1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3 *
4 * Copyright (c) 2010 Luigi Rizzo, Riccardo Panicucci, Universita` di Pisa
5 * All rights reserved
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29 /*
30 * Dummynet portions related to packet handling.
31 */
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34
35 #include "opt_inet6.h"
36
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/malloc.h>
40 #include <sys/mbuf.h>
41 #include <sys/kernel.h>
42 #include <sys/lock.h>
43 #include <sys/module.h>
44 #include <sys/mutex.h>
45 #include <sys/priv.h>
46 #include <sys/proc.h>
47 #include <sys/rwlock.h>
48 #include <sys/socket.h>
49 #include <sys/time.h>
50 #include <sys/sysctl.h>
51
52 #include <net/if.h> /* IFNAMSIZ, struct ifaddr, ifq head, lock.h mutex.h */
53 #include <net/if_var.h> /* NET_EPOCH_... */
54 #include <net/netisr.h>
55 #include <net/vnet.h>
56
57 #include <netinet/in.h>
58 #include <netinet/ip.h> /* ip_len, ip_off */
59 #include <netinet/ip_var.h> /* ip_output(), IP_FORWARDING */
60 #include <netinet/ip_fw.h>
61 #include <netinet/ip_dummynet.h>
62 #include <netinet/if_ether.h> /* various ether_* routines */
63 #include <netinet/ip6.h> /* for ip6_input, ip6_output prototypes */
64 #include <netinet6/ip6_var.h>
65
66 #include <netpfil/ipfw/ip_fw_private.h>
67 #include <netpfil/ipfw/dn_heap.h>
68 #include <netpfil/ipfw/ip_dn_private.h>
69 #ifdef NEW_AQM
70 #include <netpfil/ipfw/dn_aqm.h>
71 #endif
72 #include <netpfil/ipfw/dn_sched.h>
73
74 /*
75 * We keep a private variable for the simulation time, but we could
76 * probably use an existing one ("softticks" in sys/kern/kern_timeout.c)
77 * instead of V_dn_cfg.curr_time
78 */
79 VNET_DEFINE(struct dn_parms, dn_cfg);
80 #define V_dn_cfg VNET(dn_cfg)
81
82 /*
83 * We use a heap to store entities for which we have pending timer events.
84 * The heap is checked at every tick and all entities with expired events
85 * are extracted.
86 */
87
88 MALLOC_DEFINE(M_DUMMYNET, "dummynet", "dummynet heap");
89
90 extern void (*bridge_dn_p)(struct mbuf *, struct ifnet *);
91
92 #ifdef SYSCTL_NODE
93
94 /*
95 * Because of the way the SYSBEGIN/SYSEND macros work on other
96 * platforms, there should not be functions between them.
97 * So keep the handlers outside the block.
98 */
99 static int
100 sysctl_hash_size(SYSCTL_HANDLER_ARGS)
101 {
102 int error, value;
103
104 value = V_dn_cfg.hash_size;
105 error = sysctl_handle_int(oidp, &value, 0, req);
106 if (error != 0 || req->newptr == NULL)
107 return (error);
108 if (value < 16 || value > 65536)
109 return (EINVAL);
110 V_dn_cfg.hash_size = value;
111 return (0);
112 }
113
114 static int
115 sysctl_limits(SYSCTL_HANDLER_ARGS)
116 {
117 int error;
118 long value;
119
120 if (arg2 != 0)
121 value = V_dn_cfg.slot_limit;
122 else
123 value = V_dn_cfg.byte_limit;
124 error = sysctl_handle_long(oidp, &value, 0, req);
125
126 if (error != 0 || req->newptr == NULL)
127 return (error);
128 if (arg2 != 0) {
129 if (value < 1)
130 return (EINVAL);
131 V_dn_cfg.slot_limit = value;
132 } else {
133 if (value < 1500)
134 return (EINVAL);
135 V_dn_cfg.byte_limit = value;
136 }
137 return (0);
138 }
139
140 SYSBEGIN(f4)
141
142 SYSCTL_DECL(_net_inet);
143 SYSCTL_DECL(_net_inet_ip);
144 #ifdef NEW_AQM
145 SYSCTL_NODE(_net_inet_ip, OID_AUTO, dummynet, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
146 "Dummynet");
147 #else
148 static SYSCTL_NODE(_net_inet_ip, OID_AUTO, dummynet,
149 CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
150 "Dummynet");
151 #endif
152
153 /* wrapper to pass V_dn_cfg fields to SYSCTL_* */
154 #define DC(x) (&(VNET_NAME(dn_cfg).x))
155
156 /* parameters */
157
158 SYSCTL_PROC(_net_inet_ip_dummynet, OID_AUTO, hash_size,
