The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/netpfil/pf/pf_norm.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: BSD-2-Clause
    3  *
    4  * Copyright 2001 Niels Provos <provos@citi.umich.edu>
    5  * Copyright 2011-2018 Alexander Bluhm <bluhm@openbsd.org>
    6  * All rights reserved.
    7  *
    8  * Redistribution and use in source and binary forms, with or without
    9  * modification, are permitted provided that the following conditions
   10  * are met:
   11  * 1. Redistributions of source code must retain the above copyright
   12  *    notice, this list of conditions and the following disclaimer.
   13  * 2. Redistributions in binary form must reproduce the above copyright
   14  *    notice, this list of conditions and the following disclaimer in the
   15  *    documentation and/or other materials provided with the distribution.
   16  *
   17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
   18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
   19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
   20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
   21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
   22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
   23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
   24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
   25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
   26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
   27  *
   28  *      $OpenBSD: pf_norm.c,v 1.114 2009/01/29 14:11:45 henning Exp $
   29  */
   30 
   31 #include <sys/cdefs.h>
   32 __FBSDID("$FreeBSD$");
   33 
   34 #include "opt_inet.h"
   35 #include "opt_inet6.h"
   36 #include "opt_pf.h"
   37 
   38 #include <sys/param.h>
   39 #include <sys/kernel.h>
   40 #include <sys/lock.h>
   41 #include <sys/mbuf.h>
   42 #include <sys/mutex.h>
   43 #include <sys/refcount.h>
   44 #include <sys/socket.h>
   45 
   46 #include <net/if.h>
   47 #include <net/vnet.h>
   48 #include <net/pfvar.h>
   49 #include <net/if_pflog.h>
   50 
   51 #include <netinet/in.h>
   52 #include <netinet/ip.h>
   53 #include <netinet/ip_var.h>
   54 #include <netinet6/ip6_var.h>
   55 #include <netinet/tcp.h>
   56 #include <netinet/tcp_fsm.h>
   57 #include <netinet/tcp_seq.h>
   58 
   59 #ifdef INET6
   60 #include <netinet/ip6.h>
   61 #endif /* INET6 */
   62 
   63 struct pf_frent {
   64         TAILQ_ENTRY(pf_frent)   fr_next;
   65         struct mbuf     *fe_m;
   66         uint16_t        fe_hdrlen;      /* ipv4 header length with ip options
   67                                            ipv6, extension, fragment header */
   68         uint16_t        fe_extoff;      /* last extension header offset or 0 */
   69         uint16_t        fe_len;         /* fragment length */
   70         uint16_t        fe_off;         /* fragment offset */
   71         uint16_t        fe_mff;         /* more fragment flag */
   72 };
   73 
   74 struct pf_fragment_cmp {
   75         struct pf_addr  frc_src;
   76         struct pf_addr  frc_dst;
   77         uint32_t        frc_id;
   78         sa_family_t     frc_af;
   79         uint8_t         frc_proto;
   80 };
   81 
   82 struct pf_fragment {
   83         struct pf_fragment_cmp  fr_key;
   84 #define fr_src  fr_key.frc_src
   85 #define fr_dst  fr_key.frc_dst
   86 #define fr_id   fr_key.frc_id
   87 #define fr_af   fr_key.frc_af
   88 #define fr_proto        fr_key.frc_proto
   89 
   90         /* pointers to queue element */
   91         struct pf_frent *fr_firstoff[PF_FRAG_ENTRY_POINTS];
   92         /* count entries between pointers */
   93         uint8_t fr_entries[PF_FRAG_ENTRY_POINTS];
   94         RB_ENTRY(pf_fragment) fr_entry;
   95         TAILQ_ENTRY(pf_fragment) frag_next;
   96         uint32_t        fr_timeout;
   97         uint16_t        fr_maxlen;      /* maximum length of single fragment */
   98         u_int16_t       fr_holes;       /* number of holes in the queue */
   99         TAILQ_HEAD(pf_fragq, pf_frent) fr_queue;
  100 };
  101 
  102 struct pf_fragment_tag {
  103         uint16_t        ft_hdrlen;      /* header length of reassembled pkt */
  104         uint16_t        ft_extoff;      /* last extension header offset or 0 */
  105         uint16_t        ft_maxlen;      /* maximum fragment payload length */
  106         uint32_t        ft_id;          /* fragment id */
  107 };
  108 
  109 VNET_DEFINE_STATIC(struct mtx, pf_frag_mtx);
  110 #define V_pf_frag_mtx           VNET(pf_frag_mtx)
  111 #define PF_FRAG_LOCK()          mtx_lock(&V_pf_frag_mtx)
  112 #define PF_FRAG_UNLOCK()        mtx_unlock(&V_pf_frag_mtx)
  113 #define PF_FRAG_ASSERT()        mtx_assert(&V_pf_frag_mtx, MA_OWNED)
  114 
  115 VNET_DEFINE(uma_zone_t, pf_state_scrub_z);      /* XXX: shared with pfsync */
  116 
  117 VNET_DEFINE_STATIC(uma_zone_t, pf_frent_z);
  118 #define V_pf_frent_z    VNET(pf_frent_z)
  119 VNET_DEFINE_STATIC(uma_zone_t, pf_frag_z);
  120 #define V_pf_frag_z     VNET(pf_frag_z)
  121 
  122 TAILQ_HEAD(pf_fragqueue, pf_fragment);
  123 TAILQ_HEAD(pf_cachequeue, pf_fragment);
  124 VNET_DEFINE_STATIC(struct pf_fragqueue, pf_fragqueue);
  125 #define V_pf_fragqueue                  VNET(pf_fragqueue)
  126 RB_HEAD(pf_frag_tree, pf_fragment);
  127 VNET_DEFINE_STATIC(struct pf_frag_tree, pf_frag_tree);
  128 #define V_pf_frag_tree                  VNET(pf_frag_tree)
  129 static int               pf_frag_compare(struct pf_fragment *,
  130                             struct pf_fragment *);
  131 static RB_PROTOTYPE(pf_frag_tree, pf_fragment, fr_entry, pf_frag_compare);
  132 static RB_GENERATE(pf_frag_tree, pf_fragment, fr_entry, pf_frag_compare);
  133 
  134 static void     pf_flush_fragments(void);
  135 static void     pf_free_fragment(struct pf_fragment *);
  136 static void     pf_remove_fragment(struct pf_fragment *);
  137 static int      pf_normalize_tcpopt(struct pf_krule *, struct mbuf *,
  138                     struct tcphdr *, int, sa_family_t);
  139 static struct pf_frent *pf_create_fragment(u_short *);
  140 static int      pf_frent_holes(struct pf_frent *frent);
  141 static struct pf_fragment *pf_find_fragment(struct pf_fragment_cmp *key,
  142                     struct pf_frag_tree *tree);
  143 static inline int       pf_frent_index(struct pf_frent *);
  144 static int      pf_frent_insert(struct pf_fragment *,
  145                             struct pf_frent *, struct pf_frent *);
  146 void                    pf_frent_remove(struct pf_fragment *,
  147                             struct pf_frent *);
  148 struct pf_frent         *pf_frent_previous(struct pf_fragment *,
  149                             struct pf_frent *);
  150 static struct pf_fragment *pf_fillup_fragment(struct pf_fragment_cmp *,
  151                     struct pf_frent *, u_short *);
  152 static struct mbuf *pf_join_fragment(struct pf_fragment *);
  153 #ifdef INET
  154 static void     pf_scrub_ip(struct mbuf **, uint32_t, uint8_t, uint8_t);
  155 static int      pf_reassemble(struct mbuf **, struct ip *, int, u_short *);
  156 #endif  /* INET */
  157 #ifdef INET6
  158 static int      pf_reassemble6(struct mbuf **, struct ip6_hdr *,
  159                     struct ip6_frag *, uint16_t, uint16_t, u_short *);
  160 static void     pf_scrub_ip6(struct mbuf **, uint32_t, uint8_t, uint8_t);
  161 #endif  /* INET6 */
  162 
  163 #define DPFPRINTF(x) do {                               \
  164         if (V_pf_status.debug >= PF_DEBUG_MISC) {       \
  165                 printf("%s: ", __func__);               \
  166                 printf x ;                              \
  167         }                                               \
  168 } while(0)
  169 
  170 #ifdef INET
  171 static void
  172 pf_ip2key(struct ip *ip, int dir, struct pf_fragment_cmp *key)
  173 {
  174 
  175         key->frc_src.v4 = ip->ip_src;
  176         key->frc_dst.v4 = ip->ip_dst;
  177         key->frc_af = AF_INET;
  178         key->frc_proto = ip->ip_p;
  179         key->frc_id = ip->ip_id;
  180 }
  181 #endif  /* INET */
  182 
  183 void
  184 pf_normalize_init(void)
  185 {
  186 
  187         V_pf_frag_z = uma_zcreate("pf frags", sizeof(struct pf_fragment),
  188             NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
  189         V_pf_frent_z = uma_zcreate("pf frag entries", sizeof(struct pf_frent),
  190             NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
  191         V_pf_state_scrub_z = uma_zcreate("pf state scrubs",
  192             sizeof(struct pf_state_scrub),  NULL, NULL, NULL, NULL,
  193             UMA_ALIGN_PTR, 0);
  194 
  195         mtx_init(&V_pf_frag_mtx, "pf fragments", NULL, MTX_DEF);
  196 
  197         V_pf_limits[PF_LIMIT_FRAGS].zone = V_pf_frent_z;
  198         V_pf_limits[PF_LIMIT_FRAGS].limit = PFFRAG_FRENT_HIWAT;
  199         uma_zone_set_max(V_pf_frent_z, PFFRAG_FRENT_HIWAT);
  200         uma_zone_set_warning(V_pf_frent_z, "PF frag entries limit reached");
  201 
  202         TAILQ_INIT(&V_pf_fragqueue);
  203 }
  204 
  205 void
  206 pf_normalize_cleanup(void)
  207 {
  208 
  209         uma_zdestroy(V_pf_state_scrub_z);
  210         uma_zdestroy(V_pf_frent_z);
  211         uma_zdestroy(V_pf_frag_z);
  212 
  213         mtx_destroy(&V_pf_frag_mtx);
  214 }
  215 
  216 static int
  217 pf_frag_compare(struct pf_fragment *a, struct pf_fragment *b)
  218 {
  219         int     diff;
  220 
  221         if ((diff = a->fr_id - b->fr_id) != 0)
  222                 return (diff);
  223         if ((diff = a->fr_proto - b->fr_proto) != 0)
  224                 return (diff);
  225         if ((diff = a->fr_af - b->fr_af) != 0)
  226                 return (diff);
  227         if ((diff = pf_addr_cmp(&a->fr_src, &b->fr_src, a->fr_af)) != 0)
  228                 return (diff);
  229         if ((diff = pf_addr_cmp(&a->fr_dst, &b->fr_dst, a->fr_af)) != 0)
  230                 return (diff);
  231         return (0);
  232 }
  233 
  234 void
  235 pf_purge_expired_fragments(void)
  236 {
  237         u_int32_t       expire = time_uptime -
  238                             V_pf_default_rule.timeout[PFTM_FRAG];
  239 
  240         pf_purge_fragments(expire);
  241 }
  242 
  243 void
  244 pf_purge_fragments(uint32_t expire)
  245 {
  246         struct pf_fragment      *frag;
  247 
  248         PF_FRAG_LOCK();
  249         while ((frag = TAILQ_LAST(&V_pf_fragqueue, pf_fragqueue)) != NULL) {
  250                 if (frag->fr_timeout > expire)
  251                         break;
  252 
  253                 DPFPRINTF(("expiring %d(%p)\n", frag->fr_id, frag));
  254                 pf_free_fragment(frag);
  255         }
  256 
  257         PF_FRAG_UNLOCK();
  258 }
  259 
  260 /*
  261  * Try to flush old fragments to make space for new ones
  262  */
  263 static void
  264 pf_flush_fragments(void)
  265 {
  266         struct pf_fragment      *frag;
