The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/netpfil/pf/pf_norm.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright 2001 Niels Provos <provos@citi.umich.edu>
    3  * Copyright 2011 Alexander Bluhm <bluhm@openbsd.org>
    4  * All rights reserved.
    5  *
    6  * Redistribution and use in source and binary forms, with or without
    7  * modification, are permitted provided that the following conditions
    8  * are met:
    9  * 1. Redistributions of source code must retain the above copyright
   10  *    notice, this list of conditions and the following disclaimer.
   11  * 2. Redistributions in binary form must reproduce the above copyright
   12  *    notice, this list of conditions and the following disclaimer in the
   13  *    documentation and/or other materials provided with the distribution.
   14  *
   15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
   16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
   17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
   18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
   19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
   20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
   21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
   22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
   23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
   24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
   25  *
   26  *      $OpenBSD: pf_norm.c,v 1.114 2009/01/29 14:11:45 henning Exp $
   27  */
   28 
   29 #include <sys/cdefs.h>
   30 __FBSDID("$FreeBSD: releng/11.0/sys/netpfil/pf/pf_norm.c 300307 2016-05-20 15:41:05Z kp $");
   31 
   32 #include "opt_inet.h"
   33 #include "opt_inet6.h"
   34 #include "opt_pf.h"
   35 
   36 #include <sys/param.h>
   37 #include <sys/kernel.h>
   38 #include <sys/lock.h>
   39 #include <sys/mbuf.h>
   40 #include <sys/mutex.h>
   41 #include <sys/refcount.h>
   42 #include <sys/rwlock.h>
   43 #include <sys/socket.h>
   44 
   45 #include <net/if.h>
   46 #include <net/vnet.h>
   47 #include <net/pfvar.h>
   48 #include <net/if_pflog.h>
   49 
   50 #include <netinet/in.h>
   51 #include <netinet/ip.h>
   52 #include <netinet/ip_var.h>
   53 #include <netinet6/ip6_var.h>
   54 #include <netinet/tcp.h>
   55 #include <netinet/tcp_fsm.h>
   56 #include <netinet/tcp_seq.h>
   57 
   58 #ifdef INET6
   59 #include <netinet/ip6.h>
   60 #endif /* INET6 */
   61 
   62 struct pf_frent {
   63         TAILQ_ENTRY(pf_frent)   fr_next;
   64         struct mbuf     *fe_m;
   65         uint16_t        fe_hdrlen;      /* ipv4 header length with ip options
   66                                            ipv6, extension, fragment header */
   67         uint16_t        fe_extoff;      /* last extension header offset or 0 */
   68         uint16_t        fe_len;         /* fragment length */
   69         uint16_t        fe_off;         /* fragment offset */
   70         uint16_t        fe_mff;         /* more fragment flag */
   71 };
   72 
   73 struct pf_fragment_cmp {
   74         struct pf_addr  frc_src;
   75         struct pf_addr  frc_dst;
   76         uint32_t        frc_id;
   77         sa_family_t     frc_af;
   78         uint8_t         frc_proto;
   79 };
   80 
   81 struct pf_fragment {
   82         struct pf_fragment_cmp  fr_key;
   83 #define fr_src  fr_key.frc_src
   84 #define fr_dst  fr_key.frc_dst
   85 #define fr_id   fr_key.frc_id
   86 #define fr_af   fr_key.frc_af
   87 #define fr_proto        fr_key.frc_proto
   88 
   89         RB_ENTRY(pf_fragment) fr_entry;
   90         TAILQ_ENTRY(pf_fragment) frag_next;
   91         uint32_t        fr_timeout;
   92         uint16_t        fr_maxlen;      /* maximum length of single fragment */
   93         TAILQ_HEAD(pf_fragq, pf_frent) fr_queue;
   94 };
   95 
   96 struct pf_fragment_tag {
   97         uint16_t        ft_hdrlen;      /* header length of reassembled pkt */
   98         uint16_t        ft_extoff;      /* last extension header offset or 0 */
   99         uint16_t        ft_maxlen;      /* maximum fragment payload length */
  100         uint32_t        ft_id;          /* fragment id */
  101 };
  102 
  103 static struct mtx pf_frag_mtx;
  104 MTX_SYSINIT(pf_frag_mtx, &pf_frag_mtx, "pf fragments", MTX_DEF);
  105 #define PF_FRAG_LOCK()          mtx_lock(&pf_frag_mtx)
  106 #define PF_FRAG_UNLOCK()        mtx_unlock(&pf_frag_mtx)
  107 #define PF_FRAG_ASSERT()        mtx_assert(&pf_frag_mtx, MA_OWNED)
  108 
  109 VNET_DEFINE(uma_zone_t, pf_state_scrub_z);      /* XXX: shared with pfsync */
  110 
  111 static VNET_DEFINE(uma_zone_t, pf_frent_z);
  112 #define V_pf_frent_z    VNET(pf_frent_z)
  113 static VNET_DEFINE(uma_zone_t, pf_frag_z);
  114 #define V_pf_frag_z     VNET(pf_frag_z)
  115 
  116 TAILQ_HEAD(pf_fragqueue, pf_fragment);
  117 TAILQ_HEAD(pf_cachequeue, pf_fragment);
  118 static VNET_DEFINE(struct pf_fragqueue, pf_fragqueue);
  119 #define V_pf_fragqueue                  VNET(pf_fragqueue)
  120 RB_HEAD(pf_frag_tree, pf_fragment);
  121 static VNET_DEFINE(struct pf_frag_tree, pf_frag_tree);
  122 #define V_pf_frag_tree                  VNET(pf_frag_tree)
  123 static int               pf_frag_compare(struct pf_fragment *,
  124                             struct pf_fragment *);
  125 static RB_PROTOTYPE(pf_frag_tree, pf_fragment, fr_entry, pf_frag_compare);
  126 static RB_GENERATE(pf_frag_tree, pf_fragment, fr_entry, pf_frag_compare);
  127 
  128 static void     pf_flush_fragments(void);
  129 static void     pf_free_fragment(struct pf_fragment *);
  130 static void     pf_remove_fragment(struct pf_fragment *);
  131 static int      pf_normalize_tcpopt(struct pf_rule *, struct mbuf *,
  132                     struct tcphdr *, int, sa_family_t);
  133 static struct pf_frent *pf_create_fragment(u_short *);
  134 static struct pf_fragment *pf_find_fragment(struct pf_fragment_cmp *key,
  135                     struct pf_frag_tree *tree);
  136 static struct pf_fragment *pf_fillup_fragment(struct pf_fragment_cmp *,
  137                     struct pf_frent *, u_short *);
  138 static int      pf_isfull_fragment(struct pf_fragment *);
  139 static struct mbuf *pf_join_fragment(struct pf_fragment *);
  140 #ifdef INET
  141 static void     pf_scrub_ip(struct mbuf **, uint32_t, uint8_t, uint8_t);
  142 static int      pf_reassemble(struct mbuf **, struct ip *, int, u_short *);
  143 #endif  /* INET */
  144 #ifdef INET6
  145 static int      pf_reassemble6(struct mbuf **, struct ip6_hdr *,
  146                     struct ip6_frag *, uint16_t, uint16_t, u_short *);
  147 static void     pf_scrub_ip6(struct mbuf **, uint8_t);
  148 #endif  /* INET6 */
  149 
  150 #define DPFPRINTF(x) do {                               \
  151         if (V_pf_status.debug >= PF_DEBUG_MISC) {       \
  152                 printf("%s: ", __func__);               \
  153                 printf x ;                              \
  154         }                                               \
  155 } while(0)
  156 
  157 #ifdef INET
  158 static void
  159 pf_ip2key(struct ip *ip, int dir, struct pf_fragment_cmp *key)
  160 {
  161 
  162         key->frc_src.v4 = ip->ip_src;
  163         key->frc_dst.v4 = ip->ip_dst;
  164         key->frc_af = AF_INET;
  165         key->frc_proto = ip->ip_p;
  166         key->frc_id = ip->ip_id;
  167 }
  168 #endif  /* INET */
  169 
  170 void
  171 pf_normalize_init(void)
  172 {
  173 
  174         V_pf_frag_z = uma_zcreate("pf frags", sizeof(struct pf_fragment),
  175             NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
  176         V_pf_frent_z = uma_zcreate("pf frag entries", sizeof(struct pf_frent),
  177             NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
  178         V_pf_state_scrub_z = uma_zcreate("pf state scrubs",
  179             sizeof(struct pf_state_scrub),  NULL, NULL, NULL, NULL,
  180             UMA_ALIGN_PTR, 0);
  181 
  182         V_pf_limits[PF_LIMIT_FRAGS].zone = V_pf_frent_z;
  183         V_pf_limits[PF_LIMIT_FRAGS].limit = PFFRAG_FRENT_HIWAT;
  184         uma_zone_set_max(V_pf_frent_z, PFFRAG_FRENT_HIWAT);
  185         uma_zone_set_warning(V_pf_frent_z, "PF frag entries limit reached");
  186 
  187         TAILQ_INIT(&V_pf_fragqueue);
  188 }
  189 
  190 void
  191 pf_normalize_cleanup(void)
  192 {
  193 
  194         uma_zdestroy(V_pf_state_scrub_z);
  195         uma_zdestroy(V_pf_frent_z);
  196         uma_zdestroy(V_pf_frag_z);
  197 }
  198 
  199 static int
  200 pf_frag_compare(struct pf_fragment *a, struct pf_fragment *b)
  201 {
  202         int     diff;
  203 
  204         if ((diff = a->fr_id - b->fr_id) != 0)
  205                 return (diff);
  206         if ((diff = a->fr_proto - b->fr_proto) != 0)
  207                 return (diff);
  208         if ((diff = a->fr_af - b->fr_af) != 0)
  209                 return (diff);
  210         if ((diff = pf_addr_cmp(&a->fr_src, &b->fr_src, a->fr_af)) != 0)
  211                 return (diff);
  212         if ((diff = pf_addr_cmp(&a->fr_dst, &b->fr_dst, a->fr_af)) != 0)
  213                 return (diff);
  214         return (0);
  215 }
  216 
  217 void
  218 pf_purge_expired_fragments(void)
  219 {
  220         struct pf_fragment      *frag;
  221         u_int32_t                expire = time_uptime -
  222                                     V_pf_default_rule.timeout[PFTM_FRAG];
  223 
  224         PF_FRAG_LOCK();
  225         while ((frag = TAILQ_LAST(&V_pf_fragqueue, pf_fragqueue)) != NULL) {
  226                 if (frag->fr_timeout > expire)
  227                         break;
  228 
  229                 DPFPRINTF(("expiring %d(%p)\n", frag->fr_id, frag));
  230                 pf_free_fragment(frag);
  231         }
  232 
  233         PF_FRAG_UNLOCK();
  234 }
  235 
  236 /*
  237  * Try to flush old fragments to make space for new ones
  238  */
  239 static void
  240 pf_flush_fragments(void)
  241 {
  242         struct pf_fragment      *frag;
  243         int                      goal;
  244 
  245         PF_FRAG_ASSERT();
  246 
  247         goal = uma_zone_get_cur(V_pf_frent_z) * 9 / 10;
  248         DPFPRINTF(("trying to free %d frag entriess\n", goal));
  249         while (goal < uma_zone_get_cur(V_pf_frent_z)) {
  250                 frag = TAILQ_LAST(&V_pf_fragqueue, pf_fragqueue);