159 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
160 0, 0, sysctl_hash_size, "I",
161 "Default hash table size");
162
163 SYSCTL_PROC(_net_inet_ip_dummynet, OID_AUTO, pipe_slot_limit,
164 CTLTYPE_LONG | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
165 0, 1, sysctl_limits, "L",
166 "Upper limit in slots for pipe queue.");
167 SYSCTL_PROC(_net_inet_ip_dummynet, OID_AUTO, pipe_byte_limit,
168 CTLTYPE_LONG | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
169 0, 0, sysctl_limits, "L",
170 "Upper limit in bytes for pipe queue.");
171 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, io_fast,
172 CTLFLAG_RW | CTLFLAG_VNET, DC(io_fast), 0, "Enable fast dummynet io.");
173 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, debug,
174 CTLFLAG_RW | CTLFLAG_VNET, DC(debug), 0, "Dummynet debug level");
175
176 /* RED parameters */
177 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, red_lookup_depth,
178 CTLFLAG_RD | CTLFLAG_VNET, DC(red_lookup_depth), 0, "Depth of RED lookup table");
179 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, red_avg_pkt_size,
180 CTLFLAG_RD | CTLFLAG_VNET, DC(red_avg_pkt_size), 0, "RED Medium packet size");
181 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, red_max_pkt_size,
182 CTLFLAG_RD | CTLFLAG_VNET, DC(red_max_pkt_size), 0, "RED Max packet size");
183
184 /* time adjustment */
185 SYSCTL_LONG(_net_inet_ip_dummynet, OID_AUTO, tick_delta,
186 CTLFLAG_RD | CTLFLAG_VNET, DC(tick_delta), 0, "Last vs standard tick difference (usec).");
187 SYSCTL_LONG(_net_inet_ip_dummynet, OID_AUTO, tick_delta_sum,
188 CTLFLAG_RD | CTLFLAG_VNET, DC(tick_delta_sum), 0, "Accumulated tick difference (usec).");
189 SYSCTL_LONG(_net_inet_ip_dummynet, OID_AUTO, tick_adjustment,
190 CTLFLAG_RD | CTLFLAG_VNET, DC(tick_adjustment), 0, "Tick adjustments done.");
191 SYSCTL_LONG(_net_inet_ip_dummynet, OID_AUTO, tick_diff,
192 CTLFLAG_RD | CTLFLAG_VNET, DC(tick_diff), 0,
193 "Adjusted vs non-adjusted curr_time difference (ticks).");
194 SYSCTL_LONG(_net_inet_ip_dummynet, OID_AUTO, tick_lost,
195 CTLFLAG_RD | CTLFLAG_VNET, DC(tick_lost), 0,
196 "Number of ticks coalesced by dummynet taskqueue.");
197
198 /* Drain parameters */
199 SYSCTL_UINT(_net_inet_ip_dummynet, OID_AUTO, expire,
200 CTLFLAG_RW | CTLFLAG_VNET, DC(expire), 0, "Expire empty queues/pipes");
201 SYSCTL_UINT(_net_inet_ip_dummynet, OID_AUTO, expire_cycle,
202 CTLFLAG_RD | CTLFLAG_VNET, DC(expire_cycle), 0, "Expire cycle for queues/pipes");
203
204 /* statistics */
205 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, schk_count,
206 CTLFLAG_RD | CTLFLAG_VNET, DC(schk_count), 0, "Number of schedulers");
207 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, si_count,
208 CTLFLAG_RD | CTLFLAG_VNET, DC(si_count), 0, "Number of scheduler instances");
209 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, fsk_count,
210 CTLFLAG_RD | CTLFLAG_VNET, DC(fsk_count), 0, "Number of flowsets");
211 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, queue_count,
212 CTLFLAG_RD | CTLFLAG_VNET, DC(queue_count), 0, "Number of queues");
213 SYSCTL_ULONG(_net_inet_ip_dummynet, OID_AUTO, io_pkt,
214 CTLFLAG_RD | CTLFLAG_VNET, DC(io_pkt), 0,
215 "Number of packets passed to dummynet.");
216 SYSCTL_ULONG(_net_inet_ip_dummynet, OID_AUTO, io_pkt_fast,
217 CTLFLAG_RD | CTLFLAG_VNET, DC(io_pkt_fast), 0,
218 "Number of packets bypassed dummynet scheduler.");
219 SYSCTL_ULONG(_net_inet_ip_dummynet, OID_AUTO, io_pkt_drop,
220 CTLFLAG_RD | CTLFLAG_VNET, DC(io_pkt_drop), 0,
221 "Number of packets dropped by dummynet.");
222 #undef DC
223 SYSEND
224
225 #endif
226
227 static void dummynet_send(struct mbuf *);
228
229 /*
230 * Return the mbuf tag holding the dummynet state (it should
231 * be the first one on the list).