  267         int                      goal;
  268 
  269         PF_FRAG_ASSERT();
  270 
  271         goal = uma_zone_get_cur(V_pf_frent_z) * 9 / 10;
  272         DPFPRINTF(("trying to free %d frag entriess\n", goal));
  273         while (goal < uma_zone_get_cur(V_pf_frent_z)) {
  274                 frag = TAILQ_LAST(&V_pf_fragqueue, pf_fragqueue);
  275                 if (frag)
  276                         pf_free_fragment(frag);
  277                 else
  278                         break;
  279         }
  280 }
  281 
  282 /* Frees the fragments and all associated entries */
  283 static void
  284 pf_free_fragment(struct pf_fragment *frag)
  285 {
  286         struct pf_frent         *frent;
  287 
  288         PF_FRAG_ASSERT();
  289 
  290         /* Free all fragments */
  291         for (frent = TAILQ_FIRST(&frag->fr_queue); frent;
  292             frent = TAILQ_FIRST(&frag->fr_queue)) {
  293                 TAILQ_REMOVE(&frag->fr_queue, frent, fr_next);
  294 
  295                 m_freem(frent->fe_m);
  296                 uma_zfree(V_pf_frent_z, frent);
  297         }
  298 
  299         pf_remove_fragment(frag);
  300 }
  301 
  302 static struct pf_fragment *
  303 pf_find_fragment(struct pf_fragment_cmp *key, struct pf_frag_tree *tree)
  304 {
  305         struct pf_fragment      *frag;
  306 
  307         PF_FRAG_ASSERT();
  308 
  309         frag = RB_FIND(pf_frag_tree, tree, (struct pf_fragment *)key);
  310         if (frag != NULL) {
  311                 /* XXX Are we sure we want to update the timeout? */
  312                 frag->fr_timeout = time_uptime;
  313                 TAILQ_REMOVE(&V_pf_fragqueue, frag, frag_next);
  314                 TAILQ_INSERT_HEAD(&V_pf_fragqueue, frag, frag_next);
  315         }
  316 
  317         return (frag);
  318 }
  319 
  320 /* Removes a fragment from the fragment queue and frees the fragment */
  321 static void
  322 pf_remove_fragment(struct pf_fragment *frag)
  323 {
  324 
  325         PF_FRAG_ASSERT();
  326         KASSERT(frag, ("frag != NULL"));
  327 
  328         RB_REMOVE(pf_frag_tree, &V_pf_frag_tree, frag);
  329         TAILQ_REMOVE(&V_pf_fragqueue, frag, frag_next);
  330         uma_zfree(V_pf_frag_z, frag);
  331 }
  332 
  333 static struct pf_frent *
  334 pf_create_fragment(u_short *reason)
  335 {
  336         struct pf_frent *frent;
  337 
  338         PF_FRAG_ASSERT();
  339 
  340         frent = uma_zalloc(V_pf_frent_z, M_NOWAIT);
  341         if (frent == NULL) {
  342                 pf_flush_fragments();
  343                 frent = uma_zalloc(V_pf_frent_z, M_NOWAIT);
  344                 if (frent == NULL) {
  345                         REASON_SET(reason, PFRES_MEMORY);
  346                         return (NULL);
  347                 }
  348         }
  349 
  350         return (frent);
  351 }
  352 
  353 /*
  354  * Calculate the additional holes that were created in the fragment
  355  * queue by inserting this fragment.  A fragment in the middle
  356  * creates one more hole by splitting.  For each connected side,
  357  * it loses one hole.
  358  * Fragment entry must be in the queue when calling this function.
  359  */
  360 static int
  361 pf_frent_holes(struct pf_frent *frent)
  362 {
  363         struct pf_frent *prev = TAILQ_PREV(frent, pf_fragq, fr_next);
  364         struct pf_frent *next = TAILQ_NEXT(frent, fr_next);
  365         int holes = 1;
  366 
  367         if (prev == NULL) {
  368                 if (frent->fe_off == 0)
  369                         holes--;
  370         } else {
  371                 KASSERT(frent->fe_off != 0, ("frent->fe_off != 0"));
  372                 if (frent->fe_off == prev->fe_off + prev->fe_len)
  373                         holes--;
  374         }
  375         if (next == NULL) {
  376                 if (!frent->fe_mff)
  377                         holes--;
  378         } else {
  379                 KASSERT(frent->fe_mff, ("frent->fe_mff"));
  380                 if (next->fe_off == frent->fe_off + frent->fe_len)
  381                         holes--;
  382         }
  383         return holes;
  384 }
  385 
  386 static inline int
  387 pf_frent_index(struct pf_frent *frent)
  388 {
  389         /*
  390          * We have an array of 16 entry points to the queue.  A full size
  391          * 65535 octet IP packet can have 8192 fragments.  So the queue
  392          * traversal length is at most 512 and at most 16 entry points are
  393          * checked.  We need 128 additional bytes on a 64 bit architecture.
  394          */
  395         CTASSERT(((u_int16_t)0xffff &~ 7) / (0x10000 / PF_FRAG_ENTRY_POINTS) ==
  396             16 - 1);
  397         CTASSERT(((u_int16_t)0xffff >> 3) / PF_FRAG_ENTRY_POINTS == 512 - 1);
  398 
  399         return frent->fe_off / (0x10000 / PF_FRAG_ENTRY_POINTS);
  400 }
  401 
  402 static int
  403 pf_frent_insert(struct pf_fragment *frag, struct pf_frent *frent,
  404     struct pf_frent *prev)
  405 {
  406         int index;
  407 
  408         CTASSERT(PF_FRAG_ENTRY_LIMIT <= 0xff);
  409 
  410         /*
  411          * A packet has at most 65536 octets.  With 16 entry points, each one
  412          * spawns 4096 octets.  We limit these to 64 fragments each, which
  413          * means on average every fragment must have at least 64 octets.
  414          */
  415         index = pf_frent_index(frent);
  416         if (frag->fr_entries[index] >= PF_FRAG_ENTRY_LIMIT)
  417                 return ENOBUFS;
  418         frag->fr_entries[index]++;
  419 
  420         if (prev == NULL) {
  421                 TAILQ_INSERT_HEAD(&frag->fr_queue, frent, fr_next);
  422         } else {
  423                 KASSERT(prev->fe_off + prev->fe_len <= frent->fe_off,
  424                     ("overlapping fragment"));
  425                 TAILQ_INSERT_AFTER(&frag->fr_queue, prev, frent, fr_next);
  426         }
  427 
  428         if (frag->fr_firstoff[index] == NULL) {
  429                 KASSERT(prev == NULL || pf_frent_index(prev) < index,
  430                     ("prev == NULL || pf_frent_index(pref) < index"));
  431                 frag->fr_firstoff[index] = frent;
  432         } else {
  433                 if (frent->fe_off < frag->fr_firstoff[index]->fe_off) {
  434                         KASSERT(prev == NULL || pf_frent_index(prev) < index,
  435                             ("prev == NULL || pf_frent_index(pref) < index"));
  436                         frag->fr_firstoff[index] = frent;
  437                 } else {
  438                         KASSERT(prev != NULL, ("prev != NULL"));
  439                         KASSERT(pf_frent_index(prev) == index,
  440                             ("pf_frent_index(prev) == index"));
  441                 }
  442         }
  443 
  444         frag->fr_holes += pf_frent_holes(frent);
  445 
  446         return 0;
  447 }
  448 
  449 void
  450 pf_frent_remove(struct pf_fragment *frag, struct pf_frent *frent)
  451 {
  452 #ifdef INVARIANTS
  453         struct pf_frent *prev = TAILQ_PREV(frent, pf_fragq, fr_next);
  454 #endif
  455         struct pf_frent *next = TAILQ_NEXT(frent, fr_next);
  456         int index;
  457 
  458         frag->fr_holes -= pf_frent_holes(frent);
  459 
  460         index = pf_frent_index(frent);
  461         KASSERT(frag->fr_firstoff[index] != NULL, ("frent not found"));
  462         if (frag->fr_firstoff[index]->fe_off == frent->fe_off) {
  463                 if (next == NULL) {
  464                         frag->fr_firstoff[index] = NULL;
  465                 } else {
  466                         KASSERT(frent->fe_off + frent->fe_len <= next->fe_off,
  467                             ("overlapping fragment"));
  468                         if (pf_frent_index(next) == index) {
  469                                 frag->fr_firstoff[index] = next;
  470                         } else {
  471                                 frag->fr_firstoff[index] = NULL;
  472                         }
  473                 }
  474         } else {
  475                 KASSERT(frag->fr_firstoff[index]->fe_off < frent->fe_off,
  476                     ("frag->fr_firstoff[index]->fe_off < frent->fe_off"));
  477                 KASSERT(prev != NULL, ("prev != NULL"));
  478                 KASSERT(prev->fe_off + prev->fe_len <= frent->fe_off,
  479                     ("overlapping fragment"));
  480                 KASSERT(pf_frent_index(prev) == index,
  481                     ("pf_frent_index(prev) == index"));
  482         }
  483 
  484         TAILQ_REMOVE(&frag->fr_queue, frent, fr_next);
  485 
  486         KASSERT(frag->fr_entries[index] > 0, ("No fragments remaining"));
  487         frag->fr_entries[index]--;
  488 }
  489 
  490 struct pf_frent *
  491 pf_frent_previous(struct pf_fragment *frag, struct pf_frent *frent)
  492 {
  493         struct pf_frent *prev, *next;
  494         int index;
  495 
  496         /*
  497          * If there are no fragments after frag, take the final one.  Assume
  498          * that the global queue is not empty.
  499          */
  500         prev = TAILQ_LAST(&frag->fr_queue, pf_fragq);
  501         KASSERT(prev != NULL, ("prev != NULL"));
  502         if (prev->fe_off <= frent->fe_off)
  503                 return prev;
  504         /*
  505          * We want to find a fragment entry that is before frag, but still
  506          * close to it.  Find the first fragment entry that is in the same
  507          * entry point or in the first entry point after that.  As we have
  508          * already checked that there are entries behind frag, this will
  509          * succeed.
  510          */
  511         for (index = pf_frent_index(frent); index < PF_FRAG_ENTRY_POINTS;
  512             index++) {
  513                 prev = frag->fr_firstoff[index];
  514                 if (prev != NULL)
  515                         break;
  516         }
  517         KASSERT(prev != NULL, ("prev != NULL"));
  518         /*
  519          * In prev we may have a fragment from the same entry point that is
  520          * before frent, or one that is just one position behind frent.
  521          * In the latter case, we go back one step and have the predecessor.
  522          * There may be none if the new fragment will be the first one.
  523          */
  524         if (prev->fe_off > frent->fe_off) {
  525                 prev = TAILQ_PREV(prev, pf_fragq, fr_next);
  526                 if (prev == NULL)
  527                         return NULL;
  528                 KASSERT(prev->fe_off <= frent->fe_off,
  529                     ("prev->fe_off <= frent->fe_off"));
  530                 return prev;
  531         }
  532         /*
  533          * In prev is the first fragment of the entry point.  The offset
  534          * of frag is behind it.  Find the closest previous fragment.
