1 /* $FreeBSD$ */
2
3 /*
4 * Copyright (C) 2012 by Darren Reed.
5 *
6 * See the IPFILTER.LICENCE file for details on licencing.
7 *
8 * Copyright 2008 Sun Microsystems.
9 *
10 * $Id$
11 *
12 */
13 #if defined(KERNEL) || defined(_KERNEL)
14 # undef KERNEL
15 # undef _KERNEL
16 # define KERNEL 1
17 # define _KERNEL 1
18 #endif
19 #include <sys/errno.h>
20 #include <sys/types.h>
21 #include <sys/param.h>
22 #include <sys/time.h>
23 #if defined(_KERNEL) && defined(__FreeBSD__)
24 # if !defined(IPFILTER_LKM)
25 # include "opt_inet6.h"
26 # endif
27 # include <sys/filio.h>
28 #else
29 # include <sys/ioctl.h>
30 #endif
31 #if defined(__SVR4) || defined(sun) /* SOLARIS */
32 # include <sys/filio.h>
33 #endif
34 # include <sys/fcntl.h>
35 #if defined(_KERNEL)
36 # include <sys/systm.h>
37 # include <sys/file.h>
38 #else
39 # include <stdio.h>
40 # include <string.h>
41 # include <stdlib.h>
42 # include <stddef.h>
43 # include <sys/file.h>
44 # define _KERNEL
45 # include <sys/uio.h>
46 # undef _KERNEL
47 #endif
48 #if !defined(__SVR4)
49 # include <sys/mbuf.h>
50 #else
51 # include <sys/byteorder.h>
52 # if (SOLARIS2 < 5) && defined(sun)
53 # include <sys/dditypes.h>
54 # endif
55 #endif
56 # include <sys/protosw.h>
57 #include <sys/socket.h>
58 #include <net/if.h>
59 #ifdef sun
60 # include <net/af.h>
61 #endif
62 #include <netinet/in.h>
63 #include <netinet/in_systm.h>
64 #include <netinet/ip.h>
65 #include <netinet/tcp.h>
66 # include <netinet/udp.h>
67 # include <netinet/ip_icmp.h>
68 #include "netinet/ip_compat.h"
69 #ifdef USE_INET6
70 # include <netinet/icmp6.h>
71 # if !SOLARIS && defined(_KERNEL)
72 # include <netinet6/in6_var.h>
73 # endif
74 #endif
75 #include "netinet/ip_fil.h"
76 #include "netinet/ip_nat.h"
77 #include "netinet/ip_frag.h"
78 #include "netinet/ip_state.h"
79 #include "netinet/ip_proxy.h"
80 #include "netinet/ip_auth.h"
81 #ifdef IPFILTER_SCAN
82 # include "netinet/ip_scan.h"
83 #endif
84 #include "netinet/ip_sync.h"
85 #include "netinet/ip_lookup.h"
86 #include "netinet/ip_pool.h"
87 #include "netinet/ip_htable.h"
88 #ifdef IPFILTER_COMPILED
89 # include "netinet/ip_rules.h"
90 #endif
91 #if defined(IPFILTER_BPF) && defined(_KERNEL)
92 # include <net/bpf.h>
93 #endif
94 #if defined(__FreeBSD__)
95 # include <sys/malloc.h>
96 #endif
97 #include "netinet/ipl.h"
98
99 #if defined(__NetBSD__) && (__NetBSD_Version__ >= 104230000)
100 # include <sys/callout.h>
101 extern struct callout ipf_slowtimer_ch;
102 #endif
103 /* END OF INCLUDES */
104
105 #if !defined(lint)
106 static const char sccsid[] = "@(#)fil.c 1.36 6/5/96 (C) 1993-2000 Darren Reed";
107 static const char rcsid[] = "@(#)$FreeBSD$";
108 /* static const char rcsid[] = "@(#)$Id: fil.c,v 2.243.2.125 2007/10/10 09:27:20 darrenr Exp $"; */
109 #endif
110
111 #ifndef _KERNEL
112 # include "ipf.h"
113 # include "ipt.h"
114 extern int opts;
115 extern int blockreason;
116 #endif /* _KERNEL */
117
118 #define FASTROUTE_RECURSION
119
120 #define LBUMP(x) softc->x++
121 #define LBUMPD(x, y) do { softc->x.y++; DT(y); } while (0)
122
123 static inline int ipf_check_ipf(fr_info_t *, frentry_t *, int);
124 static u_32_t ipf_checkcipso(fr_info_t *, u_char *, int);
125 static u_32_t ipf_checkripso(u_char *);
126 static u_32_t ipf_decaps(fr_info_t *, u_32_t, int);
127 #ifdef IPFILTER_LOG
128 static frentry_t *ipf_dolog(fr_info_t *, u_32_t *);
129 #endif
130 static int ipf_flushlist(ipf_main_softc_t *, int *, frentry_t **);
131 static int ipf_flush_groups(ipf_main_softc_t *, frgroup_t **,
132 int);
133 static ipfunc_t ipf_findfunc(ipfunc_t);
134 static void *ipf_findlookup(ipf_main_softc_t *, int, frentry_t *,
135 i6addr_t *, i6addr_t *);
136 static frentry_t *ipf_firewall(fr_info_t *, u_32_t *);
137 static int ipf_fr_matcharray(fr_info_t *, int *);
138 static int ipf_frruleiter(ipf_main_softc_t *, void *, int,
139 void *);
140 static void ipf_funcfini(ipf_main_softc_t *, frentry_t *);
141 static int ipf_funcinit(ipf_main_softc_t *, frentry_t *);
142 static int ipf_geniter(ipf_main_softc_t *, ipftoken_t *,
143 ipfgeniter_t *);
144 static void ipf_getstat(ipf_main_softc_t *,
145 struct friostat *, int);
146 static int ipf_group_flush(ipf_main_softc_t *, frgroup_t *);
147 static void ipf_group_free(frgroup_t *);
148 static int ipf_grpmapfini(struct ipf_main_softc_s *,
149 frentry_t *);
150 static int ipf_grpmapinit(struct ipf_main_softc_s *,
151 frentry_t *);
152 static frentry_t *ipf_nextrule(ipf_main_softc_t *, int, int,
153 frentry_t *, int);
154 static int ipf_portcheck(frpcmp_t *, u_32_t);
155 static inline int ipf_pr_ah(fr_info_t *);
156 static inline void ipf_pr_esp(fr_info_t *);
157 static inline void ipf_pr_gre(fr_info_t *);
158 static inline void ipf_pr_udp(fr_info_t *);
159 static inline void ipf_pr_tcp(fr_info_t *);
160 static inline void ipf_pr_icmp(fr_info_t *);
161 static inline void ipf_pr_ipv4hdr(fr_info_t *);
162 static inline void ipf_pr_short(fr_info_t *, int);
163 static inline int ipf_pr_tcpcommon(fr_info_t *);
164 static inline int ipf_pr_udpcommon(fr_info_t *);
165 static void ipf_rule_delete(ipf_main_softc_t *, frentry_t *f,
166 int, int);
167 static void ipf_rule_expire_insert(ipf_main_softc_t *,
168 frentry_t *, int);
169 static int ipf_synclist(ipf_main_softc_t *, frentry_t *,
170 void *);
171 static void ipf_token_flush(ipf_main_softc_t *);
172 static void ipf_token_unlink(ipf_main_softc_t *,
173 ipftoken_t *);
174 static ipftuneable_t *ipf_tune_findbyname(ipftuneable_t *,
175 const char *);
176 static ipftuneable_t *ipf_tune_findbycookie(ipftuneable_t **, void *,
177 void **);
178 static int ipf_updateipid(fr_info_t *);
179 static int ipf_settimeout(struct ipf_main_softc_s *,
180 struct ipftuneable *,
181 ipftuneval_t *);
182 #if !defined(_KERNEL) || SOLARIS
183 static int ppsratecheck(struct timeval *, int *, int);
184 #endif
185
186
187 /*
188 * bit values for identifying presence of individual IP options
189 * All of these tables should be ordered by increasing key value on the left
190 * hand side to allow for binary searching of the array and include a trailer
191 * with a 0 for the bitmask for linear searches to easily find the end with.
192 */
193 static const struct optlist ipopts[] = {
194 { IPOPT_NOP, 0x000001 },
195 { IPOPT_RR, 0x000002 },
196 { IPOPT_ZSU, 0x000004 },
197 { IPOPT_MTUP, 0x000008 },
198 { IPOPT_MTUR, 0x000010 },
199 { IPOPT_ENCODE, 0x000020 },
200 { IPOPT_TS, 0x000040 },
201 { IPOPT_TR, 0x000080 },
202 { IPOPT_SECURITY, 0x000100 },
203 { IPOPT_LSRR, 0x000200 },
204 { IPOPT_E_SEC, 0x000400 },
205 { IPOPT_CIPSO, 0x000800 },
206 { IPOPT_SATID, 0x001000 },
207 { IPOPT_SSRR, 0x002000 },
208 { IPOPT_ADDEXT, 0x004000 },
209 { IPOPT_VISA, 0x008000 },
210 { IPOPT_IMITD, 0x010000 },
211 { IPOPT_EIP, 0x020000 },
212 { IPOPT_FINN, 0x040000 },
213 { 0, 0x000000 }
214 };
215
216 #ifdef USE_INET6
217 static const struct optlist ip6exthdr[] = {
218 { IPPROTO_HOPOPTS, 0x000001 },
219 { IPPROTO_IPV6, 0x000002 },
220 { IPPROTO_ROUTING, 0x000004 },
221 { IPPROTO_FRAGMENT, 0x000008 },
222 { IPPROTO_ESP, 0x000010 },
223 { IPPROTO_AH, 0x000020 },
224 { IPPROTO_NONE, 0x000040 },
225 { IPPROTO_DSTOPTS, 0x000080 },
226 { IPPROTO_MOBILITY, 0x000100 },
227 { 0, 0 }
228 };
229 #endif
230
231 /*
232 * bit values for identifying presence of individual IP security options
233 */
234 static const struct optlist secopt[] = {
235 { IPSO_CLASS_RES4, 0x01 },
236 { IPSO_CLASS_TOPS, 0x02 },
237 { IPSO_CLASS_SECR, 0x04 },
238 { IPSO_CLASS_RES3, 0x08 },
239 { IPSO_CLASS_CONF, 0x10 },
240 { IPSO_CLASS_UNCL, 0x20 },
241 { IPSO_CLASS_RES2, 0x40 },
242 { IPSO_CLASS_RES1, 0x80 }
243 };
244
245 char ipfilter_version[] = IPL_VERSION;
246
247 int ipf_features = 0
248 #ifdef IPFILTER_LKM
249 | IPF_FEAT_LKM
250 #endif
251 #ifdef IPFILTER_LOG
252 | IPF_FEAT_LOG
253 #endif
254 | IPF_FEAT_LOOKUP
255 #ifdef IPFILTER_BPF
256 | IPF_FEAT_BPF
257 #endif
258 #ifdef IPFILTER_COMPILED
259 | IPF_FEAT_COMPILED
260 #endif
261 #ifdef IPFILTER_CKSUM
262 | IPF_FEAT_CKSUM
263 #endif
264 | IPF_FEAT_SYNC
265 #ifdef IPFILTER_SCAN
266 | IPF_FEAT_SCAN
267 #endif
268 #ifdef USE_INET6
269 | IPF_FEAT_IPV6
270 #endif
271 ;
272
273
274 /*
275 * Table of functions available for use with call rules.
276 */
277 static ipfunc_resolve_t ipf_availfuncs[] = {
278 { "srcgrpmap", ipf_srcgrpmap, ipf_grpmapinit, ipf_grpmapfini },
279 { "dstgrpmap", ipf_dstgrpmap, ipf_grpmapinit, ipf_grpmapfini },
280 { "", NULL, NULL, NULL }
281 };
282
283 static ipftuneable_t ipf_main_tuneables[] = {
284 { { (void *)offsetof(struct ipf_main_softc_s, ipf_flags) },
285 "ipf_flags", 0, 0xffffffff,
286 stsizeof(ipf_main_softc_t, ipf_flags),
287 0, NULL, NULL },
288 { { (void *)offsetof(struct ipf_main_softc_s, ipf_active) },
289 "active", 0, 0,
290 stsizeof(ipf_main_softc_t, ipf_active),
291 IPFT_RDONLY, NULL, NULL },
292 { { (void *)offsetof(ipf_main_softc_t, ipf_control_forwarding) },
293 "control_forwarding", 0, 1,
294 stsizeof(ipf_main_softc_t, ipf_control_forwarding),
295 0, NULL, NULL },
296 { { (void *)offsetof(ipf_main_softc_t, ipf_update_ipid) },
297 "update_ipid", 0, 1,
298 stsizeof(ipf_main_softc_t, ipf_update_ipid),
299 0, NULL, NULL },
300 { { (void *)offsetof(ipf_main_softc_t, ipf_chksrc) },
301 "chksrc", 0, 1,
302 stsizeof(ipf_main_softc_t, ipf_chksrc),
303 0, NULL, NULL },
304 { { (void *)offsetof(ipf_main_softc_t, ipf_minttl) },
305 "min_ttl", 0, 1,
306 stsizeof(ipf_main_softc_t, ipf_minttl),
307 0, NULL, NULL },
308 { { (void *)offsetof(ipf_main_softc_t, ipf_icmpminfragmtu) },
309 "icmp_minfragmtu", 0, 1,
310 stsizeof(ipf_main_softc_t, ipf_icmpminfragmtu),
311 0, NULL, NULL },
312 { { (void *)offsetof(ipf_main_softc_t, ipf_pass) },
313 "default_pass", 0, 0xffffffff,
314 stsizeof(ipf_main_softc_t, ipf_pass),
315 0, NULL, NULL },
316 { { (void *)offsetof(ipf_main_softc_t, ipf_tcpidletimeout) },
317 "tcp_idle_timeout", 1, 0x7fffffff,
318 stsizeof(ipf_main_softc_t, ipf_tcpidletimeout),
319 0, NULL, ipf_settimeout },
320 { { (void *)offsetof(ipf_main_softc_t, ipf_tcpclosewait) },
321 "tcp_close_wait", 1, 0x7fffffff,
322 stsizeof(ipf_main_softc_t, ipf_tcpclosewait),
323 0, NULL, ipf_settimeout },
324 { { (void *)offsetof(ipf_main_softc_t, ipf_tcplastack) },
325 "tcp_last_ack", 1, 0x7fffffff,
326 stsizeof(ipf_main_softc_t, ipf_tcplastack),
327 0, NULL, ipf_settimeout },
328 { { (void *)offsetof(ipf_main_softc_t, ipf_tcptimeout) },
329 "tcp_timeout", 1, 0x7fffffff,
330 stsizeof(ipf_main_softc_t, ipf_tcptimeout),
331 0, NULL, ipf_settimeout },
332 { { (void *)offsetof(ipf_main_softc_t, ipf_tcpsynsent) },
333 "tcp_syn_sent", 1, 0x7fffffff,
334 stsizeof(ipf_main_softc_t, ipf_tcpsynsent),
335 0, NULL, ipf_settimeout },
336 { { (void *)offsetof(ipf_main_softc_t, ipf_tcpsynrecv) },
337 "tcp_syn_received", 1, 0x7fffffff,
338 stsizeof(ipf_main_softc_t, ipf_tcpsynrecv),
339 0, NULL, ipf_settimeout },
340 { { (void *)offsetof(ipf_main_softc_t, ipf_tcpclosed) },
341 "tcp_closed", 1, 0x7fffffff,
342 stsizeof(ipf_main_softc_t, ipf_tcpclosed),
343 0, NULL, ipf_settimeout },
344 { { (void *)offsetof(ipf_main_softc_t, ipf_tcphalfclosed) },
345 "tcp_half_closed", 1, 0x7fffffff,
346 stsizeof(ipf_main_softc_t, ipf_tcphalfclosed),
347 0, NULL, ipf_settimeout },
348 { { (void *)offsetof(ipf_main_softc_t, ipf_tcptimewait) },
349 "tcp_time_wait", 1, 0x7fffffff,
350 stsizeof(ipf_main_softc_t, ipf_tcptimewait),
351 0, NULL, ipf_settimeout },
352 { { (void *)offsetof(ipf_main_softc_t, ipf_udptimeout) },
353 "udp_timeout", 1, 0x7fffffff,
354 stsizeof(ipf_main_softc_t, ipf_udptimeout),
355 0, NULL, ipf_settimeout },
356 { { (void *)offsetof(ipf_main_softc_t, ipf_udpacktimeout) },
357 "udp_ack_timeout", 1, 0x7fffffff,
358 stsizeof(ipf_main_softc_t, ipf_udpacktimeout),
359 0, NULL, ipf_settimeout },
360 { { (void *)offsetof(ipf_main_softc_t, ipf_icmptimeout) },
361 "icmp_timeout", 1, 0x7fffffff,
362 stsizeof(ipf_main_softc_t, ipf_icmptimeout),
363 0, NULL, ipf_settimeout },
364 { { (void *)offsetof(ipf_main_softc_t, ipf_icmpacktimeout) },
365 "icmp_ack_timeout", 1, 0x7fffffff,
366 stsizeof(ipf_main_softc_t, ipf_icmpacktimeout),
367 0, NULL, ipf_settimeout },
368 { { (void *)offsetof(ipf_main_softc_t, ipf_iptimeout) },
369 "ip_timeout", 1, 0x7fffffff,
370 stsizeof(ipf_main_softc_t, ipf_iptimeout),
371 0, NULL, ipf_settimeout },
372 #if defined(INSTANCES) && defined(_KERNEL)
373 { { (void *)offsetof(ipf_main_softc_t, ipf_get_loopback) },
374 "intercept_loopback", 0, 1,
375 stsizeof(ipf_main_softc_t, ipf_get_loopback),
376 0, NULL, ipf_set_loopback },
377 #endif
378 { { 0 },
379 NULL, 0, 0,
380 0,
381 0, NULL, NULL }
382 };
383
384
385 /*
386 * The next section of code is a collection of small routines that set
387 * fields in the fr_info_t structure passed based on properties of the
388 * current packet. There are different routines for the same protocol
389 * for each of IPv4 and IPv6. Adding a new protocol, for which there
390 * will "special" inspection for setup, is now more easily done by adding
391 * a new routine and expanding the ipf_pr_ipinit*() function rather than by
392 * adding more code to a growing switch statement.
393 */
394 #ifdef USE_INET6
395 static inline int ipf_pr_ah6(fr_info_t *);
396 static inline void ipf_pr_esp6(fr_info_t *);
397 static inline void ipf_pr_gre6(fr_info_t *);
398 static inline void ipf_pr_udp6(fr_info_t *);
399 static inline void ipf_pr_tcp6(fr_info_t *);
400 static inline void ipf_pr_icmp6(fr_info_t *);
401 static inline void ipf_pr_ipv6hdr(fr_info_t *);
402 static inline void ipf_pr_short6(fr_info_t *, int);
403 static inline int ipf_pr_hopopts6(fr_info_t *);
404 static inline int ipf_pr_mobility6(fr_info_t *);
405 static inline int ipf_pr_routing6(fr_info_t *);
406 static inline int ipf_pr_dstopts6(fr_info_t *);
407 static inline int ipf_pr_fragment6(fr_info_t *);
408 static inline struct ip6_ext *ipf_pr_ipv6exthdr(fr_info_t *, int, int);
409
410
411 /* ------------------------------------------------------------------------ */
412 /* Function: ipf_pr_short6 */
413 /* Returns: void */
414 /* Parameters: fin(I) - pointer to packet information */
415 /* xmin(I) - minimum header size */
416 /* */
417 /* IPv6 Only */
418 /* This is function enforces the 'is a packet too short to be legit' rule */
419 /* for IPv6 and marks the packet with FI_SHORT if so. See function comment */
420 /* for ipf_pr_short() for more details. */
421 /* ------------------------------------------------------------------------ */
422 static inline void
423 ipf_pr_short6(fr_info_t *fin, int xmin)
424 {
425
426 if (fin->fin_dlen < xmin)
427 fin->fin_flx |= FI_SHORT;
428 }
429
430
431 /* ------------------------------------------------------------------------ */
432 /* Function: ipf_pr_ipv6hdr */
433 /* Returns: void */
434 /* Parameters: fin(I) - pointer to packet information */
435 /* */
436 /* IPv6 Only */
437 /* Copy values from the IPv6 header into the fr_info_t struct and call the */
438 /* per-protocol analyzer if it exists. In validating the packet, a protocol*/
439 /* analyzer may pullup or free the packet itself so we need to be vigiliant */
440 /* of that possibility arising. */
441 /* ------------------------------------------------------------------------ */
442 static inline void
443 ipf_pr_ipv6hdr(fr_info_t *fin)
444 {
445 ip6_t *ip6 = (ip6_t *)fin->fin_ip;
446 int p, go = 1, i, hdrcount;
447 fr_ip_t *fi = &fin->fin_fi;
448
449 fin->fin_off = 0;
450
451 fi->fi_tos = 0;
452 fi->fi_optmsk = 0;
453 fi->fi_secmsk = 0;
454 fi->fi_auth = 0;
455
456 p = ip6->ip6_nxt;
457 fin->fin_crc = p;
458 fi->fi_ttl = ip6->ip6_hlim;
459 fi->fi_src.in6 = ip6->ip6_src;
460 fin->fin_crc += fi->fi_src.i6[0];
461 fin->fin_crc += fi->fi_src.i6[1];
462 fin->fin_crc += fi->fi_src.i6[2];
463 fin->fin_crc += fi->fi_src.i6[3];
464 fi->fi_dst.in6 = ip6->ip6_dst;
465 fin->fin_crc += fi->fi_dst.i6[0];
466 fin->fin_crc += fi->fi_dst.i6[1];
467 fin->fin_crc += fi->fi_dst.i6[2];
468 fin->fin_crc += fi->fi_dst.i6[3];
469 fin->fin_id = 0;
470 if (IN6_IS_ADDR_MULTICAST(&fi->fi_dst.in6))
471 fin->fin_flx |= FI_MULTICAST|FI_MBCAST;
472
473 hdrcount = 0;
474 while (go && !(fin->fin_flx & FI_SHORT)) {
475 switch (p)
476 {
477 case IPPROTO_UDP :
478 ipf_pr_udp6(fin);
479 go = 0;
480 break;
481
482 case IPPROTO_TCP :
483 ipf_pr_tcp6(fin);
484 go = 0;
485 break;
486
487 case IPPROTO_ICMPV6 :
488 ipf_pr_icmp6(fin);
489 go = 0;
490 break;
491
492 case IPPROTO_GRE :
493 ipf_pr_gre6(fin);
494 go = 0;
495 break;
496
497 case IPPROTO_HOPOPTS :
498 p = ipf_pr_hopopts6(fin);
499 break;
500
501 case IPPROTO_MOBILITY :
502 p = ipf_pr_mobility6(fin);
503 break;
504
505 case IPPROTO_DSTOPTS :
506 p = ipf_pr_dstopts6(fin);
507 break;
508
509 case IPPROTO_ROUTING :
510 p = ipf_pr_routing6(fin);
511 break;
512
513 case IPPROTO_AH :
514 p = ipf_pr_ah6(fin);
515 break;
516
517 case IPPROTO_ESP :
518 ipf_pr_esp6(fin);
519 go = 0;
520 break;
521
522 case IPPROTO_IPV6 :
523 for (i = 0; ip6exthdr[i].ol_bit != 0; i++)
524 if (ip6exthdr[i].ol_val == p) {
525 fin->fin_flx |= ip6exthdr[i].ol_bit;
526 break;
527 }
528 go = 0;
529 break;
530
531 case IPPROTO_NONE :
532 go = 0;
533 break;
534
535 case IPPROTO_FRAGMENT :
536 p = ipf_pr_fragment6(fin);
537 /*
538 * Given that the only fragments we want to let through
539 * (where fin_off != 0) are those where the non-first
540 * fragments only have data, we can safely stop looking
541 * at headers if this is a non-leading fragment.
542 */
543 if (fin->fin_off != 0)
544 go = 0;
545 break;
546
547 default :
548 go = 0;
549 break;
550 }
551 hdrcount++;
552
553 /*
554 * It is important to note that at this point, for the
555 * extension headers (go != 0), the entire header may not have
556 * been pulled up when the code gets to this point. This is
557 * only done for "go != 0" because the other header handlers
558 * will all pullup their complete header. The other indicator
559 * of an incomplete packet is that this was just an extension
560 * header.
561 */
562 if ((go != 0) && (p != IPPROTO_NONE) &&
563 (ipf_pr_pullup(fin, 0) == -1)) {
564 p = IPPROTO_NONE;
565 break;
566 }
567 }
568
569 /*
570 * Some of the above functions, like ipf_pr_esp6(), can call ipf_pullup
571 * and destroy whatever packet was here. The caller of this function
572 * expects us to return if there is a problem with ipf_pullup.
573 */
574 if (fin->fin_m == NULL) {
575 ipf_main_softc_t *softc = fin->fin_main_soft;
576
577 LBUMPD(ipf_stats[fin->fin_out], fr_v6_bad);
578 return;
579 }
580
581 fi->fi_p = p;
582
583 /*
584 * IPv6 fragment case 1 - see comment for ipf_pr_fragment6().
585 * "go != 0" implies the above loop hasn't arrived at a layer 4 header.
586 */
587 if ((go != 0) && (fin->fin_flx & FI_FRAG) && (fin->fin_off == 0)) {
588 ipf_main_softc_t *softc = fin->fin_main_soft;
589
590 fin->fin_flx |= FI_BAD;
591 DT2(ipf_fi_bad_ipv6_frag_1, fr_info_t *, fin, int, go);
592 LBUMPD(ipf_stats[fin->fin_out], fr_v6_badfrag);
593 LBUMP(ipf_stats[fin->fin_out].fr_v6_bad);
594 }
595 }
596
597
598 /* ------------------------------------------------------------------------ */
599 /* Function: ipf_pr_ipv6exthdr */
600 /* Returns: struct ip6_ext * - pointer to the start of the next header */
601 /* or NULL if there is a prolblem. */
602 /* Parameters: fin(I) - pointer to packet information */
603 /* multiple(I) - flag indicating yes/no if multiple occurances */
604 /* of this extension header are allowed. */
605 /* proto(I) - protocol number for this extension header */
606 /* */
607 /* IPv6 Only */
608 /* This function embodies a number of common checks that all IPv6 extension */
609 /* headers must be subjected to. For example, making sure the packet is */
610 /* big enough for it to be in, checking if it is repeated and setting a */
611 /* flag to indicate its presence. */
612 /* ------------------------------------------------------------------------ */
613 static inline struct ip6_ext *
614 ipf_pr_ipv6exthdr(fr_info_t *fin, int multiple, int proto)
615 {
616 ipf_main_softc_t *softc = fin->fin_main_soft;
617 struct ip6_ext *hdr;
618 u_short shift;
619 int i;
620
621 fin->fin_flx |= FI_V6EXTHDR;
622
623 /* 8 is default length of extension hdr */
624 if ((fin->fin_dlen - 8) < 0) {
625 fin->fin_flx |= FI_SHORT;
626 LBUMPD(ipf_stats[fin->fin_out], fr_v6_ext_short);
627 return (NULL);
628 }
629
630 if (ipf_pr_pullup(fin, 8) == -1) {
631 LBUMPD(ipf_stats[fin->fin_out], fr_v6_ext_pullup);
632 return (NULL);
633 }
634
635 hdr = fin->fin_dp;
636 switch (proto)
637 {
638 case IPPROTO_FRAGMENT :
639 shift = 8;
640 break;
641 default :
642 shift = 8 + (hdr->ip6e_len << 3);
643 break;
644 }
645
646 if (shift > fin->fin_dlen) { /* Nasty extension header length? */
647 fin->fin_flx |= FI_BAD;
648 DT3(ipf_fi_bad_pr_ipv6exthdr_len, fr_info_t *, fin, u_short, shift, u_short, fin->fin_dlen);
649 LBUMPD(ipf_stats[fin->fin_out], fr_v6_ext_hlen);
650 return (NULL);
651 }
652
653 fin->fin_dp = (char *)fin->fin_dp + shift;
654 fin->fin_dlen -= shift;
655
656 /*
657 * If we have seen a fragment header, do not set any flags to indicate
658 * the presence of this extension header as it has no impact on the
659 * end result until after it has been defragmented.
660 */
661 if (fin->fin_flx & FI_FRAG)
662 return (hdr);
663
664 for (i = 0; ip6exthdr[i].ol_bit != 0; i++)
665 if (ip6exthdr[i].ol_val == proto) {
666 /*
667 * Most IPv6 extension headers are only allowed once.
668 */
669 if ((multiple == 0) &&
670 ((fin->fin_optmsk & ip6exthdr[i].ol_bit) != 0)) {
671 fin->fin_flx |= FI_BAD;
672 DT2(ipf_fi_bad_ipv6exthdr_once, fr_info_t *, fin, u_int, (fin->fin_optmsk & ip6exthdr[i].ol_bit));
673 } else
674 fin->fin_optmsk |= ip6exthdr[i].ol_bit;
675 break;
676 }
677
678 return (hdr);
679 }
680
681
682 /* ------------------------------------------------------------------------ */
683 /* Function: ipf_pr_hopopts6 */
684 /* Returns: int - value of the next header or IPPROTO_NONE if error */
685 /* Parameters: fin(I) - pointer to packet information */
686 /* */
687 /* IPv6 Only */
688 /* This is function checks pending hop by hop options extension header */
689 /* ------------------------------------------------------------------------ */
690 static inline int
691 ipf_pr_hopopts6(fr_info_t *fin)
692 {
693 struct ip6_ext *hdr;
694
695 hdr = ipf_pr_ipv6exthdr(fin, 0, IPPROTO_HOPOPTS);
696 if (hdr == NULL)
697 return (IPPROTO_NONE);
698 return (hdr->ip6e_nxt);
699 }
700
701
702 /* ------------------------------------------------------------------------ */
703 /* Function: ipf_pr_mobility6 */
704 /* Returns: int - value of the next header or IPPROTO_NONE if error */
705 /* Parameters: fin(I) - pointer to packet information */
706 /* */
707 /* IPv6 Only */
708 /* This is function checks the IPv6 mobility extension header */
709 /* ------------------------------------------------------------------------ */
710 static inline int
711 ipf_pr_mobility6(fr_info_t *fin)
712 {
713 struct ip6_ext *hdr;
714
715 hdr = ipf_pr_ipv6exthdr(fin, 0, IPPROTO_MOBILITY);
716 if (hdr == NULL)
717 return (IPPROTO_NONE);
718 return (hdr->ip6e_nxt);
719 }
720
721
722 /* ------------------------------------------------------------------------ */
723 /* Function: ipf_pr_routing6 */
724 /* Returns: int - value of the next header or IPPROTO_NONE if error */
725 /* Parameters: fin(I) - pointer to packet information */
726 /* */
727 /* IPv6 Only */
728 /* This is function checks pending routing extension header */
729 /* ------------------------------------------------------------------------ */
730 static inline int
731 ipf_pr_routing6(fr_info_t *fin)
732 {
733 struct ip6_routing *hdr;
734
735 hdr = (struct ip6_routing *)ipf_pr_ipv6exthdr(fin, 0, IPPROTO_ROUTING);
736 if (hdr == NULL)
737 return (IPPROTO_NONE);
738
739 switch (hdr->ip6r_type)
740 {
741 case 0 :
742 /*
743 * Nasty extension header length?
744 */
745 if (((hdr->ip6r_len >> 1) < hdr->ip6r_segleft) ||
746 (hdr->ip6r_segleft && (hdr->ip6r_len & 1))) {
747 ipf_main_softc_t *softc = fin->fin_main_soft;
748
749 fin->fin_flx |= FI_BAD;
750 DT1(ipf_fi_bad_routing6, fr_info_t *, fin);
751 LBUMPD(ipf_stats[fin->fin_out], fr_v6_rh_bad);
752 return (IPPROTO_NONE);
753 }
754 break;
755
756 default :
757 break;
758 }
759
760 return (hdr->ip6r_nxt);
761 }
762
763
764 /* ------------------------------------------------------------------------ */
765 /* Function: ipf_pr_fragment6 */
766 /* Returns: int - value of the next header or IPPROTO_NONE if error */
767 /* Parameters: fin(I) - pointer to packet information */
768 /* */
769 /* IPv6 Only */
770 /* Examine the IPv6 fragment header and extract fragment offset information.*/
771 /* */
772 /* Fragments in IPv6 are extraordinarily difficult to deal with - much more */
773 /* so than in IPv4. There are 5 cases of fragments with IPv6 that all */
774 /* packets with a fragment header can fit into. They are as follows: */
775 /* */
776 /* 1. [IPv6][0-n EH][FH][0-n EH] (no L4HDR present) */
777 /* 2. [IPV6][0-n EH][FH][0-n EH][L4HDR part] (short) */
778 /* 3. [IPV6][0-n EH][FH][L4HDR part][0-n data] (short) */
779 /* 4. [IPV6][0-n EH][FH][0-n EH][L4HDR][0-n data] */
780 /* 5. [IPV6][0-n EH][FH][data] */
781 /* */
782 /* IPV6 = IPv6 header, FH = Fragment Header, */
783 /* 0-n EH = 0 or more extension headers, 0-n data = 0 or more bytes of data */
784 /* */
785 /* Packets that match 1, 2, 3 will be dropped as the only reasonable */
786 /* scenario in which they happen is in extreme circumstances that are most */
787 /* likely to be an indication of an attack rather than normal traffic. */
788 /* A type 3 packet may be sent by an attacked after a type 4 packet. There */
789 /* are two rules that can be used to guard against type 3 packets: L4 */
790 /* headers must always be in a packet that has the offset field set to 0 */
791 /* and no packet is allowed to overlay that where offset = 0. */
792 /* ------------------------------------------------------------------------ */
793 static inline int
794 ipf_pr_fragment6(fr_info_t *fin)
795 {
796 ipf_main_softc_t *softc = fin->fin_main_soft;
797 struct ip6_frag *frag;
798
799 fin->fin_flx |= FI_FRAG;
800
801 frag = (struct ip6_frag *)ipf_pr_ipv6exthdr(fin, 0, IPPROTO_FRAGMENT);
802 if (frag == NULL) {
803 LBUMPD(ipf_stats[fin->fin_out], fr_v6_frag_bad);
804 return (IPPROTO_NONE);
805 }
806
807 if ((frag->ip6f_offlg & IP6F_MORE_FRAG) != 0) {
808 /*
809 * Any fragment that isn't the last fragment must have its
810 * length as a multiple of 8.
811 */
812 if ((fin->fin_plen & 7) != 0) {
813 fin->fin_flx |= FI_BAD;
814 DT2(ipf_fi_bad_frag_not_8, fr_info_t *, fin, u_int, (fin->fin_plen & 7));
815 }
816 }
817
818 fin->fin_fraghdr = frag;
819 fin->fin_id = frag->ip6f_ident;
820 fin->fin_off = ntohs(frag->ip6f_offlg & IP6F_OFF_MASK);
821 if (fin->fin_off != 0)
822 fin->fin_flx |= FI_FRAGBODY;
823
824 /*
825 * Jumbograms aren't handled, so the max. length is 64k
826 */
827 if ((fin->fin_off << 3) + fin->fin_dlen > 65535) {
828 fin->fin_flx |= FI_BAD;
829 DT2(ipf_fi_bad_jumbogram, fr_info_t *, fin, u_int, ((fin->fin_off << 3) + fin->fin_dlen));
830 }
831
832 /*
833 * We don't know where the transport layer header (or whatever is next
834 * is), as it could be behind destination options (amongst others) so
835 * return the fragment header as the type of packet this is. Note that
836 * this effectively disables the fragment cache for > 1 protocol at a
837 * time.
838 */
839 return (frag->ip6f_nxt);
840 }
841
842
843 /* ------------------------------------------------------------------------ */
844 /* Function: ipf_pr_dstopts6 */
845 /* Returns: int - value of the next header or IPPROTO_NONE if error */
846 /* Parameters: fin(I) - pointer to packet information */
847 /* */
848 /* IPv6 Only */
849 /* This is function checks pending destination options extension header */
850 /* ------------------------------------------------------------------------ */
851 static inline int
852 ipf_pr_dstopts6(fr_info_t *fin)
853 {
854 ipf_main_softc_t *softc = fin->fin_main_soft;
855 struct ip6_ext *hdr;
856
857 hdr = ipf_pr_ipv6exthdr(fin, 0, IPPROTO_DSTOPTS);
858 if (hdr == NULL) {
859 LBUMPD(ipf_stats[fin->fin_out], fr_v6_dst_bad);
860 return (IPPROTO_NONE);
861 }
862 return (hdr->ip6e_nxt);
863 }
864
865
866 /* ------------------------------------------------------------------------ */
867 /* Function: ipf_pr_icmp6 */
868 /* Returns: void */
869 /* Parameters: fin(I) - pointer to packet information */
870 /* */
871 /* IPv6 Only */
872 /* This routine is mainly concerned with determining the minimum valid size */
873 /* for an ICMPv6 packet. */
874 /* ------------------------------------------------------------------------ */
875 static inline void
876 ipf_pr_icmp6(fr_info_t *fin)
877 {
878 int minicmpsz = sizeof(struct icmp6_hdr);
879 struct icmp6_hdr *icmp6;
880
881 if (ipf_pr_pullup(fin, ICMP6ERR_MINPKTLEN - sizeof(ip6_t)) == -1) {
882 ipf_main_softc_t *softc = fin->fin_main_soft;
883
884 LBUMPD(ipf_stats[fin->fin_out], fr_v6_icmp6_pullup);
885 return;
886 }
887
888 if (fin->fin_dlen > 1) {
889 ip6_t *ip6;
890
891 icmp6 = fin->fin_dp;
892
893 fin->fin_data[0] = *(u_short *)icmp6;
894
895 if ((icmp6->icmp6_type & ICMP6_INFOMSG_MASK) != 0)
896 fin->fin_flx |= FI_ICMPQUERY;
897
898 switch (icmp6->icmp6_type)
899 {
900 case ICMP6_ECHO_REPLY :
901 case ICMP6_ECHO_REQUEST :
902 if (fin->fin_dlen >= 6)
903 fin->fin_data[1] = icmp6->icmp6_id;
904 minicmpsz = ICMP6ERR_MINPKTLEN - sizeof(ip6_t);
905 break;
906
907 case ICMP6_DST_UNREACH :
908 case ICMP6_PACKET_TOO_BIG :
909 case ICMP6_TIME_EXCEEDED :
910 case ICMP6_PARAM_PROB :
911 fin->fin_flx |= FI_ICMPERR;
912 minicmpsz = ICMP6ERR_IPICMPHLEN - sizeof(ip6_t);
913 if (fin->fin_plen < ICMP6ERR_IPICMPHLEN)
914 break;
915
916 if (M_LEN(fin->fin_m) < fin->fin_plen) {
917 if (ipf_coalesce(fin) != 1)
918 return;
919 }
920
921 if (ipf_pr_pullup(fin, ICMP6ERR_MINPKTLEN) == -1)
922 return;
923
924 /*
925 * If the destination of this packet doesn't match the
926 * source of the original packet then this packet is
927 * not correct.
928 */
929 icmp6 = fin->fin_dp;
930 ip6 = (ip6_t *)((char *)icmp6 + ICMPERR_ICMPHLEN);
931 if (IP6_NEQ(&fin->fin_fi.fi_dst,
932 (i6addr_t *)&ip6->ip6_src)) {
933 fin->fin_flx |= FI_BAD;
934 DT1(ipf_fi_bad_icmp6, fr_info_t *, fin);
935 }
936 break;
937 default :
938 break;
939 }
940 }
941
942 ipf_pr_short6(fin, minicmpsz);
943 if ((fin->fin_flx & (FI_SHORT|FI_BAD)) == 0) {
944 u_char p = fin->fin_p;
945
946 fin->fin_p = IPPROTO_ICMPV6;
947 ipf_checkv6sum(fin);
948 fin->fin_p = p;
949 }
950 }
951
952
953 /* ------------------------------------------------------------------------ */
954 /* Function: ipf_pr_udp6 */
955 /* Returns: void */
956 /* Parameters: fin(I) - pointer to packet information */
957 /* */
958 /* IPv6 Only */
959 /* Analyse the packet for IPv6/UDP properties. */
960 /* Is not expected to be called for fragmented packets. */
961 /* ------------------------------------------------------------------------ */
962 static inline void
963 ipf_pr_udp6(fr_info_t *fin)
964 {
965
966 if (ipf_pr_udpcommon(fin) == 0) {
967 u_char p = fin->fin_p;
968
969 fin->fin_p = IPPROTO_UDP;
970 ipf_checkv6sum(fin);
971 fin->fin_p = p;
972 }
973 }
974
975
976 /* ------------------------------------------------------------------------ */
977 /* Function: ipf_pr_tcp6 */
978 /* Returns: void */
979 /* Parameters: fin(I) - pointer to packet information */
980 /* */
981 /* IPv6 Only */
982 /* Analyse the packet for IPv6/TCP properties. */
983 /* Is not expected to be called for fragmented packets. */
984 /* ------------------------------------------------------------------------ */
985 static inline void
986 ipf_pr_tcp6(fr_info_t *fin)
987 {
988
989 if (ipf_pr_tcpcommon(fin) == 0) {
990 u_char p = fin->fin_p;
991
992 fin->fin_p = IPPROTO_TCP;
993 ipf_checkv6sum(fin);
994 fin->fin_p = p;
995 }
996 }
997
998
999 /* ------------------------------------------------------------------------ */
1000 /* Function: ipf_pr_esp6 */
1001 /* Returns: void */
1002 /* Parameters: fin(I) - pointer to packet information */
1003 /* */
1004 /* IPv6 Only */
1005 /* Analyse the packet for ESP properties. */
1006 /* The minimum length is taken to be the SPI (32bits) plus a tail (32bits) */
1007 /* even though the newer ESP packets must also have a sequence number that */
1008 /* is 32bits as well, it is not possible(?) to determine the version from a */
1009 /* simple packet header. */
1010 /* ------------------------------------------------------------------------ */
1011 static inline void
1012 ipf_pr_esp6(fr_info_t *fin)
1013 {
1014
1015 if ((fin->fin_off == 0) && (ipf_pr_pullup(fin, 8) == -1)) {
1016 ipf_main_softc_t *softc = fin->fin_main_soft;
1017
1018 LBUMPD(ipf_stats[fin->fin_out], fr_v6_esp_pullup);
1019 return;
1020 }
1021 }
1022
1023
1024 /* ------------------------------------------------------------------------ */
1025 /* Function: ipf_pr_ah6 */
1026 /* Returns: int - value of the next header or IPPROTO_NONE if error */
1027 /* Parameters: fin(I) - pointer to packet information */
1028 /* */
1029 /* IPv6 Only */
1030 /* Analyse the packet for AH properties. */
1031 /* The minimum length is taken to be the combination of all fields in the */
1032 /* header being present and no authentication data (null algorithm used.) */
1033 /* ------------------------------------------------------------------------ */
1034 static inline int
1035 ipf_pr_ah6(fr_info_t *fin)
1036 {
1037 authhdr_t *ah;
1038
1039 fin->fin_flx |= FI_AH;
1040
1041 ah = (authhdr_t *)ipf_pr_ipv6exthdr(fin, 0, IPPROTO_HOPOPTS);
1042 if (ah == NULL) {
1043 ipf_main_softc_t *softc = fin->fin_main_soft;
1044
1045 LBUMPD(ipf_stats[fin->fin_out], fr_v6_ah_bad);
1046 return (IPPROTO_NONE);
1047 }
1048
1049 ipf_pr_short6(fin, sizeof(*ah));
1050
1051 /*
1052 * No need for another pullup, ipf_pr_ipv6exthdr() will pullup
1053 * enough data to satisfy ah_next (the very first one.)
1054 */
1055 return (ah->ah_next);
1056 }
1057
1058
1059 /* ------------------------------------------------------------------------ */
1060 /* Function: ipf_pr_gre6 */
1061 /* Returns: void */
1062 /* Parameters: fin(I) - pointer to packet information */
1063 /* */
1064 /* Analyse the packet for GRE properties. */
1065 /* ------------------------------------------------------------------------ */
1066 static inline void
1067 ipf_pr_gre6(fr_info_t *fin)
1068 {
1069 grehdr_t *gre;
1070
1071 if (ipf_pr_pullup(fin, sizeof(grehdr_t)) == -1) {
1072 ipf_main_softc_t *softc = fin->fin_main_soft;
1073
1074 LBUMPD(ipf_stats[fin->fin_out], fr_v6_gre_pullup);
1075 return;
1076 }
1077
1078 gre = fin->fin_dp;
1079 if (GRE_REV(gre->gr_flags) == 1)
1080 fin->fin_data[0] = gre->gr_call;
1081 }
1082 #endif /* USE_INET6 */
1083
1084
1085 /* ------------------------------------------------------------------------ */
1086 /* Function: ipf_pr_pullup */
1087 /* Returns: int - 0 == pullup succeeded, -1 == failure */
1088 /* Parameters: fin(I) - pointer to packet information */
1089 /* plen(I) - length (excluding L3 header) to pullup */
1090 /* */
1091 /* Short inline function to cut down on code duplication to perform a call */
1092 /* to ipf_pullup to ensure there is the required amount of data, */
1093 /* consecutively in the packet buffer. */
1094 /* */
1095 /* This function pulls up 'extra' data at the location of fin_dp. fin_dp */
1096 /* points to the first byte after the complete layer 3 header, which will */
1097 /* include all of the known extension headers for IPv6 or options for IPv4. */
1098 /* */
1099 /* Since fr_pullup() expects the total length of bytes to be pulled up, it */
1100 /* is necessary to add those we can already assume to be pulled up (fin_dp */
1101 /* - fin_ip) to what is passed through. */
1102 /* ------------------------------------------------------------------------ */
1103 int
1104 ipf_pr_pullup(fr_info_t *fin, int plen)
1105 {
1106 ipf_main_softc_t *softc = fin->fin_main_soft;
1107
1108 if (fin->fin_m != NULL) {
1109 if (fin->fin_dp != NULL)
1110 plen += (char *)fin->fin_dp -
1111 ((char *)fin->fin_ip + fin->fin_hlen);
1112 plen += fin->fin_hlen;
1113 if (M_LEN(fin->fin_m) < plen + fin->fin_ipoff) {
1114 #if defined(_KERNEL)
1115 if (ipf_pullup(fin->fin_m, fin, plen) == NULL) {
1116 DT(ipf_pullup_fail);
1117 LBUMP(ipf_stats[fin->fin_out].fr_pull[1]);
1118 return (-1);
1119 }
1120 LBUMP(ipf_stats[fin->fin_out].fr_pull[0]);
1121 #else
1122 LBUMP(ipf_stats[fin->fin_out].fr_pull[1]);
1123 /*
1124 * Fake ipf_pullup failing
1125 */
1126 fin->fin_reason = FRB_PULLUP;
1127 *fin->fin_mp = NULL;
1128 fin->fin_m = NULL;
1129 fin->fin_ip = NULL;
1130 return (-1);
1131 #endif
1132 }
1133 }
1134 return (0);
1135 }
1136
1137
1138 /* ------------------------------------------------------------------------ */
1139 /* Function: ipf_pr_short */
1140 /* Returns: void */
1141 /* Parameters: fin(I) - pointer to packet information */
1142 /* xmin(I) - minimum header size */
1143 /* */
1144 /* Check if a packet is "short" as defined by xmin. The rule we are */
1145 /* applying here is that the packet must not be fragmented within the layer */
1146 /* 4 header. That is, it must not be a fragment that has its offset set to */
1147 /* start within the layer 4 header (hdrmin) or if it is at offset 0, the */
1148 /* entire layer 4 header must be present (min). */
1149 /* ------------------------------------------------------------------------ */
1150 static inline void
1151 ipf_pr_short(fr_info_t *fin, int xmin)
1152 {
1153
1154 if (fin->fin_off == 0) {
1155 if (fin->fin_dlen < xmin)
1156 fin->fin_flx |= FI_SHORT;
1157 } else if (fin->fin_off < xmin) {
1158 fin->fin_flx |= FI_SHORT;
1159 }
1160 }
1161
1162
1163 /* ------------------------------------------------------------------------ */
1164 /* Function: ipf_pr_icmp */
1165 /* Returns: void */
1166 /* Parameters: fin(I) - pointer to packet information */
1167 /* */
1168 /* IPv4 Only */
1169 /* Do a sanity check on the packet for ICMP (v4). In nearly all cases, */
1170 /* except extrememly bad packets, both type and code will be present. */
1171 /* The expected minimum size of an ICMP packet is very much dependent on */
1172 /* the type of it. */
1173 /* */
1174 /* XXX - other ICMP sanity checks? */
1175 /* ------------------------------------------------------------------------ */
1176 static inline void
1177 ipf_pr_icmp(fr_info_t *fin)
1178 {
1179 ipf_main_softc_t *softc = fin->fin_main_soft;
1180 int minicmpsz = sizeof(struct icmp);
1181 icmphdr_t *icmp;
1182 ip_t *oip;
1183
1184 ipf_pr_short(fin, ICMPERR_ICMPHLEN);
1185
1186 if (fin->fin_off != 0) {
1187 LBUMPD(ipf_stats[fin->fin_out], fr_v4_icmp_frag);
1188 return;
1189 }
1190
1191 if (ipf_pr_pullup(fin, ICMPERR_ICMPHLEN) == -1) {
1192 LBUMPD(ipf_stats[fin->fin_out], fr_v4_icmp_pullup);
1193 return;
1194 }
1195
1196 icmp = fin->fin_dp;
1197
1198 fin->fin_data[0] = *(u_short *)icmp;
1199 fin->fin_data[1] = icmp->icmp_id;
1200
1201 switch (icmp->icmp_type)
1202 {
1203 case ICMP_ECHOREPLY :
1204 case ICMP_ECHO :
1205 /* Router discovery messaes - RFC 1256 */
1206 case ICMP_ROUTERADVERT :
1207 case ICMP_ROUTERSOLICIT :
1208 fin->fin_flx |= FI_ICMPQUERY;
1209 minicmpsz = ICMP_MINLEN;
1210 break;
1211 /*
1212 * type(1) + code(1) + cksum(2) + id(2) seq(2) +
1213 * 3 * timestamp(3 * 4)
1214 */
1215 case ICMP_TSTAMP :
1216 case ICMP_TSTAMPREPLY :
1217 fin->fin_flx |= FI_ICMPQUERY;
1218 minicmpsz = 20;
1219 break;
1220 /*
1221 * type(1) + code(1) + cksum(2) + id(2) seq(2) +
1222 * mask(4)
1223 */
1224 case ICMP_IREQ :
1225 case ICMP_IREQREPLY :
1226 case ICMP_MASKREQ :
1227 case ICMP_MASKREPLY :
1228 fin->fin_flx |= FI_ICMPQUERY;
1229 minicmpsz = 12;
1230 break;
1231 /*
1232 * type(1) + code(1) + cksum(2) + id(2) seq(2) + ip(20+)
1233 */
1234 case ICMP_UNREACH :
1235 #ifdef icmp_nextmtu
1236 if (icmp->icmp_code == ICMP_UNREACH_NEEDFRAG) {
1237 if (icmp->icmp_nextmtu < softc->ipf_icmpminfragmtu) {
1238 fin->fin_flx |= FI_BAD;
1239 DT3(ipf_fi_bad_icmp_nextmtu, fr_info_t *, fin, u_int, icmp->icmp_nextmtu, u_int, softc->ipf_icmpminfragmtu);
1240 }
1241 }
1242 #endif
1243 /* FALLTHROUGH */
1244 case ICMP_SOURCEQUENCH :
1245 case ICMP_REDIRECT :
1246 case ICMP_TIMXCEED :
1247 case ICMP_PARAMPROB :
1248 fin->fin_flx |= FI_ICMPERR;
1249 if (ipf_coalesce(fin) != 1) {
1250 LBUMPD(ipf_stats[fin->fin_out], fr_icmp_coalesce);
1251 return;
1252 }
1253
1254 /*
1255 * ICMP error packets should not be generated for IP
1256 * packets that are a fragment that isn't the first
1257 * fragment.
