange to tick time !! */
4430 (void)timeout((void *)key_timehandler, (void *)0, hz);
4431 #endif /* IPSEC_DEBUG2 */
4432
4433 splx(s);
4434 return;
4435 }
4436
4437 /*
4438 * to initialize a seed for random()
4439 */
4440 static void
4441 key_srandom()
4442 {
4443 struct timeval tv;
4444
4445 microtime(&tv);
4446
4447 srandom(tv.tv_usec);
4448
4449 return;
4450 }
4451
4452 u_long
4453 key_random()
4454 {
4455 u_long value;
4456
4457 key_randomfill(&value, sizeof(value));
4458 return value;
4459 }
4460
4461 void
4462 key_randomfill(p, l)
4463 void *p;
4464 size_t l;
4465 {
4466 size_t n;
4467 u_long v;
4468 static int warn = 1;
4469
4470 n = 0;
4471 n = (size_t)read_random(p, (u_int)l);
4472 /* last resort */
4473 while (n < l) {
4474 v = random();
4475 bcopy(&v, (u_int8_t *)p + n,
4476 l - n < sizeof(v) ? l - n : sizeof(v));
4477 n += sizeof(v);
4478
4479 if (warn) {
4480 printf("WARNING: pseudo-random number generator "
4481 "used for IPsec processing\n");
4482 warn = 0;
4483 }
4484 }
4485 }
4486
4487 /*
4488 * map SADB_SATYPE_* to IPPROTO_*.
4489 * if satype == SADB_SATYPE then satype is mapped to ~0.
4490 * OUT:
4491 * 0: invalid satype.
4492 */
4493 static u_int16_t
4494 key_satype2proto(satype)
4495 u_int8_t satype;
4496 {
4497 switch (satype) {
4498 case SADB_SATYPE_UNSPEC:
4499 return IPSEC_PROTO_ANY;
4500 case SADB_SATYPE_AH:
4501 return IPPROTO_AH;
4502 case SADB_SATYPE_ESP:
4503 return IPPROTO_ESP;
4504 case SADB_X_SATYPE_IPCOMP:
4505 return IPPROTO_IPCOMP;
4506 break;
4507 default:
4508 return 0;
4509 }
4510 /* NOTREACHED */
4511 }
4512
4513 /*
4514 * map IPPROTO_* to SADB_SATYPE_*
4515 * OUT:
4516 * 0: invalid protocol type.
4517 */
4518 static u_int8_t
4519 key_proto2satype(proto)
4520 u_int16_t proto;
4521 {
4522 switch (proto) {
4523 case IPPROTO_AH:
4524 return SADB_SATYPE_AH;
4525 case IPPROTO_ESP:
4526 return SADB_SATYPE_ESP;
4527 case IPPROTO_IPCOMP:
4528 return SADB_X_SATYPE_IPCOMP;
4529 break;
4530 default:
4531 return 0;
4532 }
4533 /* NOTREACHED */
4534 }
4535
4536 /* %%% PF_KEY */
4537 /*
4538 * SADB_GETSPI processing is to receive
4539 * <base, (SA2), src address, dst address, (SPI range)>
4540 * from the IKMPd, to assign a unique spi value, to hang on the INBOUND
4541 * tree with the status of LARVAL, and send
4542 * <base, SA(*), address(SD)>
4543 * to the IKMPd.
4544 *
4545 * IN: mhp: pointer to the pointer to each header.
4546 * OUT: NULL if fail.
4547 * other if success, return pointer to the message to send.
4548 */
4549 static int
4550 key_getspi(so, m, mhp)
4551 struct socket *so;
4552 struct mbuf *m;
4553 const struct sadb_msghdr *mhp;
4554 {
4555 struct sadb_address *src0, *dst0;
4556 struct secasindex saidx;
4557 struct secashead *newsah;
4558 struct secasvar *newsav;
4559 u_int8_t proto;
4560 u_int32_t spi;
4561 u_int8_t mode;
4562 u_int32_t reqid;
4563 int error;
4564
4565 /* sanity check */
4566 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL)
4567 panic("key_getspi: NULL pointer is passed.\n");
4568
4569 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
4570 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
4571 ipseclog((LOG_DEBUG, "key_getspi: invalid message is passed.\n"));
4572 return key_senderror(so, m, EINVAL);
4573 }
4574 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
4575 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
4576 ipseclog((LOG_DEBUG, "key_getspi: invalid message is passed.\n"));
4577 return key_senderror(so, m, EINVAL);
4578 }
4579 if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
4580 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
4581 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
4582 } else {
4583 mode = IPSEC_MODE_ANY;
4584 reqid = 0;
4585 }
4586
4587 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
4588 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
4589
4590 /* map satype to proto */
4591 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
4592 ipseclog((LOG_DEBUG, "key_getspi: invalid satype is passed.\n"));
4593 return key_senderror(so, m, EINVAL);
4594 }
4595
4596 /* make sure if port number is zero. */
4597 switch (((struct sockaddr *)(src0 + 1))->sa_family) {
4598 case AF_INET:
4599 if (((struct sockaddr *)(src0 + 1))->sa_len !=
4600 sizeof(struct sockaddr_in))
4601 return key_senderror(so, m, EINVAL);
4602 ((struct sockaddr_in *)(src0 + 1))->sin_port = 0;
4603 break;
4604 case AF_INET6:
4605 if (((struct sockaddr *)(src0 + 1))->sa_len !=
4606 sizeof(struct sockaddr_in6))
4607 return key_senderror(so, m, EINVAL);
4608 ((struct sockaddr_in6 *)(src0 + 1))->sin6_port = 0;
4609 break;
4610 default:
4611 ; /*???*/
4612 }
4613 switch (((struct sockaddr *)(dst0 + 1))->sa_family) {
4614 case AF_INET:
4615 if (((struct sockaddr *)(dst0 + 1))->sa_len !=
4616 sizeof(struct sockaddr_in))
4617 return key_senderror(so, m, EINVAL);
4618 ((struct sockaddr_in *)(dst0 + 1))->sin_port = 0;
4619 break;
4620 case AF_INET6:
4621 if (((struct sockaddr *)(dst0 + 1))->sa_len !=
4622 sizeof(struct sockaddr_in6))
4623 return key_senderror(so, m, EINVAL);
4624 ((struct sockaddr_in6 *)(dst0 + 1))->sin6_port = 0;
4625 break;
4626 default:
4627 ; /*???*/
4628 }
4629
4630 /* XXX boundary check against sa_len */
4631 KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx);
4632
4633 /* SPI allocation */
4634 spi = key_do_getnewspi((struct sadb_spirange *)mhp->ext[SADB_EXT_SPIRANGE],
4635 &saidx);
4636 if (spi == 0)
4637 return key_senderror(so, m, EINVAL);
4638
4639 /* get a SA index */
4640 if ((newsah = key_getsah(&saidx)) == NULL) {
4641 /* create a new SA index */
4642 if ((newsah = key_newsah(&saidx)) == NULL) {
4643 ipseclog((LOG_DEBUG, "key_getspi: No more memory.\n"));
4644 return key_senderror(so, m, ENOBUFS);
4645 }
4646 }
4647
4648 /* get a new SA */
4649 /* XXX rewrite */
4650 newsav = key_newsav(m, mhp, newsah, &error);
4651 if (newsav == NULL) {
4652 /* XXX don't free new SA index allocated in above. */
4653 return key_senderror(so, m, error);
4654 }
4655
4656 /* set spi */
4657 newsav->spi = htonl(spi);
4658
4659 #ifndef IPSEC_NONBLOCK_ACQUIRE
4660 /* delete the entry in acqtree */
4661 if (mhp->msg->sadb_msg_seq != 0) {
4662 struct secacq *acq;
4663 if ((acq = key_getacqbyseq(mhp->msg->sadb_msg_seq)) != NULL) {
4664 /* reset counter in order to deletion by timehandler. */
4665 struct timeval tv;
4666 microtime(&tv);
4667 acq->created = tv.tv_sec;
4668 acq->count = 0;
4669 }
4670 }
4671 #endif
4672
4673 {
4674 struct mbuf *n, *nn;
4675 struct sadb_sa *m_sa;
4676 struct sadb_msg *newmsg;
4677 int off, len;
4678
4679 /* create new sadb_msg to reply. */
4680 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)) +
4681 PFKEY_ALIGN8(sizeof(struct sadb_sa));
4682 if (len > MCLBYTES)
4683 return key_senderror(so, m, ENOBUFS);
4684
4685 MGETHDR(n, M_DONTWAIT, MT_DATA);
4686 if (len > MHLEN) {
4687 MCLGET(n, M_DONTWAIT);
4688 if ((n->m_flags & M_EXT) == 0) {
4689 m_freem(n);
4690 n = NULL;
4691 }
4692 }
4693 if (!n)
4694 return key_senderror(so, m, ENOBUFS);
4695
4696 n->m_len = len;
4697 n->m_next = NULL;
4698 off = 0;
4699
4700 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off);
4701 off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
4702
4703 m_sa = (struct sadb_sa *)(mtod(n, caddr_t) + off);
4704 m_sa->sadb_sa_len = PFKEY_UNIT64(sizeof(struct sadb_sa));
4705 m_sa->sadb_sa_exttype = SADB_EXT_SA;
4706 m_sa->sadb_sa_spi = htonl(spi);
4707 off += PFKEY_ALIGN8(sizeof(struct sadb_sa));
4708
4709 #ifdef DIAGNOSTIC
4710 if (off != len)
4711 panic("length inconsistency in key_getspi");
4712 #endif
4713
4714 n->m_next = key_gather_mbuf(m, mhp, 0, 2, SADB_EXT_ADDRESS_SRC,
4715 SADB_EXT_ADDRESS_DST);
4716 if (!n->m_next) {
4717 m_freem(n);
4718 return key_senderror(so, m, ENOBUFS);
4719 }
4720
4721 if (n->m_len < sizeof(struct sadb_msg)) {
4722 n = m_pullup(n, sizeof(struct sadb_msg));
4723 if (n == NULL)
4724 return key_sendup_mbuf(so, m, KEY_SENDUP_ONE);
4725 }
4726
4727 n->m_pkthdr.len = 0;
4728 for (nn = n; nn; nn = nn->m_next)
4729 n->m_pkthdr.len += nn->m_len;
4730
4731 newmsg = mtod(n, struct sadb_msg *);
4732 newmsg->sadb_msg_seq = newsav->seq;
4733 newmsg->sadb_msg_errno = 0;
4734 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
4735
4736 m_freem(m);
4737 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
4738 }
4739 }
4740
4741 /*
4742 * allocating new SPI
4743 * called by key_getspi().
4744 * OUT:
4745 * 0: failure.
4746 * others: success.
4747 */
4748 static u_int32_t
4749 key_do_getnewspi(spirange, saidx)
4750 struct sadb_spirange *spirange;
4751 struct secasindex *saidx;
4752 {
4753 u_int32_t newspi;
4754 u_int32_t min, max;
4755 int count = key_spi_trycnt;
4756
4757 /* set spi range to allocate */
4758 if (spirange != NULL) {
4759 min = spirange->sadb_spirange_min;
4760 max = spirange->sadb_spirange_max;
4761 } else {
4762 min = key_spi_minval;
4763 max = key_spi_maxval;
4764 }
4765 /* IPCOMP needs 2-byte SPI */
4766 if (saidx->proto == IPPROTO_IPCOMP) {
4767 u_int32_t t;
4768 if (min >= 0x10000)
4769 min = 0xffff;
4770 if (max >= 0x10000)
4771 max = 0xffff;
4772 if (min > max) {
4773 t = min; min = max; max = t;
4774 }
4775 }
4776
4777 if (min == max) {
4778 if (key_checkspidup(saidx, min) != NULL) {
4779 ipseclog((LOG_DEBUG, "key_do_getnewspi: SPI %u exists already.\n", min));
4780 return 0;
4781 }
4782
4783 count--; /* taking one cost. */
4784 newspi = min;
4785
4786 } else {
4787
4788 /* init SPI */
4789 newspi = 0;
4790
4791 /* when requesting to allocate spi ranged */
4792 while (count--) {
4793 /* generate pseudo-random SPI value ranged. */
4794 newspi = min + (key_random() % (max - min + 1));
4795
4796 if (key_checkspidup(saidx, newspi) == NULL)
4797 break;
4798 }
4799
4800 if (count == 0 || newspi == 0) {
4801 ipseclog((LOG_DEBUG, "key_do_getnewspi: to allocate spi is failed.\n"));
4802 return 0;
4803 }
4804 }
4805
4806 /* statistics */
4807 keystat.getspi_count =
4808 (keystat.getspi_count + key_spi_trycnt - count) / 2;
4809
4810 return newspi;
4811 }
4812
4813 /*
4814 * SADB_UPDATE processing
4815 * receive
4816 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
4817 * key(AE), (identity(SD),) (sensitivity)>
4818 * from the ikmpd, and update a secasvar entry whose status is SADB_SASTATE_LARVAL.
4819 * and send
4820 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
4821 * (identity(SD),) (sensitivity)>
4822 * to the ikmpd.
4823 *
4824 * m will always be freed.
