1 /*
2 * PIE - Proportional Integral controller Enhanced AQM algorithm.
3 *
4 * $FreeBSD$
5 *
6 * Copyright (C) 2016 Centre for Advanced Internet Architectures,
7 * Swinburne University of Technology, Melbourne, Australia.
8 * Portions of this code were made possible in part by a gift from
9 * The Comcast Innovation Fund.
10 * Implemented by Rasool Al-Saadi <ralsaadi@swin.edu.au>
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 */
33
34 #include <sys/cdefs.h>
35 #include "opt_inet6.h"
36
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/malloc.h>
40 #include <sys/mbuf.h>
41 #include <sys/kernel.h>
42 #include <sys/lock.h>
43 #include <sys/module.h>
44 #include <sys/mutex.h>
45 #include <sys/priv.h>
46 #include <sys/proc.h>
47 #include <sys/rwlock.h>
48 #include <sys/socket.h>
49 #include <sys/time.h>
50 #include <sys/sysctl.h>
51
52 #include <net/if.h> /* IFNAMSIZ, struct ifaddr, ifq head, lock.h mutex.h */
53 #include <net/netisr.h>
54 #include <net/vnet.h>
55
56 #include <netinet/in.h>
57 #include <netinet/ip.h> /* ip_len, ip_off */
58 #include <netinet/ip_var.h> /* ip_output(), IP_FORWARDING */
59 #include <netinet/ip_fw.h>
60 #include <netinet/ip_dummynet.h>
61 #include <netinet/if_ether.h> /* various ether_* routines */
62 #include <netinet/ip6.h> /* for ip6_input, ip6_output prototypes */
63 #include <netinet6/ip6_var.h>
64 #include <netpfil/ipfw/dn_heap.h>
65
66 #ifdef NEW_AQM
67 #include <netpfil/ipfw/ip_fw_private.h>
68 #include <netpfil/ipfw/ip_dn_private.h>
69 #include <netpfil/ipfw/dn_aqm.h>
70 #include <netpfil/ipfw/dn_aqm_pie.h>
71 #include <netpfil/ipfw/dn_sched.h>
72
73 /* for debugging */
74 #include <sys/syslog.h>
75
76 static struct dn_aqm pie_desc;
77
78 /* PIE defaults
79 * target=15ms, tupdate=15ms, max_burst=150ms,
80 * max_ecnth=0.1, alpha=0.125, beta=1.25,
81 */
82 struct dn_aqm_pie_parms pie_sysctl =
83 { 15 * AQM_TIME_1MS, 15 * AQM_TIME_1MS, 150 * AQM_TIME_1MS,
84 PIE_SCALE/10 , PIE_SCALE * 0.125, PIE_SCALE * 1.25 ,
85 PIE_CAPDROP_ENABLED | PIE_DEPRATEEST_ENABLED | PIE_DERAND_ENABLED };
86
87 static int
88 pie_sysctl_alpha_beta_handler(SYSCTL_HANDLER_ARGS)
89 {
90 int error;
91 long value;
92
93 if (!strcmp(oidp->oid_name,"alpha"))
94 value = pie_sysctl.alpha;
95 else
96 value = pie_sysctl.beta;
97
98 value = value * 1000 / PIE_SCALE;
99 error = sysctl_handle_long(oidp, &value, 0, req);
100 if (error != 0 || req->newptr == NULL)
101 return (error);
102 if (value < 1 || value > 7 * PIE_SCALE)
103 return (EINVAL);
104 value = (value * PIE_SCALE) / 1000;
105 if (!strcmp(oidp->oid_name,"alpha"))
106 pie_sysctl.alpha = value;
107 else
108 pie_sysctl.beta = value;
109 return (0);
110 }
111
112 static int
113 pie_sysctl_target_tupdate_maxb_handler(SYSCTL_HANDLER_ARGS)
114 {
115 int error;
116 long value;
117
118 if (!strcmp(oidp->oid_name,"target"))
119 value = pie_sysctl.qdelay_ref;
120 else if (!strcmp(oidp->oid_name,"tupdate"))
121 value = pie_sysctl.tupdate;
122 else
123 value = pie_sysctl.max_burst;
124
