The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/netpfil/ipfw/dn_sched_wf2q.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  * Copyright (c) 2010 Riccardo Panicucci, Universita` di Pisa
    3  * Copyright (c) 2000-2002 Luigi Rizzo, Universita` di Pisa
    4  * All rights reserved
    5  *
    6  * Redistribution and use in source and binary forms, with or without
    7  * modification, are permitted provided that the following conditions
    8  * are met:
    9  * 1. Redistributions of source code must retain the above copyright
   10  *    notice, this list of conditions and the following disclaimer.
   11  * 2. Redistributions in binary form must reproduce the above copyright
   12  *    notice, this list of conditions and the following disclaimer in the
   13  *    documentation and/or other materials provided with the distribution.
   14  *
   15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   25  * SUCH DAMAGE.
   26  */
   27 
   28 /*
   29  * $FreeBSD: releng/10.1/sys/netpfil/ipfw/dn_sched_wf2q.c 240494 2012-09-14 11:51:49Z glebius $
   30  */
   31 
   32 #ifdef _KERNEL
   33 #include <sys/malloc.h>
   34 #include <sys/socket.h>
   35 #include <sys/socketvar.h>
   36 #include <sys/kernel.h>
   37 #include <sys/mbuf.h>
   38 #include <sys/module.h>
   39 #include <net/if.h>     /* IFNAMSIZ */
   40 #include <netinet/in.h>
   41 #include <netinet/ip_var.h>             /* ipfw_rule_ref */
   42 #include <netinet/ip_fw.h>      /* flow_id */
   43 #include <netinet/ip_dummynet.h>
   44 #include <netpfil/ipfw/dn_heap.h>
   45 #include <netpfil/ipfw/ip_dn_private.h>
   46 #include <netpfil/ipfw/dn_sched.h>
   47 #else
   48 #include <dn_test.h>
   49 #endif
   50 
   51 #ifndef MAX64
   52 #define MAX64(x,y)  (( (int64_t) ( (y)-(x) )) > 0 ) ? (y) : (x)
   53 #endif
   54 
   55 /*
   56  * timestamps are computed on 64 bit using fixed point arithmetic.
   57  * LMAX_BITS, WMAX_BITS are the max number of bits for the packet len
   58  * and sum of weights, respectively. FRAC_BITS is the number of
   59  * fractional bits. We want FRAC_BITS >> WMAX_BITS to avoid too large
   60  * errors when computing the inverse, FRAC_BITS < 32 so we can do 1/w
   61  * using an unsigned 32-bit division, and to avoid wraparounds we need
   62  * LMAX_BITS + WMAX_BITS + FRAC_BITS << 64
   63  * As an example
   64  * FRAC_BITS = 26, LMAX_BITS=14, WMAX_BITS = 19
   65  */
   66 #ifndef FRAC_BITS
   67 #define FRAC_BITS    28 /* shift for fixed point arithmetic */
   68 #define ONE_FP  (1UL << FRAC_BITS)
   69 #endif
   70 
   71 /*
   72  * Private information for the scheduler instance:
   73  * sch_heap (key is Finish time) returns the next queue to serve
   74  * ne_heap (key is Start time) stores not-eligible queues
   75  * idle_heap (key=start/finish time) stores idle flows. It must
   76  *      support extract-from-middle.
   77  * A flow is only in 1 of the three heaps.
   78  * XXX todo: use a more efficient data structure, e.g. a tree sorted
   79  * by F with min_subtree(S) in each node
   80  */
   81 struct wf2qp_si {
   82     struct dn_heap sch_heap;    /* top extract - key Finish  time */
   83     struct dn_heap ne_heap;     /* top extract - key Start   time */
   84     struct dn_heap idle_heap;   /* random extract - key Start=Finish time */
   85     uint64_t V;                 /* virtual time */
   86     uint32_t inv_wsum;          /* inverse of sum of weights */
   87     uint32_t wsum;              /* sum of weights */
   88 };
   89 
   90 struct wf2qp_queue {
   91     struct dn_queue _q;
   92     uint64_t S, F;              /* start time, finish time */
   93     uint32_t inv_w;             /* ONE_FP / weight */
   94     int32_t heap_pos;           /* position (index) of struct in heap */
   95 };
   96 
   97 /*
   98  * This file implements a WF2Q+ scheduler as it has been in dummynet
   99  * since 2000.