  251                 if (frag)
  252                         pf_free_fragment(frag);
  253                 else
  254                         break;
  255         }
  256 }
  257 
  258 /* Frees the fragments and all associated entries */
  259 static void
  260 pf_free_fragment(struct pf_fragment *frag)
  261 {
  262         struct pf_frent         *frent;
  263 
  264         PF_FRAG_ASSERT();
  265 
  266         /* Free all fragments */
  267         for (frent = TAILQ_FIRST(&frag->fr_queue); frent;
  268             frent = TAILQ_FIRST(&frag->fr_queue)) {
  269                 TAILQ_REMOVE(&frag->fr_queue, frent, fr_next);
  270 
  271                 m_freem(frent->fe_m);
  272                 uma_zfree(V_pf_frent_z, frent);
  273         }
  274 
  275         pf_remove_fragment(frag);
  276 }
  277 
  278 static struct pf_fragment *
  279 pf_find_fragment(struct pf_fragment_cmp *key, struct pf_frag_tree *tree)
  280 {
  281         struct pf_fragment      *frag;
  282 
  283         PF_FRAG_ASSERT();
  284 
  285         frag = RB_FIND(pf_frag_tree, tree, (struct pf_fragment *)key);
  286         if (frag != NULL) {
  287                 /* XXX Are we sure we want to update the timeout? */
  288                 frag->fr_timeout = time_uptime;
  289                 TAILQ_REMOVE(&V_pf_fragqueue, frag, frag_next);
  290                 TAILQ_INSERT_HEAD(&V_pf_fragqueue, frag, frag_next);
  291         }
  292 
  293         return (frag);
  294 }
  295 
  296 /* Removes a fragment from the fragment queue and frees the fragment */
  297 static void
  298 pf_remove_fragment(struct pf_fragment *frag)
  299 {
  300 
  301         PF_FRAG_ASSERT();
  302 
  303         RB_REMOVE(pf_frag_tree, &V_pf_frag_tree, frag);
  304         TAILQ_REMOVE(&V_pf_fragqueue, frag, frag_next);
  305         uma_zfree(V_pf_frag_z, frag);
  306 }
  307 
  308 static struct pf_frent *
  309 pf_create_fragment(u_short *reason)
  310 {
  311         struct pf_frent *frent;
  312 
  313         PF_FRAG_ASSERT();
  314 
  315         frent = uma_zalloc(V_pf_frent_z, M_NOWAIT);
  316         if (frent == NULL) {
  317                 pf_flush_fragments();
  318                 frent = uma_zalloc(V_pf_frent_z, M_NOWAIT);
  319                 if (frent == NULL) {
  320                         REASON_SET(reason, PFRES_MEMORY);
  321                         return (NULL);
  322                 }
  323         }
  324 
  325         return (frent);
  326 }
  327 
  328 static struct pf_fragment *
  329 pf_fillup_fragment(struct pf_fragment_cmp *key, struct pf_frent *frent,
  330                 u_short *reason)
  331 {
  332         struct pf_frent         *after, *next, *prev;
  333         struct pf_fragment      *frag;
  334         uint16_t                total;
  335 
  336         PF_FRAG_ASSERT();
  337 
  338         /* No empty fragments. */
  339         if (frent->fe_len == 0) {
  340                 DPFPRINTF(("bad fragment: len 0"));
  341                 goto bad_fragment;
  342         }
  343 
  344         /* All fragments are 8 byte aligned. */
  345         if (frent->fe_mff && (frent->fe_len & 0x7)) {
  346                 DPFPRINTF(("bad fragment: mff and len %d", frent->fe_len));
  347                 goto bad_fragment;
  348         }
  349 
  350         /* Respect maximum length, IP_MAXPACKET == IPV6_MAXPACKET. */
  351         if (frent->fe_off + frent->fe_len > IP_MAXPACKET) {
  352                 DPFPRINTF(("bad fragment: max packet %d",
  353                     frent->fe_off + frent->fe_len));
  354                 goto bad_fragment;
  355         }
  356 
  357         DPFPRINTF((key->frc_af == AF_INET ?
  358             "reass frag %d @ %d-%d" : "reass frag %#08x @ %d-%d",
  359             key->frc_id, frent->fe_off, frent->fe_off + frent->fe_len));
  360 
  361         /* Fully buffer all of the fragments in this fragment queue. */
  362         frag = pf_find_fragment(key, &V_pf_frag_tree);
  363 
  364         /* Create a new reassembly queue for this packet. */
  365         if (frag == NULL) {
  366                 frag = uma_zalloc(V_pf_frag_z, M_NOWAIT);
  367                 if (frag == NULL) {
  368                         pf_flush_fragments();
  369                         frag = uma_zalloc(V_pf_frag_z, M_NOWAIT);
  370                         if (frag == NULL) {
  371                                 REASON_SET(reason, PFRES_MEMORY);
  372                                 goto drop_fragment;
  373                         }
  374                 }
  375 
  376                 *(struct pf_fragment_cmp *)frag = *key;
  377                 frag->fr_timeout = time_uptime;
  378                 frag->fr_maxlen = frent->fe_len;
  379                 TAILQ_INIT(&frag->fr_queue);
  380 
  381                 RB_INSERT(pf_frag_tree, &V_pf_frag_tree, frag);
  382                 TAILQ_INSERT_HEAD(&V_pf_fragqueue, frag, frag_next);
  383 
  384                 /* We do not have a previous fragment. */
  385                 TAILQ_INSERT_HEAD(&frag->fr_queue, frent, fr_next);
  386 
  387                 return (frag);
  388         }
  389 
  390         KASSERT(!TAILQ_EMPTY(&frag->fr_queue), ("!TAILQ_EMPTY()->fr_queue"));
  391 
  392         /* Remember maximum fragment len for refragmentation. */
  393         if (frent->fe_len > frag->fr_maxlen)
  394                 frag->fr_maxlen = frent->fe_len;
  395 
  396         /* Maximum data we have seen already. */
  397         total = TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_off +
  398                 TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_len;
  399 
  400         /* Non terminal fragments must have more fragments flag. */
  401         if (frent->fe_off + frent->fe_len < total && !frent->fe_mff)
  402                 goto bad_fragment;
  403 
  404         /* Check if we saw the last fragment already. */
  405         if (!TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_mff) {
  406                 if (frent->fe_off + frent->fe_len > total ||
  407                     (frent->fe_off + frent->fe_len == total && frent->fe_mff))
  408                         goto bad_fragment;
  409         } else {
  410                 if (frent->fe_off + frent->fe_len == total && !frent->fe_mff)
  411                         goto bad_fragment;
  412         }
  413 
  414         /* Find a fragment after the current one. */
  415         prev = NULL;
  416         TAILQ_FOREACH(after, &frag->fr_queue, fr_next) {
  417                 if (after->fe_off > frent->fe_off)
  418                         break;
  419                 prev = after;
  420         }
  421 
  422         KASSERT(prev != NULL || after != NULL,
  423             ("prev != NULL || after != NULL"));
  424 
  425         if (prev != NULL && prev->fe_off + prev->fe_len > frent->fe_off) {
  426                 uint16_t precut;
  427 
  428                 precut = prev->fe_off + prev->fe_len - frent->fe_off;
  429                 if (precut >= frent->fe_len)
  430                         goto bad_fragment;
  431                 DPFPRINTF(("overlap -%d", precut));
  432                 m_adj(frent->fe_m, precut);
  433                 frent->fe_off += precut;
  434                 frent->fe_len -= precut;
  435         }
  436 
  437         for (; after != NULL && frent->fe_off + frent->fe_len > after->fe_off;
  438             after = next) {
  439                 uint16_t aftercut;
  440 
  441                 aftercut = frent->fe_off + frent->fe_len - after->fe_off;
  442                 DPFPRINTF(("adjust overlap %d", aftercut));
  443                 if (aftercut < after->fe_len) {
  444                         m_adj(after->fe_m, aftercut);
  445                         after->fe_off += aftercut;
  446                         after->fe_len -= aftercut;
  447                         break;
  448                 }
  449 
  450                 /* This fragment is completely overlapped, lose it. */
  451                 next = TAILQ_NEXT(after, fr_next);
  452                 m_freem(after->fe_m);
  453                 TAILQ_REMOVE(&frag->fr_queue, after, fr_next);
  454                 uma_zfree(V_pf_frent_z, after);
  455         }
  456 
  457         if (prev == NULL)
  458                 TAILQ_INSERT_HEAD(&frag->fr_queue, frent, fr_next);
  459         else
  460                 TAILQ_INSERT_AFTER(&frag->fr_queue, prev, frent, fr_next);
  461 
  462         return (frag);
  463 
  464 bad_fragment:
  465         REASON_SET(reason, PFRES_FRAG);
  466 drop_fragment:
  467         uma_zfree(V_pf_frent_z, frent);
  468         return (NULL);
  469 }
  470 
  471 static int
  472 pf_isfull_fragment(struct pf_fragment *frag)
  473 {
  474         struct pf_frent *frent, *next;
  475         uint16_t off, total;
  476 
  477         /* Check if we are completely reassembled */
  478         if (TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_mff)
  479                 return (0);
  480 
  481         /* Maximum data we have seen already */
  482         total = TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_off +
  483                 TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_len;
  484 
  485         /* Check if we have all the data */
  486         off = 0;
  487         for (frent = TAILQ_FIRST(&frag->fr_queue); frent; frent = next) {
  488                 next = TAILQ_NEXT(frent, fr_next);
  489 
  490                 off += frent->fe_len;
  491                 if (off < total && (next == NULL || next->fe_off != off)) {
  492                         DPFPRINTF(("missing fragment at %d, next %d, total %d",
  493                             off, next == NULL ? -1 : next->fe_off, total));
  494                         return (0);
  495                 }
  496         }
  497         DPFPRINTF(("%d < %d?", off, total));
  498         if (off < total)
  499                 return (0);
  500         KASSERT(off == total, ("off == total"));
  501 
  502         return (1);
  503 }
  504 
  505 static struct mbuf *
  506 pf_join_fragment(struct pf_fragment *frag)
  507 {
  508         struct mbuf *m, *m2;
  509         struct pf_frent *frent, *next;
  510 
  511         frent = TAILQ_FIRST(&frag->fr_queue);
  512         next = TAILQ_NEXT(frent, fr_next);
  513 
  514         m = frent->fe_m;
