1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3 *
4 * Copyright (c) 2010 Fabio Checconi, Luigi Rizzo, Paolo Valente
5 * All rights reserved
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29 /*
30 * $FreeBSD$
31 */
32
33 #ifdef _KERNEL
34 #include <sys/malloc.h>
35 #include <sys/socket.h>
36 #include <sys/socketvar.h>
37 #include <sys/kernel.h>
38 #include <sys/lock.h>
39 #include <sys/mbuf.h>
40 #include <sys/module.h>
41 #include <sys/rwlock.h>
42 #include <net/if.h> /* IFNAMSIZ */
43 #include <netinet/in.h>
44 #include <netinet/ip_var.h> /* ipfw_rule_ref */
45 #include <netinet/ip_fw.h> /* flow_id */
46 #include <netinet/ip_dummynet.h>
47 #include <netpfil/ipfw/ip_fw_private.h>
48 #include <netpfil/ipfw/dn_heap.h>
49 #include <netpfil/ipfw/ip_dn_private.h>
50 #ifdef NEW_AQM
51 #include <netpfil/ipfw/dn_aqm.h>
52 #endif
53 #include <netpfil/ipfw/dn_sched.h>
54 #else
55 #include <dn_test.h>
56 #endif
57
58 #ifdef QFQ_DEBUG
59 #define _P64 unsigned long long /* cast for printing uint64_t */
60 struct qfq_sched;
61 static void dump_sched(struct qfq_sched *q, const char *msg);
62 #define NO(x) x
63 #else
64 #define NO(x)
65 #endif
66 #define DN_SCHED_QFQ 4 // XXX Where?
67 typedef unsigned long bitmap;
68
69 /*
70 * bitmaps ops are critical. Some linux versions have __fls
71 * and the bitmap ops. Some machines have ffs
72 * NOTE: fls() returns 1 for the least significant bit,
73 * __fls() returns 0 for the same case.
74 * We use the base-0 version __fls() to match the description in
75 * the ToN QFQ paper
76 */
77 #if defined(_WIN32) || (defined(__MIPSEL__) && defined(LINUX_24))
78 int fls(unsigned int n)
79 {
80 int i = 0;
81 for (i = 0; n > 0; n >>= 1, i++)
82 ;
83 return i;
84 }
85 #endif
86
87 #if !defined(_KERNEL) || defined( __FreeBSD__ ) || defined(_WIN32) || (defined(__MIPSEL__) && defined(LINUX_24))
88 static inline unsigned long __fls(unsigned long word)
89 {
90 return fls(word) - 1;
91 }
92 #endif
93
94 #if !defined(_KERNEL) || !defined(__linux__)
95 #ifdef QFQ_DEBUG
96 static int test_bit(int ix, bitmap *p)
97 {
98 if (ix < 0 || ix > 31)
99 D("bad index %d", ix);
100 return *p & (1<<ix);
101 }
102 static void __set_bit(int ix, bitmap *p)
103 {
104 if (ix < 0 || ix > 31)
105 D("bad index %d", ix);
106 *p |= (1<<ix);
107 }
108 static void __clear_bit(int ix, bitmap *p)
109 {
110 if (ix < 0 || ix > 31)
111 D("bad index %d", ix);
112 *p &= ~(1<<ix);
113 }
114 #else /* !QFQ_DEBUG */
115 /* XXX do we have fast version, or leave it to the compiler ? */
116 #define test_bit(ix, pData) ((*pData) & (1<<(ix)))
117 #define __set_bit(ix, pData) (*pData) |= (1<<(ix))
118 #define __clear_bit(ix, pData) (*pData) &= ~(1<<(ix))
119 #endif /* !QFQ_DEBUG */
120 #endif /* !__linux__ */
121
122 #ifdef __MIPSEL__
123 #define __clear_bit(ix, pData) (*pData) &= ~(1<<(ix))
124 #endif
125
126 /*-------------------------------------------*/
127 /*
128
129 Virtual time computations.
130
131 S, F and V are all computed in fixed point arithmetic with
132 FRAC_BITS decimal bits.
133
134 QFQ_MAX_INDEX is the maximum index allowed for a group. We need
135 one bit per index.
