1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3 *
4 * Copyright (c) 2015-2019 Yandex LLC
5 * Copyright (c) 2015-2019 Andrey V. Elsukov <ae@FreeBSD.org>
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 *
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31
32 #include "opt_ipstealth.h"
33
34 #include <sys/param.h>
35 #include <sys/systm.h>
36 #include <sys/counter.h>
37 #include <sys/errno.h>
38 #include <sys/kernel.h>
39 #include <sys/lock.h>
40 #include <sys/mbuf.h>
41 #include <sys/module.h>
42 #include <sys/rmlock.h>
43 #include <sys/rwlock.h>
44 #include <sys/socket.h>
45 #include <sys/queue.h>
46
47 #include <net/if.h>
48 #include <net/if_var.h>
49 #include <net/if_pflog.h>
50 #include <net/pfil.h>
51 #include <net/netisr.h>
52 #include <net/route.h>
53 #include <net/route/nhop.h>
54
55 #include <netinet/in.h>
56 #include <netinet/in_fib.h>
57 #include <netinet/in_var.h>
58 #include <netinet/ip.h>
59 #include <netinet/ip_var.h>
60 #include <netinet/ip_fw.h>
61 #include <netinet/ip6.h>
62 #include <netinet/icmp6.h>
63 #include <netinet/ip_icmp.h>
64 #include <netinet/tcp.h>
65 #include <netinet/udp.h>
66 #include <netinet6/in6_var.h>
67 #include <netinet6/in6_fib.h>
68 #include <netinet6/ip6_var.h>
69 #include <netinet6/ip_fw_nat64.h>
70
71 #include <netpfil/pf/pf.h>
72 #include <netpfil/ipfw/ip_fw_private.h>
73 #include <machine/in_cksum.h>
74
75 #include "ip_fw_nat64.h"
76 #include "nat64_translate.h"
77
78 typedef int (*nat64_output_t)(struct ifnet *, struct mbuf *,
79 struct sockaddr *, struct nat64_counters *, void *);
80 typedef int (*nat64_output_one_t)(struct mbuf *, struct nat64_counters *,
81 void *);
82
83 static struct nhop_object *nat64_find_route4(struct sockaddr_in *,
84 struct mbuf *);
85 static struct nhop_object *nat64_find_route6(struct sockaddr_in6 *,
86 struct mbuf *);
87 static int nat64_output_one(struct mbuf *, struct nat64_counters *, void *);
88 static int nat64_output(struct ifnet *, struct mbuf *, struct sockaddr *,
89 struct nat64_counters *, void *);
90 static int nat64_direct_output_one(struct mbuf *, struct nat64_counters *,
91 void *);
92 static int nat64_direct_output(struct ifnet *, struct mbuf *,
93 struct sockaddr *, struct nat64_counters *, void *);
94
95 struct nat64_methods {
96 nat64_output_t output;
97 nat64_output_one_t output_one;
98 };
99 static const struct nat64_methods nat64_netisr = {
100 .output = nat64_output,
101 .output_one = nat64_output_one
102 };
103 static const struct nat64_methods nat64_direct = {
104 .output = nat64_direct_output,
105 .output_one = nat64_direct_output_one
106 };
107
108 /* These variables should be initialized explicitly on module loading */
109 VNET_DEFINE_STATIC(const struct nat64_methods *, nat64out);
110 VNET_DEFINE_STATIC(const int *, nat64ipstealth);
111 VNET_DEFINE_STATIC(const int *, nat64ip6stealth);
112 #define V_nat64out VNET(nat64out)
113 #define V_nat64ipstealth VNET(nat64ipstealth)
114 #define V_nat64ip6stealth VNET(nat64ip6stealth)
115
116 static const int stealth_on = 1;
117 #ifndef IPSTEALTH
118 static const int stealth_off = 0;
119 #endif
120
121 void
122 nat64_set_output_method(int direct)
123 {
124
125 if (direct != 0) {
126 V_nat64out = &nat64_direct;
127 #ifdef IPSTEALTH
128 /* Honor corresponding variables, if IPSTEALTH is defined */
129 V_nat64ipstealth = &V_ipstealth;
130 V_nat64ip6stealth = &V_ip6stealth;
131 #else
132 /* otherwise we need to decrement HLIM/TTL for direct case */
133 V_nat64ipstealth = V_nat64ip6stealth = &stealth_off;
134 #endif
135 } else {
136 V_nat64out = &nat64_netisr;
137 /* Leave TTL/HLIM decrementing to forwarding code */
138 V_nat64ipstealth = V_nat64ip6stealth = &stealth_on;
139 }
140 }
141
142 int
143 nat64_get_output_method(void)
144 {
145
146 return (V_nat64out == &nat64_direct ? 1: 0);
147 }
148
149 static void
150 nat64_log(struct pfloghdr *logdata, struct mbuf *m, sa_family_t family)
151 {
152
153 logdata->dir = PF_OUT;
154 logdata->af = family;
155 ipfw_bpf_mtap2(logdata, PFLOG_HDRLEN, m);
156 }
157
158 static int
159 nat64_direct_output(struct ifnet *ifp, struct mbuf *m, struct sockaddr *dst,
160 struct nat64_counters *stats, void *logdata)
161 {
162 int error;
163
164 if (logdata != NULL)
165 nat64_log(logdata, m, dst->sa_family);
166 error = (*ifp->if_output)(ifp, m, dst, NULL);
167 if (error != 0)
168 NAT64STAT_INC(stats, oerrors);
169 return (error);
170 }
171
172 static int
173 nat64_direct_output_one(struct mbuf *m, struct nat64_counters *stats,
174 void *logdata)
175 {
176 struct nhop_object *nh4 = NULL;
177 struct nhop_object *nh6 = NULL;
178 struct sockaddr_in6 dst6;
179 struct sockaddr_in dst4;
180 struct sockaddr *dst;
181 struct ip6_hdr *ip6;
182 struct ip *ip4;
183 struct ifnet *ifp;
184 int error;
185
186 ip4 = mtod(m, struct ip *);
187 error = 0;
188 switch (ip4->ip_v) {
189 case IPVERSION:
190 dst4.sin_addr = ip4->ip_dst;
191 nh4 = nat64_find_route4(&dst4, m);
192 if (nh4 == NULL) {
193 NAT64STAT_INC(stats, noroute4);
194 error = EHOSTUNREACH;
195 } else {
196 ifp = nh4->nh_ifp;
197 dst = (struct sockaddr *)&dst4;
198 }
199 break;
200 case (IPV6_VERSION >> 4):
201 ip6 = mtod(m, struct ip6_hdr *);
202 dst6.sin6_addr = ip6->ip6_dst;
203 nh6 = nat64_find_route6(&dst6, m);
204 if (nh6 == NULL) {
205 NAT64STAT_INC(stats, noroute6);
206 error = EHOSTUNREACH;
207 } else {
208 ifp = nh6->nh_ifp;
209 dst = (struct sockaddr *)&dst6;
210 }
211 break;
212 default:
213 m_freem(m);
214 NAT64STAT_INC(stats, dropped);
215 DPRINTF(DP_DROPS, "dropped due to unknown IP version");
216 return (EAFNOSUPPORT);
217 }
218 if (error != 0) {
219 m_freem(m);
220 return (EHOSTUNREACH);
221 }
222 if (logdata != NULL)
223 nat64_log(logdata, m, dst->sa_family);
224 error = (*ifp->if_output)(ifp, m, dst, NULL);
225 if (error != 0)
226 NAT64STAT_INC(stats, oerrors);
227 return (error);
228 }
229
230 static int
231 nat64_output(struct ifnet *ifp, struct mbuf *m, struct sockaddr *dst,
232 struct nat64_counters *stats, void *logdata)
233 {
234 struct ip *ip4;
235 int ret, af;
236
237 ip4 = mtod(m, struct ip *);
238 switch (ip4->ip_v) {
239 case IPVERSION:
240 af = AF_INET;
241 ret = NETISR_IP;
242 break;
243 case (IPV6_VERSION >> 4):
244 af = AF_INET6;
245 ret = NETISR_IPV6;
246 break;
247 default:
248 m_freem(m);
249 NAT64STAT_INC(stats, dropped);
250 DPRINTF(DP_DROPS, "unknown IP version");
251 return (EAFNOSUPPORT);
252 }
253 if (logdata != NULL)
254 nat64_log(logdata, m, af);
255 if (m->m_pkthdr.rcvif == NULL)
256 m->m_pkthdr.rcvif = V_loif;
257 ret = netisr_queue(ret, m);
258 if (ret != 0)
259 NAT64STAT_INC(stats, oerrors);
260 return (ret);
261 }
262
263 static int
264 nat64_output_one(struct mbuf *m, struct nat64_counters *stats, void *logdata)
265 {
266
267 return (nat64_output(NULL, m, NULL, stats, logdata));
268 }
269
270 /*
271 * Check the given IPv6 prefix and length according to RFC6052:
272 * The prefixes can only have one of the following lengths:
273 * 32, 40, 48, 56, 64, or 96 (The Well-Known Prefix is 96 bits long).
274 * Returns zero on success, otherwise EINVAL.
