FreeBSD/Linux Kernel Cross Reference
sys/nfs/nfs_bio.c
1 /*
2 * Copyright (c) 1989, 1993
3 * The Regents of the University of California. All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * Rick Macklem at The University of Guelph.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by the University of
19 * California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 * @(#)nfs_bio.c 8.9 (Berkeley) 3/30/95
37 * $FreeBSD$
38 */
39
40
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/resourcevar.h>
44 #include <sys/signalvar.h>
45 #include <sys/proc.h>
46 #include <sys/buf.h>
47 #include <sys/vnode.h>
48 #include <sys/mount.h>
49 #include <sys/kernel.h>
50
51 #include <vm/vm.h>
52 #include <vm/vm_extern.h>
53 #include <vm/vm_prot.h>
54 #include <vm/vm_page.h>
55 #include <vm/vm_object.h>
56 #include <vm/vm_pager.h>
57 #include <vm/vnode_pager.h>
58
59 #include <nfs/rpcv2.h>
60 #include <nfs/nfsproto.h>
61 #include <nfs/nfs.h>
62 #include <nfs/nfsmount.h>
63 #include <nfs/nqnfs.h>
64 #include <nfs/nfsnode.h>
65
66 static struct buf *nfs_getcacheblk __P((struct vnode *vp, daddr_t bn, int size,
67 struct proc *p));
68 static void nfs_prot_buf __P((struct buf *bp, int off, int n));
69
70 extern int nfs_numasync;
71 extern struct nfsstats nfsstats;
72
73 /*
74 * Vnode op for VM getpages.
75 */
76 int
77 nfs_getpages(ap)
78 struct vop_getpages_args /* {
79 struct vnode *a_vp;
80 vm_page_t *a_m;
81 int a_count;
82 int a_reqpage;
83 vm_ooffset_t a_offset;
84 } */ *ap;
85 {
86 int i, error, nextoff, size, toff, npages, count;
87 struct uio uio;
88 struct iovec iov;
89 vm_offset_t kva;
90 struct buf *bp;
91 struct vnode *vp;
92 struct proc *p;
93 struct ucred *cred;
94 struct nfsmount *nmp;
95 vm_page_t *pages;
96
97 vp = ap->a_vp;
98 p = curproc; /* XXX */
99 cred = curproc->p_ucred; /* XXX */
100 nmp = VFSTONFS(vp->v_mount);
101 pages = ap->a_m;
102 count = ap->a_count;
103
104 if (vp->v_object == NULL) {
105 printf("nfs_getpages: called with non-merged cache vnode??\n");
106 return VM_PAGER_ERROR;
107 }
108
109 if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
110 (nmp->nm_state & NFSSTA_GOTFSINFO) == 0)
111 (void)nfs_fsinfo(nmp, vp, cred, p);
112 /*
113 * We use only the kva address for the buffer, but this is extremely
114 * convienient and fast.
115 */
116 bp = getpbuf();
117
118 npages = btoc(count);
119 kva = (vm_offset_t) bp->b_data;
120 pmap_qenter(kva, pages, npages);
121
122 iov.iov_base = (caddr_t) kva;
123 iov.iov_len = count;
124 uio.uio_iov = &iov;
125 uio.uio_iovcnt = 1;
126 uio.uio_offset = IDX_TO_OFF(pages[0]->pindex);
127 uio.uio_resid = count;
128 uio.uio_segflg = UIO_SYSSPACE;
129 uio.uio_rw = UIO_READ;
130 uio.uio_procp = p;
131
132 error = nfs_readrpc(vp, &uio, cred);
133 pmap_qremove(kva, npages);
134
135 relpbuf(bp);
136
137 if (error && (uio.uio_resid == count))
138 return VM_PAGER_ERROR;
139
140 size = count - uio.uio_resid;
141
142 for (i = 0, toff = 0; i < npages; i++, toff = nextoff) {
143 vm_page_t m;
144 nextoff = toff + PAGE_SIZE;
145 m = pages[i];
146
147 m->flags &= ~PG_ZERO;
148
149 if (nextoff <= size) {
150 m->valid = VM_PAGE_BITS_ALL;
151 m->dirty = 0;
152 } else {
153 int nvalid = ((size + DEV_BSIZE - 1) - toff) & ~(DEV_BSIZE - 1);
154 vm_page_set_validclean(m, 0, nvalid);
155 }
156
157 if (i != ap->a_reqpage) {
158 /*
159 * Whether or not to leave the page activated is up in
160 * the air, but we should put the page on a page queue
161 * somewhere (it already is in the object). Result:
162 * It appears that emperical results show that
163 * deactivating pages is best.
164 */
165
166 /*
167 * Just in case someone was asking for this page we
168 * now tell them that it is ok to use.
169 */
170 if (!error) {
171 if (m->flags & PG_WANTED)
172 vm_page_activate(m);
173 else
174 vm_page_deactivate(m);
175 vm_page_wakeup(m);
176 } else {
177 vnode_pager_freepage(m);
178 }
179 }
180 }
181 return 0;
182 }
183
184 /*
185 * Vnode op for VM putpages.
186 */
187 int
188 nfs_putpages(ap)
189 struct vop_putpages_args /* {
190 struct vnode *a_vp;
191 vm_page_t *a_m;
192 int a_count;
193 int a_sync;
194 int *a_rtvals;
195 vm_ooffset_t a_offset;
196 } */ *ap;
197 {
198 struct uio uio;
199 struct iovec iov;
200 vm_offset_t kva;
201 struct buf *bp;
202 int iomode, must_commit, i, error, npages, count;
203 int *rtvals;
204 struct vnode *vp;
205 struct proc *p;
206 struct ucred *cred;
207 struct nfsmount *nmp;
208 vm_page_t *pages;
209
210 vp = ap->a_vp;
211 p = curproc; /* XXX */
212 cred = curproc->p_ucred; /* XXX */
213 nmp = VFSTONFS(vp->v_mount);
214 pages = ap->a_m;
215 count = ap->a_count;
216 rtvals = ap->a_rtvals;
217 npages = btoc(count);
218
219 if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
220 (nmp->nm_state & NFSSTA_GOTFSINFO) == 0)
221 (void)nfs_fsinfo(nmp, vp, cred, p);
222
223 for (i = 0; i < npages; i++) {
224 rtvals[i] = VM_PAGER_AGAIN;
225 }
226
227 /*
228 * We use only the kva address for the buffer, but this is extremely
229 * convienient and fast.