4825 */
4826 static int
4827 key_update(so, m, mhp)
4828 struct socket *so;
4829 struct mbuf *m;
4830 const struct sadb_msghdr *mhp;
4831 {
4832 struct sadb_sa *sa0;
4833 struct sadb_address *src0, *dst0;
4834 struct secasindex saidx;
4835 struct secashead *sah;
4836 struct secasvar *sav;
4837 u_int16_t proto;
4838 u_int8_t mode;
4839 u_int32_t reqid;
4840 int error;
4841
4842 /* sanity check */
4843 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL)
4844 panic("key_update: NULL pointer is passed.\n");
4845
4846 /* map satype to proto */
4847 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
4848 ipseclog((LOG_DEBUG, "key_update: invalid satype is passed.\n"));
4849 return key_senderror(so, m, EINVAL);
4850 }
4851
4852 if (mhp->ext[SADB_EXT_SA] == NULL ||
4853 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
4854 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
4855 (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP &&
4856 mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) ||
4857 (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH &&
4858 mhp->ext[SADB_EXT_KEY_AUTH] == NULL) ||
4859 (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL &&
4860 mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) ||
4861 (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL &&
4862 mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) {
4863 ipseclog((LOG_DEBUG, "key_update: invalid message is passed.\n"));
4864 return key_senderror(so, m, EINVAL);
4865 }
4866 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
4867 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
4868 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
4869 ipseclog((LOG_DEBUG, "key_update: invalid message is passed.\n"));
4870 return key_senderror(so, m, EINVAL);
4871 }
4872 if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
4873 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
4874 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
4875 } else {
4876 mode = IPSEC_MODE_ANY;
4877 reqid = 0;
4878 }
4879 /* XXX boundary checking for other extensions */
4880
4881 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
4882 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
4883 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
4884
4885 /* XXX boundary check against sa_len */
4886 KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx);
4887
4888 /* get a SA header */
4889 if ((sah = key_getsah(&saidx)) == NULL) {
4890 ipseclog((LOG_DEBUG, "key_update: no SA index found.\n"));
4891 return key_senderror(so, m, ENOENT);
4892 }
4893
4894 /* set spidx if there */
4895 /* XXX rewrite */
4896 error = key_setident(sah, m, mhp);
4897 if (error)
4898 return key_senderror(so, m, error);
4899
4900 /* find a SA with sequence number. */
4901 #ifdef IPSEC_DOSEQCHECK
4902 if (mhp->msg->sadb_msg_seq != 0
4903 && (sav = key_getsavbyseq(sah, mhp->msg->sadb_msg_seq)) == NULL) {
4904 ipseclog((LOG_DEBUG,
4905 "key_update: no larval SA with sequence %u exists.\n",
4906 mhp->msg->sadb_msg_seq));
4907 return key_senderror(so, m, ENOENT);
4908 }
4909 #else
4910 if ((sav = key_getsavbyspi(sah, sa0->sadb_sa_spi)) == NULL) {
4911 ipseclog((LOG_DEBUG,
4912 "key_update: no such a SA found (spi:%u)\n",
4913 (u_int32_t)ntohl(sa0->sadb_sa_spi)));
4914 return key_senderror(so, m, EINVAL);
4915 }
4916 #endif
4917
4918 /* validity check */
4919 if (sav->sah->saidx.proto != proto) {
4920 ipseclog((LOG_DEBUG,
4921 "key_update: protocol mismatched (DB=%u param=%u)\n",
4922 sav->sah->saidx.proto, proto));
4923 return key_senderror(so, m, EINVAL);
4924 }
4925 #ifdef IPSEC_DOSEQCHECK
4926 if (sav->spi != sa0->sadb_sa_spi) {
4927 ipseclog((LOG_DEBUG,
4928 "key_update: SPI mismatched (DB:%u param:%u)\n",
4929 (u_int32_t)ntohl(sav->spi),
4930 (u_int32_t)ntohl(sa0->sadb_sa_spi)));
4931 return key_senderror(so, m, EINVAL);
4932 }
4933 #endif
4934 if (sav->pid != mhp->msg->sadb_msg_pid) {
4935 ipseclog((LOG_DEBUG,
4936 "key_update: pid mismatched (DB:%u param:%u)\n",
4937 sav->pid, mhp->msg->sadb_msg_pid));
4938 return key_senderror(so, m, EINVAL);
4939 }
4940
4941 /* copy sav values */
4942 error = key_setsaval(sav, m, mhp);
4943 if (error) {
4944 key_freesav(sav);
4945 return key_senderror(so, m, error);
4946 }
4947
4948 /* check SA values to be mature. */
4949 if ((mhp->msg->sadb_msg_errno = key_mature(sav)) != 0) {
4950 key_freesav(sav);
4951 return key_senderror(so, m, 0);
4952 }
4953
4954 {
4955 struct mbuf *n;
4956
4957 /* set msg buf from mhp */
4958 n = key_getmsgbuf_x1(m, mhp);
4959 if (n == NULL) {
4960 ipseclog((LOG_DEBUG, "key_update: No more memory.\n"));
4961 return key_senderror(so, m, ENOBUFS);
4962 }
4963
4964 m_freem(m);
4965 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
4966 }
4967 }
4968
4969 /*
4970 * search SAD with sequence for a SA which state is SADB_SASTATE_LARVAL.
4971 * only called by key_update().
4972 * OUT:
4973 * NULL : not found
4974 * others : found, pointer to a SA.
4975 */
4976 #ifdef IPSEC_DOSEQCHECK
4977 static struct secasvar *
4978 key_getsavbyseq(sah, seq)
4979 struct secashead *sah;
4980 u_int32_t seq;
4981 {
4982 struct secasvar *sav;
4983 u_int state;
4984
4985 state = SADB_SASTATE_LARVAL;
4986
4987 /* search SAD with sequence number ? */
4988 LIST_FOREACH(sav, &sah->savtree[state], chain) {
4989
4990 KEY_CHKSASTATE(state, sav->state, "key_getsabyseq");
4991
4992 if (sav->seq == seq) {
4993 sav->refcnt++;
4994 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
4995 printf("DP key_getsavbyseq cause "
4996 "refcnt++:%d SA:%p\n",
4997 sav->refcnt, sav));
4998 return sav;
4999 }
5000 }
5001
5002 return NULL;
5003 }
5004 #endif
5005
5006 /*
5007 * SADB_ADD processing
5008 * add a entry to SA database, when received
5009 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5010 * key(AE), (identity(SD),) (sensitivity)>
5011 * from the ikmpd,
5012 * and send
5013 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5014 * (identity(SD),) (sensitivity)>
5015 * to the ikmpd.
5016 *
5017 * IGNORE identity and sensitivity messages.
5018 *
5019 * m will always be freed.
5020 */
5021 static int
5022 key_add(so, m, mhp)
5023 struct socket *so;
5024 struct mbuf *m;
5025 const struct sadb_msghdr *mhp;
5026 {
5027 struct sadb_sa *sa0;
5028 struct sadb_address *src0, *dst0;
5029 struct secasindex saidx;
5030 struct secashead *newsah;
5031 struct secasvar *newsav;
5032 u_int16_t proto;
5033 u_int8_t mode;
5034 u_int32_t reqid;
5035 int error;
5036
5037 /* sanity check */
5038 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL)
5039 panic("key_add: NULL pointer is passed.\n");
5040
5041 /* map satype to proto */
5042 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
5043 ipseclog((LOG_DEBUG, "key_add: invalid satype is passed.\n"));
5044 return key_senderror(so, m, EINVAL);
5045 }
5046
5047 if (mhp->ext[SADB_EXT_SA] == NULL ||
5048 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5049 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
5050 (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP &&
5051 mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) ||
5052 (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH &&
5053 mhp->ext[SADB_EXT_KEY_AUTH] == NULL) ||
5054 (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL &&
5055 mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) ||
5056 (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL &&
5057 mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) {
5058 ipseclog((LOG_DEBUG, "key_add: invalid message is passed.\n"));
5059 return key_senderror(so, m, EINVAL);
5060 }
5061 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
5062 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5063 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5064 /* XXX need more */
5065 ipseclog((LOG_DEBUG, "key_add: invalid message is passed.\n"));
5066 return key_senderror(so, m, EINVAL);
5067 }
5068 if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
5069 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
5070 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
5071 } else {
5072 mode = IPSEC_MODE_ANY;
5073 reqid = 0;
5074 }
5075
5076 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5077 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
5078 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
5079
5080 /* XXX boundary check against sa_len */
5081 KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx);
5082
5083 /* get a SA header */
5084 if ((newsah = key_getsah(&saidx)) == NULL) {
5085 /* create a new SA header */
5086 if ((newsah = key_newsah(&saidx)) == NULL) {
5087 ipseclog((LOG_DEBUG, "key_add: No more memory.\n"));
5088 return key_senderror(so, m, ENOBUFS);
5089 }
5090 }
5091
5092 /* set spidx if there */
5093 /* XXX rewrite */
5094 error = key_setident(newsah, m, mhp);
5095 if (error) {
5096 return key_senderror(so, m, error);
5097 }
5098
5099 /* create new SA entry. */
5100 /* We can create new SA only if SPI is differenct. */
5101 if (key_getsavbyspi(newsah, sa0->sadb_sa_spi)) {
5102 ipseclog((LOG_DEBUG, "key_add: SA already exists.\n"));
5103 return key_senderror(so, m, EEXIST);
5104 }
5105 newsav = key_newsav(m, mhp, newsah, &error);
5106 if (newsav == NULL) {
5107 return key_senderror(so, m, error);
5108 }
5109
5110 /* check SA values to be mature. */
5111 if ((error = key_mature(newsav)) != 0) {
5112 key_freesav(newsav);
5113 return key_senderror(so, m, error);
5114 }
5115
5116 /*
5117 * don't call key_freesav() here, as we would like to keep the SA
5118 * in the database on success.
5119 */
5120
5121 {
5122 struct mbuf *n;
5123
5124 /* set msg buf from mhp */
5125 n = key_getmsgbuf_x1(m, mhp);
5126 if (n == NULL) {
5127 ipseclog((LOG_DEBUG, "key_update: No more memory.\n"));
5128 return key_senderror(so, m, ENOBUFS);
5129 }
5130
5131 m_freem(m);
5132 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5133 }
5134 }
5135
5136 /* m is retained */
5137 static int
5138 key_setident(sah, m, mhp)
5139 struct secashead *sah;
5140 struct mbuf *m;
5141 const struct sadb_msghdr *mhp;
5142 {
5143 const struct sadb_ident *idsrc, *iddst;
5144 int idsrclen, iddstlen;
5145
5146 /* sanity check */
5147 if (sah == NULL || m == NULL || mhp == NULL || mhp->msg == NULL)
5148 panic("key_setident: NULL pointer is passed.\n");
5149
5150 /* don't make buffer if not there */
5151 if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL &&
5152 mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) {
5153 sah->idents = NULL;
5154 sah->identd = NULL;
5155 return 0;
5156 }
5157
5158 if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL ||
5159 mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) {
5160 ipseclog((LOG_DEBUG, "key_setident: invalid identity.\n"));
5161 return EINVAL;
5162 }
5163
5164 idsrc = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_SRC];
5165 iddst = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_DST];
5166 idsrclen = mhp->extlen[SADB_EXT_IDENTITY_SRC];
5167 iddstlen = mhp->extlen[SADB_EXT_IDENTITY_DST];
5168
5169 /* validity check */
5170 if (idsrc->sadb_ident_type != iddst->sadb_ident_type) {
5171 ipseclog((LOG_DEBUG, "key_setident: ident type mismatch.\n"));
5172 return EINVAL;
5173 }
5174
5175 switch (idsrc->sadb_ident_type) {
5176 case SADB_IDENTTYPE_PREFIX:
5177 case SADB_IDENTTYPE_FQDN:
5178 case SADB_IDENTTYPE_USERFQDN:
5179 default:
5180 /* XXX do nothing */
5181 sah->idents = NULL;
5182 sah->identd = NULL;
5183 return 0;
5184 }
5185
5186 /* make structure */
5187 KMALLOC(sah->idents, struct sadb_ident *, idsrclen);
5188 if (sah->idents == NULL) {
5189 ipseclog((LOG_DEBUG, "key_setident: No more memory.\n"));
5190 return ENOBUFS;
5191 }
5192 KMALLOC(sah->identd, struct sadb_ident *, iddstlen);
5193 if (sah->identd == NULL) {
5194 KFREE(sah->idents);
5195 sah->idents = NULL;
5196 ipseclog((LOG_DEBUG, "key_setident: No more memory.\n"));
5197 return ENOBUFS;
5198 }
5199 bcopy(idsrc, sah->idents, idsrclen);
5200 bcopy(iddst, sah->identd, iddstlen);
5201
5202 return 0;
5203 }
5204
5205 /*
5206 * m will not be freed on return.
5207 * it is caller's responsibility to free the result.