  515         m_adj(m, (frent->fe_hdrlen + frent->fe_len) - m->m_pkthdr.len);
  516         uma_zfree(V_pf_frent_z, frent);
  517         for (frent = next; frent != NULL; frent = next) {
  518                 next = TAILQ_NEXT(frent, fr_next);
  519 
  520                 m2 = frent->fe_m;
  521                 /* Strip off ip header. */
  522                 m_adj(m2, frent->fe_hdrlen);
  523                 /* Strip off any trailing bytes. */
  524                 m_adj(m2, frent->fe_len - m2->m_pkthdr.len);
  525 
  526                 uma_zfree(V_pf_frent_z, frent);
  527                 m_cat(m, m2);
  528         }
  529 
  530         /* Remove from fragment queue. */
  531         pf_remove_fragment(frag);
  532 
  533         return (m);
  534 }
  535 
  536 #ifdef INET
  537 static int
  538 pf_reassemble(struct mbuf **m0, struct ip *ip, int dir, u_short *reason)
  539 {
  540         struct mbuf             *m = *m0;
  541         struct pf_frent         *frent;
  542         struct pf_fragment      *frag;
  543         struct pf_fragment_cmp  key;
  544         uint16_t                total, hdrlen;
  545 
  546         /* Get an entry for the fragment queue */
  547         if ((frent = pf_create_fragment(reason)) == NULL)
  548                 return (PF_DROP);
  549 
  550         frent->fe_m = m;
  551         frent->fe_hdrlen = ip->ip_hl << 2;
  552         frent->fe_extoff = 0;
  553         frent->fe_len = ntohs(ip->ip_len) - (ip->ip_hl << 2);
  554         frent->fe_off = (ntohs(ip->ip_off) & IP_OFFMASK) << 3;
  555         frent->fe_mff = ntohs(ip->ip_off) & IP_MF;
  556 
  557         pf_ip2key(ip, dir, &key);
  558 
  559         if ((frag = pf_fillup_fragment(&key, frent, reason)) == NULL)
  560                 return (PF_DROP);
  561 
  562         /* The mbuf is part of the fragment entry, no direct free or access */
  563         m = *m0 = NULL;
  564 
  565         if (!pf_isfull_fragment(frag))
  566                 return (PF_PASS);  /* drop because *m0 is NULL, no error */
  567 
  568         /* We have all the data */
  569         frent = TAILQ_FIRST(&frag->fr_queue);
  570         KASSERT(frent != NULL, ("frent != NULL"));
  571         total = TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_off +
  572                 TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_len;
  573         hdrlen = frent->fe_hdrlen;
  574 
  575         m = *m0 = pf_join_fragment(frag);
  576         frag = NULL;
  577 
  578         if (m->m_flags & M_PKTHDR) {
  579                 int plen = 0;
  580                 for (m = *m0; m; m = m->m_next)
  581                         plen += m->m_len;
  582                 m = *m0;
  583                 m->m_pkthdr.len = plen;
  584         }
  585 
  586         ip = mtod(m, struct ip *);
  587         ip->ip_len = htons(hdrlen + total);
  588         ip->ip_off &= ~(IP_MF|IP_OFFMASK);
  589 
  590         if (hdrlen + total > IP_MAXPACKET) {
  591                 DPFPRINTF(("drop: too big: %d", total));
  592                 ip->ip_len = 0;
  593                 REASON_SET(reason, PFRES_SHORT);
  594                 /* PF_DROP requires a valid mbuf *m0 in pf_test() */
  595                 return (PF_DROP);
  596         }
  597 
  598         DPFPRINTF(("complete: %p(%d)\n", m, ntohs(ip->ip_len)));
  599         return (PF_PASS);
  600 }
  601 #endif  /* INET */
  602 
  603 #ifdef INET6
  604 static int
  605 pf_reassemble6(struct mbuf **m0, struct ip6_hdr *ip6, struct ip6_frag *fraghdr,
  606     uint16_t hdrlen, uint16_t extoff, u_short *reason)
  607 {
  608         struct mbuf             *m = *m0;
  609         struct pf_frent         *frent;
  610         struct pf_fragment      *frag;
  611         struct pf_fragment_cmp   key;
  612         struct m_tag            *mtag;
  613         struct pf_fragment_tag  *ftag;
  614         int                      off;
  615         uint32_t                 frag_id;
  616         uint16_t                 total, maxlen;
  617         uint8_t                  proto;
  618 
  619         PF_FRAG_LOCK();
  620 
  621         /* Get an entry for the fragment queue. */
  622         if ((frent = pf_create_fragment(reason)) == NULL) {
  623                 PF_FRAG_UNLOCK();
  624                 return (PF_DROP);
  625         }
  626 
  627         frent->fe_m = m;
  628         frent->fe_hdrlen = hdrlen;
  629         frent->fe_extoff = extoff;
  630         frent->fe_len = sizeof(struct ip6_hdr) + ntohs(ip6->ip6_plen) - hdrlen;
  631         frent->fe_off = ntohs(fraghdr->ip6f_offlg & IP6F_OFF_MASK);
  632         frent->fe_mff = fraghdr->ip6f_offlg & IP6F_MORE_FRAG;
  633 
  634         key.frc_src.v6 = ip6->ip6_src;
  635         key.frc_dst.v6 = ip6->ip6_dst;
  636         key.frc_af = AF_INET6;
  637         /* Only the first fragment's protocol is relevant. */
  638         key.frc_proto = 0;
  639         key.frc_id = fraghdr->ip6f_ident;
  640 
  641         if ((frag = pf_fillup_fragment(&key, frent, reason)) == NULL) {
  642                 PF_FRAG_UNLOCK();
  643                 return (PF_DROP);
  644         }
  645 
  646         /* The mbuf is part of the fragment entry, no direct free or access. */
  647         m = *m0 = NULL;
  648 
  649         if (!pf_isfull_fragment(frag)) {
  650                 PF_FRAG_UNLOCK();
  651                 return (PF_PASS);  /* Drop because *m0 is NULL, no error. */
  652         }
  653 
  654         /* We have all the data. */
  655         extoff = frent->fe_extoff;
  656         maxlen = frag->fr_maxlen;
  657         frag_id = frag->fr_id;
  658         frent = TAILQ_FIRST(&frag->fr_queue);
  659         KASSERT(frent != NULL, ("frent != NULL"));
  660         total = TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_off +
  661                 TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_len;
  662         hdrlen = frent->fe_hdrlen - sizeof(struct ip6_frag);
  663 
  664         m = *m0 = pf_join_fragment(frag);
  665         frag = NULL;
  666 
  667         PF_FRAG_UNLOCK();
  668 
  669         /* Take protocol from first fragment header. */
  670         m = m_getptr(m, hdrlen + offsetof(struct ip6_frag, ip6f_nxt), &off);
  671         KASSERT(m, ("%s: short mbuf chain", __func__));
  672         proto = *(mtod(m, caddr_t) + off);
  673         m = *m0;
  674 
  675         /* Delete frag6 header */
  676         if (ip6_deletefraghdr(m, hdrlen, M_NOWAIT) != 0)
  677                 goto fail;
  678 
  679         if (m->m_flags & M_PKTHDR) {
  680                 int plen = 0;
  681                 for (m = *m0; m; m = m->m_next)
  682                         plen += m->m_len;
  683                 m = *m0;
  684                 m->m_pkthdr.len = plen;
  685         }
  686 
  687         if ((mtag = m_tag_get(PF_REASSEMBLED, sizeof(struct pf_fragment_tag),
  688             M_NOWAIT)) == NULL)
  689                 goto fail;
  690         ftag = (struct pf_fragment_tag *)(mtag + 1);
  691         ftag->ft_hdrlen = hdrlen;
  692         ftag->ft_extoff = extoff;
  693         ftag->ft_maxlen = maxlen;
  694         ftag->ft_id = frag_id;
  695         m_tag_prepend(m, mtag);
  696 
  697         ip6 = mtod(m, struct ip6_hdr *);
  698         ip6->ip6_plen = htons(hdrlen - sizeof(struct ip6_hdr) + total);
  699         if (extoff) {
  700                 /* Write protocol into next field of last extension header. */
  701                 m = m_getptr(m, extoff + offsetof(struct ip6_ext, ip6e_nxt),
  702                     &off);
  703                 KASSERT(m, ("%s: short mbuf chain", __func__));
  704                 *(mtod(m, char *) + off) = proto;
  705                 m = *m0;
  706         } else
  707                 ip6->ip6_nxt = proto;
  708 
  709         if (hdrlen - sizeof(struct ip6_hdr) + total > IPV6_MAXPACKET) {
  710                 DPFPRINTF(("drop: too big: %d", total));
  711                 ip6->ip6_plen = 0;
  712                 REASON_SET(reason, PFRES_SHORT);
  713                 /* PF_DROP requires a valid mbuf *m0 in pf_test6(). */
  714                 return (PF_DROP);
  715         }
  716 
  717         DPFPRINTF(("complete: %p(%d)", m, ntohs(ip6->ip6_plen)));
  718         return (PF_PASS);
  719 
  720 fail:
  721         REASON_SET(reason, PFRES_MEMORY);
  722         /* PF_DROP requires a valid mbuf *m0 in pf_test6(), will free later. */
  723         return (PF_DROP);
  724 }
  725 #endif  /* INET6 */
  726 
  727 #ifdef INET6
  728 int
  729 pf_refragment6(struct ifnet *ifp, struct mbuf **m0, struct m_tag *mtag)
  730 {
  731         struct mbuf             *m = *m0, *t;
  732         struct pf_fragment_tag  *ftag = (struct pf_fragment_tag *)(mtag + 1);
  733         struct pf_pdesc          pd;
  734         uint32_t                 frag_id;
  735         uint16_t                 hdrlen, extoff, maxlen;
  736         uint8_t                  proto;
  737         int                      error, action;
  738 
  739         hdrlen = ftag->ft_hdrlen;
  740         extoff = ftag->ft_extoff;
  741         maxlen = ftag->ft_maxlen;
  742         frag_id = ftag->ft_id;
  743         m_tag_delete(m, mtag);
  744         mtag = NULL;
  745         ftag = NULL;
  746 
  747         if (extoff) {
  748                 int off;
  749 
  750                 /* Use protocol from next field of last extension header */
  751                 m = m_getptr(m, extoff + offsetof(struct ip6_ext, ip6e_nxt),
  752                     &off);
  753                 KASSERT((m != NULL), ("pf_refragment6: short mbuf chain"));
  754                 proto = *(mtod(m, caddr_t) + off);
  755                 *(mtod(m, char *) + off) = IPPROTO_FRAGMENT;
  756                 m = *m0;
  757         } else {
  758                 struct ip6_hdr *hdr;
  759 
  760                 hdr = mtod(m, struct ip6_hdr *);
  761                 proto = hdr->ip6_nxt;
  762                 hdr->ip6_nxt = IPPROTO_FRAGMENT;
  763         }
  764 
  765         /*
  766          * Maxlen may be less than 8 if there was only a single
  767          * fragment.  As it was fragmented before, add a fragment
  768          * header also for a single fragment.  If total or maxlen
  769          * is less than 8, ip6_fragment() will return EMSGSIZE and
  770          * we drop the packet.