  100  * The scheduler supports per-flow queues and has O(log N) complexity.
  101  *
  102  * WF2Q+ needs to drain entries from the idle heap so that we
  103  * can keep the sum of weights up to date. We can do it whenever
  104  * we get a chance, or periodically, or following some other
  105  * strategy. The function idle_check() drains at most N elements
  106  * from the idle heap.
  107  */
  108 static void
  109 idle_check(struct wf2qp_si *si, int n, int force)
  110 {
  111     struct dn_heap *h = &si->idle_heap;
  112     while (n-- > 0 && h->elements > 0 &&
  113                 (force || DN_KEY_LT(HEAP_TOP(h)->key, si->V))) {
  114         struct dn_queue *q = HEAP_TOP(h)->object;
  115         struct wf2qp_queue *alg_fq = (struct wf2qp_queue *)q;
  116 
  117         heap_extract(h, NULL);
  118         /* XXX to let the flowset delete the queue we should
  119          * mark it as 'unused' by the scheduler.
  120          */
  121         alg_fq->S = alg_fq->F + 1; /* Mark timestamp as invalid. */
  122         si->wsum -= q->fs->fs.par[0];   /* adjust sum of weights */
  123         if (si->wsum > 0)
  124                 si->inv_wsum = ONE_FP/si->wsum;
  125     }
  126 }
  127 
  128 static int
  129 wf2qp_enqueue(struct dn_sch_inst *_si, struct dn_queue *q, struct mbuf *m)
  130 {
  131     struct dn_fsk *fs = q->fs;
  132     struct wf2qp_si *si = (struct wf2qp_si *)(_si + 1);
  133     struct wf2qp_queue *alg_fq;
  134     uint64_t len = m->m_pkthdr.len;
  135 
  136     if (m != q->mq.head) {
  137         if (dn_enqueue(q, m, 0)) /* packet was dropped */
  138             return 1;
  139         if (m != q->mq.head)    /* queue was already busy */
  140             return 0;
  141     }
  142 
  143     /* If reach this point, queue q was idle */
  144     alg_fq = (struct wf2qp_queue *)q;
  145 
  146     if (DN_KEY_LT(alg_fq->F, alg_fq->S)) {
  147         /* F<S means timestamps are invalid ->brand new queue. */
  148         alg_fq->S = si->V;              /* init start time */
  149         si->wsum += fs->fs.par[0];      /* add weight of new queue. */
  150         si->inv_wsum = ONE_FP/si->wsum;
  151     } else { /* if it was idle then it was in the idle heap */
  152         heap_extract(&si->idle_heap, q);
  153         alg_fq->S = MAX64(alg_fq->F, si->V);    /* compute new S */
  154     }
  155     alg_fq->F = alg_fq->S + len * alg_fq->inv_w;
  156 
  157     /* if nothing is backlogged, make sure this flow is eligible */
  158     if (si->ne_heap.elements == 0 && si->sch_heap.elements == 0)
  159         si->V = MAX64(alg_fq->S, si->V);
  160 
  161     /*
  162      * Look at eligibility. A flow is not eligibile if S>V (when
  163      * this happens, it means that there is some other flow already
  164      * scheduled for the same pipe, so the sch_heap cannot be
  165      * empty). If the flow is not eligible we just store it in the
  166      * ne_heap. Otherwise, we store in the sch_heap.
  167      * Note that for all flows in sch_heap (SCH), S_i <= V,
  168      * and for all flows in ne_heap (NEH), S_i > V.
  169      * So when we need to compute max(V, min(S_i)) forall i in
  170      * SCH+NEH, we only need to look into NEH.