1258 */
1259 oip = (ip_t *)((char *)fin->fin_dp + ICMPERR_ICMPHLEN);
1260 if ((ntohs(oip->ip_off) & IP_OFFMASK) != 0) {
1261 fin->fin_flx |= FI_BAD;
1262 DT2(ipf_fi_bad_icmp_err, fr_info_t, fin, u_int, (ntohs(oip->ip_off) & IP_OFFMASK));
1263 }
1264
1265 /*
1266 * If the destination of this packet doesn't match the
1267 * source of the original packet then this packet is
1268 * not correct.
1269 */
1270 if (oip->ip_src.s_addr != fin->fin_daddr) {
1271 fin->fin_flx |= FI_BAD;
1272 DT1(ipf_fi_bad_src_ne_dst, fr_info_t *, fin);
1273 }
1274 break;
1275 default :
1276 break;
1277 }
1278
1279 ipf_pr_short(fin, minicmpsz);
1280
1281 ipf_checkv4sum(fin);
1282 }
1283
1284
1285 /* ------------------------------------------------------------------------ */
1286 /* Function: ipf_pr_tcpcommon */
1287 /* Returns: int - 0 = header ok, 1 = bad packet, -1 = buffer error */
1288 /* Parameters: fin(I) - pointer to packet information */
1289 /* */
1290 /* TCP header sanity checking. Look for bad combinations of TCP flags, */
1291 /* and make some checks with how they interact with other fields. */
1292 /* If compiled with IPFILTER_CKSUM, check to see if the TCP checksum is */
1293 /* valid and mark the packet as bad if not. */
1294 /* ------------------------------------------------------------------------ */
1295 static inline int
1296 ipf_pr_tcpcommon(fr_info_t *fin)
1297 {
1298 ipf_main_softc_t *softc = fin->fin_main_soft;
1299 int flags, tlen;
1300 tcphdr_t *tcp;
1301
1302 fin->fin_flx |= FI_TCPUDP;
1303 if (fin->fin_off != 0) {
1304 LBUMPD(ipf_stats[fin->fin_out], fr_tcp_frag);
1305 return (0);
1306 }
1307
1308 if (ipf_pr_pullup(fin, sizeof(*tcp)) == -1) {
1309 LBUMPD(ipf_stats[fin->fin_out], fr_tcp_pullup);
1310 return (-1);
1311 }
1312
1313 tcp = fin->fin_dp;
1314 if (fin->fin_dlen > 3) {
1315 fin->fin_sport = ntohs(tcp->th_sport);
1316 fin->fin_dport = ntohs(tcp->th_dport);
1317 }
1318
1319 if ((fin->fin_flx & FI_SHORT) != 0) {
1320 LBUMPD(ipf_stats[fin->fin_out], fr_tcp_short);
1321 return (1);
1322 }
1323
1324 /*
1325 * Use of the TCP data offset *must* result in a value that is at
1326 * least the same size as the TCP header.
1327 */
1328 tlen = TCP_OFF(tcp) << 2;
1329 if (tlen < sizeof(tcphdr_t)) {
1330 LBUMPD(ipf_stats[fin->fin_out], fr_tcp_small);
1331 fin->fin_flx |= FI_BAD;
1332 DT3(ipf_fi_bad_tlen, fr_info_t, fin, u_int, tlen, u_int, sizeof(tcphdr_t));
1333 return (1);
1334 }
1335
1336 flags = tcp->th_flags;
1337 fin->fin_tcpf = tcp->th_flags;
1338
1339 /*
1340 * If the urgent flag is set, then the urgent pointer must
1341 * also be set and vice versa. Good TCP packets do not have
1342 * just one of these set.
1343 */
1344 if ((flags & TH_URG) != 0 && (tcp->th_urp == 0)) {
1345 fin->fin_flx |= FI_BAD;
1346 DT3(ipf_fi_bad_th_urg, fr_info_t*, fin, u_int, (flags & TH_URG), u_int, tcp->th_urp);
1347 #if 0
1348 } else if ((flags & TH_URG) == 0 && (tcp->th_urp != 0)) {
1349 /*
1350 * Ignore this case (#if 0) as it shows up in "real"
1351 * traffic with bogus values in the urgent pointer field.
1352 */
1353 fin->fin_flx |= FI_BAD;
1354 DT3(ipf_fi_bad_th_urg0, fr_info_t *, fin, u_int, (flags & TH_URG), u_int, tcp->th_urp);
1355 #endif
1356 } else if (((flags & (TH_SYN|TH_FIN)) != 0) &&
1357 ((flags & (TH_RST|TH_ACK)) == TH_RST)) {
1358 /* TH_FIN|TH_RST|TH_ACK seems to appear "naturally" */
1359 fin->fin_flx |= FI_BAD;
1360 DT1(ipf_fi_bad_th_fin_rst_ack, fr_info_t, fin);
1361 #if 1
1362 } else if (((flags & TH_SYN) != 0) &&
1363 ((flags & (TH_URG|TH_PUSH)) != 0)) {
1364 /*
1365 * SYN with URG and PUSH set is not for normal TCP but it is
1366 * possible(?) with T/TCP...but who uses T/TCP?
1367 */
1368 fin->fin_flx |= FI_BAD;
1369 DT1(ipf_fi_bad_th_syn_urg_psh, fr_info_t *, fin);
1370 #endif
1371 } else if (!(flags & TH_ACK)) {
1372 /*
1373 * If the ack bit isn't set, then either the SYN or
1374 * RST bit must be set. If the SYN bit is set, then
1375 * we expect the ACK field to be 0. If the ACK is
1376 * not set and if URG, PSH or FIN are set, consdier
1377 * that to indicate a bad TCP packet.
1378 */
1379 if ((flags == TH_SYN) && (tcp->th_ack != 0)) {
1380 /*
1381 * Cisco PIX sets the ACK field to a random value.
1382 * In light of this, do not set FI_BAD until a patch
1383 * is available from Cisco to ensure that
1384 * interoperability between existing systems is
1385 * achieved.
1386 */
1387 /*fin->fin_flx |= FI_BAD*/;
1388 /*DT1(ipf_fi_bad_th_syn_ack, fr_info_t *, fin);*/
1389 } else if (!(flags & (TH_RST|TH_SYN))) {
1390 fin->fin_flx |= FI_BAD;
1391 DT1(ipf_fi_bad_th_rst_syn, fr_info_t *, fin);
1392 } else if ((flags & (TH_URG|TH_PUSH|TH_FIN)) != 0) {
1393 fin->fin_flx |= FI_BAD;
1394 DT1(ipf_fi_bad_th_urg_push_fin, fr_info_t *, fin);
1395 }
1396 }
1397 if (fin->fin_flx & FI_BAD) {
1398 LBUMPD(ipf_stats[fin->fin_out], fr_tcp_bad_flags);
1399 return (1);
1400 }
1401
1402 /*
1403 * At this point, it's not exactly clear what is to be gained by
1404 * marking up which TCP options are and are not present. The one we
1405 * are most interested in is the TCP window scale. This is only in
1406 * a SYN packet [RFC1323] so we don't need this here...?
1407 * Now if we were to analyse the header for passive fingerprinting,
1408 * then that might add some weight to adding this...
1409 */
1410 if (tlen == sizeof(tcphdr_t)) {
1411 return (0);
1412 }
1413
1414 if (ipf_pr_pullup(fin, tlen) == -1) {
1415 LBUMPD(ipf_stats[fin->fin_out], fr_tcp_pullup);
1416 return (-1);
1417 }
1418
1419 #if 0
1420 tcp = fin->fin_dp;
1421 ip = fin->fin_ip;
1422 s = (u_char *)(tcp + 1);
1423 off = IP_HL(ip) << 2;
1424 # ifdef _KERNEL
1425 if (fin->fin_mp != NULL) {
1426 mb_t *m = *fin->fin_mp;
1427
1428 if (off + tlen > M_LEN(m))
1429 return;
1430 }
1431 # endif
1432 for (tlen -= (int)sizeof(*tcp); tlen > 0; ) {
1433 opt = *s;
1434 if (opt == '\0')
1435 break;
1436 else if (opt == TCPOPT_NOP)
1437 ol = 1;
1438 else {
1439 if (tlen < 2)
1440 break;
1441 ol = (int)*(s + 1);
1442 if (ol < 2 || ol > tlen)
1443 break;
1444 }
1445
1446 for (i = 9, mv = 4; mv >= 0; ) {
1447 op = ipopts + i;
1448 if (opt == (u_char)op->ol_val) {
1449 optmsk |= op->ol_bit;
1450 break;
1451 }
1452 }
1453 tlen -= ol;
1454 s += ol;
1455 }
1456 #endif /* 0 */
1457
1458 return (0);
1459 }
1460
1461
1462
1463 /* ------------------------------------------------------------------------ */
1464 /* Function: ipf_pr_udpcommon */
1465 /* Returns: int - 0 = header ok, 1 = bad packet */
1466 /* Parameters: fin(I) - pointer to packet information */
1467 /* */
1468 /* Extract the UDP source and destination ports, if present. If compiled */
1469 /* with IPFILTER_CKSUM, check to see if the UDP checksum is valid. */
1470 /* ------------------------------------------------------------------------ */
1471 static inline int
1472 ipf_pr_udpcommon(fr_info_t *fin)
1473 {
1474 udphdr_t *udp;
1475
1476 fin->fin_flx |= FI_TCPUDP;
1477
1478 if (!fin->fin_off && (fin->fin_dlen > 3)) {
1479 if (ipf_pr_pullup(fin, sizeof(*udp)) == -1) {
1480 ipf_main_softc_t *softc = fin->fin_main_soft;
1481
1482 fin->fin_flx |= FI_SHORT;
1483 LBUMPD(ipf_stats[fin->fin_out], fr_udp_pullup);
1484 return (1);
1485 }
1486
1487 udp = fin->fin_dp;
1488
1489 fin->fin_sport = ntohs(udp->uh_sport);
1490 fin->fin_dport = ntohs(udp->uh_dport);
1491 }
1492
1493 return (0);
1494 }
1495
1496
1497 /* ------------------------------------------------------------------------ */
1498 /* Function: ipf_pr_tcp */
1499 /* Returns: void */
1500 /* Parameters: fin(I) - pointer to packet information */
1501 /* */
1502 /* IPv4 Only */
1503 /* Analyse the packet for IPv4/TCP properties. */
1504 /* ------------------------------------------------------------------------ */
1505 static inline void
1506 ipf_pr_tcp(fr_info_t *fin)
1507 {
1508
1509 ipf_pr_short(fin, sizeof(tcphdr_t));
1510
1511 if (ipf_pr_tcpcommon(fin) == 0)
1512 ipf_checkv4sum(fin);
1513 }
1514
1515
1516 /* ------------------------------------------------------------------------ */
1517 /* Function: ipf_pr_udp */
1518 /* Returns: void */
1519 /* Parameters: fin(I) - pointer to packet information */
1520 /* */
1521 /* IPv4 Only */
1522 /* Analyse the packet for IPv4/UDP properties. */
1523 /* ------------------------------------------------------------------------ */
1524 static inline void
1525 ipf_pr_udp(fr_info_t *fin)
1526 {
1527
1528 ipf_pr_short(fin, sizeof(udphdr_t));
1529
1530 if (ipf_pr_udpcommon(fin) == 0)
1531 ipf_checkv4sum(fin);
1532 }
1533
1534
1535 /* ------------------------------------------------------------------------ */
1536 /* Function: ipf_pr_esp */
1537 /* Returns: void */
1538 /* Parameters: fin(I) - pointer to packet information */
1539 /* */
1540 /* Analyse the packet for ESP properties. */
1541 /* The minimum length is taken to be the SPI (32bits) plus a tail (32bits) */
1542 /* even though the newer ESP packets must also have a sequence number that */
1543 /* is 32bits as well, it is not possible(?) to determine the version from a */
1544 /* simple packet header. */
1545 /* ------------------------------------------------------------------------ */
1546 static inline void
1547 ipf_pr_esp(fr_info_t *fin)
1548 {
1549
1550 if (fin->fin_off == 0) {
1551 ipf_pr_short(fin, 8);
1552 if (ipf_pr_pullup(fin, 8) == -1) {
1553 ipf_main_softc_t *softc = fin->fin_main_soft;
1554
1555 LBUMPD(ipf_stats[fin->fin_out], fr_v4_esp_pullup);
1556 }
1557 }
1558 }
1559
1560
1561 /* ------------------------------------------------------------------------ */
1562 /* Function: ipf_pr_ah */
1563 /* Returns: int - value of the next header or IPPROTO_NONE if error */
1564 /* Parameters: fin(I) - pointer to packet information */
1565 /* */
1566 /* Analyse the packet for AH properties. */
1567 /* The minimum length is taken to be the combination of all fields in the */
1568 /* header being present and no authentication data (null algorithm used.) */
1569 /* ------------------------------------------------------------------------ */
1570 static inline int
1571 ipf_pr_ah(fr_info_t *fin)
1572 {
1573 ipf_main_softc_t *softc = fin->fin_main_soft;
1574 authhdr_t *ah;
1575 int len;
1576
1577 fin->fin_flx |= FI_AH;
1578 ipf_pr_short(fin, sizeof(*ah));
1579
1580 if (((fin->fin_flx & FI_SHORT) != 0) || (fin->fin_off != 0)) {
1581 LBUMPD(ipf_stats[fin->fin_out], fr_v4_ah_bad);
1582 return (IPPROTO_NONE);
1583 }
1584
1585 if (ipf_pr_pullup(fin, sizeof(*ah)) == -1) {
1586 DT(fr_v4_ah_pullup_1);
1587 LBUMP(ipf_stats[fin->fin_out].fr_v4_ah_pullup);
1588 return (IPPROTO_NONE);
1589 }
1590
1591 ah = (authhdr_t *)fin->fin_dp;
1592
1593 len = (ah->ah_plen + 2) << 2;
1594 ipf_pr_short(fin, len);
1595 if (ipf_pr_pullup(fin, len) == -1) {
1596 DT(fr_v4_ah_pullup_2);
1597 LBUMP(ipf_stats[fin->fin_out].fr_v4_ah_pullup);
1598 return (IPPROTO_NONE);
1599 }
1600
1601 /*
1602 * Adjust fin_dp and fin_dlen for skipping over the authentication
1603 * header.
1604 */
1605 fin->fin_dp = (char *)fin->fin_dp + len;
1606 fin->fin_dlen -= len;
1607 return (ah->ah_next);
1608 }
1609
1610
1611 /* ------------------------------------------------------------------------ */
1612 /* Function: ipf_pr_gre */
1613 /* Returns: void */
1614 /* Parameters: fin(I) - pointer to packet information */
1615 /* */
1616 /* Analyse the packet for GRE properties. */
1617 /* ------------------------------------------------------------------------ */
1618 static inline void
1619 ipf_pr_gre(fr_info_t *fin)
1620 {
1621 ipf_main_softc_t *softc = fin->fin_main_soft;
1622 grehdr_t *gre;
1623
1624 ipf_pr_short(fin, sizeof(grehdr_t));
1625
1626 if (fin->fin_off != 0) {
1627 LBUMPD(ipf_stats[fin->fin_out], fr_v4_gre_frag);
1628 return;
1629 }
1630
1631 if (ipf_pr_pullup(fin, sizeof(grehdr_t)) == -1) {
1632 LBUMPD(ipf_stats[fin->fin_out], fr_v4_gre_pullup);
1633 return;
1634 }
1635
1636 gre = fin->fin_dp;
1637 if (GRE_REV(gre->gr_flags) == 1)
1638 fin->fin_data[0] = gre->gr_call;
1639 }
1640
1641
1642 /* ------------------------------------------------------------------------ */
1643 /* Function: ipf_pr_ipv4hdr */
1644 /* Returns: void */
1645 /* Parameters: fin(I) - pointer to packet information */
1646 /* */
1647 /* IPv4 Only */
1648 /* Analyze the IPv4 header and set fields in the fr_info_t structure. */
1649 /* Check all options present and flag their presence if any exist. */
1650 /* ------------------------------------------------------------------------ */
1651 static inline void
1652 ipf_pr_ipv4hdr(fr_info_t *fin)
1653 {
1654 u_short optmsk = 0, secmsk = 0, auth = 0;
1655 int hlen, ol, mv, p, i;
1656 const struct optlist *op;
1657 u_char *s, opt;
1658 u_short off;
1659 fr_ip_t *fi;
1660 ip_t *ip;
1661
1662 fi = &fin->fin_fi;
1663 hlen = fin->fin_hlen;
1664
1665 ip = fin->fin_ip;
1666 p = ip->ip_p;
1667 fi->fi_p = p;
1668 fin->fin_crc = p;
1669 fi->fi_tos = ip->ip_tos;
1670 fin->fin_id = ntohs(ip->ip_id);
1671 off = ntohs(ip->ip_off);
1672
1673 /* Get both TTL and protocol */
1674 fi->fi_p = ip->ip_p;
1675 fi->fi_ttl = ip->ip_ttl;
1676
1677 /* Zero out bits not used in IPv6 address */
1678 fi->fi_src.i6[1] = 0;
1679 fi->fi_src.i6[2] = 0;
1680 fi->fi_src.i6[3] = 0;
1681 fi->fi_dst.i6[1] = 0;
1682 fi->fi_dst.i6[2] = 0;
1683 fi->fi_dst.i6[3] = 0;
1684
1685 fi->fi_saddr = ip->ip_src.s_addr;
1686 fin->fin_crc += fi->fi_saddr;
1687 fi->fi_daddr = ip->ip_dst.s_addr;
1688 fin->fin_crc += fi->fi_daddr;
1689 if (IN_MULTICAST(ntohl(fi->fi_daddr)))
1690 fin->fin_flx |= FI_MULTICAST|FI_MBCAST;
1691
1692 /*
1693 * set packet attribute flags based on the offset and
1694 * calculate the byte offset that it represents.
1695 */
1696 off &= IP_MF|IP_OFFMASK;
1697 if (off != 0) {
1698 int morefrag = off & IP_MF;
1699
1700 fi->fi_flx |= FI_FRAG;
1701 off &= IP_OFFMASK;
1702 if (off == 1 && p == IPPROTO_TCP) {
1703 fin->fin_flx |= FI_SHORT; /* RFC 3128 */
1704 DT1(ipf_fi_tcp_frag_off_1, fr_info_t *, fin);
1705 }
1706 if (off != 0) {
1707 fin->fin_flx |= FI_FRAGBODY;
1708 off <<= 3;
1709 if ((off + fin->fin_dlen > 65535) ||
1710 (fin->fin_dlen == 0) ||
1711 ((morefrag != 0) && ((fin->fin_dlen & 7) != 0))) {
1712 /*
1713 * The length of the packet, starting at its
1714 * offset cannot exceed 65535 (0xffff) as the
1715 * length of an IP packet is only 16 bits.
1716 *
1717 * Any fragment that isn't the last fragment
1718 * must have a length greater than 0 and it
1719 * must be an even multiple of 8.
1720 */
1721 fi->fi_flx |= FI_BAD;
1722 DT1(ipf_fi_bad_fragbody_gt_65535, fr_info_t *, fin);
1723 }
1724 }
1725 }
1726 fin->fin_off = off;
1727
1728 /*
1729 * Call per-protocol setup and checking
1730 */
1731 if (p == IPPROTO_AH) {
1732 /*
1733 * Treat AH differently because we expect there to be another
1734 * layer 4 header after it.
1735 */
1736 p = ipf_pr_ah(fin);
1737 }
1738
1739 switch (p)
1740 {
1741 case IPPROTO_UDP :
1742 ipf_pr_udp(fin);
1743 break;
1744 case IPPROTO_TCP :
1745 ipf_pr_tcp(fin);
1746 break;
1747 case IPPROTO_ICMP :
1748 ipf_pr_icmp(fin);
1749 break;
1750 case IPPROTO_ESP :
1751 ipf_pr_esp(fin);
1752 break;
1753 case IPPROTO_GRE :
1754 ipf_pr_gre(fin);
1755 break;
1756 }
1757
1758 ip = fin->fin_ip;
1759 if (ip == NULL)
1760 return;
1761
1762 /*
1763 * If it is a standard IP header (no options), set the flag fields
1764 * which relate to options to 0.
1765 */
1766 if (hlen == sizeof(*ip)) {
1767 fi->fi_optmsk = 0;
1768 fi->fi_secmsk = 0;
1769 fi->fi_auth = 0;
1770 return;
1771 }
1772
1773 /*
1774 * So the IP header has some IP options attached. Walk the entire
1775 * list of options present with this packet and set flags to indicate
1776 * which ones are here and which ones are not. For the somewhat out
1777 * of date and obscure security classification options, set a flag to
1778 * represent which classification is present.
1779 */
1780 fi->fi_flx |= FI_OPTIONS;
1781
1782 for (s = (u_char *)(ip + 1), hlen -= (int)sizeof(*ip); hlen > 0; ) {
1783 opt = *s;
1784 if (opt == '\0')
1785 break;
1786 else if (opt == IPOPT_NOP)
1787 ol = 1;
1788 else {
1789 if (hlen < 2)
1790 break;
1791 ol = (int)*(s + 1);
1792 if (ol < 2 || ol > hlen)
1793 break;
1794 }
1795 for (i = 9, mv = 4; mv >= 0; ) {
1796 op = ipopts + i;
1797
1798 if ((opt == (u_char)op->ol_val) && (ol > 4)) {
1799 u_32_t doi;
1800
1801 switch (opt)
1802 {
1803 case IPOPT_SECURITY :
1804 if (optmsk & op->ol_bit) {
1805 fin->fin_flx |= FI_BAD;
1806 DT2(ipf_fi_bad_ipopt_security, fr_info_t *, fin, u_short, (optmsk & op->ol_bit));
1807 } else {
1808 doi = ipf_checkripso(s);
1809 secmsk = doi >> 16;
1810 auth = doi & 0xffff;
1811 }
1812 break;
1813
1814 case IPOPT_CIPSO :
1815
1816 if (optmsk & op->ol_bit) {
1817 fin->fin_flx |= FI_BAD;
1818 DT2(ipf_fi_bad_ipopt_cipso, fr_info_t *, fin, u_short, (optmsk & op->ol_bit));
1819 } else {
1820 doi = ipf_checkcipso(fin,
1821 s, ol);
1822 secmsk = doi >> 16;
1823 auth = doi & 0xffff;
1824 }
1825 break;
1826 }
1827 optmsk |= op->ol_bit;
1828 }
1829
1830 if (opt < op->ol_val)
1831 i -= mv;
1832 else
1833 i += mv;
1834 mv--;
1835 }
1836 hlen -= ol;
1837 s += ol;
1838 }
1839
1840 /*
1841 *
1842 */
1843 if (auth && !(auth & 0x0100))
1844 auth &= 0xff00;
1845 fi->fi_optmsk = optmsk;
1846 fi->fi_secmsk = secmsk;
1847 fi->fi_auth = auth;
1848 }
1849
1850
1851 /* ------------------------------------------------------------------------ */
1852 /* Function: ipf_checkripso */
1853 /* Returns: void */
1854 /* Parameters: s(I) - pointer to start of RIPSO option */
1855 /* */
1856 /* ------------------------------------------------------------------------ */
1857 static u_32_t
1858 ipf_checkripso(u_char *s)
1859 {
1860 const struct optlist *sp;
1861 u_short secmsk = 0, auth = 0;
1862 u_char sec;
1863 int j, m;
1864
1865 sec = *(s + 2); /* classification */
1866 for (j = 3, m = 2; m >= 0; ) {
1867 sp = secopt + j;
1868 if (sec == sp->ol_val) {
1869 secmsk |= sp->ol_bit;
1870 auth = *(s + 3);
1871 auth *= 256;
1872 auth += *(s + 4);
1873 break;
1874 }
1875 if (sec < sp->ol_val)
1876 j -= m;
1877 else
1878 j += m;
1879 m--;
1880 }
1881
1882 return (secmsk << 16) | auth;
1883 }
1884
1885
1886 /* ------------------------------------------------------------------------ */
1887 /* Function: ipf_checkcipso */
1888 /* Returns: u_32_t - 0 = failure, else the doi from the header */
1889 /* Parameters: fin(IO) - pointer to packet information */
1890 /* s(I) - pointer to start of CIPSO option */
1891 /* ol(I) - length of CIPSO option field */
1892 /* */
1893 /* This function returns the domain of integrity (DOI) field from the CIPSO */
1894 /* header and returns that whilst also storing the highest sensitivity */
1895 /* value found in the fr_info_t structure. */
1896 /* */
1897 /* No attempt is made to extract the category bitmaps as these are defined */
1898 /* by the user (rather than the protocol) and can be rather numerous on the */
1899 /* end nodes. */
1900 /* ------------------------------------------------------------------------ */
1901 static u_32_t
1902 ipf_checkcipso(fr_info_t *fin, u_char *s, int ol)
1903 {
1904 ipf_main_softc_t *softc = fin->fin_main_soft;
1905 fr_ip_t *fi;
1906 u_32_t doi;
1907 u_char *t, tag, tlen, sensitivity;
1908 int len;
1909
1910 if (ol < 6 || ol > 40) {
1911 LBUMPD(ipf_stats[fin->fin_out], fr_v4_cipso_bad);
1912 fin->fin_flx |= FI_BAD;
1913 DT2(ipf_fi_bad_checkcipso_ol, fr_info_t *, fin, u_int, ol);
1914 return (0);
1915 }
1916
1917 fi = &fin->fin_fi;
1918 fi->fi_sensitivity = 0;
1919 /*
1920 * The DOI field MUST be there.
1921 */
1922 bcopy(s + 2, &doi, sizeof(doi));
1923
1924 t = (u_char *)s + 6;
1925 for (len = ol - 6; len >= 2; len -= tlen, t+= tlen) {
1926 tag = *t;
1927 tlen = *(t + 1);
1928 if (tlen > len || tlen < 4 || tlen > 34) {
1929 LBUMPD(ipf_stats[fin->fin_out], fr_v4_cipso_tlen);
1930 fin->fin_flx |= FI_BAD;
1931 DT2(ipf_fi_bad_checkcipso_tlen, fr_info_t *, fin, u_int, tlen);
1932 return (0);
1933 }
1934
1935 sensitivity = 0;
1936 /*
1937 * Tag numbers 0, 1, 2, 5 are laid out in the CIPSO Internet
1938 * draft (16 July 1992) that has expired.
1939 */
1940 if (tag == 0) {
1941 fin->fin_flx |= FI_BAD;
1942 DT2(ipf_fi_bad_checkcipso_tag, fr_info_t *, fin, u_int, tag);
1943 continue;
1944 } else if (tag == 1) {
1945 if (*(t + 2) != 0) {
1946 fin->fin_flx |= FI_BAD;
1947 DT2(ipf_fi_bad_checkcipso_tag1_t2, fr_info_t *, fin, u_int, (*t + 2));
1948 continue;
1949 }
1950 sensitivity = *(t + 3);
1951 /* Category bitmap for categories 0-239 */
1952
1953 } else if (tag == 4) {
1954 if (*(t + 2) != 0) {
1955 fin->fin_flx |= FI_BAD;
1956 DT2(ipf_fi_bad_checkcipso_tag4_t2, fr_info_t *, fin, u_int, (*t + 2));
1957 continue;
1958 }
1959 sensitivity = *(t + 3);
1960 /* Enumerated categories, 16bits each, upto 15 */
1961
1962 } else if (tag == 5) {
1963 if (*(t + 2) != 0) {
1964 fin->fin_flx |= FI_BAD;
1965 DT2(ipf_fi_bad_checkcipso_tag5_t2, fr_info_t *, fin, u_int, (*t + 2));
1966 continue;
1967 }
1968 sensitivity = *(t + 3);
1969 /* Range of categories (2*16bits), up to 7 pairs */
1970
1971 } else if (tag > 127) {
1972 /* Custom defined DOI */
1973 ;
1974 } else {
1975 fin->fin_flx |= FI_BAD;
1976 DT2(ipf_fi_bad_checkcipso_tag127, fr_info_t *, fin, u_int, tag);
1977 continue;
1978 }
1979
1980 if (sensitivity > fi->fi_sensitivity)
1981 fi->fi_sensitivity = sensitivity;
1982 }
1983
1984 return (doi);
1985 }
1986
1987
1988 /* ------------------------------------------------------------------------ */
1989 /* Function: ipf_makefrip */
1990 /* Returns: int - 0 == packet ok, -1 == packet freed */
1991 /* Parameters: hlen(I) - length of IP packet header */
1992 /* ip(I) - pointer to the IP header */
1993 /* fin(IO) - pointer to packet information */
1994 /* */
1995 /* Compact the IP header into a structure which contains just the info. */
1996 /* which is useful for comparing IP headers with and store this information */
1997 /* in the fr_info_t structure pointer to by fin. At present, it is assumed */
1998 /* this function will be called with either an IPv4 or IPv6 packet. */
1999 /* ------------------------------------------------------------------------ */
2000 int
2001 ipf_makefrip(int hlen, ip_t *ip, fr_info_t *fin)
2002 {
2003 ipf_main_softc_t *softc = fin->fin_main_soft;
2004 int v;
2005
2006 fin->fin_depth = 0;
2007 fin->fin_hlen = (u_short)hlen;
2008 fin->fin_ip = ip;
2009 fin->fin_rule = 0xffffffff;
2010 fin->fin_group[0] = -1;
2011 fin->fin_group[1] = '\0';
2012 fin->fin_dp = (char *)ip + hlen;
2013
2014 v = fin->fin_v;
2015 if (v == 4) {
2016 fin->fin_plen = ntohs(ip->ip_len);
2017 fin->fin_dlen = fin->fin_plen - hlen;
2018 ipf_pr_ipv4hdr(fin);
2019 #ifdef USE_INET6
2020 } else if (v == 6) {
2021 fin->fin_plen = ntohs(((ip6_t *)ip)->ip6_plen);
2022 fin->fin_dlen = fin->fin_plen;
2023 fin->fin_plen += hlen;
2024
2025 ipf_pr_ipv6hdr(fin);
2026 #endif
2027 }
2028 if (fin->fin_ip == NULL) {
2029 LBUMP(ipf_stats[fin->fin_out].fr_ip_freed);
2030 return (-1);
2031 }
2032 return (0);
2033 }
2034
2035
2036 /* ------------------------------------------------------------------------ */
2037 /* Function: ipf_portcheck */
2038 /* Returns: int - 1 == port matched, 0 == port match failed */
2039 /* Parameters: frp(I) - pointer to port check `expression' */
2040 /* pop(I) - port number to evaluate */
2041 /* */
2042 /* Perform a comparison of a port number against some other(s), using a */
2043 /* structure with compare information stored in it. */
2044 /* ------------------------------------------------------------------------ */
2045 static inline int
2046 ipf_portcheck(frpcmp_t *frp, u_32_t pop)
2047 {
2048 int err = 1;
2049 u_32_t po;
2050
2051 po = frp->frp_port;
2052
2053 /*
2054 * Do opposite test to that required and continue if that succeeds.
2055 */
2056 switch (frp->frp_cmp)
2057 {
2058 case FR_EQUAL :
2059 if (pop != po) /* EQUAL */
2060 err = 0;
2061 break;
2062 case FR_NEQUAL :
2063 if (pop == po) /* NOTEQUAL */
2064 err = 0;
2065 break;
2066 case FR_LESST :
2067 if (pop >= po) /* LESSTHAN */
2068 err = 0;
2069 break;
2070 case FR_GREATERT :
2071 if (pop <= po) /* GREATERTHAN */
2072 err = 0;
2073 break;
2074 case FR_LESSTE :
2075 if (pop > po) /* LT or EQ */
2076 err = 0;
2077 break;
2078 case FR_GREATERTE :
2079 if (pop < po) /* GT or EQ */
2080 err = 0;
2081 break;
2082 case FR_OUTRANGE :
2083 if (pop >= po && pop <= frp->frp_top) /* Out of range */
2084 err = 0;
2085 break;
2086 case FR_INRANGE :
2087 if (pop <= po || pop >= frp->frp_top) /* In range */
2088 err = 0;
2089 break;
2090 case FR_INCRANGE :
2091 if (pop < po || pop > frp->frp_top) /* Inclusive range */
2092 err = 0;
2093 break;
2094 default :
2095 break;
2096 }
2097 return (err);
2098 }
2099
2100
2101 /* ------------------------------------------------------------------------ */
2102 /* Function: ipf_tcpudpchk */
2103 /* Returns: int - 1 == protocol matched, 0 == check failed */
2104 /* Parameters: fda(I) - pointer to packet information */
2105 /* ft(I) - pointer to structure with comparison data */
2106 /* */
2107 /* Compares the current pcket (assuming it is TCP/UDP) information with a */
2108 /* structure containing information that we want to match against. */
2109 /* ------------------------------------------------------------------------ */
2110 int
2111 ipf_tcpudpchk(fr_ip_t *fi, frtuc_t *ft)
2112 {
2113 int err = 1;
2114
2115 /*
2116 * Both ports should *always* be in the first fragment.
2117 * So far, I cannot find any cases where they can not be.
2118 *
2119 * compare destination ports
2120 */
2121 if (ft->ftu_dcmp)
2122 err = ipf_portcheck(&ft->ftu_dst, fi->fi_ports[1]);
2123
2124 /*
2125 * compare source ports
2126 */
2127 if (err && ft->ftu_scmp)
2128 err = ipf_portcheck(&ft->ftu_src, fi->fi_ports[0]);
2129
2130 /*
2131 * If we don't have all the TCP/UDP header, then how can we
2132 * expect to do any sort of match on it ? If we were looking for
2133 * TCP flags, then NO match. If not, then match (which should
2134 * satisfy the "short" class too).
2135 */
2136 if (err && (fi->fi_p == IPPROTO_TCP)) {
2137 if (fi->fi_flx & FI_SHORT)
2138 return (!(ft->ftu_tcpf | ft->ftu_tcpfm));
2139 /*
2140 * Match the flags ? If not, abort this match.
2141 */
2142 if (ft->ftu_tcpfm &&
2143 ft->ftu_tcpf != (fi->fi_tcpf & ft->ftu_tcpfm)) {
2144 FR_DEBUG(("f. %#x & %#x != %#x\n", fi->fi_tcpf,
2145 ft->ftu_tcpfm, ft->ftu_tcpf));
2146 err = 0;
2147 }
2148 }
2149 return (err);
2150 }
2151
2152
2153 /* ------------------------------------------------------------------------ */
2154 /* Function: ipf_check_ipf */
2155 /* Returns: int - 0 == match, else no match */
2156 /* Parameters: fin(I) - pointer to packet information */
2157 /* fr(I) - pointer to filter rule */
2158 /* portcmp(I) - flag indicating whether to attempt matching on */
2159 /* TCP/UDP port data. */
2160 /* */
2161 /* Check to see if a packet matches an IPFilter rule. Checks of addresses, */
2162 /* port numbers, etc, for "standard" IPFilter rules are all orchestrated in */
2163 /* this function. */
2164 /* ------------------------------------------------------------------------ */
2165 static inline int
2166 ipf_check_ipf(fr_info_t *fin, frentry_t *fr, int portcmp)
2167 {
2168 u_32_t *ld, *lm, *lip;
2169 fripf_t *fri;
2170 fr_ip_t *fi;
2171 int i;
2172
2173 fi = &fin->fin_fi;
2174 fri = fr->fr_ipf;
2175 lip = (u_32_t *)fi;
2176 lm = (u_32_t *)&fri->fri_mip;
2177 ld = (u_32_t *)&fri->fri_ip;
2178
2179 /*
2180 * first 32 bits to check coversion:
2181 * IP version, TOS, TTL, protocol
2182 */
2183 i = ((*lip & *lm) != *ld);
2184 FR_DEBUG(("0. %#08x & %#08x != %#08x\n",
2185 ntohl(*lip), ntohl(*lm), ntohl(*ld)));
2186 if (i)
2187 return (1);
2188
2189 /*
2190 * Next 32 bits is a constructed bitmask indicating which IP options
2191 * are present (if any) in this packet.
2192 */
2193 lip++, lm++, ld++;
2194 i = ((*lip & *lm) != *ld);
2195 FR_DEBUG(("1. %#08x & %#08x != %#08x\n",
2196 ntohl(*lip), ntohl(*lm), ntohl(*ld)));
2197 if (i != 0)
2198 return (1);
2199
2200 lip++, lm++, ld++;
2201 /*
2202 * Unrolled loops (4 each, for 32 bits) for address checks.
2203 */
2204 /*
2205 * Check the source address.
2206 */
2207 if (fr->fr_satype == FRI_LOOKUP) {
2208 i = (*fr->fr_srcfunc)(fin->fin_main_soft, fr->fr_srcptr,
2209 fi->fi_v, lip, fin->fin_plen);
2210 if (i == -1)
2211 return (1);
2212 lip += 3;
2213 lm += 3;
2214 ld += 3;
2215 } else {
2216 i = ((*lip & *lm) != *ld);
2217 FR_DEBUG(("2a. %#08x & %#08x != %#08x\n",
2218 ntohl(*lip), ntohl(*lm), ntohl(*ld)));
2219 if (fi->fi_v == 6) {
2220 lip++, lm++, ld++;
2221 i |= ((*lip & *lm) != *ld);
2222 FR_DEBUG(("2b. %#08x & %#08x != %#08x\n",
2223 ntohl(*lip), ntohl(*lm), ntohl(*ld)));
2224 lip++, lm++, ld++;
2225 i |= ((*lip & *lm) != *ld);
2226 FR_DEBUG(("2c. %#08x & %#08x != %#08x\n",
2227 ntohl(*lip), ntohl(*lm), ntohl(*ld)));
2228 lip++, lm++, ld++;
2229 i |= ((*lip & *lm) != *ld);
2230 FR_DEBUG(("2d. %#08x & %#08x != %#08x\n",
2231 ntohl(*lip), ntohl(*lm), ntohl(*ld)));
2232 } else {
2233 lip += 3;
2234 lm += 3;
2235 ld += 3;
2236 }
2237 }
2238 i ^= (fr->fr_flags & FR_NOTSRCIP) >> 6;
2239 if (i != 0)
2240 return (1);
2241
2242 /*
2243 * Check the destination address.
2244 */
2245 lip++, lm++, ld++;
2246 if (fr->fr_datype == FRI_LOOKUP) {
2247 i = (*fr->fr_dstfunc)(fin->fin_main_soft, fr->fr_dstptr,
2248 fi->fi_v, lip, fin->fin_plen);
2249 if (i == -1)
2250 return (1);
2251 lip += 3;
2252 lm += 3;
2253 ld += 3;
2254 } else {
2255 i = ((*lip & *lm) != *ld);
2256 FR_DEBUG(("3a. %#08x & %#08x != %#08x\n",
2257 ntohl(*lip), ntohl(*lm), ntohl(*ld)));
2258 if (fi->fi_v == 6) {
2259 lip++, lm++, ld++;
2260 i |= ((*lip & *lm) != *ld);
2261 FR_DEBUG(("3b. %#08x & %#08x != %#08x\n",
2262 ntohl(*lip), ntohl(*lm), ntohl(*ld)));
2263 lip++, lm++, ld++;
2264 i |= ((*lip & *lm) != *ld);
2265 FR_DEBUG(("3c. %#08x & %#08x != %#08x\n",
2266 ntohl(*lip), ntohl(*lm), ntohl(*ld)));
2267 lip++, lm++, ld++;
2268 i |= ((*lip & *lm) != *ld);
2269 FR_DEBUG(("3d. %#08x & %#08x != %#08x\n",
2270 ntohl(*lip), ntohl(*lm), ntohl(*ld)));
2271 } else {
2272 lip += 3;
2273 lm += 3;
2274 ld += 3;
2275 }
2276 }
2277 i ^= (fr->fr_flags & FR_NOTDSTIP) >> 7;
2278 if (i != 0)
2279 return (1);
2280 /*
2281 * IP addresses matched. The next 32bits contains:
2282 * mast of old IP header security & authentication bits.
2283 */
2284 lip++, lm++, ld++;
2285 i = (*ld - (*lip & *lm));
2286 FR_DEBUG(("4. %#08x & %#08x != %#08x\n", *lip, *lm, *ld));
2287
2288 /*
2289 * Next we have 32 bits of packet flags.
2290 */
2291 lip++, lm++, ld++;
2292 i |= (*ld - (*lip & *lm));
2293 FR_DEBUG(("5. %#08x & %#08x != %#08x\n", *lip, *lm, *ld));
2294
2295 if (i == 0) {
2296 /*
2297 * If a fragment, then only the first has what we're
2298 * looking for here...
2299 */
2300 if (portcmp) {
2301 if (!ipf_tcpudpchk(&fin->fin_fi, &fr->fr_tuc))
2302 i = 1;
2303 } else {
2304 if (fr->fr_dcmp || fr->fr_scmp ||
2305 fr->fr_tcpf || fr->fr_tcpfm)
2306 i = 1;
2307 if (fr->fr_icmpm || fr->fr_icmp) {
2308 if (((fi->fi_p != IPPROTO_ICMP) &&
2309 (fi->fi_p != IPPROTO_ICMPV6)) ||
2310 fin->fin_off || (fin->fin_dlen < 2))
2311 i = 1;
2312 else if ((fin->fin_data[0] & fr->fr_icmpm) !=
2313 fr->fr_icmp) {
2314 FR_DEBUG(("i. %#x & %#x != %#x\n",
2315 fin->fin_data[0],
2316 fr->fr_icmpm, fr->fr_icmp));
2317 i = 1;
2318 }
2319 }
2320 }
2321 }
2322 return (i);
2323 }
2324
2325
2326 /* ------------------------------------------------------------------------ */
2327 /* Function: ipf_scanlist */
2328 /* Returns: int - result flags of scanning filter list */
2329 /* Parameters: fin(I) - pointer to packet information */
2330 /* pass(I) - default result to return for filtering */
2331 /* */
2332 /* Check the input/output list of rules for a match to the current packet. */
2333 /* If a match is found, the value of fr_flags from the rule becomes the */
2334 /* return value and fin->fin_fr points to the matched rule. */
2335 /* */
2336 /* This function may be called recursively upto 16 times (limit inbuilt.) */
2337 /* When unwinding, it should finish up with fin_depth as 0. */
2338 /* */
2339 /* Could be per interface, but this gets real nasty when you don't have, */
2340 /* or can't easily change, the kernel source code to . */
2341 /* ------------------------------------------------------------------------ */
2342 int
2343 ipf_scanlist(fr_info_t *fin, u_32_t pass)
2344 {
2345 ipf_main_softc_t *softc = fin->fin_main_soft;
2346 int rulen, portcmp, off, skip;
2347 struct frentry *fr, *fnext;
2348 u_32_t passt, passo;
2349
2350 /*
2351 * Do not allow nesting deeper than 16 levels.
2352 */
2353 if (fin->fin_depth >= 16)
2354 return (pass);
2355
2356 fr = fin->fin_fr;
2357
2358 /*
2359 * If there are no rules in this list, return now.
2360 */
2361 if (fr == NULL)
2362 return (pass);
2363
2364 skip = 0;
2365 portcmp = 0;
2366 fin->fin_depth++;
2367 fin->fin_fr = NULL;
2368 off = fin->fin_off;
2369
2370 if ((fin->fin_flx & FI_TCPUDP) && (fin->fin_dlen > 3) && !off)
2371 portcmp = 1;
2372
2373 for (rulen = 0; fr; fr = fnext, rulen++) {
2374 fnext = fr->fr_next;
2375 if (skip != 0) {
2376 FR_VERBOSE(("SKIP %d (%#x)\n", skip, fr->fr_flags));
2377 skip--;
2378 continue;
2379 }
2380
2381 /*
2382 * In all checks below, a null (zero) value in the
2383 * filter struture is taken to mean a wildcard.
2384 *
2385 * check that we are working for the right interface
2386 */
2387 #ifdef _KERNEL
2388 if (fr->fr_ifa && fr->fr_ifa != fin->fin_ifp)
2389 continue;
2390 #else
2391 if (opts & (OPT_VERBOSE|OPT_DEBUG))
2392 printf("\n");
2393 FR_VERBOSE(("%c", FR_ISSKIP(pass) ? 's' :
2394 FR_ISPASS(pass) ? 'p' :
2395 FR_ISACCOUNT(pass) ? 'A' :
2396 FR_ISAUTH(pass) ? 'a' :
2397 (pass & FR_NOMATCH) ? 'n' :'b'));
2398 if (fr->fr_ifa && fr->fr_ifa != fin->fin_ifp)
2399 continue;
2400 FR_VERBOSE((":i"));
2401 #endif
2402
2403 switch (fr->fr_type)
2404 {
2405 case FR_T_IPF :
2406 case FR_T_IPF_BUILTIN :
2407 if (ipf_check_ipf(fin, fr, portcmp))
2408 continue;
2409 break;
2410 #if defined(IPFILTER_BPF)
2411 case FR_T_BPFOPC :
2412 case FR_T_BPFOPC_BUILTIN :
2413 {
2414 u_char *mc;
2415 int wlen;
2416
2417 if (*fin->fin_mp == NULL)
2418 continue;
2419 if (fin->fin_family != fr->fr_family)
2420 continue;
2421 mc = (u_char *)fin->fin_m;
2422 wlen = fin->fin_dlen + fin->fin_hlen;
2423 if (!bpf_filter(fr->fr_data, mc, wlen, 0))
2424 continue;
2425 break;
2426 }
2427 #endif
2428 case FR_T_CALLFUNC_BUILTIN :
2429 {
2430 frentry_t *f;
2431
2432 f = (*fr->fr_func)(fin, &pass);
2433 if (f != NULL)
2434 fr = f;
2435 else
2436 continue;
2437 break;
2438 }
2439
2440 case FR_T_IPFEXPR :
2441 case FR_T_IPFEXPR_BUILTIN :
2442 if (fin->fin_family != fr->fr_family)
2443 continue;
2444 if (ipf_fr_matcharray(fin, fr->fr_data) == 0)
2445 continue;
2446 break;
2447
2448 default :
2449 break;
2450 }
2451
2452 if ((fin->fin_out == 0) && (fr->fr_nattag.ipt_num[0] != 0)) {
2453 if (fin->fin_nattag == NULL)
2454 continue;
2455 if (ipf_matchtag(&fr->fr_nattag, fin->fin_nattag) == 0)
2456 continue;
2457 }
2458 FR_VERBOSE(("=%d/%d.%d *", fr->fr_grhead, fr->fr_group, rulen));
2459
2460 passt = fr->fr_flags;
2461
2462 /*
2463 * If the rule is a "call now" rule, then call the function
2464 * in the rule, if it exists and use the results from that.