136 QFQ_MAX_WSHIFT is the maximum power of two supported as a weight.
137 The layout of the bits is as below:
138
139 [ MTU_SHIFT ][ FRAC_BITS ]
140 [ MAX_INDEX ][ MIN_SLOT_SHIFT ]
141 ^.__grp->index = 0
142 *.__grp->slot_shift
143
144 where MIN_SLOT_SHIFT is derived by difference from the others.
145
146 The max group index corresponds to Lmax/w_min, where
147 Lmax=1<<MTU_SHIFT, w_min = 1 .
148 From this, and knowing how many groups (MAX_INDEX) we want,
149 we can derive the shift corresponding to each group.
150
151 Because we often need to compute
152 F = S + len/w_i and V = V + len/wsum
153 instead of storing w_i store the value
154 inv_w = (1<<FRAC_BITS)/w_i
155 so we can do F = S + len * inv_w * wsum.
156 We use W_TOT in the formulas so we can easily move between
157 static and adaptive weight sum.
158
159 The per-scheduler-instance data contain all the data structures
160 for the scheduler: bitmaps and bucket lists.
161
162 */
163 /*
164 * Maximum number of consecutive slots occupied by backlogged classes
165 * inside a group. This is approx lmax/lmin + 5.
166 * XXX check because it poses constraints on MAX_INDEX
167 */
168 #define QFQ_MAX_SLOTS 32
169 /*
170 * Shifts used for class<->group mapping. Class weights are
171 * in the range [1, QFQ_MAX_WEIGHT], we to map each class i to the
172 * group with the smallest index that can support the L_i / r_i
173 * configured for the class.
174 *
175 * grp->index is the index of the group; and grp->slot_shift
176 * is the shift for the corresponding (scaled) sigma_i.
177 *
178 * When computing the group index, we do (len<<FP_SHIFT)/weight,
179 * then compute an FLS (which is like a log2()), and if the result
180 * is below the MAX_INDEX region we use 0 (which is the same as
181 * using a larger len).
182 */
183 #define QFQ_MAX_INDEX 19
184 #define QFQ_MAX_WSHIFT 16 /* log2(max_weight) */
185
186 #define QFQ_MAX_WEIGHT (1<<QFQ_MAX_WSHIFT)
187 #define QFQ_MAX_WSUM (2*QFQ_MAX_WEIGHT)
188
189 #define FRAC_BITS 30 /* fixed point arithmetic */
190 #define ONE_FP (1UL << FRAC_BITS)
191
192 #define QFQ_MTU_SHIFT 11 /* log2(max_len) */
193 #define QFQ_MIN_SLOT_SHIFT (FRAC_BITS + QFQ_MTU_SHIFT - QFQ_MAX_INDEX)
194
195 /*
196 * Possible group states, also indexes for the bitmaps array in
197 * struct qfq_queue. We rely on ER, IR, EB, IB being numbered 0..3
198 */
199 enum qfq_state { ER, IR, EB, IB, QFQ_MAX_STATE };
200
201 struct qfq_group;
202 /*
203 * additional queue info. Some of this info should come from
204 * the flowset, we copy them here for faster processing.
205 * This is an overlay of the struct dn_queue
206 */
207 struct qfq_class {
208 struct dn_queue _q;
209 uint64_t S, F; /* flow timestamps (exact) */
210 struct qfq_class *next; /* Link for the slot list. */
211
212 /* group we belong to. In principle we would need the index,
213 * which is log_2(lmax/weight), but we never reference it
214 * directly, only the group.
215 */
216 struct qfq_group *grp;
217
218 /* these are copied from the flowset. */
219 uint32_t inv_w; /* ONE_FP/weight */
220 uint32_t lmax; /* Max packet size for this flow. */
221 };
222
223 /* Group descriptor, see the paper for details.