230 */
231 bp = getpbuf();
232
233 kva = (vm_offset_t) bp->b_data;
234 pmap_qenter(kva, pages, npages);
235
236 iov.iov_base = (caddr_t) kva;
237 iov.iov_len = count;
238 uio.uio_iov = &iov;
239 uio.uio_iovcnt = 1;
240 uio.uio_offset = IDX_TO_OFF(pages[0]->pindex);
241 uio.uio_resid = count;
242 uio.uio_segflg = UIO_SYSSPACE;
243 uio.uio_rw = UIO_WRITE;
244 uio.uio_procp = p;
245
246 if ((ap->a_sync & VM_PAGER_PUT_SYNC) == 0)
247 iomode = NFSV3WRITE_UNSTABLE;
248 else
249 iomode = NFSV3WRITE_FILESYNC;
250
251 error = nfs_writerpc(vp, &uio, cred, &iomode, &must_commit);
252
253 pmap_qremove(kva, npages);
254 relpbuf(bp);
255
256 if (!error) {
257 int nwritten = round_page(count - uio.uio_resid) / PAGE_SIZE;
258 for (i = 0; i < nwritten; i++) {
259 rtvals[i] = VM_PAGER_OK;
260 pages[i]->dirty = 0;
261 }
262 if (must_commit)
263 nfs_clearcommit(vp->v_mount);
264 }
265 return rtvals[0];
266 }
267
268 /*
269 * Vnode op for read using bio
270 */
271 int
272 nfs_bioread(vp, uio, ioflag, cred, getpages)
273 register struct vnode *vp;
274 register struct uio *uio;
275 int ioflag;
276 struct ucred *cred;
277 int getpages;
278 {
279 register struct nfsnode *np = VTONFS(vp);
280 register int biosize, i;
281 off_t diff;
282 struct buf *bp = 0, *rabp;
283 struct vattr vattr;
284 struct proc *p;
285 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
286 daddr_t lbn, rabn;
287 int bufsize;
288 int nra, error = 0, n = 0, on = 0, not_readin;
289
290 #ifdef DIAGNOSTIC
291 if (uio->uio_rw != UIO_READ)
292 panic("nfs_read mode");
293 #endif
294 if (uio->uio_resid == 0)
295 return (0);
296 if (uio->uio_offset < 0) /* XXX VDIR cookies can be negative */
297 return (EINVAL);
298 p = uio->uio_procp;
299 if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
300 (nmp->nm_state & NFSSTA_GOTFSINFO) == 0)
301 (void)nfs_fsinfo(nmp, vp, cred, p);
302 if (vp->v_type != VDIR &&
303 (uio->uio_offset + uio->uio_resid) > nmp->nm_maxfilesize)
304 return (EFBIG);
305 biosize = vp->v_mount->mnt_stat.f_iosize;
306 /*
307 * For nfs, cache consistency can only be maintained approximately.
308 * Although RFC1094 does not specify the criteria, the following is
309 * believed to be compatible with the reference port.
310 * For nqnfs, full cache consistency is maintained within the loop.
311 * For nfs:
312 * If the file's modify time on the server has changed since the
313 * last read rpc or you have written to the file,
314 * you may have lost data cache consistency with the
315 * server, so flush all of the file's data out of the cache.
316 * Then force a getattr rpc to ensure that you have up to date
317 * attributes.
318 * NB: This implies that cache data can be read when up to
319 * NFS_ATTRTIMEO seconds out of date. If you find that you need current
320 * attributes this could be forced by setting n_attrstamp to 0 before
321 * the VOP_GETATTR() call.
322 */
323 if ((nmp->nm_flag & NFSMNT_NQNFS) == 0) {
324 if (np->n_flag & NMODIFIED) {
325 if (vp->v_type != VREG) {
326 if (vp->v_type != VDIR)
327 panic("nfs: bioread, not dir");
328 nfs_invaldir(vp);
329 error = nfs_vinvalbuf(vp, V_SAVE, cred, p, 1);
330 if (error)
331 return (error);
332 }
333 np->n_attrstamp = 0;
334 error = VOP_GETATTR(vp, &vattr, cred, p);
335 if (error)
336 return (error);
337 np->n_mtime = vattr.va_mtime.tv_sec;
338 } else {
339 error = VOP_GETATTR(vp, &vattr, cred, p);
340 if (error)
341 return (error);
342 if (np->n_mtime != vattr.va_mtime.tv_sec) {
343 if (vp->v_type == VDIR)
344 nfs_invaldir(vp);
345 error = nfs_vinvalbuf(vp, V_SAVE, cred, p, 1);
346 if (error)
347 return (error);
348 np->n_mtime = vattr.va_mtime.tv_sec;
349 }
350 }
351 }
352 do {
353
354 /*
355 * Get a valid lease. If cached data is stale, flush it.