5208 */
5209 static struct mbuf *
5210 key_getmsgbuf_x1(m, mhp)
5211 struct mbuf *m;
5212 const struct sadb_msghdr *mhp;
5213 {
5214 struct mbuf *n;
5215
5216 /* sanity check */
5217 if (m == NULL || mhp == NULL || mhp->msg == NULL)
5218 panic("key_getmsgbuf_x1: NULL pointer is passed.\n");
5219
5220 /* create new sadb_msg to reply. */
5221 n = key_gather_mbuf(m, mhp, 1, 9, SADB_EXT_RESERVED,
5222 SADB_EXT_SA, SADB_X_EXT_SA2,
5223 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST,
5224 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT,
5225 SADB_EXT_IDENTITY_SRC, SADB_EXT_IDENTITY_DST);
5226 if (!n)
5227 return NULL;
5228
5229 if (n->m_len < sizeof(struct sadb_msg)) {
5230 n = m_pullup(n, sizeof(struct sadb_msg));
5231 if (n == NULL)
5232 return NULL;
5233 }
5234 mtod(n, struct sadb_msg *)->sadb_msg_errno = 0;
5235 mtod(n, struct sadb_msg *)->sadb_msg_len =
5236 PFKEY_UNIT64(n->m_pkthdr.len);
5237
5238 return n;
5239 }
5240
5241 static int key_delete_all __P((struct socket *, struct mbuf *,
5242 const struct sadb_msghdr *, u_int16_t));
5243
5244 /*
5245 * SADB_DELETE processing
5246 * receive
5247 * <base, SA(*), address(SD)>
5248 * from the ikmpd, and set SADB_SASTATE_DEAD,
5249 * and send,
5250 * <base, SA(*), address(SD)>
5251 * to the ikmpd.
5252 *
5253 * m will always be freed.
5254 */
5255 static int
5256 key_delete(so, m, mhp)
5257 struct socket *so;
5258 struct mbuf *m;
5259 const struct sadb_msghdr *mhp;
5260 {
5261 struct sadb_sa *sa0;
5262 struct sadb_address *src0, *dst0;
5263 struct secasindex saidx;
5264 struct secashead *sah;
5265 struct secasvar *sav = NULL;
5266 u_int16_t proto;
5267
5268 /* sanity check */
5269 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL)
5270 panic("key_delete: NULL pointer is passed.\n");
5271
5272 /* map satype to proto */
5273 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
5274 ipseclog((LOG_DEBUG, "key_delete: invalid satype is passed.\n"));
5275 return key_senderror(so, m, EINVAL);
5276 }
5277
5278 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5279 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
5280 ipseclog((LOG_DEBUG, "key_delete: invalid message is passed.\n"));
5281 return key_senderror(so, m, EINVAL);
5282 }
5283
5284 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5285 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5286 ipseclog((LOG_DEBUG, "key_delete: invalid message is passed.\n"));
5287 return key_senderror(so, m, EINVAL);
5288 }
5289
5290 if (mhp->ext[SADB_EXT_SA] == NULL) {
5291 /*
5292 * Caller wants us to delete all non-LARVAL SAs
5293 * that match the src/dst. This is used during
5294 * IKE INITIAL-CONTACT.
5295 */
5296 ipseclog((LOG_DEBUG, "key_delete: doing delete all.\n"));
5297 return key_delete_all(so, m, mhp, proto);
5298 } else if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa)) {
5299 ipseclog((LOG_DEBUG, "key_delete: invalid message is passed.\n"));
5300 return key_senderror(so, m, EINVAL);
5301 }
5302
5303 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5304 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
5305 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
5306
5307 /* XXX boundary check against sa_len */
5308 KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx);
5309
5310 /* get a SA header */
5311 LIST_FOREACH(sah, &sahtree, chain) {
5312 if (sah->state == SADB_SASTATE_DEAD)
5313 continue;
5314 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0)
5315 continue;
5316
5317 /* get a SA with SPI. */
5318 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
5319 if (sav)
5320 break;
5321 }
5322 if (sah == NULL) {
5323 ipseclog((LOG_DEBUG, "key_delete: no SA found.\n"));
5324 return key_senderror(so, m, ENOENT);
5325 }
5326
5327 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
5328 key_freesav(sav);
5329 sav = NULL;
5330
5331 {
5332 struct mbuf *n;
5333 struct sadb_msg *newmsg;
5334
5335 /* create new sadb_msg to reply. */
5336 n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED,
5337 SADB_EXT_SA, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
5338 if (!n)
5339 return key_senderror(so, m, ENOBUFS);
5340
5341 if (n->m_len < sizeof(struct sadb_msg)) {
5342 n = m_pullup(n, sizeof(struct sadb_msg));
5343 if (n == NULL)
5344 return key_senderror(so, m, ENOBUFS);
5345 }
5346 newmsg = mtod(n, struct sadb_msg *);
5347 newmsg->sadb_msg_errno = 0;
5348 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
5349
5350 m_freem(m);
5351 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5352 }
5353 }
5354
5355 /*
5356 * delete all SAs for src/dst. Called from key_delete().
5357 */
5358 static int
5359 key_delete_all(so, m, mhp, proto)
5360 struct socket *so;
5361 struct mbuf *m;
5362 const struct sadb_msghdr *mhp;
5363 u_int16_t proto;
5364 {
5365 struct sadb_address *src0, *dst0;
5366 struct secasindex saidx;
5367 struct secashead *sah;
5368 struct secasvar *sav, *nextsav;
5369 u_int stateidx, state;
5370
5371 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
5372 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
5373
5374 /* XXX boundary check against sa_len */
5375 KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx);
5376
5377 LIST_FOREACH(sah, &sahtree, chain) {
5378 if (sah->state == SADB_SASTATE_DEAD)
5379 continue;
5380 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0)
5381 continue;
5382
5383 /* Delete all non-LARVAL SAs. */
5384 for (stateidx = 0;
5385 stateidx < _ARRAYLEN(saorder_state_alive);
5386 stateidx++) {
5387 state = saorder_state_alive[stateidx];
5388 if (state == SADB_SASTATE_LARVAL)
5389 continue;
5390 for (sav = LIST_FIRST(&sah->savtree[state]);
5391 sav != NULL; sav = nextsav) {
5392 nextsav = LIST_NEXT(sav, chain);
5393 /* sanity check */
5394 if (sav->state != state) {
5395 ipseclog((LOG_DEBUG, "key_delete_all: "
5396 "invalid sav->state "
5397 "(queue: %d SA: %d)\n",
5398 state, sav->state));
5399 continue;
5400 }
5401
5402 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
5403 key_freesav(sav);
5404 }
5405 }
5406 }
5407 {
5408 struct mbuf *n;
5409 struct sadb_msg *newmsg;
5410
5411 /* create new sadb_msg to reply. */
5412 n = key_gather_mbuf(m, mhp, 1, 3, SADB_EXT_RESERVED,
5413 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
5414 if (!n)
5415 return key_senderror(so, m, ENOBUFS);
5416
5417 if (n->m_len < sizeof(struct sadb_msg)) {
5418 n = m_pullup(n, sizeof(struct sadb_msg));
5419 if (n == NULL)
5420 return key_senderror(so, m, ENOBUFS);
5421 }
5422 newmsg = mtod(n, struct sadb_msg *);
5423 newmsg->sadb_msg_errno = 0;
5424 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
5425
5426 m_freem(m);
5427 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5428 }
5429 }
5430
5431 /*
5432 * SADB_GET processing
5433 * receive
5434 * <base, SA(*), address(SD)>
5435 * from the ikmpd, and get a SP and a SA to respond,
5436 * and send,
5437 * <base, SA, (lifetime(HSC),) address(SD), (address(P),) key(AE),
5438 * (identity(SD),) (sensitivity)>
5439 * to the ikmpd.
5440 *
5441 * m will always be freed.
5442 */
5443 static int
5444 key_get(so, m, mhp)
5445 struct socket *so;
5446 struct mbuf *m;
5447 const struct sadb_msghdr *mhp;
5448 {
5449 struct sadb_sa *sa0;
5450 struct sadb_address *src0, *dst0;
5451 struct secasindex saidx;
5452 struct secashead *sah;
5453 struct secasvar *sav = NULL;
5454 u_int16_t proto;
5455
5456 /* sanity check */
5457 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL)
5458 panic("key_get: NULL pointer is passed.\n");
5459
5460 /* map satype to proto */
5461 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
5462 ipseclog((LOG_DEBUG, "key_get: invalid satype is passed.\n"));
5463 return key_senderror(so, m, EINVAL);
5464 }
5465
5466 if (mhp->ext[SADB_EXT_SA] == NULL ||
5467 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5468 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
5469 ipseclog((LOG_DEBUG, "key_get: invalid message is passed.\n"));
5470 return key_senderror(so, m, EINVAL);
5471 }
5472 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
5473 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5474 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5475 ipseclog((LOG_DEBUG, "key_get: invalid message is passed.\n"));
5476 return key_senderror(so, m, EINVAL);
5477 }
5478
5479 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5480 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
5481 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
5482
5483 /* XXX boundary check against sa_len */
5484 KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx);
5485
5486 /* get a SA header */
5487 LIST_FOREACH(sah, &sahtree, chain) {
5488 if (sah->state == SADB_SASTATE_DEAD)
5489 continue;
5490 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0)
5491 continue;
5492
5493 /* get a SA with SPI. */
5494 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
5495 if (sav)
5496 break;
5497 }
5498 if (sah == NULL) {
5499 ipseclog((LOG_DEBUG, "key_get: no SA found.\n"));
5500 return key_senderror(so, m, ENOENT);
5501 }
5502
5503 {
5504 struct mbuf *n;
5505 u_int8_t satype;
5506
5507 /* map proto to satype */
5508 if ((satype = key_proto2satype(sah->saidx.proto)) == 0) {
5509 ipseclog((LOG_DEBUG, "key_get: there was invalid proto in SAD.\n"));
5510 return key_senderror(so, m, EINVAL);
5511 }
5512
5513 /* create new sadb_msg to reply. */
5514 n = key_setdumpsa(sav, SADB_GET, satype, mhp->msg->sadb_msg_seq,
5515 mhp->msg->sadb_msg_pid);
5516 if (!n)
5517 return key_senderror(so, m, ENOBUFS);
5518
5519 m_freem(m);
5520 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
5521 }
5522 }
5523
5524 /* XXX make it sysctl-configurable? */
5525 static void
5526 key_getcomb_setlifetime(comb)
5527 struct sadb_comb *comb;
5528 {
5529
5530 comb->sadb_comb_soft_allocations = 1;
5531 comb->sadb_comb_hard_allocations = 1;
5532 comb->sadb_comb_soft_bytes = 0;
5533 comb->sadb_comb_hard_bytes = 0;
5534 comb->sadb_comb_hard_addtime = 86400; /* 1 day */
5535 comb->sadb_comb_soft_addtime = comb->sadb_comb_soft_addtime * 80 / 100;
5536 comb->sadb_comb_soft_usetime = 28800; /* 8 hours */
5537 comb->sadb_comb_hard_usetime = comb->sadb_comb_hard_usetime * 80 / 100;
5538 }
5539
5540 #ifdef IPSEC_ESP
5541 /*
5542 * XXX reorder combinations by preference
5543 * XXX no idea if the user wants ESP authentication or not
5544 */
5545 static struct mbuf *
5546 key_getcomb_esp()
5547 {
5548 struct sadb_comb *comb;
5549 const struct esp_algorithm *algo;
5550 struct mbuf *result = NULL, *m, *n;
5551 int encmin;
5552 int i, off, o;
5553 int totlen;
5554 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
5555
5556 m = NULL;
5557 for (i = 1; i <= SADB_EALG_MAX; i++) {
5558 algo = esp_algorithm_lookup(i);
5559 if (!algo)
5560 continue;
5561
5562 if (algo->keymax < ipsec_esp_keymin)
5563 continue;
5564 if (algo->keymin < ipsec_esp_keymin)
5565 encmin = ipsec_esp_keymin;
5566 else
5567 encmin = algo->keymin;
5568
5569 if (ipsec_esp_auth)
5570 m = key_getcomb_ah();
5571 else {
5572 #ifdef DIAGNOSTIC
5573 if (l > MLEN)
5574 panic("assumption failed in key_getcomb_esp");
5575 #endif
5576 MGET(m, M_DONTWAIT, MT_DATA);
5577 if (m) {
5578 M_ALIGN(m, l);
5579 m->m_len = l;
5580 m->m_next = NULL;
5581 bzero(mtod(m, caddr_t), m->m_len);
5582 }
5583 }
5584 if (!m)
5585 goto fail;
5586
5587 totlen = 0;
5588 for (n = m; n; n = n->m_next)
5589 totlen += n->m_len;
5590 #ifdef DIAGNOSTIC
5591 if (totlen % l)
5592 panic("assumption failed in key_getcomb_esp");
5593 #endif
5594
5595 for (off = 0; off < totlen; off += l) {
5596 n = m_pulldown(m, off, l, &o);
5597 if (!n) {
5598 /* m is already freed */
5599 goto fail;
5600 }
5601 comb = (struct sadb_comb *)(mtod(n, caddr_t) + o);
5602 bzero(comb, sizeof(*comb));
5603 key_getcomb_setlifetime(comb);
5604 comb->sadb_comb_encrypt = i;
5605 comb->sadb_comb_encrypt_minbits = encmin;
5606 comb->sadb_comb_encrypt_maxbits = algo->keymax;
5607 }
5608
5609 if (!result)
5610 result = m;
5611 else
5612 m_cat(result, m);
5613 }
5614
5615 return result;
5616
5617 fail:
5618 if (result)
5619 m_freem(result);
5620 return NULL;
5621 }
5622 #endif
5623
5624 /*
5625 * XXX reorder combinations by preference
5626 */
5627 static struct mbuf *
5628 key_getcomb_ah()
5629 {
5630 struct sadb_comb *comb;
5631 const struct ah_algorithm *algo;
5632 struct mbuf *m;
5633 int min;
5634 int i;
5635 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
5636
5637 m = NULL;
5638 for (i = 1; i <= SADB_AALG_MAX; i++) {
5639 #if 1
5640 /* we prefer HMAC algorithms, not old algorithms */
5641 if (i != SADB_AALG_SHA1HMAC && i != SADB_AALG_MD5HMAC)
5642 continue;
5643 #endif
5644 algo = ah_algorithm_lookup(i);
5645 if (!algo)
5646 continue;
5647
5648 if (algo->keymax < ipsec_ah_keymin)
5649 continue;
5650 if (algo->keymin < ipsec_ah_keymin)
5651 min = ipsec_ah_keymin;
5652 else
5653 min = algo->keymin;
5654
5655 if (!m) {
5656 #ifdef DIAGNOSTIC
5657 if (l > MLEN)
5658 panic("assumption failed in key_getcomb_ah");
5659 #endif
5660 MGET(m, M_DONTWAIT, MT_DATA);
5661 if (m) {
5662 M_ALIGN(m, l);
5663 m->m_len = l;
5664 m->m_next = NULL;
5665 }
5666 } else
5667 M_PREPEND(m, l, M_DONTWAIT);
5668 if (!m)
5669 return NULL;
5670
5671 comb = mtod(m, struct sadb_comb *);
5672 bzero(comb, sizeof(*comb));
5673 key_getcomb_setlifetime(comb);
5674 comb->sadb_comb_auth = i;
5675 comb->sadb_comb_auth_minbits = min;
5676 comb->sadb_comb_auth_maxbits = algo->keymax;
5677 }
5678
5679 return m;
5680 }
5681
5682 /*
5683 * not really an official behavior. discussed in pf_key@inner.net in Sep2000.