275 */
276 int
277 nat64_check_prefixlen(int length)
278 {
279
280 switch (length) {
281 case 32:
282 case 40:
283 case 48:
284 case 56:
285 case 64:
286 case 96:
287 return (0);
288 }
289 return (EINVAL);
290 }
291
292 int
293 nat64_check_prefix6(const struct in6_addr *prefix, int length)
294 {
295
296 if (nat64_check_prefixlen(length) != 0)
297 return (EINVAL);
298
299 /* Well-known prefix has 96 prefix length */
300 if (IN6_IS_ADDR_WKPFX(prefix) && length != 96)
301 return (EINVAL);
302
303 /* Bits 64 to 71 must be set to zero */
304 if (prefix->__u6_addr.__u6_addr8[8] != 0)
305 return (EINVAL);
306
307 /* Some extra checks */
308 if (IN6_IS_ADDR_MULTICAST(prefix) ||
309 IN6_IS_ADDR_UNSPECIFIED(prefix) ||
310 IN6_IS_ADDR_LOOPBACK(prefix))
311 return (EINVAL);
312 return (0);
313 }
314
315 int
316 nat64_check_private_ip4(const struct nat64_config *cfg, in_addr_t ia)
317 {
318
319 if (cfg->flags & NAT64_ALLOW_PRIVATE)
320 return (0);
321
322 /* WKPFX must not be used to represent non-global IPv4 addresses */
323 if (cfg->flags & NAT64_WKPFX) {
324 /* IN_PRIVATE */
325 if ((ia & htonl(0xff000000)) == htonl(0x0a000000) ||
326 (ia & htonl(0xfff00000)) == htonl(0xac100000) ||
327 (ia & htonl(0xffff0000)) == htonl(0xc0a80000))
328 return (1);
329 /*
330 * RFC 5735:
331 * 192.0.0.0/24 - reserved for IETF protocol assignments
332 * 192.88.99.0/24 - for use as 6to4 relay anycast addresses
333 * 198.18.0.0/15 - for use in benchmark tests
334 * 192.0.2.0/24, 198.51.100.0/24, 203.0.113.0/24 - for use
335 * in documentation and example code
336 */
337 if ((ia & htonl(0xffffff00)) == htonl(0xc0000000) ||
338 (ia & htonl(0xffffff00)) == htonl(0xc0586300) ||
339 (ia & htonl(0xfffffe00)) == htonl(0xc6120000) ||
340 (ia & htonl(0xffffff00)) == htonl(0xc0000200) ||
341 (ia & htonl(0xfffffe00)) == htonl(0xc6336400) ||
342 (ia & htonl(0xffffff00)) == htonl(0xcb007100))
343 return (1);
344 }
345 return (0);
346 }
347
348 /*
349 * Embed @ia IPv4 address into @ip6 IPv6 address.
350 * Place to embedding determined from prefix length @plen.
351 */
352 void
353 nat64_embed_ip4(struct in6_addr *ip6, int plen, in_addr_t ia)
354 {
355
356 switch (plen) {
357 case 32:
358 case 96:
359 ip6->s6_addr32[plen / 32] = ia;
360 break;
361 case 40:
362 case 48:
363 case 56:
364 /*
365 * Preserve prefix bits.
366 * Since suffix bits should be zero and reserved for future
367 * use, we just overwrite the whole word, where they are.
368 */
369 ip6->s6_addr32[1] &= 0xffffffff << (32 - plen % 32);
370 #if BYTE_ORDER == BIG_ENDIAN
371 ip6->s6_addr32[1] |= ia >> (plen % 32);
372 ip6->s6_addr32[2] = ia << (24 - plen % 32);
373 #elif BYTE_ORDER == LITTLE_ENDIAN
374 ip6->s6_addr32[1] |= ia << (plen % 32);
375 ip6->s6_addr32[2] = ia >> (24 - plen % 32);
376 #endif
377 break;
378 case 64:
379 #if BYTE_ORDER == BIG_ENDIAN
380 ip6->s6_addr32[2] = ia >> 8;
381 ip6->s6_addr32[3] = ia << 24;
382 #elif BYTE_ORDER == LITTLE_ENDIAN
383 ip6->s6_addr32[2] = ia << 8;
384 ip6->s6_addr32[3] = ia >> 24;
385 #endif
386 break;
387 default:
388 panic("Wrong plen: %d", plen);
389 };
390 /*
391 * Bits 64 to 71 of the address are reserved for compatibility
392 * with the host identifier format defined in the IPv6 addressing
393 * architecture [RFC4291]. These bits MUST be set to zero.
394 */
395 ip6->s6_addr8[8] = 0;
396 }
397
398 in_addr_t
399 nat64_extract_ip4(const struct in6_addr *ip6, int plen)
400 {
401 in_addr_t ia;
402
403 /*
404 * According to RFC 6052 p2.2:
405 * IPv4-embedded IPv6 addresses are composed of a variable-length
406 * prefix, the embedded IPv4 address, and a variable length suffix.
407 * The suffix bits are reserved for future extensions and SHOULD
408 * be set to zero.
409 */
410 switch (plen) {
411 case 32:
412 if (ip6->s6_addr32[3] != 0 || ip6->s6_addr32[2] != 0)
413 goto badip6;
414 break;
415 case 40:
416 if (ip6->s6_addr32[3] != 0 ||
417 (ip6->s6_addr32[2] & htonl(0xff00ffff)) != 0)
418 goto badip6;
419 break;
420 case 48:
421 if (ip6->s6_addr32[3] != 0 ||
422 (ip6->s6_addr32[2] & htonl(0xff0000ff)) != 0)
423 goto badip6;
424 break;
425 case 56:
426 if (ip6->s6_addr32[3] != 0 || ip6->s6_addr8[8] != 0)
427 goto badip6;
428 break;
429 case 64:
430 if (ip6->s6_addr8[8] != 0 ||
431 (ip6->s6_addr32[3] & htonl(0x00ffffff)) != 0)
432 goto badip6;
433 };
434 switch (plen) {
435 case 32:
436 case 96:
437 ia = ip6->s6_addr32[plen / 32];
438 break;
439 case 40:
440 case 48:
441 case 56:
442 #if BYTE_ORDER == BIG_ENDIAN
443 ia = (ip6->s6_addr32[1] << (plen % 32)) |
444 (ip6->s6_addr32[2] >> (24 - plen % 32));
445 #elif BYTE_ORDER == LITTLE_ENDIAN
446 ia = (ip6->s6_addr32[1] >> (plen % 32)) |
447 (ip6->s6_addr32[2] << (24 - plen % 32));
448 #endif
449 break;
450 case 64:
451 #if BYTE_ORDER == BIG_ENDIAN
452 ia = (ip6->s6_addr32[2] << 8) | (ip6->s6_addr32[3] >> 24);
453 #elif BYTE_ORDER == LITTLE_ENDIAN
454 ia = (ip6->s6_addr32[2] >> 8) | (ip6->s6_addr32[3] << 24);
455 #endif
456 break;
457 default:
458 return (0);
459 };
460 if (nat64_check_ip4(ia) == 0)
461 return (ia);
462
463 DPRINTF(DP_GENERIC | DP_DROPS,
464 "invalid destination address: %08x", ia);
465 return (0);
466 badip6:
467 DPRINTF(DP_GENERIC | DP_DROPS, "invalid IPv4-embedded IPv6 address");
468 return (0);
469 }
470
471 /*
472 * According to RFC 1624 the equation for incremental checksum update is:
473 * HC' = ~(~HC + ~m + m') -- [Eqn. 3]
474 * HC' = HC - ~m - m' -- [Eqn. 4]
475 * So, when we are replacing IPv4 addresses to IPv6, we
476 * can assume, that new bytes previously were zeros, and vise versa -
477 * when we replacing IPv6 addresses to IPv4, now unused bytes become
478 * zeros. The payload length in pseudo header has bigger size, but one
479 * half of it should be zero. Using the equation 4 we get:
480 * HC' = HC - (~m0 + m0') -- m0 is first changed word
481 * HC' = (HC - (~m0 + m0')) - (~m1 + m1') -- m1 is second changed word
482 * HC' = HC - ~m0 - m0' - ~m1 - m1' - ... =
483 * = HC - sum(~m[i] + m'[i])
484 *
485 * The function result should be used as follows:
486 * IPv6 to IPv4: HC' = cksum_add(HC, result)
487 * IPv4 to IPv6: HC' = cksum_add(HC, ~result)
488 */
489 static uint16_t
490 nat64_cksum_convert(struct ip6_hdr *ip6, struct ip *ip)
491 {
492 uint32_t sum;
493 uint16_t *p;
494
495 sum = ~ip->ip_src.s_addr >> 16;
496 sum += ~ip->ip_src.s_addr & 0xffff;
497 sum += ~ip->ip_dst.s_addr >> 16;
498 sum += ~ip->ip_dst.s_addr & 0xffff;
499
500 for (p = (uint16_t *)&ip6->ip6_src;
501 p < (uint16_t *)(&ip6->ip6_src + 2); p++)
502 sum += *p;
503
504 while (sum >> 16)
505 sum = (sum & 0xffff) + (sum >> 16);
506 return (sum);
507 }
508
509 static void
510 nat64_init_ip4hdr(const struct ip6_hdr *ip6, const struct ip6_frag *frag,
511 uint16_t plen, uint8_t proto, struct ip *ip)
512 {
513
514 /* assume addresses are already initialized */
515 ip->ip_v = IPVERSION;
516 ip->ip_hl = sizeof(*ip) >> 2;
517 ip->ip_tos = (ntohl(ip6->ip6_flow) >> 20) & 0xff;
518 ip->ip_len = htons(sizeof(*ip) + plen);
519 ip->ip_ttl = ip6->ip6_hlim;
520 if (*V_nat64ip6stealth == 0)
521 ip->ip_ttl -= IPV6_HLIMDEC;
522 ip->ip_sum = 0;
523 ip->ip_p = (proto == IPPROTO_ICMPV6) ? IPPROTO_ICMP: proto;
524 ip_fillid(ip);
525 if (frag != NULL) {
526 ip->ip_off = htons(ntohs(frag->ip6f_offlg) >> 3);
527 if (frag->ip6f_offlg & IP6F_MORE_FRAG)
528 ip->ip_off |= htons(IP_MF);
529 } else {
530 ip->ip_off = htons(IP_DF);
531 }
532 ip->ip_sum = in_cksum_hdr(ip);
533 }
534
535 #define FRAGSZ(mtu) ((mtu) - sizeof(struct ip6_hdr) - sizeof(struct ip6_frag))
536 static NAT64NOINLINE int
537 nat64_fragment6(struct nat64_counters *stats, struct ip6_hdr *ip6,
538 struct mbufq *mq, struct mbuf *m, uint32_t mtu, uint16_t ip_id,
539 uint16_t ip_off)
540 {
541 struct ip6_frag ip6f;
542 struct mbuf *n;
543 uint16_t hlen, len, offset;
544 int plen;
545
546 plen = ntohs(ip6->ip6_plen);
547 hlen = sizeof(struct ip6_hdr);
548
549 /* Fragmentation isn't needed */
550 if (ip_off == 0 && plen <= mtu - hlen) {
551 M_PREPEND(m, hlen, M_NOWAIT);
552 if (m == NULL) {
553 NAT64STAT_INC(stats, nomem);
554 return (ENOMEM);
555 }
556 bcopy(ip6, mtod(m, void *), hlen);
557 if (mbufq_enqueue(mq, m) != 0) {
558 m_freem(m);
559 NAT64STAT_INC(stats, dropped);
560 DPRINTF(DP_DROPS, "dropped due to mbufq overflow");
561 return (ENOBUFS);
562 }
563 return (0);
564 }
565
566 hlen += sizeof(struct ip6_frag);
567 ip6f.ip6f_reserved = 0;
568 ip6f.ip6f_nxt = ip6->ip6_nxt;
569 ip6->ip6_nxt = IPPROTO_FRAGMENT;
570 if (ip_off != 0) {
571 /*
572 * We have got an IPv4 fragment.