  535          */
  536         for (next = TAILQ_NEXT(prev, fr_next); next != NULL;
  537             next = TAILQ_NEXT(next, fr_next)) {
  538                 if (next->fe_off > frent->fe_off)
  539                         break;
  540                 prev = next;
  541         }
  542         return prev;
  543 }
  544 
  545 static struct pf_fragment *
  546 pf_fillup_fragment(struct pf_fragment_cmp *key, struct pf_frent *frent,
  547     u_short *reason)
  548 {
  549         struct pf_frent         *after, *next, *prev;
  550         struct pf_fragment      *frag;
  551         uint16_t                total;
  552         int                     old_index, new_index;
  553 
  554         PF_FRAG_ASSERT();
  555 
  556         /* No empty fragments. */
  557         if (frent->fe_len == 0) {
  558                 DPFPRINTF(("bad fragment: len 0\n"));
  559                 goto bad_fragment;
  560         }
  561 
  562         /* All fragments are 8 byte aligned. */
  563         if (frent->fe_mff && (frent->fe_len & 0x7)) {
  564                 DPFPRINTF(("bad fragment: mff and len %d\n", frent->fe_len));
  565                 goto bad_fragment;
  566         }
  567 
  568         /* Respect maximum length, IP_MAXPACKET == IPV6_MAXPACKET. */
  569         if (frent->fe_off + frent->fe_len > IP_MAXPACKET) {
  570                 DPFPRINTF(("bad fragment: max packet %d\n",
  571                     frent->fe_off + frent->fe_len));
  572                 goto bad_fragment;
  573         }
  574 
  575         DPFPRINTF((key->frc_af == AF_INET ?
  576             "reass frag %d @ %d-%d\n" : "reass frag %#08x @ %d-%d\n",
  577             key->frc_id, frent->fe_off, frent->fe_off + frent->fe_len));
  578 
  579         /* Fully buffer all of the fragments in this fragment queue. */
  580         frag = pf_find_fragment(key, &V_pf_frag_tree);
  581 
  582         /* Create a new reassembly queue for this packet. */
  583         if (frag == NULL) {
  584                 frag = uma_zalloc(V_pf_frag_z, M_NOWAIT);
  585                 if (frag == NULL) {
  586                         pf_flush_fragments();
  587                         frag = uma_zalloc(V_pf_frag_z, M_NOWAIT);
  588                         if (frag == NULL) {
  589                                 REASON_SET(reason, PFRES_MEMORY);
  590                                 goto drop_fragment;
  591                         }
  592                 }
  593 
  594                 *(struct pf_fragment_cmp *)frag = *key;
  595                 memset(frag->fr_firstoff, 0, sizeof(frag->fr_firstoff));
  596                 memset(frag->fr_entries, 0, sizeof(frag->fr_entries));
  597                 frag->fr_timeout = time_uptime;
  598                 frag->fr_maxlen = frent->fe_len;
  599                 frag->fr_holes = 1;
  600                 TAILQ_INIT(&frag->fr_queue);
  601 
  602                 RB_INSERT(pf_frag_tree, &V_pf_frag_tree, frag);
  603                 TAILQ_INSERT_HEAD(&V_pf_fragqueue, frag, frag_next);
  604 
  605                 /* We do not have a previous fragment, cannot fail. */
  606                 pf_frent_insert(frag, frent, NULL);
  607 
  608                 return (frag);
  609         }
  610 
  611         KASSERT(!TAILQ_EMPTY(&frag->fr_queue), ("!TAILQ_EMPTY()->fr_queue"));
  612 
  613         /* Remember maximum fragment len for refragmentation. */
  614         if (frent->fe_len > frag->fr_maxlen)
  615                 frag->fr_maxlen = frent->fe_len;
  616 
  617         /* Maximum data we have seen already. */
  618         total = TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_off +
  619                 TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_len;
  620 
  621         /* Non terminal fragments must have more fragments flag. */
  622         if (frent->fe_off + frent->fe_len < total && !frent->fe_mff)
  623                 goto bad_fragment;
  624 
  625         /* Check if we saw the last fragment already. */
  626         if (!TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_mff) {
  627                 if (frent->fe_off + frent->fe_len > total ||
  628                     (frent->fe_off + frent->fe_len == total && frent->fe_mff))
  629                         goto bad_fragment;
  630         } else {
  631                 if (frent->fe_off + frent->fe_len == total && !frent->fe_mff)
  632                         goto bad_fragment;
  633         }
  634 
  635         /* Find neighbors for newly inserted fragment */
  636         prev = pf_frent_previous(frag, frent);
  637         if (prev == NULL) {
  638                 after = TAILQ_FIRST(&frag->fr_queue);
  639                 KASSERT(after != NULL, ("after != NULL"));
  640         } else {
  641                 after = TAILQ_NEXT(prev, fr_next);
  642         }
  643 
  644         if (prev != NULL && prev->fe_off + prev->fe_len > frent->fe_off) {
  645                 uint16_t precut;
  646 
  647                 precut = prev->fe_off + prev->fe_len - frent->fe_off;
  648                 if (precut >= frent->fe_len)
  649                         goto bad_fragment;
  650                 DPFPRINTF(("overlap -%d\n", precut));
  651                 m_adj(frent->fe_m, precut);
  652                 frent->fe_off += precut;
  653                 frent->fe_len -= precut;
  654         }
  655 
  656         for (; after != NULL && frent->fe_off + frent->fe_len > after->fe_off;
  657             after = next) {
  658                 uint16_t aftercut;
  659 
  660                 aftercut = frent->fe_off + frent->fe_len - after->fe_off;
  661                 DPFPRINTF(("adjust overlap %d\n", aftercut));
  662                 if (aftercut < after->fe_len) {
  663                         m_adj(after->fe_m, aftercut);
  664                         old_index = pf_frent_index(after);
  665                         after->fe_off += aftercut;
  666                         after->fe_len -= aftercut;
  667                         new_index = pf_frent_index(after);
  668                         if (old_index != new_index) {
  669                                 DPFPRINTF(("frag index %d, new %d",
  670                                     old_index, new_index));
  671                                 /* Fragment switched queue as fe_off changed */
  672                                 after->fe_off -= aftercut;
  673                                 after->fe_len += aftercut;
  674                                 /* Remove restored fragment from old queue */
  675                                 pf_frent_remove(frag, after);
  676                                 after->fe_off += aftercut;
  677                                 after->fe_len -= aftercut;
  678                                 /* Insert into correct queue */
  679                                 if (pf_frent_insert(frag, after, prev)) {
  680                                         DPFPRINTF(
  681                                             ("fragment requeue limit exceeded"));
  682                                         m_freem(after->fe_m);
  683                                         uma_zfree(V_pf_frent_z, after);
  684                                         /* There is not way to recover */
  685                                         goto bad_fragment;
  686                                 }
  687                         }
  688                         break;
  689                 }
  690 
  691                 /* This fragment is completely overlapped, lose it. */
  692                 next = TAILQ_NEXT(after, fr_next);
  693                 pf_frent_remove(frag, after);
  694                 m_freem(after->fe_m);
  695                 uma_zfree(V_pf_frent_z, after);
  696         }
  697 
  698         /* If part of the queue gets too long, there is not way to recover. */
  699         if (pf_frent_insert(frag, frent, prev)) {
  700                 DPFPRINTF(("fragment queue limit exceeded\n"));
  701                 goto bad_fragment;
  702         }
  703 
  704         return (frag);
  705 
  706 bad_fragment:
  707         REASON_SET(reason, PFRES_FRAG);
  708 drop_fragment:
  709         uma_zfree(V_pf_frent_z, frent);
  710         return (NULL);
  711 }
  712 
  713 static struct mbuf *
  714 pf_join_fragment(struct pf_fragment *frag)
  715 {
  716         struct mbuf *m, *m2;
  717         struct pf_frent *frent, *next;
  718 
  719         frent = TAILQ_FIRST(&frag->fr_queue);
  720         next = TAILQ_NEXT(frent, fr_next);
  721 
  722         m = frent->fe_m;
  723         m_adj(m, (frent->fe_hdrlen + frent->fe_len) - m->m_pkthdr.len);
  724         uma_zfree(V_pf_frent_z, frent);
  725         for (frent = next; frent != NULL; frent = next) {
  726                 next = TAILQ_NEXT(frent, fr_next);
  727 
  728                 m2 = frent->fe_m;
  729                 /* Strip off ip header. */
  730                 m_adj(m2, frent->fe_hdrlen);
  731                 /* Strip off any trailing bytes. */
  732                 m_adj(m2, frent->fe_len - m2->m_pkthdr.len);
  733 
  734                 uma_zfree(V_pf_frent_z, frent);
  735                 m_cat(m, m2);
  736         }
  737 
  738         /* Remove from fragment queue. */
  739         pf_remove_fragment(frag);
  740 
  741         return (m);
  742 }
  743 
  744 #ifdef INET
  745 static int
  746 pf_reassemble(struct mbuf **m0, struct ip *ip, int dir, u_short *reason)
  747 {
  748         struct mbuf             *m = *m0;
  749         struct pf_frent         *frent;
  750         struct pf_fragment      *frag;
  751         struct pf_fragment_cmp  key;
  752         uint16_t                total, hdrlen;
  753 
  754         /* Get an entry for the fragment queue */
  755         if ((frent = pf_create_fragment(reason)) == NULL)
  756                 return (PF_DROP);
  757 
  758         frent->fe_m = m;
  759         frent->fe_hdrlen = ip->ip_hl << 2;
  760         frent->fe_extoff = 0;
  761         frent->fe_len = ntohs(ip->ip_len) - (ip->ip_hl << 2);
  762         frent->fe_off = (ntohs(ip->ip_off) & IP_OFFMASK) << 3;
  763         frent->fe_mff = ntohs(ip->ip_off) & IP_MF;
  764 
  765         pf_ip2key(ip, dir, &key);
  766 
  767         if ((frag = pf_fillup_fragment(&key, frent, reason)) == NULL)
  768                 return (PF_DROP);
  769 
  770         /* The mbuf is part of the fragment entry, no direct free or access */
  771         m = *m0 = NULL;
  772 
  773         if (frag->fr_holes) {
  774                 DPFPRINTF(("frag %d, holes %d\n", frag->fr_id, frag->fr_holes));
  775                 return (PF_PASS);  /* drop because *m0 is NULL, no error */
  776         }
  777 
  778         /* We have all the data */
  779         frent = TAILQ_FIRST(&frag->fr_queue);
  780         KASSERT(frent != NULL, ("frent != NULL"));
  781         total = TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_off +
  782                 TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_len;
  783         hdrlen = frent->fe_hdrlen;
  784 
  785         m = *m0 = pf_join_fragment(frag);
  786         frag = NULL;
  787 
  788         if (m->m_flags & M_PKTHDR) {
  789                 int plen = 0;
  790                 for (m = *m0; m; m = m->m_next)
  791                         plen += m->m_len;
  792                 m = *m0;
  793                 m->m_pkthdr.len = plen;
  794         }
  795 
  796         ip = mtod(m, struct ip *);
  797         ip->ip_sum = pf_cksum_fixup(ip->ip_sum, ip->ip_len,
  798             htons(hdrlen + total), 0);
  799         ip->ip_len = htons(hdrlen + total);
  800         ip->ip_sum = pf_cksum_fixup(ip->ip_sum, ip->ip_off,
  801             ip->ip_off & ~(IP_MF|IP_OFFMASK), 0);
  802         ip->ip_off &= ~(IP_MF|IP_OFFMASK);
  803 
  804         if (hdrlen + total > IP_MAXPACKET) {
  805                 DPFPRINTF(("drop: too big: %d\n", total));
  806                 ip->ip_len = 0;
  807                 REASON_SET(reason, PFRES_SHORT);
  808                 /* PF_DROP requires a valid mbuf *m0 in pf_test() */
  809                 return (PF_DROP);
  810         }