356 */
357 if (nmp->nm_flag & NFSMNT_NQNFS) {
358 if (NQNFS_CKINVALID(vp, np, ND_READ)) {
359 do {
360 error = nqnfs_getlease(vp, ND_READ, cred, p);
361 } while (error == NQNFS_EXPIRED);
362 if (error)
363 return (error);
364 if (np->n_lrev != np->n_brev ||
365 (np->n_flag & NQNFSNONCACHE) ||
366 ((np->n_flag & NMODIFIED) && vp->v_type == VDIR)) {
367 if (vp->v_type == VDIR)
368 nfs_invaldir(vp);
369 error = nfs_vinvalbuf(vp, V_SAVE, cred, p, 1);
370 if (error)
371 return (error);
372 np->n_brev = np->n_lrev;
373 }
374 } else if (vp->v_type == VDIR && (np->n_flag & NMODIFIED)) {
375 nfs_invaldir(vp);
376 error = nfs_vinvalbuf(vp, V_SAVE, cred, p, 1);
377 if (error)
378 return (error);
379 }
380 }
381 if (np->n_flag & NQNFSNONCACHE) {
382 switch (vp->v_type) {
383 case VREG:
384 return (nfs_readrpc(vp, uio, cred));
385 case VLNK:
386 return (nfs_readlinkrpc(vp, uio, cred));
387 case VDIR:
388 break;
389 default:
390 printf(" NQNFSNONCACHE: type %x unexpected\n",
391 vp->v_type);
392 };
393 }
394 switch (vp->v_type) {
395 case VREG:
396 nfsstats.biocache_reads++;
397 lbn = uio->uio_offset / biosize;
398 on = uio->uio_offset & (biosize - 1);
399 not_readin = 1;
400
401 /*
402 * Start the read ahead(s), as required.
403 */
404 if (nfs_numasync > 0 && nmp->nm_readahead > 0) {
405 for (nra = 0; nra < nmp->nm_readahead &&
406 (off_t)(lbn + 1 + nra) * biosize < np->n_size; nra++) {
407 rabn = lbn + 1 + nra;
408 if (!incore(vp, rabn)) {
409 rabp = nfs_getcacheblk(vp, rabn, biosize, p);
410 if (!rabp)
411 return (EINTR);
412 if ((rabp->b_flags & (B_CACHE|B_DELWRI)) == 0) {
413 rabp->b_flags |= (B_READ | B_ASYNC);
414 vfs_busy_pages(rabp, 0);
415 if (nfs_asyncio(rabp, cred)) {
416 rabp->b_flags |= B_INVAL|B_ERROR;
417 vfs_unbusy_pages(rabp);
418 brelse(rabp);
419 }
420 } else
421 brelse(rabp);
422 }
423 }
424 }
425
426 /*
427 * If the block is in the cache and has the required data
428 * in a valid region, just copy it out.
429 * Otherwise, get the block and write back/read in,
430 * as required.
431 */
432 again:
433 bufsize = biosize;
434 if ((off_t)(lbn + 1) * biosize > np->n_size &&
435 (off_t)(lbn + 1) * biosize - np->n_size < biosize) {
436 bufsize = np->n_size - (off_t)lbn * biosize;
437 bufsize = (bufsize + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
438 }
439 bp = nfs_getcacheblk(vp, lbn, bufsize, p);
440 if (!bp)
441 return (EINTR);
442 /*
443 * If we are being called from nfs_getpages, we must
444 * make sure the buffer is a vmio buffer. The vp will
445 * already be setup for vmio but there may be some old
446 * non-vmio buffers attached to it.
447 */
448 if (getpages && !(bp->b_flags & B_VMIO)) {
449 #ifdef DIAGNOSTIC
450 printf("nfs_bioread: non vmio buf found, discarding\n");
451 #endif
452 bp->b_flags |= B_NOCACHE;
453 bp->b_flags |= B_INVAFTERWRITE;
454 if (bp->b_dirtyend > 0) {
455 if ((bp->b_flags & B_DELWRI) == 0)
456 panic("nfsbioread");
457 if (VOP_BWRITE(bp) == EINTR)
458 return (EINTR);
459 } else
460 brelse(bp);
461 goto again;
462 }
463 if ((bp->b_flags & B_CACHE) == 0) {
464 bp->b_flags |= B_READ;
465 bp->b_flags &= ~(B_DONE | B_ERROR | B_INVAL);
466 not_readin = 0;
467 vfs_busy_pages(bp, 0);
468 error = nfs_doio(bp, cred, p);
469 if (error) {
470 brelse(bp);
471 return (error);
472 }
473 }
474 if (bufsize > on) {
475 n = min((unsigned)(bufsize - on), uio->uio_resid);
476 } else {
477 n = 0;
478 }
479 diff = np->n_size - uio->uio_offset;
480 if (diff < n)
481 n = diff;
482 if (not_readin && n > 0) {
483 if (on < bp->b_validoff || (on + n) > bp->b_validend) {
484 bp->b_flags |= B_NOCACHE;
485 bp->b_flags |= B_INVAFTERWRITE;
486 if (bp->b_dirtyend > 0) {
487 if ((bp->b_flags & B_DELWRI) == 0)
488 panic("nfsbioread");
489 if (VOP_BWRITE(bp) == EINTR)
490 return (EINTR);
491 } else
492 brelse(bp);
493 goto again;
494 }
495 }
496 vp->v_lastr = lbn;
497 diff = (on >= bp->b_validend) ? 0 : (bp->b_validend - on);
498 if (diff < n)
499 n = diff;
500 break;
501 case VLNK:
502 nfsstats.biocache_readlinks++;
503 bp = nfs_getcacheblk(vp, (daddr_t)0, NFS_MAXPATHLEN, p);
504 if (!bp)
505 return (EINTR);
506 if ((bp->b_flags & B_CACHE) == 0) {
507 bp->b_flags |= B_READ;
508 vfs_busy_pages(bp, 0);
509 error = nfs_doio(bp, cred, p);
510 if (error) {
511 bp->b_flags |= B_ERROR;
512 brelse(bp);
513 return (error);
514 }
515 }
516 n = min(uio->uio_resid, NFS_MAXPATHLEN - bp->b_resid);
517 on = 0;
518 break;
519 case VDIR:
520 nfsstats.biocache_readdirs++;
521 if (np->n_direofoffset
522 && uio->uio_offset >= np->n_direofoffset) {
523 return (0);
524 }
525 lbn = (uoff_t)uio->uio_offset / NFS_DIRBLKSIZ;
526 on = uio->uio_offset & (NFS_DIRBLKSIZ - 1);
527 bp = nfs_getcacheblk(vp, lbn, NFS_DIRBLKSIZ, p);
528 if (!bp)
529 return (EINTR);
530 if ((bp->b_flags & B_CACHE) == 0) {
531 bp->b_flags |= B_READ;
532 vfs_busy_pages(bp, 0);
533 error = nfs_doio(bp, cred, p);
534 if (error) {
535 brelse(bp);
536 }
537 while (error == NFSERR_BAD_COOKIE) {
538 nfs_invaldir(vp);
539 error = nfs_vinvalbuf(vp, 0, cred, p, 1);
540 /*
541 * Yuck! The directory has been modified on the
542 * server. The only way to get the block is by
543 * reading from the beginning to get all the
544 * offset cookies.