  771          */
  772         error = ip6_fragment(ifp, m, hdrlen, proto, maxlen, frag_id);
  773         m = (*m0)->m_nextpkt;
  774         (*m0)->m_nextpkt = NULL;
  775         if (error == 0) {
  776                 /* The first mbuf contains the unfragmented packet. */
  777                 m_freem(*m0);
  778                 *m0 = NULL;
  779                 action = PF_PASS;
  780         } else {
  781                 /* Drop expects an mbuf to free. */
  782                 DPFPRINTF(("refragment error %d", error));
  783                 action = PF_DROP;
  784         }
  785         for (t = m; m; m = t) {
  786                 t = m->m_nextpkt;
  787                 m->m_nextpkt = NULL;
  788                 m->m_flags |= M_SKIP_FIREWALL;
  789                 memset(&pd, 0, sizeof(pd));
  790                 pd.pf_mtag = pf_find_mtag(m);
  791                 if (error == 0)
  792                         ip6_forward(m, 0);
  793                 else
  794                         m_freem(m);
  795         }
  796 
  797         return (action);
  798 }
  799 #endif /* INET6 */
  800 
  801 #ifdef INET
  802 int
  803 pf_normalize_ip(struct mbuf **m0, int dir, struct pfi_kif *kif, u_short *reason,
  804     struct pf_pdesc *pd)
  805 {
  806         struct mbuf             *m = *m0;
  807         struct pf_rule          *r;
  808         struct ip               *h = mtod(m, struct ip *);
  809         int                      mff = (ntohs(h->ip_off) & IP_MF);
  810         int                      hlen = h->ip_hl << 2;
  811         u_int16_t                fragoff = (ntohs(h->ip_off) & IP_OFFMASK) << 3;
  812         u_int16_t                max;
  813         int                      ip_len;
  814         int                      ip_off;
  815         int                      tag = -1;
  816         int                      verdict;
  817 
  818         PF_RULES_RASSERT();
  819 
  820         r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_SCRUB].active.ptr);
  821         while (r != NULL) {
  822                 r->evaluations++;
  823                 if (pfi_kif_match(r->kif, kif) == r->ifnot)
  824                         r = r->skip[PF_SKIP_IFP].ptr;
  825                 else if (r->direction && r->direction != dir)
  826                         r = r->skip[PF_SKIP_DIR].ptr;
  827                 else if (r->af && r->af != AF_INET)
  828                         r = r->skip[PF_SKIP_AF].ptr;
  829                 else if (r->proto && r->proto != h->ip_p)
  830                         r = r->skip[PF_SKIP_PROTO].ptr;
  831                 else if (PF_MISMATCHAW(&r->src.addr,
  832                     (struct pf_addr *)&h->ip_src.s_addr, AF_INET,
  833                     r->src.neg, kif, M_GETFIB(m)))
  834                         r = r->skip[PF_SKIP_SRC_ADDR].ptr;
  835                 else if (PF_MISMATCHAW(&r->dst.addr,
  836                     (struct pf_addr *)&h->ip_dst.s_addr, AF_INET,
  837                     r->dst.neg, NULL, M_GETFIB(m)))
  838                         r = r->skip[PF_SKIP_DST_ADDR].ptr;
  839                 else if (r->match_tag && !pf_match_tag(m, r, &tag,
  840                     pd->pf_mtag ? pd->pf_mtag->tag : 0))
  841                         r = TAILQ_NEXT(r, entries);
  842                 else
  843                         break;
  844         }
  845 
  846         if (r == NULL || r->action == PF_NOSCRUB)
  847                 return (PF_PASS);
  848         else {
  849                 r->packets[dir == PF_OUT]++;
  850                 r->bytes[dir == PF_OUT] += pd->tot_len;
  851         }
  852 
  853         /* Check for illegal packets */
  854         if (hlen < (int)sizeof(struct ip)) {
  855                 REASON_SET(reason, PFRES_NORM);
  856                 goto drop;
  857         }
  858 
  859         if (hlen > ntohs(h->ip_len)) {
  860                 REASON_SET(reason, PFRES_NORM);
  861                 goto drop;
  862         }
  863 
  864         /* Clear IP_DF if the rule uses the no-df option */
  865         if (r->rule_flag & PFRULE_NODF && h->ip_off & htons(IP_DF)) {
  866                 u_int16_t ip_off = h->ip_off;
  867 
  868                 h->ip_off &= htons(~IP_DF);
  869                 h->ip_sum = pf_cksum_fixup(h->ip_sum, ip_off, h->ip_off, 0);
  870         }
  871 
  872         /* We will need other tests here */
  873         if (!fragoff && !mff)
  874                 goto no_fragment;
  875 
  876         /* We're dealing with a fragment now. Don't allow fragments
  877          * with IP_DF to enter the cache. If the flag was cleared by
  878          * no-df above, fine. Otherwise drop it.
  879          */
  880         if (h->ip_off & htons(IP_DF)) {
  881                 DPFPRINTF(("IP_DF\n"));
  882                 goto bad;
  883         }
  884 
  885         ip_len = ntohs(h->ip_len) - hlen;
  886         ip_off = (ntohs(h->ip_off) & IP_OFFMASK) << 3;
  887 
  888         /* All fragments are 8 byte aligned */
  889         if (mff && (ip_len & 0x7)) {
  890                 DPFPRINTF(("mff and %d\n", ip_len));
  891                 goto bad;
  892         }
  893 
  894         /* Respect maximum length */
  895         if (fragoff + ip_len > IP_MAXPACKET) {
  896                 DPFPRINTF(("max packet %d\n", fragoff + ip_len));
  897                 goto bad;
  898         }
  899         max = fragoff + ip_len;
  900 
  901         /* Fully buffer all of the fragments
  902          * Might return a completely reassembled mbuf, or NULL */
  903         PF_FRAG_LOCK();
  904         DPFPRINTF(("reass frag %d @ %d-%d\n", h->ip_id, fragoff, max));
  905         verdict = pf_reassemble(m0, h, dir, reason);
  906         PF_FRAG_UNLOCK();
  907 
  908         if (verdict != PF_PASS)
  909                 return (PF_DROP);
  910 
  911         m = *m0;
  912         if (m == NULL)
  913                 return (PF_DROP);
  914 
  915         h = mtod(m, struct ip *);
  916 
  917  no_fragment:
  918         /* At this point, only IP_DF is allowed in ip_off */
  919         if (h->ip_off & ~htons(IP_DF)) {
  920                 u_int16_t ip_off = h->ip_off;
  921 
  922                 h->ip_off &= htons(IP_DF);
  923                 h->ip_sum = pf_cksum_fixup(h->ip_sum, ip_off, h->ip_off, 0);
  924         }
  925 
  926         pf_scrub_ip(&m, r->rule_flag, r->min_ttl, r->set_tos);
  927 
  928         return (PF_PASS);
  929 
  930  bad:
  931         DPFPRINTF(("dropping bad fragment\n"));
  932         REASON_SET(reason, PFRES_FRAG);
  933  drop:
  934         if (r != NULL && r->log)
  935                 PFLOG_PACKET(kif, m, AF_INET, dir, *reason, r, NULL, NULL, pd,
  936                     1);
  937 
  938         return (PF_DROP);
  939 }
  940 #endif
  941 
  942 #ifdef INET6
  943 int
  944 pf_normalize_ip6(struct mbuf **m0, int dir, struct pfi_kif *kif,
  945     u_short *reason, struct pf_pdesc *pd)
  946 {
  947         struct mbuf             *m = *m0;
  948         struct pf_rule          *r;
  949         struct ip6_hdr          *h = mtod(m, struct ip6_hdr *);
  950         int                      extoff;
  951         int                      off;
  952         struct ip6_ext           ext;
  953         struct ip6_opt           opt;
  954         struct ip6_opt_jumbo     jumbo;
  955         struct ip6_frag          frag;
  956         u_int32_t                jumbolen = 0, plen;
  957         int                      optend;
  958         int                      ooff;
  959         u_int8_t                 proto;
  960         int                      terminal;
  961 
  962         PF_RULES_RASSERT();
  963 
  964         r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_SCRUB].active.ptr);
  965         while (r != NULL) {
  966                 r->evaluations++;
  967                 if (pfi_kif_match(r->kif, kif) == r->ifnot)
  968                         r = r->skip[PF_SKIP_IFP].ptr;
  969                 else if (r->direction && r->direction != dir)
  970                         r = r->skip[PF_SKIP_DIR].ptr;
  971                 else if (r->af && r->af != AF_INET6)
  972                         r = r->skip[PF_SKIP_AF].ptr;
  973 #if 0 /* header chain! */
  974                 else if (r->proto && r->proto != h->ip6_nxt)
  975                         r = r->skip[PF_SKIP_PROTO].ptr;
  976 #endif
  977                 else if (PF_MISMATCHAW(&r->src.addr,
  978                     (struct pf_addr *)&h->ip6_src, AF_INET6,
  979                     r->src.neg, kif, M_GETFIB(m)))
  980                         r = r->skip[PF_SKIP_SRC_ADDR].ptr;
  981                 else if (PF_MISMATCHAW(&r->dst.addr,
  982                     (struct pf_addr *)&h->ip6_dst, AF_INET6,
  983                     r->dst.neg, NULL, M_GETFIB(m)))
  984                         r = r->skip[PF_SKIP_DST_ADDR].ptr;
  985                 else
  986                         break;
  987         }
  988 
  989         if (r == NULL || r->action == PF_NOSCRUB)
  990                 return (PF_PASS);
  991         else {
  992                 r->packets[dir == PF_OUT]++;
  993                 r->bytes[dir == PF_OUT] += pd->tot_len;
  994         }
  995 
  996         /* Check for illegal packets */
  997         if (sizeof(struct ip6_hdr) + IPV6_MAXPACKET < m->m_pkthdr.len)
  998                 goto drop;
  999 
 1000         extoff = 0;
 1001         off = sizeof(struct ip6_hdr);
 1002         proto = h->ip6_nxt;
 1003         terminal = 0;
 1004         do {
 1005                 switch (proto) {
 1006                 case IPPROTO_FRAGMENT:
 1007                         goto fragment;
 1008                         break;
 1009                 case IPPROTO_AH:
 1010                 case IPPROTO_ROUTING:
 1011                 case IPPROTO_DSTOPTS:
 1012                         if (!pf_pull_hdr(m, off, &ext, sizeof(ext), NULL,
 1013                             NULL, AF_INET6))
 1014                                 goto shortpkt;
 1015                         extoff = off;
 1016                         if (proto == IPPROTO_AH)
 1017                                 off += (ext.ip6e_len + 2) * 4;
 1018                         else
 1019                                 off += (ext.ip6e_len + 1) * 8;
 1020                         proto = ext.ip6e_nxt;
 1021                         break;