224 * Basically this contains the bucket lists
225 */
226 struct qfq_group {
227 uint64_t S, F; /* group timestamps (approx). */
228 unsigned int slot_shift; /* Slot shift. */
229 unsigned int index; /* Group index. */
230 unsigned int front; /* Index of the front slot. */
231 bitmap full_slots; /* non-empty slots */
232
233 /* Array of lists of active classes. */
234 struct qfq_class *slots[QFQ_MAX_SLOTS];
235 };
236
237 /* scheduler instance descriptor. */
238 struct qfq_sched {
239 uint64_t V; /* Precise virtual time. */
240 uint32_t wsum; /* weight sum */
241 uint32_t iwsum; /* inverse weight sum */
242 NO(uint32_t i_wsum;) /* ONE_FP/w_sum */
243 NO(uint32_t queued;) /* debugging */
244 NO(uint32_t loops;) /* debugging */
245 bitmap bitmaps[QFQ_MAX_STATE]; /* Group bitmaps. */
246 struct qfq_group groups[QFQ_MAX_INDEX + 1]; /* The groups. */
247 };
248
249 /*---- support functions ----------------------------*/
250
251 /* Generic comparison function, handling wraparound. */
252 static inline int qfq_gt(uint64_t a, uint64_t b)
253 {
254 return (int64_t)(a - b) > 0;
255 }
256
257 /* Round a precise timestamp to its slotted value. */
258 static inline uint64_t qfq_round_down(uint64_t ts, unsigned int shift)
259 {
260 return ts & ~((1ULL << shift) - 1);
261 }
262
263 /* return the pointer to the group with lowest index in the bitmap */
264 static inline struct qfq_group *qfq_ffs(struct qfq_sched *q,
265 unsigned long bitmap)
266 {
267 int index = ffs(bitmap) - 1; // zero-based
268 return &q->groups[index];
269 }
270
271 /*
272 * Calculate a flow index, given its weight and maximum packet length.
273 * index = log_2(maxlen/weight) but we need to apply the scaling.
274 * This is used only once at flow creation.
275 */
276 static int qfq_calc_index(uint32_t inv_w, unsigned int maxlen)
277 {
278 uint64_t slot_size = (uint64_t)maxlen *inv_w;
279 unsigned long size_map;
280 int index = 0;
281
282 size_map = (unsigned long)(slot_size >> QFQ_MIN_SLOT_SHIFT);
283 if (!size_map)
284 goto out;
285
286 index = __fls(size_map) + 1; // basically a log_2()
287 index -= !(slot_size - (1ULL << (index + QFQ_MIN_SLOT_SHIFT - 1)));
288
289 if (index < 0)
290 index = 0;
291
292 out:
293 ND("W = %d, L = %d, I = %d\n", ONE_FP/inv_w, maxlen, index);
294 return index;
295 }
296 /*---- end support functions ----*/
297
298 /*-------- API calls --------------------------------*/
299 /*
300 * Validate and copy parameters from flowset.
301 */
302 static int
303 qfq_new_queue(struct dn_queue *_q)
304 {
305 struct qfq_sched *q = (struct qfq_sched *)(_q->_si + 1);
306 struct qfq_class *cl = (struct qfq_class *)_q;
307 int i;
308 uint32_t w; /* approximated weight */
309
310 /* import parameters from the flowset. They should be correct
311 * already.
312 */
313 w = _q->fs->fs.par[0];
314 cl->lmax = _q->fs->fs.par[1];
315 if (!w || w > QFQ_MAX_WEIGHT) {
316 w = 1;
317 D("rounding weight to 1");
318 }
319 cl->inv_w = ONE_FP/w;
320 w = ONE_FP/cl->inv_w;
321 if (q->wsum + w > QFQ_MAX_WSUM)
322 return EINVAL;
323
324 i = qfq_calc_index(cl->inv_w, cl->lmax);
325 cl->grp = &q->groups[i];
326 q->wsum += w;
327 q->iwsum = ONE_FP / q->wsum; /* XXX note theory */
328 // XXX cl->S = q->V; ?