545 */
546 for (i = 0; i <= lbn && !error; i++) {
547 if (np->n_direofoffset
548 && (i * NFS_DIRBLKSIZ) >= np->n_direofoffset)
549 return (0);
550 bp = nfs_getcacheblk(vp, i, NFS_DIRBLKSIZ, p);
551 if (!bp)
552 return (EINTR);
553 if ((bp->b_flags & B_DONE) == 0) {
554 bp->b_flags |= B_READ;
555 vfs_busy_pages(bp, 0);
556 error = nfs_doio(bp, cred, p);
557 if (error == 0 && (bp->b_flags & B_INVAL))
558 break;
559 if (error) {
560 brelse(bp);
561 } else if (i < lbn) {
562 brelse(bp);
563 }
564 }
565 }
566 }
567 if (error)
568 return (error);
569 }
570
571 /*
572 * If not eof and read aheads are enabled, start one.
573 * (You need the current block first, so that you have the
574 * directory offset cookie of the next block.)
575 */
576 if (nfs_numasync > 0 && nmp->nm_readahead > 0 &&
577 (bp->b_flags & B_INVAL) == 0 &&
578 (np->n_direofoffset == 0 ||
579 (lbn + 1) * NFS_DIRBLKSIZ < np->n_direofoffset) &&
580 !(np->n_flag & NQNFSNONCACHE) &&
581 !incore(vp, lbn + 1)) {
582 rabp = nfs_getcacheblk(vp, lbn + 1, NFS_DIRBLKSIZ, p);
583 if (rabp) {
584 if ((rabp->b_flags & (B_CACHE|B_DELWRI)) == 0) {
585 rabp->b_flags |= (B_READ | B_ASYNC);
586 vfs_busy_pages(rabp, 0);
587 if (nfs_asyncio(rabp, cred)) {
588 rabp->b_flags |= B_INVAL|B_ERROR;
589 vfs_unbusy_pages(rabp);
590 brelse(rabp);
591 }
592 } else {
593 brelse(rabp);
594 }
595 }
596 }
597 /*
598 * Make sure we use a signed variant of min() since
599 * the second term may be negative.
600 */
601 n = lmin(uio->uio_resid, NFS_DIRBLKSIZ - bp->b_resid - on);
602 break;
603 default:
604 printf(" nfs_bioread: type %x unexpected\n",vp->v_type);
605 break;
606 };
607
608 if (n > 0) {
609 error = uiomove(bp->b_data + on, (int)n, uio);
610 }
611 switch (vp->v_type) {
612 case VREG:
613 break;
614 case VLNK:
615 n = 0;
616 break;
617 case VDIR:
618 if (np->n_flag & NQNFSNONCACHE)
619 bp->b_flags |= B_INVAL;
620 break;
621 default:
622 printf(" nfs_bioread: type %x unexpected\n",vp->v_type);
623 }
624 brelse(bp);
625 } while (error == 0 && uio->uio_resid > 0 && n > 0);
626 return (error);
627 }
628
629 static void
630 nfs_prot_buf(bp, off, n)
631 struct buf *bp;
632 int off;
633 int n;
634 {
635 int pindex, boff, end;
636
637 if ((bp->b_flags & B_VMIO) == 0)
638 return;
639
640 end = round_page(off + n);
641 for (boff = trunc_page(off); boff < end; boff += PAGE_SIZE) {
642 pindex = boff >> PAGE_SHIFT;
643 vm_page_protect(bp->b_pages[pindex], VM_PROT_NONE);
644 }
645 }
646
647 /*
648 * Vnode op for write using bio
649 */
650 int
651 nfs_write(ap)
652 struct vop_write_args /* {
653 struct vnode *a_vp;
654 struct uio *a_uio;
655 int a_ioflag;
656 struct ucred *a_cred;
657 } */ *ap;
658 {
659 register int biosize;
660 register struct uio *uio = ap->a_uio;
661 struct proc *p = uio->uio_procp;
662 register struct vnode *vp = ap->a_vp;
663 struct nfsnode *np = VTONFS(vp);
664 register struct ucred *cred = ap->a_cred;
665 int ioflag = ap->a_ioflag;
666 struct buf *bp;
667 struct vattr vattr;
668 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
669 daddr_t lbn;
670 int bufsize;
671 int n, on, error = 0, iomode, must_commit;
672
673 #ifdef DIAGNOSTIC
674 if (uio->uio_rw != UIO_WRITE)
675 panic("nfs_write mode");
676 if (uio->uio_segflg == UIO_USERSPACE && uio->uio_procp != curproc)
677 panic("nfs_write proc");
678 #endif
679 if (vp->v_type != VREG)
680 return (EIO);
681 if (np->n_flag & NWRITEERR) {
682 np->n_flag &= ~NWRITEERR;
683 return (np->n_error);
684 }
685 if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
686 (nmp->nm_state & NFSSTA_GOTFSINFO) == 0)
687 (void)nfs_fsinfo(nmp, vp, cred, p);
688 if (ioflag & (IO_APPEND | IO_SYNC)) {
689 if (np->n_flag & NMODIFIED) {
690 np->n_attrstamp = 0;
691 error = nfs_vinvalbuf(vp, V_SAVE, cred, p, 1);
692 if (error)
693 return (error);
694 }
695 if (ioflag & IO_APPEND) {
696 np->n_attrstamp = 0;
697 error = VOP_GETATTR(vp, &vattr, cred, p);
698 if (error)
699 return (error);
700 uio->uio_offset = np->n_size;
701 }
702 }
703 if (uio->uio_offset < 0)
704 return (EINVAL);
705 if ((uio->uio_offset + uio->uio_resid) > nmp->nm_maxfilesize)
706 return (EFBIG);
707 if (uio->uio_resid == 0)
708 return (0);
709 /*
710 * Maybe this should be above the vnode op call, but so long as
711 * file servers have no limits, i don't think it matters
712 */
713 if (p && uio->uio_offset + uio->uio_resid >
714 p->p_rlimit[RLIMIT_FSIZE].rlim_cur) {
715 psignal(p, SIGXFSZ);
716 return (EFBIG);
717 }
718 /*
719 * I use nm_rsize, not nm_wsize so that all buffer cache blocks
720 * will be the same size within a filesystem. nfs_writerpc will
721 * still use nm_wsize when sizing the rpc's.