573 * Use offset value and ip_id from original fragment.
574 */
575 ip6f.ip6f_ident = htonl(ntohs(ip_id));
576 offset = (ntohs(ip_off) & IP_OFFMASK) << 3;
577 NAT64STAT_INC(stats, ifrags);
578 } else {
579 /* The packet size exceeds interface MTU */
580 ip6f.ip6f_ident = htonl(ip6_randomid());
581 offset = 0; /* First fragment*/
582 }
583 while (plen > 0 && m != NULL) {
584 n = NULL;
585 len = FRAGSZ(mtu) & ~7;
586 if (len > plen)
587 len = plen;
588 ip6->ip6_plen = htons(len + sizeof(ip6f));
589 ip6f.ip6f_offlg = ntohs(offset);
590 if (len < plen || (ip_off & htons(IP_MF)) != 0)
591 ip6f.ip6f_offlg |= IP6F_MORE_FRAG;
592 offset += len;
593 plen -= len;
594 if (plen > 0) {
595 n = m_split(m, len, M_NOWAIT);
596 if (n == NULL)
597 goto fail;
598 }
599 M_PREPEND(m, hlen, M_NOWAIT);
600 if (m == NULL)
601 goto fail;
602 bcopy(ip6, mtod(m, void *), sizeof(struct ip6_hdr));
603 bcopy(&ip6f, mtodo(m, sizeof(struct ip6_hdr)),
604 sizeof(struct ip6_frag));
605 if (mbufq_enqueue(mq, m) != 0)
606 goto fail;
607 m = n;
608 }
609 NAT64STAT_ADD(stats, ofrags, mbufq_len(mq));
610 return (0);
611 fail:
612 if (m != NULL)
613 m_freem(m);
614 if (n != NULL)
615 m_freem(n);
616 mbufq_drain(mq);
617 NAT64STAT_INC(stats, nomem);
618 return (ENOMEM);
619 }
620
621 static struct nhop_object *
622 nat64_find_route6(struct sockaddr_in6 *dst, struct mbuf *m)
623 {
624 struct nhop_object *nh;
625
626 NET_EPOCH_ASSERT();
627 nh = fib6_lookup(M_GETFIB(m), &dst->sin6_addr, 0, NHR_NONE, 0);
628 if (nh == NULL)
629 return (NULL);
630 if (nh->nh_flags & (NHF_BLACKHOLE | NHF_REJECT))
631 return (NULL);
632
633 dst->sin6_family = AF_INET6;
634 dst->sin6_len = sizeof(*dst);
635 if (nh->nh_flags & NHF_GATEWAY)
636 dst->sin6_addr = nh->gw6_sa.sin6_addr;
637 dst->sin6_port = 0;
638 dst->sin6_scope_id = 0;
639 dst->sin6_flowinfo = 0;
640 return (nh);
641 }
642
643 #define NAT64_ICMP6_PLEN 64
644 static NAT64NOINLINE void
645 nat64_icmp6_reflect(struct mbuf *m, uint8_t type, uint8_t code, uint32_t mtu,
646 struct nat64_counters *stats, void *logdata)
647 {
648 struct icmp6_hdr *icmp6;
649 struct ip6_hdr *ip6, *oip6;
650 struct mbuf *n;
651 int len, plen, proto;
652
653 len = 0;
654 proto = nat64_getlasthdr(m, &len);
655 if (proto < 0) {
656 DPRINTF(DP_DROPS, "mbuf isn't contigious");
657 goto freeit;
658 }
659 /*
660 * Do not send ICMPv6 in reply to ICMPv6 errors.
661 */
662 if (proto == IPPROTO_ICMPV6) {
663 if (m->m_len < len + sizeof(*icmp6)) {
664 DPRINTF(DP_DROPS, "mbuf isn't contigious");
665 goto freeit;
666 }
667 icmp6 = mtodo(m, len);
668 if (icmp6->icmp6_type < ICMP6_ECHO_REQUEST ||
669 icmp6->icmp6_type == ND_REDIRECT) {
670 DPRINTF(DP_DROPS, "do not send ICMPv6 in reply to "
671 "ICMPv6 errors");
672 goto freeit;
673 }
674 /*
675 * If there are extra headers between IPv6 and ICMPv6,
676 * strip off them.
677 */
678 if (len > sizeof(struct ip6_hdr)) {
679 /*
680 * NOTE: ipfw_chk already did m_pullup() and it is
681 * expected that data is contigious from the start
682 * of IPv6 header up to the end of ICMPv6 header.
683 */
684 bcopy(mtod(m, caddr_t),
685 mtodo(m, len - sizeof(struct ip6_hdr)),
686 sizeof(struct ip6_hdr));
687 m_adj(m, len - sizeof(struct ip6_hdr));
688 }
689 }
690 /*
691 if (icmp6_ratelimit(&ip6->ip6_src, type, code))
692 goto freeit;
693 */
694 ip6 = mtod(m, struct ip6_hdr *);
695 switch (type) {
696 case ICMP6_DST_UNREACH:
697 case ICMP6_PACKET_TOO_BIG:
698 case ICMP6_TIME_EXCEEDED:
699 case ICMP6_PARAM_PROB:
700 break;
701 default:
702 goto freeit;
703 }
704 /* Calculate length of ICMPv6 payload */
705 len = (m->m_pkthdr.len > NAT64_ICMP6_PLEN) ? NAT64_ICMP6_PLEN:
706 m->m_pkthdr.len;
707
708 /* Create new ICMPv6 datagram */
709 plen = len + sizeof(struct icmp6_hdr);
710 n = m_get2(sizeof(struct ip6_hdr) + plen + max_hdr, M_NOWAIT,
711 MT_HEADER, M_PKTHDR);
712 if (n == NULL) {
713 NAT64STAT_INC(stats, nomem);
714 m_freem(m);
715 return;
716 }
717 /*
718 * Move pkthdr from original mbuf. We should have initialized some
719 * fields, because we can reinject this mbuf to netisr and it will
720 * go through input path (it requires at least rcvif should be set).
721 * Also do M_ALIGN() to reduce chances of need to allocate new mbuf
722 * in the chain, when we will do M_PREPEND() or make some type of
723 * tunneling.
724 */
725 m_move_pkthdr(n, m);
726 M_ALIGN(n, sizeof(struct ip6_hdr) + plen + max_hdr);
727
728 n->m_len = n->m_pkthdr.len = sizeof(struct ip6_hdr) + plen;
729 oip6 = mtod(n, struct ip6_hdr *);
730 /*
731 * Make IPv6 source address selection for reflected datagram.