  811 
  812         DPFPRINTF(("complete: %p(%d)\n", m, ntohs(ip->ip_len)));
  813         return (PF_PASS);
  814 }
  815 #endif  /* INET */
  816 
  817 #ifdef INET6
  818 static int
  819 pf_reassemble6(struct mbuf **m0, struct ip6_hdr *ip6, struct ip6_frag *fraghdr,
  820     uint16_t hdrlen, uint16_t extoff, u_short *reason)
  821 {
  822         struct mbuf             *m = *m0;
  823         struct pf_frent         *frent;
  824         struct pf_fragment      *frag;
  825         struct pf_fragment_cmp   key;
  826         struct m_tag            *mtag;
  827         struct pf_fragment_tag  *ftag;
  828         int                      off;
  829         uint32_t                 frag_id;
  830         uint16_t                 total, maxlen;
  831         uint8_t                  proto;
  832 
  833         PF_FRAG_LOCK();
  834 
  835         /* Get an entry for the fragment queue. */
  836         if ((frent = pf_create_fragment(reason)) == NULL) {
  837                 PF_FRAG_UNLOCK();
  838                 return (PF_DROP);
  839         }
  840 
  841         frent->fe_m = m;
  842         frent->fe_hdrlen = hdrlen;
  843         frent->fe_extoff = extoff;
  844         frent->fe_len = sizeof(struct ip6_hdr) + ntohs(ip6->ip6_plen) - hdrlen;
  845         frent->fe_off = ntohs(fraghdr->ip6f_offlg & IP6F_OFF_MASK);
  846         frent->fe_mff = fraghdr->ip6f_offlg & IP6F_MORE_FRAG;
  847 
  848         key.frc_src.v6 = ip6->ip6_src;
  849         key.frc_dst.v6 = ip6->ip6_dst;
  850         key.frc_af = AF_INET6;
  851         /* Only the first fragment's protocol is relevant. */
  852         key.frc_proto = 0;
  853         key.frc_id = fraghdr->ip6f_ident;
  854 
  855         if ((frag = pf_fillup_fragment(&key, frent, reason)) == NULL) {
  856                 PF_FRAG_UNLOCK();
  857                 return (PF_DROP);
  858         }
  859 
  860         /* The mbuf is part of the fragment entry, no direct free or access. */
  861         m = *m0 = NULL;
  862 
  863         if (frag->fr_holes) {
  864                 DPFPRINTF(("frag %d, holes %d\n", frag->fr_id,
  865                     frag->fr_holes));
  866                 PF_FRAG_UNLOCK();
  867                 return (PF_PASS);  /* Drop because *m0 is NULL, no error. */
  868         }
  869 
  870         /* We have all the data. */
  871         frent = TAILQ_FIRST(&frag->fr_queue);
  872         KASSERT(frent != NULL, ("frent != NULL"));
  873         extoff = frent->fe_extoff;
  874         maxlen = frag->fr_maxlen;
  875         frag_id = frag->fr_id;
  876         total = TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_off +
  877                 TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_len;
  878         hdrlen = frent->fe_hdrlen - sizeof(struct ip6_frag);
  879 
  880         m = *m0 = pf_join_fragment(frag);
  881         frag = NULL;
  882 
  883         PF_FRAG_UNLOCK();
  884 
  885         /* Take protocol from first fragment header. */
  886         m = m_getptr(m, hdrlen + offsetof(struct ip6_frag, ip6f_nxt), &off);
  887         KASSERT(m, ("%s: short mbuf chain", __func__));
  888         proto = *(mtod(m, caddr_t) + off);
  889         m = *m0;
  890 
  891         /* Delete frag6 header */
  892         if (ip6_deletefraghdr(m, hdrlen, M_NOWAIT) != 0)
  893                 goto fail;
  894 
  895         if (m->m_flags & M_PKTHDR) {
  896                 int plen = 0;
  897                 for (m = *m0; m; m = m->m_next)
  898                         plen += m->m_len;
  899                 m = *m0;
  900                 m->m_pkthdr.len = plen;
  901         }
  902 
  903         if ((mtag = m_tag_get(PF_REASSEMBLED, sizeof(struct pf_fragment_tag),
  904             M_NOWAIT)) == NULL)
  905                 goto fail;
  906         ftag = (struct pf_fragment_tag *)(mtag + 1);
  907         ftag->ft_hdrlen = hdrlen;
  908         ftag->ft_extoff = extoff;
  909         ftag->ft_maxlen = maxlen;
  910         ftag->ft_id = frag_id;
  911         m_tag_prepend(m, mtag);
  912 
  913         ip6 = mtod(m, struct ip6_hdr *);
  914         ip6->ip6_plen = htons(hdrlen - sizeof(struct ip6_hdr) + total);
  915         if (extoff) {
  916                 /* Write protocol into next field of last extension header. */
  917                 m = m_getptr(m, extoff + offsetof(struct ip6_ext, ip6e_nxt),
  918                     &off);
  919                 KASSERT(m, ("%s: short mbuf chain", __func__));
  920                 *(mtod(m, char *) + off) = proto;
  921                 m = *m0;
  922         } else
  923                 ip6->ip6_nxt = proto;
  924 
  925         if (hdrlen - sizeof(struct ip6_hdr) + total > IPV6_MAXPACKET) {
  926                 DPFPRINTF(("drop: too big: %d\n", total));
  927                 ip6->ip6_plen = 0;
  928                 REASON_SET(reason, PFRES_SHORT);
  929                 /* PF_DROP requires a valid mbuf *m0 in pf_test6(). */
  930                 return (PF_DROP);
  931         }
  932 
  933         DPFPRINTF(("complete: %p(%d)\n", m, ntohs(ip6->ip6_plen)));
  934         return (PF_PASS);
  935 
  936 fail:
  937         REASON_SET(reason, PFRES_MEMORY);
  938         /* PF_DROP requires a valid mbuf *m0 in pf_test6(), will free later. */
  939         return (PF_DROP);
  940 }
  941 #endif  /* INET6 */
  942 
  943 #ifdef INET6
  944 int
  945 pf_refragment6(struct ifnet *ifp, struct mbuf **m0, struct m_tag *mtag)
  946 {
  947         struct mbuf             *m = *m0, *t;
  948         struct pf_fragment_tag  *ftag = (struct pf_fragment_tag *)(mtag + 1);
  949         struct pf_pdesc          pd;
  950         uint32_t                 frag_id;
  951         uint16_t                 hdrlen, extoff, maxlen;
  952         uint8_t                  proto;
  953         int                      error, action;
  954 
  955         hdrlen = ftag->ft_hdrlen;
  956         extoff = ftag->ft_extoff;
  957         maxlen = ftag->ft_maxlen;
  958         frag_id = ftag->ft_id;
  959         m_tag_delete(m, mtag);
  960         mtag = NULL;
  961         ftag = NULL;
  962 
  963         if (extoff) {
  964                 int off;
  965 
  966                 /* Use protocol from next field of last extension header */
  967                 m = m_getptr(m, extoff + offsetof(struct ip6_ext, ip6e_nxt),
  968                     &off);
  969                 KASSERT((m != NULL), ("pf_refragment6: short mbuf chain"));
  970                 proto = *(mtod(m, caddr_t) + off);
  971                 *(mtod(m, char *) + off) = IPPROTO_FRAGMENT;
  972                 m = *m0;
  973         } else {
  974                 struct ip6_hdr *hdr;
  975 
  976                 hdr = mtod(m, struct ip6_hdr *);
  977                 proto = hdr->ip6_nxt;
  978                 hdr->ip6_nxt = IPPROTO_FRAGMENT;
  979         }
  980 
  981         /* The MTU must be a multiple of 8 bytes, or we risk doing the
  982          * fragmentation wrong. */
  983         maxlen = maxlen & ~7;
  984 
  985         /*
  986          * Maxlen may be less than 8 if there was only a single
  987          * fragment.  As it was fragmented before, add a fragment
  988          * header also for a single fragment.  If total or maxlen
  989          * is less than 8, ip6_fragment() will return EMSGSIZE and
  990          * we drop the packet.
  991          */
  992         error = ip6_fragment(ifp, m, hdrlen, proto, maxlen, frag_id);
  993         m = (*m0)->m_nextpkt;
  994         (*m0)->m_nextpkt = NULL;
  995         if (error == 0) {
  996                 /* The first mbuf contains the unfragmented packet. */
  997                 m_freem(*m0);
  998                 *m0 = NULL;
  999                 action = PF_PASS;
 1000         } else {
 1001                 /* Drop expects an mbuf to free. */
 1002                 DPFPRINTF(("refragment error %d\n", error));
 1003                 action = PF_DROP;
 1004         }
 1005         for (; m; m = t) {
 1006                 t = m->m_nextpkt;
 1007                 m->m_nextpkt = NULL;
 1008                 m->m_flags |= M_SKIP_FIREWALL;
 1009                 memset(&pd, 0, sizeof(pd));
 1010                 pd.pf_mtag = pf_find_mtag(m);
 1011                 if (error == 0)
 1012                         ip6_forward(m, 0);
 1013                 else
 1014                         m_freem(m);
 1015         }
 1016 
 1017         return (action);
 1018 }
 1019 #endif /* INET6 */
 1020 
 1021 #ifdef INET
 1022 int
 1023 pf_normalize_ip(struct mbuf **m0, int dir, struct pfi_kkif *kif, u_short *reason,
 1024     struct pf_pdesc *pd)
 1025 {
 1026         struct mbuf             *m = *m0;
 1027         struct pf_krule         *r;
 1028         struct ip               *h = mtod(m, struct ip *);
 1029         int                      mff = (ntohs(h->ip_off) & IP_MF);
 1030         int                      hlen = h->ip_hl << 2;
 1031         u_int16_t                fragoff = (ntohs(h->ip_off) & IP_OFFMASK) << 3;
 1032         u_int16_t                max;
 1033         int                      ip_len;
 1034         int                      tag = -1;
 1035         int                      verdict;
 1036 
 1037         PF_RULES_RASSERT();
 1038 
 1039         r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_SCRUB].active.ptr);
 1040         while (r != NULL) {
 1041                 pf_counter_u64_add(&r->evaluations, 1);
 1042                 if (pfi_kkif_match(r->kif, kif) == r->ifnot)
 1043                         r = r->skip[PF_SKIP_IFP].ptr;
 1044                 else if (r->direction && r->direction != dir)
 1045                         r = r->skip[PF_SKIP_DIR].ptr;
 1046                 else if (r->af && r->af != AF_INET)
 1047                         r = r->skip[PF_SKIP_AF].ptr;
 1048                 else if (r->proto && r->proto != h->ip_p)
 1049                         r = r->skip[PF_SKIP_PROTO].ptr;
 1050                 else if (PF_MISMATCHAW(&r->src.addr,
 1051                     (struct pf_addr *)&h->ip_src.s_addr, AF_INET,
 1052                     r->src.neg, kif, M_GETFIB(m)))
 1053                         r = r->skip[PF_SKIP_SRC_ADDR].ptr;
 1054                 else if (PF_MISMATCHAW(&r->dst.addr,
 1055                     (struct pf_addr *)&h->ip_dst.s_addr, AF_INET,
 1056                     r->dst.neg, NULL, M_GETFIB(m)))
 1057                         r = r->skip[PF_SKIP_DST_ADDR].ptr;
 1058                 else if (r->match_tag && !pf_match_tag(m, r, &tag,
 1059                     pd->pf_mtag ? pd->pf_mtag->tag : 0))
 1060                         r = TAILQ_NEXT(r, entries);
 1061                 else
 1062                         break;
 1063         }
 1064 
 1065         if (r == NULL || r->action == PF_NOSCRUB)
 1066                 return (PF_PASS);
 1067 
 1068         pf_counter_u64_critical_enter();
 1069         pf_counter_u64_add_protected(&r->packets[dir == PF_OUT], 1);
 1070         pf_counter_u64_add_protected(&r->bytes[dir == PF_OUT], pd->tot_len);
 1071         pf_counter_u64_critical_exit();
 1072 
 1073         /* Check for illegal packets */
 1074         if (hlen < (int)sizeof(struct ip)) {
 1075                 REASON_SET(reason, PFRES_NORM);
 1076                 goto drop;
 1077         }
 1078 
 1079         if (hlen > ntohs(h->ip_len)) {
 1080                 REASON_SET(reason, PFRES_NORM);
 1081                 goto drop;
 1082         }
 1083 
 1084         /* Clear IP_DF if the rule uses the no-df option */
 1085         if (r->rule_flag & PFRULE_NODF && h->ip_off & htons(IP_DF)) {
 1086                 u_int16_t ip_off = h->ip_off;
 1087 
 1088                 h->ip_off &= htons(~IP_DF);
 1089                 h->ip_sum = pf_cksum_fixup(h->ip_sum, ip_off, h->ip_off, 0);
 1090         }
 1091 
 1092         /* We will need other tests here */
 1093         if (!fragoff && !mff)
 1094                 goto no_fragment;
 1095 
 1096         /* We're dealing with a fragment now. Don't allow fragments
 1097          * with IP_DF to enter the cache. If the flag was cleared by
 1098          * no-df above, fine. Otherwise drop it.