2465 * If the function pointer is bad, just make like we ignore
2466 * it, except for increasing the hit counter.
2467 */
2468 if ((passt & FR_CALLNOW) != 0) {
2469 frentry_t *frs;
2470
2471 ATOMIC_INC64(fr->fr_hits);
2472 if ((fr->fr_func == NULL) ||
2473 (fr->fr_func == (ipfunc_t)-1))
2474 continue;
2475
2476 frs = fin->fin_fr;
2477 fin->fin_fr = fr;
2478 fr = (*fr->fr_func)(fin, &passt);
2479 if (fr == NULL) {
2480 fin->fin_fr = frs;
2481 continue;
2482 }
2483 passt = fr->fr_flags;
2484 }
2485 fin->fin_fr = fr;
2486
2487 #ifdef IPFILTER_LOG
2488 /*
2489 * Just log this packet...
2490 */
2491 if ((passt & FR_LOGMASK) == FR_LOG) {
2492 if (ipf_log_pkt(fin, passt) == -1) {
2493 if (passt & FR_LOGORBLOCK) {
2494 DT(frb_logfail);
2495 passt &= ~FR_CMDMASK;
2496 passt |= FR_BLOCK|FR_QUICK;
2497 fin->fin_reason = FRB_LOGFAIL;
2498 }
2499 }
2500 }
2501 #endif /* IPFILTER_LOG */
2502
2503 MUTEX_ENTER(&fr->fr_lock);
2504 fr->fr_bytes += (U_QUAD_T)fin->fin_plen;
2505 fr->fr_hits++;
2506 MUTEX_EXIT(&fr->fr_lock);
2507 fin->fin_rule = rulen;
2508
2509 passo = pass;
2510 if (FR_ISSKIP(passt)) {
2511 skip = fr->fr_arg;
2512 continue;
2513 } else if (((passt & FR_LOGMASK) != FR_LOG) &&
2514 ((passt & FR_LOGMASK) != FR_DECAPSULATE)) {
2515 pass = passt;
2516 }
2517
2518 if (passt & (FR_RETICMP|FR_FAKEICMP))
2519 fin->fin_icode = fr->fr_icode;
2520
2521 if (fr->fr_group != -1) {
2522 (void) strncpy(fin->fin_group,
2523 FR_NAME(fr, fr_group),
2524 strlen(FR_NAME(fr, fr_group)));
2525 } else {
2526 fin->fin_group[0] = '\0';
2527 }
2528
2529 FR_DEBUG(("pass %#x/%#x/%x\n", passo, pass, passt));
2530
2531 if (fr->fr_grphead != NULL) {
2532 fin->fin_fr = fr->fr_grphead->fg_start;
2533 FR_VERBOSE(("group %s\n", FR_NAME(fr, fr_grhead)));
2534
2535 if (FR_ISDECAPS(passt))
2536 passt = ipf_decaps(fin, pass, fr->fr_icode);
2537 else
2538 passt = ipf_scanlist(fin, pass);
2539
2540 if (fin->fin_fr == NULL) {
2541 fin->fin_rule = rulen;
2542 if (fr->fr_group != -1)
2543 (void) strncpy(fin->fin_group,
2544 fr->fr_names +
2545 fr->fr_group,
2546 strlen(fr->fr_names +
2547 fr->fr_group));
2548 fin->fin_fr = fr;
2549 passt = pass;
2550 }
2551 pass = passt;
2552 }
2553
2554 if (pass & FR_QUICK) {
2555 /*
2556 * Finally, if we've asked to track state for this
2557 * packet, set it up. Add state for "quick" rules
2558 * here so that if the action fails we can consider
2559 * the rule to "not match" and keep on processing
2560 * filter rules.
2561 */
2562 if ((pass & FR_KEEPSTATE) && !FR_ISAUTH(pass) &&
2563 !(fin->fin_flx & FI_STATE)) {
2564 int out = fin->fin_out;
2565
2566 fin->fin_fr = fr;
2567 if (ipf_state_add(softc, fin, NULL, 0) == 0) {
2568 LBUMPD(ipf_stats[out], fr_ads);
2569 } else {
2570 LBUMPD(ipf_stats[out], fr_bads);
2571 pass = passo;
2572 continue;
2573 }
2574 }
2575 break;
2576 }
2577 }
2578 fin->fin_depth--;
2579 return (pass);
2580 }
2581
2582
2583 /* ------------------------------------------------------------------------ */
2584 /* Function: ipf_acctpkt */
2585 /* Returns: frentry_t* - always returns NULL */
2586 /* Parameters: fin(I) - pointer to packet information */
2587 /* passp(IO) - pointer to current/new filter decision (unused) */
2588 /* */
2589 /* Checks a packet against accounting rules, if there are any for the given */
2590 /* IP protocol version. */
2591 /* */
2592 /* N.B.: this function returns NULL to match the prototype used by other */
2593 /* functions called from the IPFilter "mainline" in ipf_check(). */
2594 /* ------------------------------------------------------------------------ */
2595 frentry_t *
2596 ipf_acctpkt(fr_info_t *fin, u_32_t *passp)
2597 {
2598 ipf_main_softc_t *softc = fin->fin_main_soft;
2599 char group[FR_GROUPLEN];
2600 frentry_t *fr, *frsave;
2601 u_32_t pass, rulen;
2602
2603 passp = passp;
2604 fr = softc->ipf_acct[fin->fin_out][softc->ipf_active];
2605
2606 if (fr != NULL) {
2607 frsave = fin->fin_fr;
2608 bcopy(fin->fin_group, group, FR_GROUPLEN);
2609 rulen = fin->fin_rule;
2610 fin->fin_fr = fr;
2611 pass = ipf_scanlist(fin, FR_NOMATCH);
2612 if (FR_ISACCOUNT(pass)) {
2613 LBUMPD(ipf_stats[0], fr_acct);
2614 }
2615 fin->fin_fr = frsave;
2616 bcopy(group, fin->fin_group, FR_GROUPLEN);
2617 fin->fin_rule = rulen;
2618 }
2619 return (NULL);
2620 }
2621
2622
2623 /* ------------------------------------------------------------------------ */
2624 /* Function: ipf_firewall */
2625 /* Returns: frentry_t* - returns pointer to matched rule, if no matches */
2626 /* were found, returns NULL. */
2627 /* Parameters: fin(I) - pointer to packet information */
2628 /* passp(IO) - pointer to current/new filter decision (unused) */
2629 /* */
2630 /* Applies an appropriate set of firewall rules to the packet, to see if */
2631 /* there are any matches. The first check is to see if a match can be seen */
2632 /* in the cache. If not, then search an appropriate list of rules. Once a */
2633 /* matching rule is found, take any appropriate actions as defined by the */
2634 /* rule - except logging. */
2635 /* ------------------------------------------------------------------------ */
2636 static frentry_t *
2637 ipf_firewall(fr_info_t *fin, u_32_t *passp)
2638 {
2639 ipf_main_softc_t *softc = fin->fin_main_soft;
2640 frentry_t *fr;
2641 u_32_t pass;
2642 int out;
2643
2644 out = fin->fin_out;
2645 pass = *passp;
2646
2647 /*
2648 * This rule cache will only affect packets that are not being
2649 * statefully filtered.
2650 */
2651 fin->fin_fr = softc->ipf_rules[out][softc->ipf_active];
2652 if (fin->fin_fr != NULL)
2653 pass = ipf_scanlist(fin, softc->ipf_pass);
2654
2655 if ((pass & FR_NOMATCH)) {
2656 LBUMPD(ipf_stats[out], fr_nom);
2657 }
2658 fr = fin->fin_fr;
2659
2660 /*
2661 * Apply packets per second rate-limiting to a rule as required.
2662 */
2663 if ((fr != NULL) && (fr->fr_pps != 0) &&
2664 !ppsratecheck(&fr->fr_lastpkt, &fr->fr_curpps, fr->fr_pps)) {
2665 DT2(frb_ppsrate, fr_info_t *, fin, frentry_t *, fr);
2666 pass &= ~(FR_CMDMASK|FR_RETICMP|FR_RETRST);
2667 pass |= FR_BLOCK;
2668 LBUMPD(ipf_stats[out], fr_ppshit);
2669 fin->fin_reason = FRB_PPSRATE;
2670 }
2671
2672 /*
2673 * If we fail to add a packet to the authorization queue, then we
2674 * drop the packet later. However, if it was added then pretend
2675 * we've dropped it already.
2676 */
2677 if (FR_ISAUTH(pass)) {
2678 if (ipf_auth_new(fin->fin_m, fin) != 0) {
2679 DT1(frb_authnew, fr_info_t *, fin);
2680 fin->fin_m = *fin->fin_mp = NULL;
2681 fin->fin_reason = FRB_AUTHNEW;
2682 fin->fin_error = 0;
2683 } else {
2684 IPFERROR(1);
2685 fin->fin_error = ENOSPC;
2686 }
2687 }
2688
2689 if ((fr != NULL) && (fr->fr_func != NULL) &&
2690 (fr->fr_func != (ipfunc_t)-1) && !(pass & FR_CALLNOW))
2691 (void) (*fr->fr_func)(fin, &pass);
2692
2693 /*
2694 * If a rule is a pre-auth rule, check again in the list of rules
2695 * loaded for authenticated use. It does not particulary matter
2696 * if this search fails because a "preauth" result, from a rule,
2697 * is treated as "not a pass", hence the packet is blocked.
2698 */
2699 if (FR_ISPREAUTH(pass)) {
2700 pass = ipf_auth_pre_scanlist(softc, fin, pass);
2701 }
2702
2703 /*
2704 * If the rule has "keep frag" and the packet is actually a fragment,
2705 * then create a fragment state entry.
2706 */
2707 if (pass & FR_KEEPFRAG) {
2708 if (fin->fin_flx & FI_FRAG) {
2709 if (ipf_frag_new(softc, fin, pass) == -1) {
2710 LBUMP(ipf_stats[out].fr_bnfr);
2711 } else {
2712 LBUMP(ipf_stats[out].fr_nfr);
2713 }
2714 } else {
2715 LBUMP(ipf_stats[out].fr_cfr);
2716 }
2717 }
2718
2719 fr = fin->fin_fr;
2720 *passp = pass;
2721
2722 return (fr);
2723 }
2724
2725
2726 /* ------------------------------------------------------------------------ */
2727 /* Function: ipf_check */
2728 /* Returns: int - 0 == packet allowed through, */
2729 /* User space: */
2730 /* -1 == packet blocked */
2731 /* 1 == packet not matched */
2732 /* -2 == requires authentication */
2733 /* Kernel: */
2734 /* > 0 == filter error # for packet */
2735 /* Parameters: ctx(I) - pointer to the instance context */
2736 /* ip(I) - pointer to start of IPv4/6 packet */
2737 /* hlen(I) - length of header */
2738 /* ifp(I) - pointer to interface this packet is on */
2739 /* out(I) - 0 == packet going in, 1 == packet going out */
2740 /* mp(IO) - pointer to caller's buffer pointer that holds this */
2741 /* IP packet. */
2742 /* Solaris: */
2743 /* qpi(I) - pointer to STREAMS queue information for this */
2744 /* interface & direction. */
2745 /* */
2746 /* ipf_check() is the master function for all IPFilter packet processing. */
2747 /* It orchestrates: Network Address Translation (NAT), checking for packet */
2748 /* authorisation (or pre-authorisation), presence of related state info., */
2749 /* generating log entries, IP packet accounting, routing of packets as */
2750 /* directed by firewall rules and of course whether or not to allow the */
2751 /* packet to be further processed by the kernel. */
2752 /* */
2753 /* For packets blocked, the contents of "mp" will be NULL'd and the buffer */
2754 /* freed. Packets passed may be returned with the pointer pointed to by */
2755 /* by "mp" changed to a new buffer. */
2756 /* ------------------------------------------------------------------------ */
2757 int
2758 ipf_check(void *ctx, ip_t *ip, int hlen, struct ifnet *ifp, int out
2759 #if defined(_KERNEL) && SOLARIS
2760 , void* qif, mb_t **mp)
2761 #else
2762 , mb_t **mp)
2763 #endif
2764 {
2765 /*
2766 * The above really sucks, but short of writing a diff
2767 */
2768 ipf_main_softc_t *softc = ctx;
2769 fr_info_t frinfo;
2770 fr_info_t *fin = &frinfo;
2771 u_32_t pass = softc->ipf_pass;
2772 frentry_t *fr = NULL;
2773 int v = IP_V(ip);
2774 mb_t *mc = NULL;
2775 mb_t *m;
2776 /*
2777 * The first part of ipf_check() deals with making sure that what goes
2778 * into the filtering engine makes some sense. Information about the
2779 * the packet is distilled, collected into a fr_info_t structure and
2780 * the an attempt to ensure the buffer the packet is in is big enough
2781 * to hold all the required packet headers.
2782 */
2783 #ifdef _KERNEL
2784 # if SOLARIS
2785 qpktinfo_t *qpi = qif;
2786
2787 # ifdef __sparc
2788 if ((u_int)ip & 0x3)
2789 return (2);
2790 # endif
2791 # else
2792 SPL_INT(s);
2793 # endif
2794
2795 if (softc->ipf_running <= 0) {
2796 return (0);
2797 }
2798
2799 bzero((char *)fin, sizeof(*fin));
2800
2801 # if SOLARIS
2802 if (qpi->qpi_flags & QF_BROADCAST)
2803 fin->fin_flx |= FI_MBCAST|FI_BROADCAST;
2804 if (qpi->qpi_flags & QF_MULTICAST)
2805 fin->fin_flx |= FI_MBCAST|FI_MULTICAST;
2806 m = qpi->qpi_m;
2807 fin->fin_qfm = m;
2808 fin->fin_qpi = qpi;
2809 # else /* SOLARIS */
2810
2811 m = *mp;
2812
2813 # if defined(M_MCAST)
2814 if ((m->m_flags & M_MCAST) != 0)
2815 fin->fin_flx |= FI_MBCAST|FI_MULTICAST;
2816 # endif
2817 # if defined(M_MLOOP)
2818 if ((m->m_flags & M_MLOOP) != 0)
2819 fin->fin_flx |= FI_MBCAST|FI_MULTICAST;
2820 # endif
2821 # if defined(M_BCAST)
2822 if ((m->m_flags & M_BCAST) != 0)
2823 fin->fin_flx |= FI_MBCAST|FI_BROADCAST;
2824 # endif
2825 # ifdef M_CANFASTFWD
2826 /*
2827 * XXX For now, IP Filter and fast-forwarding of cached flows
2828 * XXX are mutually exclusive. Eventually, IP Filter should
2829 * XXX get a "can-fast-forward" filter rule.
2830 */
2831 m->m_flags &= ~M_CANFASTFWD;
2832 # endif /* M_CANFASTFWD */
2833 # if defined(CSUM_DELAY_DATA) && !defined(__FreeBSD__)
2834 /*
2835 * disable delayed checksums.
2836 */
2837 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
2838 in_delayed_cksum(m);
2839 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
2840 }
2841 # endif /* CSUM_DELAY_DATA */
2842 # endif /* SOLARIS */
2843 #else
2844 bzero((char *)fin, sizeof(*fin));
2845 m = *mp;
2846 # if defined(M_MCAST)
2847 if ((m->m_flags & M_MCAST) != 0)
2848 fin->fin_flx |= FI_MBCAST|FI_MULTICAST;
2849 # endif
2850 # if defined(M_MLOOP)
2851 if ((m->m_flags & M_MLOOP) != 0)
2852 fin->fin_flx |= FI_MBCAST|FI_MULTICAST;
2853 # endif
2854 # if defined(M_BCAST)
2855 if ((m->m_flags & M_BCAST) != 0)
2856 fin->fin_flx |= FI_MBCAST|FI_BROADCAST;
2857 # endif
2858 #endif /* _KERNEL */
2859
2860 fin->fin_v = v;
2861 fin->fin_m = m;
2862 fin->fin_ip = ip;
2863 fin->fin_mp = mp;
2864 fin->fin_out = out;
2865 fin->fin_ifp = ifp;
2866 fin->fin_error = ENETUNREACH;
2867 fin->fin_hlen = (u_short)hlen;
2868 fin->fin_dp = (char *)ip + hlen;
2869 fin->fin_main_soft = softc;
2870
2871 fin->fin_ipoff = (char *)ip - MTOD(m, char *);
2872
2873 SPL_NET(s);
2874
2875 #ifdef USE_INET6
2876 if (v == 6) {
2877 LBUMP(ipf_stats[out].fr_ipv6);
2878 /*
2879 * Jumbo grams are quite likely too big for internal buffer
2880 * structures to handle comfortably, for now, so just drop
2881 * them.
2882 */
2883 if (((ip6_t *)ip)->ip6_plen == 0) {
2884 DT1(frb_jumbo, ip6_t *, (ip6_t *)ip);
2885 pass = FR_BLOCK|FR_NOMATCH;
2886 fin->fin_reason = FRB_JUMBO;
2887 goto finished;
2888 }
2889 fin->fin_family = AF_INET6;
2890 } else
2891 #endif
2892 {
2893 fin->fin_family = AF_INET;
2894 }
2895
2896 if (ipf_makefrip(hlen, ip, fin) == -1) {
2897 DT1(frb_makefrip, fr_info_t *, fin);
2898 pass = FR_BLOCK|FR_NOMATCH;
2899 fin->fin_reason = FRB_MAKEFRIP;
2900 goto finished;
2901 }
2902
2903 /*
2904 * For at least IPv6 packets, if a m_pullup() fails then this pointer
2905 * becomes NULL and so we have no packet to free.
2906 */
2907 if (*fin->fin_mp == NULL)
2908 goto finished;
2909
2910 if (!out) {
2911 if (v == 4) {
2912 if (softc->ipf_chksrc && !ipf_verifysrc(fin)) {
2913 LBUMPD(ipf_stats[0], fr_v4_badsrc);
2914 fin->fin_flx |= FI_BADSRC;
2915 }
2916 if (fin->fin_ip->ip_ttl < softc->ipf_minttl) {
2917 LBUMPD(ipf_stats[0], fr_v4_badttl);
2918 fin->fin_flx |= FI_LOWTTL;
2919 }
2920 }
2921 #ifdef USE_INET6
2922 else if (v == 6) {
2923 if (((ip6_t *)ip)->ip6_hlim < softc->ipf_minttl) {
2924 LBUMPD(ipf_stats[0], fr_v6_badttl);
2925 fin->fin_flx |= FI_LOWTTL;
2926 }
2927 }
2928 #endif
2929 }
2930
2931 if (fin->fin_flx & FI_SHORT) {
2932 LBUMPD(ipf_stats[out], fr_short);
2933 }
2934
2935 READ_ENTER(&softc->ipf_mutex);
2936
2937 if (!out) {
2938 switch (fin->fin_v)
2939 {
2940 case 4 :
2941 if (ipf_nat_checkin(fin, &pass) == -1) {
2942 goto filterdone;
2943 }
2944 break;
2945 #ifdef USE_INET6
2946 case 6 :
2947 if (ipf_nat6_checkin(fin, &pass) == -1) {
2948 goto filterdone;
2949 }
2950 break;
2951 #endif
2952 default :
2953 break;
2954 }
2955 }
2956 /*
2957 * Check auth now.
2958 * If a packet is found in the auth table, then skip checking
2959 * the access lists for permission but we do need to consider
2960 * the result as if it were from the ACL's. In addition, being
2961 * found in the auth table means it has been seen before, so do
2962 * not pass it through accounting (again), lest it be counted twice.
2963 */
2964 fr = ipf_auth_check(fin, &pass);
2965 if (!out && (fr == NULL))
2966 (void) ipf_acctpkt(fin, NULL);
2967
2968 if (fr == NULL) {
2969 if ((fin->fin_flx & FI_FRAG) != 0)
2970 fr = ipf_frag_known(fin, &pass);
2971
2972 if (fr == NULL)
2973 fr = ipf_state_check(fin, &pass);
2974 }
2975
2976 if ((pass & FR_NOMATCH) || (fr == NULL))
2977 fr = ipf_firewall(fin, &pass);
2978
2979 /*
2980 * If we've asked to track state for this packet, set it up.
2981 * Here rather than ipf_firewall because ipf_checkauth may decide
2982 * to return a packet for "keep state"
2983 */
2984 if ((pass & FR_KEEPSTATE) && (fin->fin_m != NULL) &&
2985 !(fin->fin_flx & FI_STATE)) {
2986 if (ipf_state_add(softc, fin, NULL, 0) == 0) {
2987 LBUMP(ipf_stats[out].fr_ads);
2988 } else {
2989 LBUMP(ipf_stats[out].fr_bads);
2990 if (FR_ISPASS(pass)) {
2991 DT(frb_stateadd);
2992 pass &= ~FR_CMDMASK;
2993 pass |= FR_BLOCK;
2994 fin->fin_reason = FRB_STATEADD;
2995 }
2996 }
2997 }
2998
2999 fin->fin_fr = fr;
3000 if ((fr != NULL) && !(fin->fin_flx & FI_STATE)) {
3001 fin->fin_dif = &fr->fr_dif;
3002 fin->fin_tif = &fr->fr_tifs[fin->fin_rev];
3003 }
3004
3005 /*
3006 * Only count/translate packets which will be passed on, out the
3007 * interface.
3008 */
3009 if (out && FR_ISPASS(pass)) {
3010 (void) ipf_acctpkt(fin, NULL);
3011
3012 switch (fin->fin_v)
3013 {
3014 case 4 :
3015 if (ipf_nat_checkout(fin, &pass) == -1) {
3016 ;
3017 } else if ((softc->ipf_update_ipid != 0) && (v == 4)) {
3018 if (ipf_updateipid(fin) == -1) {
3019 DT(frb_updateipid);
3020 LBUMP(ipf_stats[1].fr_ipud);
3021 pass &= ~FR_CMDMASK;
3022 pass |= FR_BLOCK;
3023 fin->fin_reason = FRB_UPDATEIPID;
3024 } else {
3025 LBUMP(ipf_stats[0].fr_ipud);
3026 }
3027 }
3028 break;
3029 #ifdef USE_INET6
3030 case 6 :
3031 (void) ipf_nat6_checkout(fin, &pass);
3032 break;
3033 #endif
3034 default :
3035 break;
3036 }
3037 }
3038
3039 filterdone:
3040 #ifdef IPFILTER_LOG
3041 if ((softc->ipf_flags & FF_LOGGING) || (pass & FR_LOGMASK)) {
3042 (void) ipf_dolog(fin, &pass);
3043 }
3044 #endif
3045
3046 /*
3047 * The FI_STATE flag is cleared here so that calling ipf_state_check
3048 * will work when called from inside of fr_fastroute. Although
3049 * there is a similar flag, FI_NATED, for NAT, it does have the same
3050 * impact on code execution.
3051 */
3052 fin->fin_flx &= ~FI_STATE;
3053
3054 #if defined(FASTROUTE_RECURSION)
3055 /*
3056 * Up the reference on fr_lock and exit ipf_mutex. The generation of
3057 * a packet below can sometimes cause a recursive call into IPFilter.
3058 * On those platforms where that does happen, we need to hang onto
3059 * the filter rule just in case someone decides to remove or flush it
3060 * in the meantime.
3061 */
3062 if (fr != NULL) {
3063 MUTEX_ENTER(&fr->fr_lock);
3064 fr->fr_ref++;
3065 MUTEX_EXIT(&fr->fr_lock);
3066 }
3067
3068 RWLOCK_EXIT(&softc->ipf_mutex);
3069 #endif
3070
3071 if ((pass & FR_RETMASK) != 0) {
3072 /*
3073 * Should we return an ICMP packet to indicate error
3074 * status passing through the packet filter ?
3075 * WARNING: ICMP error packets AND TCP RST packets should
3076 * ONLY be sent in repsonse to incoming packets. Sending
3077 * them in response to outbound packets can result in a
3078 * panic on some operating systems.
3079 */
3080 if (!out) {
3081 if (pass & FR_RETICMP) {
3082 int dst;
3083
3084 if ((pass & FR_RETMASK) == FR_FAKEICMP)
3085 dst = 1;
3086 else
3087 dst = 0;
3088 (void) ipf_send_icmp_err(ICMP_UNREACH, fin,
3089 dst);
3090 LBUMP(ipf_stats[0].fr_ret);
3091 } else if (((pass & FR_RETMASK) == FR_RETRST) &&
3092 !(fin->fin_flx & FI_SHORT)) {
3093 if (((fin->fin_flx & FI_OOW) != 0) ||
3094 (ipf_send_reset(fin) == 0)) {
3095 LBUMP(ipf_stats[1].fr_ret);
3096 }
3097 }
3098
3099 /*
3100 * When using return-* with auth rules, the auth code
3101 * takes over disposing of this packet.
3102 */
3103 if (FR_ISAUTH(pass) && (fin->fin_m != NULL)) {
3104 DT1(frb_authcapture, fr_info_t *, fin);
3105 fin->fin_m = *fin->fin_mp = NULL;
3106 fin->fin_reason = FRB_AUTHCAPTURE;
3107 m = NULL;
3108 }
3109 } else {
3110 if (pass & FR_RETRST) {
3111 fin->fin_error = ECONNRESET;
3112 }
3113 }
3114 }
3115
3116 /*
3117 * After the above so that ICMP unreachables and TCP RSTs get
3118 * created properly.
3119 */
3120 if (FR_ISBLOCK(pass) && (fin->fin_flx & FI_NEWNAT))
3121 ipf_nat_uncreate(fin);
3122
3123 /*
3124 * If we didn't drop off the bottom of the list of rules (and thus
3125 * the 'current' rule fr is not NULL), then we may have some extra
3126 * instructions about what to do with a packet.
3127 * Once we're finished return to our caller, freeing the packet if
3128 * we are dropping it.
3129 */
3130 if (fr != NULL) {
3131 frdest_t *fdp;
3132
3133 /*
3134 * Generate a duplicated packet first because ipf_fastroute
3135 * can lead to fin_m being free'd... not good.
3136 */
3137 fdp = fin->fin_dif;
3138 if ((fdp != NULL) && (fdp->fd_ptr != NULL) &&
3139 (fdp->fd_ptr != (void *)-1)) {
3140 mc = M_COPY(fin->fin_m);
3141 if (mc != NULL)
3142 ipf_fastroute(mc, &mc, fin, fdp);
3143 }
3144
3145 fdp = fin->fin_tif;
3146 if (!out && (pass & FR_FASTROUTE)) {
3147 /*
3148 * For fastroute rule, no destination interface defined
3149 * so pass NULL as the frdest_t parameter
3150 */
3151 (void) ipf_fastroute(fin->fin_m, mp, fin, NULL);
3152 m = *mp = NULL;
3153 } else if ((fdp != NULL) && (fdp->fd_ptr != NULL) &&
3154 (fdp->fd_ptr != (struct ifnet *)-1)) {
3155 /* this is for to rules: */
3156 ipf_fastroute(fin->fin_m, mp, fin, fdp);
3157 m = *mp = NULL;
3158 }
3159
3160 #if defined(FASTROUTE_RECURSION)
3161 (void) ipf_derefrule(softc, &fr);
3162 #endif
3163 }
3164 #if !defined(FASTROUTE_RECURSION)
3165 RWLOCK_EXIT(&softc->ipf_mutex);
3166 #endif
3167
3168 finished:
3169 if (!FR_ISPASS(pass)) {
3170 LBUMP(ipf_stats[out].fr_block);
3171 if (*mp != NULL) {
3172 #ifdef _KERNEL
3173 FREE_MB_T(*mp);
3174 #endif
3175 m = *mp = NULL;
3176 }
3177 } else {
3178 LBUMP(ipf_stats[out].fr_pass);
3179 }
3180
3181 SPL_X(s);
3182
3183 #ifdef _KERNEL
3184 if (FR_ISPASS(pass))
3185 return (0);
3186 LBUMP(ipf_stats[out].fr_blocked[fin->fin_reason]);
3187 return (fin->fin_error);
3188 #else /* _KERNEL */
3189 if (*mp != NULL)
3190 (*mp)->mb_ifp = fin->fin_ifp;
3191 blockreason = fin->fin_reason;
3192 FR_VERBOSE(("fin_flx %#x pass %#x ", fin->fin_flx, pass));
3193 /*if ((pass & FR_CMDMASK) == (softc->ipf_pass & FR_CMDMASK))*/
3194 if ((pass & FR_NOMATCH) != 0)
3195 return (1);
3196
3197 if ((pass & FR_RETMASK) != 0)
3198 switch (pass & FR_RETMASK)
3199 {
3200 case FR_RETRST :
3201 return (3);
3202 case FR_RETICMP :
3203 return (4);
3204 case FR_FAKEICMP :
3205 return (5);
3206 }
3207
3208 switch (pass & FR_CMDMASK)
3209 {
3210 case FR_PASS :
3211 return (0);
3212 case FR_BLOCK :
3213 return (-1);
3214 case FR_AUTH :
3215 return (-2);
3216 case FR_ACCOUNT :
3217 return (-3);
3218 case FR_PREAUTH :
3219 return (-4);
3220 }
3221 return (2);
3222 #endif /* _KERNEL */
3223 }
3224
3225
3226 #ifdef IPFILTER_LOG
3227 /* ------------------------------------------------------------------------ */
3228 /* Function: ipf_dolog */
3229 /* Returns: frentry_t* - returns contents of fin_fr (no change made) */
3230 /* Parameters: fin(I) - pointer to packet information */
3231 /* passp(IO) - pointer to current/new filter decision (unused) */
3232 /* */
3233 /* Checks flags set to see how a packet should be logged, if it is to be */
3234 /* logged. Adjust statistics based on its success or not. */
3235 /* ------------------------------------------------------------------------ */
3236 frentry_t *
3237 ipf_dolog(fr_info_t *fin, u_32_t *passp)
3238 {
3239 ipf_main_softc_t *softc = fin->fin_main_soft;
3240 u_32_t pass;
3241 int out;
3242
3243 out = fin->fin_out;
3244 pass = *passp;
3245
3246 if ((softc->ipf_flags & FF_LOGNOMATCH) && (pass & FR_NOMATCH)) {
3247 pass |= FF_LOGNOMATCH;
3248 LBUMPD(ipf_stats[out], fr_npkl);
3249 goto logit;
3250
3251 } else if (((pass & FR_LOGMASK) == FR_LOGP) ||
3252 (FR_ISPASS(pass) && (softc->ipf_flags & FF_LOGPASS))) {
3253 if ((pass & FR_LOGMASK) != FR_LOGP)
3254 pass |= FF_LOGPASS;
3255 LBUMPD(ipf_stats[out], fr_ppkl);
3256 goto logit;
3257
3258 } else if (((pass & FR_LOGMASK) == FR_LOGB) ||
3259 (FR_ISBLOCK(pass) && (softc->ipf_flags & FF_LOGBLOCK))) {
3260 if ((pass & FR_LOGMASK) != FR_LOGB)
3261 pass |= FF_LOGBLOCK;
3262 LBUMPD(ipf_stats[out], fr_bpkl);
3263
3264 logit:
3265 if (ipf_log_pkt(fin, pass) == -1) {
3266 /*
3267 * If the "or-block" option has been used then
3268 * block the packet if we failed to log it.
3269 */
3270 if ((pass & FR_LOGORBLOCK) && FR_ISPASS(pass)) {
3271 DT1(frb_logfail2, u_int, pass);
3272 pass &= ~FR_CMDMASK;
3273 pass |= FR_BLOCK;
3274 fin->fin_reason = FRB_LOGFAIL2;
3275 }
3276 }
3277 *passp = pass;
3278 }
3279
3280 return (fin->fin_fr);
3281 }
3282 #endif /* IPFILTER_LOG */
3283
3284
3285 /* ------------------------------------------------------------------------ */
3286 /* Function: ipf_cksum */
3287 /* Returns: u_short - IP header checksum */
3288 /* Parameters: addr(I) - pointer to start of buffer to checksum */
3289 /* len(I) - length of buffer in bytes */
3290 /* */
3291 /* Calculate the two's complement 16 bit checksum of the buffer passed. */
3292 /* */
3293 /* N.B.: addr should be 16bit aligned. */
3294 /* ------------------------------------------------------------------------ */
3295 u_short
3296 ipf_cksum(u_short *addr, int len)
3297 {
3298 u_32_t sum = 0;
3299
3300 for (sum = 0; len > 1; len -= 2)
3301 sum += *addr++;
3302
3303 /* mop up an odd byte, if necessary */
3304 if (len == 1)
3305 sum += *(u_char *)addr;
3306
3307 /*
3308 * add back carry outs from top 16 bits to low 16 bits
3309 */
3310 sum = (sum >> 16) + (sum & 0xffff); /* add hi 16 to low 16 */
3311 sum += (sum >> 16); /* add carry */
3312 return (u_short)(~sum);
3313 }
3314
3315
3316 /* ------------------------------------------------------------------------ */
3317 /* Function: fr_cksum */
3318 /* Returns: u_short - layer 4 checksum */
3319 /* Parameters: fin(I) - pointer to packet information */
3320 /* ip(I) - pointer to IP header */
3321 /* l4proto(I) - protocol to caclulate checksum for */
3322 /* l4hdr(I) - pointer to layer 4 header */
3323 /* */
3324 /* Calculates the TCP checksum for the packet held in "m", using the data */
3325 /* in the IP header "ip" to seed it. */
3326 /* */
3327 /* NB: This function assumes we've pullup'd enough for all of the IP header */
3328 /* and the TCP header. We also assume that data blocks aren't allocated in */
3329 /* odd sizes. */
3330 /* */
3331 /* Expects ip_len and ip_off to be in network byte order when called. */
3332 /* ------------------------------------------------------------------------ */
3333 u_short
3334 fr_cksum(fr_info_t *fin, ip_t *ip, int l4proto, void *l4hdr)
3335 {
3336 u_short *sp, slen, sumsave, *csump;
3337 u_int sum, sum2;
3338 int hlen;
3339 int off;
3340 #ifdef USE_INET6
3341 ip6_t *ip6;
3342 #endif
3343
3344 csump = NULL;
3345 sumsave = 0;
3346 sp = NULL;
3347 slen = 0;
3348 hlen = 0;
3349 sum = 0;
3350
3351 sum = htons((u_short)l4proto);
3352 /*
3353 * Add up IP Header portion
3354 */
3355 #ifdef USE_INET6
3356 if (IP_V(ip) == 4) {
3357 #endif
3358 hlen = IP_HL(ip) << 2;
3359 off = hlen;
3360 sp = (u_short *)&ip->ip_src;
3361 sum += *sp++; /* ip_src */
3362 sum += *sp++;
3363 sum += *sp++; /* ip_dst */
3364 sum += *sp++;
3365 slen = fin->fin_plen - off;
3366 sum += htons(slen);
3367 #ifdef USE_INET6
3368 } else if (IP_V(ip) == 6) {
3369 mb_t *m;
3370
3371 m = fin->fin_m;
3372 ip6 = (ip6_t *)ip;
3373 off = ((caddr_t)ip6 - m->m_data) + sizeof(struct ip6_hdr);
3374 int len = ntohs(ip6->ip6_plen) - (off - sizeof(*ip6));
3375 return (ipf_pcksum6(m, ip6, off, len));
3376 } else {
3377 return (0xffff);
3378 }
3379 #endif
3380
3381 switch (l4proto)
3382 {
3383 case IPPROTO_UDP :
3384 csump = &((udphdr_t *)l4hdr)->uh_sum;
3385 break;
3386
3387 case IPPROTO_TCP :
3388 csump = &((tcphdr_t *)l4hdr)->th_sum;
3389 break;
3390 case IPPROTO_ICMP :
3391 csump = &((icmphdr_t *)l4hdr)->icmp_cksum;
3392 sum = 0; /* Pseudo-checksum is not included */
3393 break;
3394 #ifdef USE_INET6
3395 case IPPROTO_ICMPV6 :
3396 csump = &((struct icmp6_hdr *)l4hdr)->icmp6_cksum;
3397 break;
3398 #endif
3399 default :
3400 break;
3401 }
3402
3403 if (csump != NULL) {
3404 sumsave = *csump;
3405 *csump = 0;
3406 }
3407
3408 sum2 = ipf_pcksum(fin, off, sum);
3409 if (csump != NULL)
3410 *csump = sumsave;
3411 return (sum2);
3412 }
3413
3414
3415 /* ------------------------------------------------------------------------ */
3416 /* Function: ipf_findgroup */
3417 /* Returns: frgroup_t * - NULL = group not found, else pointer to group */
3418 /* Parameters: softc(I) - pointer to soft context main structure */
3419 /* group(I) - group name to search for */
3420 /* unit(I) - device to which this group belongs */
3421 /* set(I) - which set of rules (inactive/inactive) this is */
3422 /* fgpp(O) - pointer to place to store pointer to the pointer */
3423 /* to where to add the next (last) group or where */
3424 /* to delete group from. */
3425 /* */
3426 /* Search amongst the defined groups for a particular group number. */
3427 /* ------------------------------------------------------------------------ */
3428 frgroup_t *
3429 ipf_findgroup(ipf_main_softc_t *softc, char *group, minor_t unit, int set,
3430 frgroup_t ***fgpp)
3431 {
3432 frgroup_t *fg, **fgp;
3433
3434 /*
3435 * Which list of groups to search in is dependent on which list of
3436 * rules are being operated on.
3437 */
3438 fgp = &softc->ipf_groups[unit][set];
3439
3440 while ((fg = *fgp) != NULL) {
3441 if (strncmp(group, fg->fg_name, FR_GROUPLEN) == 0)
3442 break;
3443 else
3444 fgp = &fg->fg_next;
3445 }
3446 if (fgpp != NULL)
3447 *fgpp = fgp;
3448 return (fg);
3449 }
3450
3451
3452 /* ------------------------------------------------------------------------ */
3453 /* Function: ipf_group_add */
3454 /* Returns: frgroup_t * - NULL == did not create group, */
3455 /* != NULL == pointer to the group */
3456 /* Parameters: softc(I) - pointer to soft context main structure */
3457 /* num(I) - group number to add */
3458 /* head(I) - rule pointer that is using this as the head */
3459 /* flags(I) - rule flags which describe the type of rule it is */
3460 /* unit(I) - device to which this group will belong to */
3461 /* set(I) - which set of rules (inactive/inactive) this is */
3462 /* Write Locks: ipf_mutex */
3463 /* */
3464 /* Add a new group head, or if it already exists, increase the reference */
3465 /* count to it. */
3466 /* ------------------------------------------------------------------------ */
3467 frgroup_t *
3468 ipf_group_add(ipf_main_softc_t *softc, char *group, void *head, u_32_t flags,
3469 minor_t unit, int set)
3470 {
3471 frgroup_t *fg, **fgp;
3472 u_32_t gflags;
3473
3474 if (group == NULL)
3475 return (NULL);
3476
3477 if (unit == IPL_LOGIPF && *group == '\0')
3478 return (NULL);
3479
3480 fgp = NULL;
3481 gflags = flags & FR_INOUT;
3482
3483 fg = ipf_findgroup(softc, group, unit, set, &fgp);
3484 if (fg != NULL) {
3485 if (fg->fg_head == NULL && head != NULL)
3486 fg->fg_head = head;
3487 if (fg->fg_flags == 0)
3488 fg->fg_flags = gflags;
3489 else if (gflags != fg->fg_flags)
3490 return (NULL);
3491 fg->fg_ref++;
3492 return (fg);
3493 }
3494
3495 KMALLOC(fg, frgroup_t *);
3496 if (fg != NULL) {
3497 fg->fg_head = head;
3498 fg->fg_start = NULL;
3499 fg->fg_next = *fgp;
3500 bcopy(group, fg->fg_name, strlen(group) + 1);
3501 fg->fg_flags = gflags;
3502 fg->fg_ref = 1;
3503 fg->fg_set = &softc->ipf_groups[unit][set];
3504 *fgp = fg;
3505 }
3506 return (fg);
3507 }
3508
3509
3510 /* ------------------------------------------------------------------------ */
3511 /* Function: ipf_group_del */
3512 /* Returns: int - number of rules deleted */
3513 /* Parameters: softc(I) - pointer to soft context main structure */
3514 /* group(I) - group name to delete */
3515 /* fr(I) - filter rule from which group is referenced */
3516 /* Write Locks: ipf_mutex */
3517 /* */
3518 /* This function is called whenever a reference to a group is to be dropped */
3519 /* and thus its reference count needs to be lowered and the group free'd if */
3520 /* the reference count reaches zero. Passing in fr is really for the sole */
3521 /* purpose of knowing when the head rule is being deleted. */
3522 /* ------------------------------------------------------------------------ */
3523 void
3524 ipf_group_del(ipf_main_softc_t *softc, frgroup_t *group, frentry_t *fr)
3525 {
3526
3527 if (group->fg_head == fr)
3528 group->fg_head = NULL;
3529
3530 group->fg_ref--;
3531 if ((group->fg_ref == 0) && (group->fg_start == NULL))
3532 ipf_group_free(group);
3533 }
3534
3535
3536 /* ------------------------------------------------------------------------ */
3537 /* Function: ipf_group_free */
3538 /* Returns: Nil */
3539 /* Parameters: group(I) - pointer to filter rule group */
3540 /* */
3541 /* Remove the group from the list of groups and free it. */
3542 /* ------------------------------------------------------------------------ */
3543 static void
3544 ipf_group_free(frgroup_t *group)
3545 {
3546 frgroup_t **gp;
3547
3548 for (gp = group->fg_set; *gp != NULL; gp = &(*gp)->fg_next) {
3549 if (*gp == group) {
3550 *gp = group->fg_next;
3551 break;
3552 }
3553 }
3554 KFREE(group);
3555 }
3556
3557
3558 /* ------------------------------------------------------------------------ */
3559 /* Function: ipf_group_flush */
3560 /* Returns: int - number of rules flush from group */
3561 /* Parameters: softc(I) - pointer to soft context main structure */
3562 /* Parameters: group(I) - pointer to filter rule group */
3563 /* */
3564 /* Remove all of the rules that currently are listed under the given group. */
3565 /* ------------------------------------------------------------------------ */
3566 static int
3567 ipf_group_flush(ipf_main_softc_t *softc, frgroup_t *group)
3568 {
3569 int gone = 0;
3570
3571 (void) ipf_flushlist(softc, &gone, &group->fg_start);
3572
3573 return (gone);
3574 }
3575
3576
3577 /* ------------------------------------------------------------------------ */
3578 /* Function: ipf_getrulen */
3579 /* Returns: frentry_t * - NULL == not found, else pointer to rule n */
3580 /* Parameters: softc(I) - pointer to soft context main structure */
3581 /* Parameters: unit(I) - device for which to count the rule's number */
3582 /* flags(I) - which set of rules to find the rule in */
3583 /* group(I) - group name */
3584 /* n(I) - rule number to find */
3585 /* */
3586 /* Find rule # n in group # g and return a pointer to it. Return NULl if */
3587 /* group # g doesn't exist or there are less than n rules in the group. */
3588 /* ------------------------------------------------------------------------ */
3589 frentry_t *
3590 ipf_getrulen(ipf_main_softc_t *softc, int unit, char *group, u_32_t n)
3591 {
3592 frentry_t *fr;
3593 frgroup_t *fg;
3594
3595 fg = ipf_findgroup(softc, group, unit, softc->ipf_active, NULL);
3596 if (fg == NULL)
3597 return (NULL);
3598 for (fr = fg->fg_start; fr && n; fr = fr->fr_next, n--)
3599 ;
3600 if (n != 0)
3601 return (NULL);
3602 return (fr);
3603 }
3604
3605
3606 /* ------------------------------------------------------------------------ */
3607 /* Function: ipf_flushlist */
3608 /* Returns: int - >= 0 - number of flushed rules */
3609 /* Parameters: softc(I) - pointer to soft context main structure */
3610 /* nfreedp(O) - pointer to int where flush count is stored */
3611 /* listp(I) - pointer to list to flush pointer */
3612 /* Write Locks: ipf_mutex */
3613 /* */
3614 /* Recursively flush rules from the list, descending groups as they are */
3615 /* encountered. if a rule is the head of a group and it has lost all its */
3616 /* group members, then also delete the group reference. nfreedp is needed */
3617 /* to store the accumulating count of rules removed, whereas the returned */
3618 /* value is just the number removed from the current list. The latter is */
3619 /* needed to correctly adjust reference counts on rules that define groups. */
3620 /* */
3621 /* NOTE: Rules not loaded from user space cannot be flushed. */
3622 /* ------------------------------------------------------------------------ */
3623 static int
3624 ipf_flushlist(ipf_main_softc_t *softc, int *nfreedp, frentry_t **listp)
3625 {
3626 int freed = 0;
3627 frentry_t *fp;
3628
3629 while ((fp = *listp) != NULL) {
3630 if ((fp->fr_type & FR_T_BUILTIN) ||
3631 !(fp->fr_flags & FR_COPIED)) {
3632 listp = &fp->fr_next;
3633 continue;
3634 }
3635 *listp = fp->fr_next;
3636 if (fp->fr_next != NULL)
3637 fp->fr_next->fr_pnext = fp->fr_pnext;
3638 fp->fr_pnext = NULL;
3639
3640 if (fp->fr_grphead != NULL) {
3641 freed += ipf_group_flush(softc, fp->fr_grphead);
3642 fp->fr_names[fp->fr_grhead] = '\0';
3643 }
3644
3645 if (fp->fr_icmpgrp != NULL) {
3646 freed += ipf_group_flush(softc, fp->fr_icmpgrp);
3647 fp->fr_names[fp->fr_icmphead] = '\0';
3648 }
3649
3650 if (fp->fr_srctrack.ht_max_nodes)
3651 ipf_rb_ht_flush(&fp->fr_srctrack);
3652
3653 fp->fr_next = NULL;
3654
3655 ASSERT(fp->fr_ref > 0);
3656 if (ipf_derefrule(softc, &fp) == 0)
3657 freed++;
3658 }
3659 *nfreedp += freed;
3660 return (freed);
3661 }
3662
3663
3664 /* ------------------------------------------------------------------------ */
3665 /* Function: ipf_flush */
3666 /* Returns: int - >= 0 - number of flushed rules */
3667 /* Parameters: softc(I) - pointer to soft context main structure */
3668 /* unit(I) - device for which to flush rules */
3669 /* flags(I) - which set of rules to flush */
3670 /* */
3671 /* Calls flushlist() for all filter rules (accounting, firewall - both IPv4 */
3672 /* and IPv6) as defined by the value of flags. */
3673 /* ------------------------------------------------------------------------ */
3674 int
3675 ipf_flush(ipf_main_softc_t *softc, minor_t unit, int flags)
3676 {
3677 int flushed = 0, set;
3678
3679 WRITE_ENTER(&softc->ipf_mutex);
3680
3681 set = softc->ipf_active;
3682 if ((flags & FR_INACTIVE) == FR_INACTIVE)
3683 set = 1 - set;
3684
3685 if (flags & FR_OUTQUE) {
3686 ipf_flushlist(softc, &flushed, &softc->ipf_rules[1][set]);
3687 ipf_flushlist(softc, &flushed, &softc->ipf_acct[1][set]);
3688 }
3689 if (flags & FR_INQUE) {
3690 ipf_flushlist(softc, &flushed, &softc->ipf_rules[0][set]);
3691 ipf_flushlist(softc, &flushed, &softc->ipf_acct[0][set]);
3692 }
3693
3694 flushed += ipf_flush_groups(softc, &softc->ipf_groups[unit][set],
3695 flags & (FR_INQUE|FR_OUTQUE));
3696
3697 RWLOCK_EXIT(&softc->ipf_mutex);
3698
3699 if (unit == IPL_LOGIPF) {
3700 int tmp;
3701
3702 tmp = ipf_flush(softc, IPL_LOGCOUNT, flags);
3703 if (tmp >= 0)
3704 flushed += tmp;
3705 }
3706 return (flushed);
3707 }
3708
3709
3710 /* ------------------------------------------------------------------------ */
3711 /* Function: ipf_flush_groups */
3712 /* Returns: int - >= 0 - number of flushed rules */
3713 /* Parameters: softc(I) - soft context pointerto work with */
3714 /* grhead(I) - pointer to the start of the group list to flush */
3715 /* flags(I) - which set of rules to flush */
3716 /* */
3717 /* Walk through all of the groups under the given group head and remove all */
3718 /* of those that match the flags passed in. The for loop here is bit more */
3719 /* complicated than usual because the removal of a rule with ipf_derefrule */
3720 /* may end up removing not only the structure pointed to by "fg" but also */
3721 /* what is fg_next and fg_next after that. So if a filter rule is actually */
3722 /* removed from the group then it is necessary to start again. */
3723 /* ------------------------------------------------------------------------ */
3724 static int
3725 ipf_flush_groups(ipf_main_softc_t *softc, frgroup_t **grhead, int flags)
3726 {
3727 frentry_t *fr, **frp;
3728 frgroup_t *fg, **fgp;
3729 int flushed = 0;
3730 int removed = 0;
3731
3732 for (fgp = grhead; (fg = *fgp) != NULL; ) {
3733 while ((fg != NULL) && ((fg->fg_flags & flags) == 0))
3734 fg = fg->fg_next;
3735 if (fg == NULL)
3736 break;
3737 removed = 0;
3738 frp = &fg->fg_start;
3739 while ((removed == 0) && ((fr = *frp) != NULL)) {
3740 if ((fr->fr_flags & flags) == 0) {
3741 frp = &fr->fr_next;
3742 } else {
3743 if (fr->fr_next != NULL)
3744 fr->fr_next->fr_pnext = fr->fr_pnext;
3745 *frp = fr->fr_next;
3746 fr->fr_pnext = NULL;
3747 fr->fr_next = NULL;
3748 (void) ipf_derefrule(softc, &fr);
3749 flushed++;
3750 removed++;
3751 }
3752 }
3753 if (removed == 0)
3754 fgp = &fg->fg_next;
3755 }
3756 return (flushed);
3757 }
3758
3759
3760 /* ------------------------------------------------------------------------ */
3761 /* Function: memstr */
3762 /* Returns: char * - NULL if failed, != NULL pointer to matching bytes */
3763 /* Parameters: src(I) - pointer to byte sequence to match */
3764 /* dst(I) - pointer to byte sequence to search */
3765 /* slen(I) - match length */
3766 /* dlen(I) - length available to search in */
3767 /* */
3768 /* Search dst for a sequence of bytes matching those at src and extend for */
3769 /* slen bytes. */
3770 /* ------------------------------------------------------------------------ */
3771 char *
3772 memstr(const char *src, char *dst, size_t slen, size_t dlen)
3773 {
3774 char *s = NULL;
3775
3776 while (dlen >= slen) {
3777 if (bcmp(src, dst, slen) == 0) {
3778 s = dst;
3779 break;
3780 }
3781 dst++;
3782 dlen--;
3783 }
3784 return (s);
3785 }
3786 /* ------------------------------------------------------------------------ */
3787 /* Function: ipf_fixskip */
3788 /* Returns: Nil */
3789 /* Parameters: listp(IO) - pointer to start of list with skip rule */
3790 /* rp(I) - rule added/removed with skip in it. */
3791 /* addremove(I) - adjustment (-1/+1) to make to skip count, */
3792 /* depending on whether a rule was just added */
3793 /* or removed. */
3794 /* */
3795 /* Adjust all the rules in a list which would have skip'd past the position */
3796 /* where we are inserting to skip to the right place given the change. */
3797 /* ------------------------------------------------------------------------ */
3798 void
3799 ipf_fixskip(frentry_t **listp, frentry_t *rp, int addremove)
3800 {
3801 int rules, rn;
3802 frentry_t *fp;
3803
3804 rules = 0;
3805 for (fp = *listp; (fp != NULL) && (fp != rp); fp = fp->fr_next)
3806 rules++;
3807
3808 if (fp == NULL)
3809 return;
3810
3811 for (rn = 0, fp = *listp; fp && (fp != rp); fp = fp->fr_next, rn++)
3812 if (FR_ISSKIP(fp->fr_flags) && (rn + fp->fr_arg >= rules))
3813 fp->fr_arg += addremove;
3814 }
3815
3816
3817 #ifdef _KERNEL
3818 /* ------------------------------------------------------------------------ */
3819 /* Function: count4bits */
3820 /* Returns: int - >= 0 - number of consecutive bits in input */
3821 /* Parameters: ip(I) - 32bit IP address */
3822 /* */
3823 /* IPv4 ONLY */
3824 /* count consecutive 1's in bit mask. If the mask generated by counting */
3825 /* consecutive 1's is different to that passed, return -1, else return # */
3826 /* of bits. */
3827 /* ------------------------------------------------------------------------ */
3828 int
3829 count4bits(u_32_t ip)
3830 {
3831 u_32_t ipn;
3832 int cnt = 0, i, j;
3833
3834 ip = ipn = ntohl(ip);
3835 for (i = 32; i; i--, ipn *= 2)
3836 if (ipn & 0x80000000)
3837 cnt++;
3838 else
3839 break;
3840 ipn = 0;
3841 for (i = 32, j = cnt; i; i--, j--) {
3842 ipn *= 2;
3843 if (j > 0)
3844 ipn++;
3845 }
3846 if (ipn == ip)
3847 return (cnt);
3848 return (-1);
3849 }
3850
3851
3852 /* ------------------------------------------------------------------------ */
3853 /* Function: count6bits */
3854 /* Returns: int - >= 0 - number of consecutive bits in input */
3855 /* Parameters: msk(I) - pointer to start of IPv6 bitmask */
3856 /* */
3857 /* IPv6 ONLY */
3858 /* count consecutive 1's in bit mask. */
3859 /* ------------------------------------------------------------------------ */
3860 # ifdef USE_INET6
3861 int
3862 count6bits(u_32_t *msk)
3863 {
3864 int i = 0, k;
3865 u_32_t j;
3866
3867 for (k = 3; k >= 0; k--)
3868 if (msk[k] == 0xffffffff)
3869 i += 32;
3870 else {
3871 for (j = msk[k]; j; j <<= 1)
3872 if (j & 0x80000000)
3873 i++;
3874 }
3875 return (i);
3876 }
3877 # endif
3878 #endif /* _KERNEL */
3879
3880
3881 /* ------------------------------------------------------------------------ */
3882 /* Function: ipf_synclist */
3883 /* Returns: int - 0 = no failures, else indication of first failure */
3884 /* Parameters: fr(I) - start of filter list to sync interface names for */
3885 /* ifp(I) - interface pointer for limiting sync lookups */
3886 /* Write Locks: ipf_mutex */
3887 /* */
3888 /* Walk through a list of filter rules and resolve any interface names into */
3889 /* pointers. Where dynamic addresses are used, also update the IP address */
3890 /* used in the rule. The interface pointer is used to limit the lookups to */
3891 /* a specific set of matching names if it is non-NULL. */
3892 /* Errors can occur when resolving the destination name of to/dup-to fields */
3893 /* when the name points to a pool and that pool doest not exist. If this */
3894 /* does happen then it is necessary to check if there are any lookup refs */
3895 /* that need to be dropped before returning with an error. */
3896 /* ------------------------------------------------------------------------ */
3897 static int
3898 ipf_synclist(ipf_main_softc_t *softc, frentry_t *fr, void *ifp)
3899 {
3900 frentry_t *frt, *start = fr;
3901 frdest_t *fdp;
3902 char *name;
3903 int error;
3904 void *ifa;
3905 int v, i;
3906
3907 error = 0;
3908
3909 for (; fr; fr = fr->fr_next) {
3910 if (fr->fr_family == AF_INET)
3911 v = 4;
3912 else if (fr->fr_family == AF_INET6)
3913 v = 6;
3914 else
3915 v = 0;
3916
3917 /*
3918 * Lookup all the interface names that are part of the rule.