732 * nat64_check_ip6() doesn't allow scoped addresses, therefore
733 * we use zero scopeid.
734 */
735 if (in6_selectsrc_addr(M_GETFIB(n), &ip6->ip6_src, 0,
736 n->m_pkthdr.rcvif, &oip6->ip6_src, NULL) != 0) {
737 /*
738 * Failed to find proper source address, drop the packet.
739 */
740 m_freem(n);
741 goto freeit;
742 }
743 oip6->ip6_dst = ip6->ip6_src;
744 oip6->ip6_nxt = IPPROTO_ICMPV6;
745 oip6->ip6_flow = 0;
746 oip6->ip6_vfc |= IPV6_VERSION;
747 oip6->ip6_hlim = V_ip6_defhlim;
748 oip6->ip6_plen = htons(plen);
749
750 icmp6 = mtodo(n, sizeof(struct ip6_hdr));
751 icmp6->icmp6_cksum = 0;
752 icmp6->icmp6_type = type;
753 icmp6->icmp6_code = code;
754 icmp6->icmp6_mtu = htonl(mtu);
755
756 m_copydata(m, 0, len, mtodo(n, sizeof(struct ip6_hdr) +
757 sizeof(struct icmp6_hdr)));
758 icmp6->icmp6_cksum = in6_cksum(n, IPPROTO_ICMPV6,
759 sizeof(struct ip6_hdr), plen);
760 m_freem(m);
761 V_nat64out->output_one(n, stats, logdata);
762 return;
763 freeit:
764 NAT64STAT_INC(stats, dropped);
765 m_freem(m);
766 }
767
768 static struct nhop_object *
769 nat64_find_route4(struct sockaddr_in *dst, struct mbuf *m)
770 {
771 struct nhop_object *nh;
772
773 NET_EPOCH_ASSERT();
774 nh = fib4_lookup(M_GETFIB(m), dst->sin_addr, 0, NHR_NONE, 0);
775 if (nh == NULL)
776 return (NULL);
777 if (nh->nh_flags & (NHF_BLACKHOLE | NHF_BROADCAST | NHF_REJECT))
778 return (NULL);
779
780 dst->sin_family = AF_INET;
781 dst->sin_len = sizeof(*dst);
782 if (nh->nh_flags & NHF_GATEWAY)
783 dst->sin_addr = nh->gw4_sa.sin_addr;
784 dst->sin_port = 0;
785 return (nh);
786 }
787
788 #define NAT64_ICMP_PLEN 64
789 static NAT64NOINLINE void
790 nat64_icmp_reflect(struct mbuf *m, uint8_t type,
791 uint8_t code, uint16_t mtu, struct nat64_counters *stats, void *logdata)
792 {
793 struct icmp *icmp;
794 struct ip *ip, *oip;
795 struct mbuf *n;
796 int len, plen;
797
798 ip = mtod(m, struct ip *);
799 /* Do not send ICMP error if packet is not the first fragment */
800 if (ip->ip_off & ~ntohs(IP_MF|IP_DF)) {
801 DPRINTF(DP_DROPS, "not first fragment");
802 goto freeit;
803 }
804 /* Do not send ICMP in reply to ICMP errors */
805 if (ip->ip_p == IPPROTO_ICMP) {
806 if (m->m_len < (ip->ip_hl << 2)) {
807 DPRINTF(DP_DROPS, "mbuf isn't contigious");
808 goto freeit;
809 }
810 icmp = mtodo(m, ip->ip_hl << 2);
811 if (!ICMP_INFOTYPE(icmp->icmp_type)) {
812 DPRINTF(DP_DROPS, "do not send ICMP in reply to "
813 "ICMP errors");
814 goto freeit;
815 }
816 }
817 switch (type) {
818 case ICMP_UNREACH:
819 case ICMP_TIMXCEED:
820 case ICMP_PARAMPROB:
821 break;
822 default:
823 goto freeit;
824 }
825 /* Calculate length of ICMP payload */
826 len = (m->m_pkthdr.len > NAT64_ICMP_PLEN) ? (ip->ip_hl << 2) + 8:
827 m->m_pkthdr.len;
828
829 /* Create new ICMPv4 datagram */
830 plen = len + sizeof(struct icmphdr) + sizeof(uint32_t);
831 n = m_get2(sizeof(struct ip) + plen + max_hdr, M_NOWAIT,
832 MT_HEADER, M_PKTHDR);
833 if (n == NULL) {
834 NAT64STAT_INC(stats, nomem);
835 m_freem(m);
836 return;
837 }
838 m_move_pkthdr(n, m);
839 M_ALIGN(n, sizeof(struct ip) + plen + max_hdr);
840
841 n->m_len = n->m_pkthdr.len = sizeof(struct ip) + plen;
842 oip = mtod(n, struct ip *);
843 oip->ip_v = IPVERSION;
844 oip->ip_hl = sizeof(struct ip) >> 2;
845 oip->ip_tos = 0;
846 oip->ip_len = htons(n->m_pkthdr.len);
847 oip->ip_ttl = V_ip_defttl;
848 oip->ip_p = IPPROTO_ICMP;
849 ip_fillid(oip);
850 oip->ip_off = htons(IP_DF);
851 oip->ip_src = ip->ip_dst;
852 oip->ip_dst = ip->ip_src;
853 oip->ip_sum = 0;
854 oip->ip_sum = in_cksum_hdr(oip);
855
856 icmp = mtodo(n, sizeof(struct ip));
857 icmp->icmp_type = type;
858 icmp->icmp_code = code;
859 icmp->icmp_cksum = 0;
860 icmp->icmp_pmvoid = 0;
861 icmp->icmp_nextmtu = htons(mtu);
862 m_copydata(m, 0, len, mtodo(n, sizeof(struct ip) +
863 sizeof(struct icmphdr) + sizeof(uint32_t)));
864 icmp->icmp_cksum = in_cksum_skip(n, sizeof(struct ip) + plen,
865 sizeof(struct ip));
866 m_freem(m);
867 V_nat64out->output_one(n, stats, logdata);
868 return;
869 freeit:
870 NAT64STAT_INC(stats, dropped);
871 m_freem(m);
872 }
873
874 /* Translate ICMP echo request/reply into ICMPv6 */
875 static void
876 nat64_icmp_handle_echo(struct ip6_hdr *ip6, struct icmp6_hdr *icmp6,
877 uint16_t id, uint8_t type)
878 {
879 uint16_t old;
880
881 old = *(uint16_t *)icmp6; /* save type+code in one word */
882 icmp6->icmp6_type = type;
883 /* Reflect ICMPv6 -> ICMPv4 type translation in the cksum */
884 icmp6->icmp6_cksum = cksum_adjust(icmp6->icmp6_cksum,
885 old, *(uint16_t *)icmp6);
886 if (id != 0) {
887 old = icmp6->icmp6_id;
888 icmp6->icmp6_id = id;
889 /* Reflect ICMP id translation in the cksum */
890 icmp6->icmp6_cksum = cksum_adjust(icmp6->icmp6_cksum,
891 old, id);
892 }
893 /* Reflect IPv6 pseudo header in the cksum */
894 icmp6->icmp6_cksum = ~in6_cksum_pseudo(ip6, ntohs(ip6->ip6_plen),
895 IPPROTO_ICMPV6, ~icmp6->icmp6_cksum);
896 }
897
898 static NAT64NOINLINE struct mbuf *
899 nat64_icmp_translate(struct mbuf *m, struct ip6_hdr *ip6, uint16_t icmpid,
900 int offset, struct nat64_config *cfg)
901 {
902 struct ip ip;
903 struct icmp *icmp;
904 struct tcphdr *tcp;
905 struct udphdr *udp;
906 struct ip6_hdr *eip6;
907 struct mbuf *n;
908 uint32_t mtu;
909 int len, hlen, plen;
910 uint8_t type, code;
911
912 if (m->m_len < offset + ICMP_MINLEN)
913 m = m_pullup(m, offset + ICMP_MINLEN);
914 if (m == NULL) {
915 NAT64STAT_INC(&cfg->stats, nomem);
916 return (m);
917 }
918 mtu = 0;
919 icmp = mtodo(m, offset);
920 /* RFC 7915 p4.2 */
921 switch (icmp->icmp_type) {
922 case ICMP_ECHOREPLY:
923 type = ICMP6_ECHO_REPLY;
924 code = 0;
925 break;
926 case ICMP_UNREACH:
927 type = ICMP6_DST_UNREACH;
928 switch (icmp->icmp_code) {
929 case ICMP_UNREACH_NET:
930 case ICMP_UNREACH_HOST:
931 case ICMP_UNREACH_SRCFAIL:
932 case ICMP_UNREACH_NET_UNKNOWN:
933 case ICMP_UNREACH_HOST_UNKNOWN:
934 case ICMP_UNREACH_TOSNET:
935 case ICMP_UNREACH_TOSHOST:
936 code = ICMP6_DST_UNREACH_NOROUTE;
937 break;
938 case ICMP_UNREACH_PROTOCOL:
939 type = ICMP6_PARAM_PROB;
940 code = ICMP6_PARAMPROB_NEXTHEADER;
941 break;
942 case ICMP_UNREACH_PORT:
943 code = ICMP6_DST_UNREACH_NOPORT;
944 break;
945 case ICMP_UNREACH_NEEDFRAG:
946 type = ICMP6_PACKET_TOO_BIG;
947 code = 0;
948 /* XXX: needs an additional look */
949 mtu = max(IPV6_MMTU, ntohs(icmp->icmp_nextmtu) + 20);
950 break;
951 case ICMP_UNREACH_NET_PROHIB:
952 case ICMP_UNREACH_HOST_PROHIB:
953 case ICMP_UNREACH_FILTER_PROHIB:
954 case ICMP_UNREACH_PRECEDENCE_CUTOFF:
955 code = ICMP6_DST_UNREACH_ADMIN;
956 break;
957 default:
958 DPRINTF(DP_DROPS, "Unsupported ICMP type %d, code %d",
959 icmp->icmp_type, icmp->icmp_code);
960 goto freeit;
961 }
962 break;
963 case ICMP_TIMXCEED:
964 type = ICMP6_TIME_EXCEEDED;
965 code = icmp->icmp_code;
966 break;
967 case ICMP_ECHO:
968 type = ICMP6_ECHO_REQUEST;
969 code = 0;
970 break;
971 case ICMP_PARAMPROB:
972 type = ICMP6_PARAM_PROB;
973 switch (icmp->icmp_code) {
974 case ICMP_PARAMPROB_ERRATPTR:
975 case ICMP_PARAMPROB_LENGTH:
976 code = ICMP6_PARAMPROB_HEADER;
977 switch (icmp->icmp_pptr) {
978 case 0: /* Version/IHL */
979 case 1: /* Type Of Service */
980 mtu = icmp->icmp_pptr;
981 break;
982 case 2: /* Total Length */
983 case 3: mtu = 4; /* Payload Length */
984 break;
985 case 8: /* Time to Live */
986 mtu = 7; /* Hop Limit */
987 break;
988 case 9: /* Protocol */
989 mtu = 6; /* Next Header */
990 break;
991 case 12: /* Source address */
992 case 13:
993 case 14:
994 case 15:
995 mtu = 8;
996 break;
997 case 16: /* Destination address */
998 case 17:
999 case 18:
1000 case 19:
1001 mtu = 24;
1002 break;
1003 default: /* Silently drop */
1004 DPRINTF(DP_DROPS, "Unsupported ICMP type %d,"
1005 " code %d, pptr %d", icmp->icmp_type,
1006 icmp->icmp_code, icmp->icmp_pptr);
1007 goto freeit;
1008 }
1009 break;
1010 default:
1011 DPRINTF(DP_DROPS, "Unsupported ICMP type %d,"
1012 " code %d, pptr %d", icmp->icmp_type,
1013 icmp->icmp_code, icmp->icmp_pptr);
1014 goto freeit;
1015 }
1016 break;
1017 default:
1018 DPRINTF(DP_DROPS, "Unsupported ICMP type %d, code %d",
1019 icmp->icmp_type, icmp->icmp_code);
1020 goto freeit;
1021 }
1022 /*
1023 * For echo request/reply we can use original payload,
1024 * but we need adjust icmp_cksum, because ICMPv6 cksum covers
1025 * IPv6 pseudo header and ICMPv6 types differs from ICMPv4.
1026 */
1027 if (type == ICMP6_ECHO_REQUEST || type == ICMP6_ECHO_REPLY) {
1028 nat64_icmp_handle_echo(ip6, ICMP6(icmp), icmpid, type);
1029 return (m);
1030 }
1031 /*
1032 * For other types of ICMP messages we need to translate inner
1033 * IPv4 header to IPv6 header.
1034 * Assume ICMP src is the same as payload dst
1035 * E.g. we have ( GWsrc1 , NATIP1 ) in outer header
1036 * and ( NATIP1, Hostdst1 ) in ICMP copy header.
1037 * In that case, we already have map for NATIP1 and GWsrc1.
1038 * The only thing we need is to copy IPv6 map prefix to
1039 * Hostdst1.
1040 */
1041 hlen = offset + ICMP_MINLEN;
1042 if (m->m_pkthdr.len < hlen + sizeof(struct ip) + ICMP_MINLEN) {
1043 DPRINTF(DP_DROPS, "Message is too short %d",
1044 m->m_pkthdr.len);
1045 goto freeit;
1046 }
1047 m_copydata(m, hlen, sizeof(struct ip), (char *)&ip);
1048 if (ip.ip_v != IPVERSION) {
1049 DPRINTF(DP_DROPS, "Wrong IP version %d", ip.ip_v);
1050 goto freeit;
1051 }
1052 hlen += ip.ip_hl << 2; /* Skip inner IP header */
1053 if (nat64_check_ip4(ip.ip_src.s_addr) != 0 ||
1054 nat64_check_ip4(ip.ip_dst.s_addr) != 0 ||
1055 nat64_check_private_ip4(cfg, ip.ip_src.s_addr) != 0 ||
1056 nat64_check_private_ip4(cfg, ip.ip_dst.s_addr) != 0) {
1057 DPRINTF(DP_DROPS, "IP addresses checks failed %04x -> %04x",
1058 ntohl(ip.ip_src.s_addr), ntohl(ip.ip_dst.s_addr));
1059 goto freeit;
1060 }
1061 if (m->m_pkthdr.len < hlen + ICMP_MINLEN) {
1062 DPRINTF(DP_DROPS, "Message is too short %d",
1063 m->m_pkthdr.len);
1064 goto freeit;
1065 }
1066 #if 0
1067 /*
1068 * Check that inner source matches the outer destination.
1069 * XXX: We need some method to convert IPv4 into IPv6 address here,
1070 * and compare IPv6 addresses.
1071 */
1072 if (ip.ip_src.s_addr != nat64_get_ip4(&ip6->ip6_dst)) {
1073 DPRINTF(DP_GENERIC, "Inner source doesn't match destination ",
1074 "%04x vs %04x", ip.ip_src.s_addr,
1075 nat64_get_ip4(&ip6->ip6_dst));
1076 goto freeit;
1077 }
1078 #endif
1079 /*
1080 * Create new mbuf for ICMPv6 datagram.
1081 * NOTE: len is data length just after inner IP header.
1082 */
1083 len = m->m_pkthdr.len - hlen;
1084 if (sizeof(struct ip6_hdr) +
1085 sizeof(struct icmp6_hdr) + len > NAT64_ICMP6_PLEN)
1086 len = NAT64_ICMP6_PLEN - sizeof(struct icmp6_hdr) -
1087 sizeof(struct ip6_hdr);
1088 plen = sizeof(struct icmp6_hdr) + sizeof(struct ip6_hdr) + len;
1089 n = m_get2(offset + plen + max_hdr, M_NOWAIT, MT_HEADER, M_PKTHDR);
1090 if (n == NULL) {
1091 NAT64STAT_INC(&cfg->stats, nomem);
1092 m_freem(m);
1093 return (NULL);
1094 }
1095 m_move_pkthdr(n, m);
1096 M_ALIGN(n, offset + plen + max_hdr);
1097 n->m_len = n->m_pkthdr.len = offset + plen;
1098 /* Adjust ip6_plen in outer header */
1099 ip6->ip6_plen = htons(plen);
1100 /* Construct new inner IPv6 header */
1101 eip6 = mtodo(n, offset + sizeof(struct icmp6_hdr));
1102 eip6->ip6_src = ip6->ip6_dst;
1103
1104 /* Use the same prefix that we have in outer header */
1105 eip6->ip6_dst = ip6->ip6_src;
1106 MPASS(cfg->flags & NAT64_PLATPFX);
1107 nat64_embed_ip4(&eip6->ip6_dst, cfg->plat_plen, ip.ip_dst.s_addr);
1108
1109 eip6->ip6_flow = htonl(ip.ip_tos << 20);
1110 eip6->ip6_vfc |= IPV6_VERSION;
1111 eip6->ip6_hlim = ip.ip_ttl;
1112 eip6->ip6_plen = htons(ntohs(ip.ip_len) - (ip.ip_hl << 2));
1113 eip6->ip6_nxt = (ip.ip_p == IPPROTO_ICMP) ? IPPROTO_ICMPV6: ip.ip_p;
1114 m_copydata(m, hlen, len, (char *)(eip6 + 1));
1115 /*
1116 * We need to translate source port in the inner ULP header,
1117 * and adjust ULP checksum.
1118 */
1119 switch (ip.ip_p) {
1120 case IPPROTO_TCP:
1121 if (len < offsetof(struct tcphdr, th_sum))
1122 break;
1123 tcp = TCP(eip6 + 1);
1124 if (icmpid != 0) {
1125 tcp->th_sum = cksum_adjust(tcp->th_sum,
1126 tcp->th_sport, icmpid);
1127 tcp->th_sport = icmpid;
1128 }
1129 tcp->th_sum = cksum_add(tcp->th_sum,
1130 ~nat64_cksum_convert(eip6, &ip));
1131 break;
1132 case IPPROTO_UDP:
1133 if (len < offsetof(struct udphdr, uh_sum))
1134 break;
1135 udp = UDP(eip6 + 1);
1136 if (icmpid != 0) {
1137 udp->uh_sum = cksum_adjust(udp->uh_sum,
1138 udp->uh_sport, icmpid);
1139 udp->uh_sport = icmpid;
1140 }
1141 udp->uh_sum = cksum_add(udp->uh_sum,
1142 ~nat64_cksum_convert(eip6, &ip));
1143 break;
1144 case IPPROTO_ICMP:
1145 /*
1146 * Check if this is an ICMP error message for echo request
1147 * that we sent. I.e. ULP in the data containing invoking
1148 * packet is IPPROTO_ICMP and its type is ICMP_ECHO.