125 value = value / AQM_TIME_1US;
126 error = sysctl_handle_long(oidp, &value, 0, req);
127 if (error != 0 || req->newptr == NULL)
128 return (error);
129 if (value < 1 || value > 10 * AQM_TIME_1S)
130 return (EINVAL);
131 value = value * AQM_TIME_1US;
132
133 if (!strcmp(oidp->oid_name,"target"))
134 pie_sysctl.qdelay_ref = value;
135 else if (!strcmp(oidp->oid_name,"tupdate"))
136 pie_sysctl.tupdate = value;
137 else
138 pie_sysctl.max_burst = value;
139 return (0);
140 }
141
142 static int
143 pie_sysctl_max_ecnth_handler(SYSCTL_HANDLER_ARGS)
144 {
145 int error;
146 long value;
147
148 value = pie_sysctl.max_ecnth;
149 value = value * 1000 / PIE_SCALE;
150 error = sysctl_handle_long(oidp, &value, 0, req);
151 if (error != 0 || req->newptr == NULL)
152 return (error);
153 if (value < 1 || value > PIE_SCALE)
154 return (EINVAL);
155 value = (value * PIE_SCALE) / 1000;
156 pie_sysctl.max_ecnth = value;
157 return (0);
158 }
159
160 /* define PIE sysctl variables */
161 SYSBEGIN(f4)
162 SYSCTL_DECL(_net_inet);
163 SYSCTL_DECL(_net_inet_ip);
164 SYSCTL_DECL(_net_inet_ip_dummynet);
165 static SYSCTL_NODE(_net_inet_ip_dummynet, OID_AUTO, pie,
166 CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
167 "PIE");
168
169 #ifdef SYSCTL_NODE
170 SYSCTL_PROC(_net_inet_ip_dummynet_pie, OID_AUTO, target,
171 CTLTYPE_LONG | CTLFLAG_RW | CTLFLAG_NEEDGIANT, NULL, 0,
172 pie_sysctl_target_tupdate_maxb_handler, "L",
173 "queue target in microsecond");
174 SYSCTL_PROC(_net_inet_ip_dummynet_pie, OID_AUTO, tupdate,
175 CTLTYPE_LONG | CTLFLAG_RW | CTLFLAG_NEEDGIANT, NULL, 0,
176 pie_sysctl_target_tupdate_maxb_handler, "L",
177 "the frequency of drop probability calculation in microsecond");
178 SYSCTL_PROC(_net_inet_ip_dummynet_pie, OID_AUTO, max_burst,
179 CTLTYPE_LONG | CTLFLAG_RW | CTLFLAG_NEEDGIANT, NULL, 0,
180 pie_sysctl_target_tupdate_maxb_handler, "L",
181 "Burst allowance interval in microsecond");
182
183 SYSCTL_PROC(_net_inet_ip_dummynet_pie, OID_AUTO, max_ecnth,
184 CTLTYPE_LONG | CTLFLAG_RW | CTLFLAG_NEEDGIANT, NULL, 0,
185 pie_sysctl_max_ecnth_handler, "L",
186 "ECN safeguard threshold scaled by 1000");
187
188 SYSCTL_PROC(_net_inet_ip_dummynet_pie, OID_AUTO, alpha,
189 CTLTYPE_LONG | CTLFLAG_RW | CTLFLAG_NEEDGIANT, NULL, 0,
190 pie_sysctl_alpha_beta_handler, "L",
191 "PIE alpha scaled by 1000");
192 SYSCTL_PROC(_net_inet_ip_dummynet_pie, OID_AUTO, beta,
193 CTLTYPE_LONG | CTLFLAG_RW | CTLFLAG_NEEDGIANT, NULL, 0,
194 pie_sysctl_alpha_beta_handler, "L",
195 "beta scaled by 1000");
196 #endif
197
198 /*
199 * Callout function for drop probability calculation
200 * This function is called over tupdate ms and takes pointer of PIE
201 * status variables as an argument
202 */
203 static void
204 calculate_drop_prob(void *x)
205 {
206 int64_t p, prob, oldprob;
207 struct dn_aqm_pie_parms *pprms;
208 struct pie_status *pst = (struct pie_status *) x;
209 int p_isneg;
210
211 pprms = pst->parms;
212 prob = pst->drop_prob;
213
214 /* calculate current qdelay using DRE method.