329 return 0;
330 }
331
332 /* remove an empty queue */
333 static int
334 qfq_free_queue(struct dn_queue *_q)
335 {
336 struct qfq_sched *q = (struct qfq_sched *)(_q->_si + 1);
337 struct qfq_class *cl = (struct qfq_class *)_q;
338 if (cl->inv_w) {
339 q->wsum -= ONE_FP/cl->inv_w;
340 if (q->wsum != 0)
341 q->iwsum = ONE_FP / q->wsum;
342 cl->inv_w = 0; /* reset weight to avoid run twice */
343 }
344 return 0;
345 }
346
347 /* Calculate a mask to mimic what would be ffs_from(). */
348 static inline unsigned long
349 mask_from(unsigned long bitmap, int from)
350 {
351 return bitmap & ~((1UL << from) - 1);
352 }
353
354 /*
355 * The state computation relies on ER=0, IR=1, EB=2, IB=3
356 * First compute eligibility comparing grp->S, q->V,
357 * then check if someone is blocking us and possibly add EB
358 */
359 static inline unsigned int
360 qfq_calc_state(struct qfq_sched *q, struct qfq_group *grp)
361 {
362 /* if S > V we are not eligible */
363 unsigned int state = qfq_gt(grp->S, q->V);
364 unsigned long mask = mask_from(q->bitmaps[ER], grp->index);
365 struct qfq_group *next;
366
367 if (mask) {
368 next = qfq_ffs(q, mask);
369 if (qfq_gt(grp->F, next->F))
370 state |= EB;
371 }
372
373 return state;
374 }
375
376 /*
377 * In principle
378 * q->bitmaps[dst] |= q->bitmaps[src] & mask;
379 * q->bitmaps[src] &= ~mask;
380 * but we should make sure that src != dst
381 */
382 static inline void
383 qfq_move_groups(struct qfq_sched *q, unsigned long mask, int src, int dst)
384 {
385 q->bitmaps[dst] |= q->bitmaps[src] & mask;
386 q->bitmaps[src] &= ~mask;
387 }
388
389 static inline void
390 qfq_unblock_groups(struct qfq_sched *q, int index, uint64_t old_finish)
391 {
392 unsigned long mask = mask_from(q->bitmaps[ER], index + 1);
393 struct qfq_group *next;
394
395 if (mask) {
396 next = qfq_ffs(q, mask);
397 if (!qfq_gt(next->F, old_finish))
398 return;
399 }
400
401 mask = (1UL << index) - 1;
402 qfq_move_groups(q, mask, EB, ER);
403 qfq_move_groups(q, mask, IB, IR);
404 }
405
406 /*
407 * perhaps
408 *
409 old_V ^= q->V;
410 old_V >>= QFQ_MIN_SLOT_SHIFT;
411 if (old_V) {
412 ...
413 }
414 *
415 */
416 static inline void
417 qfq_make_eligible(struct qfq_sched *q, uint64_t old_V)
418 {
419 unsigned long mask, vslot, old_vslot;
420
421 vslot = q->V >> QFQ_MIN_SLOT_SHIFT;
422 old_vslot = old_V >> QFQ_MIN_SLOT_SHIFT;
423
424 if (vslot != old_vslot) {
425 /* must be 2ULL, see ToN QFQ article fig.5, we use base-0 fls */
426 mask = (2ULL << (__fls(vslot ^ old_vslot))) - 1;
427 qfq_move_groups(q, mask, IR, ER);
428 qfq_move_groups(q, mask, IB, EB);
429 }
430 }
431
432 /*
433 * XXX we should make sure that slot becomes less than 32.
434 * This is guaranteed by the input values.
435 * roundedS is always cl->S rounded on grp->slot_shift bits.
436 */
437 static inline void
438 qfq_slot_insert(struct qfq_group *grp, struct qfq_class *cl, uint64_t roundedS)
439 {
440 uint64_t slot = (roundedS - grp->S) >> grp->slot_shift;
441 unsigned int i = (grp->front + slot) % QFQ_MAX_SLOTS;
442
443 cl->next = grp->slots[i];
444 grp->slots[i] = cl;
445 __set_bit(slot, &grp->full_slots);
446 }
447
448 /*
449 * remove the entry from the slot
450 */
451 static inline void
452 qfq_front_slot_remove(struct qfq_group *grp)
453 {
454 struct qfq_class **h = &grp->slots[grp->front];
455
456 *h = (*h)->next;
457 if (!*h)
458 __clear_bit(0, &grp->full_slots);
459 }
460
461 /*
462 * Returns the first full queue in a group. As a side effect,
463 * adjust the bucket list so the first non-empty bucket is at
464 * position 0 in full_slots.