 1022                 case IPPROTO_HOPOPTS:
 1023                         if (!pf_pull_hdr(m, off, &ext, sizeof(ext), NULL,
 1024                             NULL, AF_INET6))
 1025                                 goto shortpkt;
 1026                         extoff = off;
 1027                         optend = off + (ext.ip6e_len + 1) * 8;
 1028                         ooff = off + sizeof(ext);
 1029                         do {
 1030                                 if (!pf_pull_hdr(m, ooff, &opt.ip6o_type,
 1031                                     sizeof(opt.ip6o_type), NULL, NULL,
 1032                                     AF_INET6))
 1033                                         goto shortpkt;
 1034                                 if (opt.ip6o_type == IP6OPT_PAD1) {
 1035                                         ooff++;
 1036                                         continue;
 1037                                 }
 1038                                 if (!pf_pull_hdr(m, ooff, &opt, sizeof(opt),
 1039                                     NULL, NULL, AF_INET6))
 1040                                         goto shortpkt;
 1041                                 if (ooff + sizeof(opt) + opt.ip6o_len > optend)
 1042                                         goto drop;
 1043                                 switch (opt.ip6o_type) {
 1044                                 case IP6OPT_JUMBO:
 1045                                         if (h->ip6_plen != 0)
 1046                                                 goto drop;
 1047                                         if (!pf_pull_hdr(m, ooff, &jumbo,
 1048                                             sizeof(jumbo), NULL, NULL,
 1049                                             AF_INET6))
 1050                                                 goto shortpkt;
 1051                                         memcpy(&jumbolen, jumbo.ip6oj_jumbo_len,
 1052                                             sizeof(jumbolen));
 1053                                         jumbolen = ntohl(jumbolen);
 1054                                         if (jumbolen <= IPV6_MAXPACKET)
 1055                                                 goto drop;
 1056                                         if (sizeof(struct ip6_hdr) + jumbolen !=
 1057                                             m->m_pkthdr.len)
 1058                                                 goto drop;
 1059                                         break;
 1060                                 default:
 1061                                         break;
 1062                                 }
 1063                                 ooff += sizeof(opt) + opt.ip6o_len;
 1064                         } while (ooff < optend);
 1065 
 1066                         off = optend;
 1067                         proto = ext.ip6e_nxt;
 1068                         break;
 1069                 default:
 1070                         terminal = 1;
 1071                         break;
 1072                 }
 1073         } while (!terminal);
 1074 
 1075         /* jumbo payload option must be present, or plen > 0 */
 1076         if (ntohs(h->ip6_plen) == 0)
 1077                 plen = jumbolen;
 1078         else
 1079                 plen = ntohs(h->ip6_plen);
 1080         if (plen == 0)
 1081                 goto drop;
 1082         if (sizeof(struct ip6_hdr) + plen > m->m_pkthdr.len)
 1083                 goto shortpkt;
 1084 
 1085         pf_scrub_ip6(&m, r->min_ttl);
 1086 
 1087         return (PF_PASS);
 1088 
 1089  fragment:
 1090         /* Jumbo payload packets cannot be fragmented. */
 1091         plen = ntohs(h->ip6_plen);
 1092         if (plen == 0 || jumbolen)
 1093                 goto drop;
 1094         if (sizeof(struct ip6_hdr) + plen > m->m_pkthdr.len)
 1095                 goto shortpkt;
 1096 
 1097         if (!pf_pull_hdr(m, off, &frag, sizeof(frag), NULL, NULL, AF_INET6))
 1098                 goto shortpkt;
 1099 
 1100         /* Offset now points to data portion. */
 1101         off += sizeof(frag);
 1102 
 1103         /* Returns PF_DROP or *m0 is NULL or completely reassembled mbuf. */
 1104         if (pf_reassemble6(m0, h, &frag, off, extoff, reason) != PF_PASS)
 1105                 return (PF_DROP);
 1106         m = *m0;
 1107         if (m == NULL)
 1108                 return (PF_DROP);
 1109 
 1110         pd->flags |= PFDESC_IP_REAS;
 1111         return (PF_PASS);
 1112 
 1113  shortpkt:
 1114         REASON_SET(reason, PFRES_SHORT);
 1115         if (r != NULL && r->log)
 1116                 PFLOG_PACKET(kif, m, AF_INET6, dir, *reason, r, NULL, NULL, pd,
 1117                     1);
 1118         return (PF_DROP);
 1119 
 1120  drop:
 1121         REASON_SET(reason, PFRES_NORM);
 1122         if (r != NULL && r->log)
 1123                 PFLOG_PACKET(kif, m, AF_INET6, dir, *reason, r, NULL, NULL, pd,
 1124                     1);
 1125         return (PF_DROP);
 1126 }
 1127 #endif /* INET6 */
 1128 
 1129 int
 1130 pf_normalize_tcp(int dir, struct pfi_kif *kif, struct mbuf *m, int ipoff,
 1131     int off, void *h, struct pf_pdesc *pd)
 1132 {
 1133         struct pf_rule  *r, *rm = NULL;
 1134         struct tcphdr   *th = pd->hdr.tcp;
 1135         int              rewrite = 0;
 1136         u_short          reason;
 1137         u_int8_t         flags;
 1138         sa_family_t      af = pd->af;
 1139 
 1140         PF_RULES_RASSERT();
 1141 
 1142         r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_SCRUB].active.ptr);
 1143         while (r != NULL) {
 1144                 r->evaluations++;
 1145                 if (pfi_kif_match(r->kif, kif) == r->ifnot)
 1146                         r = r->skip[PF_SKIP_IFP].ptr;
 1147                 else if (r->direction && r->direction != dir)
 1148                         r = r->skip[PF_SKIP_DIR].ptr;
 1149                 else if (r->af && r->af != af)
 1150                         r = r->skip[PF_SKIP_AF].ptr;
 1151                 else if (r->proto && r->proto != pd->proto)
 1152                         r = r->skip[PF_SKIP_PROTO].ptr;
 1153                 else if (PF_MISMATCHAW(&r->src.addr, pd->src, af,
 1154                     r->src.neg, kif, M_GETFIB(m)))
 1155                         r = r->skip[PF_SKIP_SRC_ADDR].ptr;
 1156                 else if (r->src.port_op && !pf_match_port(r->src.port_op,
 1157                             r->src.port[0], r->src.port[1], th->th_sport))
 1158                         r = r->skip[PF_SKIP_SRC_PORT].ptr;
 1159                 else if (PF_MISMATCHAW(&r->dst.addr, pd->dst, af,
 1160                     r->dst.neg, NULL, M_GETFIB(m)))
 1161                         r = r->skip[PF_SKIP_DST_ADDR].ptr;
 1162                 else if (r->dst.port_op && !pf_match_port(r->dst.port_op,
 1163                             r->dst.port[0], r->dst.port[1], th->th_dport))
 1164                         r = r->skip[PF_SKIP_DST_PORT].ptr;
 1165                 else if (r->os_fingerprint != PF_OSFP_ANY && !pf_osfp_match(
 1166                             pf_osfp_fingerprint(pd, m, off, th),
 1167                             r->os_fingerprint))
 1168                         r = TAILQ_NEXT(r, entries);
 1169                 else {
 1170                         rm = r;
 1171                         break;
 1172                 }
 1173         }
 1174 
 1175         if (rm == NULL || rm->action == PF_NOSCRUB)
 1176                 return (PF_PASS);
 1177         else {
 1178                 r->packets[dir == PF_OUT]++;
 1179                 r->bytes[dir == PF_OUT] += pd->tot_len;
 1180         }
 1181 
 1182         if (rm->rule_flag & PFRULE_REASSEMBLE_TCP)
 1183                 pd->flags |= PFDESC_TCP_NORM;
 1184 
 1185         flags = th->th_flags;
 1186         if (flags & TH_SYN) {
 1187                 /* Illegal packet */
 1188                 if (flags & TH_RST)
 1189                         goto tcp_drop;
 1190 
 1191                 if (flags & TH_FIN)
 1192                         goto tcp_drop;
 1193         } else {
 1194                 /* Illegal packet */
 1195                 if (!(flags & (TH_ACK|TH_RST)))
 1196                         goto tcp_drop;
 1197         }
 1198 
 1199         if (!(flags & TH_ACK)) {
 1200                 /* These flags are only valid if ACK is set */
 1201                 if ((flags & TH_FIN) || (flags & TH_PUSH) || (flags & TH_URG))
 1202                         goto tcp_drop;
 1203         }
 1204 
 1205         /* Check for illegal header length */
 1206         if (th->th_off < (sizeof(struct tcphdr) >> 2))
 1207                 goto tcp_drop;
 1208 
 1209         /* If flags changed, or reserved data set, then adjust */
 1210         if (flags != th->th_flags || th->th_x2 != 0) {
 1211                 u_int16_t       ov, nv;
 1212 
 1213                 ov = *(u_int16_t *)(&th->th_ack + 1);
 1214                 th->th_flags = flags;
 1215                 th->th_x2 = 0;
 1216                 nv = *(u_int16_t *)(&th->th_ack + 1);
 1217 
 1218                 th->th_sum = pf_proto_cksum_fixup(m, th->th_sum, ov, nv, 0);
 1219                 rewrite = 1;
 1220         }
 1221 
 1222         /* Remove urgent pointer, if TH_URG is not set */
 1223         if (!(flags & TH_URG) && th->th_urp) {
 1224                 th->th_sum = pf_proto_cksum_fixup(m, th->th_sum, th->th_urp,
 1225                     0, 0);
 1226                 th->th_urp = 0;
 1227                 rewrite = 1;
 1228         }
 1229 
 1230         /* Process options */
 1231         if (r->max_mss && pf_normalize_tcpopt(r, m, th, off, pd->af))
 1232                 rewrite = 1;
 1233 
 1234         /* copy back packet headers if we sanitized */
 1235         if (rewrite)
 1236                 m_copyback(m, off, sizeof(*th), (caddr_t)th);
 1237 
 1238         return (PF_PASS);
 1239 
 1240  tcp_drop:
 1241         REASON_SET(&reason, PFRES_NORM);
 1242         if (rm != NULL && r->log)
 1243                 PFLOG_PACKET(kif, m, AF_INET, dir, reason, r, NULL, NULL, pd,
 1244                     1);
 1245         return (PF_DROP);
 1246 }
 1247 
 1248 int
 1249 pf_normalize_tcp_init(struct mbuf *m, int off, struct pf_pdesc *pd,
 1250     struct tcphdr *th, struct pf_state_peer *src, struct pf_state_peer *dst)
 1251 {
 1252         u_int32_t tsval, tsecr;
 1253         u_int8_t hdr[60];
 1254         u_int8_t *opt;