3919 */
3920 for (i = 0; i < FR_NUM(fr->fr_ifas); i++) {
3921 if ((ifp != NULL) && (fr->fr_ifas[i] != ifp))
3922 continue;
3923 if (fr->fr_ifnames[i] == -1)
3924 continue;
3925 name = FR_NAME(fr, fr_ifnames[i]);
3926 fr->fr_ifas[i] = ipf_resolvenic(softc, name, v);
3927 }
3928
3929 if ((fr->fr_type & ~FR_T_BUILTIN) == FR_T_IPF) {
3930 if (fr->fr_satype != FRI_NORMAL &&
3931 fr->fr_satype != FRI_LOOKUP) {
3932 ifa = ipf_resolvenic(softc, fr->fr_names +
3933 fr->fr_sifpidx, v);
3934 ipf_ifpaddr(softc, v, fr->fr_satype, ifa,
3935 &fr->fr_src6, &fr->fr_smsk6);
3936 }
3937 if (fr->fr_datype != FRI_NORMAL &&
3938 fr->fr_datype != FRI_LOOKUP) {
3939 ifa = ipf_resolvenic(softc, fr->fr_names +
3940 fr->fr_sifpidx, v);
3941 ipf_ifpaddr(softc, v, fr->fr_datype, ifa,
3942 &fr->fr_dst6, &fr->fr_dmsk6);
3943 }
3944 }
3945
3946 fdp = &fr->fr_tifs[0];
3947 if ((ifp == NULL) || (fdp->fd_ptr == ifp)) {
3948 error = ipf_resolvedest(softc, fr->fr_names, fdp, v);
3949 if (error != 0)
3950 goto unwind;
3951 }
3952
3953 fdp = &fr->fr_tifs[1];
3954 if ((ifp == NULL) || (fdp->fd_ptr == ifp)) {
3955 error = ipf_resolvedest(softc, fr->fr_names, fdp, v);
3956 if (error != 0)
3957 goto unwind;
3958 }
3959
3960 fdp = &fr->fr_dif;
3961 if ((ifp == NULL) || (fdp->fd_ptr == ifp)) {
3962 error = ipf_resolvedest(softc, fr->fr_names, fdp, v);
3963 if (error != 0)
3964 goto unwind;
3965 }
3966
3967 if (((fr->fr_type & ~FR_T_BUILTIN) == FR_T_IPF) &&
3968 (fr->fr_satype == FRI_LOOKUP) && (fr->fr_srcptr == NULL)) {
3969 fr->fr_srcptr = ipf_lookup_res_num(softc,
3970 fr->fr_srctype,
3971 IPL_LOGIPF,
3972 fr->fr_srcnum,
3973 &fr->fr_srcfunc);
3974 }
3975 if (((fr->fr_type & ~FR_T_BUILTIN) == FR_T_IPF) &&
3976 (fr->fr_datype == FRI_LOOKUP) && (fr->fr_dstptr == NULL)) {
3977 fr->fr_dstptr = ipf_lookup_res_num(softc,
3978 fr->fr_dsttype,
3979 IPL_LOGIPF,
3980 fr->fr_dstnum,
3981 &fr->fr_dstfunc);
3982 }
3983 }
3984 return (0);
3985
3986 unwind:
3987 for (frt = start; frt != fr; fr = fr->fr_next) {
3988 if (((frt->fr_type & ~FR_T_BUILTIN) == FR_T_IPF) &&
3989 (frt->fr_satype == FRI_LOOKUP) && (frt->fr_srcptr != NULL))
3990 ipf_lookup_deref(softc, frt->fr_srctype,
3991 frt->fr_srcptr);
3992 if (((frt->fr_type & ~FR_T_BUILTIN) == FR_T_IPF) &&
3993 (frt->fr_datype == FRI_LOOKUP) && (frt->fr_dstptr != NULL))
3994 ipf_lookup_deref(softc, frt->fr_dsttype,
3995 frt->fr_dstptr);
3996 }
3997 return (error);
3998 }
3999
4000
4001 /* ------------------------------------------------------------------------ */
4002 /* Function: ipf_sync */
4003 /* Returns: void */
4004 /* Parameters: Nil */
4005 /* */
4006 /* ipf_sync() is called when we suspect that the interface list or */
4007 /* information about interfaces (like IP#) has changed. Go through all */
4008 /* filter rules, NAT entries and the state table and check if anything */
4009 /* needs to be changed/updated. */
4010 /* ------------------------------------------------------------------------ */
4011 int
4012 ipf_sync(ipf_main_softc_t *softc, void *ifp)
4013 {
4014 int i;
4015
4016 #if !SOLARIS
4017 ipf_nat_sync(softc, ifp);
4018 ipf_state_sync(softc, ifp);
4019 ipf_lookup_sync(softc, ifp);
4020 #endif
4021
4022 WRITE_ENTER(&softc->ipf_mutex);
4023 (void) ipf_synclist(softc, softc->ipf_acct[0][softc->ipf_active], ifp);
4024 (void) ipf_synclist(softc, softc->ipf_acct[1][softc->ipf_active], ifp);
4025 (void) ipf_synclist(softc, softc->ipf_rules[0][softc->ipf_active], ifp);
4026 (void) ipf_synclist(softc, softc->ipf_rules[1][softc->ipf_active], ifp);
4027
4028 for (i = 0; i < IPL_LOGSIZE; i++) {
4029 frgroup_t *g;
4030
4031 for (g = softc->ipf_groups[i][0]; g != NULL; g = g->fg_next)
4032 (void) ipf_synclist(softc, g->fg_start, ifp);
4033 for (g = softc->ipf_groups[i][1]; g != NULL; g = g->fg_next)
4034 (void) ipf_synclist(softc, g->fg_start, ifp);
4035 }
4036 RWLOCK_EXIT(&softc->ipf_mutex);
4037
4038 return (0);
4039 }
4040
4041
4042 /*
4043 * In the functions below, bcopy() is called because the pointer being
4044 * copied _from_ in this instance is a pointer to a char buf (which could
4045 * end up being unaligned) and on the kernel's local stack.
4046 */
4047 /* ------------------------------------------------------------------------ */
4048 /* Function: copyinptr */
4049 /* Returns: int - 0 = success, else failure */
4050 /* Parameters: src(I) - pointer to the source address */
4051 /* dst(I) - destination address */
4052 /* size(I) - number of bytes to copy */
4053 /* */
4054 /* Copy a block of data in from user space, given a pointer to the pointer */
4055 /* to start copying from (src) and a pointer to where to store it (dst). */
4056 /* NB: src - pointer to user space pointer, dst - kernel space pointer */
4057 /* ------------------------------------------------------------------------ */
4058 int
4059 copyinptr(ipf_main_softc_t *softc, void *src, void *dst, size_t size)
4060 {
4061 caddr_t ca;
4062 int error;
4063
4064 #if SOLARIS
4065 error = COPYIN(src, &ca, sizeof(ca));
4066 if (error != 0)
4067 return (error);
4068 #else
4069 bcopy(src, (caddr_t)&ca, sizeof(ca));
4070 #endif
4071 error = COPYIN(ca, dst, size);
4072 if (error != 0) {
4073 IPFERROR(3);
4074 error = EFAULT;
4075 }
4076 return (error);
4077 }
4078
4079
4080 /* ------------------------------------------------------------------------ */
4081 /* Function: copyoutptr */
4082 /* Returns: int - 0 = success, else failure */
4083 /* Parameters: src(I) - pointer to the source address */
4084 /* dst(I) - destination address */
4085 /* size(I) - number of bytes to copy */
4086 /* */
4087 /* Copy a block of data out to user space, given a pointer to the pointer */
4088 /* to start copying from (src) and a pointer to where to store it (dst). */
4089 /* NB: src - kernel space pointer, dst - pointer to user space pointer. */
4090 /* ------------------------------------------------------------------------ */
4091 int
4092 copyoutptr(ipf_main_softc_t *softc, void *src, void *dst, size_t size)
4093 {
4094 caddr_t ca;
4095 int error;
4096
4097 bcopy(dst, (caddr_t)&ca, sizeof(ca));
4098 error = COPYOUT(src, ca, size);
4099 if (error != 0) {
4100 IPFERROR(4);
4101 error = EFAULT;
4102 }
4103 return (error);
4104 }
4105
4106
4107 /* ------------------------------------------------------------------------ */
4108 /* Function: ipf_lock */
4109 /* Returns: int - 0 = success, else error */
4110 /* Parameters: data(I) - pointer to lock value to set */
4111 /* lockp(O) - pointer to location to store old lock value */
4112 /* */
4113 /* Get the new value for the lock integer, set it and return the old value */
4114 /* in *lockp. */
4115 /* ------------------------------------------------------------------------ */
4116 int
4117 ipf_lock(caddr_t data, int *lockp)
4118 {
4119 int arg, err;
4120
4121 err = BCOPYIN(data, &arg, sizeof(arg));
4122 if (err != 0)
4123 return (EFAULT);
4124 err = BCOPYOUT(lockp, data, sizeof(*lockp));
4125 if (err != 0)
4126 return (EFAULT);
4127 *lockp = arg;
4128 return (0);
4129 }
4130
4131
4132 /* ------------------------------------------------------------------------ */
4133 /* Function: ipf_getstat */
4134 /* Returns: Nil */
4135 /* Parameters: softc(I) - pointer to soft context main structure */
4136 /* fiop(I) - pointer to ipfilter stats structure */
4137 /* rev(I) - version claim by program doing ioctl */
4138 /* */
4139 /* Stores a copy of current pointers, counters, etc, in the friostat */
4140 /* structure. */
4141 /* If IPFILTER_COMPAT is compiled, we pretend to be whatever version the */
4142 /* program is looking for. This ensure that validation of the version it */
4143 /* expects will always succeed. Thus kernels with IPFILTER_COMPAT will */
4144 /* allow older binaries to work but kernels without it will not. */
4145 /* ------------------------------------------------------------------------ */
4146 /*ARGSUSED*/
4147 static void
4148 ipf_getstat(ipf_main_softc_t *softc, friostat_t *fiop, int rev)
4149 {
4150 int i;
4151
4152 bcopy((char *)softc->ipf_stats, (char *)fiop->f_st,
4153 sizeof(ipf_statistics_t) * 2);
4154 fiop->f_locks[IPL_LOGSTATE] = -1;
4155 fiop->f_locks[IPL_LOGNAT] = -1;
4156 fiop->f_locks[IPL_LOGIPF] = -1;
4157 fiop->f_locks[IPL_LOGAUTH] = -1;
4158
4159 fiop->f_ipf[0][0] = softc->ipf_rules[0][0];
4160 fiop->f_acct[0][0] = softc->ipf_acct[0][0];
4161 fiop->f_ipf[0][1] = softc->ipf_rules[0][1];
4162 fiop->f_acct[0][1] = softc->ipf_acct[0][1];
4163 fiop->f_ipf[1][0] = softc->ipf_rules[1][0];
4164 fiop->f_acct[1][0] = softc->ipf_acct[1][0];
4165 fiop->f_ipf[1][1] = softc->ipf_rules[1][1];
4166 fiop->f_acct[1][1] = softc->ipf_acct[1][1];
4167
4168 fiop->f_ticks = softc->ipf_ticks;
4169 fiop->f_active = softc->ipf_active;
4170 fiop->f_froute[0] = softc->ipf_frouteok[0];
4171 fiop->f_froute[1] = softc->ipf_frouteok[1];
4172 fiop->f_rb_no_mem = softc->ipf_rb_no_mem;
4173 fiop->f_rb_node_max = softc->ipf_rb_node_max;
4174
4175 fiop->f_running = softc->ipf_running;
4176 for (i = 0; i < IPL_LOGSIZE; i++) {
4177 fiop->f_groups[i][0] = softc->ipf_groups[i][0];
4178 fiop->f_groups[i][1] = softc->ipf_groups[i][1];
4179 }
4180 #ifdef IPFILTER_LOG
4181 fiop->f_log_ok = ipf_log_logok(softc, IPL_LOGIPF);
4182 fiop->f_log_fail = ipf_log_failures(softc, IPL_LOGIPF);
4183 fiop->f_logging = 1;
4184 #else
4185 fiop->f_log_ok = 0;
4186 fiop->f_log_fail = 0;
4187 fiop->f_logging = 0;
4188 #endif
4189 fiop->f_defpass = softc->ipf_pass;
4190 fiop->f_features = ipf_features;
4191
4192 #ifdef IPFILTER_COMPAT
4193 snprintf(fiop->f_version, sizeof(friostat.f_version), "IP Filter: v%d.%d.%d",
4194 (rev / 1000000) % 100,
4195 (rev / 10000) % 100,
4196 (rev / 100) % 100);
4197 #else
4198 rev = rev;
4199 (void) strncpy(fiop->f_version, ipfilter_version,
4200 sizeof(fiop->f_version));
4201 #endif
4202 }
4203
4204
4205 #ifdef USE_INET6
4206 int icmptoicmp6types[ICMP_MAXTYPE+1] = {
4207 ICMP6_ECHO_REPLY, /* 0: ICMP_ECHOREPLY */
4208 -1, /* 1: UNUSED */
4209 -1, /* 2: UNUSED */
4210 ICMP6_DST_UNREACH, /* 3: ICMP_UNREACH */
4211 -1, /* 4: ICMP_SOURCEQUENCH */
4212 ND_REDIRECT, /* 5: ICMP_REDIRECT */
4213 -1, /* 6: UNUSED */
4214 -1, /* 7: UNUSED */
4215 ICMP6_ECHO_REQUEST, /* 8: ICMP_ECHO */
4216 -1, /* 9: UNUSED */
4217 -1, /* 10: UNUSED */
4218 ICMP6_TIME_EXCEEDED, /* 11: ICMP_TIMXCEED */
4219 ICMP6_PARAM_PROB, /* 12: ICMP_PARAMPROB */
4220 -1, /* 13: ICMP_TSTAMP */
4221 -1, /* 14: ICMP_TSTAMPREPLY */
4222 -1, /* 15: ICMP_IREQ */
4223 -1, /* 16: ICMP_IREQREPLY */
4224 -1, /* 17: ICMP_MASKREQ */
4225 -1, /* 18: ICMP_MASKREPLY */
4226 };
4227
4228
4229 int icmptoicmp6unreach[ICMP_MAX_UNREACH] = {
4230 ICMP6_DST_UNREACH_ADDR, /* 0: ICMP_UNREACH_NET */
4231 ICMP6_DST_UNREACH_ADDR, /* 1: ICMP_UNREACH_HOST */
4232 -1, /* 2: ICMP_UNREACH_PROTOCOL */
4233 ICMP6_DST_UNREACH_NOPORT, /* 3: ICMP_UNREACH_PORT */
4234 -1, /* 4: ICMP_UNREACH_NEEDFRAG */
4235 ICMP6_DST_UNREACH_NOTNEIGHBOR, /* 5: ICMP_UNREACH_SRCFAIL */
4236 ICMP6_DST_UNREACH_ADDR, /* 6: ICMP_UNREACH_NET_UNKNOWN */
4237 ICMP6_DST_UNREACH_ADDR, /* 7: ICMP_UNREACH_HOST_UNKNOWN */
4238 -1, /* 8: ICMP_UNREACH_ISOLATED */
4239 ICMP6_DST_UNREACH_ADMIN, /* 9: ICMP_UNREACH_NET_PROHIB */
4240 ICMP6_DST_UNREACH_ADMIN, /* 10: ICMP_UNREACH_HOST_PROHIB */
4241 -1, /* 11: ICMP_UNREACH_TOSNET */
4242 -1, /* 12: ICMP_UNREACH_TOSHOST */
4243 ICMP6_DST_UNREACH_ADMIN, /* 13: ICMP_UNREACH_ADMIN_PROHIBIT */
4244 };
4245 int icmpreplytype6[ICMP6_MAXTYPE + 1];
4246 #endif
4247
4248 int icmpreplytype4[ICMP_MAXTYPE + 1];
4249
4250
4251 /* ------------------------------------------------------------------------ */
4252 /* Function: ipf_matchicmpqueryreply */
4253 /* Returns: int - 1 if "icmp" is a valid reply to "ic" else 0. */
4254 /* Parameters: v(I) - IP protocol version (4 or 6) */
4255 /* ic(I) - ICMP information */
4256 /* icmp(I) - ICMP packet header */
4257 /* rev(I) - direction (0 = forward/1 = reverse) of packet */
4258 /* */
4259 /* Check if the ICMP packet defined by the header pointed to by icmp is a */
4260 /* reply to one as described by what's in ic. If it is a match, return 1, */
4261 /* else return 0 for no match. */
4262 /* ------------------------------------------------------------------------ */
4263 int
4264 ipf_matchicmpqueryreply(int v, icmpinfo_t *ic, icmphdr_t *icmp, int rev)
4265 {
4266 int ictype;
4267
4268 ictype = ic->ici_type;
4269
4270 if (v == 4) {
4271 /*
4272 * If we matched its type on the way in, then when going out
4273 * it will still be the same type.
4274 */
4275 if ((!rev && (icmp->icmp_type == ictype)) ||
4276 (rev && (icmpreplytype4[ictype] == icmp->icmp_type))) {
4277 if (icmp->icmp_type != ICMP_ECHOREPLY)
4278 return (1);
4279 if (icmp->icmp_id == ic->ici_id)
4280 return (1);
4281 }
4282 }
4283 #ifdef USE_INET6
4284 else if (v == 6) {
4285 if ((!rev && (icmp->icmp_type == ictype)) ||
4286 (rev && (icmpreplytype6[ictype] == icmp->icmp_type))) {
4287 if (icmp->icmp_type != ICMP6_ECHO_REPLY)
4288 return (1);
4289 if (icmp->icmp_id == ic->ici_id)
4290 return (1);
4291 }
4292 }
4293 #endif
4294 return (0);
4295 }
4296
4297
4298 /*
4299 * IFNAMES are located in the variable length field starting at
4300 * frentry.fr_names. As pointers within the struct cannot be passed
4301 * to the kernel from ipf(8), an offset is used. An offset of -1 means it
4302 * is unused (invalid). If it is used (valid) it is an offset to the
4303 * character string of an interface name or a comment. The following
4304 * macros will assist those who follow to understand the code.
4305 */
4306 #define IPF_IFNAME_VALID(_a) (_a != -1)
4307 #define IPF_IFNAME_INVALID(_a) (_a == -1)
4308 #define IPF_IFNAMES_DIFFERENT(_a) \
4309 !((IPF_IFNAME_INVALID(fr1->_a) && \
4310 IPF_IFNAME_INVALID(fr2->_a)) || \
4311 (IPF_IFNAME_VALID(fr1->_a) && \
4312 IPF_IFNAME_VALID(fr2->_a) && \
4313 !strcmp(FR_NAME(fr1, _a), FR_NAME(fr2, _a))))
4314 #define IPF_FRDEST_DIFFERENT(_a) \
4315 (memcmp(&fr1->_a.fd_addr, &fr2->_a.fd_addr, \
4316 offsetof(frdest_t, fd_name) - offsetof(frdest_t, fd_addr)) || \
4317 IPF_IFNAMES_DIFFERENT(_a.fd_name))
4318
4319
4320 /* ------------------------------------------------------------------------ */
4321 /* Function: ipf_rule_compare */
4322 /* Parameters: fr1(I) - first rule structure to compare */
4323 /* fr2(I) - second rule structure to compare */
4324 /* Returns: int - 0 == rules are the same, else mismatch */
4325 /* */
4326 /* Compare two rules and return 0 if they match or a number indicating */
4327 /* which of the individual checks failed. */
4328 /* ------------------------------------------------------------------------ */
4329 static int
4330 ipf_rule_compare(frentry_t *fr1, frentry_t *fr2)
4331 {
4332 int i;
4333
4334 if (fr1->fr_cksum != fr2->fr_cksum)
4335 return (1);
4336 if (fr1->fr_size != fr2->fr_size)
4337 return (2);
4338 if (fr1->fr_dsize != fr2->fr_dsize)
4339 return (3);
4340 if (bcmp((char *)&fr1->fr_func, (char *)&fr2->fr_func, FR_CMPSIZ)
4341 != 0)
4342 return (4);
4343 /*
4344 * XXX: There is still a bug here as different rules with the
4345 * the same interfaces but in a different order will compare
4346 * differently. But since multiple interfaces in a rule doesn't
4347 * work anyway a simple straightforward compare is performed
4348 * here. Ultimately frentry_t creation will need to be
4349 * revisited in ipf_y.y. While the other issue, recognition
4350 * of only the first interface in a list of interfaces will
4351 * need to be separately addressed along with why only four.
4352 */
4353 for (i = 0; i < FR_NUM(fr1->fr_ifnames); i++) {
4354 /*
4355 * XXX: It's either the same index or uninitialized.
4356 * We assume this because multiple interfaces
4357 * referenced by the same rule doesn't work anyway.
4358 */
4359 if (IPF_IFNAMES_DIFFERENT(fr_ifnames[i]))
4360 return (5);
4361 }
4362
4363 if (IPF_FRDEST_DIFFERENT(fr_tif))
4364 return (6);
4365 if (IPF_FRDEST_DIFFERENT(fr_rif))
4366 return (7);
4367 if (IPF_FRDEST_DIFFERENT(fr_dif))
4368 return (8);
4369 if (!fr1->fr_data && !fr2->fr_data)
4370 return (0); /* move along, nothing to see here */
4371 if (fr1->fr_data && fr2->fr_data) {
4372 if (bcmp(fr1->fr_caddr, fr2->fr_caddr, fr1->fr_dsize) == 0)
4373 return (0); /* same */
4374 }
4375 return (9);
4376 }
4377
4378
4379 /* ------------------------------------------------------------------------ */
4380 /* Function: frrequest */
4381 /* Returns: int - 0 == success, > 0 == errno value */
4382 /* Parameters: unit(I) - device for which this is for */
4383 /* req(I) - ioctl command (SIOC*) */
4384 /* data(I) - pointr to ioctl data */
4385 /* set(I) - 1 or 0 (filter set) */
4386 /* makecopy(I) - flag indicating whether data points to a rule */
4387 /* in kernel space & hence doesn't need copying. */
4388 /* */
4389 /* This function handles all the requests which operate on the list of */
4390 /* filter rules. This includes adding, deleting, insertion. It is also */
4391 /* responsible for creating groups when a "head" rule is loaded. Interface */
4392 /* names are resolved here and other sanity checks are made on the content */
4393 /* of the rule structure being loaded. If a rule has user defined timeouts */
4394 /* then make sure they are created and initialised before exiting. */
4395 /* ------------------------------------------------------------------------ */
4396 int
4397 frrequest(ipf_main_softc_t *softc, int unit, ioctlcmd_t req, caddr_t data,
4398 int set, int makecopy)
4399 {
4400 int error = 0, in, family, need_free = 0;
4401 enum { OP_ADD, /* add rule */
4402 OP_REM, /* remove rule */
4403 OP_ZERO /* zero statistics and counters */ }
4404 addrem = OP_ADD;
4405 frentry_t frd, *fp, *f, **fprev, **ftail;
4406 void *ptr, *uptr, *cptr;
4407 u_int *p, *pp;
4408 frgroup_t *fg;
4409 char *group;
4410
4411 ptr = NULL;
4412 cptr = NULL;
4413 fg = NULL;
4414 fp = &frd;
4415 if (makecopy != 0) {
4416 bzero(fp, sizeof(frd));
4417 error = ipf_inobj(softc, data, NULL, fp, IPFOBJ_FRENTRY);
4418 if (error) {
4419 return (error);
4420 }
4421 if ((fp->fr_type & FR_T_BUILTIN) != 0) {
4422 IPFERROR(6);
4423 return (EINVAL);
4424 }
4425 KMALLOCS(f, frentry_t *, fp->fr_size);
4426 if (f == NULL) {
4427 IPFERROR(131);
4428 return (ENOMEM);
4429 }
4430 bzero(f, fp->fr_size);
4431 error = ipf_inobjsz(softc, data, f, IPFOBJ_FRENTRY,
4432 fp->fr_size);
4433 if (error) {
4434 KFREES(f, fp->fr_size);
4435 return (error);
4436 }
4437
4438 fp = f;
4439 f = NULL;
4440 fp->fr_next = NULL;
4441 fp->fr_dnext = NULL;
4442 fp->fr_pnext = NULL;
4443 fp->fr_pdnext = NULL;
4444 fp->fr_grp = NULL;
4445 fp->fr_grphead = NULL;
4446 fp->fr_icmpgrp = NULL;
4447 fp->fr_isc = (void *)-1;
4448 fp->fr_ptr = NULL;
4449 fp->fr_ref = 0;
4450 fp->fr_flags |= FR_COPIED;
4451 } else {
4452 fp = (frentry_t *)data;
4453 if ((fp->fr_type & FR_T_BUILTIN) == 0) {
4454 IPFERROR(7);
4455 return (EINVAL);
4456 }
4457 fp->fr_flags &= ~FR_COPIED;
4458 }
4459
4460 if (((fp->fr_dsize == 0) && (fp->fr_data != NULL)) ||
4461 ((fp->fr_dsize != 0) && (fp->fr_data == NULL))) {
4462 IPFERROR(8);
4463 error = EINVAL;
4464 goto donenolock;
4465 }
4466
4467 family = fp->fr_family;
4468 uptr = fp->fr_data;
4469
4470 if (req == (ioctlcmd_t)SIOCINAFR || req == (ioctlcmd_t)SIOCINIFR ||
4471 req == (ioctlcmd_t)SIOCADAFR || req == (ioctlcmd_t)SIOCADIFR)
4472 addrem = OP_ADD; /* Add rule */
4473 else if (req == (ioctlcmd_t)SIOCRMAFR || req == (ioctlcmd_t)SIOCRMIFR)
4474 addrem = OP_REM; /* Remove rule */
4475 else if (req == (ioctlcmd_t)SIOCZRLST)
4476 addrem = OP_ZERO; /* Zero statistics and counters */
4477 else {
4478 IPFERROR(9);
4479 error = EINVAL;
4480 goto donenolock;
4481 }
4482
4483 /*
4484 * Only filter rules for IPv4 or IPv6 are accepted.
4485 */
4486 if (family == AF_INET) {
4487 /*EMPTY*/;
4488 #ifdef USE_INET6
4489 } else if (family == AF_INET6) {
4490 /*EMPTY*/;
4491 #endif
4492 } else if (family != 0) {
4493 IPFERROR(10);
4494 error = EINVAL;
4495 goto donenolock;
4496 }
4497
4498 /*
4499 * If the rule is being loaded from user space, i.e. we had to copy it
4500 * into kernel space, then do not trust the function pointer in the
4501 * rule.
4502 */
4503 if ((makecopy == 1) && (fp->fr_func != NULL)) {
4504 if (ipf_findfunc(fp->fr_func) == NULL) {
4505 IPFERROR(11);
4506 error = ESRCH;
4507 goto donenolock;
4508 }
4509
4510 if (addrem == OP_ADD) {
4511 error = ipf_funcinit(softc, fp);
4512 if (error != 0)
4513 goto donenolock;
4514 }
4515 }
4516 if ((fp->fr_flags & FR_CALLNOW) &&
4517 ((fp->fr_func == NULL) || (fp->fr_func == (ipfunc_t)-1))) {
4518 IPFERROR(142);
4519 error = ESRCH;
4520 goto donenolock;
4521 }
4522 if (((fp->fr_flags & FR_CMDMASK) == FR_CALL) &&
4523 ((fp->fr_func == NULL) || (fp->fr_func == (ipfunc_t)-1))) {
4524 IPFERROR(143);
4525 error = ESRCH;
4526 goto donenolock;
4527 }
4528
4529 ptr = NULL;
4530 cptr = NULL;
4531
4532 if (FR_ISACCOUNT(fp->fr_flags))
4533 unit = IPL_LOGCOUNT;
4534
4535 /*
4536 * Check that each group name in the rule has a start index that
4537 * is valid.
4538 */
4539 if (fp->fr_icmphead != -1) {
4540 if ((fp->fr_icmphead < 0) ||
4541 (fp->fr_icmphead >= fp->fr_namelen)) {
4542 IPFERROR(136);
4543 error = EINVAL;
4544 goto donenolock;
4545 }
4546 if (!strcmp(FR_NAME(fp, fr_icmphead), ""))
4547 fp->fr_names[fp->fr_icmphead] = '\0';
4548 }
4549
4550 if (fp->fr_grhead != -1) {
4551 if ((fp->fr_grhead < 0) ||
4552 (fp->fr_grhead >= fp->fr_namelen)) {
4553 IPFERROR(137);
4554 error = EINVAL;
4555 goto donenolock;
4556 }
4557 if (!strcmp(FR_NAME(fp, fr_grhead), ""))
4558 fp->fr_names[fp->fr_grhead] = '\0';
4559 }
4560
4561 if (fp->fr_group != -1) {
4562 if ((fp->fr_group < 0) ||
4563 (fp->fr_group >= fp->fr_namelen)) {
4564 IPFERROR(138);
4565 error = EINVAL;
4566 goto donenolock;
4567 }
4568 if ((req != (int)SIOCZRLST) && (fp->fr_group != -1)) {
4569 /*
4570 * Allow loading rules that are in groups to cause
4571 * them to be created if they don't already exit.
4572 */
4573 group = FR_NAME(fp, fr_group);
4574 if (addrem == OP_ADD) {
4575 fg = ipf_group_add(softc, group, NULL,
4576 fp->fr_flags, unit, set);
4577 fp->fr_grp = fg;
4578 } else {
4579 fg = ipf_findgroup(softc, group, unit,
4580 set, NULL);
4581 if (fg == NULL) {
4582 IPFERROR(12);
4583 error = ESRCH;
4584 goto donenolock;
4585 }
4586 }
4587
4588 if (fg->fg_flags == 0) {
4589 fg->fg_flags = fp->fr_flags & FR_INOUT;
4590 } else if (fg->fg_flags != (fp->fr_flags & FR_INOUT)) {
4591 IPFERROR(13);
4592 error = ESRCH;
4593 goto donenolock;
4594 }
4595 }
4596 } else {
4597 /*
4598 * If a rule is going to be part of a group then it does
4599 * not matter whether it is an in or out rule, but if it
4600 * isn't in a group, then it does...
4601 */
4602 if ((fp->fr_flags & (FR_INQUE|FR_OUTQUE)) == 0) {
4603 IPFERROR(14);
4604 error = EINVAL;
4605 goto donenolock;
4606 }
4607 }
4608 in = (fp->fr_flags & FR_INQUE) ? 0 : 1;
4609
4610 /*
4611 * Work out which rule list this change is being applied to.
4612 */
4613 ftail = NULL;
4614 fprev = NULL;
4615 if (unit == IPL_LOGAUTH) {
4616 if ((fp->fr_tifs[0].fd_ptr != NULL) ||
4617 (fp->fr_tifs[1].fd_ptr != NULL) ||
4618 (fp->fr_dif.fd_ptr != NULL) ||
4619 (fp->fr_flags & FR_FASTROUTE)) {
4620 softc->ipf_interror = 145;
4621 error = EINVAL;
4622 goto donenolock;
4623 }
4624 fprev = ipf_auth_rulehead(softc);
4625 } else {
4626 if (FR_ISACCOUNT(fp->fr_flags))
4627 fprev = &softc->ipf_acct[in][set];
4628 else if ((fp->fr_flags & (FR_OUTQUE|FR_INQUE)) != 0)
4629 fprev = &softc->ipf_rules[in][set];
4630 }
4631 if (fprev == NULL) {
4632 IPFERROR(15);
4633 error = ESRCH;
4634 goto donenolock;
4635 }
4636
4637 if (fg != NULL)
4638 fprev = &fg->fg_start;
4639
4640 /*
4641 * Copy in extra data for the rule.
4642 */
4643 if (fp->fr_dsize != 0) {
4644 if (makecopy != 0) {
4645 KMALLOCS(ptr, void *, fp->fr_dsize);
4646 if (ptr == NULL) {
4647 IPFERROR(16);
4648 error = ENOMEM;
4649 goto donenolock;
4650 }
4651
4652 /*
4653 * The bcopy case is for when the data is appended
4654 * to the rule by ipf_in_compat().
4655 */
4656 if (uptr >= (void *)fp &&
4657 uptr < (void *)((char *)fp + fp->fr_size)) {
4658 bcopy(uptr, ptr, fp->fr_dsize);
4659 error = 0;
4660 } else {
4661 error = COPYIN(uptr, ptr, fp->fr_dsize);
4662 if (error != 0) {
4663 IPFERROR(17);
4664 error = EFAULT;
4665 goto donenolock;
4666 }
4667 }
4668 } else {
4669 ptr = uptr;
4670 }
4671 fp->fr_data = ptr;
4672 } else {
4673 fp->fr_data = NULL;
4674 }
4675
4676 /*
4677 * Perform per-rule type sanity checks of their members.
4678 * All code after this needs to be aware that allocated memory
4679 * may need to be free'd before exiting.
4680 */
4681 switch (fp->fr_type & ~FR_T_BUILTIN)
4682 {
4683 #if defined(IPFILTER_BPF)
4684 case FR_T_BPFOPC :
4685 if (fp->fr_dsize == 0) {
4686 IPFERROR(19);
4687 error = EINVAL;
4688 break;
4689 }
4690 if (!bpf_validate(ptr, fp->fr_dsize/sizeof(struct bpf_insn))) {
4691 IPFERROR(20);
4692 error = EINVAL;
4693 break;
4694 }
4695 break;
4696 #endif
4697 case FR_T_IPF :
4698 /*
4699 * Preparation for error case at the bottom of this function.
4700 */
4701 if (fp->fr_datype == FRI_LOOKUP)
4702 fp->fr_dstptr = NULL;
4703 if (fp->fr_satype == FRI_LOOKUP)
4704 fp->fr_srcptr = NULL;
4705
4706 if (fp->fr_dsize != sizeof(fripf_t)) {
4707 IPFERROR(21);
4708 error = EINVAL;
4709 break;
4710 }
4711
4712 /*
4713 * Allowing a rule with both "keep state" and "with oow" is
4714 * pointless because adding a state entry to the table will
4715 * fail with the out of window (oow) flag set.
4716 */
4717 if ((fp->fr_flags & FR_KEEPSTATE) && (fp->fr_flx & FI_OOW)) {
4718 IPFERROR(22);
4719 error = EINVAL;
4720 break;
4721 }
4722
4723 switch (fp->fr_satype)
4724 {
4725 case FRI_BROADCAST :
4726 case FRI_DYNAMIC :
4727 case FRI_NETWORK :
4728 case FRI_NETMASKED :
4729 case FRI_PEERADDR :
4730 if (fp->fr_sifpidx < 0) {
4731 IPFERROR(23);
4732 error = EINVAL;
4733 }
4734 break;
4735 case FRI_LOOKUP :
4736 fp->fr_srcptr = ipf_findlookup(softc, unit, fp,
4737 &fp->fr_src6,
4738 &fp->fr_smsk6);
4739 if (fp->fr_srcfunc == NULL) {
4740 IPFERROR(132);
4741 error = ESRCH;
4742 break;
4743 }
4744 break;
4745 case FRI_NORMAL :
4746 break;
4747 default :
4748 IPFERROR(133);
4749 error = EINVAL;
4750 break;
4751 }
4752 if (error != 0)
4753 break;
4754
4755 switch (fp->fr_datype)
4756 {
4757 case FRI_BROADCAST :
4758 case FRI_DYNAMIC :
4759 case FRI_NETWORK :
4760 case FRI_NETMASKED :
4761 case FRI_PEERADDR :
4762 if (fp->fr_difpidx < 0) {
4763 IPFERROR(24);
4764 error = EINVAL;
4765 }
4766 break;
4767 case FRI_LOOKUP :
4768 fp->fr_dstptr = ipf_findlookup(softc, unit, fp,
4769 &fp->fr_dst6,
4770 &fp->fr_dmsk6);
4771 if (fp->fr_dstfunc == NULL) {
4772 IPFERROR(134);
4773 error = ESRCH;
4774 }
4775 break;
4776 case FRI_NORMAL :
4777 break;
4778 default :
4779 IPFERROR(135);
4780 error = EINVAL;
4781 }
4782 break;
4783
4784 case FR_T_NONE :
4785 case FR_T_CALLFUNC :
4786 case FR_T_COMPIPF :
4787 break;
4788
4789 case FR_T_IPFEXPR :
4790 if (ipf_matcharray_verify(fp->fr_data, fp->fr_dsize) == -1) {
4791 IPFERROR(25);
4792 error = EINVAL;
4793 }
4794 break;
4795
4796 default :
4797 IPFERROR(26);
4798 error = EINVAL;
4799 break;
4800 }
4801 if (error != 0)
4802 goto donenolock;
4803
4804 if (fp->fr_tif.fd_name != -1) {
4805 if ((fp->fr_tif.fd_name < 0) ||
4806 (fp->fr_tif.fd_name >= fp->fr_namelen)) {
4807 IPFERROR(139);
4808 error = EINVAL;
4809 goto donenolock;
4810 }
4811 }
4812
4813 if (fp->fr_dif.fd_name != -1) {
4814 if ((fp->fr_dif.fd_name < 0) ||
4815 (fp->fr_dif.fd_name >= fp->fr_namelen)) {
4816 IPFERROR(140);
4817 error = EINVAL;
4818 goto donenolock;
4819 }
4820 }
4821
4822 if (fp->fr_rif.fd_name != -1) {
4823 if ((fp->fr_rif.fd_name < 0) ||
4824 (fp->fr_rif.fd_name >= fp->fr_namelen)) {
4825 IPFERROR(141);
4826 error = EINVAL;
4827 goto donenolock;
4828 }
4829 }
4830
4831 /*
4832 * Lookup all the interface names that are part of the rule.
4833 */
4834 error = ipf_synclist(softc, fp, NULL);
4835 if (error != 0)
4836 goto donenolock;
4837 fp->fr_statecnt = 0;
4838 if (fp->fr_srctrack.ht_max_nodes != 0)
4839 ipf_rb_ht_init(&fp->fr_srctrack);
4840
4841 /*
4842 * Look for an existing matching filter rule, but don't include the
4843 * next or interface pointer in the comparison (fr_next, fr_ifa).
4844 * This elminates rules which are indentical being loaded. Checksum
4845 * the constant part of the filter rule to make comparisons quicker
4846 * (this meaning no pointers are included).
4847 */
4848 pp = (u_int *)(fp->fr_caddr + fp->fr_dsize);
4849 for (fp->fr_cksum = 0, p = (u_int *)fp->fr_data; p < pp; p++)
4850 fp->fr_cksum += *p;
4851
4852 WRITE_ENTER(&softc->ipf_mutex);
4853
4854 /*
4855 * Now that the filter rule lists are locked, we can walk the
4856 * chain of them without fear.
4857 */
4858 ftail = fprev;
4859 for (f = *ftail; (f = *ftail) != NULL; ftail = &f->fr_next) {
4860 if (fp->fr_collect <= f->fr_collect) {
4861 ftail = fprev;
4862 f = NULL;
4863 break;
4864 }
4865 fprev = ftail;
4866 }
4867
4868 for (; (f = *ftail) != NULL; ftail = &f->fr_next) {
4869 if (ipf_rule_compare(fp, f) == 0)
4870 break;
4871 }
4872
4873 /*
4874 * If zero'ing statistics, copy current to caller and zero.
4875 */
4876 if (addrem == OP_ZERO) {
4877 if (f == NULL) {
4878 IPFERROR(27);
4879 error = ESRCH;
4880 } else {
4881 /*
4882 * Copy and reduce lock because of impending copyout.
4883 * Well we should, but if we do then the atomicity of
4884 * this call and the correctness of fr_hits and
4885 * fr_bytes cannot be guaranteed. As it is, this code
4886 * only resets them to 0 if they are successfully
4887 * copied out into user space.
4888 */
4889 bcopy((char *)f, (char *)fp, f->fr_size);
4890 /* MUTEX_DOWNGRADE(&softc->ipf_mutex); */
4891
4892 /*
4893 * When we copy this rule back out, set the data
4894 * pointer to be what it was in user space.
4895 */
4896 fp->fr_data = uptr;
4897 error = ipf_outobj(softc, data, fp, IPFOBJ_FRENTRY);
4898
4899 if (error == 0) {
4900 if ((f->fr_dsize != 0) && (uptr != NULL)) {
4901 error = COPYOUT(f->fr_data, uptr,
4902 f->fr_dsize);
4903 if (error == 0) {
4904 f->fr_hits = 0;
4905 f->fr_bytes = 0;
4906 } else {
4907 IPFERROR(28);
4908 error = EFAULT;
4909 }
4910 }
4911 }
4912 }
4913
4914 if (makecopy != 0) {
4915 if (ptr != NULL) {
4916 KFREES(ptr, fp->fr_dsize);
4917 }
4918 KFREES(fp, fp->fr_size);
4919 }
4920 RWLOCK_EXIT(&softc->ipf_mutex);
4921 return (error);
4922 }
4923
4924 if (f == NULL) {
4925 /*
4926 * At the end of this, ftail must point to the place where the
4927 * new rule is to be saved/inserted/added.
4928 * For SIOCAD*FR, this should be the last rule in the group of
4929 * rules that have equal fr_collect fields.
4930 * For SIOCIN*FR, ...