722 */
723 biosize = vp->v_mount->mnt_stat.f_iosize;
724 do {
725 /*
726 * Check for a valid write lease.
727 */
728 if ((nmp->nm_flag & NFSMNT_NQNFS) &&
729 NQNFS_CKINVALID(vp, np, ND_WRITE)) {
730 do {
731 error = nqnfs_getlease(vp, ND_WRITE, cred, p);
732 } while (error == NQNFS_EXPIRED);
733 if (error)
734 return (error);
735 if (np->n_lrev != np->n_brev ||
736 (np->n_flag & NQNFSNONCACHE)) {
737 error = nfs_vinvalbuf(vp, V_SAVE, cred, p, 1);
738 if (error)
739 return (error);
740 np->n_brev = np->n_lrev;
741 }
742 }
743 if ((np->n_flag & NQNFSNONCACHE) && uio->uio_iovcnt == 1) {
744 iomode = NFSV3WRITE_FILESYNC;
745 error = nfs_writerpc(vp, uio, cred, &iomode, &must_commit);
746 if (must_commit)
747 nfs_clearcommit(vp->v_mount);
748 return (error);
749 }
750 nfsstats.biocache_writes++;
751 lbn = uio->uio_offset / biosize;
752 on = uio->uio_offset & (biosize-1);
753 n = min((unsigned)(biosize - on), uio->uio_resid);
754 again:
755 if (uio->uio_offset + n > np->n_size) {
756 np->n_size = uio->uio_offset + n;
757 np->n_flag |= NMODIFIED;
758 vnode_pager_setsize(vp, np->n_size);
759 }
760 bufsize = biosize;
761 #if 0
762 /*
763 * This optimization causes problems if the file grows while
764 * blocked in nfs_getcacheblk(). Not only can data be lost,
765 * but b_dirtyoff/end/b_validoff/end can wind up greater then
766 * b_bufsize, resulting in general memory corruption.
767 */
768 if ((off_t)(lbn + 1) * biosize > np->n_size) {
769 bufsize = np->n_size - (off_t)lbn * biosize;
770 bufsize = (bufsize + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
771 }
772 #endif
773 bp = nfs_getcacheblk(vp, lbn, bufsize, p);
774 if (!bp)
775 return (EINTR);
776 if (bp->b_wcred == NOCRED) {
777 crhold(cred);
778 bp->b_wcred = cred;
779 }
780 np->n_flag |= NMODIFIED;
781
782 if ((off_t)bp->b_blkno * DEV_BSIZE + bp->b_dirtyend > np->n_size)
783 bp->b_dirtyend = np->n_size - (off_t)bp->b_blkno * DEV_BSIZE;
784 if (bp->b_dirtyend <= bp->b_dirtyoff)
785 bp->b_dirtyend = bp->b_dirtyoff = 0;
786
787 /*
788 * If the new write will leave a contiguous dirty
789 * area, just update the b_dirtyoff and b_dirtyend,
790 * otherwise force a write rpc of the old dirty area.
791 */
792 if (bp->b_dirtyend > 0 &&
793 (on > bp->b_dirtyend || (on + n) < bp->b_dirtyoff)) {
794 bp->b_proc = p;
795 if (VOP_BWRITE(bp) == EINTR)
796 return (EINTR);
797 goto again;
798 }
799
800 /*
801 * Check for valid write lease and get one as required.
802 * In case getblk() and/or bwrite() delayed us.
803 */
804 if ((nmp->nm_flag & NFSMNT_NQNFS) &&
805 NQNFS_CKINVALID(vp, np, ND_WRITE)) {
806 do {
807 error = nqnfs_getlease(vp, ND_WRITE, cred, p);
808 } while (error == NQNFS_EXPIRED);
809 if (error) {
810 brelse(bp);
811 return (error);
812 }
813 if (np->n_lrev != np->n_brev ||
814 (np->n_flag & NQNFSNONCACHE)) {
815 brelse(bp);
816 error = nfs_vinvalbuf(vp, V_SAVE, cred, p, 1);
817 if (error)
818 return (error);
819 np->n_brev = np->n_lrev;
820 goto again;
821 }
822 }
823
824 error = uiomove((char *)bp->b_data + on, n, uio);
825 bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
826 if (error) {
827 bp->b_flags |= B_ERROR;
828 brelse(bp);
829 return (error);
830 }
831
832 /*
833 * This will keep the buffer and mmaped regions more coherent.
834 */
835 nfs_prot_buf(bp, on, n);
836
837 if (bp->b_dirtyend > 0) {
838 bp->b_dirtyoff = min(on, bp->b_dirtyoff);
839 bp->b_dirtyend = max((on + n), bp->b_dirtyend);
840 } else {
841 bp->b_dirtyoff = on;
842 bp->b_dirtyend = on + n;
843 }
844 if (bp->b_validend == 0 || bp->b_validend < bp->b_dirtyoff ||
845 bp->b_validoff > bp->b_dirtyend) {
846 bp->b_validoff = bp->b_dirtyoff;
847 bp->b_validend = bp->b_dirtyend;
848 } else {
849 bp->b_validoff = min(bp->b_validoff, bp->b_dirtyoff);
850 bp->b_validend = max(bp->b_validend, bp->b_dirtyend);
851 }
852
853 /*
854 * Since this block is being modified, it must be written
855 * again and not just committed.