5684 * XXX reorder combinations by preference
5685 */
5686 static struct mbuf *
5687 key_getcomb_ipcomp()
5688 {
5689 struct sadb_comb *comb;
5690 const struct ipcomp_algorithm *algo;
5691 struct mbuf *m;
5692 int i;
5693 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
5694
5695 m = NULL;
5696 for (i = 1; i <= SADB_X_CALG_MAX; i++) {
5697 algo = ipcomp_algorithm_lookup(i);
5698 if (!algo)
5699 continue;
5700
5701 if (!m) {
5702 #ifdef DIAGNOSTIC
5703 if (l > MLEN)
5704 panic("assumption failed in key_getcomb_ipcomp");
5705 #endif
5706 MGET(m, M_DONTWAIT, MT_DATA);
5707 if (m) {
5708 M_ALIGN(m, l);
5709 m->m_len = l;
5710 m->m_next = NULL;
5711 }
5712 } else
5713 M_PREPEND(m, l, M_DONTWAIT);
5714 if (!m)
5715 return NULL;
5716
5717 comb = mtod(m, struct sadb_comb *);
5718 bzero(comb, sizeof(*comb));
5719 key_getcomb_setlifetime(comb);
5720 comb->sadb_comb_encrypt = i;
5721 /* what should we set into sadb_comb_*_{min,max}bits? */
5722 }
5723
5724 return m;
5725 }
5726
5727 /*
5728 * XXX no way to pass mode (transport/tunnel) to userland
5729 * XXX replay checking?
5730 * XXX sysctl interface to ipsec_{ah,esp}_keymin
5731 */
5732 static struct mbuf *
5733 key_getprop(saidx)
5734 const struct secasindex *saidx;
5735 {
5736 struct sadb_prop *prop;
5737 struct mbuf *m, *n;
5738 const int l = PFKEY_ALIGN8(sizeof(struct sadb_prop));
5739 int totlen;
5740
5741 switch (saidx->proto) {
5742 #ifdef IPSEC_ESP
5743 case IPPROTO_ESP:
5744 m = key_getcomb_esp();
5745 break;
5746 #endif
5747 case IPPROTO_AH:
5748 m = key_getcomb_ah();
5749 break;
5750 case IPPROTO_IPCOMP:
5751 m = key_getcomb_ipcomp();
5752 break;
5753 default:
5754 return NULL;
5755 }
5756
5757 if (!m)
5758 return NULL;
5759 M_PREPEND(m, l, M_DONTWAIT);
5760 if (!m)
5761 return NULL;
5762
5763 totlen = 0;
5764 for (n = m; n; n = n->m_next)
5765 totlen += n->m_len;
5766
5767 prop = mtod(m, struct sadb_prop *);
5768 bzero(prop, sizeof(*prop));
5769 prop->sadb_prop_len = PFKEY_UNIT64(totlen);
5770 prop->sadb_prop_exttype = SADB_EXT_PROPOSAL;
5771 prop->sadb_prop_replay = 32; /* XXX */
5772
5773 return m;
5774 }
5775
5776 /*
5777 * SADB_ACQUIRE processing called by key_checkrequest() and key_acquire2().
5778 * send
5779 * <base, SA, address(SD), (address(P)), x_policy,
5780 * (identity(SD),) (sensitivity,) proposal>
5781 * to KMD, and expect to receive
5782 * <base> with SADB_ACQUIRE if error occured,
5783 * or
5784 * <base, src address, dst address, (SPI range)> with SADB_GETSPI
5785 * from KMD by PF_KEY.
5786 *
5787 * XXX x_policy is outside of RFC2367 (KAME extension).
5788 * XXX sensitivity is not supported.
5789 * XXX for ipcomp, RFC2367 does not define how to fill in proposal.
5790 * see comment for key_getcomb_ipcomp().
5791 *
5792 * OUT:
5793 * 0 : succeed
5794 * others: error number
5795 */
5796 static int
5797 key_acquire(saidx, sp)
5798 struct secasindex *saidx;
5799 struct secpolicy *sp;
5800 {
5801 struct mbuf *result = NULL, *m;
5802 #ifndef IPSEC_NONBLOCK_ACQUIRE
5803 struct secacq *newacq;
5804 #endif
5805 u_int8_t satype;
5806 int error = -1;
5807 u_int32_t seq;
5808
5809 /* sanity check */
5810 if (saidx == NULL)
5811 panic("key_acquire: NULL pointer is passed.\n");
5812 if ((satype = key_proto2satype(saidx->proto)) == 0)
5813 panic("key_acquire: invalid proto is passed.\n");
5814
5815 #ifndef IPSEC_NONBLOCK_ACQUIRE
5816 /*
5817 * We never do anything about acquirng SA. There is anather
5818 * solution that kernel blocks to send SADB_ACQUIRE message until
5819 * getting something message from IKEd. In later case, to be
5820 * managed with ACQUIRING list.
5821 */
5822 /* get a entry to check whether sending message or not. */
5823 if ((newacq = key_getacq(saidx)) != NULL) {
5824 if (key_blockacq_count < newacq->count) {
5825 /* reset counter and do send message. */
5826 newacq->count = 0;
5827 } else {
5828 /* increment counter and do nothing. */
5829 newacq->count++;
5830 return 0;
5831 }
5832 } else {
5833 /* make new entry for blocking to send SADB_ACQUIRE. */
5834 if ((newacq = key_newacq(saidx)) == NULL)
5835 return ENOBUFS;
5836
5837 /* add to acqtree */
5838 LIST_INSERT_HEAD(&acqtree, newacq, chain);
5839 }
5840 #endif
5841
5842
5843 #ifndef IPSEC_NONBLOCK_ACQUIRE
5844 seq = newacq->seq;
5845 #else
5846 seq = (acq_seq = (acq_seq == ~0 ? 1 : ++acq_seq));
5847 #endif
5848 m = key_setsadbmsg(SADB_ACQUIRE, 0, satype, seq, 0, 0);
5849 if (!m) {
5850 error = ENOBUFS;
5851 goto fail;
5852 }
5853 result = m;
5854
5855 /* set sadb_address for saidx's. */
5856 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
5857 (struct sockaddr *)&saidx->src, FULLMASK, IPSEC_ULPROTO_ANY);
5858 if (!m) {
5859 error = ENOBUFS;
5860 goto fail;
5861 }
5862 m_cat(result, m);
5863
5864 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
5865 (struct sockaddr *)&saidx->dst, FULLMASK, IPSEC_ULPROTO_ANY);
5866 if (!m) {
5867 error = ENOBUFS;
5868 goto fail;
5869 }
5870 m_cat(result, m);
5871
5872 /* XXX proxy address (optional) */
5873
5874 /* set sadb_x_policy */
5875 if (sp) {
5876 m = key_setsadbxpolicy(sp->policy, sp->spidx.dir, sp->id);
5877 if (!m) {
5878 error = ENOBUFS;
5879 goto fail;
5880 }
5881 m_cat(result, m);
5882 }
5883
5884 /* XXX identity (optional) */
5885 #if 0
5886 if (idexttype && fqdn) {
5887 /* create identity extension (FQDN) */
5888 struct sadb_ident *id;
5889 int fqdnlen;
5890
5891 fqdnlen = strlen(fqdn) + 1; /* +1 for terminating-NUL */
5892 id = (struct sadb_ident *)p;
5893 bzero(id, sizeof(*id) + PFKEY_ALIGN8(fqdnlen));
5894 id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(fqdnlen));
5895 id->sadb_ident_exttype = idexttype;
5896 id->sadb_ident_type = SADB_IDENTTYPE_FQDN;
5897 bcopy(fqdn, id + 1, fqdnlen);
5898 p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(fqdnlen);
5899 }
5900
5901 if (idexttype) {
5902 /* create identity extension (USERFQDN) */
5903 struct sadb_ident *id;
5904 int userfqdnlen;
5905
5906 if (userfqdn) {
5907 /* +1 for terminating-NUL */
5908 userfqdnlen = strlen(userfqdn) + 1;
5909 } else
5910 userfqdnlen = 0;
5911 id = (struct sadb_ident *)p;
5912 bzero(id, sizeof(*id) + PFKEY_ALIGN8(userfqdnlen));
5913 id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(userfqdnlen));
5914 id->sadb_ident_exttype = idexttype;
5915 id->sadb_ident_type = SADB_IDENTTYPE_USERFQDN;
5916 /* XXX is it correct? */
5917 if (curproc && curproc->p_cred)
5918 id->sadb_ident_id = curproc->p_cred->p_ruid;
5919 if (userfqdn && userfqdnlen)
5920 bcopy(userfqdn, id + 1, userfqdnlen);
5921 p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(userfqdnlen);
5922 }
5923 #endif
5924
5925 /* XXX sensitivity (optional) */
5926
5927 /* create proposal/combination extension */
5928 m = key_getprop(saidx);
5929 #if 0
5930 /*
5931 * spec conformant: always attach proposal/combination extension,
5932 * the problem is that we have no way to attach it for ipcomp,
5933 * due to the way sadb_comb is declared in RFC2367.
5934 */
5935 if (!m) {
5936 error = ENOBUFS;
5937 goto fail;
5938 }
5939 m_cat(result, m);
5940 #else
5941 /*
5942 * outside of spec; make proposal/combination extension optional.