4931 */
4932 if (req == (ioctlcmd_t)SIOCADAFR ||
4933 req == (ioctlcmd_t)SIOCADIFR) {
4934
4935 for (ftail = fprev; (f = *ftail) != NULL; ) {
4936 if (f->fr_collect > fp->fr_collect)
4937 break;
4938 ftail = &f->fr_next;
4939 fprev = ftail;
4940 }
4941 ftail = fprev;
4942 f = NULL;
4943 ptr = NULL;
4944 } else if (req == (ioctlcmd_t)SIOCINAFR ||
4945 req == (ioctlcmd_t)SIOCINIFR) {
4946 while ((f = *fprev) != NULL) {
4947 if (f->fr_collect >= fp->fr_collect)
4948 break;
4949 fprev = &f->fr_next;
4950 }
4951 ftail = fprev;
4952 if (fp->fr_hits != 0) {
4953 while (fp->fr_hits && (f = *ftail)) {
4954 if (f->fr_collect != fp->fr_collect)
4955 break;
4956 fprev = ftail;
4957 ftail = &f->fr_next;
4958 fp->fr_hits--;
4959 }
4960 }
4961 f = NULL;
4962 ptr = NULL;
4963 }
4964 }
4965
4966 /*
4967 * Request to remove a rule.
4968 */
4969 if (addrem == OP_REM) {
4970 if (f == NULL) {
4971 IPFERROR(29);
4972 error = ESRCH;
4973 } else {
4974 /*
4975 * Do not allow activity from user space to interfere
4976 * with rules not loaded that way.
4977 */
4978 if ((makecopy == 1) && !(f->fr_flags & FR_COPIED)) {
4979 IPFERROR(30);
4980 error = EPERM;
4981 goto done;
4982 }
4983
4984 /*
4985 * Return EBUSY if the rule is being reference by
4986 * something else (eg state information.)
4987 */
4988 if (f->fr_ref > 1) {
4989 IPFERROR(31);
4990 error = EBUSY;
4991 goto done;
4992 }
4993 #ifdef IPFILTER_SCAN
4994 if (f->fr_isctag != -1 &&
4995 (f->fr_isc != (struct ipscan *)-1))
4996 ipf_scan_detachfr(f);
4997 #endif
4998
4999 if (unit == IPL_LOGAUTH) {
5000 error = ipf_auth_precmd(softc, req, f, ftail);
5001 goto done;
5002 }
5003
5004 ipf_rule_delete(softc, f, unit, set);
5005
5006 need_free = makecopy;
5007 }
5008 } else {
5009 /*
5010 * Not removing, so we must be adding/inserting a rule.
5011 */
5012 if (f != NULL) {
5013 IPFERROR(32);
5014 error = EEXIST;
5015 goto done;
5016 }
5017 if (unit == IPL_LOGAUTH) {
5018 error = ipf_auth_precmd(softc, req, fp, ftail);
5019 goto done;
5020 }
5021
5022 MUTEX_NUKE(&fp->fr_lock);
5023 MUTEX_INIT(&fp->fr_lock, "filter rule lock");
5024 if (fp->fr_die != 0)
5025 ipf_rule_expire_insert(softc, fp, set);
5026
5027 fp->fr_hits = 0;
5028 if (makecopy != 0)
5029 fp->fr_ref = 1;
5030 fp->fr_pnext = ftail;
5031 fp->fr_next = *ftail;
5032 if (fp->fr_next != NULL)
5033 fp->fr_next->fr_pnext = &fp->fr_next;
5034 *ftail = fp;
5035 ipf_fixskip(ftail, fp, 1);
5036
5037 fp->fr_icmpgrp = NULL;
5038 if (fp->fr_icmphead != -1) {
5039 group = FR_NAME(fp, fr_icmphead);
5040 fg = ipf_group_add(softc, group, fp, 0, unit, set);
5041 fp->fr_icmpgrp = fg;
5042 }
5043
5044 fp->fr_grphead = NULL;
5045 if (fp->fr_grhead != -1) {
5046 group = FR_NAME(fp, fr_grhead);
5047 fg = ipf_group_add(softc, group, fp, fp->fr_flags,
5048 unit, set);
5049 fp->fr_grphead = fg;
5050 }
5051 }
5052 done:
5053 RWLOCK_EXIT(&softc->ipf_mutex);
5054 donenolock:
5055 if (need_free || (error != 0)) {
5056 if ((fp->fr_type & ~FR_T_BUILTIN) == FR_T_IPF) {
5057 if ((fp->fr_satype == FRI_LOOKUP) &&
5058 (fp->fr_srcptr != NULL))
5059 ipf_lookup_deref(softc, fp->fr_srctype,
5060 fp->fr_srcptr);
5061 if ((fp->fr_datype == FRI_LOOKUP) &&
5062 (fp->fr_dstptr != NULL))
5063 ipf_lookup_deref(softc, fp->fr_dsttype,
5064 fp->fr_dstptr);
5065 }
5066 if (fp->fr_grp != NULL) {
5067 WRITE_ENTER(&softc->ipf_mutex);
5068 ipf_group_del(softc, fp->fr_grp, fp);
5069 RWLOCK_EXIT(&softc->ipf_mutex);
5070 }
5071 if ((ptr != NULL) && (makecopy != 0)) {
5072 KFREES(ptr, fp->fr_dsize);
5073 }
5074 KFREES(fp, fp->fr_size);
5075 }
5076 return (error);
5077 }
5078
5079
5080 /* ------------------------------------------------------------------------ */
5081 /* Function: ipf_rule_delete */
5082 /* Returns: Nil */
5083 /* Parameters: softc(I) - pointer to soft context main structure */
5084 /* f(I) - pointer to the rule being deleted */
5085 /* ftail(I) - pointer to the pointer to f */
5086 /* unit(I) - device for which this is for */
5087 /* set(I) - 1 or 0 (filter set) */
5088 /* */
5089 /* This function attempts to do what it can to delete a filter rule: remove */
5090 /* it from any linked lists and remove any groups it is responsible for. */
5091 /* But in the end, removing a rule can only drop the reference count - we */
5092 /* must use that as the guide for whether or not it can be freed. */
5093 /* ------------------------------------------------------------------------ */
5094 static void
5095 ipf_rule_delete(ipf_main_softc_t *softc, frentry_t *f, int unit, int set)
5096 {
5097
5098 /*
5099 * If fr_pdnext is set, then the rule is on the expire list, so
5100 * remove it from there.
5101 */
5102 if (f->fr_pdnext != NULL) {
5103 *f->fr_pdnext = f->fr_dnext;
5104 if (f->fr_dnext != NULL)
5105 f->fr_dnext->fr_pdnext = f->fr_pdnext;
5106 f->fr_pdnext = NULL;
5107 f->fr_dnext = NULL;
5108 }
5109
5110 ipf_fixskip(f->fr_pnext, f, -1);
5111 if (f->fr_pnext != NULL)
5112 *f->fr_pnext = f->fr_next;
5113 if (f->fr_next != NULL)
5114 f->fr_next->fr_pnext = f->fr_pnext;
5115 f->fr_pnext = NULL;
5116 f->fr_next = NULL;
5117
5118 (void) ipf_derefrule(softc, &f);
5119 }
5120
5121 /* ------------------------------------------------------------------------ */
5122 /* Function: ipf_rule_expire_insert */
5123 /* Returns: Nil */
5124 /* Parameters: softc(I) - pointer to soft context main structure */
5125 /* f(I) - pointer to rule to be added to expire list */
5126 /* set(I) - 1 or 0 (filter set) */
5127 /* */
5128 /* If the new rule has a given expiration time, insert it into the list of */
5129 /* expiring rules with the ones to be removed first added to the front of */
5130 /* the list. The insertion is O(n) but it is kept sorted for quick scans at */
5131 /* expiration interval checks. */
5132 /* ------------------------------------------------------------------------ */
5133 static void
5134 ipf_rule_expire_insert(ipf_main_softc_t *softc, frentry_t *f, int set)
5135 {
5136 frentry_t *fr;
5137
5138 /*
5139 */
5140
5141 f->fr_die = softc->ipf_ticks + IPF_TTLVAL(f->fr_die);
5142 for (fr = softc->ipf_rule_explist[set]; fr != NULL;
5143 fr = fr->fr_dnext) {
5144 if (f->fr_die < fr->fr_die)
5145 break;
5146 if (fr->fr_dnext == NULL) {
5147 /*
5148 * We've got to the last rule and everything
5149 * wanted to be expired before this new node,
5150 * so we have to tack it on the end...
5151 */
5152 fr->fr_dnext = f;
5153 f->fr_pdnext = &fr->fr_dnext;
5154 fr = NULL;
5155 break;
5156 }
5157 }
5158
5159 if (softc->ipf_rule_explist[set] == NULL) {
5160 softc->ipf_rule_explist[set] = f;
5161 f->fr_pdnext = &softc->ipf_rule_explist[set];
5162 } else if (fr != NULL) {
5163 f->fr_dnext = fr;
5164 f->fr_pdnext = fr->fr_pdnext;
5165 fr->fr_pdnext = &f->fr_dnext;
5166 }
5167 }
5168
5169
5170 /* ------------------------------------------------------------------------ */
5171 /* Function: ipf_findlookup */
5172 /* Returns: NULL = failure, else success */
5173 /* Parameters: softc(I) - pointer to soft context main structure */
5174 /* unit(I) - ipf device we want to find match for */
5175 /* fp(I) - rule for which lookup is for */
5176 /* addrp(I) - pointer to lookup information in address struct */
5177 /* maskp(O) - pointer to lookup information for storage */
5178 /* */
5179 /* When using pools and hash tables to store addresses for matching in */
5180 /* rules, it is necessary to resolve both the object referred to by the */
5181 /* name or address (and return that pointer) and also provide the means by */
5182 /* which to determine if an address belongs to that object to make the */
5183 /* packet matching quicker. */
5184 /* ------------------------------------------------------------------------ */
5185 static void *
5186 ipf_findlookup(ipf_main_softc_t *softc, int unit, frentry_t *fr,
5187 i6addr_t *addrp, i6addr_t *maskp)
5188 {
5189 void *ptr = NULL;
5190
5191 switch (addrp->iplookupsubtype)
5192 {
5193 case 0 :
5194 ptr = ipf_lookup_res_num(softc, unit, addrp->iplookuptype,
5195 addrp->iplookupnum,
5196 &maskp->iplookupfunc);
5197 break;
5198 case 1 :
5199 if (addrp->iplookupname < 0)
5200 break;
5201 if (addrp->iplookupname >= fr->fr_namelen)
5202 break;
5203 ptr = ipf_lookup_res_name(softc, unit, addrp->iplookuptype,
5204 fr->fr_names + addrp->iplookupname,
5205 &maskp->iplookupfunc);
5206 break;
5207 default :
5208 break;
5209 }
5210
5211 return (ptr);
5212 }
5213
5214
5215 /* ------------------------------------------------------------------------ */
5216 /* Function: ipf_funcinit */
5217 /* Returns: int - 0 == success, else ESRCH: cannot resolve rule details */
5218 /* Parameters: softc(I) - pointer to soft context main structure */
5219 /* fr(I) - pointer to filter rule */
5220 /* */
5221 /* If a rule is a call rule, then check if the function it points to needs */
5222 /* an init function to be called now the rule has been loaded. */
5223 /* ------------------------------------------------------------------------ */
5224 static int
5225 ipf_funcinit(ipf_main_softc_t *softc, frentry_t *fr)
5226 {
5227 ipfunc_resolve_t *ft;
5228 int err;
5229
5230 IPFERROR(34);
5231 err = ESRCH;
5232
5233 for (ft = ipf_availfuncs; ft->ipfu_addr != NULL; ft++)
5234 if (ft->ipfu_addr == fr->fr_func) {
5235 err = 0;
5236 if (ft->ipfu_init != NULL)
5237 err = (*ft->ipfu_init)(softc, fr);
5238 break;
5239 }
5240 return (err);
5241 }
5242
5243
5244 /* ------------------------------------------------------------------------ */
5245 /* Function: ipf_funcfini */
5246 /* Returns: Nil */
5247 /* Parameters: softc(I) - pointer to soft context main structure */
5248 /* fr(I) - pointer to filter rule */
5249 /* */
5250 /* For a given filter rule, call the matching "fini" function if the rule */
5251 /* is using a known function that would have resulted in the "init" being */
5252 /* called for ealier. */
5253 /* ------------------------------------------------------------------------ */
5254 static void
5255 ipf_funcfini(ipf_main_softc_t *softc, frentry_t *fr)
5256 {
5257 ipfunc_resolve_t *ft;
5258
5259 for (ft = ipf_availfuncs; ft->ipfu_addr != NULL; ft++)
5260 if (ft->ipfu_addr == fr->fr_func) {
5261 if (ft->ipfu_fini != NULL)
5262 (void) (*ft->ipfu_fini)(softc, fr);
5263 break;
5264 }
5265 }
5266
5267
5268 /* ------------------------------------------------------------------------ */
5269 /* Function: ipf_findfunc */
5270 /* Returns: ipfunc_t - pointer to function if found, else NULL */
5271 /* Parameters: funcptr(I) - function pointer to lookup */
5272 /* */
5273 /* Look for a function in the table of known functions. */
5274 /* ------------------------------------------------------------------------ */
5275 static ipfunc_t
5276 ipf_findfunc(ipfunc_t funcptr)
5277 {
5278 ipfunc_resolve_t *ft;
5279
5280 for (ft = ipf_availfuncs; ft->ipfu_addr != NULL; ft++)
5281 if (ft->ipfu_addr == funcptr)
5282 return (funcptr);
5283 return (NULL);
5284 }
5285
5286
5287 /* ------------------------------------------------------------------------ */
5288 /* Function: ipf_resolvefunc */
5289 /* Returns: int - 0 == success, else error */
5290 /* Parameters: data(IO) - ioctl data pointer to ipfunc_resolve_t struct */
5291 /* */
5292 /* Copy in a ipfunc_resolve_t structure and then fill in the missing field. */
5293 /* This will either be the function name (if the pointer is set) or the */
5294 /* function pointer if the name is set. When found, fill in the other one */
5295 /* so that the entire, complete, structure can be copied back to user space.*/
5296 /* ------------------------------------------------------------------------ */
5297 int
5298 ipf_resolvefunc(ipf_main_softc_t *softc, void *data)
5299 {
5300 ipfunc_resolve_t res, *ft;
5301 int error;
5302
5303 error = BCOPYIN(data, &res, sizeof(res));
5304 if (error != 0) {
5305 IPFERROR(123);
5306 return (EFAULT);
5307 }
5308
5309 if (res.ipfu_addr == NULL && res.ipfu_name[0] != '\0') {
5310 for (ft = ipf_availfuncs; ft->ipfu_addr != NULL; ft++)
5311 if (strncmp(res.ipfu_name, ft->ipfu_name,
5312 sizeof(res.ipfu_name)) == 0) {
5313 res.ipfu_addr = ft->ipfu_addr;
5314 res.ipfu_init = ft->ipfu_init;
5315 if (COPYOUT(&res, data, sizeof(res)) != 0) {
5316 IPFERROR(35);
5317 return (EFAULT);
5318 }
5319 return (0);
5320 }
5321 }
5322 if (res.ipfu_addr != NULL && res.ipfu_name[0] == '\0') {
5323 for (ft = ipf_availfuncs; ft->ipfu_addr != NULL; ft++)
5324 if (ft->ipfu_addr == res.ipfu_addr) {
5325 (void) strncpy(res.ipfu_name, ft->ipfu_name,
5326 sizeof(res.ipfu_name));
5327 res.ipfu_init = ft->ipfu_init;
5328 if (COPYOUT(&res, data, sizeof(res)) != 0) {
5329 IPFERROR(36);
5330 return (EFAULT);
5331 }
5332 return (0);
5333 }
5334 }
5335 IPFERROR(37);
5336 return (ESRCH);
5337 }
5338
5339
5340 #if !defined(_KERNEL) || SOLARIS
5341 /*
5342 * From: NetBSD
5343 * ppsratecheck(): packets (or events) per second limitation.
5344 */
5345 int
5346 ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
5347 /* maxpps: maximum pps allowed */
5348 {
5349 struct timeval tv, delta;
5350 int rv;
5351
5352 GETKTIME(&tv);
5353
5354 delta.tv_sec = tv.tv_sec - lasttime->tv_sec;
5355 delta.tv_usec = tv.tv_usec - lasttime->tv_usec;
5356 if (delta.tv_usec < 0) {
5357 delta.tv_sec--;
5358 delta.tv_usec += 1000000;
5359 }
5360
5361 /*
5362 * check for 0,0 is so that the message will be seen at least once.
5363 * if more than one second have passed since the last update of
5364 * lasttime, reset the counter.
5365 *
5366 * we do increment *curpps even in *curpps < maxpps case, as some may
5367 * try to use *curpps for stat purposes as well.
5368 */
5369 if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) ||
5370 delta.tv_sec >= 1) {
5371 *lasttime = tv;
5372 *curpps = 0;
5373 rv = 1;
5374 } else if (maxpps < 0)
5375 rv = 1;
5376 else if (*curpps < maxpps)
5377 rv = 1;
5378 else
5379 rv = 0;
5380 *curpps = *curpps + 1;
5381
5382 return (rv);
5383 }
5384 #endif
5385
5386
5387 /* ------------------------------------------------------------------------ */
5388 /* Function: ipf_derefrule */
5389 /* Returns: int - 0 == rule freed up, else rule not freed */
5390 /* Parameters: fr(I) - pointer to filter rule */
5391 /* */
5392 /* Decrement the reference counter to a rule by one. If it reaches zero, */
5393 /* free it and any associated storage space being used by it. */
5394 /* ------------------------------------------------------------------------ */
5395 int
5396 ipf_derefrule(ipf_main_softc_t *softc, frentry_t **frp)
5397 {
5398 frentry_t *fr;
5399 frdest_t *fdp;
5400
5401 fr = *frp;
5402 *frp = NULL;
5403
5404 MUTEX_ENTER(&fr->fr_lock);
5405 fr->fr_ref--;
5406 if (fr->fr_ref == 0) {
5407 MUTEX_EXIT(&fr->fr_lock);
5408 MUTEX_DESTROY(&fr->fr_lock);
5409
5410 ipf_funcfini(softc, fr);
5411
5412 fdp = &fr->fr_tif;
5413 if (fdp->fd_type == FRD_DSTLIST)
5414 ipf_lookup_deref(softc, IPLT_DSTLIST, fdp->fd_ptr);
5415
5416 fdp = &fr->fr_rif;
5417 if (fdp->fd_type == FRD_DSTLIST)
5418 ipf_lookup_deref(softc, IPLT_DSTLIST, fdp->fd_ptr);
5419
5420 fdp = &fr->fr_dif;
5421 if (fdp->fd_type == FRD_DSTLIST)
5422 ipf_lookup_deref(softc, IPLT_DSTLIST, fdp->fd_ptr);
5423
5424 if ((fr->fr_type & ~FR_T_BUILTIN) == FR_T_IPF &&
5425 fr->fr_satype == FRI_LOOKUP)
5426 ipf_lookup_deref(softc, fr->fr_srctype, fr->fr_srcptr);
5427 if ((fr->fr_type & ~FR_T_BUILTIN) == FR_T_IPF &&
5428 fr->fr_datype == FRI_LOOKUP)
5429 ipf_lookup_deref(softc, fr->fr_dsttype, fr->fr_dstptr);
5430
5431 if (fr->fr_grp != NULL)
5432 ipf_group_del(softc, fr->fr_grp, fr);
5433
5434 if (fr->fr_grphead != NULL)
5435 ipf_group_del(softc, fr->fr_grphead, fr);
5436
5437 if (fr->fr_icmpgrp != NULL)
5438 ipf_group_del(softc, fr->fr_icmpgrp, fr);
5439
5440 if ((fr->fr_flags & FR_COPIED) != 0) {
5441 if (fr->fr_dsize) {
5442 KFREES(fr->fr_data, fr->fr_dsize);
5443 }
5444 KFREES(fr, fr->fr_size);
5445 return (0);
5446 }
5447 return (1);
5448 } else {
5449 MUTEX_EXIT(&fr->fr_lock);
5450 }
5451 return (-1);
5452 }
5453
5454
5455 /* ------------------------------------------------------------------------ */
5456 /* Function: ipf_grpmapinit */
5457 /* Returns: int - 0 == success, else ESRCH because table entry not found*/
5458 /* Parameters: fr(I) - pointer to rule to find hash table for */
5459 /* */
5460 /* Looks for group hash table fr_arg and stores a pointer to it in fr_ptr. */
5461 /* fr_ptr is later used by ipf_srcgrpmap and ipf_dstgrpmap. */
5462 /* ------------------------------------------------------------------------ */
5463 static int
5464 ipf_grpmapinit(ipf_main_softc_t *softc, frentry_t *fr)
5465 {
5466 char name[FR_GROUPLEN];
5467 iphtable_t *iph;
5468
5469 (void) snprintf(name, sizeof(name), "%d", fr->fr_arg);
5470 iph = ipf_lookup_find_htable(softc, IPL_LOGIPF, name);
5471 if (iph == NULL) {
5472 IPFERROR(38);
5473 return (ESRCH);
5474 }
5475 if ((iph->iph_flags & FR_INOUT) != (fr->fr_flags & FR_INOUT)) {
5476 IPFERROR(39);
5477 return (ESRCH);
5478 }
5479 iph->iph_ref++;
5480 fr->fr_ptr = iph;
5481 return (0);
5482 }
5483
5484
5485 /* ------------------------------------------------------------------------ */
5486 /* Function: ipf_grpmapfini */
5487 /* Returns: int - 0 == success, else ESRCH because table entry not found*/
5488 /* Parameters: softc(I) - pointer to soft context main structure */
5489 /* fr(I) - pointer to rule to release hash table for */
5490 /* */
5491 /* For rules that have had ipf_grpmapinit called, ipf_lookup_deref needs to */
5492 /* be called to undo what ipf_grpmapinit caused to be done. */
5493 /* ------------------------------------------------------------------------ */
5494 static int
5495 ipf_grpmapfini(ipf_main_softc_t *softc, frentry_t *fr)
5496 {
5497 iphtable_t *iph;
5498 iph = fr->fr_ptr;
5499 if (iph != NULL)
5500 ipf_lookup_deref(softc, IPLT_HASH, iph);
5501 return (0);
5502 }
5503
5504
5505 /* ------------------------------------------------------------------------ */
5506 /* Function: ipf_srcgrpmap */
5507 /* Returns: frentry_t * - pointer to "new last matching" rule or NULL */
5508 /* Parameters: fin(I) - pointer to packet information */
5509 /* passp(IO) - pointer to current/new filter decision (unused) */
5510 /* */
5511 /* Look for a rule group head in a hash table, using the source address as */
5512 /* the key, and descend into that group and continue matching rules against */
5513 /* the packet. */
5514 /* ------------------------------------------------------------------------ */
5515 frentry_t *
5516 ipf_srcgrpmap(fr_info_t *fin, u_32_t *passp)
5517 {
5518 frgroup_t *fg;
5519 void *rval;
5520
5521 rval = ipf_iphmfindgroup(fin->fin_main_soft, fin->fin_fr->fr_ptr,
5522 &fin->fin_src);
5523 if (rval == NULL)
5524 return (NULL);
5525
5526 fg = rval;
5527 fin->fin_fr = fg->fg_start;
5528 (void) ipf_scanlist(fin, *passp);
5529 return (fin->fin_fr);
5530 }
5531
5532
5533 /* ------------------------------------------------------------------------ */
5534 /* Function: ipf_dstgrpmap */
5535 /* Returns: frentry_t * - pointer to "new last matching" rule or NULL */
5536 /* Parameters: fin(I) - pointer to packet information */
5537 /* passp(IO) - pointer to current/new filter decision (unused) */
5538 /* */
5539 /* Look for a rule group head in a hash table, using the destination */
5540 /* address as the key, and descend into that group and continue matching */
5541 /* rules against the packet. */
5542 /* ------------------------------------------------------------------------ */
5543 frentry_t *
5544 ipf_dstgrpmap(fr_info_t *fin, u_32_t *passp)
5545 {
5546 frgroup_t *fg;
5547 void *rval;
5548
5549 rval = ipf_iphmfindgroup(fin->fin_main_soft, fin->fin_fr->fr_ptr,
5550 &fin->fin_dst);
5551 if (rval == NULL)
5552 return (NULL);
5553
5554 fg = rval;
5555 fin->fin_fr = fg->fg_start;
5556 (void) ipf_scanlist(fin, *passp);
5557 return (fin->fin_fr);
5558 }
5559
5560 /*
5561 * Queue functions
5562 * ===============
5563 * These functions manage objects on queues for efficient timeouts. There
5564 * are a number of system defined queues as well as user defined timeouts.
5565 * It is expected that a lock is held in the domain in which the queue
5566 * belongs (i.e. either state or NAT) when calling any of these functions
5567 * that prevents ipf_freetimeoutqueue() from being called at the same time
5568 * as any other.
5569 */
5570
5571
5572 /* ------------------------------------------------------------------------ */
5573 /* Function: ipf_addtimeoutqueue */
5574 /* Returns: struct ifqtq * - NULL if malloc fails, else pointer to */
5575 /* timeout queue with given interval. */
5576 /* Parameters: parent(I) - pointer to pointer to parent node of this list */
5577 /* of interface queues. */
5578 /* seconds(I) - timeout value in seconds for this queue. */
5579 /* */
5580 /* This routine first looks for a timeout queue that matches the interval */
5581 /* being requested. If it finds one, increments the reference counter and */
5582 /* returns a pointer to it. If none are found, it allocates a new one and */
5583 /* inserts it at the top of the list. */
5584 /* */
5585 /* Locking. */
5586 /* It is assumed that the caller of this function has an appropriate lock */
5587 /* held (exclusively) in the domain that encompases 'parent'. */
5588 /* ------------------------------------------------------------------------ */
5589 ipftq_t *
5590 ipf_addtimeoutqueue(ipf_main_softc_t *softc, ipftq_t **parent, u_int seconds)
5591 {
5592 ipftq_t *ifq;
5593 u_int period;
5594
5595 period = seconds * IPF_HZ_DIVIDE;
5596
5597 MUTEX_ENTER(&softc->ipf_timeoutlock);
5598 for (ifq = *parent; ifq != NULL; ifq = ifq->ifq_next) {
5599 if (ifq->ifq_ttl == period) {
5600 /*
5601 * Reset the delete flag, if set, so the structure
5602 * gets reused rather than freed and reallocated.
5603 */
5604 MUTEX_ENTER(&ifq->ifq_lock);
5605 ifq->ifq_flags &= ~IFQF_DELETE;
5606 ifq->ifq_ref++;
5607 MUTEX_EXIT(&ifq->ifq_lock);
5608 MUTEX_EXIT(&softc->ipf_timeoutlock);
5609
5610 return (ifq);
5611 }
5612 }
5613
5614 KMALLOC(ifq, ipftq_t *);
5615 if (ifq != NULL) {
5616 MUTEX_NUKE(&ifq->ifq_lock);
5617 IPFTQ_INIT(ifq, period, "ipftq mutex");
5618 ifq->ifq_next = *parent;
5619 ifq->ifq_pnext = parent;
5620 ifq->ifq_flags = IFQF_USER;
5621 ifq->ifq_ref++;
5622 *parent = ifq;
5623 softc->ipf_userifqs++;
5624 }
5625 MUTEX_EXIT(&softc->ipf_timeoutlock);
5626 return (ifq);
5627 }
5628
5629
5630 /* ------------------------------------------------------------------------ */
5631 /* Function: ipf_deletetimeoutqueue */
5632 /* Returns: int - new reference count value of the timeout queue */
5633 /* Parameters: ifq(I) - timeout queue which is losing a reference. */
5634 /* Locks: ifq->ifq_lock */
5635 /* */
5636 /* This routine must be called when we're discarding a pointer to a timeout */
5637 /* queue object, taking care of the reference counter. */
5638 /* */
5639 /* Now that this just sets a DELETE flag, it requires the expire code to */
5640 /* check the list of user defined timeout queues and call the free function */
5641 /* below (currently commented out) to stop memory leaking. It is done this */
5642 /* way because the locking may not be sufficient to safely do a free when */
5643 /* this function is called. */
5644 /* ------------------------------------------------------------------------ */
5645 int
5646 ipf_deletetimeoutqueue(ipftq_t *ifq)
5647 {
5648
5649 ifq->ifq_ref--;
5650 if ((ifq->ifq_ref == 0) && ((ifq->ifq_flags & IFQF_USER) != 0)) {
5651 ifq->ifq_flags |= IFQF_DELETE;
5652 }
5653
5654 return (ifq->ifq_ref);
5655 }
5656
5657
5658 /* ------------------------------------------------------------------------ */
5659 /* Function: ipf_freetimeoutqueue */
5660 /* Parameters: ifq(I) - timeout queue which is losing a reference. */
5661 /* Returns: Nil */
5662 /* */
5663 /* Locking: */
5664 /* It is assumed that the caller of this function has an appropriate lock */
5665 /* held (exclusively) in the domain that encompases the callers "domain". */
5666 /* The ifq_lock for this structure should not be held. */
5667 /* */
5668 /* Remove a user defined timeout queue from the list of queues it is in and */
5669 /* tidy up after this is done. */
5670 /* ------------------------------------------------------------------------ */
5671 void
5672 ipf_freetimeoutqueue(ipf_main_softc_t *softc, ipftq_t *ifq)
5673 {
5674
5675 if (((ifq->ifq_flags & IFQF_DELETE) == 0) || (ifq->ifq_ref != 0) ||
5676 ((ifq->ifq_flags & IFQF_USER) == 0)) {
5677 printf("ipf_freetimeoutqueue(%lx) flags 0x%x ttl %d ref %d\n",
5678 (u_long)ifq, ifq->ifq_flags, ifq->ifq_ttl,
5679 ifq->ifq_ref);
5680 return;
5681 }
5682
5683 /*
5684 * Remove from its position in the list.
5685 */
5686 *ifq->ifq_pnext = ifq->ifq_next;
5687 if (ifq->ifq_next != NULL)
5688 ifq->ifq_next->ifq_pnext = ifq->ifq_pnext;
5689 ifq->ifq_next = NULL;
5690 ifq->ifq_pnext = NULL;
5691
5692 MUTEX_DESTROY(&ifq->ifq_lock);
5693 ATOMIC_DEC(softc->ipf_userifqs);
5694 KFREE(ifq);
5695 }
5696
5697
5698 /* ------------------------------------------------------------------------ */
5699 /* Function: ipf_deletequeueentry */
5700 /* Returns: Nil */
5701 /* Parameters: tqe(I) - timeout queue entry to delete */
5702 /* */
5703 /* Remove a tail queue entry from its queue and make it an orphan. */
5704 /* ipf_deletetimeoutqueue is called to make sure the reference count on the */
5705 /* queue is correct. We can't, however, call ipf_freetimeoutqueue because */
5706 /* the correct lock(s) may not be held that would make it safe to do so. */
5707 /* ------------------------------------------------------------------------ */
5708 void
5709 ipf_deletequeueentry(ipftqent_t *tqe)
5710 {
5711 ipftq_t *ifq;
5712
5713 ifq = tqe->tqe_ifq;
5714
5715 MUTEX_ENTER(&ifq->ifq_lock);
5716
5717 if (tqe->tqe_pnext != NULL) {
5718 *tqe->tqe_pnext = tqe->tqe_next;
5719 if (tqe->tqe_next != NULL)
5720 tqe->tqe_next->tqe_pnext = tqe->tqe_pnext;
5721 else /* we must be the tail anyway */
5722 ifq->ifq_tail = tqe->tqe_pnext;
5723
5724 tqe->tqe_pnext = NULL;
5725 tqe->tqe_ifq = NULL;
5726 }
5727
5728 (void) ipf_deletetimeoutqueue(ifq);
5729 ASSERT(ifq->ifq_ref > 0);
5730
5731 MUTEX_EXIT(&ifq->ifq_lock);
5732 }
5733
5734
5735 /* ------------------------------------------------------------------------ */
5736 /* Function: ipf_queuefront */
5737 /* Returns: Nil */
5738 /* Parameters: tqe(I) - pointer to timeout queue entry */
5739 /* */
5740 /* Move a queue entry to the front of the queue, if it isn't already there. */
5741 /* ------------------------------------------------------------------------ */
5742 void
5743 ipf_queuefront(ipftqent_t *tqe)
5744 {
5745 ipftq_t *ifq;
5746
5747 ifq = tqe->tqe_ifq;
5748 if (ifq == NULL)
5749 return;
5750
5751 MUTEX_ENTER(&ifq->ifq_lock);
5752 if (ifq->ifq_head != tqe) {
5753 *tqe->tqe_pnext = tqe->tqe_next;
5754 if (tqe->tqe_next)
5755 tqe->tqe_next->tqe_pnext = tqe->tqe_pnext;
5756 else
5757 ifq->ifq_tail = tqe->tqe_pnext;
5758
5759 tqe->tqe_next = ifq->ifq_head;
5760 ifq->ifq_head->tqe_pnext = &tqe->tqe_next;
5761 ifq->ifq_head = tqe;
5762 tqe->tqe_pnext = &ifq->ifq_head;
5763 }
5764 MUTEX_EXIT(&ifq->ifq_lock);
5765 }
5766
5767
5768 /* ------------------------------------------------------------------------ */
5769 /* Function: ipf_queueback */
5770 /* Returns: Nil */
5771 /* Parameters: ticks(I) - ipf tick time to use with this call */
5772 /* tqe(I) - pointer to timeout queue entry */
5773 /* */
5774 /* Move a queue entry to the back of the queue, if it isn't already there. */
5775 /* We use use ticks to calculate the expiration and mark for when we last */
5776 /* touched the structure. */
5777 /* ------------------------------------------------------------------------ */
5778 void
5779 ipf_queueback(u_long ticks, ipftqent_t *tqe)
5780 {
5781 ipftq_t *ifq;
5782
5783 ifq = tqe->tqe_ifq;
5784 if (ifq == NULL)
5785 return;
5786 tqe->tqe_die = ticks + ifq->ifq_ttl;
5787 tqe->tqe_touched = ticks;
5788
5789 MUTEX_ENTER(&ifq->ifq_lock);
5790 if (tqe->tqe_next != NULL) { /* at the end already ? */
5791 /*
5792 * Remove from list
5793 */
5794 *tqe->tqe_pnext = tqe->tqe_next;
5795 tqe->tqe_next->tqe_pnext = tqe->tqe_pnext;
5796
5797 /*
5798 * Make it the last entry.
5799 */
5800 tqe->tqe_next = NULL;
5801 tqe->tqe_pnext = ifq->ifq_tail;
5802 *ifq->ifq_tail = tqe;
5803 ifq->ifq_tail = &tqe->tqe_next;
5804 }
5805 MUTEX_EXIT(&ifq->ifq_lock);
5806 }
5807
5808
5809 /* ------------------------------------------------------------------------ */
5810 /* Function: ipf_queueappend */
5811 /* Returns: Nil */
5812 /* Parameters: ticks(I) - ipf tick time to use with this call */
5813 /* tqe(I) - pointer to timeout queue entry */
5814 /* ifq(I) - pointer to timeout queue */
5815 /* parent(I) - owing object pointer */
5816 /* */
5817 /* Add a new item to this queue and put it on the very end. */
5818 /* We use use ticks to calculate the expiration and mark for when we last */
5819 /* touched the structure. */
5820 /* ------------------------------------------------------------------------ */
5821 void
5822 ipf_queueappend(u_long ticks, ipftqent_t *tqe, ipftq_t *ifq, void *parent)
5823 {
5824
5825 MUTEX_ENTER(&ifq->ifq_lock);
5826 tqe->tqe_parent = parent;
5827 tqe->tqe_pnext = ifq->ifq_tail;
5828 *ifq->ifq_tail = tqe;
5829 ifq->ifq_tail = &tqe->tqe_next;
5830 tqe->tqe_next = NULL;
5831 tqe->tqe_ifq = ifq;
5832 tqe->tqe_die = ticks + ifq->ifq_ttl;
5833 tqe->tqe_touched = ticks;
5834 ifq->ifq_ref++;
5835 MUTEX_EXIT(&ifq->ifq_lock);
5836 }
5837
5838
5839 /* ------------------------------------------------------------------------ */
5840 /* Function: ipf_movequeue */
5841 /* Returns: Nil */
5842 /* Parameters: tq(I) - pointer to timeout queue information */
5843 /* oifp(I) - old timeout queue entry was on */
5844 /* nifp(I) - new timeout queue to put entry on */
5845 /* */
5846 /* Move a queue entry from one timeout queue to another timeout queue. */
5847 /* If it notices that the current entry is already last and does not need */
5848 /* to move queue, the return. */
5849 /* ------------------------------------------------------------------------ */
5850 void
5851 ipf_movequeue(u_long ticks, ipftqent_t *tqe, ipftq_t *oifq, ipftq_t *nifq)
5852 {
5853
5854 /*
5855 * If the queue hasn't changed and we last touched this entry at the
5856 * same ipf time, then we're not going to achieve anything by either
5857 * changing the ttl or moving it on the queue.
5858 */
5859 if (oifq == nifq && tqe->tqe_touched == ticks)
5860 return;
5861
5862 /*
5863 * For any of this to be outside the lock, there is a risk that two
5864 * packets entering simultaneously, with one changing to a different
5865 * queue and one not, could end up with things in a bizarre state.
5866 */
5867 MUTEX_ENTER(&oifq->ifq_lock);
5868
5869 tqe->tqe_touched = ticks;
5870 tqe->tqe_die = ticks + nifq->ifq_ttl;
5871 /*
5872 * Is the operation here going to be a no-op ?
5873 */
5874 if (oifq == nifq) {
5875 if ((tqe->tqe_next == NULL) ||
5876 (tqe->tqe_next->tqe_die == tqe->tqe_die)) {
5877 MUTEX_EXIT(&oifq->ifq_lock);
5878 return;
5879 }
5880 }
5881
5882 /*
5883 * Remove from the old queue
5884 */
5885 *tqe->tqe_pnext = tqe->tqe_next;
5886 if (tqe->tqe_next)
5887 tqe->tqe_next->tqe_pnext = tqe->tqe_pnext;
5888 else
5889 oifq->ifq_tail = tqe->tqe_pnext;
5890 tqe->tqe_next = NULL;
5891
5892 /*
5893 * If we're moving from one queue to another, release the
5894 * lock on the old queue and get a lock on the new queue.
5895 * For user defined queues, if we're moving off it, call
5896 * delete in case it can now be freed.
5897 */
5898 if (oifq != nifq) {
5899 tqe->tqe_ifq = NULL;
5900
5901 (void) ipf_deletetimeoutqueue(oifq);
5902
5903 MUTEX_EXIT(&oifq->ifq_lock);
5904
5905 MUTEX_ENTER(&nifq->ifq_lock);
5906
5907 tqe->tqe_ifq = nifq;
5908 nifq->ifq_ref++;
5909 }
5910
5911 /*
5912 * Add to the bottom of the new queue
5913 */
5914 tqe->tqe_pnext = nifq->ifq_tail;
5915 *nifq->ifq_tail = tqe;
5916 nifq->ifq_tail = &tqe->tqe_next;
5917 MUTEX_EXIT(&nifq->ifq_lock);
5918 }
5919
5920
5921 /* ------------------------------------------------------------------------ */
5922 /* Function: ipf_updateipid */
5923 /* Returns: int - 0 == success, -1 == error (packet should be droppped) */
5924 /* Parameters: fin(I) - pointer to packet information */
5925 /* */
5926 /* When we are doing NAT, change the IP of every packet to represent a */
5927 /* single sequence of packets coming from the host, hiding any host */
5928 /* specific sequencing that might otherwise be revealed. If the packet is */
5929 /* a fragment, then store the 'new' IPid in the fragment cache and look up */
5930 /* the fragment cache for non-leading fragments. If a non-leading fragment */
5931 /* has no match in the cache, return an error. */
5932 /* ------------------------------------------------------------------------ */
5933 static int
5934 ipf_updateipid(fr_info_t *fin)
5935 {
5936 u_short id, ido, sums;
5937 u_32_t sumd, sum;
5938 ip_t *ip;
5939
5940 ip = fin->fin_ip;
5941 ido = ntohs(ip->ip_id);
5942 if (fin->fin_off != 0) {
5943 sum = ipf_frag_ipidknown(fin);
5944 if (sum == 0xffffffff)
5945 return (-1);
5946 sum &= 0xffff;
5947 id = (u_short)sum;
5948 ip->ip_id = htons(id);
5949 } else {
5950 ip_fillid(ip);
5951 id = ntohs(ip->ip_id);
5952 if ((fin->fin_flx & FI_FRAG) != 0)
5953 (void) ipf_frag_ipidnew(fin, (u_32_t)id);
5954 }
5955
5956 if (id == ido)
5957 return (0);
5958 CALC_SUMD(ido, id, sumd); /* DESTRUCTIVE MACRO! id,ido change */
5959 sum = (~ntohs(ip->ip_sum)) & 0xffff;
5960 sum += sumd;
5961 sum = (sum >> 16) + (sum & 0xffff);
5962 sum = (sum >> 16) + (sum & 0xffff);
5963 sums = ~(u_short)sum;
5964 ip->ip_sum = htons(sums);
5965 return (0);
5966 }
5967
5968
5969 #ifdef NEED_FRGETIFNAME
5970 /* ------------------------------------------------------------------------ */
5971 /* Function: ipf_getifname */
5972 /* Returns: char * - pointer to interface name */
5973 /* Parameters: ifp(I) - pointer to network interface */
5974 /* buffer(O) - pointer to where to store interface name */
5975 /* */
5976 /* Constructs an interface name in the buffer passed. The buffer passed is */
5977 /* expected to be at least LIFNAMSIZ in bytes big. If buffer is passed in */
5978 /* as a NULL pointer then return a pointer to a static array. */
5979 /* ------------------------------------------------------------------------ */
5980 char *
5981 ipf_getifname(struct ifnet *ifp, char *buffer)
5982 {
5983 static char namebuf[LIFNAMSIZ];
5984 # if SOLARIS || defined(__FreeBSD__)
5985 int unit, space;
5986 char temp[20];
5987 char *s;
5988 # endif
5989
5990 if (buffer == NULL)
5991 buffer = namebuf;
5992 (void) strncpy(buffer, ifp->if_name, LIFNAMSIZ);
5993 buffer[LIFNAMSIZ - 1] = '\0';
5994 # if SOLARIS || defined(__FreeBSD__)
5995 for (s = buffer; *s; s++)
5996 ;
5997 unit = ifp->if_unit;
5998 space = LIFNAMSIZ - (s - buffer);
5999 if ((space > 0) && (unit >= 0)) {
6000 (void) snprintf(temp, sizeof(name), "%d", unit);
6001 (void) strncpy(s, temp, space);
6002 }
6003 # endif
6004 return (buffer);
6005 }
6006 #endif
6007
6008
6009 /* ------------------------------------------------------------------------ */
6010 /* Function: ipf_ioctlswitch */
6011 /* Returns: int - -1 continue processing, else ioctl return value */
6012 /* Parameters: unit(I) - device unit opened */
6013 /* data(I) - pointer to ioctl data */
6014 /* cmd(I) - ioctl command */
6015 /* mode(I) - mode value */
6016 /* uid(I) - uid making the ioctl call */
6017 /* ctx(I) - pointer to context data */
6018 /* */
6019 /* Based on the value of unit, call the appropriate ioctl handler or return */
6020 /* EIO if ipfilter is not running. Also checks if write perms are req'd */
6021 /* for the device in order to execute the ioctl. A special case is made */
6022 /* SIOCIPFINTERROR so that the same code isn't required in every handler. */
6023 /* The context data pointer is passed through as this is used as the key */
6024 /* for locating a matching token for continued access for walking lists, */
6025 /* etc. */
6026 /* ------------------------------------------------------------------------ */
6027 int
6028 ipf_ioctlswitch(ipf_main_softc_t *softc, int unit, void *data, ioctlcmd_t cmd,
6029 int mode, int uid, void *ctx)
6030 {
6031 int error = 0;
6032
6033 switch (cmd)
6034 {
6035 case SIOCIPFINTERROR :
6036 error = BCOPYOUT(&softc->ipf_interror, data,
6037 sizeof(softc->ipf_interror));
6038 if (error != 0) {
6039 IPFERROR(40);
6040 error = EFAULT;
6041 }
6042 return (error);
6043 default :
6044 break;
6045 }
6046
6047 switch (unit)
6048 {
6049 case IPL_LOGIPF :
6050 error = ipf_ipf_ioctl(softc, data, cmd, mode, uid, ctx);
6051 break;
6052 case IPL_LOGNAT :
6053 if (softc->ipf_running > 0) {
6054 error = ipf_nat_ioctl(softc, data, cmd, mode,
6055 uid, ctx);
6056 } else {
6057 IPFERROR(42);
6058 error = EIO;
6059 }
6060 break;
6061 case IPL_LOGSTATE :
6062 if (softc->ipf_running > 0) {
6063 error = ipf_state_ioctl(softc, data, cmd, mode,
6064 uid, ctx);
6065 } else {
6066 IPFERROR(43);
6067 error = EIO;
6068 }
6069 break;
6070 case IPL_LOGAUTH :
6071 if (softc->ipf_running > 0) {
6072 error = ipf_auth_ioctl(softc, data, cmd, mode,
6073 uid, ctx);
6074 } else {
6075 IPFERROR(44);
6076 error = EIO;
6077 }
6078 break;
6079 case IPL_LOGSYNC :
6080 if (softc->ipf_running > 0) {
6081 error = ipf_sync_ioctl(softc, data, cmd, mode,
6082 uid, ctx);
6083 } else {
6084 error = EIO;
6085 IPFERROR(45);
6086 }
6087 break;
6088 case IPL_LOGSCAN :
6089 #ifdef IPFILTER_SCAN
6090 if (softc->ipf_running > 0)
6091 error = ipf_scan_ioctl(softc, data, cmd, mode,
6092 uid, ctx);
6093 else
6094 #endif
6095 {
6096 error = EIO;
6097 IPFERROR(46);
6098 }
6099 break;
6100 case IPL_LOGLOOKUP :
6101 if (softc->ipf_running > 0) {
6102 error = ipf_lookup_ioctl(softc, data, cmd, mode,
6103 uid, ctx);
6104 } else {
6105 error = EIO;
6106 IPFERROR(47);
6107 }
6108 break;
6109 default :
6110 IPFERROR(48);
6111 error = EIO;
6112 break;
6113 }
6114
6115 return (error);
6116 }
6117
6118
6119 /*
6120 * This array defines the expected size of objects coming into the kernel
6121 * for the various recognised object types. The first column is flags (see
6122 * below), 2nd column is current size, 3rd column is the version number of
6123 * when the current size became current.