215 * If TS is used and no data in the queue, reset current_qdelay
216 * as it stays at last value during dequeue process.
217 */
218 if (pprms->flags & PIE_DEPRATEEST_ENABLED)
219 pst->current_qdelay = ((uint64_t)pst->pq->ni.len_bytes *
220 pst->avg_dq_time) >> PIE_DQ_THRESHOLD_BITS;
221 else
222 if (!pst->pq->ni.len_bytes)
223 pst->current_qdelay = 0;
224
225 /* calculate drop probability */
226 p = (int64_t)pprms->alpha *
227 ((int64_t)pst->current_qdelay - (int64_t)pprms->qdelay_ref);
228 p +=(int64_t) pprms->beta *
229 ((int64_t)pst->current_qdelay - (int64_t)pst->qdelay_old);
230
231 /* take absolute value so right shift result is well defined */
232 p_isneg = p < 0;
233 if (p_isneg) {
234 p = -p;
235 }
236
237 /* We PIE_MAX_PROB shift by 12-bits to increase the division precision */
238 p *= (PIE_MAX_PROB << 12) / AQM_TIME_1S;
239
240 /* auto-tune drop probability */
241 if (prob < (PIE_MAX_PROB / 1000000)) /* 0.000001 */
242 p >>= 11 + PIE_FIX_POINT_BITS + 12;
243 else if (prob < (PIE_MAX_PROB / 100000)) /* 0.00001 */
244 p >>= 9 + PIE_FIX_POINT_BITS + 12;
245 else if (prob < (PIE_MAX_PROB / 10000)) /* 0.0001 */
246 p >>= 7 + PIE_FIX_POINT_BITS + 12;
247 else if (prob < (PIE_MAX_PROB / 1000)) /* 0.001 */
248 p >>= 5 + PIE_FIX_POINT_BITS + 12;
249 else if (prob < (PIE_MAX_PROB / 100)) /* 0.01 */
250 p >>= 3 + PIE_FIX_POINT_BITS + 12;
251 else if (prob < (PIE_MAX_PROB / 10)) /* 0.1 */
252 p >>= 1 + PIE_FIX_POINT_BITS + 12;
253 else
254 p >>= PIE_FIX_POINT_BITS + 12;
255
256 oldprob = prob;
257
258 if (p_isneg) {
259 prob = prob - p;
260
261 /* check for multiplication underflow */
262 if (prob > oldprob) {
263 prob= 0;
264 D("underflow");
265 }
266 } else {
267 /* Cap Drop adjustment */
268 if ((pprms->flags & PIE_CAPDROP_ENABLED) &&
269 prob >= PIE_MAX_PROB / 10 &&
270 p > PIE_MAX_PROB / 50 ) {
271 p = PIE_MAX_PROB / 50;
272 }
273
274 prob = prob + p;
275
276 /* check for multiplication overflow */
277 if (prob<oldprob) {
278 D("overflow");
279 prob= PIE_MAX_PROB;
280 }
281 }
282
283 /*
284 * decay the drop probability exponentially
285 * and restrict it to range 0 to PIE_MAX_PROB
286 */
287 if (prob < 0) {
288 prob = 0;
289 } else {
290 if (pst->current_qdelay == 0 && pst->qdelay_old == 0) {
291 /* 0.98 ~= 1- 1/64 */
292 prob = prob - (prob >> 6);
293 }
294
295 if (prob > PIE_MAX_PROB) {
296 prob = PIE_MAX_PROB;
297 }
298 }
299
300 pst->drop_prob = prob;
301
302 /* store current queue delay value in old queue delay*/
303 pst->qdelay_old = pst->current_qdelay;
304
305 /* update burst allowance */
306 if ((pst->sflags & PIE_ACTIVE) && pst->burst_allowance>0) {
307
308 if (pst->burst_allowance > pprms->tupdate )
309 pst->burst_allowance -= pprms->tupdate;
310 else
311 pst->burst_allowance = 0;
312 }
313
314 /* reschedule calculate_drop_prob function */
315 if (pst->sflags & PIE_ACTIVE)
316 callout_reset_sbt(&pst->aqm_pie_callout,
317 (uint64_t)pprms->tupdate * SBT_1US, 0, calculate_drop_prob, pst, 0);
318
319 mtx_unlock(&pst->lock_mtx);
320 }
321
322 /*
323 * Extract a packet from the head of queue 'q'
324 * Return a packet or NULL if the queue is empty.