465 */
466 static inline struct qfq_class *
467 qfq_slot_scan(struct qfq_group *grp)
468 {
469 int i;
470
471 ND("grp %d full %x", grp->index, grp->full_slots);
472 if (!grp->full_slots)
473 return NULL;
474
475 i = ffs(grp->full_slots) - 1; // zero-based
476 if (i > 0) {
477 grp->front = (grp->front + i) % QFQ_MAX_SLOTS;
478 grp->full_slots >>= i;
479 }
480
481 return grp->slots[grp->front];
482 }
483
484 /*
485 * adjust the bucket list. When the start time of a group decreases,
486 * we move the index down (modulo QFQ_MAX_SLOTS) so we don't need to
487 * move the objects. The mask of occupied slots must be shifted
488 * because we use ffs() to find the first non-empty slot.
489 * This covers decreases in the group's start time, but what about
490 * increases of the start time ?
491 * Here too we should make sure that i is less than 32
492 */
493 static inline void
494 qfq_slot_rotate(struct qfq_sched *q, struct qfq_group *grp, uint64_t roundedS)
495 {
496 unsigned int i = (grp->S - roundedS) >> grp->slot_shift;
497
498 (void)q;
499 grp->full_slots <<= i;
500 grp->front = (grp->front - i) % QFQ_MAX_SLOTS;
501 }
502
503 static inline void
504 qfq_update_eligible(struct qfq_sched *q, uint64_t old_V)
505 {
506 bitmap ineligible;
507
508 ineligible = q->bitmaps[IR] | q->bitmaps[IB];
509 if (ineligible) {
510 if (!q->bitmaps[ER]) {
511 struct qfq_group *grp;
512 grp = qfq_ffs(q, ineligible);
513 if (qfq_gt(grp->S, q->V))
514 q->V = grp->S;
515 }
516 qfq_make_eligible(q, old_V);
517 }
518 }
519
520 /*
521 * Updates the class, returns true if also the group needs to be updated.
522 */
523 static inline int
524 qfq_update_class(struct qfq_sched *q, struct qfq_group *grp,
525 struct qfq_class *cl)
526 {
527
528 (void)q;
529 cl->S = cl->F;
530 if (cl->_q.mq.head == NULL) {
531 qfq_front_slot_remove(grp);
532 } else {
533 unsigned int len;
534 uint64_t roundedS;
535
536 len = cl->_q.mq.head->m_pkthdr.len;
537 cl->F = cl->S + (uint64_t)len * cl->inv_w;
538 roundedS = qfq_round_down(cl->S, grp->slot_shift);
539 if (roundedS == grp->S)
540 return 0;
541
542 qfq_front_slot_remove(grp);
543 qfq_slot_insert(grp, cl, roundedS);
544 }
545 return 1;
546 }
547
548 static struct mbuf *
549 qfq_dequeue(struct dn_sch_inst *si)
550 {
551 struct qfq_sched *q = (struct qfq_sched *)(si + 1);
552 struct qfq_group *grp;
553 struct qfq_class *cl;
554 struct mbuf *m;
555 uint64_t old_V;
556
557 NO(q->loops++;)
558 if (!q->bitmaps[ER]) {
559 NO(if (q->queued)
560 dump_sched(q, "start dequeue");)
561 return NULL;
562 }
563
564 grp = qfq_ffs(q, q->bitmaps[ER]);
565
566 cl = grp->slots[grp->front];
567 /* extract from the first bucket in the bucket list */
568 m = dn_dequeue(&cl->_q);
569
570 if (!m) {
571 D("BUG/* non-workconserving leaf */");
572 return NULL;
573 }
574 NO(q->queued--;)
575 old_V = q->V;
576 q->V += (uint64_t)m->m_pkthdr.len * q->iwsum;
577 ND("m is %p F 0x%llx V now 0x%llx", m, cl->F, q->V);
578
579 if (qfq_update_class(q, grp, cl)) {
580 uint64_t old_F = grp->F;
581 cl = qfq_slot_scan(grp);
582 if (!cl) { /* group gone, remove from ER */
583 __clear_bit(grp->index, &q->bitmaps[ER]);
584 // grp->S = grp->F + 1; // XXX debugging only
585 } else {
586 uint64_t roundedS = qfq_round_down(cl->S, grp->slot_shift);
587 unsigned int s;
588
589 if (grp->S == roundedS)
590 goto skip_unblock;
591 grp->S = roundedS;
592 grp->F = roundedS + (2ULL << grp->slot_shift);
593 /* remove from ER and put in the new set */
594 __clear_bit(grp->index, &q->bitmaps[ER]);
595 s = qfq_calc_state(q, grp);
596 __set_bit(grp->index, &q->bitmaps[s]);
597 }
598 /* we need to unblock even if the group has gone away */
599 qfq_unblock_groups(q, grp->index, old_F);
600 }
601
602 skip_unblock:
603 qfq_update_eligible(q, old_V);
604 NO(if (!q->bitmaps[ER] && q->queued)
605 dump_sched(q, "end dequeue");)
606
607 return m;
608 }
609
610 /*
611 * Assign a reasonable start time for a new flow k in group i.