6124 * Flags:
6125 * 1 = minimum size, not absolute size
6126 */
6127 static const int ipf_objbytes[IPFOBJ_COUNT][3] = {
6128 { 1, sizeof(struct frentry), 5010000 }, /* 0 */
6129 { 1, sizeof(struct friostat), 5010000 },
6130 { 0, sizeof(struct fr_info), 5010000 },
6131 { 0, sizeof(struct ipf_authstat), 4010100 },
6132 { 0, sizeof(struct ipfrstat), 5010000 },
6133 { 1, sizeof(struct ipnat), 5010000 }, /* 5 */
6134 { 0, sizeof(struct natstat), 5010000 },
6135 { 0, sizeof(struct ipstate_save), 5010000 },
6136 { 1, sizeof(struct nat_save), 5010000 },
6137 { 0, sizeof(struct natlookup), 5010000 },
6138 { 1, sizeof(struct ipstate), 5010000 }, /* 10 */
6139 { 0, sizeof(struct ips_stat), 5010000 },
6140 { 0, sizeof(struct frauth), 5010000 },
6141 { 0, sizeof(struct ipftune), 4010100 },
6142 { 0, sizeof(struct nat), 5010000 },
6143 { 0, sizeof(struct ipfruleiter), 4011400 }, /* 15 */
6144 { 0, sizeof(struct ipfgeniter), 4011400 },
6145 { 0, sizeof(struct ipftable), 4011400 },
6146 { 0, sizeof(struct ipflookupiter), 4011400 },
6147 { 0, sizeof(struct ipftq) * IPF_TCP_NSTATES },
6148 { 1, 0, 0 }, /* IPFEXPR */
6149 { 0, 0, 0 }, /* PROXYCTL */
6150 { 0, sizeof (struct fripf), 5010000 }
6151 };
6152
6153
6154 /* ------------------------------------------------------------------------ */
6155 /* Function: ipf_inobj */
6156 /* Returns: int - 0 = success, else failure */
6157 /* Parameters: softc(I) - soft context pointerto work with */
6158 /* data(I) - pointer to ioctl data */
6159 /* objp(O) - where to store ipfobj structure */
6160 /* ptr(I) - pointer to data to copy out */
6161 /* type(I) - type of structure being moved */
6162 /* */
6163 /* Copy in the contents of what the ipfobj_t points to. In future, we */
6164 /* add things to check for version numbers, sizes, etc, to make it backward */
6165 /* compatible at the ABI for user land. */
6166 /* If objp is not NULL then we assume that the caller wants to see what is */
6167 /* in the ipfobj_t structure being copied in. As an example, this can tell */
6168 /* the caller what version of ipfilter the ioctl program was written to. */
6169 /* ------------------------------------------------------------------------ */
6170 int
6171 ipf_inobj(ipf_main_softc_t *softc, void *data, ipfobj_t *objp, void *ptr,
6172 int type)
6173 {
6174 ipfobj_t obj;
6175 int error;
6176 int size;
6177
6178 if ((type < 0) || (type >= IPFOBJ_COUNT)) {
6179 IPFERROR(49);
6180 return (EINVAL);
6181 }
6182
6183 if (objp == NULL)
6184 objp = &obj;
6185 error = BCOPYIN(data, objp, sizeof(*objp));
6186 if (error != 0) {
6187 IPFERROR(124);
6188 return (EFAULT);
6189 }
6190
6191 if (objp->ipfo_type != type) {
6192 IPFERROR(50);
6193 return (EINVAL);
6194 }
6195
6196 if (objp->ipfo_rev >= ipf_objbytes[type][2]) {
6197 if ((ipf_objbytes[type][0] & 1) != 0) {
6198 if (objp->ipfo_size < ipf_objbytes[type][1]) {
6199 IPFERROR(51);
6200 return (EINVAL);
6201 }
6202 size = ipf_objbytes[type][1];
6203 } else if (objp->ipfo_size == ipf_objbytes[type][1]) {
6204 size = objp->ipfo_size;
6205 } else {
6206 IPFERROR(52);
6207 return (EINVAL);
6208 }
6209 error = COPYIN(objp->ipfo_ptr, ptr, size);
6210 if (error != 0) {
6211 IPFERROR(55);
6212 error = EFAULT;
6213 }
6214 } else {
6215 #ifdef IPFILTER_COMPAT
6216 error = ipf_in_compat(softc, objp, ptr, 0);
6217 #else
6218 IPFERROR(54);
6219 error = EINVAL;
6220 #endif
6221 }
6222 return (error);
6223 }
6224
6225
6226 /* ------------------------------------------------------------------------ */
6227 /* Function: ipf_inobjsz */
6228 /* Returns: int - 0 = success, else failure */
6229 /* Parameters: softc(I) - soft context pointerto work with */
6230 /* data(I) - pointer to ioctl data */
6231 /* ptr(I) - pointer to store real data in */
6232 /* type(I) - type of structure being moved */
6233 /* sz(I) - size of data to copy */
6234 /* */
6235 /* As per ipf_inobj, except the size of the object to copy in is passed in */
6236 /* but it must not be smaller than the size defined for the type and the */
6237 /* type must allow for varied sized objects. The extra requirement here is */
6238 /* that sz must match the size of the object being passed in - this is not */
6239 /* not possible nor required in ipf_inobj(). */
6240 /* ------------------------------------------------------------------------ */
6241 int
6242 ipf_inobjsz(ipf_main_softc_t *softc, void *data, void *ptr, int type, int sz)
6243 {
6244 ipfobj_t obj;
6245 int error;
6246
6247 if ((type < 0) || (type >= IPFOBJ_COUNT)) {
6248 IPFERROR(56);
6249 return (EINVAL);
6250 }
6251
6252 error = BCOPYIN(data, &obj, sizeof(obj));
6253 if (error != 0) {
6254 IPFERROR(125);
6255 return (EFAULT);
6256 }
6257
6258 if (obj.ipfo_type != type) {
6259 IPFERROR(58);
6260 return (EINVAL);
6261 }
6262
6263 if (obj.ipfo_rev >= ipf_objbytes[type][2]) {
6264 if (((ipf_objbytes[type][0] & 1) == 0) ||
6265 (sz < ipf_objbytes[type][1])) {
6266 IPFERROR(57);
6267 return (EINVAL);
6268 }
6269 error = COPYIN(obj.ipfo_ptr, ptr, sz);
6270 if (error != 0) {
6271 IPFERROR(61);
6272 error = EFAULT;
6273 }
6274 } else {
6275 #ifdef IPFILTER_COMPAT
6276 error = ipf_in_compat(softc, &obj, ptr, sz);
6277 #else
6278 IPFERROR(60);
6279 error = EINVAL;
6280 #endif
6281 }
6282 return (error);
6283 }
6284
6285
6286 /* ------------------------------------------------------------------------ */
6287 /* Function: ipf_outobjsz */
6288 /* Returns: int - 0 = success, else failure */
6289 /* Parameters: data(I) - pointer to ioctl data */
6290 /* ptr(I) - pointer to store real data in */
6291 /* type(I) - type of structure being moved */
6292 /* sz(I) - size of data to copy */
6293 /* */
6294 /* As per ipf_outobj, except the size of the object to copy out is passed in*/
6295 /* but it must not be smaller than the size defined for the type and the */
6296 /* type must allow for varied sized objects. The extra requirement here is */
6297 /* that sz must match the size of the object being passed in - this is not */
6298 /* not possible nor required in ipf_outobj(). */
6299 /* ------------------------------------------------------------------------ */
6300 int
6301 ipf_outobjsz(ipf_main_softc_t *softc, void *data, void *ptr, int type, int sz)
6302 {
6303 ipfobj_t obj;
6304 int error;
6305
6306 if ((type < 0) || (type >= IPFOBJ_COUNT)) {
6307 IPFERROR(62);
6308 return (EINVAL);
6309 }
6310
6311 error = BCOPYIN(data, &obj, sizeof(obj));
6312 if (error != 0) {
6313 IPFERROR(127);
6314 return (EFAULT);
6315 }
6316
6317 if (obj.ipfo_type != type) {
6318 IPFERROR(63);
6319 return (EINVAL);
6320 }
6321
6322 if (obj.ipfo_rev >= ipf_objbytes[type][2]) {
6323 if (((ipf_objbytes[type][0] & 1) == 0) ||
6324 (sz < ipf_objbytes[type][1])) {
6325 IPFERROR(146);
6326 return (EINVAL);
6327 }
6328 error = COPYOUT(ptr, obj.ipfo_ptr, sz);
6329 if (error != 0) {
6330 IPFERROR(66);
6331 error = EFAULT;
6332 }
6333 } else {
6334 #ifdef IPFILTER_COMPAT
6335 error = ipf_out_compat(softc, &obj, ptr);
6336 #else
6337 IPFERROR(65);
6338 error = EINVAL;
6339 #endif
6340 }
6341 return (error);
6342 }
6343
6344
6345 /* ------------------------------------------------------------------------ */
6346 /* Function: ipf_outobj */
6347 /* Returns: int - 0 = success, else failure */
6348 /* Parameters: data(I) - pointer to ioctl data */
6349 /* ptr(I) - pointer to store real data in */
6350 /* type(I) - type of structure being moved */
6351 /* */
6352 /* Copy out the contents of what ptr is to where ipfobj points to. In */
6353 /* future, we add things to check for version numbers, sizes, etc, to make */
6354 /* it backward compatible at the ABI for user land. */
6355 /* ------------------------------------------------------------------------ */
6356 int
6357 ipf_outobj(ipf_main_softc_t *softc, void *data, void *ptr, int type)
6358 {
6359 ipfobj_t obj;
6360 int error;
6361
6362 if ((type < 0) || (type >= IPFOBJ_COUNT)) {
6363 IPFERROR(67);
6364 return (EINVAL);
6365 }
6366
6367 error = BCOPYIN(data, &obj, sizeof(obj));
6368 if (error != 0) {
6369 IPFERROR(126);
6370 return (EFAULT);
6371 }
6372
6373 if (obj.ipfo_type != type) {
6374 IPFERROR(68);
6375 return (EINVAL);
6376 }
6377
6378 if (obj.ipfo_rev >= ipf_objbytes[type][2]) {
6379 if ((ipf_objbytes[type][0] & 1) != 0) {
6380 if (obj.ipfo_size < ipf_objbytes[type][1]) {
6381 IPFERROR(69);
6382 return (EINVAL);
6383 }
6384 } else if (obj.ipfo_size != ipf_objbytes[type][1]) {
6385 IPFERROR(70);
6386 return (EINVAL);
6387 }
6388
6389 error = COPYOUT(ptr, obj.ipfo_ptr, obj.ipfo_size);
6390 if (error != 0) {
6391 IPFERROR(73);
6392 error = EFAULT;
6393 }
6394 } else {
6395 #ifdef IPFILTER_COMPAT
6396 error = ipf_out_compat(softc, &obj, ptr);
6397 #else
6398 IPFERROR(72);
6399 error = EINVAL;
6400 #endif
6401 }
6402 return (error);
6403 }
6404
6405
6406 /* ------------------------------------------------------------------------ */
6407 /* Function: ipf_outobjk */
6408 /* Returns: int - 0 = success, else failure */
6409 /* Parameters: obj(I) - pointer to data description structure */
6410 /* ptr(I) - pointer to kernel data to copy out */
6411 /* */
6412 /* In the above functions, the ipfobj_t structure is copied into the kernel,*/
6413 /* telling ipfilter how to copy out data. In this instance, the ipfobj_t is */
6414 /* already populated with information and now we just need to use it. */
6415 /* There is no need for this function to have a "type" parameter as there */
6416 /* is no point in validating information that comes from the kernel with */
6417 /* itself. */
6418 /* ------------------------------------------------------------------------ */
6419 int
6420 ipf_outobjk(ipf_main_softc_t *softc, ipfobj_t *obj, void *ptr)
6421 {
6422 int type = obj->ipfo_type;
6423 int error;
6424
6425 if ((type < 0) || (type >= IPFOBJ_COUNT)) {
6426 IPFERROR(147);
6427 return (EINVAL);
6428 }
6429
6430 if (obj->ipfo_rev >= ipf_objbytes[type][2]) {
6431 if ((ipf_objbytes[type][0] & 1) != 0) {
6432 if (obj->ipfo_size < ipf_objbytes[type][1]) {
6433 IPFERROR(148);
6434 return (EINVAL);
6435 }
6436
6437 } else if (obj->ipfo_size != ipf_objbytes[type][1]) {
6438 IPFERROR(149);
6439 return (EINVAL);
6440 }
6441
6442 error = COPYOUT(ptr, obj->ipfo_ptr, obj->ipfo_size);
6443 if (error != 0) {
6444 IPFERROR(150);
6445 error = EFAULT;
6446 }
6447 } else {
6448 #ifdef IPFILTER_COMPAT
6449 error = ipf_out_compat(softc, obj, ptr);
6450 #else
6451 IPFERROR(151);
6452 error = EINVAL;
6453 #endif
6454 }
6455 return (error);
6456 }
6457
6458
6459 /* ------------------------------------------------------------------------ */
6460 /* Function: ipf_checkl4sum */
6461 /* Returns: int - 0 = good, -1 = bad, 1 = cannot check */
6462 /* Parameters: fin(I) - pointer to packet information */
6463 /* */
6464 /* If possible, calculate the layer 4 checksum for the packet. If this is */
6465 /* not possible, return without indicating a failure or success but in a */
6466 /* way that is ditinguishable. This function should only be called by the */
6467 /* ipf_checkv6sum() for each platform. */
6468 /* ------------------------------------------------------------------------ */
6469 inline int
6470 ipf_checkl4sum(fr_info_t *fin)
6471 {
6472 u_short sum, hdrsum, *csump;
6473 udphdr_t *udp;
6474 int dosum;
6475
6476 /*
6477 * If the TCP packet isn't a fragment, isn't too short and otherwise
6478 * isn't already considered "bad", then validate the checksum. If
6479 * this check fails then considered the packet to be "bad".
6480 */
6481 if ((fin->fin_flx & (FI_FRAG|FI_SHORT|FI_BAD)) != 0)
6482 return (1);
6483
6484 DT2(l4sumo, int, fin->fin_out, int, (int)fin->fin_p);
6485 if (fin->fin_out == 1) {
6486 fin->fin_cksum = FI_CK_SUMOK;
6487 return (0);
6488 }
6489
6490 csump = NULL;
6491 hdrsum = 0;
6492 dosum = 0;
6493 sum = 0;
6494
6495 switch (fin->fin_p)
6496 {
6497 case IPPROTO_TCP :
6498 csump = &((tcphdr_t *)fin->fin_dp)->th_sum;
6499 dosum = 1;
6500 break;
6501
6502 case IPPROTO_UDP :
6503 udp = fin->fin_dp;
6504 if (udp->uh_sum != 0) {
6505 csump = &udp->uh_sum;
6506 dosum = 1;
6507 }
6508 break;
6509
6510 #ifdef USE_INET6
6511 case IPPROTO_ICMPV6 :
6512 csump = &((struct icmp6_hdr *)fin->fin_dp)->icmp6_cksum;
6513 dosum = 1;
6514 break;
6515 #endif
6516
6517 case IPPROTO_ICMP :
6518 csump = &((struct icmp *)fin->fin_dp)->icmp_cksum;
6519 dosum = 1;
6520 break;
6521
6522 default :
6523 return (1);
6524 /*NOTREACHED*/
6525 }
6526
6527 if (csump != NULL) {
6528 hdrsum = *csump;
6529 if (fin->fin_p == IPPROTO_UDP && hdrsum == 0xffff)
6530 hdrsum = 0x0000;
6531 }
6532
6533 if (dosum) {
6534 sum = fr_cksum(fin, fin->fin_ip, fin->fin_p, fin->fin_dp);
6535 }
6536 #if !defined(_KERNEL)
6537 if (sum == hdrsum) {
6538 FR_DEBUG(("checkl4sum: %hx == %hx\n", sum, hdrsum));
6539 } else {
6540 FR_DEBUG(("checkl4sum: %hx != %hx\n", sum, hdrsum));
6541 }
6542 #endif
6543 DT3(l4sums, u_short, hdrsum, u_short, sum, fr_info_t *, fin);
6544 #ifdef USE_INET6
6545 if (hdrsum == sum || (sum == 0 && IP_V(fin->fin_ip) == 6)) {
6546 #else
6547 if (hdrsum == sum) {
6548 #endif
6549 fin->fin_cksum = FI_CK_SUMOK;
6550 return (0);
6551 }
6552 fin->fin_cksum = FI_CK_BAD;
6553 return (-1);
6554 }
6555
6556
6557 /* ------------------------------------------------------------------------ */
6558 /* Function: ipf_ifpfillv4addr */
6559 /* Returns: int - 0 = address update, -1 = address not updated */
6560 /* Parameters: atype(I) - type of network address update to perform */
6561 /* sin(I) - pointer to source of address information */
6562 /* mask(I) - pointer to source of netmask information */
6563 /* inp(I) - pointer to destination address store */
6564 /* inpmask(I) - pointer to destination netmask store */
6565 /* */
6566 /* Given a type of network address update (atype) to perform, copy */
6567 /* information from sin/mask into inp/inpmask. If ipnmask is NULL then no */
6568 /* netmask update is performed unless FRI_NETMASKED is passed as atype, in */
6569 /* which case the operation fails. For all values of atype other than */
6570 /* FRI_NETMASKED, if inpmask is non-NULL then the mask is set to an all 1s */
6571 /* value. */
6572 /* ------------------------------------------------------------------------ */
6573 int
6574 ipf_ifpfillv4addr(int atype, struct sockaddr_in *sin, struct sockaddr_in *mask,
6575 struct in_addr *inp, struct in_addr *inpmask)
6576 {
6577 if (inpmask != NULL && atype != FRI_NETMASKED)
6578 inpmask->s_addr = 0xffffffff;
6579
6580 if (atype == FRI_NETWORK || atype == FRI_NETMASKED) {
6581 if (atype == FRI_NETMASKED) {
6582 if (inpmask == NULL)
6583 return (-1);
6584 inpmask->s_addr = mask->sin_addr.s_addr;
6585 }
6586 inp->s_addr = sin->sin_addr.s_addr & mask->sin_addr.s_addr;
6587 } else {
6588 inp->s_addr = sin->sin_addr.s_addr;
6589 }
6590 return (0);
6591 }
6592
6593
6594 #ifdef USE_INET6
6595 /* ------------------------------------------------------------------------ */
6596 /* Function: ipf_ifpfillv6addr */
6597 /* Returns: int - 0 = address update, -1 = address not updated */
6598 /* Parameters: atype(I) - type of network address update to perform */
6599 /* sin(I) - pointer to source of address information */
6600 /* mask(I) - pointer to source of netmask information */
6601 /* inp(I) - pointer to destination address store */
6602 /* inpmask(I) - pointer to destination netmask store */
6603 /* */
6604 /* Given a type of network address update (atype) to perform, copy */
6605 /* information from sin/mask into inp/inpmask. If ipnmask is NULL then no */
6606 /* netmask update is performed unless FRI_NETMASKED is passed as atype, in */
6607 /* which case the operation fails. For all values of atype other than */
6608 /* FRI_NETMASKED, if inpmask is non-NULL then the mask is set to an all 1s */
6609 /* value. */
6610 /* ------------------------------------------------------------------------ */
6611 int
6612 ipf_ifpfillv6addr(int atype, struct sockaddr_in6 *sin,
6613 struct sockaddr_in6 *mask, i6addr_t *inp, i6addr_t *inpmask)
6614 {
6615 i6addr_t *src, *and;
6616
6617 src = (i6addr_t *)&sin->sin6_addr;
6618 and = (i6addr_t *)&mask->sin6_addr;
6619
6620 if (inpmask != NULL && atype != FRI_NETMASKED) {
6621 inpmask->i6[0] = 0xffffffff;
6622 inpmask->i6[1] = 0xffffffff;
6623 inpmask->i6[2] = 0xffffffff;
6624 inpmask->i6[3] = 0xffffffff;
6625 }
6626
6627 if (atype == FRI_NETWORK || atype == FRI_NETMASKED) {
6628 if (atype == FRI_NETMASKED) {
6629 if (inpmask == NULL)
6630 return (-1);
6631 inpmask->i6[0] = and->i6[0];
6632 inpmask->i6[1] = and->i6[1];
6633 inpmask->i6[2] = and->i6[2];
6634 inpmask->i6[3] = and->i6[3];
6635 }
6636
6637 inp->i6[0] = src->i6[0] & and->i6[0];
6638 inp->i6[1] = src->i6[1] & and->i6[1];
6639 inp->i6[2] = src->i6[2] & and->i6[2];
6640 inp->i6[3] = src->i6[3] & and->i6[3];
6641 } else {
6642 inp->i6[0] = src->i6[0];
6643 inp->i6[1] = src->i6[1];
6644 inp->i6[2] = src->i6[2];
6645 inp->i6[3] = src->i6[3];
6646 }
6647 return (0);
6648 }
6649 #endif
6650
6651
6652 /* ------------------------------------------------------------------------ */
6653 /* Function: ipf_matchtag */
6654 /* Returns: 0 == mismatch, 1 == match. */
6655 /* Parameters: tag1(I) - pointer to first tag to compare */
6656 /* tag2(I) - pointer to second tag to compare */
6657 /* */
6658 /* Returns true (non-zero) or false(0) if the two tag structures can be */
6659 /* considered to be a match or not match, respectively. The tag is 16 */
6660 /* bytes long (16 characters) but that is overlayed with 4 32bit ints so */
6661 /* compare the ints instead, for speed. tag1 is the master of the */
6662 /* comparison. This function should only be called with both tag1 and tag2 */
6663 /* as non-NULL pointers. */
6664 /* ------------------------------------------------------------------------ */
6665 int
6666 ipf_matchtag(ipftag_t *tag1, ipftag_t *tag2)
6667 {
6668 if (tag1 == tag2)
6669 return (1);
6670
6671 if ((tag1->ipt_num[0] == 0) && (tag2->ipt_num[0] == 0))
6672 return (1);
6673
6674 if ((tag1->ipt_num[0] == tag2->ipt_num[0]) &&
6675 (tag1->ipt_num[1] == tag2->ipt_num[1]) &&
6676 (tag1->ipt_num[2] == tag2->ipt_num[2]) &&
6677 (tag1->ipt_num[3] == tag2->ipt_num[3]))
6678 return (1);
6679 return (0);
6680 }
6681
6682
6683 /* ------------------------------------------------------------------------ */
6684 /* Function: ipf_coalesce */
6685 /* Returns: 1 == success, -1 == failure, 0 == no change */
6686 /* Parameters: fin(I) - pointer to packet information */
6687 /* */
6688 /* Attempt to get all of the packet data into a single, contiguous buffer. */
6689 /* If this call returns a failure then the buffers have also been freed. */
6690 /* ------------------------------------------------------------------------ */
6691 int
6692 ipf_coalesce(fr_info_t *fin)
6693 {
6694
6695 if ((fin->fin_flx & FI_COALESCE) != 0)
6696 return (1);
6697
6698 /*
6699 * If the mbuf pointers indicate that there is no mbuf to work with,
6700 * return but do not indicate success or failure.
6701 */
6702 if (fin->fin_m == NULL || fin->fin_mp == NULL)
6703 return (0);
6704
6705 #if defined(_KERNEL)
6706 if (ipf_pullup(fin->fin_m, fin, fin->fin_plen) == NULL) {
6707 ipf_main_softc_t *softc = fin->fin_main_soft;
6708
6709 DT1(frb_coalesce, fr_info_t *, fin);
6710 LBUMP(ipf_stats[fin->fin_out].fr_badcoalesces);
6711 # if SOLARIS
6712 FREE_MB_T(*fin->fin_mp);
6713 # endif
6714 fin->fin_reason = FRB_COALESCE;
6715 *fin->fin_mp = NULL;
6716 fin->fin_m = NULL;
6717 return (-1);
6718 }
6719 #else
6720 fin = fin; /* LINT */
6721 #endif
6722 return (1);
6723 }
6724
6725
6726 /*
6727 * The following table lists all of the tunable variables that can be
6728 * accessed via SIOCIPFGET/SIOCIPFSET/SIOCIPFGETNEXt. The format of each row
6729 * in the table below is as follows:
6730 *
6731 * pointer to value, name of value, minimum, maximum, size of the value's
6732 * container, value attribute flags
6733 *
6734 * For convienience, IPFT_RDONLY means the value is read-only, IPFT_WRDISABLED
6735 * means the value can only be written to when IPFilter is loaded but disabled.
6736 * The obvious implication is if neither of these are set then the value can be
6737 * changed at any time without harm.
6738 */
6739
6740
6741 /* ------------------------------------------------------------------------ */
6742 /* Function: ipf_tune_findbycookie */
6743 /* Returns: NULL = search failed, else pointer to tune struct */
6744 /* Parameters: cookie(I) - cookie value to search for amongst tuneables */
6745 /* next(O) - pointer to place to store the cookie for the */
6746 /* "next" tuneable, if it is desired. */
6747 /* */
6748 /* This function is used to walk through all of the existing tunables with */
6749 /* successive calls. It searches the known tunables for the one which has */
6750 /* a matching value for "cookie" - ie its address. When returning a match, */
6751 /* the next one to be found may be returned inside next. */
6752 /* ------------------------------------------------------------------------ */
6753 static ipftuneable_t *
6754 ipf_tune_findbycookie(ipftuneable_t **ptop, void *cookie, void **next)
6755 {
6756 ipftuneable_t *ta, **tap;
6757
6758 for (ta = *ptop; ta->ipft_name != NULL; ta++)
6759 if (ta == cookie) {
6760 if (next != NULL) {
6761 /*
6762 * If the next entry in the array has a name
6763 * present, then return a pointer to it for
6764 * where to go next, else return a pointer to
6765 * the dynaminc list as a key to search there
6766 * next. This facilitates a weak linking of
6767 * the two "lists" together.
6768 */
6769 if ((ta + 1)->ipft_name != NULL)
6770 *next = ta + 1;
6771 else
6772 *next = ptop;
6773 }
6774 return (ta);
6775 }
6776
6777 for (tap = ptop; (ta = *tap) != NULL; tap = &ta->ipft_next)
6778 if (tap == cookie) {
6779 if (next != NULL)
6780 *next = &ta->ipft_next;
6781 return (ta);
6782 }
6783
6784 if (next != NULL)
6785 *next = NULL;
6786 return (NULL);
6787 }
6788
6789
6790 /* ------------------------------------------------------------------------ */
6791 /* Function: ipf_tune_findbyname */
6792 /* Returns: NULL = search failed, else pointer to tune struct */
6793 /* Parameters: name(I) - name of the tuneable entry to find. */
6794 /* */
6795 /* Search the static array of tuneables and the list of dynamic tuneables */
6796 /* for an entry with a matching name. If we can find one, return a pointer */
6797 /* to the matching structure. */
6798 /* ------------------------------------------------------------------------ */
6799 static ipftuneable_t *
6800 ipf_tune_findbyname(ipftuneable_t *top, const char *name)
6801 {
6802 ipftuneable_t *ta;
6803
6804 for (ta = top; ta != NULL; ta = ta->ipft_next)
6805 if (!strcmp(ta->ipft_name, name)) {
6806 return (ta);
6807 }
6808
6809 return (NULL);
6810 }
6811
6812
6813 /* ------------------------------------------------------------------------ */
6814 /* Function: ipf_tune_add_array */
6815 /* Returns: int - 0 == success, else failure */
6816 /* Parameters: newtune - pointer to new tune array to add to tuneables */
6817 /* */
6818 /* Appends tune structures from the array passed in (newtune) to the end of */
6819 /* the current list of "dynamic" tuneable parameters. */
6820 /* If any entry to be added is already present (by name) then the operation */
6821 /* is aborted - entries that have been added are removed before returning. */
6822 /* An entry with no name (NULL) is used as the indication that the end of */
6823 /* the array has been reached. */
6824 /* ------------------------------------------------------------------------ */
6825 int
6826 ipf_tune_add_array(ipf_main_softc_t *softc, ipftuneable_t *newtune)
6827 {
6828 ipftuneable_t *nt, *dt;
6829 int error = 0;
6830
6831 for (nt = newtune; nt->ipft_name != NULL; nt++) {
6832 error = ipf_tune_add(softc, nt);
6833 if (error != 0) {
6834 for (dt = newtune; dt != nt; dt++) {
6835 (void) ipf_tune_del(softc, dt);
6836 }
6837 }
6838 }
6839
6840 return (error);
6841 }
6842
6843
6844 /* ------------------------------------------------------------------------ */
6845 /* Function: ipf_tune_array_link */
6846 /* Returns: 0 == success, -1 == failure */
6847 /* Parameters: softc(I) - soft context pointerto work with */
6848 /* array(I) - pointer to an array of tuneables */
6849 /* */
6850 /* Given an array of tunables (array), append them to the current list of */
6851 /* tuneables for this context (softc->ipf_tuners.) To properly prepare the */
6852 /* the array for being appended to the list, initialise all of the next */
6853 /* pointers so we don't need to walk parts of it with ++ and others with */
6854 /* next. The array is expected to have an entry with a NULL name as the */
6855 /* terminator. Trying to add an array with no non-NULL names will return as */
6856 /* a failure. */
6857 /* ------------------------------------------------------------------------ */
6858 int
6859 ipf_tune_array_link(ipf_main_softc_t *softc, ipftuneable_t *array)
6860 {
6861 ipftuneable_t *t, **p;
6862
6863 t = array;
6864 if (t->ipft_name == NULL)
6865 return (-1);
6866
6867 for (; t[1].ipft_name != NULL; t++)
6868 t[0].ipft_next = &t[1];
6869 t->ipft_next = NULL;
6870
6871 /*
6872 * Since a pointer to the last entry isn't kept, we need to find it
6873 * each time we want to add new variables to the list.
6874 */
6875 for (p = &softc->ipf_tuners; (t = *p) != NULL; p = &t->ipft_next)
6876 if (t->ipft_name == NULL)
6877 break;
6878 *p = array;
6879
6880 return (0);
6881 }
6882
6883
6884 /* ------------------------------------------------------------------------ */
6885 /* Function: ipf_tune_array_unlink */
6886 /* Returns: 0 == success, -1 == failure */
6887 /* Parameters: softc(I) - soft context pointerto work with */
6888 /* array(I) - pointer to an array of tuneables */
6889 /* */
6890 /* ------------------------------------------------------------------------ */
6891 int
6892 ipf_tune_array_unlink(ipf_main_softc_t *softc, ipftuneable_t *array)
6893 {
6894 ipftuneable_t *t, **p;
6895
6896 for (p = &softc->ipf_tuners; (t = *p) != NULL; p = &t->ipft_next)
6897 if (t == array)
6898 break;
6899 if (t == NULL)
6900 return (-1);
6901
6902 for (; t[1].ipft_name != NULL; t++)
6903 ;
6904
6905 *p = t->ipft_next;
6906
6907 return (0);
6908 }
6909
6910
6911 /* ------------------------------------------------------------------------ */
6912 /* Function: ipf_tune_array_copy */
6913 /* Returns: NULL = failure, else pointer to new array */
6914 /* Parameters: base(I) - pointer to structure base */
6915 /* size(I) - size of the array at template */
6916 /* template(I) - original array to copy */
6917 /* */
6918 /* Allocate memory for a new set of tuneable values and copy everything */
6919 /* from template into the new region of memory. The new region is full of */
6920 /* uninitialised pointers (ipft_next) so set them up. Now, ipftp_offset... */
6921 /* */
6922 /* NOTE: the following assumes that sizeof(long) == sizeof(void *) */
6923 /* In the array template, ipftp_offset is the offset (in bytes) of the */
6924 /* location of the tuneable value inside the structure pointed to by base. */
6925 /* As ipftp_offset is a union over the pointers to the tuneable values, if */
6926 /* we add base to the copy's ipftp_offset, copy ends up with a pointer in */
6927 /* ipftp_void that points to the stored value. */
6928 /* ------------------------------------------------------------------------ */
6929 ipftuneable_t *
6930 ipf_tune_array_copy(void *base, size_t size, ipftuneable_t *template)
6931 {
6932 ipftuneable_t *copy;
6933 int i;
6934
6935
6936 KMALLOCS(copy, ipftuneable_t *, size);
6937 if (copy == NULL) {
6938 return (NULL);
6939 }
6940 bcopy(template, copy, size);
6941
6942 for (i = 0; copy[i].ipft_name; i++) {
6943 copy[i].ipft_una.ipftp_offset += (u_long)base;
6944 copy[i].ipft_next = copy + i + 1;
6945 }
6946
6947 return (copy);
6948 }
6949
6950
6951 /* ------------------------------------------------------------------------ */
6952 /* Function: ipf_tune_add */
6953 /* Returns: int - 0 == success, else failure */
6954 /* Parameters: newtune - pointer to new tune entry to add to tuneables */
6955 /* */
6956 /* Appends tune structures from the array passed in (newtune) to the end of */
6957 /* the current list of "dynamic" tuneable parameters. Once added, the */
6958 /* owner of the object is not expected to ever change "ipft_next". */
6959 /* ------------------------------------------------------------------------ */
6960 int
6961 ipf_tune_add(ipf_main_softc_t *softc, ipftuneable_t *newtune)
6962 {
6963 ipftuneable_t *ta, **tap;
6964
6965 ta = ipf_tune_findbyname(softc->ipf_tuners, newtune->ipft_name);
6966 if (ta != NULL) {
6967 IPFERROR(74);
6968 return (EEXIST);
6969 }
6970
6971 for (tap = &softc->ipf_tuners; *tap != NULL; tap = &(*tap)->ipft_next)
6972 ;
6973
6974 newtune->ipft_next = NULL;
6975 *tap = newtune;
6976 return (0);
6977 }
6978
6979
6980 /* ------------------------------------------------------------------------ */
6981 /* Function: ipf_tune_del */
6982 /* Returns: int - 0 == success, else failure */
6983 /* Parameters: oldtune - pointer to tune entry to remove from the list of */
6984 /* current dynamic tuneables */
6985 /* */
6986 /* Search for the tune structure, by pointer, in the list of those that are */
6987 /* dynamically added at run time. If found, adjust the list so that this */
6988 /* structure is no longer part of it. */
6989 /* ------------------------------------------------------------------------ */
6990 int
6991 ipf_tune_del(ipf_main_softc_t *softc, ipftuneable_t *oldtune)
6992 {
6993 ipftuneable_t *ta, **tap;
6994 int error = 0;
6995
6996 for (tap = &softc->ipf_tuners; (ta = *tap) != NULL;
6997 tap = &ta->ipft_next) {
6998 if (ta == oldtune) {
6999 *tap = oldtune->ipft_next;
7000 oldtune->ipft_next = NULL;
7001 break;
7002 }
7003 }
7004
7005 if (ta == NULL) {
7006 error = ESRCH;
7007 IPFERROR(75);
7008 }
7009 return (error);
7010 }
7011
7012
7013 /* ------------------------------------------------------------------------ */
7014 /* Function: ipf_tune_del_array */
7015 /* Returns: int - 0 == success, else failure */
7016 /* Parameters: oldtune - pointer to tuneables array */
7017 /* */
7018 /* Remove each tuneable entry in the array from the list of "dynamic" */
7019 /* tunables. If one entry should fail to be found, an error will be */
7020 /* returned and no further ones removed. */
7021 /* An entry with a NULL name is used as the indicator of the last entry in */
7022 /* the array. */
7023 /* ------------------------------------------------------------------------ */
7024 int
7025 ipf_tune_del_array(ipf_main_softc_t *softc, ipftuneable_t *oldtune)
7026 {
7027 ipftuneable_t *ot;
7028 int error = 0;
7029
7030 for (ot = oldtune; ot->ipft_name != NULL; ot++) {
7031 error = ipf_tune_del(softc, ot);
7032 if (error != 0)
7033 break;
7034 }
7035
7036 return (error);
7037
7038 }
7039
7040
7041 /* ------------------------------------------------------------------------ */
7042 /* Function: ipf_tune */
7043 /* Returns: int - 0 == success, else failure */
7044 /* Parameters: cmd(I) - ioctl command number */
7045 /* data(I) - pointer to ioctl data structure */
7046 /* */
7047 /* Implement handling of SIOCIPFGETNEXT, SIOCIPFGET and SIOCIPFSET. These */
7048 /* three ioctls provide the means to access and control global variables */
7049 /* within IPFilter, allowing (for example) timeouts and table sizes to be */
7050 /* changed without rebooting, reloading or recompiling. The initialisation */
7051 /* and 'destruction' routines of the various components of ipfilter are all */
7052 /* each responsible for handling their own values being too big. */
7053 /* ------------------------------------------------------------------------ */
7054 int
7055 ipf_ipftune(ipf_main_softc_t *softc, ioctlcmd_t cmd, void *data)
7056 {
7057 ipftuneable_t *ta;
7058 ipftune_t tu;
7059 void *cookie;
7060 int error;
7061
7062 error = ipf_inobj(softc, data, NULL, &tu, IPFOBJ_TUNEABLE);
7063 if (error != 0)
7064 return (error);
7065
7066 tu.ipft_name[sizeof(tu.ipft_name) - 1] = '\0';
7067 cookie = tu.ipft_cookie;
7068 ta = NULL;
7069
7070 switch (cmd)
7071 {
7072 case SIOCIPFGETNEXT :
7073 /*
7074 * If cookie is non-NULL, assume it to be a pointer to the last
7075 * entry we looked at, so find it (if possible) and return a
7076 * pointer to the next one after it. The last entry in the
7077 * the table is a NULL entry, so when we get to it, set cookie
7078 * to NULL and return that, indicating end of list, erstwhile
7079 * if we come in with cookie set to NULL, we are starting anew
7080 * at the front of the list.
7081 */
7082 if (cookie != NULL) {
7083 ta = ipf_tune_findbycookie(&softc->ipf_tuners,
7084 cookie, &tu.ipft_cookie);
7085 } else {
7086 ta = softc->ipf_tuners;
7087 tu.ipft_cookie = ta + 1;
7088 }
7089 if (ta != NULL) {
7090 /*
7091 * Entry found, but does the data pointed to by that
7092 * row fit in what we can return?
7093 */
7094 if (ta->ipft_sz > sizeof(tu.ipft_un)) {
7095 IPFERROR(76);
7096 return (EINVAL);
7097 }
7098
7099 tu.ipft_vlong = 0;
7100 if (ta->ipft_sz == sizeof(u_long))
7101 tu.ipft_vlong = *ta->ipft_plong;
7102 else if (ta->ipft_sz == sizeof(u_int))
7103 tu.ipft_vint = *ta->ipft_pint;
7104 else if (ta->ipft_sz == sizeof(u_short))
7105 tu.ipft_vshort = *ta->ipft_pshort;
7106 else if (ta->ipft_sz == sizeof(u_char))
7107 tu.ipft_vchar = *ta->ipft_pchar;
7108
7109 tu.ipft_sz = ta->ipft_sz;
7110 tu.ipft_min = ta->ipft_min;
7111 tu.ipft_max = ta->ipft_max;
7112 tu.ipft_flags = ta->ipft_flags;
7113 bcopy(ta->ipft_name, tu.ipft_name,
7114 MIN(sizeof(tu.ipft_name),
7115 strlen(ta->ipft_name) + 1));
7116 }
7117 error = ipf_outobj(softc, data, &tu, IPFOBJ_TUNEABLE);
7118 break;
7119
7120 case SIOCIPFGET :
7121 case SIOCIPFSET :
7122 /*
7123 * Search by name or by cookie value for a particular entry
7124 * in the tuning parameter table.
7125 */
7126 IPFERROR(77);
7127 error = ESRCH;
7128 if (cookie != NULL) {
7129 ta = ipf_tune_findbycookie(&softc->ipf_tuners,
7130 cookie, NULL);
7131 if (ta != NULL)
7132 error = 0;
7133 } else if (tu.ipft_name[0] != '\0') {
7134 ta = ipf_tune_findbyname(softc->ipf_tuners,
7135 tu.ipft_name);
7136 if (ta != NULL)
7137 error = 0;
7138 }
7139 if (error != 0)
7140 break;
7141
7142 if (cmd == (ioctlcmd_t)SIOCIPFGET) {
7143 /*
7144 * Fetch the tuning parameters for a particular value
7145 */
7146 tu.ipft_vlong = 0;
7147 if (ta->ipft_sz == sizeof(u_long))
7148 tu.ipft_vlong = *ta->ipft_plong;
7149 else if (ta->ipft_sz == sizeof(u_int))
7150 tu.ipft_vint = *ta->ipft_pint;
7151 else if (ta->ipft_sz == sizeof(u_short))
7152 tu.ipft_vshort = *ta->ipft_pshort;
7153 else if (ta->ipft_sz == sizeof(u_char))
7154 tu.ipft_vchar = *ta->ipft_pchar;
7155 tu.ipft_cookie = ta;
7156 tu.ipft_sz = ta->ipft_sz;
7157 tu.ipft_min = ta->ipft_min;
7158 tu.ipft_max = ta->ipft_max;
7159 tu.ipft_flags = ta->ipft_flags;
7160 error = ipf_outobj(softc, data, &tu, IPFOBJ_TUNEABLE);
7161
7162 } else if (cmd == (ioctlcmd_t)SIOCIPFSET) {
7163 /*
7164 * Set an internal parameter. The hard part here is
7165 * getting the new value safely and correctly out of
7166 * the kernel (given we only know its size, not type.)