325 * If getts is set, also extract packet's timestamp from mtag.
326 */
327 static struct mbuf *
328 pie_extract_head(struct dn_queue *q, aqm_time_t *pkt_ts, int getts)
329 {
330 struct m_tag *mtag;
331 struct mbuf *m;
332
333 next: m = q->mq.head;
334 if (m == NULL)
335 return m;
336 q->mq.head = m->m_nextpkt;
337
338 /* Update stats */
339 update_stats(q, -m->m_pkthdr.len, 0);
340
341 if (q->ni.length == 0) /* queue is now idle */
342 q->q_time = V_dn_cfg.curr_time;
343
344 if (getts) {
345 /* extract packet TS*/
346 mtag = m_tag_locate(m, MTAG_ABI_COMPAT, DN_AQM_MTAG_TS, NULL);
347 if (mtag == NULL) {
348 D("PIE timestamp mtag not found!");
349 *pkt_ts = 0;
350 } else {
351 *pkt_ts = *(aqm_time_t *)(mtag + 1);
352 m_tag_delete(m,mtag);
353 }
354 }
355 if (m->m_pkthdr.rcvif != NULL &&
356 __predict_false(m_rcvif_restore(m) == NULL)) {
357 m_freem(m);
358 goto next;
359 }
360 return m;
361 }
362
363 /*
364 * Initiate PIE variable and optionally activate it
365 */
366 __inline static void
367 init_activate_pie(struct pie_status *pst, int resettimer)
368 {
369 struct dn_aqm_pie_parms *pprms;
370
371 mtx_lock(&pst->lock_mtx);
372 pprms = pst->parms;
373 pst->drop_prob = 0;
374 pst->qdelay_old = 0;
375 pst->burst_allowance = pprms->max_burst;
376 pst->accu_prob = 0;
377 pst->dq_count = 0;
378 pst->avg_dq_time = 0;
379 pst->sflags = PIE_INMEASUREMENT;
380 pst->measurement_start = AQM_UNOW;
381
382 if (resettimer) {
383 pst->sflags |= PIE_ACTIVE;
384 callout_reset_sbt(&pst->aqm_pie_callout,
385 (uint64_t)pprms->tupdate * SBT_1US,
386 0, calculate_drop_prob, pst, 0);
387 }
388 //DX(2, "PIE Activated");
389 mtx_unlock(&pst->lock_mtx);
390 }
391
392 /*
393 * Deactivate PIE and stop probe update callout
394 */
395 __inline static void
396 deactivate_pie(struct pie_status *pst)
397 {
398 mtx_lock(&pst->lock_mtx);
399 pst->sflags &= ~(PIE_ACTIVE | PIE_INMEASUREMENT);
400 callout_stop(&pst->aqm_pie_callout);
401 //D("PIE Deactivated");
402 mtx_unlock(&pst->lock_mtx);
403 }
404
405 /*
406 * Dequeue and return a pcaket from queue 'q' or NULL if 'q' is empty.