232 */
233 struct dn_pkt_tag *
234 dn_tag_get(struct mbuf *m)
235 {
236 struct m_tag *mtag = m_tag_first(m);
237 #ifdef NEW_AQM
238 /* XXX: to skip ts m_tag. For Debugging only*/
239 if (mtag != NULL && mtag->m_tag_id == DN_AQM_MTAG_TS) {
240 m_tag_delete(m,mtag);
241 mtag = m_tag_first(m);
242 D("skip TS tag");
243 }
244 #endif
245 KASSERT(mtag != NULL &&
246 mtag->m_tag_cookie == MTAG_ABI_COMPAT &&
247 mtag->m_tag_id == PACKET_TAG_DUMMYNET,
248 ("packet on dummynet queue w/o dummynet tag!"));
249 return (struct dn_pkt_tag *)(mtag+1);
250 }
251
252 #ifndef NEW_AQM
253 static inline void
254 mq_append(struct mq *q, struct mbuf *m)
255 {
256 #ifdef USERSPACE
257 // buffers from netmap need to be copied
258 // XXX note that the routine is not expected to fail
259 ND("append %p to %p", m, q);
260 if (m->m_flags & M_STACK) {
261 struct mbuf *m_new;
262 void *p;
263 int l, ofs;
264
265 ofs = m->m_data - m->__m_extbuf;
266 // XXX allocate
267 MGETHDR(m_new, M_NOWAIT, MT_DATA);
268 ND("*** WARNING, volatile buf %p ext %p %d dofs %d m_new %p",
269 m, m->__m_extbuf, m->__m_extlen, ofs, m_new);
270 p = m_new->__m_extbuf; /* new pointer */
271 l = m_new->__m_extlen; /* new len */
272 if (l <= m->__m_extlen) {
273 panic("extlen too large");
274 }
275
276 *m_new = *m; // copy
277 m_new->m_flags &= ~M_STACK;
278 m_new->__m_extbuf = p; // point to new buffer
279 _pkt_copy(m->__m_extbuf, p, m->__m_extlen);
280 m_new->m_data = p + ofs;
281 m = m_new;
282 }
283 #endif /* USERSPACE */
284 if (q->head == NULL)
285 q->head = m;
286 else
287 q->tail->m_nextpkt = m;
288 q->count++;
289 q->tail = m;
290 m->m_nextpkt = NULL;
291 }
292 #endif
293
294 /*
295 * Dispose a list of packet. Use a functions so if we need to do
296 * more work, this is a central point to do it.
297 */
298 void dn_free_pkts(struct mbuf *mnext)
299 {
300 struct mbuf *m;
301
302 while ((m = mnext) != NULL) {
303 mnext = m->m_nextpkt;
304 FREE_PKT(m);
305 }
306 }
307
308 static int
309 red_drops (struct dn_queue *q, int len)
310 {
311 /*
312 * RED algorithm
313 *
314 * RED calculates the average queue size (avg) using a low-pass filter
315 * with an exponential weighted (w_q) moving average:
316 * avg <- (1-w_q) * avg + w_q * q_size
317 * where q_size is the queue length (measured in bytes or * packets).
318 *
319 * If q_size == 0, we compute the idle time for the link, and set
320 * avg = (1 - w_q)^(idle/s)
321 * where s is the time needed for transmitting a medium-sized packet.
322 *
323 * Now, if avg < min_th the packet is enqueued.
324 * If avg > max_th the packet is dropped. Otherwise, the packet is
325 * dropped with probability P function of avg.
326 */
327
328 struct dn_fsk *fs = q->fs;
329 int64_t p_b = 0;
330
331 /* Queue in bytes or packets? */
332 uint32_t q_size = (fs->fs.flags & DN_QSIZE_BYTES) ?
333 q->ni.len_bytes : q->ni.length;
334
335 /* Average queue size estimation. */
336 if (q_size != 0) {
337 /* Queue is not empty, avg <- avg + (q_size - avg) * w_q */
338 int diff = SCALE(q_size) - q->avg;
339 int64_t v = SCALE_MUL((int64_t)diff, (int64_t)fs->w_q);
340
341 q->avg += (int)v;
342 } else {
343 /*
344 * Queue is empty, find for how long the queue has been
345 * empty and use a lookup table for computing
346 * (1 - * w_q)^(idle_time/s) where s is the time to send a
347 * (small) packet.
348 * XXX check wraps...
349 */
350 if (q->avg) {
351 u_int t = div64((V_dn_cfg.curr_time - q->q_time), fs->lookup_step);
352
353 q->avg = (t < fs->lookup_depth) ?