856 */
857 bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
858
859 /*
860 * If the lease is non-cachable or IO_SYNC do bwrite().
861 */
862 if ((np->n_flag & NQNFSNONCACHE) || (ioflag & IO_SYNC)) {
863 bp->b_proc = p;
864 if (ioflag & IO_INVAL)
865 bp->b_flags |= B_INVAL;
866 error = VOP_BWRITE(bp);
867 if (error)
868 return (error);
869 if (np->n_flag & NQNFSNONCACHE) {
870 error = nfs_vinvalbuf(vp, V_SAVE, cred, p, 1);
871 if (error)
872 return (error);
873 }
874 } else if ((n + on) == biosize &&
875 (nmp->nm_flag & NFSMNT_NQNFS) == 0) {
876 bp->b_proc = (struct proc *)0;
877 bp->b_flags |= B_ASYNC;
878 (void)nfs_writebp(bp, 0);
879 } else
880 bdwrite(bp);
881 } while (uio->uio_resid > 0 && n > 0);
882 return (0);
883 }
884
885 /*
886 * Get an nfs cache block.
887 * Allocate a new one if the block isn't currently in the cache
888 * and return the block marked busy. If the calling process is
889 * interrupted by a signal for an interruptible mount point, return
890 * NULL.
891 */
892 static struct buf *
893 nfs_getcacheblk(vp, bn, size, p)
894 struct vnode *vp;
895 daddr_t bn;
896 int size;
897 struct proc *p;
898 {
899 register struct buf *bp;
900 struct mount *mp;
901 struct nfsmount *nmp;
902
903 mp = vp->v_mount;
904 nmp = VFSTONFS(mp);
905
906 if (nmp->nm_flag & NFSMNT_INT) {
907 bp = getblk(vp, bn, size, PCATCH, 0);
908 while (bp == (struct buf *)0) {
909 if (nfs_sigintr(nmp, (struct nfsreq *)0, p))
910 return ((struct buf *)0);
911 bp = getblk(vp, bn, size, 0, 2 * hz);
912 }
913 } else
914 bp = getblk(vp, bn, size, 0, 0);
915
916 if (vp->v_type == VREG) {
917 int biosize;
918 biosize = mp->mnt_stat.f_iosize;
919 bp->b_blkno = bn * (biosize / DEV_BSIZE);
920 }
921
922 return (bp);
923 }
924
925 /*
926 * Flush and invalidate all dirty buffers. If another process is already
927 * doing the flush, just wait for completion.
928 */
929 int
930 nfs_vinvalbuf(vp, flags, cred, p, intrflg)
931 struct vnode *vp;
932 int flags;
933 struct ucred *cred;
934 struct proc *p;
935 int intrflg;
936 {
937 register struct nfsnode *np = VTONFS(vp);
938 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
939 int error = 0, slpflag, slptimeo;
940
941 if (vp->v_flag & VXLOCK) {
942 return (0);
943 }
944
945 if ((nmp->nm_flag & NFSMNT_INT) == 0)
946 intrflg = 0;
947 if (intrflg) {
948 slpflag = PCATCH;
949 slptimeo = 2 * hz;
950 } else {
951 slpflag = 0;
952 slptimeo = 0;
953 }
954 /*
955 * First wait for any other process doing a flush to complete.
956 */
957 while (np->n_flag & NFLUSHINPROG) {
958 np->n_flag |= NFLUSHWANT;
959 error = tsleep((caddr_t)&np->n_flag, PRIBIO + 2, "nfsvinval",
960 slptimeo);
961 if (error && intrflg && nfs_sigintr(nmp, (struct nfsreq *)0, p))
962 return (EINTR);
963 }
964
965 /*
966 * Now, flush as required.
967 */
968 np->n_flag |= NFLUSHINPROG;
969 error = vinvalbuf(vp, flags, cred, p, slpflag, 0);
970 while (error) {
971 if (intrflg && nfs_sigintr(nmp, (struct nfsreq *)0, p)) {
972 np->n_flag &= ~NFLUSHINPROG;
973 if (np->n_flag & NFLUSHWANT) {
974 np->n_flag &= ~NFLUSHWANT;
975 wakeup((caddr_t)&np->n_flag);
976 }
977 return (EINTR);
978 }
979 error = vinvalbuf(vp, flags, cred, p, 0, slptimeo);
980 }
981 np->n_flag &= ~(NMODIFIED | NFLUSHINPROG);
982 if (np->n_flag & NFLUSHWANT) {
983 np->n_flag &= ~NFLUSHWANT;
984 wakeup((caddr_t)&np->n_flag);
985 }
986 return (0);
987 }
988
989 /*
990 * Initiate asynchronous I/O. Return an error if no nfsiods are available.
991 * This is mainly to avoid queueing async I/O requests when the nfsiods
992 * are all hung on a dead server.
993 */
994 int
995 nfs_asyncio(bp, cred)
996 register struct buf *bp;
997 struct ucred *cred;
998 {
999 struct nfsmount *nmp;
1000 int i;
1001 int gotiod;
1002 int slpflag = 0;
1003 int slptimeo = 0;
1004 int error;
1005
1006 if (nfs_numasync == 0)
1007 return (EIO);
1008
1009 nmp = VFSTONFS(bp->b_vp->v_mount);
1010 again:
1011 if (nmp->nm_flag & NFSMNT_INT)
1012 slpflag = PCATCH;
1013 gotiod = FALSE;
1014
1015 /*
1016 * Find a free iod to process this request.
1017 */
1018 for (i = 0; i < NFS_MAXASYNCDAEMON; i++)
1019 if (nfs_iodwant[i]) {
1020 /*
1021 * Found one, so wake it up and tell it which
1022 * mount to process.