1149 */
1150 icmp = (struct icmp *)(eip6 + 1);
1151 if (icmp->icmp_type != ICMP_ECHO) {
1152 m_freem(n);
1153 goto freeit;
1154 }
1155 /*
1156 * For our client this original datagram should looks
1157 * like it was ICMPv6 datagram with type ICMP6_ECHO_REQUEST.
1158 * Thus we need adjust icmp_cksum and convert type from
1159 * ICMP_ECHO to ICMP6_ECHO_REQUEST.
1160 */
1161 nat64_icmp_handle_echo(eip6, ICMP6(icmp), icmpid,
1162 ICMP6_ECHO_REQUEST);
1163 }
1164 m_freem(m);
1165 /* Convert ICMPv4 into ICMPv6 header */
1166 icmp = mtodo(n, offset);
1167 ICMP6(icmp)->icmp6_type = type;
1168 ICMP6(icmp)->icmp6_code = code;
1169 ICMP6(icmp)->icmp6_mtu = htonl(mtu);
1170 ICMP6(icmp)->icmp6_cksum = 0;
1171 ICMP6(icmp)->icmp6_cksum = cksum_add(
1172 ~in6_cksum_pseudo(ip6, plen, IPPROTO_ICMPV6, 0),
1173 in_cksum_skip(n, n->m_pkthdr.len, offset));
1174 return (n);
1175 freeit:
1176 m_freem(m);
1177 NAT64STAT_INC(&cfg->stats, dropped);
1178 return (NULL);
1179 }
1180
1181 int
1182 nat64_getlasthdr(struct mbuf *m, int *offset)
1183 {
1184 struct ip6_hdr *ip6;
1185 struct ip6_hbh *hbh;
1186 int proto, hlen;
1187
1188 if (offset != NULL)
1189 hlen = *offset;
1190 else
1191 hlen = 0;
1192
1193 if (m->m_len < hlen + sizeof(*ip6))
1194 return (-1);
1195
1196 ip6 = mtodo(m, hlen);
1197 hlen += sizeof(*ip6);
1198 proto = ip6->ip6_nxt;
1199 /* Skip extension headers */
1200 while (proto == IPPROTO_HOPOPTS || proto == IPPROTO_ROUTING ||
1201 proto == IPPROTO_DSTOPTS) {
1202 hbh = mtodo(m, hlen);
1203 /*
1204 * We expect mbuf has contigious data up to
1205 * upper level header.
1206 */
1207 if (m->m_len < hlen)
1208 return (-1);
1209 /*
1210 * We doesn't support Jumbo payload option,
1211 * so return error.
1212 */
1213 if (proto == IPPROTO_HOPOPTS && ip6->ip6_plen == 0)
1214 return (-1);
1215 proto = hbh->ip6h_nxt;
1216 hlen += (hbh->ip6h_len + 1) << 3;
1217 }
1218 if (offset != NULL)
1219 *offset = hlen;
1220 return (proto);
1221 }
1222
1223 int
1224 nat64_do_handle_ip4(struct mbuf *m, struct in6_addr *saddr,
1225 struct in6_addr *daddr, uint16_t lport, struct nat64_config *cfg,
1226 void *logdata)
1227 {
1228 struct nhop_object *nh;
1229 struct ip6_hdr ip6;
1230 struct sockaddr_in6 dst;
1231 struct ip *ip;
1232 struct mbufq mq;
1233 uint16_t ip_id, ip_off;
1234 uint16_t *csum;
1235 int plen, hlen;
1236 uint8_t proto;
1237
1238 ip = mtod(m, struct ip*);
1239
1240 if (*V_nat64ipstealth == 0 && ip->ip_ttl <= IPTTLDEC) {
1241 nat64_icmp_reflect(m, ICMP_TIMXCEED,
1242 ICMP_TIMXCEED_INTRANS, 0, &cfg->stats, logdata);
1243 return (NAT64RETURN);
1244 }
1245
1246 ip6.ip6_dst = *daddr;
1247 ip6.ip6_src = *saddr;
1248
1249 hlen = ip->ip_hl << 2;
1250 plen = ntohs(ip->ip_len) - hlen;
1251 proto = ip->ip_p;
1252
1253 /* Save ip_id and ip_off, both are in network byte order */
1254 ip_id = ip->ip_id;
1255 ip_off = ip->ip_off & htons(IP_OFFMASK | IP_MF);
1256
1257 /* Fragment length must be multiple of 8 octets */
1258 if ((ip->ip_off & htons(IP_MF)) != 0 && (plen & 0x7) != 0) {
1259 nat64_icmp_reflect(m, ICMP_PARAMPROB,
1260 ICMP_PARAMPROB_LENGTH, 0, &cfg->stats, logdata);
1261 return (NAT64RETURN);
1262 }
1263 /* Fragmented ICMP is unsupported */
1264 if (proto == IPPROTO_ICMP && ip_off != 0) {
1265 DPRINTF(DP_DROPS, "dropped due to fragmented ICMP");
1266 NAT64STAT_INC(&cfg->stats, dropped);
1267 return (NAT64MFREE);
1268 }
1269
1270 dst.sin6_addr = ip6.ip6_dst;
1271 nh = nat64_find_route6(&dst, m);
1272 if (nh == NULL) {
1273 NAT64STAT_INC(&cfg->stats, noroute6);
1274 nat64_icmp_reflect(m, ICMP_UNREACH, ICMP_UNREACH_HOST, 0,
1275 &cfg->stats, logdata);
1276 return (NAT64RETURN);
1277 }
1278 if (nh->nh_mtu < plen + sizeof(ip6) &&
1279 (ip->ip_off & htons(IP_DF)) != 0) {
1280 nat64_icmp_reflect(m, ICMP_UNREACH, ICMP_UNREACH_NEEDFRAG,
1281 FRAGSZ(nh->nh_mtu) + sizeof(struct ip), &cfg->stats, logdata);
1282 return (NAT64RETURN);
1283 }
1284
1285 ip6.ip6_flow = htonl(ip->ip_tos << 20);
1286 ip6.ip6_vfc |= IPV6_VERSION;
1287 ip6.ip6_hlim = ip->ip_ttl;
1288 if (*V_nat64ipstealth == 0)
1289 ip6.ip6_hlim -= IPTTLDEC;
1290 ip6.ip6_plen = htons(plen);
1291 ip6.ip6_nxt = (proto == IPPROTO_ICMP) ? IPPROTO_ICMPV6: proto;
1292
1293 /* Handle delayed checksums if needed. */
1294 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
1295 in_delayed_cksum(m);
1296 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
1297 }
1298 /* Convert checksums. */
1299 switch (proto) {
1300 case IPPROTO_TCP:
1301 csum = &TCP(mtodo(m, hlen))->th_sum;
1302 if (lport != 0) {
1303 struct tcphdr *tcp = TCP(mtodo(m, hlen));
1304 *csum = cksum_adjust(*csum, tcp->th_dport, lport);
1305 tcp->th_dport = lport;
1306 }
1307 *csum = cksum_add(*csum, ~nat64_cksum_convert(&ip6, ip));
1308 break;
1309 case IPPROTO_UDP:
1310 csum = &UDP(mtodo(m, hlen))->uh_sum;
1311 if (lport != 0) {
1312 struct udphdr *udp = UDP(mtodo(m, hlen));
1313 *csum = cksum_adjust(*csum, udp->uh_dport, lport);
1314 udp->uh_dport = lport;
1315 }
1316 *csum = cksum_add(*csum, ~nat64_cksum_convert(&ip6, ip));
1317 break;
1318 case IPPROTO_ICMP:
1319 m = nat64_icmp_translate(m, &ip6, lport, hlen, cfg);
1320 if (m == NULL) /* stats already accounted */
1321 return (NAT64RETURN);
1322 }
1323
1324 m_adj(m, hlen);
1325 mbufq_init(&mq, 255);
1326 nat64_fragment6(&cfg->stats, &ip6, &mq, m, nh->nh_mtu, ip_id, ip_off);
1327 while ((m = mbufq_dequeue(&mq)) != NULL) {
1328 if (V_nat64out->output(nh->nh_ifp, m, (struct sockaddr *)&dst,
1329 &cfg->stats, logdata) != 0)
1330 break;
1331 NAT64STAT_INC(&cfg->stats, opcnt46);
1332 }
1333 mbufq_drain(&mq);
1334 return (NAT64RETURN);
1335 }
1336
1337 int
1338 nat64_handle_icmp6(struct mbuf *m, int hlen, uint32_t aaddr, uint16_t aport,
1339 struct nat64_config *cfg, void *logdata)
1340 {
1341 struct ip ip;
1342 struct icmp6_hdr *icmp6;
1343 struct ip6_frag *ip6f;
1344 struct ip6_hdr *ip6, *ip6i;
1345 uint32_t mtu;
1346 int plen, proto;
1347 uint8_t type, code;
1348
1349 if (hlen == 0) {
1350 ip6 = mtod(m, struct ip6_hdr *);
1351 if (nat64_check_ip6(&ip6->ip6_src) != 0 ||
1352 nat64_check_ip6(&ip6->ip6_dst) != 0)
1353 return (NAT64SKIP);
1354
1355 proto = nat64_getlasthdr(m, &hlen);
1356 if (proto != IPPROTO_ICMPV6) {
1357 DPRINTF(DP_DROPS,
1358 "dropped due to mbuf isn't contigious");
1359 NAT64STAT_INC(&cfg->stats, dropped);
1360 return (NAT64MFREE);
1361 }
1362 }
1363
1364 /*
1365 * Translate ICMPv6 type and code to ICMPv4 (RFC7915).