354 SCALE_MUL(q->avg, fs->w_q_lookup[t]) : 0;
355 }
356 }
357
358 /* Should i drop? */
359 if (q->avg < fs->min_th) {
360 q->count = -1;
361 return (0); /* accept packet */
362 }
363 if (q->avg >= fs->max_th) { /* average queue >= max threshold */
364 if (fs->fs.flags & DN_IS_ECN)
365 return (1);
366 if (fs->fs.flags & DN_IS_GENTLE_RED) {
367 /*
368 * According to Gentle-RED, if avg is greater than
369 * max_th the packet is dropped with a probability
370 * p_b = c_3 * avg - c_4
371 * where c_3 = (1 - max_p) / max_th
372 * c_4 = 1 - 2 * max_p
373 */
374 p_b = SCALE_MUL((int64_t)fs->c_3, (int64_t)q->avg) -
375 fs->c_4;
376 } else {
377 q->count = -1;
378 return (1);
379 }
380 } else if (q->avg > fs->min_th) {
381 if (fs->fs.flags & DN_IS_ECN)
382 return (1);
383 /*
384 * We compute p_b using the linear dropping function
385 * p_b = c_1 * avg - c_2
386 * where c_1 = max_p / (max_th - min_th)
387 * c_2 = max_p * min_th / (max_th - min_th)
388 */
389 p_b = SCALE_MUL((int64_t)fs->c_1, (int64_t)q->avg) - fs->c_2;
390 }
391
392 if (fs->fs.flags & DN_QSIZE_BYTES)
393 p_b = div64((p_b * len) , fs->max_pkt_size);
394 if (++q->count == 0)
395 q->random = random() & 0xffff;
396 else {
397 /*
398 * q->count counts packets arrived since last drop, so a greater
399 * value of q->count means a greater packet drop probability.
400 */
401 if (SCALE_MUL(p_b, SCALE((int64_t)q->count)) > q->random) {
402 q->count = 0;
403 /* After a drop we calculate a new random value. */
404 q->random = random() & 0xffff;
405 return (1); /* drop */
406 }
407 }
408 /* End of RED algorithm. */
409
410 return (0); /* accept */
411
412 }
413
414 /*
415 * ECN/ECT Processing (partially adopted from altq)
416 */
417 #ifndef NEW_AQM
418 static
419 #endif
420 int
421 ecn_mark(struct mbuf* m)
422 {
423 struct ip *ip;
424 ip = (struct ip *)mtodo(m, dn_tag_get(m)->iphdr_off);
425
426 switch (ip->ip_v) {
427 case IPVERSION:
428 {
429 uint16_t old;
430
431 if ((ip->ip_tos & IPTOS_ECN_MASK) == IPTOS_ECN_NOTECT)
432 return (0); /* not-ECT */
433 if ((ip->ip_tos & IPTOS_ECN_MASK) == IPTOS_ECN_CE)
434 return (1); /* already marked */
435
436 /*
437 * ecn-capable but not marked,
438 * mark CE and update checksum
439 */
440 old = *(uint16_t *)ip;
441 ip->ip_tos |= IPTOS_ECN_CE;
442 ip->ip_sum = cksum_adjust(ip->ip_sum, old, *(uint16_t *)ip);
443 return (1);
444 }
445 #ifdef INET6
446 case (IPV6_VERSION >> 4):
447 {
448 struct ip6_hdr *ip6 = (struct ip6_hdr *)ip;
449 u_int32_t flowlabel;
450
451 flowlabel = ntohl(ip6->ip6_flow);
452 if ((flowlabel >> 28) != 6)
453 return (0); /* version mismatch! */
454 if ((flowlabel & (IPTOS_ECN_MASK << 20)) ==
455 (IPTOS_ECN_NOTECT << 20))
456 return (0); /* not-ECT */
457 if ((flowlabel & (IPTOS_ECN_MASK << 20)) ==
458 (IPTOS_ECN_CE << 20))
459 return (1); /* already marked */
460 /*
461 * ecn-capable but not marked, mark CE
462 */
463 flowlabel |= (IPTOS_ECN_CE << 20);
464 ip6->ip6_flow = htonl(flowlabel);
465 return (1);
466 }
467 #endif
468 }
469 return (0);
470 }
471
472 /*
473 * Enqueue a packet in q, subject to space and queue management policy
474 * (whose parameters are in q->fs).
475 * Update stats for the queue and the scheduler.
476 * Return 0 on success, 1 on drop. The packet is consumed anyways.