 1255 
 1256         KASSERT((src->scrub == NULL),
 1257             ("pf_normalize_tcp_init: src->scrub != NULL"));
 1258 
 1259         src->scrub = uma_zalloc(V_pf_state_scrub_z, M_ZERO | M_NOWAIT);
 1260         if (src->scrub == NULL)
 1261                 return (1);
 1262 
 1263         switch (pd->af) {
 1264 #ifdef INET
 1265         case AF_INET: {
 1266                 struct ip *h = mtod(m, struct ip *);
 1267                 src->scrub->pfss_ttl = h->ip_ttl;
 1268                 break;
 1269         }
 1270 #endif /* INET */
 1271 #ifdef INET6
 1272         case AF_INET6: {
 1273                 struct ip6_hdr *h = mtod(m, struct ip6_hdr *);
 1274                 src->scrub->pfss_ttl = h->ip6_hlim;
 1275                 break;
 1276         }
 1277 #endif /* INET6 */
 1278         }
 1279 
 1280 
 1281         /*
 1282          * All normalizations below are only begun if we see the start of
 1283          * the connections.  They must all set an enabled bit in pfss_flags
 1284          */
 1285         if ((th->th_flags & TH_SYN) == 0)
 1286                 return (0);
 1287 
 1288 
 1289         if (th->th_off > (sizeof(struct tcphdr) >> 2) && src->scrub &&
 1290             pf_pull_hdr(m, off, hdr, th->th_off << 2, NULL, NULL, pd->af)) {
 1291                 /* Diddle with TCP options */
 1292                 int hlen;
 1293                 opt = hdr + sizeof(struct tcphdr);
 1294                 hlen = (th->th_off << 2) - sizeof(struct tcphdr);
 1295                 while (hlen >= TCPOLEN_TIMESTAMP) {
 1296                         switch (*opt) {
 1297                         case TCPOPT_EOL:        /* FALLTHROUGH */
 1298                         case TCPOPT_NOP:
 1299                                 opt++;
 1300                                 hlen--;
 1301                                 break;
 1302                         case TCPOPT_TIMESTAMP:
 1303                                 if (opt[1] >= TCPOLEN_TIMESTAMP) {
 1304                                         src->scrub->pfss_flags |=
 1305                                             PFSS_TIMESTAMP;
 1306                                         src->scrub->pfss_ts_mod =
 1307                                             htonl(arc4random());
 1308 
 1309                                         /* note PFSS_PAWS not set yet */
 1310                                         memcpy(&tsval, &opt[2],
 1311                                             sizeof(u_int32_t));
 1312                                         memcpy(&tsecr, &opt[6],
 1313                                             sizeof(u_int32_t));
 1314                                         src->scrub->pfss_tsval0 = ntohl(tsval);
 1315                                         src->scrub->pfss_tsval = ntohl(tsval);
 1316                                         src->scrub->pfss_tsecr = ntohl(tsecr);
 1317                                         getmicrouptime(&src->scrub->pfss_last);
 1318                                 }
 1319                                 /* FALLTHROUGH */
 1320                         default:
 1321                                 hlen -= MAX(opt[1], 2);
 1322                                 opt += MAX(opt[1], 2);
 1323                                 break;
 1324                         }
 1325                 }
 1326         }
 1327 
 1328         return (0);
 1329 }
 1330 
 1331 void
 1332 pf_normalize_tcp_cleanup(struct pf_state *state)
 1333 {
 1334         if (state->src.scrub)
 1335                 uma_zfree(V_pf_state_scrub_z, state->src.scrub);
 1336         if (state->dst.scrub)
 1337                 uma_zfree(V_pf_state_scrub_z, state->dst.scrub);
 1338 
 1339         /* Someday... flush the TCP segment reassembly descriptors. */
 1340 }
 1341 
 1342 int
 1343 pf_normalize_tcp_stateful(struct mbuf *m, int off, struct pf_pdesc *pd,
 1344     u_short *reason, struct tcphdr *th, struct pf_state *state,
 1345     struct pf_state_peer *src, struct pf_state_peer *dst, int *writeback)
 1346 {
 1347         struct timeval uptime;
 1348         u_int32_t tsval, tsecr;
 1349         u_int tsval_from_last;
 1350         u_int8_t hdr[60];
 1351         u_int8_t *opt;
 1352         int copyback = 0;
 1353         int got_ts = 0;
 1354 
 1355         KASSERT((src->scrub || dst->scrub),
 1356             ("%s: src->scrub && dst->scrub!", __func__));
 1357 
 1358         /*
 1359          * Enforce the minimum TTL seen for this connection.  Negate a common
 1360          * technique to evade an intrusion detection system and confuse
 1361          * firewall state code.
 1362          */
 1363         switch (pd->af) {
 1364 #ifdef INET
 1365         case AF_INET: {
 1366                 if (src->scrub) {
 1367                         struct ip *h = mtod(m, struct ip *);
 1368                         if (h->ip_ttl > src->scrub->pfss_ttl)
 1369                                 src->scrub->pfss_ttl = h->ip_ttl;
 1370                         h->ip_ttl = src->scrub->pfss_ttl;
 1371                 }
 1372                 break;
 1373         }
 1374 #endif /* INET */
 1375 #ifdef INET6
 1376         case AF_INET6: {
 1377                 if (src->scrub) {
 1378                         struct ip6_hdr *h = mtod(m, struct ip6_hdr *);
 1379                         if (h->ip6_hlim > src->scrub->pfss_ttl)
 1380                                 src->scrub->pfss_ttl = h->ip6_hlim;
 1381                         h->ip6_hlim = src->scrub->pfss_ttl;
 1382                 }
 1383                 break;
 1384         }
 1385 #endif /* INET6 */
 1386         }
 1387 
 1388         if (th->th_off > (sizeof(struct tcphdr) >> 2) &&
 1389             ((src->scrub && (src->scrub->pfss_flags & PFSS_TIMESTAMP)) ||
 1390             (dst->scrub && (dst->scrub->pfss_flags & PFSS_TIMESTAMP))) &&
 1391             pf_pull_hdr(m, off, hdr, th->th_off << 2, NULL, NULL, pd->af)) {
 1392                 /* Diddle with TCP options */
 1393                 int hlen;
 1394                 opt = hdr + sizeof(struct tcphdr);
 1395                 hlen = (th->th_off << 2) - sizeof(struct tcphdr);
 1396                 while (hlen >= TCPOLEN_TIMESTAMP) {
 1397                         switch (*opt) {
 1398                         case TCPOPT_EOL:        /* FALLTHROUGH */
 1399                         case TCPOPT_NOP:
 1400                                 opt++;
 1401                                 hlen--;
 1402                                 break;
 1403                         case TCPOPT_TIMESTAMP:
 1404                                 /* Modulate the timestamps.  Can be used for
 1405                                  * NAT detection, OS uptime determination or
 1406                                  * reboot detection.
 1407                                  */
 1408 
 1409                                 if (got_ts) {
 1410                                         /* Huh?  Multiple timestamps!? */
 1411                                         if (V_pf_status.debug >= PF_DEBUG_MISC) {
 1412                                                 DPFPRINTF(("multiple TS??"));
 1413                                                 pf_print_state(state);
 1414                                                 printf("\n");
 1415                                         }
 1416                                         REASON_SET(reason, PFRES_TS);
 1417                                         return (PF_DROP);
 1418                                 }
 1419                                 if (opt[1] >= TCPOLEN_TIMESTAMP) {
 1420                                         memcpy(&tsval, &opt[2],
 1421                                             sizeof(u_int32_t));
 1422                                         if (tsval && src->scrub &&
 1423                                             (src->scrub->pfss_flags &
 1424                                             PFSS_TIMESTAMP)) {
 1425                                                 tsval = ntohl(tsval);
 1426                                                 pf_change_proto_a(m, &opt[2],
 1427                                                     &th->th_sum,
 1428                                                     htonl(tsval +
 1429                                                     src->scrub->pfss_ts_mod),
 1430                                                     0);
 1431                                                 copyback = 1;
 1432                                         }
 1433 
 1434                                         /* Modulate TS reply iff valid (!0) */
 1435                                         memcpy(&tsecr, &opt[6],
 1436                                             sizeof(u_int32_t));
 1437                                         if (tsecr && dst->scrub &&
 1438                                             (dst->scrub->pfss_flags &
 1439                                             PFSS_TIMESTAMP)) {
 1440                                                 tsecr = ntohl(tsecr)
 1441                                                     - dst->scrub->pfss_ts_mod;
 1442                                                 pf_change_proto_a(m, &opt[6],
 1443                                                     &th->th_sum, htonl(tsecr),
 1444                                                     0);
 1445                                                 copyback = 1;
 1446                                         }
 1447                                         got_ts = 1;
 1448                                 }
 1449                                 /* FALLTHROUGH */
 1450                         default:
 1451                                 hlen -= MAX(opt[1], 2);
 1452                                 opt += MAX(opt[1], 2);
 1453                                 break;
 1454                         }
 1455                 }
 1456                 if (copyback) {
 1457                         /* Copyback the options, caller copys back header */
 1458                         *writeback = 1;
 1459                         m_copyback(m, off + sizeof(struct tcphdr),
 1460                             (th->th_off << 2) - sizeof(struct tcphdr), hdr +
 1461                             sizeof(struct tcphdr));
 1462                 }
 1463         }
 1464 
 1465 
 1466         /*
 1467          * Must invalidate PAWS checks on connections idle for too long.