407 * Also, caculate depature time or queue delay using timestamp
408 */
409 static struct mbuf *
410 aqm_pie_dequeue(struct dn_queue *q)
411 {
412 struct mbuf *m;
413 struct dn_aqm_pie_parms *pprms;
414 struct pie_status *pst;
415 aqm_time_t now;
416 aqm_time_t pkt_ts, dq_time;
417 int32_t w;
418
419 pst = q->aqm_status;
420 pprms = pst->parms;
421
422 /*we extarct packet ts only when Departure Rate Estimation dis not used*/
423 m = pie_extract_head(q, &pkt_ts, !(pprms->flags & PIE_DEPRATEEST_ENABLED));
424
425 if (!m || !(pst->sflags & PIE_ACTIVE))
426 return m;
427
428 now = AQM_UNOW;
429 if (pprms->flags & PIE_DEPRATEEST_ENABLED) {
430 /* calculate average depature time */
431 if(pst->sflags & PIE_INMEASUREMENT) {
432 pst->dq_count += m->m_pkthdr.len;
433
434 if (pst->dq_count >= PIE_DQ_THRESHOLD) {
435 dq_time = now - pst->measurement_start;
436
437 /*
438 * if we don't have old avg dq_time i.e PIE is (re)initialized,
439 * don't use weight to calculate new avg_dq_time
440 */
441 if(pst->avg_dq_time == 0)
442 pst->avg_dq_time = dq_time;
443 else {
444 /*
445 * weight = PIE_DQ_THRESHOLD/2^6, but we scaled
446 * weight by 2^8. Thus, scaled
447 * weight = PIE_DQ_THRESHOLD /2^8
448 * */
449 w = PIE_DQ_THRESHOLD >> 8;
450 pst->avg_dq_time = (dq_time* w
451 + (pst->avg_dq_time * ((1L << 8) - w))) >> 8;
452 pst->sflags &= ~PIE_INMEASUREMENT;
453 }
454 }
455 }
456
457 /*
458 * Start new measurement cycle when the queue has
459 * PIE_DQ_THRESHOLD worth of bytes.
460 */
461 if(!(pst->sflags & PIE_INMEASUREMENT) &&
462 q->ni.len_bytes >= PIE_DQ_THRESHOLD) {
463 pst->sflags |= PIE_INMEASUREMENT;
464 pst->measurement_start = now;
465 pst->dq_count = 0;
466 }
467 }
468 /* Optionally, use packet timestamp to estimate queue delay */
469 else
470 pst->current_qdelay = now - pkt_ts;
471
472 return m;
473 }
474
475 /*
476 * Enqueue a packet in q, subject to space and PIE queue management policy
477 * (whose parameters are in q->fs).
478 * Update stats for the queue and the scheduler.
479 * Return 0 on success, 1 on drop. The packet is consumed anyways.
480 */
481 static int
482 aqm_pie_enqueue(struct dn_queue *q, struct mbuf* m)
483 {
484 struct dn_fs *f;
485 uint64_t len;
486 uint32_t qlen;
487 struct pie_status *pst;
488 struct dn_aqm_pie_parms *pprms;
489 int t;
490
491 len = m->m_pkthdr.len;
492 pst = q->aqm_status;
493 if(!pst) {
494 DX(2, "PIE queue is not initialized\n");
495 update_stats(q, 0, 1);
496 FREE_PKT(m);
497 return 1;
498 }
499
500 f = &(q->fs->fs);
501 pprms = pst->parms;
502 t = ENQUE;
503
504 /* get current queue length in bytes or packets*/
505 qlen = (f->flags & DN_QSIZE_BYTES) ?
506 q->ni.len_bytes : q->ni.length;
507
508 /* check for queue size and drop the tail if exceed queue limit*/
509 if (qlen >= f->qsize)
510 t = DROP;
511 /* drop/mark the packet when PIE is active and burst time elapsed */
512 else if ((pst->sflags & PIE_ACTIVE) && pst->burst_allowance==0
513 && drop_early(pst, q->ni.len_bytes) == DROP) {
514 /*
515 * if drop_prob over ECN threshold, drop the packet
516 * otherwise mark and enqueue it.