477 */
478 int
479 dn_enqueue(struct dn_queue *q, struct mbuf* m, int drop)
480 {
481 struct dn_fs *f;
482 struct dn_flow *ni; /* stats for scheduler instance */
483 uint64_t len;
484
485 if (q->fs == NULL || q->_si == NULL) {
486 printf("%s fs %p si %p, dropping\n",
487 __FUNCTION__, q->fs, q->_si);
488 FREE_PKT(m);
489 return 1;
490 }
491 f = &(q->fs->fs);
492 ni = &q->_si->ni;
493 len = m->m_pkthdr.len;
494 /* Update statistics, then check reasons to drop pkt. */
495 q->ni.tot_bytes += len;
496 q->ni.tot_pkts++;
497 ni->tot_bytes += len;
498 ni->tot_pkts++;
499 if (drop)
500 goto drop;
501 if (f->plr && random() < f->plr)
502 goto drop;
503 if (m->m_pkthdr.rcvif != NULL)
504 m_rcvif_serialize(m);
505 #ifdef NEW_AQM
506 /* Call AQM enqueue function */
507 if (q->fs->aqmfp)
508 return q->fs->aqmfp->enqueue(q ,m);
509 #endif
510 if (f->flags & DN_IS_RED && red_drops(q, m->m_pkthdr.len)) {
511 if (!(f->flags & DN_IS_ECN) || !ecn_mark(m))
512 goto drop;
513 }
514 if (f->flags & DN_QSIZE_BYTES) {
515 if (q->ni.len_bytes > f->qsize)
516 goto drop;
517 } else if (q->ni.length >= f->qsize) {
518 goto drop;
519 }
520 mq_append(&q->mq, m);
521 q->ni.length++;
522 q->ni.len_bytes += len;
523 ni->length++;
524 ni->len_bytes += len;
525 return (0);
526
527 drop:
528 V_dn_cfg.io_pkt_drop++;
529 q->ni.drops++;
530 ni->drops++;
531 FREE_PKT(m);
532 return (1);
533 }
534
535 /*
536 * Fetch packets from the delay line which are due now. If there are
537 * leftover packets, reinsert the delay line in the heap.
538 * Runs under scheduler lock.
539 */
540 static void
541 transmit_event(struct mq *q, struct delay_line *dline, uint64_t now)
542 {
543 struct mbuf *m;
544 struct dn_pkt_tag *pkt = NULL;
545
546 dline->oid.subtype = 0; /* not in heap */
547 while ((m = dline->mq.head) != NULL) {
548 pkt = dn_tag_get(m);
549 if (!DN_KEY_LEQ(pkt->output_time, now))
550 break;
551 dline->mq.head = m->m_nextpkt;
552 dline->mq.count--;
553 if (m->m_pkthdr.rcvif != NULL &&
554 __predict_false(m_rcvif_restore(m) == NULL))
555 m_freem(m);
556 else
557 mq_append(q, m);
558 }
559 if (m != NULL) {
560 dline->oid.subtype = 1; /* in heap */
561 heap_insert(&V_dn_cfg.evheap, pkt->output_time, dline);
562 }
563 }
564
565 /*
566 * Convert the additional MAC overheads/delays into an equivalent
567 * number of bits for the given data rate. The samples are
568 * in milliseconds so we need to divide by 1000.
569 */
570 static uint64_t
571 extra_bits(struct mbuf *m, struct dn_schk *s)
572 {
573 int index;
574 uint64_t bits;
575 struct dn_profile *pf = s->profile;
576
577 if (!pf || pf->samples_no == 0)
578 return 0;
579 index = random() % pf->samples_no;
580 bits = div64((uint64_t)pf->samples[index] * s->link.bandwidth, 1000);
581 if (index >= pf->loss_level) {
582 struct dn_pkt_tag *dt = dn_tag_get(m);
583 if (dt)
584 dt->dn_dir = DIR_DROP;
585 }
586 return bits;
587 }
588
589 /*
590 * Send traffic from a scheduler instance due by 'now'.
591 * Return a pointer to the head of the queue.
592 */
593 static struct mbuf *
594 serve_sched(struct mq *q, struct dn_sch_inst *si, uint64_t now)
595 {
596 struct mq def_q;
597 struct dn_schk *s = si->sched;
598 struct mbuf *m = NULL;
599 int delay_line_idle = (si->dline.mq.head == NULL);
600 int done;
601 uint32_t bw;
602
603 if (q == NULL) {
604 q = &def_q;
605 q->head = NULL;
606 }
607
608 bw = s->link.bandwidth;
609 si->kflags &= ~DN_ACTIVE;
610
611 if (bw > 0)
612 si->credit += (now - si->sched_time) * bw;
613 else
614 si->credit = 0;
615 si->sched_time = now;
616 done = 0;
617 while (si->credit >= 0 && (m = s->fp->dequeue(si)) != NULL) {
618 uint64_t len_scaled;
619
620 done++;
621 len_scaled = (bw == 0) ? 0 : hz *
622 (m->m_pkthdr.len * 8 + extra_bits(m, s));
623 si->credit -= len_scaled;
624 /* Move packet in the delay line */
625 dn_tag_get(m)->output_time = V_dn_cfg.curr_time + s->link.delay ;
626 if (m->m_pkthdr.rcvif != NULL)
627 m_rcvif_serialize(m);
628 mq_append(&si->dline.mq, m);
629 }
630
631 /*
632 * If credit >= 0 the instance is idle, mark time.