612 * Admissible values for \hat(F) are multiples of \sigma_i
613 * no greater than V+\sigma_i . Larger values mean that
614 * we had a wraparound so we consider the timestamp to be stale.
615 *
616 * If F is not stale and F >= V then we set S = F.
617 * Otherwise we should assign S = V, but this may violate
618 * the ordering in ER. So, if we have groups in ER, set S to
619 * the F_j of the first group j which would be blocking us.
620 * We are guaranteed not to move S backward because
621 * otherwise our group i would still be blocked.
622 */
623 static inline void
624 qfq_update_start(struct qfq_sched *q, struct qfq_class *cl)
625 {
626 unsigned long mask;
627 uint64_t limit, roundedF;
628 int slot_shift = cl->grp->slot_shift;
629
630 roundedF = qfq_round_down(cl->F, slot_shift);
631 limit = qfq_round_down(q->V, slot_shift) + (1ULL << slot_shift);
632
633 if (!qfq_gt(cl->F, q->V) || qfq_gt(roundedF, limit)) {
634 /* timestamp was stale */
635 mask = mask_from(q->bitmaps[ER], cl->grp->index);
636 if (mask) {
637 struct qfq_group *next = qfq_ffs(q, mask);
638 if (qfq_gt(roundedF, next->F)) {
639 /* from pv 71261956973ba9e0637848a5adb4a5819b4bae83 */
640 if (qfq_gt(limit, next->F))
641 cl->S = next->F;
642 else /* preserve timestamp correctness */
643 cl->S = limit;
644 return;
645 }
646 }
647 cl->S = q->V;
648 } else { /* timestamp is not stale */
649 cl->S = cl->F;
650 }
651 }
652
653 static int
654 qfq_enqueue(struct dn_sch_inst *si, struct dn_queue *_q, struct mbuf *m)
655 {
656 struct qfq_sched *q = (struct qfq_sched *)(si + 1);
657 struct qfq_group *grp;
658 struct qfq_class *cl = (struct qfq_class *)_q;
659 uint64_t roundedS;
660 int s;
661
662 NO(q->loops++;)
663 DX(4, "len %d flow %p inv_w 0x%x grp %d", m->m_pkthdr.len,
664 _q, cl->inv_w, cl->grp->index);
665 /* XXX verify that the packet obeys the parameters */
666 if (m != _q->mq.head) {
667 if (dn_enqueue(_q, m, 0)) /* packet was dropped */
668 return 1;
669 NO(q->queued++;)
670 if (m != _q->mq.head)
671 return 0;
672 }
673 /* If reach this point, queue q was idle */
674 grp = cl->grp;
675 qfq_update_start(q, cl); /* adjust start time */
676 /* compute new finish time and rounded start. */
677 cl->F = cl->S + (uint64_t)(m->m_pkthdr.len) * cl->inv_w;
678 roundedS = qfq_round_down(cl->S, grp->slot_shift);
679
680 /*
681 * insert cl in the correct bucket.
682 * If cl->S >= grp->S we don't need to adjust the
683 * bucket list and simply go to the insertion phase.
684 * Otherwise grp->S is decreasing, we must make room
685 * in the bucket list, and also recompute the group state.