  171      */
  172     if (DN_KEY_LT(si->V, alg_fq->S)) {
  173         /* S>V means flow Not eligible. */
  174         if (si->sch_heap.elements == 0)
  175             D("++ ouch! not eligible but empty scheduler!");
  176         heap_insert(&si->ne_heap, alg_fq->S, q);
  177     } else {
  178         heap_insert(&si->sch_heap, alg_fq->F, q);
  179     }
  180     return 0;
  181 }
  182 
  183 /* XXX invariant: sch > 0 || V >= min(S in neh) */
  184 static struct mbuf *
  185 wf2qp_dequeue(struct dn_sch_inst *_si)
  186 {
  187         /* Access scheduler instance private data */
  188         struct wf2qp_si *si = (struct wf2qp_si *)(_si + 1);
  189         struct mbuf *m;
  190         struct dn_queue *q;
  191         struct dn_heap *sch = &si->sch_heap;
  192         struct dn_heap *neh = &si->ne_heap;
  193         struct wf2qp_queue *alg_fq;
  194 
  195         if (sch->elements == 0 && neh->elements == 0) {
  196                 /* we have nothing to do. We could kill the idle heap
  197                  * altogether and reset V
  198                  */
  199                 idle_check(si, 0x7fffffff, 1);
  200                 si->V = 0;
  201                 si->wsum = 0;   /* should be set already */
  202                 return NULL;    /* quick return if nothing to do */
  203         }
  204         idle_check(si, 1, 0);   /* drain something from the idle heap */
  205 
  206         /* make sure at least one element is eligible, bumping V
  207          * and moving entries that have become eligible.
  208          * We need to repeat the first part twice, before and
  209          * after extracting the candidate, or enqueue() will
  210          * find the data structure in a wrong state.
  211          */
  212   m = NULL;
  213   for(;;) {
  214         /*
  215          * Compute V = max(V, min(S_i)). Remember that all elements
  216          * in sch have by definition S_i <= V so if sch is not empty,
  217          * V is surely the max and we must not update it. Conversely,
  218          * if sch is empty we only need to look at neh.
  219          * We don't need to move the queues, as it will be done at the
  220          * next enqueue
  221          */
  222         if (sch->elements == 0 && neh->elements > 0) {
  223                 si->V = MAX64(si->V, HEAP_TOP(neh)->key);
  224         }
  225         while (neh->elements > 0 &&
  226                     DN_KEY_LEQ(HEAP_TOP(neh)->key, si->V)) {
  227                 q = HEAP_TOP(neh)->object;
  228                 alg_fq = (struct wf2qp_queue *)q;
  229                 heap_extract(neh, NULL);
  230                 heap_insert(sch, alg_fq->F, q);
  231         }
  232         if (m) /* pkt found in previous iteration */
  233                 break;
  234         /* ok we have at least one eligible pkt */
  235         q = HEAP_TOP(sch)->object;
  236         alg_fq = (struct wf2qp_queue *)q;
  237         m = dn_dequeue(q);
  238         heap_extract(sch, NULL); /* Remove queue from heap. */
  239         si->V += (uint64_t)(m->m_pkthdr.len) * si->inv_wsum;
  240         alg_fq->S = alg_fq->F;  /* Update start time. */
  241         if (q->mq.head == 0) {  /* not backlogged any more. */
  242                 heap_insert(&si->idle_heap, alg_fq->F, q);
  243         } else {                        /* Still backlogged. */
  244                 /* Update F, store in neh or sch */
  245                 uint64_t len = q->mq.head->m_pkthdr.len;
  246                 alg_fq->F += len * alg_fq->inv_w;
  247                 if (DN_KEY_LEQ(alg_fq->S, si->V)) {
  248                         heap_insert(sch, alg_fq->F, q);
  249                 } else {
  250                         heap_insert(neh, alg_fq->S, q);
  251                 }
  252         }
  253     }
  254         return m;
  255 }
  256 
  257 static int
  258 wf2qp_new_sched(struct dn_sch_inst *_si)
  259 {
  260         struct wf2qp_si *si = (struct wf2qp_si *)(_si + 1);
  261         int ofs = offsetof(struct wf2qp_queue, heap_pos);