633 * Otherwise put back in the heap, and adjust the output
634 * time of the last inserted packet, m, which was too early.
635 */
636 if (si->credit >= 0) {
637 si->idle_time = now;
638 } else {
639 uint64_t t;
640 KASSERT (bw > 0, ("bw=0 and credit<0 ?"));
641 t = div64(bw - 1 - si->credit, bw);
642 if (m)
643 dn_tag_get(m)->output_time += t;
644 si->kflags |= DN_ACTIVE;
645 heap_insert(&V_dn_cfg.evheap, now + t, si);
646 }
647 if (delay_line_idle && done)
648 transmit_event(q, &si->dline, now);
649 return q->head;
650 }
651
652 /*
653 * The timer handler for dummynet. Time is computed in ticks, but
654 * but the code is tolerant to the actual rate at which this is called.
655 * Once complete, the function reschedules itself for the next tick.
656 */
657 void
658 dummynet_task(void *context, int pending)
659 {
660 struct timeval t;
661 struct mq q = { NULL, NULL }; /* queue to accumulate results */
662 struct epoch_tracker et;
663
664 VNET_ITERATOR_DECL(vnet_iter);
665 VNET_LIST_RLOCK();
666 NET_EPOCH_ENTER(et);
667
668 VNET_FOREACH(vnet_iter) {
669 memset(&q, 0, sizeof(struct mq));
670 CURVNET_SET(vnet_iter);
671
672 if (! V_dn_cfg.init_done) {
673 CURVNET_RESTORE();
674 continue;
675 }
676
677 DN_BH_WLOCK();
678
679 /* Update number of lost(coalesced) ticks. */
680 V_dn_cfg.tick_lost += pending - 1;
681
682 getmicrouptime(&t);
683 /* Last tick duration (usec). */
684 V_dn_cfg.tick_last = (t.tv_sec - V_dn_cfg.prev_t.tv_sec) * 1000000 +
685 (t.tv_usec - V_dn_cfg.prev_t.tv_usec);
686 /* Last tick vs standard tick difference (usec). */
687 V_dn_cfg.tick_delta = (V_dn_cfg.tick_last * hz - 1000000) / hz;
688 /* Accumulated tick difference (usec). */
689 V_dn_cfg.tick_delta_sum += V_dn_cfg.tick_delta;
690
691 V_dn_cfg.prev_t = t;
692
693 /*
694 * Adjust curr_time if the accumulated tick difference is
695 * greater than the 'standard' tick. Since curr_time should
696 * be monotonically increasing, we do positive adjustments
697 * as required, and throttle curr_time in case of negative
698 * adjustment.
699 */
700 V_dn_cfg.curr_time++;
701 if (V_dn_cfg.tick_delta_sum - tick >= 0) {
702 int diff = V_dn_cfg.tick_delta_sum / tick;
703
704 V_dn_cfg.curr_time += diff;
705 V_dn_cfg.tick_diff += diff;
706 V_dn_cfg.tick_delta_sum %= tick;
707 V_dn_cfg.tick_adjustment++;
708 } else if (V_dn_cfg.tick_delta_sum + tick <= 0) {
709 V_dn_cfg.curr_time--;
710 V_dn_cfg.tick_diff--;
711 V_dn_cfg.tick_delta_sum += tick;
712 V_dn_cfg.tick_adjustment++;
713 }
714
715 /* serve pending events, accumulate in q */
716 for (;;) {
717 struct dn_id *p; /* generic parameter to handler */
718
719 if (V_dn_cfg.evheap.elements == 0 ||
720 DN_KEY_LT(V_dn_cfg.curr_time, HEAP_TOP(&V_dn_cfg.evheap)->key))
721 break;
722 p = HEAP_TOP(&V_dn_cfg.evheap)->object;
723 heap_extract(&V_dn_cfg.evheap, NULL);
724 if (p->type == DN_SCH_I) {
725 serve_sched(&q, (struct dn_sch_inst *)p, V_dn_cfg.curr_time);
726 } else { /* extracted a delay line */
727 transmit_event(&q, (struct delay_line *)p, V_dn_cfg.curr_time);
728 }
729 }
730 if (V_dn_cfg.expire && ++V_dn_cfg.expire_cycle >= V_dn_cfg.expire) {
731 V_dn_cfg.expire_cycle = 0;
732 dn_drain_scheduler();
733 dn_drain_queue();
734 }
735 DN_BH_WUNLOCK();
736 if (q.head != NULL)
737 dummynet_send(q.head);
738
739 CURVNET_RESTORE();
740 }
741 NET_EPOCH_EXIT(et);
742 VNET_LIST_RUNLOCK();
743
744 /* Schedule our next run. */
745 dn_reschedule();
746 }
747
748 /*
749 * forward a chain of packets to the proper destination.