5943 */
5944 if (m)
5945 m_cat(result, m);
5946 #endif
5947
5948 if ((result->m_flags & M_PKTHDR) == 0) {
5949 error = EINVAL;
5950 goto fail;
5951 }
5952
5953 if (result->m_len < sizeof(struct sadb_msg)) {
5954 result = m_pullup(result, sizeof(struct sadb_msg));
5955 if (result == NULL) {
5956 error = ENOBUFS;
5957 goto fail;
5958 }
5959 }
5960
5961 result->m_pkthdr.len = 0;
5962 for (m = result; m; m = m->m_next)
5963 result->m_pkthdr.len += m->m_len;
5964
5965 mtod(result, struct sadb_msg *)->sadb_msg_len =
5966 PFKEY_UNIT64(result->m_pkthdr.len);
5967
5968 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
5969
5970 fail:
5971 if (result)
5972 m_freem(result);
5973 return error;
5974 }
5975
5976 #ifndef IPSEC_NONBLOCK_ACQUIRE
5977 static struct secacq *
5978 key_newacq(saidx)
5979 struct secasindex *saidx;
5980 {
5981 struct secacq *newacq;
5982 struct timeval tv;
5983
5984 /* get new entry */
5985 KMALLOC(newacq, struct secacq *, sizeof(struct secacq));
5986 if (newacq == NULL) {
5987 ipseclog((LOG_DEBUG, "key_newacq: No more memory.\n"));
5988 return NULL;
5989 }
5990 bzero(newacq, sizeof(*newacq));
5991
5992 /* copy secindex */
5993 bcopy(saidx, &newacq->saidx, sizeof(newacq->saidx));
5994 newacq->seq = (acq_seq == ~0 ? 1 : ++acq_seq);
5995 microtime(&tv);
5996 newacq->created = tv.tv_sec;
5997 newacq->count = 0;
5998
5999 return newacq;
6000 }
6001
6002 static struct secacq *
6003 key_getacq(saidx)
6004 struct secasindex *saidx;
6005 {
6006 struct secacq *acq;
6007
6008 LIST_FOREACH(acq, &acqtree, chain) {
6009 if (key_cmpsaidx(saidx, &acq->saidx, CMP_EXACTLY))
6010 return acq;
6011 }
6012
6013 return NULL;
6014 }
6015
6016 static struct secacq *
6017 key_getacqbyseq(seq)
6018 u_int32_t seq;
6019 {
6020 struct secacq *acq;
6021
6022 LIST_FOREACH(acq, &acqtree, chain) {
6023 if (acq->seq == seq)
6024 return acq;
6025 }
6026
6027 return NULL;
6028 }
6029 #endif
6030
6031 static struct secspacq *
6032 key_newspacq(spidx)
6033 struct secpolicyindex *spidx;
6034 {
6035 struct secspacq *acq;
6036 struct timeval tv;
6037
6038 /* get new entry */
6039 KMALLOC(acq, struct secspacq *, sizeof(struct secspacq));
6040 if (acq == NULL) {
6041 ipseclog((LOG_DEBUG, "key_newspacq: No more memory.\n"));
6042 return NULL;
6043 }
6044 bzero(acq, sizeof(*acq));
6045
6046 /* copy secindex */
6047 bcopy(spidx, &acq->spidx, sizeof(acq->spidx));
6048 microtime(&tv);
6049 acq->created = tv.tv_sec;
6050 acq->count = 0;
6051
6052 return acq;
6053 }
6054
6055 static struct secspacq *
6056 key_getspacq(spidx)
6057 struct secpolicyindex *spidx;
6058 {
6059 struct secspacq *acq;
6060
6061 LIST_FOREACH(acq, &spacqtree, chain) {
6062 if (key_cmpspidx_exactly(spidx, &acq->spidx))
6063 return acq;
6064 }
6065
6066 return NULL;
6067 }
6068
6069 /*
6070 * SADB_ACQUIRE processing,
6071 * in first situation, is receiving
6072 * <base>
6073 * from the ikmpd, and clear sequence of its secasvar entry.
6074 *
6075 * In second situation, is receiving
6076 * <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal>
6077 * from a user land process, and return
6078 * <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal>
6079 * to the socket.
6080 *
6081 * m will always be freed.
6082 */
6083 static int
6084 key_acquire2(so, m, mhp)
6085 struct socket *so;
6086 struct mbuf *m;
6087 const struct sadb_msghdr *mhp;
6088 {
6089 const struct sadb_address *src0, *dst0;
6090 struct secasindex saidx;
6091 struct secashead *sah;
6092 u_int16_t proto;
6093 int error;
6094
6095 /* sanity check */
6096 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL)
6097 panic("key_acquire2: NULL pointer is passed.\n");
6098
6099 /*
6100 * Error message from KMd.
6101 * We assume that if error was occured in IKEd, the length of PFKEY
6102 * message is equal to the size of sadb_msg structure.
6103 * We do not raise error even if error occured in this function.
6104 */
6105 if (mhp->msg->sadb_msg_len == PFKEY_UNIT64(sizeof(struct sadb_msg))) {
6106 #ifndef IPSEC_NONBLOCK_ACQUIRE
6107 struct secacq *acq;
6108 struct timeval tv;
6109
6110 /* check sequence number */
6111 if (mhp->msg->sadb_msg_seq == 0) {
6112 ipseclog((LOG_DEBUG, "key_acquire2: must specify sequence number.\n"));
6113 m_freem(m);
6114 return 0;
6115 }
6116
6117 if ((acq = key_getacqbyseq(mhp->msg->sadb_msg_seq)) == NULL) {
6118 /*
6119 * the specified larval SA is already gone, or we got
6120 * a bogus sequence number. we can silently ignore it.
6121 */
6122 m_freem(m);
6123 return 0;
6124 }
6125
6126 /* reset acq counter in order to deletion by timehander. */
6127 microtime(&tv);
6128 acq->created = tv.tv_sec;
6129 acq->count = 0;
6130 #endif
6131 m_freem(m);
6132 return 0;
6133 }
6134
6135 /*
6136 * This message is from user land.
6137 */
6138
6139 /* map satype to proto */
6140 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
6141 ipseclog((LOG_DEBUG, "key_acquire2: invalid satype is passed.\n"));
6142 return key_senderror(so, m, EINVAL);
6143 }
6144
6145 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
6146 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
6147 mhp->ext[SADB_EXT_PROPOSAL] == NULL) {
6148 /* error */
6149 ipseclog((LOG_DEBUG, "key_acquire2: invalid message is passed.\n"));
6150 return key_senderror(so, m, EINVAL);
6151 }
6152 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
6153 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
6154 mhp->extlen[SADB_EXT_PROPOSAL] < sizeof(struct sadb_prop)) {
6155 /* error */
6156 ipseclog((LOG_DEBUG, "key_acquire2: invalid message is passed.\n"));
6157 return key_senderror(so, m, EINVAL);
6158 }
6159
6160 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
6161 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
6162
6163 /* XXX boundary check against sa_len */
6164 KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx);
6165
6166 /* get a SA index */
6167 LIST_FOREACH(sah, &sahtree, chain) {
6168 if (sah->state == SADB_SASTATE_DEAD)
6169 continue;
6170 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_MODE_REQID))
6171 break;
6172 }
6173 if (sah != NULL) {
6174 ipseclog((LOG_DEBUG, "key_acquire2: a SA exists already.\n"));
6175 return key_senderror(so, m, EEXIST);
6176 }
6177
6178 error = key_acquire(&saidx, NULL);
6179 if (error != 0) {
6180 ipseclog((LOG_DEBUG, "key_acquire2: error %d returned "
6181 "from key_acquire.\n", mhp->msg->sadb_msg_errno));
6182 return key_senderror(so, m, error);
6183 }
6184
6185 return key_sendup_mbuf(so, m, KEY_SENDUP_REGISTERED);
6186 }
6187
6188 /*
6189 * SADB_REGISTER processing.
6190 * If SATYPE_UNSPEC has been passed as satype, only return sabd_supported.
6191 * receive
6192 * <base>
6193 * from the ikmpd, and register a socket to send PF_KEY messages,
6194 * and send
6195 * <base, supported>
6196 * to KMD by PF_KEY.
6197 * If socket is detached, must free from regnode.
6198 *
6199 * m will always be freed.
6200 */
6201 static int
6202 key_register(so, m, mhp)
6203 struct socket *so;
6204 struct mbuf *m;
6205 const struct sadb_msghdr *mhp;
6206 {
6207 struct secreg *reg, *newreg = 0;
6208
6209 /* sanity check */
6210 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL)
6211 panic("key_register: NULL pointer is passed.\n");
6212
6213 /* check for invalid register message */
6214 if (mhp->msg->sadb_msg_satype >= sizeof(regtree)/sizeof(regtree[0]))
6215 return key_senderror(so, m, EINVAL);
6216
6217 /* When SATYPE_UNSPEC is specified, only return sabd_supported. */
6218 if (mhp->msg->sadb_msg_satype == SADB_SATYPE_UNSPEC)
6219 goto setmsg;
6220
6221 /* check whether existing or not */
6222 LIST_FOREACH(reg, ®tree[mhp->msg->sadb_msg_satype], chain) {
6223 if (reg->so == so) {
6224 ipseclog((LOG_DEBUG, "key_register: socket exists already.\n"));
6225 return key_senderror(so, m, EEXIST);
6226 }
6227 }
6228
6229 /* create regnode */
6230 KMALLOC(newreg, struct secreg *, sizeof(*newreg));
6231 if (newreg == NULL) {
6232 ipseclog((LOG_DEBUG, "key_register: No more memory.\n"));
6233 return key_senderror(so, m, ENOBUFS);
6234 }
6235 bzero((caddr_t)newreg, sizeof(*newreg));
6236
6237 newreg->so = so;
6238 ((struct keycb *)sotorawcb(so))->kp_registered++;
6239
6240 /* add regnode to regtree. */
6241 LIST_INSERT_HEAD(®tree[mhp->msg->sadb_msg_satype], newreg, chain);
6242
6243 setmsg:
6244 {
6245 struct mbuf *n;
6246 struct sadb_msg *newmsg;
6247 struct sadb_supported *sup;
6248 u_int len, alen, elen;
6249 int off;
6250 int i;
6251 struct sadb_alg *alg;
6252
6253 /* create new sadb_msg to reply. */
6254 alen = 0;
6255 for (i = 1; i <= SADB_AALG_MAX; i++) {
6256 if (ah_algorithm_lookup(i))
6257 alen += sizeof(struct sadb_alg);
6258 }
6259 if (alen)
6260 alen += sizeof(struct sadb_supported);
6261 elen = 0;
6262 #ifdef IPSEC_ESP
6263 for (i = 1; i <= SADB_EALG_MAX; i++) {
6264 if (esp_algorithm_lookup(i))
6265 elen += sizeof(struct sadb_alg);
6266 }
6267 if (elen)
6268 elen += sizeof(struct sadb_supported);
6269 #endif
6270
6271 len = sizeof(struct sadb_msg) + alen + elen;
6272
6273 if (len > MCLBYTES)
6274 return key_senderror(so, m, ENOBUFS);
6275
6276 MGETHDR(n, M_DONTWAIT, MT_DATA);
6277 if (len > MHLEN) {
6278 MCLGET(n, M_DONTWAIT);
6279 if ((n->m_flags & M_EXT) == 0) {
6280 m_freem(n);
6281 n = NULL;
6282 }
6283 }
6284 if (!n)
6285 return key_senderror(so, m, ENOBUFS);
6286
6287 n->m_pkthdr.len = n->m_len = len;
6288 n->m_next = NULL;
6289 off = 0;
6290
6291 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off);
6292 newmsg = mtod(n, struct sadb_msg *);
6293 newmsg->sadb_msg_errno = 0;
6294 newmsg->sadb_msg_len = PFKEY_UNIT64(len);
6295 off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
6296
6297 /* for authentication algorithm */
6298 if (alen) {
6299 sup = (struct sadb_supported *)(mtod(n, caddr_t) + off);
6300 sup->sadb_supported_len = PFKEY_UNIT64(alen);
6301 sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH;
6302 off += PFKEY_ALIGN8(sizeof(*sup));
6303
6304 for (i = 1; i <= SADB_AALG_MAX; i++) {
6305 const struct ah_algorithm *aalgo;
6306
6307 aalgo = ah_algorithm_lookup(i);
6308 if (!aalgo)
6309 continue;
6310 alg = (struct sadb_alg *)(mtod(n, caddr_t) + off);
6311 alg->sadb_alg_id = i;
6312 alg->sadb_alg_ivlen = 0;
6313 alg->sadb_alg_minbits = aalgo->keymin;
6314 alg->sadb_alg_maxbits = aalgo->keymax;
6315 off += PFKEY_ALIGN8(sizeof(*alg));
6316 }
6317 }
6318
6319 #ifdef IPSEC_ESP
6320 /* for encryption algorithm */
6321 if (elen) {
6322 sup = (struct sadb_supported *)(mtod(n, caddr_t) + off);
6323 sup->sadb_supported_len = PFKEY_UNIT64(elen);
6324 sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_ENCRYPT;
6325 off += PFKEY_ALIGN8(sizeof(*sup));
6326
6327 for (i = 1; i <= SADB_EALG_MAX; i++) {
6328 const struct esp_algorithm *ealgo;
6329
6330 ealgo = esp_algorithm_lookup(i);
6331 if (!ealgo)
6332 continue;
6333 alg = (struct sadb_alg *)(mtod(n, caddr_t) + off);
6334 alg->sadb_alg_id = i;
6335 if (ealgo && ealgo->ivlen) {
6336 /*
6337 * give NULL to get the value preferred by
6338 * algorithm XXX SADB_X_EXT_DERIV ?
6339 */
6340 alg->sadb_alg_ivlen =
6341 (*ealgo->ivlen)(ealgo, NULL);
6342 } else
6343 alg->sadb_alg_ivlen = 0;
6344 alg->sadb_alg_minbits = ealgo->keymin;
6345 alg->sadb_alg_maxbits = ealgo->keymax;
6346 off += PFKEY_ALIGN8(sizeof(struct sadb_alg));
6347 }
6348 }
6349 #endif
6350
6351 #ifdef DIGAGNOSTIC
6352 if (off != len)
6353 panic("length assumption failed in key_register");
6354 #endif
6355
6356 m_freem(m);
6357 return key_sendup_mbuf(so, n, KEY_SENDUP_REGISTERED);
6358 }
6359 }
6360
6361 /*
6362 * free secreg entry registered.
6363 * XXX: I want to do free a socket marked done SADB_RESIGER to socket.
6364 */
6365 void
6366 key_freereg(so)
6367 struct socket *so;
6368 {
6369 struct secreg *reg;
6370 int i;
6371
6372 /* sanity check */
6373 if (so == NULL)
6374 panic("key_freereg: NULL pointer is passed.\n");
6375
6376 /*
6377 * check whether existing or not.