7167 */
7168 u_long in;
7169
7170 if (((ta->ipft_flags & IPFT_WRDISABLED) != 0) &&
7171 (softc->ipf_running > 0)) {
7172 IPFERROR(78);
7173 error = EBUSY;
7174 break;
7175 }
7176
7177 in = tu.ipft_vlong;
7178 if (in < ta->ipft_min || in > ta->ipft_max) {
7179 IPFERROR(79);
7180 error = EINVAL;
7181 break;
7182 }
7183
7184 if (ta->ipft_func != NULL) {
7185 SPL_INT(s);
7186
7187 SPL_NET(s);
7188 error = (*ta->ipft_func)(softc, ta,
7189 &tu.ipft_un);
7190 SPL_X(s);
7191
7192 } else if (ta->ipft_sz == sizeof(u_long)) {
7193 tu.ipft_vlong = *ta->ipft_plong;
7194 *ta->ipft_plong = in;
7195
7196 } else if (ta->ipft_sz == sizeof(u_int)) {
7197 tu.ipft_vint = *ta->ipft_pint;
7198 *ta->ipft_pint = (u_int)(in & 0xffffffff);
7199
7200 } else if (ta->ipft_sz == sizeof(u_short)) {
7201 tu.ipft_vshort = *ta->ipft_pshort;
7202 *ta->ipft_pshort = (u_short)(in & 0xffff);
7203
7204 } else if (ta->ipft_sz == sizeof(u_char)) {
7205 tu.ipft_vchar = *ta->ipft_pchar;
7206 *ta->ipft_pchar = (u_char)(in & 0xff);
7207 }
7208 error = ipf_outobj(softc, data, &tu, IPFOBJ_TUNEABLE);
7209 }
7210 break;
7211
7212 default :
7213 IPFERROR(80);
7214 error = EINVAL;
7215 break;
7216 }
7217
7218 return (error);
7219 }
7220
7221
7222 /* ------------------------------------------------------------------------ */
7223 /* Function: ipf_zerostats */
7224 /* Returns: int - 0 = success, else failure */
7225 /* Parameters: data(O) - pointer to pointer for copying data back to */
7226 /* */
7227 /* Copies the current statistics out to userspace and then zero's the */
7228 /* current ones in the kernel. The lock is only held across the bzero() as */
7229 /* the copyout may result in paging (ie network activity.) */
7230 /* ------------------------------------------------------------------------ */
7231 int
7232 ipf_zerostats(ipf_main_softc_t *softc, caddr_t data)
7233 {
7234 friostat_t fio;
7235 ipfobj_t obj;
7236 int error;
7237
7238 error = ipf_inobj(softc, data, &obj, &fio, IPFOBJ_IPFSTAT);
7239 if (error != 0)
7240 return (error);
7241 ipf_getstat(softc, &fio, obj.ipfo_rev);
7242 error = ipf_outobj(softc, data, &fio, IPFOBJ_IPFSTAT);
7243 if (error != 0)
7244 return (error);
7245
7246 WRITE_ENTER(&softc->ipf_mutex);
7247 bzero(&softc->ipf_stats, sizeof(softc->ipf_stats));
7248 RWLOCK_EXIT(&softc->ipf_mutex);
7249
7250 return (0);
7251 }
7252
7253
7254 /* ------------------------------------------------------------------------ */
7255 /* Function: ipf_resolvedest */
7256 /* Returns: Nil */
7257 /* Parameters: softc(I) - pointer to soft context main structure */
7258 /* base(I) - where strings are stored */
7259 /* fdp(IO) - pointer to destination information to resolve */
7260 /* v(I) - IP protocol version to match */
7261 /* */
7262 /* Looks up an interface name in the frdest structure pointed to by fdp and */
7263 /* if a matching name can be found for the particular IP protocol version */
7264 /* then store the interface pointer in the frdest struct. If no match is */
7265 /* found, then set the interface pointer to be -1 as NULL is considered to */
7266 /* indicate there is no information at all in the structure. */
7267 /* ------------------------------------------------------------------------ */
7268 int
7269 ipf_resolvedest(ipf_main_softc_t *softc, char *base, frdest_t *fdp, int v)
7270 {
7271 int errval = 0;
7272 void *ifp;
7273
7274 ifp = NULL;
7275
7276 if (fdp->fd_name != -1) {
7277 if (fdp->fd_type == FRD_DSTLIST) {
7278 ifp = ipf_lookup_res_name(softc, IPL_LOGIPF,
7279 IPLT_DSTLIST,
7280 base + fdp->fd_name,
7281 NULL);
7282 if (ifp == NULL) {
7283 IPFERROR(144);
7284 errval = ESRCH;
7285 }
7286 } else {
7287 ifp = GETIFP(base + fdp->fd_name, v);
7288 if (ifp == NULL)
7289 ifp = (void *)-1;
7290 }
7291 }
7292 fdp->fd_ptr = ifp;
7293
7294 return (errval);
7295 }
7296
7297
7298 /* ------------------------------------------------------------------------ */
7299 /* Function: ipf_resolvenic */
7300 /* Returns: void* - NULL = wildcard name, -1 = failed to find NIC, else */
7301 /* pointer to interface structure for NIC */
7302 /* Parameters: softc(I)- pointer to soft context main structure */
7303 /* name(I) - complete interface name */
7304 /* v(I) - IP protocol version */
7305 /* */
7306 /* Look for a network interface structure that firstly has a matching name */
7307 /* to that passed in and that is also being used for that IP protocol */
7308 /* version (necessary on some platforms where there are separate listings */
7309 /* for both IPv4 and IPv6 on the same physical NIC. */
7310 /* ------------------------------------------------------------------------ */
7311 void *
7312 ipf_resolvenic(ipf_main_softc_t *softc, char *name, int v)
7313 {
7314 void *nic;
7315
7316 softc = softc; /* gcc -Wextra */
7317 if (name[0] == '\0')
7318 return (NULL);
7319
7320 if ((name[1] == '\0') && ((name[0] == '-') || (name[0] == '*'))) {
7321 return (NULL);
7322 }
7323
7324 nic = GETIFP(name, v);
7325 if (nic == NULL)
7326 nic = (void *)-1;
7327 return (nic);
7328 }
7329
7330
7331 /* ------------------------------------------------------------------------ */
7332 /* Function: ipf_token_expire */
7333 /* Returns: None. */
7334 /* Parameters: softc(I) - pointer to soft context main structure */
7335 /* */
7336 /* This function is run every ipf tick to see if there are any tokens that */
7337 /* have been held for too long and need to be freed up. */
7338 /* ------------------------------------------------------------------------ */
7339 void
7340 ipf_token_expire(ipf_main_softc_t *softc)
7341 {
7342 ipftoken_t *it;
7343
7344 WRITE_ENTER(&softc->ipf_tokens);
7345 while ((it = softc->ipf_token_head) != NULL) {
7346 if (it->ipt_die > softc->ipf_ticks)
7347 break;
7348
7349 ipf_token_deref(softc, it);
7350 }
7351 RWLOCK_EXIT(&softc->ipf_tokens);
7352 }
7353
7354
7355 /* ------------------------------------------------------------------------ */
7356 /* Function: ipf_token_flush */
7357 /* Returns: None. */
7358 /* Parameters: softc(I) - pointer to soft context main structure */
7359 /* */
7360 /* Loop through all of the existing tokens and call deref to see if they */
7361 /* can be freed. Normally a function like this might just loop on */
7362 /* ipf_token_head but there is a chance that a token might have a ref count */
7363 /* of greater than one and in that case the reference would drop twice */
7364 /* by code that is only entitled to drop it once. */
7365 /* ------------------------------------------------------------------------ */
7366 static void
7367 ipf_token_flush(ipf_main_softc_t *softc)
7368 {
7369 ipftoken_t *it, *next;
7370
7371 WRITE_ENTER(&softc->ipf_tokens);
7372 for (it = softc->ipf_token_head; it != NULL; it = next) {
7373 next = it->ipt_next;
7374 (void) ipf_token_deref(softc, it);
7375 }
7376 RWLOCK_EXIT(&softc->ipf_tokens);
7377 }
7378
7379
7380 /* ------------------------------------------------------------------------ */
7381 /* Function: ipf_token_del */
7382 /* Returns: int - 0 = success, else error */
7383 /* Parameters: softc(I)- pointer to soft context main structure */
7384 /* type(I) - the token type to match */
7385 /* uid(I) - uid owning the token */
7386 /* ptr(I) - context pointer for the token */
7387 /* */
7388 /* This function looks for a token in the current list that matches up */
7389 /* the fields (type, uid, ptr). If none is found, ESRCH is returned, else */
7390 /* call ipf_token_dewref() to remove it from the list. In the event that */
7391 /* the token has a reference held elsewhere, setting ipt_complete to 2 */
7392 /* enables debugging to distinguish between the two paths that ultimately */
7393 /* lead to a token to be deleted. */
7394 /* ------------------------------------------------------------------------ */
7395 int
7396 ipf_token_del(ipf_main_softc_t *softc, int type, int uid, void *ptr)
7397 {
7398 ipftoken_t *it;
7399 int error;
7400
7401 IPFERROR(82);
7402 error = ESRCH;
7403
7404 WRITE_ENTER(&softc->ipf_tokens);
7405 for (it = softc->ipf_token_head; it != NULL; it = it->ipt_next) {
7406 if (ptr == it->ipt_ctx && type == it->ipt_type &&
7407 uid == it->ipt_uid) {
7408 it->ipt_complete = 2;
7409 ipf_token_deref(softc, it);
7410 error = 0;
7411 break;
7412 }
7413 }
7414 RWLOCK_EXIT(&softc->ipf_tokens);
7415
7416 return (error);
7417 }
7418
7419
7420 /* ------------------------------------------------------------------------ */
7421 /* Function: ipf_token_mark_complete */
7422 /* Returns: None. */
7423 /* Parameters: token(I) - pointer to token structure */
7424 /* */
7425 /* Mark a token as being ineligable for being found with ipf_token_find. */
7426 /* ------------------------------------------------------------------------ */
7427 void
7428 ipf_token_mark_complete(ipftoken_t *token)
7429 {
7430 if (token->ipt_complete == 0)
7431 token->ipt_complete = 1;
7432 }
7433
7434
7435 /* ------------------------------------------------------------------------ */
7436 /* Function: ipf_token_find */
7437 /* Returns: ipftoken_t * - NULL if no memory, else pointer to token */
7438 /* Parameters: softc(I)- pointer to soft context main structure */
7439 /* type(I) - the token type to match */
7440 /* uid(I) - uid owning the token */
7441 /* ptr(I) - context pointer for the token */
7442 /* */
7443 /* This function looks for a live token in the list of current tokens that */
7444 /* matches the tuple (type, uid, ptr). If one cannot be found then one is */
7445 /* allocated. If one is found then it is moved to the top of the list of */
7446 /* currently active tokens. */
7447 /* ------------------------------------------------------------------------ */
7448 ipftoken_t *
7449 ipf_token_find(ipf_main_softc_t *softc, int type, int uid, void *ptr)
7450 {
7451 ipftoken_t *it, *new;
7452
7453 KMALLOC(new, ipftoken_t *);
7454 if (new != NULL)
7455 bzero((char *)new, sizeof(*new));
7456
7457 WRITE_ENTER(&softc->ipf_tokens);
7458 for (it = softc->ipf_token_head; it != NULL; it = it->ipt_next) {
7459 if ((ptr == it->ipt_ctx) && (type == it->ipt_type) &&
7460 (uid == it->ipt_uid) && (it->ipt_complete < 2))
7461 break;
7462 }
7463
7464 if (it == NULL) {
7465 it = new;
7466 new = NULL;
7467 if (it == NULL) {
7468 RWLOCK_EXIT(&softc->ipf_tokens);
7469 return (NULL);
7470 }
7471 it->ipt_ctx = ptr;
7472 it->ipt_uid = uid;
7473 it->ipt_type = type;
7474 it->ipt_ref = 1;
7475 } else {
7476 if (new != NULL) {
7477 KFREE(new);
7478 new = NULL;
7479 }
7480
7481 if (it->ipt_complete > 0)
7482 it = NULL;
7483 else
7484 ipf_token_unlink(softc, it);
7485 }
7486
7487 if (it != NULL) {
7488 it->ipt_pnext = softc->ipf_token_tail;
7489 *softc->ipf_token_tail = it;
7490 softc->ipf_token_tail = &it->ipt_next;
7491 it->ipt_next = NULL;
7492 it->ipt_ref++;
7493
7494 it->ipt_die = softc->ipf_ticks + 20;
7495 }
7496
7497 RWLOCK_EXIT(&softc->ipf_tokens);
7498
7499 return (it);
7500 }
7501
7502
7503 /* ------------------------------------------------------------------------ */
7504 /* Function: ipf_token_unlink */
7505 /* Returns: None. */
7506 /* Parameters: softc(I) - pointer to soft context main structure */
7507 /* token(I) - pointer to token structure */
7508 /* Write Locks: ipf_tokens */
7509 /* */
7510 /* This function unlinks a token structure from the linked list of tokens */
7511 /* that "own" it. The head pointer never needs to be explicitly adjusted */
7512 /* but the tail does due to the linked list implementation. */
7513 /* ------------------------------------------------------------------------ */
7514 static void
7515 ipf_token_unlink(ipf_main_softc_t *softc, ipftoken_t *token)
7516 {
7517
7518 if (softc->ipf_token_tail == &token->ipt_next)
7519 softc->ipf_token_tail = token->ipt_pnext;
7520
7521 *token->ipt_pnext = token->ipt_next;
7522 if (token->ipt_next != NULL)
7523 token->ipt_next->ipt_pnext = token->ipt_pnext;
7524 token->ipt_next = NULL;
7525 token->ipt_pnext = NULL;
7526 }
7527
7528
7529 /* ------------------------------------------------------------------------ */
7530 /* Function: ipf_token_deref */
7531 /* Returns: int - 0 == token freed, else reference count */
7532 /* Parameters: softc(I) - pointer to soft context main structure */
7533 /* token(I) - pointer to token structure */
7534 /* Write Locks: ipf_tokens */
7535 /* */
7536 /* Drop the reference count on the token structure and if it drops to zero, */
7537 /* call the dereference function for the token type because it is then */
7538 /* possible to free the token data structure. */
7539 /* ------------------------------------------------------------------------ */
7540 int
7541 ipf_token_deref(ipf_main_softc_t *softc, ipftoken_t *token)
7542 {
7543 void *data, **datap;
7544
7545 ASSERT(token->ipt_ref > 0);
7546 token->ipt_ref--;
7547 if (token->ipt_ref > 0)
7548 return (token->ipt_ref);
7549
7550 data = token->ipt_data;
7551 datap = &data;
7552
7553 if ((data != NULL) && (data != (void *)-1)) {
7554 switch (token->ipt_type)
7555 {
7556 case IPFGENITER_IPF :
7557 (void) ipf_derefrule(softc, (frentry_t **)datap);
7558 break;
7559 case IPFGENITER_IPNAT :
7560 WRITE_ENTER(&softc->ipf_nat);
7561 ipf_nat_rule_deref(softc, (ipnat_t **)datap);
7562 RWLOCK_EXIT(&softc->ipf_nat);
7563 break;
7564 case IPFGENITER_NAT :
7565 ipf_nat_deref(softc, (nat_t **)datap);
7566 break;
7567 case IPFGENITER_STATE :
7568 ipf_state_deref(softc, (ipstate_t **)datap);
7569 break;
7570 case IPFGENITER_FRAG :
7571 ipf_frag_pkt_deref(softc, (ipfr_t **)datap);
7572 break;
7573 case IPFGENITER_NATFRAG :
7574 ipf_frag_nat_deref(softc, (ipfr_t **)datap);
7575 break;
7576 case IPFGENITER_HOSTMAP :
7577 WRITE_ENTER(&softc->ipf_nat);
7578 ipf_nat_hostmapdel(softc, (hostmap_t **)datap);
7579 RWLOCK_EXIT(&softc->ipf_nat);
7580 break;
7581 default :
7582 ipf_lookup_iterderef(softc, token->ipt_type, data);
7583 break;
7584 }
7585 }
7586
7587 ipf_token_unlink(softc, token);
7588 KFREE(token);
7589 return (0);
7590 }
7591
7592
7593 /* ------------------------------------------------------------------------ */
7594 /* Function: ipf_nextrule */
7595 /* Returns: frentry_t * - NULL == no more rules, else pointer to next */
7596 /* Parameters: softc(I) - pointer to soft context main structure */
7597 /* fr(I) - pointer to filter rule */
7598 /* out(I) - 1 == out rules, 0 == input rules */
7599 /* */
7600 /* Starting with "fr", find the next rule to visit. This includes visiting */
7601 /* the list of rule groups if either fr is NULL (empty list) or it is the */
7602 /* last rule in the list. When walking rule lists, it is either input or */
7603 /* output rules that are returned, never both. */
7604 /* ------------------------------------------------------------------------ */
7605 static frentry_t *
7606 ipf_nextrule(ipf_main_softc_t *softc, int active, int unit, frentry_t *fr,
7607 int out)
7608 {
7609 frentry_t *next;
7610 frgroup_t *fg;
7611
7612 if (fr != NULL && fr->fr_group != -1) {
7613 fg = ipf_findgroup(softc, fr->fr_names + fr->fr_group,
7614 unit, active, NULL);
7615 if (fg != NULL)
7616 fg = fg->fg_next;
7617 } else {
7618 fg = softc->ipf_groups[unit][active];
7619 }
7620
7621 while (fg != NULL) {
7622 next = fg->fg_start;
7623 while (next != NULL) {
7624 if (out) {
7625 if (next->fr_flags & FR_OUTQUE)
7626 return (next);
7627 } else if (next->fr_flags & FR_INQUE) {
7628 return (next);
7629 }
7630 next = next->fr_next;
7631 }
7632 if (next == NULL)
7633 fg = fg->fg_next;
7634 }
7635
7636 return (NULL);
7637 }
7638
7639 /* ------------------------------------------------------------------------ */
7640 /* Function: ipf_getnextrule */
7641 /* Returns: int - 0 = success, else error */
7642 /* Parameters: softc(I)- pointer to soft context main structure */
7643 /* t(I) - pointer to destination information to resolve */
7644 /* ptr(I) - pointer to ipfobj_t to copyin from user space */
7645 /* */
7646 /* This function's first job is to bring in the ipfruleiter_t structure via */
7647 /* the ipfobj_t structure to determine what should be the next rule to */
7648 /* return. Once the ipfruleiter_t has been brought in, it then tries to */
7649 /* find the 'next rule'. This may include searching rule group lists or */
7650 /* just be as simple as looking at the 'next' field in the rule structure. */
7651 /* When we have found the rule to return, increase its reference count and */
7652 /* if we used an existing rule to get here, decrease its reference count. */
7653 /* ------------------------------------------------------------------------ */
7654 int
7655 ipf_getnextrule(ipf_main_softc_t *softc, ipftoken_t *t, void *ptr)
7656 {
7657 frentry_t *fr, *next, zero;
7658 ipfruleiter_t it;
7659 int error, out;
7660 frgroup_t *fg;
7661 ipfobj_t obj;
7662 int predict;
7663 char *dst;
7664 int unit;
7665
7666 if (t == NULL || ptr == NULL) {
7667 IPFERROR(84);
7668 return (EFAULT);
7669 }
7670
7671 error = ipf_inobj(softc, ptr, &obj, &it, IPFOBJ_IPFITER);
7672 if (error != 0)
7673 return (error);
7674
7675 if ((it.iri_inout < 0) || (it.iri_inout > 3)) {
7676 IPFERROR(85);
7677 return (EINVAL);
7678 }
7679 if ((it.iri_active != 0) && (it.iri_active != 1)) {
7680 IPFERROR(86);
7681 return (EINVAL);
7682 }
7683 if (it.iri_nrules == 0) {
7684 IPFERROR(87);
7685 return (ENOSPC);
7686 }
7687 if (it.iri_rule == NULL) {
7688 IPFERROR(88);
7689 return (EFAULT);
7690 }
7691
7692 fg = NULL;
7693 fr = t->ipt_data;
7694 if ((it.iri_inout & F_OUT) != 0)
7695 out = 1;
7696 else
7697 out = 0;
7698 if ((it.iri_inout & F_ACIN) != 0)
7699 unit = IPL_LOGCOUNT;
7700 else
7701 unit = IPL_LOGIPF;
7702
7703 READ_ENTER(&softc->ipf_mutex);
7704 if (fr == NULL) {
7705 if (*it.iri_group == '\0') {
7706 if (unit == IPL_LOGCOUNT) {
7707 next = softc->ipf_acct[out][it.iri_active];
7708 } else {
7709 next = softc->ipf_rules[out][it.iri_active];
7710 }
7711 if (next == NULL)
7712 next = ipf_nextrule(softc, it.iri_active,
7713 unit, NULL, out);
7714 } else {
7715 fg = ipf_findgroup(softc, it.iri_group, unit,
7716 it.iri_active, NULL);
7717 if (fg != NULL)
7718 next = fg->fg_start;
7719 else
7720 next = NULL;
7721 }
7722 } else {
7723 next = fr->fr_next;
7724 if (next == NULL)
7725 next = ipf_nextrule(softc, it.iri_active, unit,
7726 fr, out);
7727 }
7728
7729 if (next != NULL && next->fr_next != NULL)
7730 predict = 1;
7731 else if (ipf_nextrule(softc, it.iri_active, unit, next, out) != NULL)
7732 predict = 1;
7733 else
7734 predict = 0;
7735
7736 if (fr != NULL)
7737 (void) ipf_derefrule(softc, &fr);
7738
7739 obj.ipfo_type = IPFOBJ_FRENTRY;
7740 dst = (char *)it.iri_rule;
7741
7742 if (next != NULL) {
7743 obj.ipfo_size = next->fr_size;
7744 MUTEX_ENTER(&next->fr_lock);
7745 next->fr_ref++;
7746 MUTEX_EXIT(&next->fr_lock);
7747 t->ipt_data = next;
7748 } else {
7749 obj.ipfo_size = sizeof(frentry_t);
7750 bzero(&zero, sizeof(zero));
7751 next = &zero;
7752 t->ipt_data = NULL;
7753 }
7754 it.iri_rule = predict ? next : NULL;
7755 if (predict == 0)
7756 ipf_token_mark_complete(t);
7757
7758 RWLOCK_EXIT(&softc->ipf_mutex);
7759
7760 obj.ipfo_ptr = dst;
7761 error = ipf_outobjk(softc, &obj, next);
7762 if (error == 0 && t->ipt_data != NULL) {
7763 dst += obj.ipfo_size;
7764 if (next->fr_data != NULL) {
7765 ipfobj_t dobj;
7766
7767 if (next->fr_type == FR_T_IPFEXPR)
7768 dobj.ipfo_type = IPFOBJ_IPFEXPR;
7769 else
7770 dobj.ipfo_type = IPFOBJ_FRIPF;
7771 dobj.ipfo_size = next->fr_dsize;
7772 dobj.ipfo_rev = obj.ipfo_rev;
7773 dobj.ipfo_ptr = dst;
7774 error = ipf_outobjk(softc, &dobj, next->fr_data);
7775 }
7776 }
7777
7778 if ((fr != NULL) && (next == &zero))
7779 (void) ipf_derefrule(softc, &fr);
7780
7781 return (error);
7782 }
7783
7784
7785 /* ------------------------------------------------------------------------ */
7786 /* Function: ipf_frruleiter */
7787 /* Returns: int - 0 = success, else error */
7788 /* Parameters: softc(I)- pointer to soft context main structure */
7789 /* data(I) - the token type to match */
7790 /* uid(I) - uid owning the token */
7791 /* ptr(I) - context pointer for the token */
7792 /* */
7793 /* This function serves as a stepping stone between ipf_ipf_ioctl and */
7794 /* ipf_getnextrule. It's role is to find the right token in the kernel for */
7795 /* the process doing the ioctl and use that to ask for the next rule. */
7796 /* ------------------------------------------------------------------------ */
7797 static int
7798 ipf_frruleiter(ipf_main_softc_t *softc, void *data, int uid, void *ctx)
7799 {
7800 ipftoken_t *token;
7801 ipfruleiter_t it;
7802 ipfobj_t obj;
7803 int error;
7804
7805 token = ipf_token_find(softc, IPFGENITER_IPF, uid, ctx);
7806 if (token != NULL) {
7807 error = ipf_getnextrule(softc, token, data);
7808 WRITE_ENTER(&softc->ipf_tokens);
7809 ipf_token_deref(softc, token);
7810 RWLOCK_EXIT(&softc->ipf_tokens);
7811 } else {
7812 error = ipf_inobj(softc, data, &obj, &it, IPFOBJ_IPFITER);
7813 if (error != 0)
7814 return (error);
7815 it.iri_rule = NULL;
7816 error = ipf_outobj(softc, data, &it, IPFOBJ_IPFITER);
7817 }
7818
7819 return (error);
7820 }
7821
7822
7823 /* ------------------------------------------------------------------------ */
7824 /* Function: ipf_geniter */
7825 /* Returns: int - 0 = success, else error */
7826 /* Parameters: softc(I) - pointer to soft context main structure */
7827 /* token(I) - pointer to ipftoken_t structure */
7828 /* itp(I) - pointer to iterator data */
7829 /* */
7830 /* Decide which iterator function to call using information passed through */
7831 /* the ipfgeniter_t structure at itp. */
7832 /* ------------------------------------------------------------------------ */
7833 static int
7834 ipf_geniter(ipf_main_softc_t *softc, ipftoken_t *token, ipfgeniter_t *itp)
7835 {
7836 int error;
7837
7838 switch (itp->igi_type)
7839 {
7840 case IPFGENITER_FRAG :
7841 error = ipf_frag_pkt_next(softc, token, itp);
7842 break;
7843 default :
7844 IPFERROR(92);
7845 error = EINVAL;
7846 break;
7847 }
7848
7849 return (error);
7850 }
7851
7852
7853 /* ------------------------------------------------------------------------ */
7854 /* Function: ipf_genericiter */
7855 /* Returns: int - 0 = success, else error */
7856 /* Parameters: softc(I)- pointer to soft context main structure */
7857 /* data(I) - the token type to match */
7858 /* uid(I) - uid owning the token */
7859 /* ptr(I) - context pointer for the token */
7860 /* */
7861 /* Handle the SIOCGENITER ioctl for the ipfilter device. The primary role */
7862 /* ------------------------------------------------------------------------ */
7863 int
7864 ipf_genericiter(ipf_main_softc_t *softc, void *data, int uid, void *ctx)
7865 {
7866 ipftoken_t *token;
7867 ipfgeniter_t iter;
7868 int error;
7869
7870 error = ipf_inobj(softc, data, NULL, &iter, IPFOBJ_GENITER);
7871 if (error != 0)
7872 return (error);
7873
7874 token = ipf_token_find(softc, iter.igi_type, uid, ctx);
7875 if (token != NULL) {
7876 token->ipt_subtype = iter.igi_type;
7877 error = ipf_geniter(softc, token, &iter);
7878 WRITE_ENTER(&softc->ipf_tokens);
7879 ipf_token_deref(softc, token);
7880 RWLOCK_EXIT(&softc->ipf_tokens);
7881 } else {
7882 IPFERROR(93);
7883 error = 0;
7884 }
7885
7886 return (error);
7887 }
7888
7889
7890 /* ------------------------------------------------------------------------ */
7891 /* Function: ipf_ipf_ioctl */
7892 /* Returns: int - 0 = success, else error */
7893 /* Parameters: softc(I)- pointer to soft context main structure */
7894 /* data(I) - the token type to match */
7895 /* cmd(I) - the ioctl command number */
7896 /* mode(I) - mode flags for the ioctl */
7897 /* uid(I) - uid owning the token */
7898 /* ptr(I) - context pointer for the token */
7899 /* */
7900 /* This function handles all of the ioctl command that are actually isssued */
7901 /* to the /dev/ipl device. */
7902 /* ------------------------------------------------------------------------ */
7903 int
7904 ipf_ipf_ioctl(ipf_main_softc_t *softc, caddr_t data, ioctlcmd_t cmd, int mode,
7905 int uid, void *ctx)
7906 {
7907 friostat_t fio;
7908 int error, tmp;
7909 ipfobj_t obj;
7910 SPL_INT(s);
7911
7912 switch (cmd)
7913 {
7914 case SIOCFRENB :
7915 if (!(mode & FWRITE)) {
7916 IPFERROR(94);
7917 error = EPERM;
7918 } else {
7919 error = BCOPYIN(data, &tmp, sizeof(tmp));
7920 if (error != 0) {
7921 IPFERROR(95);
7922 error = EFAULT;
7923 break;
7924 }
7925
7926 WRITE_ENTER(&softc->ipf_global);
7927 if (tmp) {
7928 if (softc->ipf_running > 0)
7929 error = 0;
7930 else
7931 error = ipfattach(softc);
7932 if (error == 0)
7933 softc->ipf_running = 1;
7934 else
7935 (void) ipfdetach(softc);
7936 } else {
7937 if (softc->ipf_running == 1)
7938 error = ipfdetach(softc);
7939 else
7940 error = 0;
7941 if (error == 0)
7942 softc->ipf_running = -1;
7943 }
7944 RWLOCK_EXIT(&softc->ipf_global);
7945 }
7946 break;
7947
7948 case SIOCIPFSET :
7949 if (!(mode & FWRITE)) {
7950 IPFERROR(96);
7951 error = EPERM;
7952 break;
7953 }
7954 /* FALLTHRU */
7955 case SIOCIPFGETNEXT :
7956 case SIOCIPFGET :
7957 error = ipf_ipftune(softc, cmd, (void *)data);
7958 break;
7959
7960 case SIOCSETFF :
7961 if (!(mode & FWRITE)) {
7962 IPFERROR(97);
7963 error = EPERM;
7964 } else {
7965 error = BCOPYIN(data, &softc->ipf_flags,
7966 sizeof(softc->ipf_flags));
7967 if (error != 0) {
7968 IPFERROR(98);
7969 error = EFAULT;
7970 }
7971 }
7972 break;
7973
7974 case SIOCGETFF :
7975 error = BCOPYOUT(&softc->ipf_flags, data,
7976 sizeof(softc->ipf_flags));
7977 if (error != 0) {
7978 IPFERROR(99);
7979 error = EFAULT;
7980 }
7981 break;
7982
7983 case SIOCFUNCL :
7984 error = ipf_resolvefunc(softc, (void *)data);
7985 break;
7986
7987 case SIOCINAFR :
7988 case SIOCRMAFR :
7989 case SIOCADAFR :
7990 case SIOCZRLST :
7991 if (!(mode & FWRITE)) {
7992 IPFERROR(100);
7993 error = EPERM;
7994 } else {
7995 error = frrequest(softc, IPL_LOGIPF, cmd, (caddr_t)data,
7996 softc->ipf_active, 1);
7997 }
7998 break;
7999
8000 case SIOCINIFR :
8001 case SIOCRMIFR :
8002 case SIOCADIFR :
8003 if (!(mode & FWRITE)) {
8004 IPFERROR(101);
8005 error = EPERM;
8006 } else {
8007 error = frrequest(softc, IPL_LOGIPF, cmd, (caddr_t)data,
8008 1 - softc->ipf_active, 1);
8009 }
8010 break;
8011
8012 case SIOCSWAPA :
8013 if (!(mode & FWRITE)) {
8014 IPFERROR(102);
8015 error = EPERM;
8016 } else {
8017 WRITE_ENTER(&softc->ipf_mutex);
8018 error = BCOPYOUT(&softc->ipf_active, data,
8019 sizeof(softc->ipf_active));
8020 if (error != 0) {
8021 IPFERROR(103);
8022 error = EFAULT;
8023 } else {
8024 softc->ipf_active = 1 - softc->ipf_active;
8025 }
8026 RWLOCK_EXIT(&softc->ipf_mutex);
8027 }
8028 break;
8029
8030 case SIOCGETFS :
8031 error = ipf_inobj(softc, (void *)data, &obj, &fio,
8032 IPFOBJ_IPFSTAT);
8033 if (error != 0)
8034 break;
8035 ipf_getstat(softc, &fio, obj.ipfo_rev);
8036 error = ipf_outobj(softc, (void *)data, &fio, IPFOBJ_IPFSTAT);
8037 break;
8038
8039 case SIOCFRZST :
8040 if (!(mode & FWRITE)) {
8041 IPFERROR(104);
8042 error = EPERM;
8043 } else
8044 error = ipf_zerostats(softc, (caddr_t)data);
8045 break;
8046
8047 case SIOCIPFFL :
8048 if (!(mode & FWRITE)) {
8049 IPFERROR(105);
8050 error = EPERM;
8051 } else {
8052 error = BCOPYIN(data, &tmp, sizeof(tmp));
8053 if (!error) {
8054 tmp = ipf_flush(softc, IPL_LOGIPF, tmp);
8055 error = BCOPYOUT(&tmp, data, sizeof(tmp));
8056 if (error != 0) {
8057 IPFERROR(106);
8058 error = EFAULT;
8059 }
8060 } else {
8061 IPFERROR(107);
8062 error = EFAULT;
8063 }
8064 }
8065 break;
8066
8067 #ifdef USE_INET6
8068 case SIOCIPFL6 :
8069 if (!(mode & FWRITE)) {
8070 IPFERROR(108);
8071 error = EPERM;
8072 } else {
8073 error = BCOPYIN(data, &tmp, sizeof(tmp));
8074 if (!error) {
8075 tmp = ipf_flush(softc, IPL_LOGIPF, tmp);
8076 error = BCOPYOUT(&tmp, data, sizeof(tmp));
8077 if (error != 0) {
8078 IPFERROR(109);
8079 error = EFAULT;
8080 }
8081 } else {
8082 IPFERROR(110);
8083 error = EFAULT;
8084 }
8085 }
8086 break;
8087 #endif
8088
8089 case SIOCSTLCK :
8090 if (!(mode & FWRITE)) {
8091 IPFERROR(122);
8092 error = EPERM;
8093 } else {
8094 error = BCOPYIN(data, &tmp, sizeof(tmp));
8095 if (error == 0) {
8096 ipf_state_setlock(softc->ipf_state_soft, tmp);
8097 ipf_nat_setlock(softc->ipf_nat_soft, tmp);
8098 ipf_frag_setlock(softc->ipf_frag_soft, tmp);
8099 ipf_auth_setlock(softc->ipf_auth_soft, tmp);
8100 } else {
8101 IPFERROR(111);
8102 error = EFAULT;
8103 }
8104 }
8105 break;
8106
8107 #ifdef IPFILTER_LOG
8108 case SIOCIPFFB :
8109 if (!(mode & FWRITE)) {
8110 IPFERROR(112);
8111 error = EPERM;
8112 } else {
8113 tmp = ipf_log_clear(softc, IPL_LOGIPF);
8114 error = BCOPYOUT(&tmp, data, sizeof(tmp));
8115 if (error) {
8116 IPFERROR(113);
8117 error = EFAULT;
8118 }
8119 }
8120 break;
8121 #endif /* IPFILTER_LOG */
8122
8123 case SIOCFRSYN :
8124 if (!(mode & FWRITE)) {
8125 IPFERROR(114);
8126 error = EPERM;
8127 } else {
8128 WRITE_ENTER(&softc->ipf_global);
8129 #if (SOLARIS && defined(_KERNEL)) && !defined(INSTANCES)
8130 error = ipfsync();
8131 #else
8132 ipf_sync(softc, NULL);
8133 error = 0;
8134 #endif
8135 RWLOCK_EXIT(&softc->ipf_global);
8136
8137 }
8138 break;
8139
8140 case SIOCGFRST :
8141 error = ipf_outobj(softc, (void *)data,
8142 ipf_frag_stats(softc->ipf_frag_soft),
8143 IPFOBJ_FRAGSTAT);
8144 break;
8145
8146 #ifdef IPFILTER_LOG
8147 case FIONREAD :
8148 tmp = ipf_log_bytesused(softc, IPL_LOGIPF);
8149 error = BCOPYOUT(&tmp, data, sizeof(tmp));
8150 break;
8151 #endif
8152
8153 case SIOCIPFITER :
8154 SPL_SCHED(s);
8155 error = ipf_frruleiter(softc, data, uid, ctx);
8156 SPL_X(s);
8157 break;
8158
8159 case SIOCGENITER :
8160 SPL_SCHED(s);
8161 error = ipf_genericiter(softc, data, uid, ctx);
8162 SPL_X(s);
8163 break;
8164
8165 case SIOCIPFDELTOK :
8166 error = BCOPYIN(data, &tmp, sizeof(tmp));
8167 if (error == 0) {
8168 SPL_SCHED(s);
8169 error = ipf_token_del(softc, tmp, uid, ctx);
8170 SPL_X(s);
8171 }
8172 break;
8173
8174 default :
8175 IPFERROR(115);
8176 error = EINVAL;
8177 break;
8178 }
8179
8180 return (error);
8181 }
8182
8183
8184 /* ------------------------------------------------------------------------ */
8185 /* Function: ipf_decaps */
8186 /* Returns: int - -1 == decapsulation failed, else bit mask of */
8187 /* flags indicating packet filtering decision. */
8188 /* Parameters: fin(I) - pointer to packet information */
8189 /* pass(I) - IP protocol version to match */
8190 /* l5proto(I) - layer 5 protocol to decode UDP data as. */
8191 /* */
8192 /* This function is called for packets that are wrapt up in other packets, */
8193 /* for example, an IP packet that is the entire data segment for another IP */
8194 /* packet. If the basic constraints for this are satisfied, change the */
8195 /* buffer to point to the start of the inner packet and start processing */
8196 /* rules belonging to the head group this rule specifies. */
8197 /* ------------------------------------------------------------------------ */
8198 u_32_t
8199 ipf_decaps(fr_info_t *fin, u_32_t pass, int l5proto)
8200 {
8201 fr_info_t fin2, *fino = NULL;
8202 int elen, hlen, nh;
8203 grehdr_t gre;
8204 ip_t *ip;
8205 mb_t *m;
8206
8207 if ((fin->fin_flx & FI_COALESCE) == 0)
8208 if (ipf_coalesce(fin) == -1)
8209 goto cantdecaps;
8210
8211 m = fin->fin_m;
8212 hlen = fin->fin_hlen;
8213
8214 switch (fin->fin_p)
8215 {
8216 case IPPROTO_UDP :
8217 /*
8218 * In this case, the specific protocol being decapsulated
8219 * inside UDP frames comes from the rule.
8220 */
8221 nh = fin->fin_fr->fr_icode;
8222 break;
8223
8224 case IPPROTO_GRE : /* 47 */
8225 bcopy(fin->fin_dp, (char *)&gre, sizeof(gre));
8226 hlen += sizeof(grehdr_t);
8227 if (gre.gr_R|gre.gr_s)
8228 goto cantdecaps;
8229 if (gre.gr_C)
8230 hlen += 4;
8231 if (gre.gr_K)
8232 hlen += 4;
8233 if (gre.gr_S)
8234 hlen += 4;
8235
8236 nh = IPPROTO_IP;
8237
8238 /*
8239 * If the routing options flag is set, validate that it is
8240 * there and bounce over it.
8241 */
8242 #if 0
8243 /* This is really heavy weight and lots of room for error, */
8244 /* so for now, put it off and get the simple stuff right. */
8245 if (gre.gr_R) {
8246 u_char off, len, *s;
8247 u_short af;
8248 int end;
8249
8250 end = 0;
8251 s = fin->fin_dp;
8252 s += hlen;
8253 aplen = fin->fin_plen - hlen;
8254 while (aplen > 3) {
8255 af = (s[0] << 8) | s[1];
8256 off = s[2];
8257 len = s[3];
8258 aplen -= 4;
8259 s += 4;
8260 if (af == 0 && len == 0) {
8261 end = 1;
8262 break;
8263 }
8264 if (aplen < len)
8265 break;
8266 s += len;
8267 aplen -= len;
8268 }
8269 if (end != 1)
8270 goto cantdecaps;
8271 hlen = s - (u_char *)fin->fin_dp;
8272 }
8273 #endif
8274 break;
8275
8276 #ifdef IPPROTO_IPIP
8277 case IPPROTO_IPIP : /* 4 */
8278 #endif
8279 nh = IPPROTO_IP;
8280 break;
8281
8282 default : /* Includes ESP, AH is special for IPv4 */
8283 goto cantdecaps;
8284 }
8285
8286 switch (nh)
8287 {
8288 case IPPROTO_IP :
8289 case IPPROTO_IPV6 :
8290 break;
8291 default :
8292 goto cantdecaps;
8293 }
8294
8295 bcopy((char *)fin, (char *)&fin2, sizeof(fin2));
8296 fino = fin;
8297 fin = &fin2;
8298 elen = hlen;
8299 #if SOLARIS && defined(_KERNEL)
8300 m->b_rptr += elen;
8301 #else
8302 m->m_data += elen;
8303 m->m_len -= elen;
8304 #endif
8305 fin->fin_plen -= elen;
8306
8307 ip = (ip_t *)((char *)fin->fin_ip + elen);
8308
8309 /*
8310 * Make sure we have at least enough data for the network layer
8311 * header.
8312 */
8313 if (IP_V(ip) == 4)
8314 hlen = IP_HL(ip) << 2;
8315 #ifdef USE_INET6
8316 else if (IP_V(ip) == 6)
8317 hlen = sizeof(ip6_t);
8318 #endif
8319 else
8320 goto cantdecaps2;
8321
8322 if (fin->fin_plen < hlen)
8323 goto cantdecaps2;
8324
8325 fin->fin_dp = (char *)ip + hlen;
8326
8327 if (IP_V(ip) == 4) {
8328 /*
8329 * Perform IPv4 header checksum validation.
8330 */
8331 if (ipf_cksum((u_short *)ip, hlen))
8332 goto cantdecaps2;
8333 }
8334
8335 if (ipf_makefrip(hlen, ip, fin) == -1) {
8336 cantdecaps2:
8337 if (m != NULL) {
8338 #if SOLARIS && defined(_KERNEL)
8339 m->b_rptr -= elen;
8340 #else
8341 m->m_data -= elen;
8342 m->m_len += elen;
8343 #endif
8344 }
8345 cantdecaps:
8346 DT1(frb_decapfrip, fr_info_t *, fin);
8347 pass &= ~FR_CMDMASK;
8348 pass |= FR_BLOCK|FR_QUICK;
8349 fin->fin_reason = FRB_DECAPFRIP;
8350 return (-1);
8351 }
8352
8353 pass = ipf_scanlist(fin, pass);
8354
8355 /*
8356 * Copy the packet filter "result" fields out of the fr_info_t struct
8357 * that is local to the decapsulation processing and back into the
8358 * one we were called with.
8359 */
8360 fino->fin_flx = fin->fin_flx;
8361 fino->fin_rev = fin->fin_rev;
8362 fino->fin_icode = fin->fin_icode;
8363 fino->fin_rule = fin->fin_rule;
8364 (void) strncpy(fino->fin_group, fin->fin_group, FR_GROUPLEN);
8365 fino->fin_fr = fin->fin_fr;
8366 fino->fin_error = fin->fin_error;
8367 fino->fin_mp = fin->fin_mp;
8368 fino->fin_m = fin->fin_m;
8369 m = fin->fin_m;
8370 if (m != NULL) {
8371 #if SOLARIS && defined(_KERNEL)
8372 m->b_rptr -= elen;
8373 #else
8374 m->m_data -= elen;
8375 m->m_len += elen;
8376 #endif
8377 }
8378 return (pass);
8379 }
8380
8381
8382 /* ------------------------------------------------------------------------ */
8383 /* Function: ipf_matcharray_load */
8384 /* Returns: int - 0 = success, else error */
8385 /* Parameters: softc(I) - pointer to soft context main structure */
8386 /* data(I) - pointer to ioctl data */
8387 /* objp(I) - ipfobj_t structure to load data into */
8388 /* arrayptr(I) - pointer to location to store array pointer */
8389 /* */
8390 /* This function loads in a mathing array through the ipfobj_t struct that */
8391 /* describes it. Sanity checking and array size limitations are enforced */
8392 /* in this function to prevent userspace from trying to load in something */
8393 /* that is insanely big. Once the size of the array is known, the memory */
8394 /* required is malloc'd and returned through changing *arrayptr. The */
8395 /* contents of the array are verified before returning. Only in the event */
8396 /* of a successful call is the caller required to free up the malloc area. */
8397 /* ------------------------------------------------------------------------ */
8398 int
8399 ipf_matcharray_load(ipf_main_softc_t *softc, caddr_t data, ipfobj_t *objp,
8400 int **arrayptr)
8401 {
8402 int arraysize, *array, error;
8403
8404 *arrayptr = NULL;
8405
8406 error = BCOPYIN(data, objp, sizeof(*objp));
8407 if (error != 0) {
8408 IPFERROR(116);
8409 return (EFAULT);
8410 }
8411
8412 if (objp->ipfo_type != IPFOBJ_IPFEXPR) {
8413 IPFERROR(117);
8414 return (EINVAL);
8415 }
8416
8417 if (((objp->ipfo_size & 3) != 0) || (objp->ipfo_size == 0) ||
8418 (objp->ipfo_size > 1024)) {
8419 IPFERROR(118);
8420 return (EINVAL);
8421 }
8422
8423 arraysize = objp->ipfo_size * sizeof(*array);
8424 KMALLOCS(array, int *, arraysize);
8425 if (array == NULL) {
8426 IPFERROR(119);
8427 return (ENOMEM);
8428 }
8429
8430 error = COPYIN(objp->ipfo_ptr, array, arraysize);
8431 if (error != 0) {
8432 KFREES(array, arraysize);
8433 IPFERROR(120);
8434 return (EFAULT);
8435 }
8436
8437 if (ipf_matcharray_verify(array, arraysize) != 0) {
8438 KFREES(array, arraysize);
8439 IPFERROR(121);
8440 return (EINVAL);
8441 }
8442
8443 *arrayptr = array;
8444 return (0);
8445 }
8446
8447
8448 /* ------------------------------------------------------------------------ */
8449 /* Function: ipf_matcharray_verify */
8450 /* Returns: Nil */
8451 /* Parameters: array(I) - pointer to matching array */
8452 /* arraysize(I) - number of elements in the array */
8453 /* */
8454 /* Verify the contents of a matching array by stepping through each element */
8455 /* in it. The actual commands in the array are not verified for */
8456 /* correctness, only that all of the sizes are correctly within limits. */
8457 /* ------------------------------------------------------------------------ */
8458 int
8459 ipf_matcharray_verify(int *array, int arraysize)
8460 {
8461 int i, nelem, maxidx;
8462 ipfexp_t *e;
8463
8464 nelem = arraysize / sizeof(*array);
8465
8466 /*
8467 * Currently, it makes no sense to have an array less than 6
8468 * elements long - the initial size at the from, a single operation
8469 * (minimum 4 in length) and a trailer, for a total of 6.
8470 */
8471 if ((array[0] < 6) || (arraysize < 24) || (arraysize > 4096)) {
8472 return (-1);
8473 }
8474
8475 /*
8476 * Verify the size of data pointed to by array with how long
8477 * the array claims to be itself.
8478 */
8479 if (array[0] * sizeof(*array) != arraysize) {
8480 return (-1);
8481 }
8482
8483 maxidx = nelem - 1;
8484 /*
8485 * The last opcode in this array should be an IPF_EXP_END.
8486 */
8487 if (array[maxidx] != IPF_EXP_END) {
8488 return (-1);
8489 }
8490
8491 for (i = 1; i < maxidx; ) {
8492 e = (ipfexp_t *)(array + i);
8493
8494 /*
8495 * The length of the bits to check must be at least 1
8496 * (or else there is nothing to comapre with!) and it
8497 * cannot exceed the length of the data present.
8498 */
8499 if ((e->ipfe_size < 1 ) ||
8500 (e->ipfe_size + i > maxidx)) {
8501 return (-1);
8502 }
8503 i += e->ipfe_size;
8504 }
8505 return (0);
8506 }
8507
8508
8509 /* ------------------------------------------------------------------------ */
8510 /* Function: ipf_fr_matcharray */
8511 /* Returns: int - 0 = match failed, else positive match */
8512 /* Parameters: fin(I) - pointer to packet information */
8513 /* array(I) - pointer to matching array */
8514 /* */
8515 /* This function is used to apply a matching array against a packet and */
8516 /* return an indication of whether or not the packet successfully matches */
8517 /* all of the commands in it. */
8518 /* ------------------------------------------------------------------------ */
8519 static int
8520 ipf_fr_matcharray(fr_info_t *fin, int *array)
8521 {
8522 int i, n, *x, rv, p;
8523 ipfexp_t *e;
8524
8525 rv = 0;
8526 n = array[0];
8527 x = array + 1;
8528
8529 for (; n > 0; x += 3 + x[3], rv = 0) {
8530 e = (ipfexp_t *)x;
8531 if (e->ipfe_cmd == IPF_EXP_END)
8532 break;
8533 n -= e->ipfe_size;
8534
8535 /*
8536 * The upper 16 bits currently store the protocol value.
8537 * This is currently used with TCP and UDP port compares and
8538 * allows "tcp.port = 80" without requiring an explicit
8539 " "ip.pr = tcp" first.
8540 */
8541 p = e->ipfe_cmd >> 16;
8542 if ((p != 0) && (p != fin->fin_p))
8543 break;
8544
8545 switch (e->ipfe_cmd)
8546 {
8547 case IPF_EXP_IP_PR :
8548 for (i = 0; !rv && i < e->ipfe_narg; i++) {
8549 rv |= (fin->fin_p == e->ipfe_arg0[i]);
8550 }
8551 break;
8552
8553 case IPF_EXP_IP_SRCADDR :
8554 if (fin->fin_v != 4)
8555 break;
8556 for (i = 0; !rv && i < e->ipfe_narg; i++) {
8557 rv |= ((fin->fin_saddr &
8558 e->ipfe_arg0[i * 2 + 1]) ==
8559 e->ipfe_arg0[i * 2]);
8560 }
8561 break;
8562
8563 case IPF_EXP_IP_DSTADDR :
8564 if (fin->fin_v != 4)
8565 break;
8566 for (i = 0; !rv && i < e->ipfe_narg; i++) {
8567 rv |= ((fin->fin_daddr &
8568 e->ipfe_arg0[i * 2 + 1]) ==
8569 e->ipfe_arg0[i * 2]);
8570 }
8571 break;
8572
8573 case IPF_EXP_IP_ADDR :
8574 if (fin->fin_v != 4)
8575 break;
8576 for (i = 0; !rv && i < e->ipfe_narg; i++) {
8577 rv |= ((fin->fin_saddr &
8578 e->ipfe_arg0[i * 2 + 1]) ==
8579 e->ipfe_arg0[i * 2]) ||
8580 ((fin->fin_daddr &
8581 e->ipfe_arg0[i * 2 + 1]) ==
8582 e->ipfe_arg0[i * 2]);
8583 }
8584 break;
8585
8586 #ifdef USE_INET6
8587 case IPF_EXP_IP6_SRCADDR :
8588 if (fin->fin_v != 6)
8589 break;
8590 for (i = 0; !rv && i < e->ipfe_narg; i++) {
8591 rv |= IP6_MASKEQ(&fin->fin_src6,
8592 &e->ipfe_arg0[i * 8 + 4],
8593 &e->ipfe_arg0[i * 8]);
8594 }
8595 break;
8596
8597 case IPF_EXP_IP6_DSTADDR :
8598 if (fin->fin_v != 6)
8599 break;
8600 for (i = 0; !rv && i < e->ipfe_narg; i++) {
8601 rv |= IP6_MASKEQ(&fin->fin_dst6,
8602 &e->ipfe_arg0[i * 8 + 4],
8603 &e->ipfe_arg0[i * 8]);
8604 }
8605 break;
8606
8607 case IPF_EXP_IP6_ADDR :
8608 if (fin->fin_v != 6)
8609 break;
8610 for (i = 0; !rv && i < e->ipfe_narg; i++) {
8611 rv |= IP6_MASKEQ(&fin->fin_src6,
8612 &e->ipfe_arg0[i * 8 + 4],
8613 &e->ipfe_arg0[i * 8]) ||
8614 IP6_MASKEQ(&fin->fin_dst6,
8615 &e->ipfe_arg0[i * 8 + 4],
8616 &e->ipfe_arg0[i * 8]);
8617 }
8618 break;
8619 #endif
8620
8621 case IPF_EXP_UDP_PORT :
8622 case IPF_EXP_TCP_PORT :
8623 for (i = 0; !rv && i < e->ipfe_narg; i++) {
8624 rv |= (fin->fin_sport == e->ipfe_arg0[i]) ||
8625 (fin->fin_dport == e->ipfe_arg0[i]);
8626 }
8627 break;
8628
8629 case IPF_EXP_UDP_SPORT :
8630 case IPF_EXP_TCP_SPORT :
8631 for (i = 0; !rv && i < e->ipfe_narg; i++) {
8632 rv |= (fin->fin_sport == e->ipfe_arg0[i]);
8633 }
8634 break;
8635
8636 case IPF_EXP_UDP_DPORT :
8637 case IPF_EXP_TCP_DPORT :
8638 for (i = 0; !rv && i < e->ipfe_narg; i++) {
8639 rv |= (fin->fin_dport == e->ipfe_arg0[i]);
8640 }
8641 break;
8642
8643 case IPF_EXP_TCP_FLAGS :
8644 for (i = 0; !rv && i < e->ipfe_narg; i++) {
8645 rv |= ((fin->fin_tcpf &
8646 e->ipfe_arg0[i * 2 + 1]) ==
8647 e->ipfe_arg0[i * 2]);
8648 }
8649 break;
8650 }
8651 rv ^= e->ipfe_not;
8652
8653 if (rv == 0)
8654 break;
8655 }
8656
8657 return (rv);
8658 }
8659
8660
8661 /* ------------------------------------------------------------------------ */
8662 /* Function: ipf_queueflush */
8663 /* Returns: int - number of entries flushed (0 = none) */
8664 /* Parameters: softc(I) - pointer to soft context main structure */
8665 /* deletefn(I) - function to call to delete entry */
8666 /* ipfqs(I) - top of the list of ipf internal queues */
8667 /* userqs(I) - top of the list of user defined timeouts */
8668 /* */
8669 /* This fucntion gets called when the state/NAT hash tables fill up and we */
8670 /* need to try a bit harder to free up some space. The algorithm used here */
8671 /* split into two parts but both halves have the same goal: to reduce the */
8672 /* number of connections considered to be "active" to the low watermark. */
8673 /* There are two steps in doing this: */
8674 /* 1) Remove any TCP connections that are already considered to be "closed" */
8675 /* but have not yet been removed from the state table. The two states */
8676 /* TCPS_TIME_WAIT and TCPS_CLOSED are considered to be the perfect */
8677 /* candidates for this style of removal. If freeing up entries in */
8678 /* CLOSED or both CLOSED and TIME_WAIT brings us to the low watermark, */
8679 /* we do not go on to step 2. */
8680 /* */
8681 /* 2) Look for the oldest entries on each timeout queue and free them if */
8682 /* they are within the given window we are considering. Where the */
8683 /* window starts and the steps taken to increase its size depend upon */
8684 /* how long ipf has been running (ipf_ticks.) Anything modified in the */
8685 /* last 30 seconds is not touched. */
8686 /* touched */
8687 /* die ipf_ticks 30*1.5 1800*1.5 | 43200*1.5 */
8688 /* | | | | | | */
8689 /* future <--+----------+--------+-----------+-----+-----+-----------> past */
8690 /* now \_int=30s_/ \_int=1hr_/ \_int=12hr */
8691 /* */
8692 /* Points to note: */
8693 /* - tqe_die is the time, in the future, when entries die. */
8694 /* - tqe_die - ipf_ticks is how long left the connection has to live in ipf */
8695 /* ticks. */
8696 /* - tqe_touched is when the entry was last used by NAT/state */
8697 /* - the closer tqe_touched is to ipf_ticks, the further tqe_die will be */
8698 /* ipf_ticks any given timeout queue and vice versa. */
8699 /* - both tqe_die and tqe_touched increase over time */
8700 /* - timeout queues are sorted with the highest value of tqe_die at the */
8701 /* bottom and therefore the smallest values of each are at the top */
8702 /* - the pointer passed in as ipfqs should point to an array of timeout */
8703 /* queues representing each of the TCP states */
8704 /* */
8705 /* We start by setting up a maximum range to scan for things to move of */
8706 /* iend (newest) to istart (oldest) in chunks of "interval". If nothing is */
8707 /* found in that range, "interval" is adjusted (so long as it isn't 30) and */
8708 /* we start again with a new value for "iend" and "istart". This is */
8709 /* continued until we either finish the scan of 30 second intervals or the */
8710 /* low water mark is reached. */
8711 /* ------------------------------------------------------------------------ */
8712 int
8713 ipf_queueflush(ipf_main_softc_t *softc, ipftq_delete_fn_t deletefn,
8714 ipftq_t *ipfqs, ipftq_t *userqs, u_int *activep, int size, int low)
8715 {
8716 u_long interval, istart, iend;
8717 ipftq_t *ifq, *ifqnext;
8718 ipftqent_t *tqe, *tqn;
8719 int removed = 0;
8720
8721 for (tqn = ipfqs[IPF_TCPS_CLOSED].ifq_head; ((tqe = tqn) != NULL); ) {
8722 tqn = tqe->tqe_next;
8723 if ((*deletefn)(softc, tqe->tqe_parent) == 0)
8724 removed++;
8725 }
8726 if ((*activep * 100 / size) > low) {
8727 for (tqn = ipfqs[IPF_TCPS_TIME_WAIT].ifq_head;
8728 ((tqe = tqn) != NULL); ) {
8729 tqn = tqe->tqe_next;
8730 if ((*deletefn)(softc, tqe->tqe_parent) == 0)
8731 removed++;
8732 }
8733 }
8734
8735 if ((*activep * 100 / size) <= low) {
8736 return (removed);
8737 }
8738
8739 /*
8740 * NOTE: Use of "* 15 / 10" is required here because if "* 1.5" is
8741 * used then the operations are upgraded to floating point
8742 * and kernels don't like floating point...