1023 */
1024 NFS_DPF(ASYNCIO,
1025 ("nfs_asyncio: waking iod %d for mount %p\n",
1026 i, nmp));
1027 nfs_iodwant[i] = (struct proc *)0;
1028 nfs_iodmount[i] = nmp;
1029 nmp->nm_bufqiods++;
1030 wakeup((caddr_t)&nfs_iodwant[i]);
1031 gotiod = TRUE;
1032 break;
1033 }
1034
1035 /*
1036 * If none are free, we may already have an iod working on this mount
1037 * point. If so, it will process our request.
1038 */
1039 if (!gotiod) {
1040 if (nmp->nm_bufqiods > 0) {
1041 NFS_DPF(ASYNCIO,
1042 ("nfs_asyncio: %d iods are already processing mount %p\n",
1043 nmp->nm_bufqiods, nmp));
1044 gotiod = TRUE;
1045 }
1046 }
1047
1048 /*
1049 * If we have an iod which can process the request, then queue
1050 * the buffer.
1051 */
1052 if (gotiod) {
1053 /*
1054 * Ensure that the queue never grows too large.
1055 */
1056 while (nmp->nm_bufqlen >= 2*nfs_numasync) {
1057 NFS_DPF(ASYNCIO,
1058 ("nfs_asyncio: waiting for mount %p queue to drain\n", nmp));
1059 nmp->nm_bufqwant = TRUE;
1060 error = tsleep(&nmp->nm_bufq, slpflag | PRIBIO,
1061 "nfsaio", slptimeo);
1062 if (error) {
1063 if (nfs_sigintr(nmp, NULL, bp->b_proc))
1064 return (EINTR);
1065 if (slpflag == PCATCH) {
1066 slpflag = 0;
1067 slptimeo = 2 * hz;
1068 }
1069 }
1070 /*
1071 * We might have lost our iod while sleeping,
1072 * so check and loop if nescessary.
1073 */
1074 if (nmp->nm_bufqiods == 0) {
1075 NFS_DPF(ASYNCIO,
1076 ("nfs_asyncio: no iods after mount %p queue was drained, looping\n", nmp));
1077 goto again;
1078 }
1079 }
1080
1081 if (bp->b_flags & B_READ) {
1082 if (bp->b_rcred == NOCRED && cred != NOCRED) {
1083 crhold(cred);
1084 bp->b_rcred = cred;
1085 }
1086 } else {
1087 bp->b_flags |= B_WRITEINPROG;
1088 if (bp->b_wcred == NOCRED && cred != NOCRED) {
1089 crhold(cred);
1090 bp->b_wcred = cred;
1091 }
1092 }
1093
1094 TAILQ_INSERT_TAIL(&nmp->nm_bufq, bp, b_freelist);
1095 nmp->nm_bufqlen++;
1096 return (0);
1097 }
1098
1099 /*
1100 * All the iods are busy on other mounts, so return EIO to
1101 * force the caller to process the i/o synchronously.
1102 */
1103 NFS_DPF(ASYNCIO, ("nfs_asyncio: no iods available, i/o is synchronous\n"));
1104 return (EIO);
1105 }
1106
1107 /*
1108 * Do an I/O operation to/from a cache block. This may be called
1109 * synchronously or from an nfsiod.
1110 */
1111 int
1112 nfs_doio(bp, cr, p)
1113 register struct buf *bp;
1114 struct ucred *cr;
1115 struct proc *p;
1116 {
1117 register struct uio *uiop;
1118 register struct vnode *vp;
1119 struct nfsnode *np;
1120 struct nfsmount *nmp;
1121 int error = 0, diff, len, iomode, must_commit = 0;
1122 struct uio uio;
1123 struct iovec io;
1124
1125 vp = bp->b_vp;
1126 np = VTONFS(vp);
1127 nmp = VFSTONFS(vp->v_mount);
1128 uiop = &uio;
1129 uiop->uio_iov = &io;
1130 uiop->uio_iovcnt = 1;
1131 uiop->uio_segflg = UIO_SYSSPACE;
1132 uiop->uio_procp = p;
1133
1134 /*
1135 * Historically, paging was done with physio, but no more.
1136 */
1137 if (bp->b_flags & B_PHYS) {
1138 /*
1139 * ...though reading /dev/drum still gets us here.
1140 */
1141 io.iov_len = uiop->uio_resid = bp->b_bcount;
1142 /* mapping was done by vmapbuf() */
1143 io.iov_base = bp->b_data;
1144 uiop->uio_offset = ((off_t)bp->b_blkno) * DEV_BSIZE;
1145 if (bp->b_flags & B_READ) {
1146 uiop->uio_rw = UIO_READ;
1147 nfsstats.read_physios++;
1148 error = nfs_readrpc(vp, uiop, cr);
1149 } else {
1150 int com;
1151
1152 iomode = NFSV3WRITE_DATASYNC;
1153 uiop->uio_rw = UIO_WRITE;
1154 nfsstats.write_physios++;
1155 error = nfs_writerpc(vp, uiop, cr, &iomode, &com);
1156 }
1157 if (error) {
1158 bp->b_flags |= B_ERROR;
1159 bp->b_error = error;
1160 }
1161 } else if (bp->b_flags & B_READ) {
1162 io.iov_len = uiop->uio_resid = bp->b_bcount;
1163 io.iov_base = bp->b_data;
1164 uiop->uio_rw = UIO_READ;
1165 switch (vp->v_type) {
1166 case VREG:
1167 uiop->uio_offset = ((off_t)bp->b_blkno) * DEV_BSIZE;
1168 nfsstats.read_bios++;
1169 error = nfs_readrpc(vp, uiop, cr);
1170 if (!error) {
1171 bp->b_validoff = 0;
1172 if (uiop->uio_resid) {
1173 /*
1174 * If len > 0, there is a hole in the file and
1175 * no writes after the hole have been pushed to
1176 * the server yet.