 1468          * The fastest allowed timestamp clock is 1ms.  That turns out to
 1469          * be about 24 days before it wraps.  XXX Right now our lowerbound
 1470          * TS echo check only works for the first 12 days of a connection
 1471          * when the TS has exhausted half its 32bit space
 1472          */
 1473 #define TS_MAX_IDLE     (24*24*60*60)
 1474 #define TS_MAX_CONN     (12*24*60*60)   /* XXX remove when better tsecr check */
 1475 
 1476         getmicrouptime(&uptime);
 1477         if (src->scrub && (src->scrub->pfss_flags & PFSS_PAWS) &&
 1478             (uptime.tv_sec - src->scrub->pfss_last.tv_sec > TS_MAX_IDLE ||
 1479             time_uptime - state->creation > TS_MAX_CONN))  {
 1480                 if (V_pf_status.debug >= PF_DEBUG_MISC) {
 1481                         DPFPRINTF(("src idled out of PAWS\n"));
 1482                         pf_print_state(state);
 1483                         printf("\n");
 1484                 }
 1485                 src->scrub->pfss_flags = (src->scrub->pfss_flags & ~PFSS_PAWS)
 1486                     | PFSS_PAWS_IDLED;
 1487         }
 1488         if (dst->scrub && (dst->scrub->pfss_flags & PFSS_PAWS) &&
 1489             uptime.tv_sec - dst->scrub->pfss_last.tv_sec > TS_MAX_IDLE) {
 1490                 if (V_pf_status.debug >= PF_DEBUG_MISC) {
 1491                         DPFPRINTF(("dst idled out of PAWS\n"));
 1492                         pf_print_state(state);
 1493                         printf("\n");
 1494                 }
 1495                 dst->scrub->pfss_flags = (dst->scrub->pfss_flags & ~PFSS_PAWS)
 1496                     | PFSS_PAWS_IDLED;
 1497         }
 1498 
 1499         if (got_ts && src->scrub && dst->scrub &&
 1500             (src->scrub->pfss_flags & PFSS_PAWS) &&
 1501             (dst->scrub->pfss_flags & PFSS_PAWS)) {
 1502                 /* Validate that the timestamps are "in-window".
 1503                  * RFC1323 describes TCP Timestamp options that allow
 1504                  * measurement of RTT (round trip time) and PAWS
 1505                  * (protection against wrapped sequence numbers).  PAWS
 1506                  * gives us a set of rules for rejecting packets on
 1507                  * long fat pipes (packets that were somehow delayed
 1508                  * in transit longer than the time it took to send the
 1509                  * full TCP sequence space of 4Gb).  We can use these
 1510                  * rules and infer a few others that will let us treat
 1511                  * the 32bit timestamp and the 32bit echoed timestamp
 1512                  * as sequence numbers to prevent a blind attacker from
 1513                  * inserting packets into a connection.
 1514                  *
 1515                  * RFC1323 tells us:
 1516                  *  - The timestamp on this packet must be greater than
 1517                  *    or equal to the last value echoed by the other
 1518                  *    endpoint.  The RFC says those will be discarded
 1519                  *    since it is a dup that has already been acked.
 1520                  *    This gives us a lowerbound on the timestamp.
 1521                  *        timestamp >= other last echoed timestamp
 1522                  *  - The timestamp will be less than or equal to
 1523                  *    the last timestamp plus the time between the
 1524                  *    last packet and now.  The RFC defines the max
 1525                  *    clock rate as 1ms.  We will allow clocks to be
 1526                  *    up to 10% fast and will allow a total difference
 1527                  *    or 30 seconds due to a route change.  And this
 1528                  *    gives us an upperbound on the timestamp.
 1529                  *        timestamp <= last timestamp + max ticks
 1530                  *    We have to be careful here.  Windows will send an
 1531                  *    initial timestamp of zero and then initialize it
 1532                  *    to a random value after the 3whs; presumably to
 1533                  *    avoid a DoS by having to call an expensive RNG
 1534                  *    during a SYN flood.  Proof MS has at least one
 1535                  *    good security geek.
 1536                  *
 1537                  *  - The TCP timestamp option must also echo the other
 1538                  *    endpoints timestamp.  The timestamp echoed is the
 1539                  *    one carried on the earliest unacknowledged segment
 1540                  *    on the left edge of the sequence window.  The RFC
 1541                  *    states that the host will reject any echoed
 1542                  *    timestamps that were larger than any ever sent.
 1543                  *    This gives us an upperbound on the TS echo.
 1544                  *        tescr <= largest_tsval
 1545                  *  - The lowerbound on the TS echo is a little more
 1546                  *    tricky to determine.  The other endpoint's echoed
 1547                  *    values will not decrease.  But there may be
 1548                  *    network conditions that re-order packets and
 1549                  *    cause our view of them to decrease.  For now the
 1550                  *    only lowerbound we can safely determine is that
 1551                  *    the TS echo will never be less than the original
 1552                  *    TS.  XXX There is probably a better lowerbound.
 1553                  *    Remove TS_MAX_CONN with better lowerbound check.
 1554                  *        tescr >= other original TS
 1555                  *
 1556                  * It is also important to note that the fastest
 1557                  * timestamp clock of 1ms will wrap its 32bit space in
 1558                  * 24 days.  So we just disable TS checking after 24
 1559                  * days of idle time.  We actually must use a 12d
 1560                  * connection limit until we can come up with a better
 1561                  * lowerbound to the TS echo check.
 1562                  */
 1563                 struct timeval delta_ts;
 1564                 int ts_fudge;
 1565 
 1566 
 1567                 /*
 1568                  * PFTM_TS_DIFF is how many seconds of leeway to allow
 1569                  * a host's timestamp.  This can happen if the previous
 1570                  * packet got delayed in transit for much longer than
 1571                  * this packet.
 1572                  */
 1573                 if ((ts_fudge = state->rule.ptr->timeout[PFTM_TS_DIFF]) == 0)
 1574                         ts_fudge = V_pf_default_rule.timeout[PFTM_TS_DIFF];
 1575 
 1576                 /* Calculate max ticks since the last timestamp */
 1577 #define TS_MAXFREQ      1100            /* RFC max TS freq of 1Khz + 10% skew */
 1578 #define TS_MICROSECS    1000000         /* microseconds per second */
 1579                 delta_ts = uptime;
 1580                 timevalsub(&delta_ts, &src->scrub->pfss_last);
 1581                 tsval_from_last = (delta_ts.tv_sec + ts_fudge) * TS_MAXFREQ;
 1582                 tsval_from_last += delta_ts.tv_usec / (TS_MICROSECS/TS_MAXFREQ);
 1583 
 1584                 if ((src->state >= TCPS_ESTABLISHED &&
 1585                     dst->state >= TCPS_ESTABLISHED) &&
 1586                     (SEQ_LT(tsval, dst->scrub->pfss_tsecr) ||
 1587                     SEQ_GT(tsval, src->scrub->pfss_tsval + tsval_from_last) ||
 1588                     (tsecr && (SEQ_GT(tsecr, dst->scrub->pfss_tsval) ||
 1589                     SEQ_LT(tsecr, dst->scrub->pfss_tsval0))))) {
 1590                         /* Bad RFC1323 implementation or an insertion attack.
 1591                          *
 1592                          * - Solaris 2.6 and 2.7 are known to send another ACK
 1593                          *   after the FIN,FIN|ACK,ACK closing that carries
 1594                          *   an old timestamp.
 1595                          */
 1596 
 1597                         DPFPRINTF(("Timestamp failed %c%c%c%c\n",
 1598                             SEQ_LT(tsval, dst->scrub->pfss_tsecr) ? '' : ' ',
 1599                             SEQ_GT(tsval, src->scrub->pfss_tsval +
 1600                             tsval_from_last) ? '1' : ' ',
 1601                             SEQ_GT(tsecr, dst->scrub->pfss_tsval) ? '2' : ' ',
 1602                             SEQ_LT(tsecr, dst->scrub->pfss_tsval0)? '3' : ' '));
 1603                         DPFPRINTF((" tsval: %u  tsecr: %u  +ticks: %u  "
 1604                             "idle: %jus %lums\n",
 1605                             tsval, tsecr, tsval_from_last,
 1606                             (uintmax_t)delta_ts.tv_sec,
 1607                             delta_ts.tv_usec / 1000));
 1608                         DPFPRINTF((" src->tsval: %u  tsecr: %u\n",
 1609                             src->scrub->pfss_tsval, src->scrub->pfss_tsecr));
 1610                         DPFPRINTF((" dst->tsval: %u  tsecr: %u  tsval0: %u"
 1611                             "\n", dst->scrub->pfss_tsval,
 1612                             dst->scrub->pfss_tsecr, dst->scrub->pfss_tsval0));
 1613                         if (V_pf_status.debug >= PF_DEBUG_MISC) {
 1614                                 pf_print_state(state);
 1615                                 pf_print_flags(th->th_flags);
 1616                                 printf("\n");
 1617                         }
 1618                         REASON_SET(reason, PFRES_TS);
 1619                         return (PF_DROP);
 1620                 }
 1621 
 1622                 /* XXX I'd really like to require tsecr but it's optional */
 1623 
 1624         } else if (!got_ts && (th->th_flags & TH_RST) == 0 &&
 1625             ((src->state == TCPS_ESTABLISHED && dst->state == TCPS_ESTABLISHED)
 1626             || pd->p_len > 0 || (th->th_flags & TH_SYN)) &&
 1627             src->scrub && dst->scrub &&
 1628             (src->scrub->pfss_flags & PFSS_PAWS) &&
 1629             (dst->scrub->pfss_flags & PFSS_PAWS)) {
 1630                 /* Didn't send a timestamp.  Timestamps aren't really useful
 1631                  * when:
 1632                  *  - connection opening or closing (often not even sent).