 1099          */
 1100         if (h->ip_off & htons(IP_DF)) {
 1101                 DPFPRINTF(("IP_DF\n"));
 1102                 goto bad;
 1103         }
 1104 
 1105         ip_len = ntohs(h->ip_len) - hlen;
 1106 
 1107         /* All fragments are 8 byte aligned */
 1108         if (mff && (ip_len & 0x7)) {
 1109                 DPFPRINTF(("mff and %d\n", ip_len));
 1110                 goto bad;
 1111         }
 1112 
 1113         /* Respect maximum length */
 1114         if (fragoff + ip_len > IP_MAXPACKET) {
 1115                 DPFPRINTF(("max packet %d\n", fragoff + ip_len));
 1116                 goto bad;
 1117         }
 1118 
 1119         if (! (r->rule_flag & PFRULE_FRAGMENT_NOREASS)) {
 1120                 max = fragoff + ip_len;
 1121 
 1122                 /* Fully buffer all of the fragments
 1123                  * Might return a completely reassembled mbuf, or NULL */
 1124                 PF_FRAG_LOCK();
 1125                 DPFPRINTF(("reass frag %d @ %d-%d\n", h->ip_id, fragoff, max));
 1126                 verdict = pf_reassemble(m0, h, dir, reason);
 1127                 PF_FRAG_UNLOCK();
 1128 
 1129                 if (verdict != PF_PASS)
 1130                         return (PF_DROP);
 1131 
 1132                 m = *m0;
 1133                 if (m == NULL)
 1134                         return (PF_DROP);
 1135 
 1136                 h = mtod(m, struct ip *);
 1137 
 1138  no_fragment:
 1139                 /* At this point, only IP_DF is allowed in ip_off */
 1140                 if (h->ip_off & ~htons(IP_DF)) {
 1141                         u_int16_t ip_off = h->ip_off;
 1142 
 1143                         h->ip_off &= htons(IP_DF);
 1144                         h->ip_sum = pf_cksum_fixup(h->ip_sum, ip_off, h->ip_off, 0);
 1145                 }
 1146         }
 1147 
 1148         pf_scrub_ip(&m, r->rule_flag, r->min_ttl, r->set_tos);
 1149 
 1150         return (PF_PASS);
 1151 
 1152  bad:
 1153         DPFPRINTF(("dropping bad fragment\n"));
 1154         REASON_SET(reason, PFRES_FRAG);
 1155  drop:
 1156         if (r != NULL && r->log)
 1157                 PFLOG_PACKET(kif, m, AF_INET, dir, *reason, r, NULL, NULL, pd,
 1158                     1);
 1159 
 1160         return (PF_DROP);
 1161 }
 1162 #endif
 1163 
 1164 #ifdef INET6
 1165 int
 1166 pf_normalize_ip6(struct mbuf **m0, int dir, struct pfi_kkif *kif,
 1167     u_short *reason, struct pf_pdesc *pd)
 1168 {
 1169         struct mbuf             *m = *m0;
 1170         struct pf_krule         *r;
 1171         struct ip6_hdr          *h = mtod(m, struct ip6_hdr *);
 1172         int                      extoff;
 1173         int                      off;
 1174         struct ip6_ext           ext;
 1175         struct ip6_opt           opt;
 1176         struct ip6_frag          frag;
 1177         u_int32_t                plen;
 1178         int                      optend;
 1179         int                      ooff;
 1180         u_int8_t                 proto;
 1181         int                      terminal;
 1182 
 1183         PF_RULES_RASSERT();
 1184 
 1185         r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_SCRUB].active.ptr);
 1186         while (r != NULL) {
 1187                 pf_counter_u64_add(&r->evaluations, 1);
 1188                 if (pfi_kkif_match(r->kif, kif) == r->ifnot)
 1189                         r = r->skip[PF_SKIP_IFP].ptr;
 1190                 else if (r->direction && r->direction != dir)
 1191                         r = r->skip[PF_SKIP_DIR].ptr;
 1192                 else if (r->af && r->af != AF_INET6)
 1193                         r = r->skip[PF_SKIP_AF].ptr;
 1194 #if 0 /* header chain! */
 1195                 else if (r->proto && r->proto != h->ip6_nxt)
 1196                         r = r->skip[PF_SKIP_PROTO].ptr;
 1197 #endif
 1198                 else if (PF_MISMATCHAW(&r->src.addr,
 1199                     (struct pf_addr *)&h->ip6_src, AF_INET6,
 1200                     r->src.neg, kif, M_GETFIB(m)))
 1201                         r = r->skip[PF_SKIP_SRC_ADDR].ptr;
 1202                 else if (PF_MISMATCHAW(&r->dst.addr,
 1203                     (struct pf_addr *)&h->ip6_dst, AF_INET6,
 1204                     r->dst.neg, NULL, M_GETFIB(m)))
 1205                         r = r->skip[PF_SKIP_DST_ADDR].ptr;
 1206                 else
 1207                         break;
 1208         }
 1209 
 1210         if (r == NULL || r->action == PF_NOSCRUB)
 1211                 return (PF_PASS);
 1212 
 1213         pf_counter_u64_critical_enter();
 1214         pf_counter_u64_add_protected(&r->packets[dir == PF_OUT], 1);
 1215         pf_counter_u64_add_protected(&r->bytes[dir == PF_OUT], pd->tot_len);
 1216         pf_counter_u64_critical_exit();
 1217 
 1218         /* Check for illegal packets */
 1219         if (sizeof(struct ip6_hdr) + IPV6_MAXPACKET < m->m_pkthdr.len)
 1220                 goto drop;
 1221 
 1222         plen = ntohs(h->ip6_plen);
 1223         /* jumbo payload option not supported */
 1224         if (plen == 0)
 1225                 goto drop;
 1226 
 1227         extoff = 0;
 1228         off = sizeof(struct ip6_hdr);
 1229         proto = h->ip6_nxt;
 1230         terminal = 0;
 1231         do {
 1232                 switch (proto) {
 1233                 case IPPROTO_FRAGMENT:
 1234                         goto fragment;
 1235                         break;
 1236                 case IPPROTO_AH:
 1237                 case IPPROTO_ROUTING:
 1238                 case IPPROTO_DSTOPTS:
 1239                         if (!pf_pull_hdr(m, off, &ext, sizeof(ext), NULL,
 1240                             NULL, AF_INET6))
 1241                                 goto shortpkt;
 1242                         extoff = off;
 1243                         if (proto == IPPROTO_AH)
 1244                                 off += (ext.ip6e_len + 2) * 4;
 1245                         else
 1246                                 off += (ext.ip6e_len + 1) * 8;
 1247                         proto = ext.ip6e_nxt;
 1248                         break;
 1249                 case IPPROTO_HOPOPTS:
 1250                         if (!pf_pull_hdr(m, off, &ext, sizeof(ext), NULL,
 1251                             NULL, AF_INET6))
 1252                                 goto shortpkt;
 1253                         extoff = off;
 1254                         optend = off + (ext.ip6e_len + 1) * 8;
 1255                         ooff = off + sizeof(ext);
 1256                         do {
 1257                                 if (!pf_pull_hdr(m, ooff, &opt.ip6o_type,
 1258                                     sizeof(opt.ip6o_type), NULL, NULL,
 1259                                     AF_INET6))
 1260                                         goto shortpkt;
 1261                                 if (opt.ip6o_type == IP6OPT_PAD1) {
 1262                                         ooff++;
 1263                                         continue;
 1264                                 }
 1265                                 if (!pf_pull_hdr(m, ooff, &opt, sizeof(opt),
 1266                                     NULL, NULL, AF_INET6))
 1267                                         goto shortpkt;
 1268                                 if (ooff + sizeof(opt) + opt.ip6o_len > optend)
 1269                                         goto drop;
 1270                                 if (opt.ip6o_type == IP6OPT_JUMBO)
 1271                                         goto drop;
 1272                                 ooff += sizeof(opt) + opt.ip6o_len;
 1273                         } while (ooff < optend);
 1274 
 1275                         off = optend;
 1276                         proto = ext.ip6e_nxt;
 1277                         break;
 1278                 default:
 1279                         terminal = 1;
 1280                         break;
 1281                 }
 1282         } while (!terminal);
 1283 
 1284         if (sizeof(struct ip6_hdr) + plen > m->m_pkthdr.len)
 1285                 goto shortpkt;
 1286 
 1287         pf_scrub_ip6(&m, r->rule_flag, r->min_ttl, r->set_tos);
 1288 
 1289         return (PF_PASS);
 1290 
 1291  fragment:
 1292         if (sizeof(struct ip6_hdr) + plen > m->m_pkthdr.len)
 1293                 goto shortpkt;
 1294 
 1295         if (!pf_pull_hdr(m, off, &frag, sizeof(frag), NULL, NULL, AF_INET6))
 1296                 goto shortpkt;
 1297 
 1298         /* Offset now points to data portion. */
 1299         off += sizeof(frag);
 1300 
 1301         /* Returns PF_DROP or *m0 is NULL or completely reassembled mbuf. */
 1302         if (pf_reassemble6(m0, h, &frag, off, extoff, reason) != PF_PASS)
 1303                 return (PF_DROP);
 1304         m = *m0;
 1305         if (m == NULL)
 1306                 return (PF_DROP);
 1307 
 1308         pd->flags |= PFDESC_IP_REAS;
 1309         return (PF_PASS);
 1310 
 1311  shortpkt:
 1312         REASON_SET(reason, PFRES_SHORT);
 1313         if (r != NULL && r->log)
 1314                 PFLOG_PACKET(kif, m, AF_INET6, dir, *reason, r, NULL, NULL, pd,
 1315                     1);
 1316         return (PF_DROP);
 1317 
 1318  drop:
 1319         REASON_SET(reason, PFRES_NORM);
 1320         if (r != NULL && r->log)
 1321                 PFLOG_PACKET(kif, m, AF_INET6, dir, *reason, r, NULL, NULL, pd,
 1322                     1);
 1323         return (PF_DROP);
 1324 }
 1325 #endif /* INET6 */
 1326 
 1327 int
 1328 pf_normalize_tcp(int dir, struct pfi_kkif *kif, struct mbuf *m, int ipoff,
 1329     int off, void *h, struct pf_pdesc *pd)
 1330 {
 1331         struct pf_krule *r, *rm = NULL;
 1332         struct tcphdr   *th = &pd->hdr.tcp;
 1333         int              rewrite = 0;
 1334         u_short          reason;
 1335         u_int8_t         flags;
 1336         sa_family_t      af = pd->af;
 1337 
 1338         PF_RULES_RASSERT();
 1339 
 1340         r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_SCRUB].active.ptr);
 1341         while (r != NULL) {
 1342                 pf_counter_u64_add(&r->evaluations, 1);
 1343                 if (pfi_kkif_match(r->kif, kif) == r->ifnot)
 1344                         r = r->skip[PF_SKIP_IFP].ptr;
 1345                 else if (r->direction && r->direction != dir)
 1346                         r = r->skip[PF_SKIP_DIR].ptr;
 1347                 else if (r->af && r->af != af)
 1348                         r = r->skip[PF_SKIP_AF].ptr;
 1349                 else if (r->proto && r->proto != pd->proto)
 1350                         r = r->skip[PF_SKIP_PROTO].ptr;
 1351                 else if (PF_MISMATCHAW(&r->src.addr, pd->src, af,
 1352                     r->src.neg, kif, M_GETFIB(m)))
 1353                         r = r->skip[PF_SKIP_SRC_ADDR].ptr;
 1354                 else if (r->src.port_op && !pf_match_port(r->src.port_op,
 1355                             r->src.port[0], r->src.port[1], th->th_sport))