517 */
518 if ((pprms->flags & PIE_ECN_ENABLED) && pst->drop_prob <
519 (pprms->max_ecnth << (PIE_PROB_BITS - PIE_FIX_POINT_BITS))
520 && ecn_mark(m))
521 t = ENQUE;
522 else
523 t = DROP;
524 }
525
526 /* Turn PIE on when 1/3 of the queue is full */
527 if (!(pst->sflags & PIE_ACTIVE) && qlen >= pst->one_third_q_size) {
528 init_activate_pie(pst, 1);
529 }
530
531 /* Reset burst tolerance and optinally turn PIE off*/
532 if ((pst->sflags & PIE_ACTIVE) && pst->drop_prob == 0 &&
533 pst->current_qdelay < (pprms->qdelay_ref >> 1) &&
534 pst->qdelay_old < (pprms->qdelay_ref >> 1)) {
535 pst->burst_allowance = pprms->max_burst;
536 if ((pprms->flags & PIE_ON_OFF_MODE_ENABLED) && qlen<=0)
537 deactivate_pie(pst);
538 }
539
540 /* Timestamp the packet if Departure Rate Estimation is disabled */
541 if (t != DROP && !(pprms->flags & PIE_DEPRATEEST_ENABLED)) {
542 /* Add TS to mbuf as a TAG */
543 struct m_tag *mtag;
544 mtag = m_tag_locate(m, MTAG_ABI_COMPAT, DN_AQM_MTAG_TS, NULL);
545 if (mtag == NULL)
546 mtag = m_tag_alloc(MTAG_ABI_COMPAT, DN_AQM_MTAG_TS,
547 sizeof(aqm_time_t), M_NOWAIT);
548 if (mtag == NULL) {
549 t = DROP;
550 } else {
551 *(aqm_time_t *)(mtag + 1) = AQM_UNOW;
552 m_tag_prepend(m, mtag);
553 }
554 }
555
556 if (t != DROP) {
557 mq_append(&q->mq, m);
558 update_stats(q, len, 0);
559 return (0);
560 } else {
561 update_stats(q, 0, 1);
562
563 /* reset accu_prob after packet drop */
564 pst->accu_prob = 0;
565 FREE_PKT(m);
566 return 1;
567 }
568 return 0;
569 }
570
571 /*
572 * initialize PIE for queue 'q'
573 * First allocate memory for PIE status.
574 */
575 static int
576 aqm_pie_init(struct dn_queue *q)
577 {
578 struct pie_status *pst;
579 struct dn_aqm_pie_parms *pprms;
580 int err = 0;
581
582 pprms = q->fs->aqmcfg;
583
584 do { /* exit with break when error occurs*/
585 if (!pprms){
586 DX(2, "AQM_PIE is not configured");
587 err = EINVAL;
588 break;
589 }
590
591 q->aqm_status = malloc(sizeof(struct pie_status),
592 M_DUMMYNET, M_NOWAIT | M_ZERO);
593 if (q->aqm_status == NULL) {
594 D("cannot allocate PIE private data");
595 err = ENOMEM ;
596 break;
597 }
598
599 pst = q->aqm_status;
600 dummynet_sched_lock();
601 /* increase reference count for PIE module */
602 pie_desc.ref_count++;
603 dummynet_sched_unlock();
604
605 pst->pq = q;
606 pst->parms = pprms;
607
608 /* For speed optimization, we caculate 1/3 queue size once here */
609 // we can use x/3 = (x >>2) + (x >>4) + (x >>7)
610 pst->one_third_q_size = q->fs->fs.qsize/3;
611
612 mtx_init(&pst->lock_mtx, "mtx_pie", NULL, MTX_DEF);
613 callout_init_mtx(&pst->aqm_pie_callout, &pst->lock_mtx,
614 CALLOUT_RETURNUNLOCKED);
615
616 pst->current_qdelay = 0;
617 init_activate_pie(pst, !(pprms->flags & PIE_ON_OFF_MODE_ENABLED));
618
619 //DX(2, "aqm_PIE_init");
620
621 } while(0);
622
623 return err;
624 }
625
626 /*
627 * Callout function to destroy pie mtx and free PIE status memory
628 */
629 static void
630 pie_callout_cleanup(void *x)
631 {
632 struct pie_status *pst = (struct pie_status *) x;
633
634 mtx_unlock(&pst->lock_mtx);
635 mtx_destroy(&pst->lock_mtx);
636 free(x, M_DUMMYNET);
637 dummynet_sched_lock();
638 pie_desc.ref_count--;
639 dummynet_sched_unlock();
640 }
641
642 /*
643 * Clean up PIE status for queue 'q'
644 * Destroy memory allocated for PIE status.