1366 * NOTE: ICMPv6 echo handled by nat64_do_handle_ip6().
1367 */
1368 icmp6 = mtodo(m, hlen);
1369 mtu = 0;
1370 switch (icmp6->icmp6_type) {
1371 case ICMP6_DST_UNREACH:
1372 type = ICMP_UNREACH;
1373 switch (icmp6->icmp6_code) {
1374 case ICMP6_DST_UNREACH_NOROUTE:
1375 case ICMP6_DST_UNREACH_BEYONDSCOPE:
1376 case ICMP6_DST_UNREACH_ADDR:
1377 code = ICMP_UNREACH_HOST;
1378 break;
1379 case ICMP6_DST_UNREACH_ADMIN:
1380 code = ICMP_UNREACH_HOST_PROHIB;
1381 break;
1382 case ICMP6_DST_UNREACH_NOPORT:
1383 code = ICMP_UNREACH_PORT;
1384 break;
1385 default:
1386 DPRINTF(DP_DROPS, "Unsupported ICMPv6 type %d,"
1387 " code %d", icmp6->icmp6_type,
1388 icmp6->icmp6_code);
1389 NAT64STAT_INC(&cfg->stats, dropped);
1390 return (NAT64MFREE);
1391 }
1392 break;
1393 case ICMP6_PACKET_TOO_BIG:
1394 type = ICMP_UNREACH;
1395 code = ICMP_UNREACH_NEEDFRAG;
1396 mtu = ntohl(icmp6->icmp6_mtu);
1397 if (mtu < IPV6_MMTU) {
1398 DPRINTF(DP_DROPS, "Wrong MTU %d in ICMPv6 type %d,"
1399 " code %d", mtu, icmp6->icmp6_type,
1400 icmp6->icmp6_code);
1401 NAT64STAT_INC(&cfg->stats, dropped);
1402 return (NAT64MFREE);
1403 }
1404 /*
1405 * Adjust MTU to reflect difference between
1406 * IPv6 an IPv4 headers.
1407 */
1408 mtu -= sizeof(struct ip6_hdr) - sizeof(struct ip);
1409 break;
1410 case ICMP6_TIME_EXCEEDED:
1411 type = ICMP_TIMXCEED;
1412 code = icmp6->icmp6_code;
1413 break;
1414 case ICMP6_PARAM_PROB:
1415 switch (icmp6->icmp6_code) {
1416 case ICMP6_PARAMPROB_HEADER:
1417 type = ICMP_PARAMPROB;
1418 code = ICMP_PARAMPROB_ERRATPTR;
1419 mtu = ntohl(icmp6->icmp6_pptr);
1420 switch (mtu) {
1421 case 0: /* Version/Traffic Class */
1422 case 1: /* Traffic Class/Flow Label */
1423 break;
1424 case 4: /* Payload Length */
1425 case 5:
1426 mtu = 2;
1427 break;
1428 case 6: /* Next Header */
1429 mtu = 9;
1430 break;
1431 case 7: /* Hop Limit */
1432 mtu = 8;
1433 break;
1434 default:
1435 if (mtu >= 8 && mtu <= 23) {
1436 mtu = 12; /* Source address */
1437 break;
1438 }
1439 if (mtu >= 24 && mtu <= 39) {
1440 mtu = 16; /* Destination address */
1441 break;
1442 }
1443 DPRINTF(DP_DROPS, "Unsupported ICMPv6 type %d,"
1444 " code %d, pptr %d", icmp6->icmp6_type,
1445 icmp6->icmp6_code, mtu);
1446 NAT64STAT_INC(&cfg->stats, dropped);
1447 return (NAT64MFREE);
1448 }
1449 case ICMP6_PARAMPROB_NEXTHEADER:
1450 type = ICMP_UNREACH;
1451 code = ICMP_UNREACH_PROTOCOL;
1452 break;
1453 default:
1454 DPRINTF(DP_DROPS, "Unsupported ICMPv6 type %d,"
1455 " code %d, pptr %d", icmp6->icmp6_type,
1456 icmp6->icmp6_code, ntohl(icmp6->icmp6_pptr));
1457 NAT64STAT_INC(&cfg->stats, dropped);
1458 return (NAT64MFREE);
1459 }
1460 break;
1461 default:
1462 DPRINTF(DP_DROPS, "Unsupported ICMPv6 type %d, code %d",
1463 icmp6->icmp6_type, icmp6->icmp6_code);
1464 NAT64STAT_INC(&cfg->stats, dropped);
1465 return (NAT64MFREE);
1466 }
1467
1468 hlen += sizeof(struct icmp6_hdr);
1469 if (m->m_pkthdr.len < hlen + sizeof(struct ip6_hdr) + ICMP_MINLEN) {
1470 NAT64STAT_INC(&cfg->stats, dropped);
1471 DPRINTF(DP_DROPS, "Message is too short %d",
1472 m->m_pkthdr.len);
1473 return (NAT64MFREE);
1474 }
1475 /*
1476 * We need at least ICMP_MINLEN bytes of original datagram payload
1477 * to generate ICMP message. It is nice that ICMP_MINLEN is equal
1478 * to sizeof(struct ip6_frag). So, if embedded datagram had a fragment
1479 * header we will not have to do m_pullup() again.
1480 *
1481 * What we have here:
1482 * Outer header: (IPv6iGW, v4mapPRefix+v4exthost)
1483 * Inner header: (v4mapPRefix+v4host, IPv6iHost) [sport, dport]
1484 * We need to translate it to:
1485 *
1486 * Outer header: (alias_host, v4exthost)
1487 * Inner header: (v4exthost, alias_host) [sport, alias_port]
1488 *
1489 * Assume caller function has checked if v4mapPRefix+v4host
1490 * matches configured prefix.
1491 * The only two things we should be provided with are mapping between
1492 * IPv6iHost <> alias_host and between dport and alias_port.
1493 */
1494 if (m->m_len < hlen + sizeof(struct ip6_hdr) + ICMP_MINLEN)
1495 m = m_pullup(m, hlen + sizeof(struct ip6_hdr) + ICMP_MINLEN);
1496 if (m == NULL) {
1497 NAT64STAT_INC(&cfg->stats, nomem);
1498 return (NAT64RETURN);
1499 }
1500 ip6 = mtod(m, struct ip6_hdr *);
1501 ip6i = mtodo(m, hlen);
1502 ip6f = NULL;
1503 proto = ip6i->ip6_nxt;
1504 plen = ntohs(ip6i->ip6_plen);
1505 hlen += sizeof(struct ip6_hdr);
1506 if (proto == IPPROTO_FRAGMENT) {
1507 if (m->m_pkthdr.len < hlen + sizeof(struct ip6_frag) +
1508 ICMP_MINLEN)
1509 goto fail;
1510 ip6f = mtodo(m, hlen);
1511 proto = ip6f->ip6f_nxt;
1512 plen -= sizeof(struct ip6_frag);
1513 hlen += sizeof(struct ip6_frag);
1514 /* Ajust MTU to reflect frag header size */
1515 if (type == ICMP_UNREACH && code == ICMP_UNREACH_NEEDFRAG)
1516 mtu -= sizeof(struct ip6_frag);
1517 }
1518 if (proto != IPPROTO_TCP && proto != IPPROTO_UDP) {
1519 DPRINTF(DP_DROPS, "Unsupported proto %d in the inner header",
1520 proto);
1521 goto fail;
1522 }
1523 if (nat64_check_ip6(&ip6i->ip6_src) != 0 ||
1524 nat64_check_ip6(&ip6i->ip6_dst) != 0) {
1525 DPRINTF(DP_DROPS, "Inner addresses do not passes the check");
1526 goto fail;
1527 }
1528 /* Check if outer dst is the same as inner src */
1529 if (!IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst, &ip6i->ip6_src)) {
1530 DPRINTF(DP_DROPS, "Inner src doesn't match outer dst");
1531 goto fail;
1532 }
1533
1534 /* Now we need to make a fake IPv4 packet to generate ICMP message */
1535 ip.ip_dst.s_addr = aaddr;
1536 ip.ip_src.s_addr = nat64_extract_ip4(&ip6i->ip6_src, cfg->plat_plen);
1537 if (ip.ip_src.s_addr == 0)
1538 goto fail;
1539 /* XXX: Make fake ulp header */
1540 if (V_nat64out == &nat64_direct) /* init_ip4hdr will decrement it */
1541 ip6i->ip6_hlim += IPV6_HLIMDEC;
1542 nat64_init_ip4hdr(ip6i, ip6f, plen, proto, &ip);
1543 m_adj(m, hlen - sizeof(struct ip));
1544 bcopy(&ip, mtod(m, void *), sizeof(ip));
1545 nat64_icmp_reflect(m, type, code, (uint16_t)mtu, &cfg->stats,
1546 logdata);
1547 return (NAT64RETURN);
1548 fail:
1549 /*
1550 * We must call m_freem() because mbuf pointer could be
1551 * changed with m_pullup().