 1356                         r = r->skip[PF_SKIP_SRC_PORT].ptr;
 1357                 else if (PF_MISMATCHAW(&r->dst.addr, pd->dst, af,
 1358                     r->dst.neg, NULL, M_GETFIB(m)))
 1359                         r = r->skip[PF_SKIP_DST_ADDR].ptr;
 1360                 else if (r->dst.port_op && !pf_match_port(r->dst.port_op,
 1361                             r->dst.port[0], r->dst.port[1], th->th_dport))
 1362                         r = r->skip[PF_SKIP_DST_PORT].ptr;
 1363                 else if (r->os_fingerprint != PF_OSFP_ANY && !pf_osfp_match(
 1364                             pf_osfp_fingerprint(pd, m, off, th),
 1365                             r->os_fingerprint))
 1366                         r = TAILQ_NEXT(r, entries);
 1367                 else {
 1368                         rm = r;
 1369                         break;
 1370                 }
 1371         }
 1372 
 1373         if (rm == NULL || rm->action == PF_NOSCRUB)
 1374                 return (PF_PASS);
 1375 
 1376         pf_counter_u64_critical_enter();
 1377         pf_counter_u64_add_protected(&r->packets[dir == PF_OUT], 1);
 1378         pf_counter_u64_add_protected(&r->bytes[dir == PF_OUT], pd->tot_len);
 1379         pf_counter_u64_critical_exit();
 1380 
 1381         if (rm->rule_flag & PFRULE_REASSEMBLE_TCP)
 1382                 pd->flags |= PFDESC_TCP_NORM;
 1383 
 1384         flags = th->th_flags;
 1385         if (flags & TH_SYN) {
 1386                 /* Illegal packet */
 1387                 if (flags & TH_RST)
 1388                         goto tcp_drop;
 1389 
 1390                 if (flags & TH_FIN)
 1391                         goto tcp_drop;
 1392         } else {
 1393                 /* Illegal packet */
 1394                 if (!(flags & (TH_ACK|TH_RST)))
 1395                         goto tcp_drop;
 1396         }
 1397 
 1398         if (!(flags & TH_ACK)) {
 1399                 /* These flags are only valid if ACK is set */
 1400                 if ((flags & TH_FIN) || (flags & TH_PUSH) || (flags & TH_URG))
 1401                         goto tcp_drop;
 1402         }
 1403 
 1404         /* Check for illegal header length */
 1405         if (th->th_off < (sizeof(struct tcphdr) >> 2))
 1406                 goto tcp_drop;
 1407 
 1408         /* If flags changed, or reserved data set, then adjust */
 1409         if (flags != th->th_flags || th->th_x2 != 0) {
 1410                 u_int16_t       ov, nv;
 1411 
 1412                 ov = *(u_int16_t *)(&th->th_ack + 1);
 1413                 th->th_flags = flags;
 1414                 th->th_x2 = 0;
 1415                 nv = *(u_int16_t *)(&th->th_ack + 1);
 1416 
 1417                 th->th_sum = pf_proto_cksum_fixup(m, th->th_sum, ov, nv, 0);
 1418                 rewrite = 1;
 1419         }
 1420 
 1421         /* Remove urgent pointer, if TH_URG is not set */
 1422         if (!(flags & TH_URG) && th->th_urp) {
 1423                 th->th_sum = pf_proto_cksum_fixup(m, th->th_sum, th->th_urp,
 1424                     0, 0);
 1425                 th->th_urp = 0;
 1426                 rewrite = 1;
 1427         }
 1428 
 1429         /* Process options */
 1430         if (r->max_mss && pf_normalize_tcpopt(r, m, th, off, pd->af))
 1431                 rewrite = 1;
 1432 
 1433         /* copy back packet headers if we sanitized */
 1434         if (rewrite)
 1435                 m_copyback(m, off, sizeof(*th), (caddr_t)th);
 1436 
 1437         return (PF_PASS);
 1438 
 1439  tcp_drop:
 1440         REASON_SET(&reason, PFRES_NORM);
 1441         if (rm != NULL && r->log)
 1442                 PFLOG_PACKET(kif, m, AF_INET, dir, reason, r, NULL, NULL, pd,
 1443                     1);
 1444         return (PF_DROP);
 1445 }
 1446 
 1447 int
 1448 pf_normalize_tcp_init(struct mbuf *m, int off, struct pf_pdesc *pd,
 1449     struct tcphdr *th, struct pf_state_peer *src, struct pf_state_peer *dst)
 1450 {
 1451         u_int32_t tsval, tsecr;
 1452         u_int8_t hdr[60];
 1453         u_int8_t *opt;
 1454 
 1455         KASSERT((src->scrub == NULL),
 1456             ("pf_normalize_tcp_init: src->scrub != NULL"));
 1457 
 1458         src->scrub = uma_zalloc(V_pf_state_scrub_z, M_ZERO | M_NOWAIT);
 1459         if (src->scrub == NULL)
 1460                 return (1);
 1461 
 1462         switch (pd->af) {
 1463 #ifdef INET
 1464         case AF_INET: {
 1465                 struct ip *h = mtod(m, struct ip *);
 1466                 src->scrub->pfss_ttl = h->ip_ttl;
 1467                 break;
 1468         }
 1469 #endif /* INET */
 1470 #ifdef INET6
 1471         case AF_INET6: {
 1472                 struct ip6_hdr *h = mtod(m, struct ip6_hdr *);
 1473                 src->scrub->pfss_ttl = h->ip6_hlim;
 1474                 break;
 1475         }
 1476 #endif /* INET6 */
 1477         }
 1478 
 1479         /*
 1480          * All normalizations below are only begun if we see the start of
 1481          * the connections.  They must all set an enabled bit in pfss_flags
 1482          */
 1483         if ((th->th_flags & TH_SYN) == 0)
 1484                 return (0);
 1485 
 1486         if (th->th_off > (sizeof(struct tcphdr) >> 2) && src->scrub &&
 1487             pf_pull_hdr(m, off, hdr, th->th_off << 2, NULL, NULL, pd->af)) {
 1488                 /* Diddle with TCP options */
 1489                 int hlen;
 1490                 opt = hdr + sizeof(struct tcphdr);
 1491                 hlen = (th->th_off << 2) - sizeof(struct tcphdr);
 1492                 while (hlen >= TCPOLEN_TIMESTAMP) {
 1493                         switch (*opt) {
 1494                         case TCPOPT_EOL:        /* FALLTHROUGH */
 1495                         case TCPOPT_NOP:
 1496                                 opt++;
 1497                                 hlen--;
 1498                                 break;
 1499                         case TCPOPT_TIMESTAMP:
 1500                                 if (opt[1] >= TCPOLEN_TIMESTAMP) {
 1501                                         src->scrub->pfss_flags |=
 1502                                             PFSS_TIMESTAMP;
 1503                                         src->scrub->pfss_ts_mod =
 1504                                             htonl(arc4random());
 1505 
 1506                                         /* note PFSS_PAWS not set yet */
 1507                                         memcpy(&tsval, &opt[2],
 1508                                             sizeof(u_int32_t));
 1509                                         memcpy(&tsecr, &opt[6],
 1510                                             sizeof(u_int32_t));
 1511                                         src->scrub->pfss_tsval0 = ntohl(tsval);
 1512                                         src->scrub->pfss_tsval = ntohl(tsval);
 1513                                         src->scrub->pfss_tsecr = ntohl(tsecr);
 1514                                         getmicrouptime(&src->scrub->pfss_last);
 1515                                 }
 1516                                 /* FALLTHROUGH */
 1517                         default:
 1518                                 hlen -= MAX(opt[1], 2);
 1519                                 opt += MAX(opt[1], 2);
 1520                                 break;
 1521                         }
 1522                 }
 1523         }
 1524 
 1525         return (0);
 1526 }
 1527 
 1528 void
 1529 pf_normalize_tcp_cleanup(struct pf_kstate *state)
 1530 {
 1531         if (state->src.scrub)
 1532                 uma_zfree(V_pf_state_scrub_z, state->src.scrub);
 1533         if (state->dst.scrub)
 1534                 uma_zfree(V_pf_state_scrub_z, state->dst.scrub);
 1535 
 1536         /* Someday... flush the TCP segment reassembly descriptors. */
 1537 }
 1538 
 1539 int
 1540 pf_normalize_tcp_stateful(struct mbuf *m, int off, struct pf_pdesc *pd,
 1541     u_short *reason, struct tcphdr *th, struct pf_kstate *state,
 1542     struct pf_state_peer *src, struct pf_state_peer *dst, int *writeback)
 1543 {
 1544         struct timeval uptime;
 1545         u_int32_t tsval, tsecr;
 1546         u_int tsval_from_last;
 1547         u_int8_t hdr[60];
 1548         u_int8_t *opt;
 1549         int copyback = 0;
 1550         int got_ts = 0;
 1551         size_t startoff;
 1552 
 1553         KASSERT((src->scrub || dst->scrub),
 1554             ("%s: src->scrub && dst->scrub!", __func__));
 1555 
 1556         /*
 1557          * Enforce the minimum TTL seen for this connection.  Negate a common
 1558          * technique to evade an intrusion detection system and confuse
 1559          * firewall state code.
 1560          */
 1561         switch (pd->af) {
 1562 #ifdef INET
 1563         case AF_INET: {
 1564                 if (src->scrub) {
 1565                         struct ip *h = mtod(m, struct ip *);
 1566                         if (h->ip_ttl > src->scrub->pfss_ttl)
 1567                                 src->scrub->pfss_ttl = h->ip_ttl;
 1568                         h->ip_ttl = src->scrub->pfss_ttl;
 1569                 }
 1570                 break;
 1571         }
 1572 #endif /* INET */
 1573 #ifdef INET6
 1574         case AF_INET6: {
 1575                 if (src->scrub) {
 1576                         struct ip6_hdr *h = mtod(m, struct ip6_hdr *);
 1577                         if (h->ip6_hlim > src->scrub->pfss_ttl)
 1578                                 src->scrub->pfss_ttl = h->ip6_hlim;
 1579                         h->ip6_hlim = src->scrub->pfss_ttl;
 1580                 }
 1581                 break;
 1582         }
 1583 #endif /* INET6 */
 1584         }
 1585 
 1586         if (th->th_off > (sizeof(struct tcphdr) >> 2) &&
 1587             ((src->scrub && (src->scrub->pfss_flags & PFSS_TIMESTAMP)) ||
 1588             (dst->scrub && (dst->scrub->pfss_flags & PFSS_TIMESTAMP))) &&
 1589             pf_pull_hdr(m, off, hdr, th->th_off << 2, NULL, NULL, pd->af)) {
 1590                 /* Diddle with TCP options */
 1591                 int hlen;
 1592                 opt = hdr + sizeof(struct tcphdr);
 1593                 hlen = (th->th_off << 2) - sizeof(struct tcphdr);
 1594                 while (hlen >= TCPOLEN_TIMESTAMP) {
 1595                         startoff = opt - (hdr + sizeof(struct tcphdr));
 1596                         switch (*opt) {
 1597                         case TCPOPT_EOL:        /* FALLTHROUGH */
 1598                         case TCPOPT_NOP:
 1599                                 opt++;
 1600                                 hlen--;
 1601                                 break;
 1602                         case TCPOPT_TIMESTAMP:
 1603                                 /* Modulate the timestamps.  Can be used for
 1604                                  * NAT detection, OS uptime determination or
 1605                                  * reboot detection.