645 */
646 static int
647 aqm_pie_cleanup(struct dn_queue *q)
648 {
649
650 if(!q) {
651 D("q is null");
652 return 0;
653 }
654 struct pie_status *pst = q->aqm_status;
655 if(!pst) {
656 //D("queue is already cleaned up");
657 return 0;
658 }
659 if(!q->fs || !q->fs->aqmcfg) {
660 D("fs is null or no cfg");
661 return 1;
662 }
663 if (q->fs->aqmfp && q->fs->aqmfp->type !=DN_AQM_PIE) {
664 D("Not PIE fs (%d)", q->fs->fs.fs_nr);
665 return 1;
666 }
667
668 /*
669 * Free PIE status allocated memory using pie_callout_cleanup() callout
670 * function to avoid any potential race.
671 * We reset aqm_pie_callout to call pie_callout_cleanup() in next 1um. This
672 * stops the scheduled calculate_drop_prob() callout and call pie_callout_cleanup()
673 * which does memory freeing.
674 */
675 mtx_lock(&pst->lock_mtx);
676 callout_reset_sbt(&pst->aqm_pie_callout,
677 SBT_1US, 0, pie_callout_cleanup, pst, 0);
678 q->aqm_status = NULL;
679 mtx_unlock(&pst->lock_mtx);
680
681 return 0;
682 }
683
684 /*
685 * Config PIE parameters
686 * also allocate memory for PIE configurations
687 */
688 static int
689 aqm_pie_config(struct dn_fsk* fs, struct dn_extra_parms *ep, int len)
690 {
691 struct dn_aqm_pie_parms *pcfg;
692
693 int l = sizeof(struct dn_extra_parms);
694 if (len < l) {
695 D("invalid sched parms length got %d need %d", len, l);
696 return EINVAL;
697 }
698 /* we free the old cfg because maybe the orignal allocation
699 * was used for diffirent AQM type.
700 */
701 if (fs->aqmcfg) {
702 free(fs->aqmcfg, M_DUMMYNET);
703 fs->aqmcfg = NULL;
704 }
705
706 fs->aqmcfg = malloc(sizeof(struct dn_aqm_pie_parms),
707 M_DUMMYNET, M_NOWAIT | M_ZERO);
708 if (fs->aqmcfg== NULL) {
709 D("cannot allocate PIE configuration parameters");
710 return ENOMEM;
711 }
712
713 /* par array contains pie configuration as follow
714 * 0- qdelay_ref,1- tupdate, 2- max_burst
715 * 3- max_ecnth, 4- alpha, 5- beta, 6- flags
716 */
717
718 /* configure PIE parameters */
719 pcfg = fs->aqmcfg;
720
721 if (ep->par[0] < 0)
722 pcfg->qdelay_ref = pie_sysctl.qdelay_ref * AQM_TIME_1US;
723 else
724 pcfg->qdelay_ref = ep->par[0];
725 if (ep->par[1] < 0)
726 pcfg->tupdate = pie_sysctl.tupdate * AQM_TIME_1US;
727 else
728 pcfg->tupdate = ep->par[1];
729 if (ep->par[2] < 0)
730 pcfg->max_burst = pie_sysctl.max_burst * AQM_TIME_1US;
731 else
732 pcfg->max_burst = ep->par[2];