6378 * check all type of SA, because there is a potential that
6379 * one socket is registered to multiple type of SA.
6380 */
6381 for (i = 0; i <= SADB_SATYPE_MAX; i++) {
6382 LIST_FOREACH(reg, ®tree[i], chain) {
6383 if (reg->so == so
6384 && __LIST_CHAINED(reg)) {
6385 LIST_REMOVE(reg, chain);
6386 KFREE(reg);
6387 break;
6388 }
6389 }
6390 }
6391
6392 return;
6393 }
6394
6395 /*
6396 * SADB_EXPIRE processing
6397 * send
6398 * <base, SA, SA2, lifetime(C and one of HS), address(SD)>
6399 * to KMD by PF_KEY.
6400 * NOTE: We send only soft lifetime extension.
6401 *
6402 * OUT: 0 : succeed
6403 * others : error number
6404 */
6405 static int
6406 key_expire(sav)
6407 struct secasvar *sav;
6408 {
6409 int s;
6410 int satype;
6411 struct mbuf *result = NULL, *m;
6412 int len;
6413 int error = -1;
6414 struct sadb_lifetime *lt;
6415
6416 /* XXX: Why do we lock ? */
6417 s = splnet(); /*called from softclock()*/
6418
6419 /* sanity check */
6420 if (sav == NULL)
6421 panic("key_expire: NULL pointer is passed.\n");
6422 if (sav->sah == NULL)
6423 panic("key_expire: Why was SA index in SA NULL.\n");
6424 if ((satype = key_proto2satype(sav->sah->saidx.proto)) == 0)
6425 panic("key_expire: invalid proto is passed.\n");
6426
6427 /* set msg header */
6428 m = key_setsadbmsg(SADB_EXPIRE, 0, satype, sav->seq, 0, sav->refcnt);
6429 if (!m) {
6430 error = ENOBUFS;
6431 goto fail;
6432 }
6433 result = m;
6434
6435 /* create SA extension */
6436 m = key_setsadbsa(sav);
6437 if (!m) {
6438 error = ENOBUFS;
6439 goto fail;
6440 }
6441 m_cat(result, m);
6442
6443 /* create SA extension */
6444 m = key_setsadbxsa2(sav->sah->saidx.mode,
6445 sav->replay ? sav->replay->count : 0,
6446 sav->sah->saidx.reqid);
6447 if (!m) {
6448 error = ENOBUFS;
6449 goto fail;
6450 }
6451 m_cat(result, m);
6452
6453 /* create lifetime extension (current and soft) */
6454 len = PFKEY_ALIGN8(sizeof(*lt)) * 2;
6455 m = key_alloc_mbuf(len);
6456 if (!m || m->m_next) { /*XXX*/
6457 if (m)
6458 m_freem(m);
6459 error = ENOBUFS;
6460 goto fail;
6461 }
6462 bzero(mtod(m, caddr_t), len);
6463 lt = mtod(m, struct sadb_lifetime *);
6464 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
6465 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
6466 lt->sadb_lifetime_allocations = sav->lft_c->sadb_lifetime_allocations;
6467 lt->sadb_lifetime_bytes = sav->lft_c->sadb_lifetime_bytes;
6468 lt->sadb_lifetime_addtime = sav->lft_c->sadb_lifetime_addtime;
6469 lt->sadb_lifetime_usetime = sav->lft_c->sadb_lifetime_usetime;
6470 lt = (struct sadb_lifetime *)(mtod(m, caddr_t) + len / 2);
6471 bcopy(sav->lft_s, lt, sizeof(*lt));
6472 m_cat(result, m);
6473
6474 /* set sadb_address for source */
6475 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
6476 (struct sockaddr *)&sav->sah->saidx.src,
6477 FULLMASK, IPSEC_ULPROTO_ANY);
6478 if (!m) {
6479 error = ENOBUFS;
6480 goto fail;
6481 }
6482 m_cat(result, m);
6483
6484 /* set sadb_address for destination */
6485 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
6486 (struct sockaddr *)&sav->sah->saidx.dst,
6487 FULLMASK, IPSEC_ULPROTO_ANY);
6488 if (!m) {
6489 error = ENOBUFS;
6490 goto fail;
6491 }
6492 m_cat(result, m);
6493
6494 if ((result->m_flags & M_PKTHDR) == 0) {
6495 error = EINVAL;
6496 goto fail;
6497 }
6498
6499 if (result->m_len < sizeof(struct sadb_msg)) {
6500 result = m_pullup(result, sizeof(struct sadb_msg));
6501 if (result == NULL) {
6502 error = ENOBUFS;
6503 goto fail;
6504 }
6505 }
6506
6507 result->m_pkthdr.len = 0;
6508 for (m = result; m; m = m->m_next)
6509 result->m_pkthdr.len += m->m_len;
6510
6511 mtod(result, struct sadb_msg *)->sadb_msg_len =
6512 PFKEY_UNIT64(result->m_pkthdr.len);
6513
6514 splx(s);
6515 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
6516
6517 fail:
6518 if (result)
6519 m_freem(result);
6520 splx(s);
6521 return error;
6522 }
6523
6524 /*
6525 * SADB_FLUSH processing
6526 * receive
6527 * <base>
6528 * from the ikmpd, and free all entries in secastree.
6529 * and send,
6530 * <base>
6531 * to the ikmpd.
6532 * NOTE: to do is only marking SADB_SASTATE_DEAD.
6533 *
6534 * m will always be freed.
6535 */
6536 static int
6537 key_flush(so, m, mhp)
6538 struct socket *so;
6539 struct mbuf *m;
6540 const struct sadb_msghdr *mhp;
6541 {
6542 struct sadb_msg *newmsg;
6543 struct secashead *sah, *nextsah;
6544 struct secasvar *sav, *nextsav;
6545 u_int16_t proto;
6546 u_int8_t state;
6547 u_int stateidx;
6548
6549 /* sanity check */
6550 if (so == NULL || mhp == NULL || mhp->msg == NULL)
6551 panic("key_flush: NULL pointer is passed.\n");
6552
6553 /* map satype to proto */
6554 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
6555 ipseclog((LOG_DEBUG, "key_flush: invalid satype is passed.\n"));
6556 return key_senderror(so, m, EINVAL);
6557 }
6558
6559 /* no SATYPE specified, i.e. flushing all SA. */
6560 for (sah = LIST_FIRST(&sahtree);
6561 sah != NULL;
6562 sah = nextsah) {
6563 nextsah = LIST_NEXT(sah, chain);
6564
6565 if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC
6566 && proto != sah->saidx.proto)
6567 continue;
6568
6569 for (stateidx = 0;
6570 stateidx < _ARRAYLEN(saorder_state_alive);
6571 stateidx++) {
6572 state = saorder_state_any[stateidx];
6573 for (sav = LIST_FIRST(&sah->savtree[state]);
6574 sav != NULL;
6575 sav = nextsav) {
6576
6577 nextsav = LIST_NEXT(sav, chain);
6578
6579 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
6580 key_freesav(sav);
6581 }
6582 }
6583
6584 sah->state = SADB_SASTATE_DEAD;
6585 }
6586
6587 if (m->m_len < sizeof(struct sadb_msg) ||
6588 sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) {
6589 ipseclog((LOG_DEBUG, "key_flush: No more memory.\n"));
6590 return key_senderror(so, m, ENOBUFS);
6591 }
6592
6593 if (m->m_next)
6594 m_freem(m->m_next);
6595 m->m_next = NULL;
6596 m->m_pkthdr.len = m->m_len = sizeof(struct sadb_msg);
6597 newmsg = mtod(m, struct sadb_msg *);
6598 newmsg->sadb_msg_errno = 0;
6599 newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len);
6600
6601 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
6602 }
6603
6604 /*
6605 * SADB_DUMP processing
6606 * dump all entries including status of DEAD in SAD.
6607 * receive
6608 * <base>
6609 * from the ikmpd, and dump all secasvar leaves
6610 * and send,
6611 * <base> .....
6612 * to the ikmpd.
6613 *
6614 * m will always be freed.
6615 */
6616 static int
6617 key_dump(so, m, mhp)
6618 struct socket *so;
6619 struct mbuf *m;
6620 const struct sadb_msghdr *mhp;
6621 {
6622 struct secashead *sah;
6623 struct secasvar *sav;
6624 u_int16_t proto;
6625 u_int stateidx;
6626 u_int8_t satype;
6627 u_int8_t state;
6628 int cnt;
6629 struct sadb_msg *newmsg;
6630 struct mbuf *n;
6631
6632 /* sanity check */
6633 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL)
6634 panic("key_dump: NULL pointer is passed.\n");
6635
6636 /* map satype to proto */
6637 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
6638 ipseclog((LOG_DEBUG, "key_dump: invalid satype is passed.\n"));
6639 return key_senderror(so, m, EINVAL);
6640 }
6641
6642 /* count sav entries to be sent to the userland. */
6643 cnt = 0;
6644 LIST_FOREACH(sah, &sahtree, chain) {
6645 if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC
6646 && proto != sah->saidx.proto)
6647 continue;
6648
6649 for (stateidx = 0;
6650 stateidx < _ARRAYLEN(saorder_state_any);
6651 stateidx++) {
6652 state = saorder_state_any[stateidx];
6653 LIST_FOREACH(sav, &sah->savtree[state], chain) {
6654 cnt++;
6655 }
6656 }
6657 }
6658
6659 if (cnt == 0)
6660 return key_senderror(so, m, ENOENT);
6661
6662 /* send this to the userland, one at a time. */
6663 newmsg = NULL;
6664 LIST_FOREACH(sah, &sahtree, chain) {
6665 if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC
6666 && proto != sah->saidx.proto)
6667 continue;
6668
6669 /* map proto to satype */
6670 if ((satype = key_proto2satype(sah->saidx.proto)) == 0) {
6671 ipseclog((LOG_DEBUG, "key_dump: there was invalid proto in SAD.\n"));
6672 return key_senderror(so, m, EINVAL);
6673 }
6674
6675 for (stateidx = 0;
6676 stateidx < _ARRAYLEN(saorder_state_any);
6677 stateidx++) {
6678 state = saorder_state_any[stateidx];
6679 LIST_FOREACH(sav, &sah->savtree[state], chain) {
6680 n = key_setdumpsa(sav, SADB_DUMP, satype,
6681 --cnt, mhp->msg->sadb_msg_pid);
6682 if (!n)
6683 return key_senderror(so, m, ENOBUFS);
6684
6685 key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
6686 }
6687 }
6688 }
6689
6690 m_freem(m);
6691 return 0;
6692 }
6693
6694 /*
6695 * SADB_X_PROMISC processing
6696 *
6697 * m will always be freed.
6698 */
6699 static int
6700 key_promisc(so, m, mhp)
6701 struct socket *so;
6702 struct mbuf *m;
6703 const struct sadb_msghdr *mhp;
6704 {
6705 int olen;
6706
6707 /* sanity check */
6708 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL)
6709 panic("key_promisc: NULL pointer is passed.\n");
6710
6711 olen = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len);
6712
6713 if (olen < sizeof(struct sadb_msg)) {
6714 #if 1
6715 return key_senderror(so, m, EINVAL);
6716 #else
6717 m_freem(m);
6718 return 0;
6719 #endif
6720 } else if (olen == sizeof(struct sadb_msg)) {
6721 /* enable/disable promisc mode */
6722 struct keycb *kp;
6723
6724 if ((kp = (struct keycb *)sotorawcb(so)) == NULL)
6725 return key_senderror(so, m, EINVAL);
6726 mhp->msg->sadb_msg_errno = 0;
6727 switch (mhp->msg->sadb_msg_satype) {
6728 case 0:
6729 case 1:
6730 kp->kp_promisc = mhp->msg->sadb_msg_satype;
6731 break;
6732 default:
6733 return key_senderror(so, m, EINVAL);
6734 }
6735
6736 /* send the original message back to everyone */
6737 mhp->msg->sadb_msg_errno = 0;
6738 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
6739 } else {
6740 /* send packet as is */
6741
6742 m_adj(m, PFKEY_ALIGN8(sizeof(struct sadb_msg)));
6743
6744 /* TODO: if sadb_msg_seq is specified, send to specific pid */
6745 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
6746 }
6747 }
6748
6749 static int (*key_typesw[]) __P((struct socket *, struct mbuf *,
6750 const struct sadb_msghdr *)) = {
6751 NULL, /* SADB_RESERVED */
6752 key_getspi, /* SADB_GETSPI */
6753 key_update, /* SADB_UPDATE */
6754 key_add, /* SADB_ADD */
6755 key_delete, /* SADB_DELETE */
6756 key_get, /* SADB_GET */
6757 key_acquire2, /* SADB_ACQUIRE */
6758 key_register, /* SADB_REGISTER */
6759 NULL, /* SADB_EXPIRE */
6760 key_flush, /* SADB_FLUSH */
6761 key_dump, /* SADB_DUMP */
6762 key_promisc, /* SADB_X_PROMISC */
6763 NULL, /* SADB_X_PCHANGE */
6764 key_spdadd, /* SADB_X_SPDUPDATE */
6765 key_spdadd, /* SADB_X_SPDADD */
6766 key_spddelete, /* SADB_X_SPDDELETE */
6767 key_spdget, /* SADB_X_SPDGET */
6768 NULL, /* SADB_X_SPDACQUIRE */
6769 key_spddump, /* SADB_X_SPDDUMP */
6770 key_spdflush, /* SADB_X_SPDFLUSH */
6771 key_spdadd, /* SADB_X_SPDSETIDX */
6772 NULL, /* SADB_X_SPDEXPIRE */
6773 key_spddelete2, /* SADB_X_SPDDELETE2 */
6774 };
6775
6776 /*
6777 * parse sadb_msg buffer to process PFKEYv2,
6778 * and create a data to response if needed.