 1606                                  */
 1607 
 1608                                 if (got_ts) {
 1609                                         /* Huh?  Multiple timestamps!? */
 1610                                         if (V_pf_status.debug >= PF_DEBUG_MISC) {
 1611                                                 DPFPRINTF(("multiple TS??\n"));
 1612                                                 pf_print_state(state);
 1613                                                 printf("\n");
 1614                                         }
 1615                                         REASON_SET(reason, PFRES_TS);
 1616                                         return (PF_DROP);
 1617                                 }
 1618                                 if (opt[1] >= TCPOLEN_TIMESTAMP) {
 1619                                         memcpy(&tsval, &opt[2],
 1620                                             sizeof(u_int32_t));
 1621                                         if (tsval && src->scrub &&
 1622                                             (src->scrub->pfss_flags &
 1623                                             PFSS_TIMESTAMP)) {
 1624                                                 tsval = ntohl(tsval);
 1625                                                 pf_patch_32_unaligned(m,
 1626                                                     &th->th_sum,
 1627                                                     &opt[2],
 1628                                                     htonl(tsval +
 1629                                                     src->scrub->pfss_ts_mod),
 1630                                                     PF_ALGNMNT(startoff),
 1631                                                     0);
 1632                                                 copyback = 1;
 1633                                         }
 1634 
 1635                                         /* Modulate TS reply iff valid (!0) */
 1636                                         memcpy(&tsecr, &opt[6],
 1637                                             sizeof(u_int32_t));
 1638                                         if (tsecr && dst->scrub &&
 1639                                             (dst->scrub->pfss_flags &
 1640                                             PFSS_TIMESTAMP)) {
 1641                                                 tsecr = ntohl(tsecr)
 1642                                                     - dst->scrub->pfss_ts_mod;
 1643                                                 pf_patch_32_unaligned(m,
 1644                                                     &th->th_sum,
 1645                                                     &opt[6],
 1646                                                     htonl(tsecr),
 1647                                                     PF_ALGNMNT(startoff),
 1648                                                     0);
 1649                                                 copyback = 1;
 1650                                         }
 1651                                         got_ts = 1;
 1652                                 }
 1653                                 /* FALLTHROUGH */
 1654                         default:
 1655                                 hlen -= MAX(opt[1], 2);
 1656                                 opt += MAX(opt[1], 2);
 1657                                 break;
 1658                         }
 1659                 }
 1660                 if (copyback) {
 1661                         /* Copyback the options, caller copys back header */
 1662                         *writeback = 1;
 1663                         m_copyback(m, off + sizeof(struct tcphdr),
 1664                             (th->th_off << 2) - sizeof(struct tcphdr), hdr +
 1665                             sizeof(struct tcphdr));
 1666                 }
 1667         }
 1668 
 1669         /*
 1670          * Must invalidate PAWS checks on connections idle for too long.
 1671          * The fastest allowed timestamp clock is 1ms.  That turns out to
 1672          * be about 24 days before it wraps.  XXX Right now our lowerbound
 1673          * TS echo check only works for the first 12 days of a connection
 1674          * when the TS has exhausted half its 32bit space
 1675          */
 1676 #define TS_MAX_IDLE     (24*24*60*60)
 1677 #define TS_MAX_CONN     (12*24*60*60)   /* XXX remove when better tsecr check */
 1678 
 1679         getmicrouptime(&uptime);
 1680         if (src->scrub && (src->scrub->pfss_flags & PFSS_PAWS) &&
 1681             (uptime.tv_sec - src->scrub->pfss_last.tv_sec > TS_MAX_IDLE ||
 1682             time_uptime - state->creation > TS_MAX_CONN))  {
 1683                 if (V_pf_status.debug >= PF_DEBUG_MISC) {
 1684                         DPFPRINTF(("src idled out of PAWS\n"));
 1685                         pf_print_state(state);
 1686                         printf("\n");
 1687                 }
 1688                 src->scrub->pfss_flags = (src->scrub->pfss_flags & ~PFSS_PAWS)
 1689                     | PFSS_PAWS_IDLED;
 1690         }
 1691         if (dst->scrub && (dst->scrub->pfss_flags & PFSS_PAWS) &&
 1692             uptime.tv_sec - dst->scrub->pfss_last.tv_sec > TS_MAX_IDLE) {
 1693                 if (V_pf_status.debug >= PF_DEBUG_MISC) {
 1694                         DPFPRINTF(("dst idled out of PAWS\n"));
 1695                         pf_print_state(state);
 1696                         printf("\n");
 1697                 }
 1698                 dst->scrub->pfss_flags = (dst->scrub->pfss_flags & ~PFSS_PAWS)
 1699                     | PFSS_PAWS_IDLED;
 1700         }
 1701 
 1702         if (got_ts && src->scrub && dst->scrub &&
 1703             (src->scrub->pfss_flags & PFSS_PAWS) &&
 1704             (dst->scrub->pfss_flags & PFSS_PAWS)) {
 1705                 /* Validate that the timestamps are "in-window".
 1706                  * RFC1323 describes TCP Timestamp options that allow
 1707                  * measurement of RTT (round trip time) and PAWS
 1708                  * (protection against wrapped sequence numbers).  PAWS
 1709                  * gives us a set of rules for rejecting packets on
 1710                  * long fat pipes (packets that were somehow delayed
 1711                  * in transit longer than the time it took to send the
 1712                  * full TCP sequence space of 4Gb).  We can use these
 1713                  * rules and infer a few others that will let us treat
 1714                  * the 32bit timestamp and the 32bit echoed timestamp
 1715                  * as sequence numbers to prevent a blind attacker from
 1716                  * inserting packets into a connection.
 1717                  *
 1718                  * RFC1323 tells us:
 1719                  *  - The timestamp on this packet must be greater than
 1720                  *    or equal to the last value echoed by the other
 1721                  *    endpoint.  The RFC says those will be discarded
 1722                  *    since it is a dup that has already been acked.
 1723                  *    This gives us a lowerbound on the timestamp.
 1724                  *        timestamp >= other last echoed timestamp
 1725                  *  - The timestamp will be less than or equal to
 1726                  *    the last timestamp plus the time between the
 1727                  *    last packet and now.  The RFC defines the max
 1728                  *    clock rate as 1ms.  We will allow clocks to be
 1729                  *    up to 10% fast and will allow a total difference
 1730                  *    or 30 seconds due to a route change.  And this
 1731                  *    gives us an upperbound on the timestamp.
 1732                  *        timestamp <= last timestamp + max ticks
 1733                  *    We have to be careful here.  Windows will send an
 1734                  *    initial timestamp of zero and then initialize it
 1735                  *    to a random value after the 3whs; presumably to
 1736                  *    avoid a DoS by having to call an expensive RNG
 1737                  *    during a SYN flood.  Proof MS has at least one
 1738                  *    good security geek.
 1739                  *
 1740                  *  - The TCP timestamp option must also echo the other
 1741                  *    endpoints timestamp.  The timestamp echoed is the
 1742                  *    one carried on the earliest unacknowledged segment
 1743                  *    on the left edge of the sequence window.  The RFC
 1744                  *    states that the host will reject any echoed
 1745                  *    timestamps that were larger than any ever sent.
 1746                  *    This gives us an upperbound on the TS echo.
 1747                  *        tescr <= largest_tsval
 1748                  *  - The lowerbound on the TS echo is a little more
 1749                  *    tricky to determine.  The other endpoint's echoed
 1750                  *    values will not decrease.  But there may be
 1751                  *    network conditions that re-order packets and
 1752                  *    cause our view of them to decrease.  For now the
 1753                  *    only lowerbound we can safely determine is that
 1754                  *    the TS echo will never be less than the original
 1755                  *    TS.  XXX There is probably a better lowerbound.
 1756                  *    Remove TS_MAX_CONN with better lowerbound check.
 1757                  *        tescr >= other original TS
 1758                  *
 1759                  * It is also important to note that the fastest
 1760                  * timestamp clock of 1ms will wrap its 32bit space in
 1761                  * 24 days.  So we just disable TS checking after 24
 1762                  * days of idle time.  We actually must use a 12d
 1763                  * connection limit until we can come up with a better
 1764                  * lowerbound to the TS echo check.
 1765                  */
 1766                 struct timeval delta_ts;
 1767                 int ts_fudge;
 1768 
 1769                 /*
 1770                  * PFTM_TS_DIFF is how many seconds of leeway to allow
 1771                  * a host's timestamp.  This can happen if the previous
 1772                  * packet got delayed in transit for much longer than
 1773                  * this packet.
 1774                  */
 1775                 if ((ts_fudge = state->rule.ptr->timeout[PFTM_TS_DIFF]) == 0)
 1776                         ts_fudge = V_pf_default_rule.timeout[PFTM_TS_DIFF];
 1777 
 1778                 /* Calculate max ticks since the last timestamp */
 1779 #define TS_MAXFREQ      1100            /* RFC max TS freq of 1Khz + 10% skew */
 1780 #define TS_MICROSECS    1000000         /* microseconds per second */
 1781                 delta_ts = uptime;
 1782                 timevalsub(&delta_ts, &src->scrub->pfss_last);
 1783                 tsval_from_last = (delta_ts.tv_sec + ts_fudge) * TS_MAXFREQ;
 1784                 tsval_from_last += delta_ts.tv_usec / (TS_MICROSECS/TS_MAXFREQ);
 1785 
 1786                 if ((src->state >= TCPS_ESTABLISHED &&
 1787                     dst->state >= TCPS_ESTABLISHED) &&
 1788                     (SEQ_LT(tsval, dst->scrub->pfss_tsecr) ||
 1789                     SEQ_GT(tsval, src->scrub->pfss_tsval + tsval_from_last) ||
 1790                     (tsecr && (SEQ_GT(tsecr, dst->scrub->pfss_tsval) ||
 1791                     SEQ_LT(tsecr, dst->scrub->pfss_tsval0))))) {
 1792                         /* Bad RFC1323 implementation or an insertion attack.
 1793                          *
 1794                          * - Solaris 2.6 and 2.7 are known to send another ACK
 1795                          *   after the FIN,FIN|ACK,ACK closing that carries
 1796                          *   an old timestamp.