733 if (ep->par[3] < 0)
734 pcfg->max_ecnth = pie_sysctl.max_ecnth;
735 else
736 pcfg->max_ecnth = ep->par[3];
737 if (ep->par[4] < 0)
738 pcfg->alpha = pie_sysctl.alpha;
739 else
740 pcfg->alpha = ep->par[4];
741 if (ep->par[5] < 0)
742 pcfg->beta = pie_sysctl.beta;
743 else
744 pcfg->beta = ep->par[5];
745 if (ep->par[6] < 0)
746 pcfg->flags = pie_sysctl.flags;
747 else
748 pcfg->flags = ep->par[6];
749
750 /* bound PIE configurations */
751 pcfg->qdelay_ref = BOUND_VAR(pcfg->qdelay_ref, 1, 10 * AQM_TIME_1S);
752 pcfg->tupdate = BOUND_VAR(pcfg->tupdate, 1, 10 * AQM_TIME_1S);
753 pcfg->max_burst = BOUND_VAR(pcfg->max_burst, 0, 10 * AQM_TIME_1S);
754 pcfg->max_ecnth = BOUND_VAR(pcfg->max_ecnth, 0, PIE_SCALE);
755 pcfg->alpha = BOUND_VAR(pcfg->alpha, 0, 7 * PIE_SCALE);
756 pcfg->beta = BOUND_VAR(pcfg->beta, 0 , 7 * PIE_SCALE);
757
758 pie_desc.cfg_ref_count++;
759 //D("pie cfg_ref_count=%d", pie_desc.cfg_ref_count);
760 return 0;
761 }
762
763 /*
764 * Deconfigure PIE and free memory allocation
765 */
766 static int
767 aqm_pie_deconfig(struct dn_fsk* fs)
768 {
769 if (fs && fs->aqmcfg) {
770 free(fs->aqmcfg, M_DUMMYNET);
771 fs->aqmcfg = NULL;
772 pie_desc.cfg_ref_count--;
773 }
774 return 0;
775 }
776
777 /*
778 * Retrieve PIE configuration parameters.
779 */
780 static int
781 aqm_pie_getconfig (struct dn_fsk *fs, struct dn_extra_parms * ep)
782 {
783 struct dn_aqm_pie_parms *pcfg;
784 if (fs->aqmcfg) {
785 strlcpy(ep->name, pie_desc.name, sizeof(ep->name));
786 pcfg = fs->aqmcfg;
787 ep->par[0] = pcfg->qdelay_ref / AQM_TIME_1US;
788 ep->par[1] = pcfg->tupdate / AQM_TIME_1US;
789 ep->par[2] = pcfg->max_burst / AQM_TIME_1US;
790 ep->par[3] = pcfg->max_ecnth;
791 ep->par[4] = pcfg->alpha;
792 ep->par[5] = pcfg->beta;
793 ep->par[6] = pcfg->flags;
794
795 return 0;
796 }
797 return 1;
798 }
799
800 static struct dn_aqm pie_desc = {
801 _SI( .type = ) DN_AQM_PIE,
802 _SI( .name = ) "PIE",
803 _SI( .ref_count = ) 0,
804 _SI( .cfg_ref_count = ) 0,
805 _SI( .enqueue = ) aqm_pie_enqueue,
806 _SI( .dequeue = ) aqm_pie_dequeue,
807 _SI( .config = ) aqm_pie_config,
808 _SI( .deconfig = ) aqm_pie_deconfig,
809 _SI( .getconfig = ) aqm_pie_getconfig,
810 _SI( .init = ) aqm_pie_init,
811 _SI( .cleanup = ) aqm_pie_cleanup,
812 };
813
814 DECLARE_DNAQM_MODULE(dn_aqm_pie, &pie_desc);
815 #endif
Cache object: 778dc8353309ecb8cda77e26e31dd57b
|