750 * This runs outside the dummynet lock.
751 */
752 static void
753 dummynet_send(struct mbuf *m)
754 {
755 struct mbuf *n;
756
757 NET_EPOCH_ASSERT();
758
759 for (; m != NULL; m = n) {
760 struct ifnet *ifp = NULL; /* gcc 3.4.6 complains */
761 struct m_tag *tag;
762 int dst;
763
764 n = m->m_nextpkt;
765 m->m_nextpkt = NULL;
766 tag = m_tag_first(m);
767 if (tag == NULL) { /* should not happen */
768 dst = DIR_DROP;
769 } else {
770 struct dn_pkt_tag *pkt = dn_tag_get(m);
771 /* extract the dummynet info, rename the tag
772 * to carry reinject info.
773 */
774 ifp = ifnet_byindexgen(pkt->if_index, pkt->if_idxgen);
775 if (((pkt->dn_dir == (DIR_OUT | PROTO_LAYER2)) ||
776 (pkt->dn_dir == (DIR_OUT | PROTO_LAYER2 | PROTO_IPV6))) &&
777 ifp == NULL) {
778 dst = DIR_DROP;
779 } else {
780 dst = pkt->dn_dir;
781 tag->m_tag_cookie = MTAG_IPFW_RULE;
782 tag->m_tag_id = 0;
783 }
784 }
785
786 switch (dst) {
787 case DIR_OUT:
788 ip_output(m, NULL, NULL, IP_FORWARDING, NULL, NULL);
789 break ;
790
791 case DIR_IN :
792 netisr_dispatch(NETISR_IP, m);
793 break;
794
795 #ifdef INET6
796 case DIR_IN | PROTO_IPV6:
797 netisr_dispatch(NETISR_IPV6, m);
798 break;
799
800 case DIR_OUT | PROTO_IPV6:
801 ip6_output(m, NULL, NULL, IPV6_FORWARDING, NULL, NULL, NULL);
802 break;
803 #endif
804
805 case DIR_FWD | PROTO_IFB: /* DN_TO_IFB_FWD: */
806 if (bridge_dn_p != NULL)
807 ((*bridge_dn_p)(m, ifp));
808 else
809 printf("dummynet: if_bridge not loaded\n");
810
811 break;
812
813 case DIR_IN | PROTO_LAYER2 | PROTO_IPV6:
814 case DIR_IN | PROTO_LAYER2: /* DN_TO_ETH_DEMUX: */
815 /*
816 * The Ethernet code assumes the Ethernet header is
817 * contiguous in the first mbuf header.
818 * Insure this is true.
819 */
820 if (m->m_len < ETHER_HDR_LEN &&
821 (m = m_pullup(m, ETHER_HDR_LEN)) == NULL) {
822 printf("dummynet/ether: pullup failed, "
823 "dropping packet\n");
824 break;
825 }
826 ether_demux(m->m_pkthdr.rcvif, m);
827 break;
828
829 case DIR_OUT | PROTO_LAYER2 | PROTO_IPV6:
830 case DIR_OUT | PROTO_LAYER2: /* DN_TO_ETH_OUT: */
831 MPASS(ifp != NULL);
832 ether_output_frame(ifp, m);
833 break;
834
835 case DIR_DROP:
836 /* drop the packet after some time */
837 FREE_PKT(m);
838 break;
839
840 default:
841 printf("dummynet: bad switch %d!\n", dst);
842 FREE_PKT(m);
843 break;
844 }
845 }
846 }
847
848 static inline int
849 tag_mbuf(struct mbuf *m, int dir, struct ip_fw_args *fwa)
850 {
851 struct dn_pkt_tag *dt;
852 struct m_tag *mtag;
853
854 mtag = m_tag_get(PACKET_TAG_DUMMYNET,
855 sizeof(*dt), M_NOWAIT | M_ZERO);
856 if (mtag == NULL)
857 return 1; /* Cannot allocate packet header. */
858 m_tag_prepend(m, mtag); /* Attach to mbuf chain. */
859 dt = (struct dn_pkt_tag *)(mtag + 1);
860 dt->rule = fwa->rule;
861 /* only keep this info */
862 dt->rule.info &= (IPFW_ONEPASS | IPFW_IS_DUMMYNET);
863 dt->dn_dir = dir;
864 if (fwa->flags & IPFW_ARGS_OUT && fwa->ifp != NULL) {
865 NET_EPOCH_ASSERT();
866 dt->if_index = fwa->ifp->if_index;
867 dt->if_idxgen = fwa->ifp->if_idxgen;
868 }
869 /* dt->output tame is updated as we move through */
870 dt->output_time = V_dn_cfg.curr_time;
871 dt->iphdr_off = (dir & PROTO_LAYER2) ? ETHER_HDR_LEN : 0;
872 return 0;
873 }
874
875 /*
876 * dummynet hook for packets.