 1797                          */
 1798 
 1799                         DPFPRINTF(("Timestamp failed %c%c%c%c\n",
 1800                             SEQ_LT(tsval, dst->scrub->pfss_tsecr) ? '' : ' ',
 1801                             SEQ_GT(tsval, src->scrub->pfss_tsval +
 1802                             tsval_from_last) ? '1' : ' ',
 1803                             SEQ_GT(tsecr, dst->scrub->pfss_tsval) ? '2' : ' ',
 1804                             SEQ_LT(tsecr, dst->scrub->pfss_tsval0)? '3' : ' '));
 1805                         DPFPRINTF((" tsval: %u  tsecr: %u  +ticks: %u  "
 1806                             "idle: %jus %lums\n",
 1807                             tsval, tsecr, tsval_from_last,
 1808                             (uintmax_t)delta_ts.tv_sec,
 1809                             delta_ts.tv_usec / 1000));
 1810                         DPFPRINTF((" src->tsval: %u  tsecr: %u\n",
 1811                             src->scrub->pfss_tsval, src->scrub->pfss_tsecr));
 1812                         DPFPRINTF((" dst->tsval: %u  tsecr: %u  tsval0: %u"
 1813                             "\n", dst->scrub->pfss_tsval,
 1814                             dst->scrub->pfss_tsecr, dst->scrub->pfss_tsval0));
 1815                         if (V_pf_status.debug >= PF_DEBUG_MISC) {
 1816                                 pf_print_state(state);
 1817                                 pf_print_flags(th->th_flags);
 1818                                 printf("\n");
 1819                         }
 1820                         REASON_SET(reason, PFRES_TS);
 1821                         return (PF_DROP);
 1822                 }
 1823 
 1824                 /* XXX I'd really like to require tsecr but it's optional */
 1825 
 1826         } else if (!got_ts && (th->th_flags & TH_RST) == 0 &&
 1827             ((src->state == TCPS_ESTABLISHED && dst->state == TCPS_ESTABLISHED)
 1828             || pd->p_len > 0 || (th->th_flags & TH_SYN)) &&
 1829             src->scrub && dst->scrub &&
 1830             (src->scrub->pfss_flags & PFSS_PAWS) &&
 1831             (dst->scrub->pfss_flags & PFSS_PAWS)) {
 1832                 /* Didn't send a timestamp.  Timestamps aren't really useful
 1833                  * when:
 1834                  *  - connection opening or closing (often not even sent).
 1835                  *    but we must not let an attacker to put a FIN on a
 1836                  *    data packet to sneak it through our ESTABLISHED check.
 1837                  *  - on a TCP reset.  RFC suggests not even looking at TS.
 1838                  *  - on an empty ACK.  The TS will not be echoed so it will
 1839                  *    probably not help keep the RTT calculation in sync and
 1840                  *    there isn't as much danger when the sequence numbers
 1841                  *    got wrapped.  So some stacks don't include TS on empty
 1842                  *    ACKs :-(
 1843                  *
 1844                  * To minimize the disruption to mostly RFC1323 conformant
 1845                  * stacks, we will only require timestamps on data packets.
 1846                  *
 1847                  * And what do ya know, we cannot require timestamps on data
 1848                  * packets.  There appear to be devices that do legitimate
 1849                  * TCP connection hijacking.  There are HTTP devices that allow
 1850                  * a 3whs (with timestamps) and then buffer the HTTP request.
 1851                  * If the intermediate device has the HTTP response cache, it
 1852                  * will spoof the response but not bother timestamping its
 1853                  * packets.  So we can look for the presence of a timestamp in
 1854                  * the first data packet and if there, require it in all future
 1855                  * packets.
 1856                  */
 1857 
 1858                 if (pd->p_len > 0 && (src->scrub->pfss_flags & PFSS_DATA_TS)) {
 1859                         /*
 1860                          * Hey!  Someone tried to sneak a packet in.  Or the
 1861                          * stack changed its RFC1323 behavior?!?!
 1862                          */
 1863                         if (V_pf_status.debug >= PF_DEBUG_MISC) {
 1864                                 DPFPRINTF(("Did not receive expected RFC1323 "
 1865                                     "timestamp\n"));
 1866                                 pf_print_state(state);
 1867                                 pf_print_flags(th->th_flags);
 1868                                 printf("\n");
 1869                         }
 1870                         REASON_SET(reason, PFRES_TS);
 1871                         return (PF_DROP);
 1872                 }
 1873         }
 1874 
 1875         /*
 1876          * We will note if a host sends his data packets with or without
 1877          * timestamps.  And require all data packets to contain a timestamp
 1878          * if the first does.  PAWS implicitly requires that all data packets be
 1879          * timestamped.  But I think there are middle-man devices that hijack
 1880          * TCP streams immediately after the 3whs and don't timestamp their
 1881          * packets (seen in a WWW accelerator or cache).
 1882          */
 1883         if (pd->p_len > 0 && src->scrub && (src->scrub->pfss_flags &
 1884             (PFSS_TIMESTAMP|PFSS_DATA_TS|PFSS_DATA_NOTS)) == PFSS_TIMESTAMP) {
 1885                 if (got_ts)
 1886                         src->scrub->pfss_flags |= PFSS_DATA_TS;
 1887                 else {
 1888                         src->scrub->pfss_flags |= PFSS_DATA_NOTS;
 1889                         if (V_pf_status.debug >= PF_DEBUG_MISC && dst->scrub &&
 1890                             (dst->scrub->pfss_flags & PFSS_TIMESTAMP)) {
 1891                                 /* Don't warn if other host rejected RFC1323 */
 1892                                 DPFPRINTF(("Broken RFC1323 stack did not "
 1893                                     "timestamp data packet. Disabled PAWS "
 1894                                     "security.\n"));
 1895                                 pf_print_state(state);
 1896                                 pf_print_flags(th->th_flags);
 1897                                 printf("\n");
 1898                         }
 1899                 }
 1900         }
 1901 
 1902         /*
 1903          * Update PAWS values
 1904          */
 1905         if (got_ts && src->scrub && PFSS_TIMESTAMP == (src->scrub->pfss_flags &
 1906             (PFSS_PAWS_IDLED|PFSS_TIMESTAMP))) {
 1907                 getmicrouptime(&src->scrub->pfss_last);
 1908                 if (SEQ_GEQ(tsval, src->scrub->pfss_tsval) ||
 1909                     (src->scrub->pfss_flags & PFSS_PAWS) == 0)
 1910                         src->scrub->pfss_tsval = tsval;
 1911 
 1912                 if (tsecr) {
 1913                         if (SEQ_GEQ(tsecr, src->scrub->pfss_tsecr) ||
 1914                             (src->scrub->pfss_flags & PFSS_PAWS) == 0)
 1915                                 src->scrub->pfss_tsecr = tsecr;
 1916 
 1917                         if ((src->scrub->pfss_flags & PFSS_PAWS) == 0 &&
 1918                             (SEQ_LT(tsval, src->scrub->pfss_tsval0) ||
 1919                             src->scrub->pfss_tsval0 == 0)) {
 1920                                 /* tsval0 MUST be the lowest timestamp */
 1921                                 src->scrub->pfss_tsval0 = tsval;
 1922                         }
 1923 
 1924                         /* Only fully initialized after a TS gets echoed */
 1925                         if ((src->scrub->pfss_flags & PFSS_PAWS) == 0)
 1926                                 src->scrub->pfss_flags |= PFSS_PAWS;
 1927                 }
 1928         }
 1929 
 1930         /* I have a dream....  TCP segment reassembly.... */
 1931         return (0);
 1932 }
 1933 
 1934 static int
 1935 pf_normalize_tcpopt(struct pf_krule *r, struct mbuf *m, struct tcphdr *th,
 1936     int off, sa_family_t af)
 1937 {
 1938         u_int16_t       *mss;
 1939         int              thoff;
 1940         int              opt, cnt, optlen = 0;
 1941         int              rewrite = 0;
 1942         u_char           opts[TCP_MAXOLEN];
 1943         u_char          *optp = opts;
 1944         size_t           startoff;
 1945 
 1946         thoff = th->th_off << 2;
 1947         cnt = thoff - sizeof(struct tcphdr);
 1948 
 1949         if (cnt > 0 && !pf_pull_hdr(m, off + sizeof(*th), opts, cnt,
 1950             NULL, NULL, af))
 1951                 return (rewrite);
 1952 
 1953         for (; cnt > 0; cnt -= optlen, optp += optlen) {
 1954                 startoff = optp - opts;
 1955                 opt = optp[0];
 1956                 if (opt == TCPOPT_EOL)
 1957                         break;
 1958                 if (opt == TCPOPT_NOP)
 1959                         optlen = 1;
 1960                 else {
 1961                         if (cnt < 2)
 1962                                 break;
 1963                         optlen = optp[1];
 1964                         if (optlen < 2 || optlen > cnt)
 1965                                 break;
 1966                 }
 1967                 switch (opt) {
 1968                 case TCPOPT_MAXSEG:
 1969                         mss = (u_int16_t *)(optp + 2);
 1970                         if ((ntohs(*mss)) > r->max_mss) {
 1971                                 pf_patch_16_unaligned(m,
 1972                                     &th->th_sum,
 1973                                     mss, htons(r->max_mss),
 1974                                     PF_ALGNMNT(startoff),
 1975                                     0);
 1976                                 rewrite = 1;
 1977                         }
 1978                         break;
 1979                 default:
 1980                         break;
 1981                 }
 1982         }
 1983 
 1984         if (rewrite)
 1985                 m_copyback(m, off + sizeof(*th), thoff - sizeof(*th), opts);
 1986 
 1987         return (rewrite);
 1988 }
 1989 
 1990 #ifdef INET
 1991 static void
 1992 pf_scrub_ip(struct mbuf **m0, u_int32_t flags, u_int8_t min_ttl, u_int8_t tos)
 1993 {
 1994         struct mbuf             *m = *m0;
 1995         struct ip               *h = mtod(m, struct ip *);
 1996 
 1997         /* Clear IP_DF if no-df was requested */
 1998         if (flags & PFRULE_NODF && h->ip_off & htons(IP_DF)) {
 1999                 u_int16_t ip_off = h->ip_off;
 2000 
 2001                 h->ip_off &= htons(~IP_DF);
 2002                 h->ip_sum = pf_cksum_fixup(h->ip_sum, ip_off, h->ip_off, 0);
 2003         }
 2004 
 2005         /* Enforce a minimum ttl, may cause endless packet loops */
 2006         if (min_ttl && h->ip_ttl < min_ttl) {
 2007                 u_int16_t ip_ttl = h->ip_ttl;
 2008 
 2009                 h->ip_ttl = min_ttl;
 2010                 h->ip_sum = pf_cksum_fixup(h->ip_sum, ip_ttl, h->ip_ttl, 0);
 2011         }
 2012 
 2013         /* Enforce tos */
 2014         if (flags & PFRULE_SET_TOS) {
 2015                 u_int16_t       ov, nv;
 2016 
 2017                 ov = *(u_int16_t *)h;
 2018                 h->ip_tos = tos | (h->ip_tos & IPTOS_ECN_MASK);
 2019                 nv = *(u_int16_t *)h;
 2020 
 2021                 h->ip_sum = pf_cksum_fixup(h->ip_sum, ov, nv, 0);
 2022         }
 2023 
 2024         /* random-id, but not for fragments */
 2025         if (flags & PFRULE_RANDOMID && !(h->ip_off & ~htons(IP_DF))) {
 2026                 uint16_t ip_id = h->ip_id;
 2027 
 2028                 ip_fillid(h);
 2029                 h->ip_sum = pf_cksum_fixup(h->ip_sum, ip_id, h->ip_id, 0);
 2030         }
 2031 }
 2032 #endif /* INET */
 2033 
 2034 #ifdef INET6
 2035 static void
 2036 pf_scrub_ip6(struct mbuf **m0, u_int32_t flags, u_int8_t min_ttl, u_int8_t tos)
 2037 {
 2038         struct mbuf             *m = *m0;
 2039         struct ip6_hdr          *h = mtod(m, struct ip6_hdr *);
 2040 
 2041         /* Enforce a minimum ttl, may cause endless packet loops */
 2042         if (min_ttl && h->ip6_hlim < min_ttl)
 2043                 h->ip6_hlim = min_ttl;
 2044 
 2045         /* Enforce tos. Set traffic class bits */
 2046         if (flags & PFRULE_SET_TOS) {
 2047                 h->ip6_flow &= IPV6_FLOWLABEL_MASK | IPV6_VERSION_MASK;
 2048                 h->ip6_flow |= htonl((tos | IPV6_ECN(h)) << 20);
 2049         }
 2050 }
 2051 #endif

Cache object: ed7822783ae5d5a37015626d936b43fe


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.