  262 
  263         /* all heaps support extract from middle */
  264         if (heap_init(&si->idle_heap, 16, ofs) ||
  265             heap_init(&si->sch_heap, 16, ofs) ||
  266             heap_init(&si->ne_heap, 16, ofs)) {
  267                 heap_free(&si->ne_heap);
  268                 heap_free(&si->sch_heap);
  269                 heap_free(&si->idle_heap);
  270                 return ENOMEM;
  271         }
  272         return 0;
  273 }
  274 
  275 static int
  276 wf2qp_free_sched(struct dn_sch_inst *_si)
  277 {
  278         struct wf2qp_si *si = (struct wf2qp_si *)(_si + 1);
  279 
  280         heap_free(&si->sch_heap);
  281         heap_free(&si->ne_heap);
  282         heap_free(&si->idle_heap);
  283 
  284         return 0;
  285 }
  286 
  287 static int
  288 wf2qp_new_fsk(struct dn_fsk *fs)
  289 {
  290         ipdn_bound_var(&fs->fs.par[0], 1,
  291                 1, 100, "WF2Q+ weight");
  292         return 0;
  293 }
  294 
  295 static int
  296 wf2qp_new_queue(struct dn_queue *_q)
  297 {
  298         struct wf2qp_queue *q = (struct wf2qp_queue *)_q;
  299 
  300         _q->ni.oid.subtype = DN_SCHED_WF2QP;
  301         q->F = 0;       /* not strictly necessary */
  302         q->S = q->F + 1;    /* mark timestamp as invalid. */
  303         q->inv_w = ONE_FP / _q->fs->fs.par[0];
  304         if (_q->mq.head != NULL) {
  305                 wf2qp_enqueue(_q->_si, _q, _q->mq.head);
  306         }
  307         return 0;
  308 }
  309 
  310 /*
  311  * Called when the infrastructure removes a queue (e.g. flowset
  312  * is reconfigured). Nothing to do if we did not 'own' the queue,
  313  * otherwise remove it from the right heap and adjust the sum
  314  * of weights.
  315  */
  316 static int
  317 wf2qp_free_queue(struct dn_queue *q)
  318 {
  319         struct wf2qp_queue *alg_fq = (struct wf2qp_queue *)q;
  320         struct wf2qp_si *si = (struct wf2qp_si *)(q->_si + 1);
  321 
  322         if (alg_fq->S >= alg_fq->F + 1)
  323                 return 0;       /* nothing to do, not in any heap */
  324         si->wsum -= q->fs->fs.par[0];
  325         if (si->wsum > 0)
  326                 si->inv_wsum = ONE_FP/si->wsum;
  327 
  328         /* extract from the heap. XXX TODO we may need to adjust V
  329          * to make sure the invariants hold.
  330          */
  331         if (q->mq.head == NULL) {
  332                 heap_extract(&si->idle_heap, q);
  333         } else if (DN_KEY_LT(si->V, alg_fq->S)) {
  334                 heap_extract(&si->ne_heap, q);
  335         } else {
  336                 heap_extract(&si->sch_heap, q);
  337         }
  338         return 0;
  339 }
  340 
  341 /*
  342  * WF2Q+ scheduler descriptor
  343  * contains the type of the scheduler, the name, the size of the
  344  * structures and function pointers.
  345  */
  346 static struct dn_alg wf2qp_desc = {
  347         _SI( .type = ) DN_SCHED_WF2QP,
  348         _SI( .name = ) "WF2Q+",
  349         _SI( .flags = ) DN_MULTIQUEUE,
  350 
  351         /* we need extra space in the si and the queue */
  352         _SI( .schk_datalen = ) 0,
  353         _SI( .si_datalen = ) sizeof(struct wf2qp_si),
  354         _SI( .q_datalen = ) sizeof(struct wf2qp_queue) -
  355                                 sizeof(struct dn_queue),
  356 
  357         _SI( .enqueue = ) wf2qp_enqueue,
  358         _SI( .dequeue = ) wf2qp_dequeue,
  359 
  360         _SI( .config = )  NULL,
  361         _SI( .destroy = )  NULL,
  362         _SI( .new_sched = ) wf2qp_new_sched,
  363         _SI( .free_sched = ) wf2qp_free_sched,
  364 
  365         _SI( .new_fsk = ) wf2qp_new_fsk,
  366         _SI( .free_fsk = )  NULL,
  367 
  368         _SI( .new_queue = ) wf2qp_new_queue,
  369         _SI( .free_queue = ) wf2qp_free_queue,
  370 };
  371 
  372 
  373 DECLARE_DNSCHED_MODULE(dn_wf2qp, &wf2qp_desc);

Cache object: a0374a5b52164b39b76ba6a330241347


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.