686 * Finally, if there were no flows in this group and nobody
687 * was in ER make sure to adjust V.
688 */
689 if (grp->full_slots) {
690 if (!qfq_gt(grp->S, cl->S))
691 goto skip_update;
692 /* create a slot for this cl->S */
693 qfq_slot_rotate(q, grp, roundedS);
694 /* group was surely ineligible, remove */
695 __clear_bit(grp->index, &q->bitmaps[IR]);
696 __clear_bit(grp->index, &q->bitmaps[IB]);
697 } else if (!q->bitmaps[ER] && qfq_gt(roundedS, q->V))
698 q->V = roundedS;
699
700 grp->S = roundedS;
701 grp->F = roundedS + (2ULL << grp->slot_shift); // i.e. 2\sigma_i
702 s = qfq_calc_state(q, grp);
703 __set_bit(grp->index, &q->bitmaps[s]);
704 ND("new state %d 0x%x", s, q->bitmaps[s]);
705 ND("S %llx F %llx V %llx", cl->S, cl->F, q->V);
706 skip_update:
707 qfq_slot_insert(grp, cl, roundedS);
708
709 return 0;
710 }
711
712 #if 0
713 static inline void
714 qfq_slot_remove(struct qfq_sched *q, struct qfq_group *grp,
715 struct qfq_class *cl, struct qfq_class **pprev)
716 {
717 unsigned int i, offset;
718 uint64_t roundedS;
719
720 roundedS = qfq_round_down(cl->S, grp->slot_shift);
721 offset = (roundedS - grp->S) >> grp->slot_shift;
722 i = (grp->front + offset) % QFQ_MAX_SLOTS;
723
724 #ifdef notyet
725 if (!pprev) {
726 pprev = &grp->slots[i];
727 while (*pprev && *pprev != cl)
728 pprev = &(*pprev)->next;
729 }
730 #endif
731
732 *pprev = cl->next;
733 if (!grp->slots[i])
734 __clear_bit(offset, &grp->full_slots);
735 }
736
737 /*
738 * called to forcibly destroy a queue.
739 * If the queue is not in the front bucket, or if it has
740 * other queues in the front bucket, we can simply remove
741 * the queue with no other side effects.
742 * Otherwise we must propagate the event up.
743 * XXX description to be completed.
744 */
745 static void
746 qfq_deactivate_class(struct qfq_sched *q, struct qfq_class *cl,
747 struct qfq_class **pprev)
748 {
749 struct qfq_group *grp = &q->groups[cl->index];
750 unsigned long mask;
751 uint64_t roundedS;
752 int s;
753
754 cl->F = cl->S; // not needed if the class goes away.
755 qfq_slot_remove(q, grp, cl, pprev);
756
757 if (!grp->full_slots) {
758 /* nothing left in the group, remove from all sets.
759 * Do ER last because if we were blocking other groups
760 * we must unblock them.
761 */
762 __clear_bit(grp->index, &q->bitmaps[IR]);
763 __clear_bit(grp->index, &q->bitmaps[EB]);
764 __clear_bit(grp->index, &q->bitmaps[IB]);
765
766 if (test_bit(grp->index, &q->bitmaps[ER]) &&
767 !(q->bitmaps[ER] & ~((1UL << grp->index) - 1))) {
768 mask = q->bitmaps[ER] & ((1UL << grp->index) - 1);
769 if (mask)
770 mask = ~((1UL << __fls(mask)) - 1);
771 else
772 mask = ~0UL;
773 qfq_move_groups(q, mask, EB, ER);
774 qfq_move_groups(q, mask, IB, IR);
775 }
776 __clear_bit(grp->index, &q->bitmaps[ER]);
777 } else if (!grp->slots[grp->front]) {
778 cl = qfq_slot_scan(grp);
779 roundedS = qfq_round_down(cl->S, grp->slot_shift);