8743 */
8744 if (softc->ipf_ticks > IPF_TTLVAL(43200 * 15 / 10)) {
8745 istart = IPF_TTLVAL(86400 * 4);
8746 interval = IPF_TTLVAL(43200);
8747 } else if (softc->ipf_ticks > IPF_TTLVAL(1800 * 15 / 10)) {
8748 istart = IPF_TTLVAL(43200);
8749 interval = IPF_TTLVAL(1800);
8750 } else if (softc->ipf_ticks > IPF_TTLVAL(30 * 15 / 10)) {
8751 istart = IPF_TTLVAL(1800);
8752 interval = IPF_TTLVAL(30);
8753 } else {
8754 return (0);
8755 }
8756 if (istart > softc->ipf_ticks) {
8757 if (softc->ipf_ticks - interval < interval)
8758 istart = interval;
8759 else
8760 istart = (softc->ipf_ticks / interval) * interval;
8761 }
8762
8763 iend = softc->ipf_ticks - interval;
8764
8765 while ((*activep * 100 / size) > low) {
8766 u_long try;
8767
8768 try = softc->ipf_ticks - istart;
8769
8770 for (ifq = ipfqs; ifq != NULL; ifq = ifq->ifq_next) {
8771 for (tqn = ifq->ifq_head; ((tqe = tqn) != NULL); ) {
8772 if (try < tqe->tqe_touched)
8773 break;
8774 tqn = tqe->tqe_next;
8775 if ((*deletefn)(softc, tqe->tqe_parent) == 0)
8776 removed++;
8777 }
8778 }
8779
8780 for (ifq = userqs; ifq != NULL; ifq = ifqnext) {
8781 ifqnext = ifq->ifq_next;
8782
8783 for (tqn = ifq->ifq_head; ((tqe = tqn) != NULL); ) {
8784 if (try < tqe->tqe_touched)
8785 break;
8786 tqn = tqe->tqe_next;
8787 if ((*deletefn)(softc, tqe->tqe_parent) == 0)
8788 removed++;
8789 }
8790 }
8791
8792 if (try >= iend) {
8793 if (interval == IPF_TTLVAL(43200)) {
8794 interval = IPF_TTLVAL(1800);
8795 } else if (interval == IPF_TTLVAL(1800)) {
8796 interval = IPF_TTLVAL(30);
8797 } else {
8798 break;
8799 }
8800 if (interval >= softc->ipf_ticks)
8801 break;
8802
8803 iend = softc->ipf_ticks - interval;
8804 }
8805 istart -= interval;
8806 }
8807
8808 return (removed);
8809 }
8810
8811
8812 /* ------------------------------------------------------------------------ */
8813 /* Function: ipf_deliverlocal */
8814 /* Returns: int - 1 = local address, 0 = non-local address */
8815 /* Parameters: softc(I) - pointer to soft context main structure */
8816 /* ipversion(I) - IP protocol version (4 or 6) */
8817 /* ifp(I) - network interface pointer */
8818 /* ipaddr(I) - IPv4/6 destination address */
8819 /* */
8820 /* This fucntion is used to determine in the address "ipaddr" belongs to */
8821 /* the network interface represented by ifp. */
8822 /* ------------------------------------------------------------------------ */
8823 int
8824 ipf_deliverlocal(ipf_main_softc_t *softc, int ipversion, void *ifp,
8825 i6addr_t *ipaddr)
8826 {
8827 i6addr_t addr;
8828 int islocal = 0;
8829
8830 if (ipversion == 4) {
8831 if (ipf_ifpaddr(softc, 4, FRI_NORMAL, ifp, &addr, NULL) == 0) {
8832 if (addr.in4.s_addr == ipaddr->in4.s_addr)
8833 islocal = 1;
8834 }
8835
8836 #ifdef USE_INET6
8837 } else if (ipversion == 6) {
8838 if (ipf_ifpaddr(softc, 6, FRI_NORMAL, ifp, &addr, NULL) == 0) {
8839 if (IP6_EQ(&addr, ipaddr))
8840 islocal = 1;
8841 }
8842 #endif
8843 }
8844
8845 return (islocal);
8846 }
8847
8848
8849 /* ------------------------------------------------------------------------ */
8850 /* Function: ipf_settimeout */
8851 /* Returns: int - 0 = success, -1 = failure */
8852 /* Parameters: softc(I) - pointer to soft context main structure */
8853 /* t(I) - pointer to tuneable array entry */
8854 /* p(I) - pointer to values passed in to apply */
8855 /* */
8856 /* This function is called to set the timeout values for each distinct */
8857 /* queue timeout that is available. When called, it calls into both the */
8858 /* state and NAT code, telling them to update their timeout queues. */
8859 /* ------------------------------------------------------------------------ */
8860 static int
8861 ipf_settimeout(struct ipf_main_softc_s *softc, ipftuneable_t *t,
8862 ipftuneval_t *p)
8863 {
8864
8865 /*
8866 * ipf_interror should be set by the functions called here, not
8867 * by this function - it's just a middle man.
8868 */
8869 if (ipf_state_settimeout(softc, t, p) == -1)
8870 return (-1);
8871 if (ipf_nat_settimeout(softc, t, p) == -1)
8872 return (-1);
8873 return (0);
8874 }
8875
8876
8877 /* ------------------------------------------------------------------------ */
8878 /* Function: ipf_apply_timeout */
8879 /* Returns: int - 0 = success, -1 = failure */
8880 /* Parameters: head(I) - pointer to tuneable array entry */
8881 /* seconds(I) - pointer to values passed in to apply */
8882 /* */
8883 /* This function applies a timeout of "seconds" to the timeout queue that */
8884 /* is pointed to by "head". All entries on this list have an expiration */
8885 /* set to be the current tick value of ipf plus the ttl. Given that this */
8886 /* function should only be called when the delta is non-zero, the task is */
8887 /* to walk the entire list and apply the change. The sort order will not */
8888 /* change. The only catch is that this is O(n) across the list, so if the */
8889 /* queue has lots of entries (10s of thousands or 100s of thousands), it */
8890 /* could take a relatively long time to work through them all. */
8891 /* ------------------------------------------------------------------------ */
8892 void
8893 ipf_apply_timeout(ipftq_t *head, u_int seconds)
8894 {
8895 u_int oldtimeout, newtimeout;
8896 ipftqent_t *tqe;
8897 int delta;
8898
8899 MUTEX_ENTER(&head->ifq_lock);
8900 oldtimeout = head->ifq_ttl;
8901 newtimeout = IPF_TTLVAL(seconds);
8902 delta = oldtimeout - newtimeout;
8903
8904 head->ifq_ttl = newtimeout;
8905
8906 for (tqe = head->ifq_head; tqe != NULL; tqe = tqe->tqe_next) {
8907 tqe->tqe_die += delta;
8908 }
8909 MUTEX_EXIT(&head->ifq_lock);
8910 }
8911
8912
8913 /* ------------------------------------------------------------------------ */
8914 /* Function: ipf_settimeout_tcp */
8915 /* Returns: int - 0 = successfully applied, -1 = failed */
8916 /* Parameters: t(I) - pointer to tuneable to change */
8917 /* p(I) - pointer to new timeout information */
8918 /* tab(I) - pointer to table of TCP queues */
8919 /* */
8920 /* This function applies the new timeout (p) to the TCP tunable (t) and */
8921 /* updates all of the entries on the relevant timeout queue by calling */
8922 /* ipf_apply_timeout(). */
8923 /* ------------------------------------------------------------------------ */
8924 int
8925 ipf_settimeout_tcp(ipftuneable_t *t, ipftuneval_t *p, ipftq_t *tab)
8926 {
8927 if (!strcmp(t->ipft_name, "tcp_idle_timeout") ||
8928 !strcmp(t->ipft_name, "tcp_established")) {
8929 ipf_apply_timeout(&tab[IPF_TCPS_ESTABLISHED], p->ipftu_int);
8930 } else if (!strcmp(t->ipft_name, "tcp_close_wait")) {
8931 ipf_apply_timeout(&tab[IPF_TCPS_CLOSE_WAIT], p->ipftu_int);
8932 } else if (!strcmp(t->ipft_name, "tcp_last_ack")) {
8933 ipf_apply_timeout(&tab[IPF_TCPS_LAST_ACK], p->ipftu_int);
8934 } else if (!strcmp(t->ipft_name, "tcp_timeout")) {
8935 ipf_apply_timeout(&tab[IPF_TCPS_LISTEN], p->ipftu_int);
8936 ipf_apply_timeout(&tab[IPF_TCPS_HALF_ESTAB], p->ipftu_int);
8937 ipf_apply_timeout(&tab[IPF_TCPS_CLOSING], p->ipftu_int);
8938 } else if (!strcmp(t->ipft_name, "tcp_listen")) {
8939 ipf_apply_timeout(&tab[IPF_TCPS_LISTEN], p->ipftu_int);
8940 } else if (!strcmp(t->ipft_name, "tcp_half_established")) {
8941 ipf_apply_timeout(&tab[IPF_TCPS_HALF_ESTAB], p->ipftu_int);
8942 } else if (!strcmp(t->ipft_name, "tcp_closing")) {
8943 ipf_apply_timeout(&tab[IPF_TCPS_CLOSING], p->ipftu_int);
8944 } else if (!strcmp(t->ipft_name, "tcp_syn_received")) {
8945 ipf_apply_timeout(&tab[IPF_TCPS_SYN_RECEIVED], p->ipftu_int);
8946 } else if (!strcmp(t->ipft_name, "tcp_syn_sent")) {
8947 ipf_apply_timeout(&tab[IPF_TCPS_SYN_SENT], p->ipftu_int);
8948 } else if (!strcmp(t->ipft_name, "tcp_closed")) {
8949 ipf_apply_timeout(&tab[IPF_TCPS_CLOSED], p->ipftu_int);
8950 } else if (!strcmp(t->ipft_name, "tcp_half_closed")) {
8951 ipf_apply_timeout(&tab[IPF_TCPS_CLOSED], p->ipftu_int);
8952 } else if (!strcmp(t->ipft_name, "tcp_time_wait")) {
8953 ipf_apply_timeout(&tab[IPF_TCPS_TIME_WAIT], p->ipftu_int);
8954 } else {
8955 /*
8956 * ipf_interror isn't set here because it should be set
8957 * by whatever called this function.
8958 */
8959 return (-1);
8960 }
8961 return (0);
8962 }
8963
8964
8965 /* ------------------------------------------------------------------------ */
8966 /* Function: ipf_main_soft_create */
8967 /* Returns: NULL = failure, else success */
8968 /* Parameters: arg(I) - pointer to soft context structure if already allocd */
8969 /* */
8970 /* Create the foundation soft context structure. In circumstances where it */
8971 /* is not required to dynamically allocate the context, a pointer can be */
8972 /* passed in (rather than NULL) to a structure to be initialised. */
8973 /* The main thing of interest is that a number of locks are initialised */
8974 /* here instead of in the where might be expected - in the relevant create */
8975 /* function elsewhere. This is done because the current locking design has */
8976 /* some areas where these locks are used outside of their module. */
8977 /* Possibly the most important exercise that is done here is setting of all */
8978 /* the timeout values, allowing them to be changed before init(). */
8979 /* ------------------------------------------------------------------------ */
8980 void *
8981 ipf_main_soft_create(void *arg)
8982 {
8983 ipf_main_softc_t *softc;
8984
8985 if (arg == NULL) {
8986 KMALLOC(softc, ipf_main_softc_t *);
8987 if (softc == NULL)
8988 return (NULL);
8989 } else {
8990 softc = arg;
8991 }
8992
8993 bzero((char *)softc, sizeof(*softc));
8994
8995 /*
8996 * This serves as a flag as to whether or not the softc should be
8997 * free'd when _destroy is called.
8998 */
8999 softc->ipf_dynamic_softc = (arg == NULL) ? 1 : 0;
9000
9001 softc->ipf_tuners = ipf_tune_array_copy(softc,
9002 sizeof(ipf_main_tuneables),
9003 ipf_main_tuneables);
9004 if (softc->ipf_tuners == NULL) {
9005 ipf_main_soft_destroy(softc);
9006 return (NULL);
9007 }
9008
9009 MUTEX_INIT(&softc->ipf_rw, "ipf rw mutex");
9010 MUTEX_INIT(&softc->ipf_timeoutlock, "ipf timeout lock");
9011 RWLOCK_INIT(&softc->ipf_global, "ipf filter load/unload mutex");
9012 RWLOCK_INIT(&softc->ipf_mutex, "ipf filter rwlock");
9013 RWLOCK_INIT(&softc->ipf_tokens, "ipf token rwlock");
9014 RWLOCK_INIT(&softc->ipf_state, "ipf state rwlock");
9015 RWLOCK_INIT(&softc->ipf_nat, "ipf IP NAT rwlock");
9016 RWLOCK_INIT(&softc->ipf_poolrw, "ipf pool rwlock");
9017 RWLOCK_INIT(&softc->ipf_frag, "ipf frag rwlock");
9018
9019 softc->ipf_token_head = NULL;
9020 softc->ipf_token_tail = &softc->ipf_token_head;
9021
9022 softc->ipf_tcpidletimeout = FIVE_DAYS;
9023 softc->ipf_tcpclosewait = IPF_TTLVAL(2 * TCP_MSL);
9024 softc->ipf_tcplastack = IPF_TTLVAL(30);
9025 softc->ipf_tcptimewait = IPF_TTLVAL(2 * TCP_MSL);
9026 softc->ipf_tcptimeout = IPF_TTLVAL(2 * TCP_MSL);
9027 softc->ipf_tcpsynsent = IPF_TTLVAL(2 * TCP_MSL);
9028 softc->ipf_tcpsynrecv = IPF_TTLVAL(2 * TCP_MSL);
9029 softc->ipf_tcpclosed = IPF_TTLVAL(30);
9030 softc->ipf_tcphalfclosed = IPF_TTLVAL(2 * 3600);
9031 softc->ipf_udptimeout = IPF_TTLVAL(120);
9032 softc->ipf_udpacktimeout = IPF_TTLVAL(12);
9033 softc->ipf_icmptimeout = IPF_TTLVAL(60);
9034 softc->ipf_icmpacktimeout = IPF_TTLVAL(6);
9035 softc->ipf_iptimeout = IPF_TTLVAL(60);
9036
9037 #if defined(IPFILTER_DEFAULT_BLOCK)
9038 softc->ipf_pass = FR_BLOCK|FR_NOMATCH;
9039 #else
9040 softc->ipf_pass = (IPF_DEFAULT_PASS)|FR_NOMATCH;
9041 #endif
9042 softc->ipf_minttl = 4;
9043 softc->ipf_icmpminfragmtu = 68;
9044 softc->ipf_flags = IPF_LOGGING;
9045
9046 #ifdef LARGE_NAT
9047 softc->ipf_large_nat = 1;
9048 #endif
9049 ipf_fbsd_kenv_get(softc);
9050
9051 return (softc);
9052 }
9053
9054 /* ------------------------------------------------------------------------ */
9055 /* Function: ipf_main_soft_init */
9056 /* Returns: 0 = success, -1 = failure */
9057 /* Parameters: softc(I) - pointer to soft context main structure */
9058 /* */
9059 /* A null-op function that exists as a placeholder so that the flow in */
9060 /* other functions is obvious. */
9061 /* ------------------------------------------------------------------------ */
9062 /*ARGSUSED*/
9063 int
9064 ipf_main_soft_init(ipf_main_softc_t *softc)
9065 {
9066 return (0);
9067 }
9068
9069
9070 /* ------------------------------------------------------------------------ */
9071 /* Function: ipf_main_soft_destroy */
9072 /* Returns: void */
9073 /* Parameters: softc(I) - pointer to soft context main structure */
9074 /* */
9075 /* Undo everything that we did in ipf_main_soft_create. */
9076 /* */
9077 /* The most important check that needs to be made here is whether or not */
9078 /* the structure was allocated by ipf_main_soft_create() by checking what */
9079 /* value is stored in ipf_dynamic_main. */
9080 /* ------------------------------------------------------------------------ */
9081 /*ARGSUSED*/
9082 void
9083 ipf_main_soft_destroy(ipf_main_softc_t *softc)
9084 {
9085
9086 RW_DESTROY(&softc->ipf_frag);
9087 RW_DESTROY(&softc->ipf_poolrw);
9088 RW_DESTROY(&softc->ipf_nat);
9089 RW_DESTROY(&softc->ipf_state);
9090 RW_DESTROY(&softc->ipf_tokens);
9091 RW_DESTROY(&softc->ipf_mutex);
9092 RW_DESTROY(&softc->ipf_global);
9093 MUTEX_DESTROY(&softc->ipf_timeoutlock);
9094 MUTEX_DESTROY(&softc->ipf_rw);
9095
9096 if (softc->ipf_tuners != NULL) {
9097 KFREES(softc->ipf_tuners, sizeof(ipf_main_tuneables));
9098 }
9099 if (softc->ipf_dynamic_softc == 1) {
9100 KFREE(softc);
9101 }
9102 }
9103
9104
9105 /* ------------------------------------------------------------------------ */
9106 /* Function: ipf_main_soft_fini */
9107 /* Returns: 0 = success, -1 = failure */
9108 /* Parameters: softc(I) - pointer to soft context main structure */
9109 /* */
9110 /* Clean out the rules which have been added since _init was last called, */
9111 /* the only dynamic part of the mainline. */
9112 /* ------------------------------------------------------------------------ */
9113 int
9114 ipf_main_soft_fini(ipf_main_softc_t *softc)
9115 {
9116 (void) ipf_flush(softc, IPL_LOGIPF, FR_INQUE|FR_OUTQUE|FR_INACTIVE);
9117 (void) ipf_flush(softc, IPL_LOGIPF, FR_INQUE|FR_OUTQUE);
9118 (void) ipf_flush(softc, IPL_LOGCOUNT, FR_INQUE|FR_OUTQUE|FR_INACTIVE);
9119 (void) ipf_flush(softc, IPL_LOGCOUNT, FR_INQUE|FR_OUTQUE);
9120
9121 return (0);
9122 }
9123
9124
9125 /* ------------------------------------------------------------------------ */
9126 /* Function: ipf_main_load */
9127 /* Returns: 0 = success, -1 = failure */
9128 /* Parameters: none */
9129 /* */
9130 /* Handle global initialisation that needs to be done for the base part of */
9131 /* IPFilter. At present this just amounts to initialising some ICMP lookup */
9132 /* arrays that get used by the state/NAT code. */
9133 /* ------------------------------------------------------------------------ */
9134 int
9135 ipf_main_load(void)
9136 {
9137 int i;
9138
9139 /* fill icmp reply type table */
9140 for (i = 0; i <= ICMP_MAXTYPE; i++)
9141 icmpreplytype4[i] = -1;
9142 icmpreplytype4[ICMP_ECHO] = ICMP_ECHOREPLY;
9143 icmpreplytype4[ICMP_TSTAMP] = ICMP_TSTAMPREPLY;
9144 icmpreplytype4[ICMP_IREQ] = ICMP_IREQREPLY;
9145 icmpreplytype4[ICMP_MASKREQ] = ICMP_MASKREPLY;
9146
9147 #ifdef USE_INET6
9148 /* fill icmp reply type table */
9149 for (i = 0; i <= ICMP6_MAXTYPE; i++)
9150 icmpreplytype6[i] = -1;
9151 icmpreplytype6[ICMP6_ECHO_REQUEST] = ICMP6_ECHO_REPLY;
9152 icmpreplytype6[ICMP6_MEMBERSHIP_QUERY] = ICMP6_MEMBERSHIP_REPORT;
9153 icmpreplytype6[ICMP6_NI_QUERY] = ICMP6_NI_REPLY;
9154 icmpreplytype6[ND_ROUTER_SOLICIT] = ND_ROUTER_ADVERT;
9155 icmpreplytype6[ND_NEIGHBOR_SOLICIT] = ND_NEIGHBOR_ADVERT;
9156 #endif
9157
9158 return (0);
9159 }
9160
9161
9162 /* ------------------------------------------------------------------------ */
9163 /* Function: ipf_main_unload */
9164 /* Returns: 0 = success, -1 = failure */
9165 /* Parameters: none */
9166 /* */
9167 /* A null-op function that exists as a placeholder so that the flow in */
9168 /* other functions is obvious. */
9169 /* ------------------------------------------------------------------------ */
9170 int
9171 ipf_main_unload(void)
9172 {
9173 return (0);
9174 }
9175
9176
9177 /* ------------------------------------------------------------------------ */
9178 /* Function: ipf_load_all */
9179 /* Returns: 0 = success, -1 = failure */
9180 /* Parameters: none */
9181 /* */
9182 /* Work through all of the subsystems inside IPFilter and call the load */
9183 /* function for each in an order that won't lead to a crash :) */
9184 /* ------------------------------------------------------------------------ */
9185 int
9186 ipf_load_all(void)
9187 {
9188 if (ipf_main_load() == -1)
9189 return (-1);
9190
9191 if (ipf_state_main_load() == -1)
9192 return (-1);
9193
9194 if (ipf_nat_main_load() == -1)
9195 return (-1);
9196
9197 if (ipf_frag_main_load() == -1)
9198 return (-1);
9199
9200 if (ipf_auth_main_load() == -1)
9201 return (-1);
9202
9203 if (ipf_proxy_main_load() == -1)
9204 return (-1);
9205
9206 return (0);
9207 }
9208
9209
9210 /* ------------------------------------------------------------------------ */
9211 /* Function: ipf_unload_all */
9212 /* Returns: 0 = success, -1 = failure */
9213 /* Parameters: none */
9214 /* */
9215 /* Work through all of the subsystems inside IPFilter and call the unload */
9216 /* function for each in an order that won't lead to a crash :) */
9217 /* ------------------------------------------------------------------------ */
9218 int
9219 ipf_unload_all(void)
9220 {
9221 if (ipf_proxy_main_unload() == -1)
9222 return (-1);
9223
9224 if (ipf_auth_main_unload() == -1)
9225 return (-1);
9226
9227 if (ipf_frag_main_unload() == -1)
9228 return (-1);
9229
9230 if (ipf_nat_main_unload() == -1)
9231 return (-1);
9232
9233 if (ipf_state_main_unload() == -1)
9234 return (-1);
9235
9236 if (ipf_main_unload() == -1)
9237 return (-1);
9238
9239 return (0);
9240 }
9241
9242
9243 /* ------------------------------------------------------------------------ */
9244 /* Function: ipf_create_all */
9245 /* Returns: NULL = failure, else success */
9246 /* Parameters: arg(I) - pointer to soft context main structure */
9247 /* */
9248 /* Work through all of the subsystems inside IPFilter and call the create */
9249 /* function for each in an order that won't lead to a crash :) */
9250 /* ------------------------------------------------------------------------ */
9251 ipf_main_softc_t *
9252 ipf_create_all(void *arg)
9253 {
9254 ipf_main_softc_t *softc;
9255
9256 softc = ipf_main_soft_create(arg);
9257 if (softc == NULL)
9258 return (NULL);
9259
9260 #ifdef IPFILTER_LOG
9261 softc->ipf_log_soft = ipf_log_soft_create(softc);
9262 if (softc->ipf_log_soft == NULL) {
9263 ipf_destroy_all(softc);
9264 return (NULL);
9265 }
9266 #endif
9267
9268 softc->ipf_lookup_soft = ipf_lookup_soft_create(softc);
9269 if (softc->ipf_lookup_soft == NULL) {
9270 ipf_destroy_all(softc);
9271 return (NULL);
9272 }
9273
9274 softc->ipf_sync_soft = ipf_sync_soft_create(softc);
9275 if (softc->ipf_sync_soft == NULL) {
9276 ipf_destroy_all(softc);
9277 return (NULL);
9278 }
9279
9280 softc->ipf_state_soft = ipf_state_soft_create(softc);
9281 if (softc->ipf_state_soft == NULL) {
9282 ipf_destroy_all(softc);
9283 return (NULL);
9284 }
9285
9286 softc->ipf_nat_soft = ipf_nat_soft_create(softc);
9287 if (softc->ipf_nat_soft == NULL) {
9288 ipf_destroy_all(softc);
9289 return (NULL);
9290 }
9291
9292 softc->ipf_frag_soft = ipf_frag_soft_create(softc);
9293 if (softc->ipf_frag_soft == NULL) {
9294 ipf_destroy_all(softc);
9295 return (NULL);
9296 }
9297
9298 softc->ipf_auth_soft = ipf_auth_soft_create(softc);
9299 if (softc->ipf_auth_soft == NULL) {
9300 ipf_destroy_all(softc);
9301 return (NULL);
9302 }
9303
9304 softc->ipf_proxy_soft = ipf_proxy_soft_create(softc);
9305 if (softc->ipf_proxy_soft == NULL) {
9306 ipf_destroy_all(softc);
9307 return (NULL);
9308 }
9309
9310 return (softc);
9311 }
9312
9313
9314 /* ------------------------------------------------------------------------ */
9315 /* Function: ipf_destroy_all */
9316 /* Returns: void */
9317 /* Parameters: softc(I) - pointer to soft context main structure */
9318 /* */
9319 /* Work through all of the subsystems inside IPFilter and call the destroy */
9320 /* function for each in an order that won't lead to a crash :) */
9321 /* */
9322 /* Every one of these functions is expected to succeed, so there is no */
9323 /* checking of return values. */
9324 /* ------------------------------------------------------------------------ */
9325 void
9326 ipf_destroy_all(ipf_main_softc_t *softc)
9327 {
9328
9329 if (softc->ipf_state_soft != NULL) {
9330 ipf_state_soft_destroy(softc, softc->ipf_state_soft);
9331 softc->ipf_state_soft = NULL;
9332 }
9333
9334 if (softc->ipf_nat_soft != NULL) {
9335 ipf_nat_soft_destroy(softc, softc->ipf_nat_soft);
9336 softc->ipf_nat_soft = NULL;
9337 }
9338
9339 if (softc->ipf_frag_soft != NULL) {
9340 ipf_frag_soft_destroy(softc, softc->ipf_frag_soft);
9341 softc->ipf_frag_soft = NULL;
9342 }
9343
9344 if (softc->ipf_auth_soft != NULL) {
9345 ipf_auth_soft_destroy(softc, softc->ipf_auth_soft);
9346 softc->ipf_auth_soft = NULL;
9347 }
9348
9349 if (softc->ipf_proxy_soft != NULL) {
9350 ipf_proxy_soft_destroy(softc, softc->ipf_proxy_soft);
9351 softc->ipf_proxy_soft = NULL;
9352 }
9353
9354 if (softc->ipf_sync_soft != NULL) {
9355 ipf_sync_soft_destroy(softc, softc->ipf_sync_soft);
9356 softc->ipf_sync_soft = NULL;
9357 }
9358
9359 if (softc->ipf_lookup_soft != NULL) {
9360 ipf_lookup_soft_destroy(softc, softc->ipf_lookup_soft);
9361 softc->ipf_lookup_soft = NULL;
9362 }
9363
9364 #ifdef IPFILTER_LOG
9365 if (softc->ipf_log_soft != NULL) {
9366 ipf_log_soft_destroy(softc, softc->ipf_log_soft);
9367 softc->ipf_log_soft = NULL;
9368 }
9369 #endif
9370
9371 ipf_main_soft_destroy(softc);
9372 }
9373
9374
9375 /* ------------------------------------------------------------------------ */
9376 /* Function: ipf_init_all */
9377 /* Returns: 0 = success, -1 = failure */
9378 /* Parameters: softc(I) - pointer to soft context main structure */
9379 /* */
9380 /* Work through all of the subsystems inside IPFilter and call the init */
9381 /* function for each in an order that won't lead to a crash :) */
9382 /* ------------------------------------------------------------------------ */
9383 int
9384 ipf_init_all(ipf_main_softc_t *softc)
9385 {
9386
9387 if (ipf_main_soft_init(softc) == -1)
9388 return (-1);
9389
9390 #ifdef IPFILTER_LOG
9391 if (ipf_log_soft_init(softc, softc->ipf_log_soft) == -1)
9392 return (-1);
9393 #endif
9394
9395 if (ipf_lookup_soft_init(softc, softc->ipf_lookup_soft) == -1)
9396 return (-1);
9397
9398 if (ipf_sync_soft_init(softc, softc->ipf_sync_soft) == -1)
9399 return (-1);
9400
9401 if (ipf_state_soft_init(softc, softc->ipf_state_soft) == -1)
9402 return (-1);
9403
9404 if (ipf_nat_soft_init(softc, softc->ipf_nat_soft) == -1)
9405 return (-1);
9406
9407 if (ipf_frag_soft_init(softc, softc->ipf_frag_soft) == -1)
9408 return (-1);
9409
9410 if (ipf_auth_soft_init(softc, softc->ipf_auth_soft) == -1)
9411 return (-1);
9412
9413 if (ipf_proxy_soft_init(softc, softc->ipf_proxy_soft) == -1)
9414 return (-1);
9415
9416 return (0);
9417 }
9418
9419
9420 /* ------------------------------------------------------------------------ */
9421 /* Function: ipf_fini_all */
9422 /* Returns: 0 = success, -1 = failure */
9423 /* Parameters: softc(I) - pointer to soft context main structure */
9424 /* */
9425 /* Work through all of the subsystems inside IPFilter and call the fini */
9426 /* function for each in an order that won't lead to a crash :) */
9427 /* ------------------------------------------------------------------------ */
9428 int
9429 ipf_fini_all(ipf_main_softc_t *softc)
9430 {
9431
9432 ipf_token_flush(softc);
9433
9434 if (ipf_proxy_soft_fini(softc, softc->ipf_proxy_soft) == -1)
9435 return (-1);
9436
9437 if (ipf_auth_soft_fini(softc, softc->ipf_auth_soft) == -1)
9438 return (-1);
9439
9440 if (ipf_frag_soft_fini(softc, softc->ipf_frag_soft) == -1)
9441 return (-1);
9442
9443 if (ipf_nat_soft_fini(softc, softc->ipf_nat_soft) == -1)
9444 return (-1);
9445
9446 if (ipf_state_soft_fini(softc, softc->ipf_state_soft) == -1)
9447 return (-1);
9448
9449 if (ipf_sync_soft_fini(softc, softc->ipf_sync_soft) == -1)
9450 return (-1);
9451
9452 if (ipf_lookup_soft_fini(softc, softc->ipf_lookup_soft) == -1)
9453 return (-1);
9454
9455 #ifdef IPFILTER_LOG
9456 if (ipf_log_soft_fini(softc, softc->ipf_log_soft) == -1)
9457 return (-1);
9458 #endif
9459
9460 if (ipf_main_soft_fini(softc) == -1)
9461 return (-1);
9462
9463 return (0);
9464 }
9465
9466
9467 /* ------------------------------------------------------------------------ */
9468 /* Function: ipf_rule_expire */
9469 /* Returns: Nil */
9470 /* Parameters: softc(I) - pointer to soft context main structure */
9471 /* */
9472 /* At present this function exists just to support temporary addition of */
9473 /* firewall rules. Both inactive and active lists are scanned for items to */
9474 /* purge, as by rights, the expiration is computed as soon as the rule is */
9475 /* loaded in. */
9476 /* ------------------------------------------------------------------------ */
9477 void
9478 ipf_rule_expire(ipf_main_softc_t *softc)
9479 {
9480 frentry_t *fr;
9481
9482 if ((softc->ipf_rule_explist[0] == NULL) &&
9483 (softc->ipf_rule_explist[1] == NULL))
9484 return;
9485
9486 WRITE_ENTER(&softc->ipf_mutex);
9487
9488 while ((fr = softc->ipf_rule_explist[0]) != NULL) {
9489 /*
9490 * Because the list is kept sorted on insertion, the fist
9491 * one that dies in the future means no more work to do.
9492 */
9493 if (fr->fr_die > softc->ipf_ticks)
9494 break;
9495 ipf_rule_delete(softc, fr, IPL_LOGIPF, 0);
9496 }
9497
9498 while ((fr = softc->ipf_rule_explist[1]) != NULL) {
9499 /*
9500 * Because the list is kept sorted on insertion, the fist
9501 * one that dies in the future means no more work to do.
9502 */
9503 if (fr->fr_die > softc->ipf_ticks)
9504 break;
9505 ipf_rule_delete(softc, fr, IPL_LOGIPF, 1);
9506 }
9507
9508 RWLOCK_EXIT(&softc->ipf_mutex);
9509 }
9510
9511
9512 static int ipf_ht_node_cmp(struct host_node_s *, struct host_node_s *);
9513 static void ipf_ht_node_make_key(host_track_t *, host_node_t *, int,
9514 i6addr_t *);
9515
9516 host_node_t RBI_ZERO(ipf_rb);
9517 RBI_CODE(ipf_rb, host_node_t, hn_entry, ipf_ht_node_cmp)
9518
9519
9520 /* ------------------------------------------------------------------------ */
9521 /* Function: ipf_ht_node_cmp */
9522 /* Returns: int - 0 == nodes are the same, .. */
9523 /* Parameters: k1(I) - pointer to first key to compare */
9524 /* k2(I) - pointer to second key to compare */
9525 /* */
9526 /* The "key" for the node is a combination of two fields: the address */
9527 /* family and the address itself. */
9528 /* */
9529 /* Because we're not actually interpreting the address data, it isn't */
9530 /* necessary to convert them to/from network/host byte order. The mask is */
9531 /* just used to remove bits that aren't significant - it doesn't matter */
9532 /* where they are, as long as they're always in the same place. */
9533 /* */
9534 /* As with IP6_EQ, comparing IPv6 addresses starts at the bottom because */
9535 /* this is where individual ones will differ the most - but not true for */
9536 /* for /48's, etc. */
9537 /* ------------------------------------------------------------------------ */
9538 static int
9539 ipf_ht_node_cmp(struct host_node_s *k1, struct host_node_s *k2)
9540 {
9541 int i;
9542
9543 i = (k2->hn_addr.adf_family - k1->hn_addr.adf_family);
9544 if (i != 0)
9545 return (i);
9546
9547 if (k1->hn_addr.adf_family == AF_INET)
9548 return (k2->hn_addr.adf_addr.in4.s_addr -
9549 k1->hn_addr.adf_addr.in4.s_addr);
9550
9551 i = k2->hn_addr.adf_addr.i6[3] - k1->hn_addr.adf_addr.i6[3];
9552 if (i != 0)
9553 return (i);
9554 i = k2->hn_addr.adf_addr.i6[2] - k1->hn_addr.adf_addr.i6[2];
9555 if (i != 0)
9556 return (i);
9557 i = k2->hn_addr.adf_addr.i6[1] - k1->hn_addr.adf_addr.i6[1];
9558 if (i != 0)
9559 return (i);
9560 i = k2->hn_addr.adf_addr.i6[0] - k1->hn_addr.adf_addr.i6[0];
9561 return (i);
9562 }
9563
9564
9565 /* ------------------------------------------------------------------------ */
9566 /* Function: ipf_ht_node_make_key */
9567 /* Returns: Nil */
9568 /* parameters: htp(I) - pointer to address tracking structure */
9569 /* key(I) - where to store masked address for lookup */
9570 /* family(I) - protocol family of address */
9571 /* addr(I) - pointer to network address */
9572 /* */
9573 /* Using the "netmask" (number of bits) stored parent host tracking struct, */
9574 /* copy the address passed in into the key structure whilst masking out the */
9575 /* bits that we don't want. */
9576 /* */
9577 /* Because the parser will set ht_netmask to 128 if there is no protocol */
9578 /* specified (the parser doesn't know if it should be a v4 or v6 rule), we */
9579 /* have to be wary of that and not allow 32-128 to happen. */
9580 /* ------------------------------------------------------------------------ */
9581 static void
9582 ipf_ht_node_make_key(host_track_t *htp, host_node_t *key, int family,
9583 i6addr_t *addr)
9584 {
9585 key->hn_addr.adf_family = family;
9586 if (family == AF_INET) {
9587 u_32_t mask;
9588 int bits;
9589
9590 key->hn_addr.adf_len = sizeof(key->hn_addr.adf_addr.in4);
9591 bits = htp->ht_netmask;
9592 if (bits >= 32) {
9593 mask = 0xffffffff;
9594 } else {
9595 mask = htonl(0xffffffff << (32 - bits));
9596 }
9597 key->hn_addr.adf_addr.in4.s_addr = addr->in4.s_addr & mask;
9598 #ifdef USE_INET6
9599 } else {
9600 int bits = htp->ht_netmask;
9601
9602 key->hn_addr.adf_len = sizeof(key->hn_addr.adf_addr.in6);
9603 if (bits > 96) {
9604 key->hn_addr.adf_addr.i6[3] = addr->i6[3] &
9605 htonl(0xffffffff << (128 - bits));
9606 key->hn_addr.adf_addr.i6[2] = addr->i6[2];
9607 key->hn_addr.adf_addr.i6[1] = addr->i6[2];
9608 key->hn_addr.adf_addr.i6[0] = addr->i6[2];
9609 } else if (bits > 64) {
9610 key->hn_addr.adf_addr.i6[3] = 0;
9611 key->hn_addr.adf_addr.i6[2] = addr->i6[2] &
9612 htonl(0xffffffff << (96 - bits));
9613 key->hn_addr.adf_addr.i6[1] = addr->i6[1];
9614 key->hn_addr.adf_addr.i6[0] = addr->i6[0];
9615 } else if (bits > 32) {
9616 key->hn_addr.adf_addr.i6[3] = 0;
9617 key->hn_addr.adf_addr.i6[2] = 0;
9618 key->hn_addr.adf_addr.i6[1] = addr->i6[1] &
9619 htonl(0xffffffff << (64 - bits));
9620 key->hn_addr.adf_addr.i6[0] = addr->i6[0];
9621 } else {
9622 key->hn_addr.adf_addr.i6[3] = 0;
9623 key->hn_addr.adf_addr.i6[2] = 0;
9624 key->hn_addr.adf_addr.i6[1] = 0;
9625 key->hn_addr.adf_addr.i6[0] = addr->i6[0] &
9626 htonl(0xffffffff << (32 - bits));
9627 }
9628 #endif
9629 }
9630 }
9631
9632
9633 /* ------------------------------------------------------------------------ */
9634 /* Function: ipf_ht_node_add */
9635 /* Returns: int - 0 == success, -1 == failure */
9636 /* Parameters: softc(I) - pointer to soft context main structure */
9637 /* htp(I) - pointer to address tracking structure */
9638 /* family(I) - protocol family of address */
9639 /* addr(I) - pointer to network address */
9640 /* */
9641 /* NOTE: THIS FUNCTION MUST BE CALLED WITH AN EXCLUSIVE LOCK THAT PREVENTS */
9642 /* ipf_ht_node_del FROM RUNNING CONCURRENTLY ON THE SAME htp. */
9643 /* */
9644 /* After preparing the key with the address information to find, look in */
9645 /* the red-black tree to see if the address is known. A successful call to */
9646 /* this function can mean one of two things: a new node was added to the */
9647 /* tree or a matching node exists and we're able to bump up its activity. */
9648 /* ------------------------------------------------------------------------ */
9649 int
9650 ipf_ht_node_add(ipf_main_softc_t *softc, host_track_t *htp, int family,
9651 i6addr_t *addr)
9652 {
9653 host_node_t *h;
9654 host_node_t k;
9655
9656 ipf_ht_node_make_key(htp, &k, family, addr);
9657
9658 h = RBI_SEARCH(ipf_rb, &htp->ht_root, &k);
9659 if (h == NULL) {
9660 if (htp->ht_cur_nodes >= htp->ht_max_nodes)
9661 return (-1);
9662 KMALLOC(h, host_node_t *);
9663 if (h == NULL) {
9664 DT(ipf_rb_no_mem);
9665 LBUMP(ipf_rb_no_mem);
9666 return (-1);
9667 }
9668
9669 /*
9670 * If there was a macro to initialise the RB node then that
9671 * would get used here, but there isn't...
9672 */
9673 bzero((char *)h, sizeof(*h));
9674 h->hn_addr = k.hn_addr;
9675 h->hn_addr.adf_family = k.hn_addr.adf_family;
9676 RBI_INSERT(ipf_rb, &htp->ht_root, h);
9677 htp->ht_cur_nodes++;
9678 } else {
9679 if ((htp->ht_max_per_node != 0) &&
9680 (h->hn_active >= htp->ht_max_per_node)) {
9681 DT(ipf_rb_node_max);
9682 LBUMP(ipf_rb_node_max);
9683 return (-1);
9684 }
9685 }
9686
9687 h->hn_active++;
9688
9689 return (0);
9690 }
9691
9692
9693 /* ------------------------------------------------------------------------ */
9694 /* Function: ipf_ht_node_del */
9695 /* Returns: int - 0 == success, -1 == failure */
9696 /* parameters: htp(I) - pointer to address tracking structure */
9697 /* family(I) - protocol family of address */
9698 /* addr(I) - pointer to network address */
9699 /* */
9700 /* NOTE: THIS FUNCTION MUST BE CALLED WITH AN EXCLUSIVE LOCK THAT PREVENTS */
9701 /* ipf_ht_node_add FROM RUNNING CONCURRENTLY ON THE SAME htp. */
9702 /* */
9703 /* Try and find the address passed in amongst the leavese on this tree to */
9704 /* be friend. If found then drop the active account for that node drops by */
9705 /* one. If that count reaches 0, it is time to free it all up. */
9706 /* ------------------------------------------------------------------------ */
9707 int
9708 ipf_ht_node_del(host_track_t *htp, int family, i6addr_t *addr)
9709 {
9710 host_node_t *h;
9711 host_node_t k;
9712
9713 ipf_ht_node_make_key(htp, &k, family, addr);
9714
9715 h = RBI_SEARCH(ipf_rb, &htp->ht_root, &k);
9716 if (h == NULL) {
9717 return (-1);
9718 } else {
9719 h->hn_active--;
9720 if (h->hn_active == 0) {
9721 (void) RBI_DELETE(ipf_rb, &htp->ht_root, h);
9722 htp->ht_cur_nodes--;
9723 KFREE(h);
9724 }
9725 }
9726
9727 return (0);
9728 }
9729
9730
9731 /* ------------------------------------------------------------------------ */
9732 /* Function: ipf_rb_ht_init */
9733 /* Returns: Nil */
9734 /* Parameters: head(I) - pointer to host tracking structure */
9735 /* */
9736 /* Initialise the host tracking structure to be ready for use above. */
9737 /* ------------------------------------------------------------------------ */
9738 void
9739 ipf_rb_ht_init(host_track_t *head)
9740 {
9741 RBI_INIT(ipf_rb, &head->ht_root);
9742 }
9743
9744
9745 /* ------------------------------------------------------------------------ */
9746 /* Function: ipf_rb_ht_freenode */
9747 /* Returns: Nil */
9748 /* Parameters: head(I) - pointer to host tracking structure */
9749 /* arg(I) - additional argument from walk caller */
9750 /* */
9751 /* Free an actual host_node_t structure. */
9752 /* ------------------------------------------------------------------------ */
9753 void
9754 ipf_rb_ht_freenode(host_node_t *node, void *arg)
9755 {
9756 KFREE(node);
9757 }
9758
9759
9760 /* ------------------------------------------------------------------------ */
9761 /* Function: ipf_rb_ht_flush */
9762 /* Returns: Nil */
9763 /* Parameters: head(I) - pointer to host tracking structure */
9764 /* */
9765 /* Remove all of the nodes in the tree tracking hosts by calling a walker */
9766 /* and free'ing each one. */
9767 /* ------------------------------------------------------------------------ */
9768 void
9769 ipf_rb_ht_flush(host_track_t *head)
9770 {
9771 RBI_WALK(ipf_rb, &head->ht_root, ipf_rb_ht_freenode, NULL);
9772 }
9773
9774
9775 /* ------------------------------------------------------------------------ */
9776 /* Function: ipf_slowtimer */
9777 /* Returns: Nil */
9778 /* Parameters: ptr(I) - pointer to main ipf soft context structure */
9779 /* */
9780 /* Slowly expire held state for fragments. Timeouts are set * in */
9781 /* expectation of this being called twice per second. */
9782 /* ------------------------------------------------------------------------ */
9783 void
9784 ipf_slowtimer(ipf_main_softc_t *softc)
9785 {
9786
9787 ipf_token_expire(softc);
9788 ipf_frag_expire(softc);
9789 ipf_state_expire(softc);
9790 ipf_nat_expire(softc);
9791 ipf_auth_expire(softc);
9792 ipf_lookup_expire(softc);
9793 ipf_rule_expire(softc);
9794 ipf_sync_expire(softc);
9795 softc->ipf_ticks++;
9796 }
9797
9798
9799 /* ------------------------------------------------------------------------ */
9800 /* Function: ipf_inet_mask_add */
9801 /* Returns: Nil */
9802 /* Parameters: bits(I) - pointer to nat context information */
9803 /* mtab(I) - pointer to mask hash table structure */
9804 /* */
9805 /* When called, bits represents the mask of a new NAT rule that has just */
9806 /* been added. This function inserts a bitmask into the array of masks to */
9807 /* search when searching for a matching NAT rule for a packet. */
9808 /* Prevention of duplicate masks is achieved by checking the use count for */
9809 /* a given netmask. */
9810 /* ------------------------------------------------------------------------ */
9811 void
9812 ipf_inet_mask_add(int bits, ipf_v4_masktab_t *mtab)
9813 {
9814 u_32_t mask;
9815 int i, j;
9816
9817 mtab->imt4_masks[bits]++;
9818 if (mtab->imt4_masks[bits] > 1)
9819 return;
9820
9821 if (bits == 0)
9822 mask = 0;
9823 else
9824 mask = 0xffffffff << (32 - bits);
9825
9826 for (i = 0; i < 33; i++) {
9827 if (ntohl(mtab->imt4_active[i]) < mask) {
9828 for (j = 32; j > i; j--)
9829 mtab->imt4_active[j] = mtab->imt4_active[j - 1];
9830 mtab->imt4_active[i] = htonl(mask);
9831 break;
9832 }
9833 }
9834 mtab->imt4_max++;
9835 }
9836
9837
9838 /* ------------------------------------------------------------------------ */
9839 /* Function: ipf_inet_mask_del */
9840 /* Returns: Nil */
9841 /* Parameters: bits(I) - number of bits set in the netmask */
9842 /* mtab(I) - pointer to mask hash table structure */
9843 /* */
9844 /* Remove the 32bit bitmask represented by "bits" from the collection of */
9845 /* netmasks stored inside of mtab. */
9846 /* ------------------------------------------------------------------------ */
9847 void
9848 ipf_inet_mask_del(int bits, ipf_v4_masktab_t *mtab)
9849 {
9850 u_32_t mask;
9851 int i, j;
9852
9853 mtab->imt4_masks[bits]--;
9854 if (mtab->imt4_masks[bits] > 0)
9855 return;
9856
9857 mask = htonl(0xffffffff << (32 - bits));
9858 for (i = 0; i < 33; i++) {
9859 if (mtab->imt4_active[i] == mask) {
9860 for (j = i + 1; j < 33; j++)
9861 mtab->imt4_active[j - 1] = mtab->imt4_active[j];
9862 break;
9863 }
9864 }
9865 mtab->imt4_max--;
9866 ASSERT(mtab->imt4_max >= 0);
9867 }
9868
9869
9870 #ifdef USE_INET6
9871 /* ------------------------------------------------------------------------ */
9872 /* Function: ipf_inet6_mask_add */
9873 /* Returns: Nil */
9874 /* Parameters: bits(I) - number of bits set in mask */
9875 /* mask(I) - pointer to mask to add */
9876 /* mtab(I) - pointer to mask hash table structure */
9877 /* */
9878 /* When called, bitcount represents the mask of a IPv6 NAT map rule that */
9879 /* has just been added. This function inserts a bitmask into the array of */
9880 /* masks to search when searching for a matching NAT rule for a packet. */
9881 /* Prevention of duplicate masks is achieved by checking the use count for */
9882 /* a given netmask. */
9883 /* ------------------------------------------------------------------------ */
9884 void
9885 ipf_inet6_mask_add(int bits, i6addr_t *mask, ipf_v6_masktab_t *mtab)
9886 {
9887 i6addr_t zero;
9888 int i, j;
9889
9890 mtab->imt6_masks[bits]++;
9891 if (mtab->imt6_masks[bits] > 1)
9892 return;
9893
9894 if (bits == 0) {
9895 mask = &zero;
9896 zero.i6[0] = 0;
9897 zero.i6[1] = 0;
9898 zero.i6[2] = 0;
9899 zero.i6[3] = 0;
9900 }
9901
9902 for (i = 0; i < 129; i++) {
9903 if (IP6_LT(&mtab->imt6_active[i], mask)) {
9904 for (j = 128; j > i; j--)
9905 mtab->imt6_active[j] = mtab->imt6_active[j - 1];
9906 mtab->imt6_active[i] = *mask;
9907 break;
9908 }
9909 }
9910 mtab->imt6_max++;
9911 }
9912
9913
9914 /* ------------------------------------------------------------------------ */
9915 /* Function: ipf_inet6_mask_del */
9916 /* Returns: Nil */
9917 /* Parameters: bits(I) - number of bits set in mask */
9918 /* mask(I) - pointer to mask to remove */
9919 /* mtab(I) - pointer to mask hash table structure */
9920 /* */
9921 /* Remove the 128bit bitmask represented by "bits" from the collection of */
9922 /* netmasks stored inside of mtab. */
9923 /* ------------------------------------------------------------------------ */
9924 void
9925 ipf_inet6_mask_del(int bits, i6addr_t *mask, ipf_v6_masktab_t *mtab)
9926 {
9927 i6addr_t zero;
9928 int i, j;
9929
9930 mtab->imt6_masks[bits]--;
9931 if (mtab->imt6_masks[bits] > 0)
9932 return;
9933
9934 if (bits == 0)
9935 mask = &zero;
9936 zero.i6[0] = 0;
9937 zero.i6[1] = 0;
9938 zero.i6[2] = 0;
9939 zero.i6[3] = 0;
9940
9941 for (i = 0; i < 129; i++) {
9942 if (IP6_EQ(&mtab->imt6_active[i], mask)) {
9943 for (j = i + 1; j < 129; j++) {
9944 mtab->imt6_active[j - 1] = mtab->imt6_active[j];
9945 if (IP6_EQ(&mtab->imt6_active[j - 1], &zero))
9946 break;
9947 }
9948 break;
9949 }
9950 }
9951 mtab->imt6_max--;
9952 ASSERT(mtab->imt6_max >= 0);
9953 }
9954 #endif
Cache object: cab6d052be0211509fdb9c8d7ec23f7d
|