1552 */
1553 m_freem(m);
1554 NAT64STAT_INC(&cfg->stats, dropped);
1555 return (NAT64RETURN);
1556 }
1557
1558 int
1559 nat64_do_handle_ip6(struct mbuf *m, uint32_t aaddr, uint16_t aport,
1560 struct nat64_config *cfg, void *logdata)
1561 {
1562 struct ip ip;
1563 struct nhop_object *nh;
1564 struct sockaddr_in dst;
1565 struct ip6_frag *frag;
1566 struct ip6_hdr *ip6;
1567 struct icmp6_hdr *icmp6;
1568 uint16_t *csum;
1569 int plen, hlen, proto;
1570
1571 /*
1572 * XXX: we expect ipfw_chk() did m_pullup() up to upper level
1573 * protocol's headers. Also we skip some checks, that ip6_input(),
1574 * ip6_forward(), ip6_fastfwd() and ipfw_chk() already did.
1575 */
1576 ip6 = mtod(m, struct ip6_hdr *);
1577 if (nat64_check_ip6(&ip6->ip6_src) != 0 ||
1578 nat64_check_ip6(&ip6->ip6_dst) != 0) {
1579 return (NAT64SKIP);
1580 }
1581
1582 /* Starting from this point we must not return zero */
1583 ip.ip_src.s_addr = aaddr;
1584 if (nat64_check_ip4(ip.ip_src.s_addr) != 0) {
1585 DPRINTF(DP_GENERIC | DP_DROPS, "invalid source address: %08x",
1586 ip.ip_src.s_addr);
1587 NAT64STAT_INC(&cfg->stats, dropped);
1588 return (NAT64MFREE);
1589 }
1590
1591 ip.ip_dst.s_addr = nat64_extract_ip4(&ip6->ip6_dst, cfg->plat_plen);
1592 if (ip.ip_dst.s_addr == 0) {
1593 NAT64STAT_INC(&cfg->stats, dropped);
1594 return (NAT64MFREE);
1595 }
1596
1597 if (*V_nat64ip6stealth == 0 && ip6->ip6_hlim <= IPV6_HLIMDEC) {
1598 nat64_icmp6_reflect(m, ICMP6_TIME_EXCEEDED,
1599 ICMP6_TIME_EXCEED_TRANSIT, 0, &cfg->stats, logdata);
1600 return (NAT64RETURN);
1601 }
1602
1603 hlen = 0;
1604 plen = ntohs(ip6->ip6_plen);
1605 proto = nat64_getlasthdr(m, &hlen);
1606 if (proto < 0) {
1607 DPRINTF(DP_DROPS, "dropped due to mbuf isn't contigious");
1608 NAT64STAT_INC(&cfg->stats, dropped);
1609 return (NAT64MFREE);
1610 }
1611 frag = NULL;
1612 if (proto == IPPROTO_FRAGMENT) {
1613 /* ipfw_chk should m_pullup up to frag header */
1614 if (m->m_len < hlen + sizeof(*frag)) {
1615 DPRINTF(DP_DROPS,
1616 "dropped due to mbuf isn't contigious");
1617 NAT64STAT_INC(&cfg->stats, dropped);
1618 return (NAT64MFREE);
1619 }
1620 frag = mtodo(m, hlen);
1621 proto = frag->ip6f_nxt;
1622 hlen += sizeof(*frag);
1623 /* Fragmented ICMPv6 is unsupported */
1624 if (proto == IPPROTO_ICMPV6) {
1625 DPRINTF(DP_DROPS, "dropped due to fragmented ICMPv6");
1626 NAT64STAT_INC(&cfg->stats, dropped);
1627 return (NAT64MFREE);
1628 }
1629 /* Fragment length must be multiple of 8 octets */
1630 if ((frag->ip6f_offlg & IP6F_MORE_FRAG) != 0 &&
1631 ((plen + sizeof(struct ip6_hdr) - hlen) & 0x7) != 0) {
1632 nat64_icmp6_reflect(m, ICMP6_PARAM_PROB,
1633 ICMP6_PARAMPROB_HEADER,
1634 offsetof(struct ip6_hdr, ip6_plen), &cfg->stats,
1635 logdata);
1636 return (NAT64RETURN);
1637 }
1638 }
1639 plen -= hlen - sizeof(struct ip6_hdr);
1640 if (plen < 0 || m->m_pkthdr.len < plen + hlen) {
1641 DPRINTF(DP_DROPS, "plen %d, pkthdr.len %d, hlen %d",
1642 plen, m->m_pkthdr.len, hlen);
1643 NAT64STAT_INC(&cfg->stats, dropped);
1644 return (NAT64MFREE);
1645 }
1646
1647 icmp6 = NULL; /* Make gcc happy */
1648 if (proto == IPPROTO_ICMPV6) {
1649 icmp6 = mtodo(m, hlen);
1650 if (icmp6->icmp6_type != ICMP6_ECHO_REQUEST &&
1651 icmp6->icmp6_type != ICMP6_ECHO_REPLY)
1652 return (nat64_handle_icmp6(m, hlen, aaddr, aport,
1653 cfg, logdata));
1654 }
1655 dst.sin_addr.s_addr = ip.ip_dst.s_addr;
1656 nh = nat64_find_route4(&dst, m);
1657 if (nh == NULL) {
1658 NAT64STAT_INC(&cfg->stats, noroute4);
1659 nat64_icmp6_reflect(m, ICMP6_DST_UNREACH,
1660 ICMP6_DST_UNREACH_NOROUTE, 0, &cfg->stats, logdata);
1661 return (NAT64RETURN);
1662 }
1663 if (nh->nh_mtu < plen + sizeof(ip)) {
1664 nat64_icmp6_reflect(m, ICMP6_PACKET_TOO_BIG, 0, nh->nh_mtu,
1665 &cfg->stats, logdata);
1666 return (NAT64RETURN);
1667 }
1668 nat64_init_ip4hdr(ip6, frag, plen, proto, &ip);
1669
1670 /* Handle delayed checksums if needed. */
1671 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) {
1672 in6_delayed_cksum(m, plen, hlen);
1673 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA_IPV6;
1674 }
1675 /* Convert checksums. */
1676 switch (proto) {
1677 case IPPROTO_TCP:
1678 csum = &TCP(mtodo(m, hlen))->th_sum;
1679 if (aport != 0) {
1680 struct tcphdr *tcp = TCP(mtodo(m, hlen));
1681 *csum = cksum_adjust(*csum, tcp->th_sport, aport);
1682 tcp->th_sport = aport;
1683 }
1684 *csum = cksum_add(*csum, nat64_cksum_convert(ip6, &ip));
1685 break;
1686 case IPPROTO_UDP:
1687 csum = &UDP(mtodo(m, hlen))->uh_sum;
1688 if (aport != 0) {
1689 struct udphdr *udp = UDP(mtodo(m, hlen));
1690 *csum = cksum_adjust(*csum, udp->uh_sport, aport);
1691 udp->uh_sport = aport;
1692 }
1693 *csum = cksum_add(*csum, nat64_cksum_convert(ip6, &ip));
1694 break;
1695 case IPPROTO_ICMPV6:
1696 /* Checksum in ICMPv6 covers pseudo header */
1697 csum = &icmp6->icmp6_cksum;
1698 *csum = cksum_add(*csum, in6_cksum_pseudo(ip6, plen,
1699 IPPROTO_ICMPV6, 0));
1700 /* Convert ICMPv6 types to ICMP */
1701 proto = *(uint16_t *)icmp6; /* save old word for cksum_adjust */
1702 if (icmp6->icmp6_type == ICMP6_ECHO_REQUEST)
1703 icmp6->icmp6_type = ICMP_ECHO;
1704 else /* ICMP6_ECHO_REPLY */
1705 icmp6->icmp6_type = ICMP_ECHOREPLY;
1706 *csum = cksum_adjust(*csum, (uint16_t)proto,
1707 *(uint16_t *)icmp6);
1708 if (aport != 0) {
1709 uint16_t old_id = icmp6->icmp6_id;
1710 icmp6->icmp6_id = aport;
1711 *csum = cksum_adjust(*csum, old_id, aport);
1712 }
1713 break;
1714 };
1715
1716 m_adj(m, hlen - sizeof(ip));
1717 bcopy(&ip, mtod(m, void *), sizeof(ip));
1718 if (V_nat64out->output(nh->nh_ifp, m, (struct sockaddr *)&dst,
1719 &cfg->stats, logdata) == 0)
1720 NAT64STAT_INC(&cfg->stats, opcnt64);
1721 return (NAT64RETURN);
1722 }
Cache object: 837a7a254405d8c43ce0947078076bdf
|