6779 * I think to be dealed with mbuf directly.
6780 * IN:
6781 * msgp : pointer to pointer to a received buffer pulluped.
6782 * This is rewrited to response.
6783 * so : pointer to socket.
6784 * OUT:
6785 * length for buffer to send to user process.
6786 */
6787 int
6788 key_parse(m, so)
6789 struct mbuf *m;
6790 struct socket *so;
6791 {
6792 struct sadb_msg *msg;
6793 struct sadb_msghdr mh;
6794 u_int orglen;
6795 int error;
6796 int target;
6797
6798 /* sanity check */
6799 if (m == NULL || so == NULL)
6800 panic("key_parse: NULL pointer is passed.\n");
6801
6802 #if 0 /*kdebug_sadb assumes msg in linear buffer*/
6803 KEYDEBUG(KEYDEBUG_KEY_DUMP,
6804 ipseclog((LOG_DEBUG, "key_parse: passed sadb_msg\n"));
6805 kdebug_sadb(msg));
6806 #endif
6807
6808 if (m->m_len < sizeof(struct sadb_msg)) {
6809 m = m_pullup(m, sizeof(struct sadb_msg));
6810 if (!m)
6811 return ENOBUFS;
6812 }
6813 msg = mtod(m, struct sadb_msg *);
6814 orglen = PFKEY_UNUNIT64(msg->sadb_msg_len);
6815 target = KEY_SENDUP_ONE;
6816
6817 if ((m->m_flags & M_PKTHDR) == 0 ||
6818 m->m_pkthdr.len != m->m_pkthdr.len) {
6819 ipseclog((LOG_DEBUG, "key_parse: invalid message length.\n"));
6820 pfkeystat.out_invlen++;
6821 error = EINVAL;
6822 goto senderror;
6823 }
6824
6825 if (msg->sadb_msg_version != PF_KEY_V2) {
6826 ipseclog((LOG_DEBUG,
6827 "key_parse: PF_KEY version %u is mismatched.\n",
6828 msg->sadb_msg_version));
6829 pfkeystat.out_invver++;
6830 error = EINVAL;
6831 goto senderror;
6832 }
6833
6834 if (msg->sadb_msg_type > SADB_MAX) {
6835 ipseclog((LOG_DEBUG, "key_parse: invalid type %u is passed.\n",
6836 msg->sadb_msg_type));
6837 pfkeystat.out_invmsgtype++;
6838 error = EINVAL;
6839 goto senderror;
6840 }
6841
6842 /* for old-fashioned code - should be nuked */
6843 if (m->m_pkthdr.len > MCLBYTES) {
6844 m_freem(m);
6845 return ENOBUFS;
6846 }
6847 if (m->m_next) {
6848 struct mbuf *n;
6849
6850 MGETHDR(n, M_DONTWAIT, MT_DATA);
6851 if (n && m->m_pkthdr.len > MHLEN) {
6852 MCLGET(n, M_DONTWAIT);
6853 if ((n->m_flags & M_EXT) == 0) {
6854 m_free(n);
6855 n = NULL;
6856 }
6857 }
6858 if (!n) {
6859 m_freem(m);
6860 return ENOBUFS;
6861 }
6862 m_copydata(m, 0, m->m_pkthdr.len, mtod(n, caddr_t));
6863 n->m_pkthdr.len = n->m_len = m->m_pkthdr.len;
6864 n->m_next = NULL;
6865 m_freem(m);
6866 m = n;
6867 }
6868
6869 /* align the mbuf chain so that extensions are in contiguous region. */
6870 error = key_align(m, &mh);
6871 if (error)
6872 return error;
6873
6874 if (m->m_next) { /*XXX*/
6875 m_freem(m);
6876 return ENOBUFS;
6877 }
6878
6879 msg = mh.msg;
6880
6881 /* check SA type */
6882 switch (msg->sadb_msg_satype) {
6883 case SADB_SATYPE_UNSPEC:
6884 switch (msg->sadb_msg_type) {
6885 case SADB_GETSPI:
6886 case SADB_UPDATE:
6887 case SADB_ADD:
6888 case SADB_DELETE:
6889 case SADB_GET:
6890 case SADB_ACQUIRE:
6891 case SADB_EXPIRE:
6892 ipseclog((LOG_DEBUG, "key_parse: must specify satype "
6893 "when msg type=%u.\n", msg->sadb_msg_type));
6894 pfkeystat.out_invsatype++;
6895 error = EINVAL;
6896 goto senderror;
6897 }
6898 break;
6899 case SADB_SATYPE_AH:
6900 case SADB_SATYPE_ESP:
6901 case SADB_X_SATYPE_IPCOMP:
6902 switch (msg->sadb_msg_type) {
6903 case SADB_X_SPDADD:
6904 case SADB_X_SPDDELETE:
6905 case SADB_X_SPDGET:
6906 case SADB_X_SPDDUMP:
6907 case SADB_X_SPDFLUSH:
6908 case SADB_X_SPDSETIDX:
6909 case SADB_X_SPDUPDATE:
6910 case SADB_X_SPDDELETE2:
6911 ipseclog((LOG_DEBUG, "key_parse: illegal satype=%u\n",
6912 msg->sadb_msg_type));
6913 pfkeystat.out_invsatype++;
6914 error = EINVAL;
6915 goto senderror;
6916 }
6917 break;
6918 case SADB_SATYPE_RSVP:
6919 case SADB_SATYPE_OSPFV2:
6920 case SADB_SATYPE_RIPV2:
6921 case SADB_SATYPE_MIP:
6922 ipseclog((LOG_DEBUG, "key_parse: type %u isn't supported.\n",
6923 msg->sadb_msg_satype));
6924 pfkeystat.out_invsatype++;
6925 error = EOPNOTSUPP;
6926 goto senderror;
6927 case 1: /* XXX: What does it do? */
6928 if (msg->sadb_msg_type == SADB_X_PROMISC)
6929 break;
6930 /*FALLTHROUGH*/
6931 default:
6932 ipseclog((LOG_DEBUG, "key_parse: invalid type %u is passed.\n",
6933 msg->sadb_msg_satype));
6934 pfkeystat.out_invsatype++;
6935 error = EINVAL;
6936 goto senderror;
6937 }
6938
6939 /* check field of upper layer protocol and address family */
6940 if (mh.ext[SADB_EXT_ADDRESS_SRC] != NULL
6941 && mh.ext[SADB_EXT_ADDRESS_DST] != NULL) {
6942 struct sadb_address *src0, *dst0;
6943 u_int plen;
6944
6945 src0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_SRC]);
6946 dst0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_DST]);
6947
6948 /* check upper layer protocol */
6949 if (src0->sadb_address_proto != dst0->sadb_address_proto) {
6950 ipseclog((LOG_DEBUG, "key_parse: upper layer protocol mismatched.\n"));
6951 pfkeystat.out_invaddr++;
6952 error = EINVAL;
6953 goto senderror;
6954 }
6955
6956 /* check family */
6957 if (PFKEY_ADDR_SADDR(src0)->sa_family !=
6958 PFKEY_ADDR_SADDR(dst0)->sa_family) {
6959 ipseclog((LOG_DEBUG, "key_parse: address family mismatched.\n"));
6960 pfkeystat.out_invaddr++;
6961 error = EINVAL;
6962 goto senderror;
6963 }
6964 if (PFKEY_ADDR_SADDR(src0)->sa_len !=
6965 PFKEY_ADDR_SADDR(dst0)->sa_len) {
6966 ipseclog((LOG_DEBUG,
6967 "key_parse: address struct size mismatched.\n"));
6968 pfkeystat.out_invaddr++;
6969 error = EINVAL;
6970 goto senderror;
6971 }
6972
6973 switch (PFKEY_ADDR_SADDR(src0)->sa_family) {
6974 case AF_INET:
6975 if (PFKEY_ADDR_SADDR(src0)->sa_len !=
6976 sizeof(struct sockaddr_in)) {
6977 pfkeystat.out_invaddr++;
6978 error = EINVAL;
6979 goto senderror;
6980 }
6981 break;
6982 case AF_INET6:
6983 if (PFKEY_ADDR_SADDR(src0)->sa_len !=
6984 sizeof(struct sockaddr_in6)) {
6985 pfkeystat.out_invaddr++;
6986 error = EINVAL;
6987 goto senderror;
6988 }
6989 break;
6990 default:
6991 ipseclog((LOG_DEBUG,
6992 "key_parse: unsupported address family.\n"));
6993 pfkeystat.out_invaddr++;
6994 error = EAFNOSUPPORT;
6995 goto senderror;
6996 }
6997
6998 switch (PFKEY_ADDR_SADDR(src0)->sa_family) {
6999 case AF_INET:
7000 plen = sizeof(struct in_addr) << 3;
7001 break;
7002 case AF_INET6:
7003 plen = sizeof(struct in6_addr) << 3;
7004 break;
7005 default:
7006 plen = 0; /*fool gcc*/
7007 break;
7008 }
7009
7010 /* check max prefix length */
7011 if (src0->sadb_address_prefixlen > plen ||
7012 dst0->sadb_address_prefixlen > plen) {
7013 ipseclog((LOG_DEBUG,
7014 "key_parse: illegal prefixlen.\n"));
7015 pfkeystat.out_invaddr++;
7016 error = EINVAL;
7017 goto senderror;
7018 }
7019
7020 /*
7021 * prefixlen == 0 is valid because there can be a case when
7022 * all addresses are matched.
7023 */
7024 }
7025
7026 if (msg->sadb_msg_type >= sizeof(key_typesw)/sizeof(key_typesw[0]) ||
7027 key_typesw[msg->sadb_msg_type] == NULL) {
7028 pfkeystat.out_invmsgtype++;
7029 error = EINVAL;
7030 goto senderror;
7031 }
7032
7033 return (*key_typesw[msg->sadb_msg_type])(so, m, &mh);
7034
7035 senderror:
7036 msg->sadb_msg_errno = error;
7037 return key_sendup_mbuf(so, m, target);
7038 }
7039
7040 static int
7041 key_senderror(so, m, code)
7042 struct socket *so;
7043 struct mbuf *m;
7044 int code;
7045 {
7046 struct sadb_msg *msg;
7047
7048 if (m->m_len < sizeof(struct sadb_msg))
7049 panic("invalid mbuf passed to key_senderror");
7050
7051 msg = mtod(m, struct sadb_msg *);
7052 msg->sadb_msg_errno = code;
7053 return key_sendup_mbuf(so, m, KEY_SENDUP_ONE);
7054 }
7055
7056 /*
7057 * set the pointer to each header into message buffer.
7058 * m will be freed on error.
7059 * XXX larger-than-MCLBYTES extension?
7060 */
7061 static int
7062 key_align(m, mhp)
7063 struct mbuf *m;
7064 struct sadb_msghdr *mhp;
7065 {
7066 struct mbuf *n;
7067 struct sadb_ext *ext;
7068 size_t off, end;
7069 int extlen;
7070 int toff;
7071
7072 /* sanity check */
7073 if (m == NULL || mhp == NULL)
7074 panic("key_align: NULL pointer is passed.\n");
7075 if (m->m_len < sizeof(struct sadb_msg))
7076 panic("invalid mbuf passed to key_align");
7077
7078 /* initialize */
7079 bzero(mhp, sizeof(*mhp));
7080
7081 mhp->msg = mtod(m, struct sadb_msg *);
7082 mhp->ext[0] = (struct sadb_ext *)mhp->msg; /*XXX backward compat */
7083
7084 end = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len);
7085 extlen = end; /*just in case extlen is not updated*/
7086 for (off = sizeof(struct sadb_msg); off < end; off += extlen) {
7087 n = m_pulldown(m, off, sizeof(struct sadb_ext), &toff);
7088 if (!n) {
7089 /* m is already freed */
7090 return ENOBUFS;
7091 }
7092 ext = (struct sadb_ext *)(mtod(n, caddr_t) + toff);
7093
7094 /* set pointer */
7095 switch (ext->sadb_ext_type) {
7096 case SADB_EXT_SA:
7097 case SADB_EXT_ADDRESS_SRC:
7098 case SADB_EXT_ADDRESS_DST:
7099 case SADB_EXT_ADDRESS_PROXY:
7100 case SADB_EXT_LIFETIME_CURRENT:
7101 case SADB_EXT_LIFETIME_HARD:
7102 case SADB_EXT_LIFETIME_SOFT:
7103 case SADB_EXT_KEY_AUTH:
7104 case SADB_EXT_KEY_ENCRYPT:
7105 case SADB_EXT_IDENTITY_SRC:
7106 case SADB_EXT_IDENTITY_DST:
7107 case SADB_EXT_SENSITIVITY:
7108 case SADB_EXT_PROPOSAL:
7109 case SADB_EXT_SUPPORTED_AUTH:
7110 case SADB_EXT_SUPPORTED_ENCRYPT:
7111 case SADB_EXT_SPIRANGE:
7112 case SADB_X_EXT_POLICY:
7113 case SADB_X_EXT_SA2:
7114 /* duplicate check */
7115 /*
7116 * XXX Are there duplication payloads of either
7117 * KEY_AUTH or KEY_ENCRYPT ?