1177 * Just zero fill the rest of the valid area.
1178 */
1179 diff = bp->b_bcount - uiop->uio_resid;
1180 len = np->n_size - (((u_quad_t)bp->b_blkno) * DEV_BSIZE
1181 + diff);
1182 if (len > 0) {
1183 len = min(len, uiop->uio_resid);
1184 bzero((char *)bp->b_data + diff, len);
1185 bp->b_validend = diff + len;
1186 } else
1187 bp->b_validend = diff;
1188 } else
1189 bp->b_validend = bp->b_bcount;
1190 }
1191 if (p && (vp->v_flag & VTEXT) &&
1192 (((nmp->nm_flag & NFSMNT_NQNFS) &&
1193 NQNFS_CKINVALID(vp, np, ND_READ) &&
1194 np->n_lrev != np->n_brev) ||
1195 (!(nmp->nm_flag & NFSMNT_NQNFS) &&
1196 np->n_mtime != np->n_vattr.va_mtime.tv_sec))) {
1197 uprintf("Process killed due to text file modification\n");
1198 psignal(p, SIGKILL);
1199 p->p_flag |= P_NOSWAP;
1200 }
1201 break;
1202 case VLNK:
1203 uiop->uio_offset = (off_t)0;
1204 nfsstats.readlink_bios++;
1205 error = nfs_readlinkrpc(vp, uiop, cr);
1206 break;
1207 case VDIR:
1208 nfsstats.readdir_bios++;
1209 uiop->uio_offset = ((u_quad_t)bp->b_lblkno) * NFS_DIRBLKSIZ;
1210 if (nmp->nm_flag & NFSMNT_RDIRPLUS) {
1211 error = nfs_readdirplusrpc(vp, uiop, cr);
1212 if (error == NFSERR_NOTSUPP)
1213 nmp->nm_flag &= ~NFSMNT_RDIRPLUS;
1214 }
1215 if ((nmp->nm_flag & NFSMNT_RDIRPLUS) == 0)
1216 error = nfs_readdirrpc(vp, uiop, cr);
1217 if (error == 0 && uiop->uio_resid == bp->b_bcount)
1218 bp->b_flags |= B_INVAL;
1219 break;
1220 default:
1221 printf("nfs_doio: type %x unexpected\n",vp->v_type);
1222 break;
1223 };
1224 if (error) {
1225 bp->b_flags |= B_ERROR;
1226 bp->b_error = error;
1227 }
1228 } else {
1229 if ((off_t)bp->b_blkno * DEV_BSIZE + bp->b_dirtyend > np->n_size)
1230 bp->b_dirtyend = np->n_size - (off_t)bp->b_blkno * DEV_BSIZE;
1231
1232 if (bp->b_dirtyend > bp->b_dirtyoff) {
1233 io.iov_len = uiop->uio_resid = bp->b_dirtyend
1234 - bp->b_dirtyoff;
1235 uiop->uio_offset = (off_t)bp->b_blkno * DEV_BSIZE
1236 + bp->b_dirtyoff;
1237 io.iov_base = (char *)bp->b_data + bp->b_dirtyoff;
1238 uiop->uio_rw = UIO_WRITE;
1239 nfsstats.write_bios++;
1240 if ((bp->b_flags & (B_ASYNC | B_NEEDCOMMIT | B_NOCACHE | B_CLUSTER)) == B_ASYNC)
1241 iomode = NFSV3WRITE_UNSTABLE;
1242 else
1243 iomode = NFSV3WRITE_FILESYNC;
1244 bp->b_flags |= B_WRITEINPROG;
1245 error = nfs_writerpc(vp, uiop, cr, &iomode, &must_commit);
1246 if (!error && iomode == NFSV3WRITE_UNSTABLE) {
1247 bp->b_flags |= B_NEEDCOMMIT;
1248 if (bp->b_dirtyoff == 0
1249 && bp->b_dirtyend == bp->b_bufsize)
1250 bp->b_flags |= B_CLUSTEROK;
1251 } else
1252 bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
1253 bp->b_flags &= ~B_WRITEINPROG;
1254
1255 /*
1256 * For an interrupted write, the buffer is still valid
1257 * and the write hasn't been pushed to the server yet,
1258 * so we can't set B_ERROR and report the interruption
1259 * by setting B_EINTR. For the B_ASYNC case, B_EINTR
1260 * is not relevant, so the rpc attempt is essentially
1261 * a noop. For the case of a V3 write rpc not being
1262 * committed to stable storage, the block is still
1263 * dirty and requires either a commit rpc or another
1264 * write rpc with iomode == NFSV3WRITE_FILESYNC before
1265 * the block is reused. This is indicated by setting
1266 * the B_DELWRI and B_NEEDCOMMIT flags.
1267 */
1268 if (error == EINTR
1269 || (!error && (bp->b_flags & B_NEEDCOMMIT))) {
1270 int s;
1271
1272 bp->b_flags &= ~(B_INVAL|B_NOCACHE);
1273 ++numdirtybuffers;
1274 bp->b_flags |= B_DELWRI;
1275 s = splbio();
1276 reassignbuf(bp, vp);
1277 splx(s);
1278 if (error && (bp->b_flags & B_ASYNC) == 0)
1279 bp->b_flags |= B_EINTR;
1280 } else {
1281 if (error) {
1282 bp->b_flags |= B_ERROR;
1283 bp->b_error = np->n_error = error;
1284 np->n_flag |= NWRITEERR;
1285 }
1286 bp->b_dirtyoff = bp->b_dirtyend = 0;
1287 }
1288 } else {
1289 bp->b_resid = 0;
1290 bp->b_dirtyend = bp->b_dirtyoff = 0;
1291 biodone(bp);
1292 return (0);
1293 }
1294 }
1295 bp->b_resid = uiop->uio_resid;
1296 if (must_commit)
1297 nfs_clearcommit(vp->v_mount);
1298 biodone(bp);
1299 return (error);
1300 }
Cache object: 6673062ae96a59aaec21c7f7dadc65f5
|