877 * We use the argument to locate the flowset fs and the sched_set sch
878 * associated to it. The we apply flow_mask and sched_mask to
879 * determine the queue and scheduler instances.
880 */
881 int
882 dummynet_io(struct mbuf **m0, struct ip_fw_args *fwa)
883 {
884 struct mbuf *m = *m0;
885 struct dn_fsk *fs = NULL;
886 struct dn_sch_inst *si;
887 struct dn_queue *q = NULL; /* default */
888 int fs_id, dir;
889
890 fs_id = (fwa->rule.info & IPFW_INFO_MASK) +
891 ((fwa->rule.info & IPFW_IS_PIPE) ? 2*DN_MAX_ID : 0);
892 /* XXXGL: convert args to dir */
893 if (fwa->flags & IPFW_ARGS_IN)
894 dir = DIR_IN;
895 else
896 dir = DIR_OUT;
897 if (fwa->flags & IPFW_ARGS_ETHER)
898 dir |= PROTO_LAYER2;
899 else if (fwa->flags & IPFW_ARGS_IP6)
900 dir |= PROTO_IPV6;
901 DN_BH_WLOCK();
902 V_dn_cfg.io_pkt++;
903 /* we could actually tag outside the lock, but who cares... */
904 if (tag_mbuf(m, dir, fwa))
905 goto dropit;
906 /* XXX locate_flowset could be optimised with a direct ref. */
907 fs = dn_ht_find(V_dn_cfg.fshash, fs_id, 0, NULL);
908 if (fs == NULL)
909 goto dropit; /* This queue/pipe does not exist! */
910 if (fs->sched == NULL) /* should not happen */
911 goto dropit;
912 /* find scheduler instance, possibly applying sched_mask */
913 si = ipdn_si_find(fs->sched, &(fwa->f_id));
914 if (si == NULL)
915 goto dropit;
916 /*
917 * If the scheduler supports multiple queues, find the right one
918 * (otherwise it will be ignored by enqueue).
919 */
920 if (fs->sched->fp->flags & DN_MULTIQUEUE) {
921 q = ipdn_q_find(fs, si, &(fwa->f_id));
922 if (q == NULL)
923 goto dropit;
924 }
925 if (fs->sched->fp->enqueue(si, q, m)) {
926 /* packet was dropped by enqueue() */
927 m = *m0 = NULL;
928
929 /* dn_enqueue already increases io_pkt_drop */
930 V_dn_cfg.io_pkt_drop--;
931
932 goto dropit;
933 }
934
935 if (si->kflags & DN_ACTIVE) {
936 m = *m0 = NULL; /* consumed */
937 goto done; /* already active, nothing to do */
938 }
939
940 /* compute the initial allowance */
941 if (si->idle_time < V_dn_cfg.curr_time) {
942 /* Do this only on the first packet on an idle pipe */
943 struct dn_link *p = &fs->sched->link;
944
945 si->sched_time = V_dn_cfg.curr_time;
946 si->credit = V_dn_cfg.io_fast ? p->bandwidth : 0;
947 if (p->burst) {
948 uint64_t burst = (V_dn_cfg.curr_time - si->idle_time) * p->bandwidth;
949 if (burst > p->burst)
950 burst = p->burst;
951 si->credit += burst;
952 }
953 }
954 /* pass through scheduler and delay line */
955 m = serve_sched(NULL, si, V_dn_cfg.curr_time);
956
957 /* optimization -- pass it back to ipfw for immediate send */
958 /* XXX Don't call dummynet_send() if scheduler return the packet
959 * just enqueued. This avoid a lock order reversal.
960 *
961 */
962 if (/*V_dn_cfg.io_fast &&*/ m == *m0 && (dir & PROTO_LAYER2) == 0 ) {
963 /* fast io, rename the tag * to carry reinject info. */
964 struct m_tag *tag = m_tag_first(m);
965
966 tag->m_tag_cookie = MTAG_IPFW_RULE;
967 tag->m_tag_id = 0;
968 V_dn_cfg.io_pkt_fast++;
969 if (m->m_nextpkt != NULL) {
970 printf("dummynet: fast io: pkt chain detected!\n");
971 m->m_nextpkt = NULL;
972 }
973 m = NULL;
974 } else {
975 *m0 = NULL;
976 }
977 done:
978 DN_BH_WUNLOCK();
979 if (m)
980 dummynet_send(m);
981 return 0;
982
983 dropit:
984 V_dn_cfg.io_pkt_drop++;
985 DN_BH_WUNLOCK();
986 if (m)
987 FREE_PKT(m);
988 *m0 = NULL;
989 return (fs && (fs->fs.flags & DN_NOERROR)) ? 0 : ENOBUFS;
990 }
Cache object: dd00c7e152e546dc2ebf1108c45741d5
|