780 if (grp->S != roundedS) {
781 __clear_bit(grp->index, &q->bitmaps[ER]);
782 __clear_bit(grp->index, &q->bitmaps[IR]);
783 __clear_bit(grp->index, &q->bitmaps[EB]);
784 __clear_bit(grp->index, &q->bitmaps[IB]);
785 grp->S = roundedS;
786 grp->F = roundedS + (2ULL << grp->slot_shift);
787 s = qfq_calc_state(q, grp);
788 __set_bit(grp->index, &q->bitmaps[s]);
789 }
790 }
791 qfq_update_eligible(q, q->V);
792 }
793 #endif
794
795 static int
796 qfq_new_fsk(struct dn_fsk *f)
797 {
798 ipdn_bound_var(&f->fs.par[0], 1, 1, QFQ_MAX_WEIGHT, "qfq weight");
799 ipdn_bound_var(&f->fs.par[1], 1500, 1, 2000, "qfq maxlen");
800 ND("weight %d len %d\n", f->fs.par[0], f->fs.par[1]);
801 return 0;
802 }
803
804 /*
805 * initialize a new scheduler instance
806 */
807 static int
808 qfq_new_sched(struct dn_sch_inst *si)
809 {
810 struct qfq_sched *q = (struct qfq_sched *)(si + 1);
811 struct qfq_group *grp;
812 int i;
813
814 for (i = 0; i <= QFQ_MAX_INDEX; i++) {
815 grp = &q->groups[i];
816 grp->index = i;
817 grp->slot_shift = QFQ_MTU_SHIFT + FRAC_BITS -
818 (QFQ_MAX_INDEX - i);
819 }
820 return 0;
821 }
822
823 /*
824 * QFQ scheduler descriptor
825 */
826 static struct dn_alg qfq_desc = {
827 _SI( .type = ) DN_SCHED_QFQ,
828 _SI( .name = ) "QFQ",
829 _SI( .flags = ) DN_MULTIQUEUE,
830
831 _SI( .schk_datalen = ) 0,
832 _SI( .si_datalen = ) sizeof(struct qfq_sched),
833 _SI( .q_datalen = ) sizeof(struct qfq_class) - sizeof(struct dn_queue),
834
835 _SI( .enqueue = ) qfq_enqueue,
836 _SI( .dequeue = ) qfq_dequeue,
837
838 _SI( .config = ) NULL,
839 _SI( .destroy = ) NULL,
840 _SI( .new_sched = ) qfq_new_sched,
841 _SI( .free_sched = ) NULL,
842 _SI( .new_fsk = ) qfq_new_fsk,
843 _SI( .free_fsk = ) NULL,
844 _SI( .new_queue = ) qfq_new_queue,
845 _SI( .free_queue = ) qfq_free_queue,
846 #ifdef NEW_AQM
847 _SI( .getconfig = ) NULL,
848 #endif
849 };
850
851 DECLARE_DNSCHED_MODULE(dn_qfq, &qfq_desc);
852
853 #ifdef QFQ_DEBUG
854 static void
855 dump_groups(struct qfq_sched *q, uint32_t mask)
856 {
857 int i, j;
858
859 for (i = 0; i < QFQ_MAX_INDEX + 1; i++) {
860 struct qfq_group *g = &q->groups[i];
861
862 if (0 == (mask & (1<<i)))
863 continue;
864 for (j = 0; j < QFQ_MAX_SLOTS; j++) {
865 if (g->slots[j])
866 D(" bucket %d %p", j, g->slots[j]);
867 }
868 D("full_slots 0x%llx", (_P64)g->full_slots);
869 D(" %2d S 0x%20llx F 0x%llx %c", i,
870 (_P64)g->S, (_P64)g->F,
871 mask & (1<<i) ? '1' : '');
872 }
873 }
874
875 static void
876 dump_sched(struct qfq_sched *q, const char *msg)
877 {
878 D("--- in %s: ---", msg);
879 D("loops %d queued %d V 0x%llx", q->loops, q->queued, (_P64)q->V);
880 D(" ER 0x%08x", (unsigned)q->bitmaps[ER]);
881 D(" EB 0x%08x", (unsigned)q->bitmaps[EB]);
882 D(" IR 0x%08x", (unsigned)q->bitmaps[IR]);
883 D(" IB 0x%08x", (unsigned)q->bitmaps[IB]);
884 dump_groups(q, 0xffffffff);
885 };
886 #endif /* QFQ_DEBUG */
Cache object: 14590e6a1b48142281fc2dd3db646411
|