 1633                  *    but we must not let an attacker to put a FIN on a
 1634                  *    data packet to sneak it through our ESTABLISHED check.
 1635                  *  - on a TCP reset.  RFC suggests not even looking at TS.
 1636                  *  - on an empty ACK.  The TS will not be echoed so it will
 1637                  *    probably not help keep the RTT calculation in sync and
 1638                  *    there isn't as much danger when the sequence numbers
 1639                  *    got wrapped.  So some stacks don't include TS on empty
 1640                  *    ACKs :-(
 1641                  *
 1642                  * To minimize the disruption to mostly RFC1323 conformant
 1643                  * stacks, we will only require timestamps on data packets.
 1644                  *
 1645                  * And what do ya know, we cannot require timestamps on data
 1646                  * packets.  There appear to be devices that do legitimate
 1647                  * TCP connection hijacking.  There are HTTP devices that allow
 1648                  * a 3whs (with timestamps) and then buffer the HTTP request.
 1649                  * If the intermediate device has the HTTP response cache, it
 1650                  * will spoof the response but not bother timestamping its
 1651                  * packets.  So we can look for the presence of a timestamp in
 1652                  * the first data packet and if there, require it in all future
 1653                  * packets.
 1654                  */
 1655 
 1656                 if (pd->p_len > 0 && (src->scrub->pfss_flags & PFSS_DATA_TS)) {
 1657                         /*
 1658                          * Hey!  Someone tried to sneak a packet in.  Or the
 1659                          * stack changed its RFC1323 behavior?!?!
 1660                          */
 1661                         if (V_pf_status.debug >= PF_DEBUG_MISC) {
 1662                                 DPFPRINTF(("Did not receive expected RFC1323 "
 1663                                     "timestamp\n"));
 1664                                 pf_print_state(state);
 1665                                 pf_print_flags(th->th_flags);
 1666                                 printf("\n");
 1667                         }
 1668                         REASON_SET(reason, PFRES_TS);
 1669                         return (PF_DROP);
 1670                 }
 1671         }
 1672 
 1673 
 1674         /*
 1675          * We will note if a host sends his data packets with or without
 1676          * timestamps.  And require all data packets to contain a timestamp
 1677          * if the first does.  PAWS implicitly requires that all data packets be
 1678          * timestamped.  But I think there are middle-man devices that hijack
 1679          * TCP streams immediately after the 3whs and don't timestamp their
 1680          * packets (seen in a WWW accelerator or cache).
 1681          */
 1682         if (pd->p_len > 0 && src->scrub && (src->scrub->pfss_flags &
 1683             (PFSS_TIMESTAMP|PFSS_DATA_TS|PFSS_DATA_NOTS)) == PFSS_TIMESTAMP) {
 1684                 if (got_ts)
 1685                         src->scrub->pfss_flags |= PFSS_DATA_TS;
 1686                 else {
 1687                         src->scrub->pfss_flags |= PFSS_DATA_NOTS;
 1688                         if (V_pf_status.debug >= PF_DEBUG_MISC && dst->scrub &&
 1689                             (dst->scrub->pfss_flags & PFSS_TIMESTAMP)) {
 1690                                 /* Don't warn if other host rejected RFC1323 */
 1691                                 DPFPRINTF(("Broken RFC1323 stack did not "
 1692                                     "timestamp data packet. Disabled PAWS "
 1693                                     "security.\n"));
 1694                                 pf_print_state(state);
 1695                                 pf_print_flags(th->th_flags);
 1696                                 printf("\n");
 1697                         }
 1698                 }
 1699         }
 1700 
 1701 
 1702         /*
 1703          * Update PAWS values
 1704          */
 1705         if (got_ts && src->scrub && PFSS_TIMESTAMP == (src->scrub->pfss_flags &
 1706             (PFSS_PAWS_IDLED|PFSS_TIMESTAMP))) {
 1707                 getmicrouptime(&src->scrub->pfss_last);
 1708                 if (SEQ_GEQ(tsval, src->scrub->pfss_tsval) ||
 1709                     (src->scrub->pfss_flags & PFSS_PAWS) == 0)
 1710                         src->scrub->pfss_tsval = tsval;
 1711 
 1712                 if (tsecr) {
 1713                         if (SEQ_GEQ(tsecr, src->scrub->pfss_tsecr) ||
 1714                             (src->scrub->pfss_flags & PFSS_PAWS) == 0)
 1715                                 src->scrub->pfss_tsecr = tsecr;
 1716 
 1717                         if ((src->scrub->pfss_flags & PFSS_PAWS) == 0 &&
 1718                             (SEQ_LT(tsval, src->scrub->pfss_tsval0) ||
 1719                             src->scrub->pfss_tsval0 == 0)) {
 1720                                 /* tsval0 MUST be the lowest timestamp */
 1721                                 src->scrub->pfss_tsval0 = tsval;
 1722                         }
 1723 
 1724                         /* Only fully initialized after a TS gets echoed */
 1725                         if ((src->scrub->pfss_flags & PFSS_PAWS) == 0)
 1726                                 src->scrub->pfss_flags |= PFSS_PAWS;
 1727                 }
 1728         }
 1729 
 1730         /* I have a dream....  TCP segment reassembly.... */
 1731         return (0);
 1732 }
 1733 
 1734 static int
 1735 pf_normalize_tcpopt(struct pf_rule *r, struct mbuf *m, struct tcphdr *th,
 1736     int off, sa_family_t af)
 1737 {
 1738         u_int16_t       *mss;
 1739         int              thoff;
 1740         int              opt, cnt, optlen = 0;
 1741         int              rewrite = 0;
 1742         u_char           opts[TCP_MAXOLEN];
 1743         u_char          *optp = opts;
 1744 
 1745         thoff = th->th_off << 2;
 1746         cnt = thoff - sizeof(struct tcphdr);
 1747 
 1748         if (cnt > 0 && !pf_pull_hdr(m, off + sizeof(*th), opts, cnt,
 1749             NULL, NULL, af))
 1750                 return (rewrite);
 1751 
 1752         for (; cnt > 0; cnt -= optlen, optp += optlen) {
 1753                 opt = optp[0];
 1754                 if (opt == TCPOPT_EOL)
 1755                         break;
 1756                 if (opt == TCPOPT_NOP)
 1757                         optlen = 1;
 1758                 else {
 1759                         if (cnt < 2)
 1760                                 break;
 1761                         optlen = optp[1];
 1762                         if (optlen < 2 || optlen > cnt)
 1763                                 break;
 1764                 }
 1765                 switch (opt) {
 1766                 case TCPOPT_MAXSEG:
 1767                         mss = (u_int16_t *)(optp + 2);
 1768                         if ((ntohs(*mss)) > r->max_mss) {
 1769                                 th->th_sum = pf_proto_cksum_fixup(m,
 1770                                     th->th_sum, *mss, htons(r->max_mss), 0);
 1771                                 *mss = htons(r->max_mss);
 1772                                 rewrite = 1;
 1773                         }
 1774                         break;
 1775                 default:
 1776                         break;
 1777                 }
 1778         }
 1779 
 1780         if (rewrite)
 1781                 m_copyback(m, off + sizeof(*th), thoff - sizeof(*th), opts);
 1782 
 1783         return (rewrite);
 1784 }
 1785 
 1786 #ifdef INET
 1787 static void
 1788 pf_scrub_ip(struct mbuf **m0, u_int32_t flags, u_int8_t min_ttl, u_int8_t tos)
 1789 {
 1790         struct mbuf             *m = *m0;
 1791         struct ip               *h = mtod(m, struct ip *);
 1792 
 1793         /* Clear IP_DF if no-df was requested */
 1794         if (flags & PFRULE_NODF && h->ip_off & htons(IP_DF)) {
 1795                 u_int16_t ip_off = h->ip_off;
 1796 
 1797                 h->ip_off &= htons(~IP_DF);
 1798                 h->ip_sum = pf_cksum_fixup(h->ip_sum, ip_off, h->ip_off, 0);
 1799         }
 1800 
 1801         /* Enforce a minimum ttl, may cause endless packet loops */
 1802         if (min_ttl && h->ip_ttl < min_ttl) {
 1803                 u_int16_t ip_ttl = h->ip_ttl;
 1804 
 1805                 h->ip_ttl = min_ttl;
 1806                 h->ip_sum = pf_cksum_fixup(h->ip_sum, ip_ttl, h->ip_ttl, 0);
 1807         }
 1808 
 1809         /* Enforce tos */
 1810         if (flags & PFRULE_SET_TOS) {
 1811                 u_int16_t       ov, nv;
 1812 
 1813                 ov = *(u_int16_t *)h;
 1814                 h->ip_tos = tos;
 1815                 nv = *(u_int16_t *)h;
 1816 
 1817                 h->ip_sum = pf_cksum_fixup(h->ip_sum, ov, nv, 0);
 1818         }
 1819 
 1820         /* random-id, but not for fragments */
 1821         if (flags & PFRULE_RANDOMID && !(h->ip_off & ~htons(IP_DF))) {
 1822                 uint16_t ip_id = h->ip_id;
 1823 
 1824                 ip_fillid(h);
 1825                 h->ip_sum = pf_cksum_fixup(h->ip_sum, ip_id, h->ip_id, 0);
 1826         }
 1827 }
 1828 #endif /* INET */
 1829 
 1830 #ifdef INET6
 1831 static void
 1832 pf_scrub_ip6(struct mbuf **m0, u_int8_t min_ttl)
 1833 {
 1834         struct mbuf             *m = *m0;
 1835         struct ip6_hdr          *h = mtod(m, struct ip6_hdr *);
 1836 
 1837         /* Enforce a minimum ttl, may cause endless packet loops */
 1838         if (min_ttl && h->ip6_hlim < min_ttl)
 1839                 h->ip6_hlim = min_ttl;
 1840 }
 1841 #endif

Cache object: 1452b414e1109c46e850ffb2c15115dd


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.