7118 */
7119 if (mhp->ext[ext->sadb_ext_type] != NULL) {
7120 ipseclog((LOG_DEBUG,
7121 "key_align: duplicate ext_type %u "
7122 "is passed.\n", ext->sadb_ext_type));
7123 m_freem(m);
7124 pfkeystat.out_dupext++;
7125 return EINVAL;
7126 }
7127 break;
7128 default:
7129 ipseclog((LOG_DEBUG,
7130 "key_align: invalid ext_type %u is passed.\n",
7131 ext->sadb_ext_type));
7132 m_freem(m);
7133 pfkeystat.out_invexttype++;
7134 return EINVAL;
7135 }
7136
7137 extlen = PFKEY_UNUNIT64(ext->sadb_ext_len);
7138
7139 if (key_validate_ext(ext, extlen)) {
7140 m_freem(m);
7141 pfkeystat.out_invlen++;
7142 return EINVAL;
7143 }
7144
7145 n = m_pulldown(m, off, extlen, &toff);
7146 if (!n) {
7147 /* m is already freed */
7148 return ENOBUFS;
7149 }
7150 ext = (struct sadb_ext *)(mtod(n, caddr_t) + toff);
7151
7152 mhp->ext[ext->sadb_ext_type] = ext;
7153 mhp->extoff[ext->sadb_ext_type] = off;
7154 mhp->extlen[ext->sadb_ext_type] = extlen;
7155 }
7156
7157 if (off != end) {
7158 m_freem(m);
7159 pfkeystat.out_invlen++;
7160 return EINVAL;
7161 }
7162
7163 return 0;
7164 }
7165
7166 static int
7167 key_validate_ext(ext, len)
7168 const struct sadb_ext *ext;
7169 int len;
7170 {
7171 struct sockaddr *sa;
7172 enum { NONE, ADDR } checktype = NONE;
7173 int baselen;
7174 const int sal = offsetof(struct sockaddr, sa_len) + sizeof(sa->sa_len);
7175
7176 if (len != PFKEY_UNUNIT64(ext->sadb_ext_len))
7177 return EINVAL;
7178
7179 /* if it does not match minimum/maximum length, bail */
7180 if (ext->sadb_ext_type >= sizeof(minsize) / sizeof(minsize[0]) ||
7181 ext->sadb_ext_type >= sizeof(maxsize) / sizeof(maxsize[0]))
7182 return EINVAL;
7183 if (!minsize[ext->sadb_ext_type] || len < minsize[ext->sadb_ext_type])
7184 return EINVAL;
7185 if (maxsize[ext->sadb_ext_type] && len > maxsize[ext->sadb_ext_type])
7186 return EINVAL;
7187
7188 /* more checks based on sadb_ext_type XXX need more */
7189 switch (ext->sadb_ext_type) {
7190 case SADB_EXT_ADDRESS_SRC:
7191 case SADB_EXT_ADDRESS_DST:
7192 case SADB_EXT_ADDRESS_PROXY:
7193 baselen = PFKEY_ALIGN8(sizeof(struct sadb_address));
7194 checktype = ADDR;
7195 break;
7196 case SADB_EXT_IDENTITY_SRC:
7197 case SADB_EXT_IDENTITY_DST:
7198 if (((struct sadb_ident *)ext)->sadb_ident_type ==
7199 SADB_X_IDENTTYPE_ADDR) {
7200 baselen = PFKEY_ALIGN8(sizeof(struct sadb_ident));
7201 checktype = ADDR;
7202 } else
7203 checktype = NONE;
7204 break;
7205 default:
7206 checktype = NONE;
7207 break;
7208 }
7209
7210 switch (checktype) {
7211 case NONE:
7212 break;
7213 case ADDR:
7214 sa = (struct sockaddr *)((caddr_t)ext + baselen);
7215 if (len < baselen + sal)
7216 return EINVAL;
7217 if (baselen + PFKEY_ALIGN8(sa->sa_len) != len)
7218 return EINVAL;
7219 break;
7220 }
7221
7222 return 0;
7223 }
7224
7225 void
7226 key_init()
7227 {
7228 int i;
7229
7230 bzero((caddr_t)&key_cb, sizeof(key_cb));
7231
7232 for (i = 0; i < IPSEC_DIR_MAX; i++) {
7233 LIST_INIT(&sptree[i]);
7234 }
7235
7236 LIST_INIT(&sahtree);
7237
7238 for (i = 0; i <= SADB_SATYPE_MAX; i++) {
7239 LIST_INIT(®tree[i]);
7240 }
7241
7242 #ifndef IPSEC_NONBLOCK_ACQUIRE
7243 LIST_INIT(&acqtree);
7244 #endif
7245 LIST_INIT(&spacqtree);
7246
7247 /* system default */
7248 #ifdef INET
7249 ip4_def_policy.policy = IPSEC_POLICY_NONE;
7250 ip4_def_policy.refcnt++; /*never reclaim this*/
7251 #endif
7252 #ifdef INET6
7253 ip6_def_policy.policy = IPSEC_POLICY_NONE;
7254 ip6_def_policy.refcnt++; /*never reclaim this*/
7255 #endif
7256
7257 #ifndef IPSEC_DEBUG2
7258 timeout((void *)key_timehandler, (void *)0, hz);
7259 #endif /*IPSEC_DEBUG2*/
7260
7261 /* initialize key statistics */
7262 keystat.getspi_count = 1;
7263
7264 printf("IPsec: Initialized Security Association Processing.\n");
7265
7266 return;
7267 }
7268
7269 /*
7270 * XXX: maybe This function is called after INBOUND IPsec processing.
7271 *
7272 * Special check for tunnel-mode packets.
7273 * We must make some checks for consistency between inner and outer IP header.
7274 *
7275 * xxx more checks to be provided
7276 */
7277 int
7278 key_checktunnelsanity(sav, family, src, dst)
7279 struct secasvar *sav;
7280 u_int family;
7281 caddr_t src;
7282 caddr_t dst;
7283 {
7284 /* sanity check */
7285 if (sav->sah == NULL)
7286 panic("sav->sah == NULL at key_checktunnelsanity");
7287
7288 /* XXX: check inner IP header */
7289
7290 return 1;
7291 }
7292
7293 #if 0
7294 #define hostnamelen strlen(hostname)
7295
7296 /*
7297 * Get FQDN for the host.
7298 * If the administrator configured hostname (by hostname(1)) without
7299 * domain name, returns nothing.
7300 */
7301 static const char *
7302 key_getfqdn()
7303 {
7304 int i;
7305 int hasdot;
7306 static char fqdn[MAXHOSTNAMELEN + 1];
7307
7308 if (!hostnamelen)
7309 return NULL;
7310
7311 /* check if it comes with domain name. */
7312 hasdot = 0;
7313 for (i = 0; i < hostnamelen; i++) {
7314 if (hostname[i] == '.')
7315 hasdot++;
7316 }
7317 if (!hasdot)
7318 return NULL;
7319
7320 /* NOTE: hostname may not be NUL-terminated. */
7321 bzero(fqdn, sizeof(fqdn));
7322 bcopy(hostname, fqdn, hostnamelen);
7323 fqdn[hostnamelen] = '\0';
7324 return fqdn;
7325 }
7326
7327 /*
7328 * get username@FQDN for the host/user.
7329 */
7330 static const char *
7331 key_getuserfqdn()
7332 {
7333 const char *host;
7334 static char userfqdn[MAXHOSTNAMELEN + MAXLOGNAME + 2];
7335 struct proc *p = curproc;
7336 char *q;
7337
7338 if (!p || !p->p_pgrp || !p->p_pgrp->pg_session)
7339 return NULL;
7340 if (!(host = key_getfqdn()))
7341 return NULL;
7342
7343 /* NOTE: s_login may not be-NUL terminated. */
7344 bzero(userfqdn, sizeof(userfqdn));
7345 bcopy(p->p_pgrp->pg_session->s_login, userfqdn, MAXLOGNAME);
7346 userfqdn[MAXLOGNAME] = '\0'; /* safeguard */
7347 q = userfqdn + strlen(userfqdn);
7348 *q++ = '@';
7349 bcopy(host, q, strlen(host));
7350 q += strlen(host);
7351 *q++ = '\0';
7352
7353 return userfqdn;
7354 }
7355 #endif
7356
7357 /* record data transfer on SA, and update timestamps */
7358 void
7359 key_sa_recordxfer(sav, m)
7360 struct secasvar *sav;
7361 struct mbuf *m;
7362 {
7363 if (!sav)
7364 panic("key_sa_recordxfer called with sav == NULL");
7365 if (!m)
7366 panic("key_sa_recordxfer called with m == NULL");
7367 if (!sav->lft_c)
7368 return;
7369
7370 /*
7371 * XXX Currently, there is a difference of bytes size
7372 * between inbound and outbound processing.
7373 */
7374 sav->lft_c->sadb_lifetime_bytes += m->m_pkthdr.len;
7375 /* to check bytes lifetime is done in key_timehandler(). */
7376
7377 /*
7378 * We use the number of packets as the unit of
7379 * sadb_lifetime_allocations. We increment the variable
7380 * whenever {esp,ah}_{in,out}put is called.
7381 */
7382 sav->lft_c->sadb_lifetime_allocations++;
7383 /* XXX check for expires? */
7384
7385 /*
7386 * NOTE: We record CURRENT sadb_lifetime_usetime by using wall clock,
7387 * in seconds. HARD and SOFT lifetime are measured by the time
7388 * difference (again in seconds) from sadb_lifetime_usetime.
7389 *
7390 * usetime
7391 * v expire expire
7392 * -----+-----+--------+---> t
7393 * <--------------> HARD
7394 * <-----> SOFT
7395 */
7396 {
7397 struct timeval tv;
7398 microtime(&tv);
7399 sav->lft_c->sadb_lifetime_usetime = tv.tv_sec;
7400 /* XXX check for expires? */
7401 }
7402
7403 return;
7404 }
7405
7406 /* dumb version */
7407 void
7408 key_sa_routechange(dst)
7409 struct sockaddr *dst;
7410 {
7411 struct secashead *sah;
7412 struct route *ro;
7413
7414 LIST_FOREACH(sah, &sahtree, chain) {
7415 ro = &sah->sa_route;
7416 if (ro->ro_rt && dst->sa_len == ro->ro_dst.sa_len
7417 && bcmp(dst, &ro->ro_dst, dst->sa_len) == 0) {
7418 RTFREE(ro->ro_rt);
7419 ro->ro_rt = (struct rtentry *)NULL;
7420 }
7421 }
7422
7423 return;
7424 }
7425
7426 static void
7427 key_sa_chgstate(sav, state)
7428 struct secasvar *sav;
7429 u_int8_t state;
7430 {
7431 if (sav == NULL)
7432 panic("key_sa_chgstate called with sav == NULL");
7433
7434 if (sav->state == state)
7435 return;
7436
7437 if (__LIST_CHAINED(sav))
7438 LIST_REMOVE(sav, chain);
7439
7440 sav->state = state;
7441 LIST_INSERT_HEAD(&sav->sah->savtree[state], sav, chain);
7442 }
7443
7444 void
7445 key_sa_stir_iv(sav)
7446 struct secasvar *sav;
7447 {
7448
7449 if (!sav->iv)
7450 panic("key_sa_stir_iv called with sav == NULL");
7451 key_randomfill(sav->iv, sav->ivlen);
7452 }
7453
7454 /* XXX too much? */
7455 static struct mbuf *
7456 key_alloc_mbuf(l)
7457 int l;
7458 {
7459 struct mbuf *m = NULL, *n;
7460 int len, t;
7461
7462 len = l;
7463 while (len > 0) {
7464 MGET(n, M_DONTWAIT, MT_DATA);
7465 if (n && len > MLEN)
7466 MCLGET(n, M_DONTWAIT);
7467 if (!n) {
7468 m_freem(m);
7469 return NULL;
7470 }
7471
7472 n->m_next = NULL;
7473 n->m_len = 0;
7474 n->m_len = M_TRAILINGSPACE(n);
7475 /* use the bottom of mbuf, hoping we can prepend afterwards */
7476 if (n->m_len > len) {
7477 t = (n->m_len - len) & ~(sizeof(long) - 1);
7478 n->m_data += t;
7479 n->m_len = len;
7480 }
7481
7482 len -= n->m_len;
7483
7484 if (m)
7485 m_cat(m, n);
7486 else
7487 m = n;
7488 }
7489
7490 return m;
7491 }
Cache object: d968891c8b4a7a1b86b33b1001607131
|