The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/nfs/nfs_bio.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  * Copyright (c) 1989, 1993
    3  *      The Regents of the University of California.  All rights reserved.
    4  *
    5  * This code is derived from software contributed to Berkeley by
    6  * Rick Macklem at The University of Guelph.
    7  *
    8  * Redistribution and use in source and binary forms, with or without
    9  * modification, are permitted provided that the following conditions
   10  * are met:
   11  * 1. Redistributions of source code must retain the above copyright
   12  *    notice, this list of conditions and the following disclaimer.
   13  * 2. Redistributions in binary form must reproduce the above copyright
   14  *    notice, this list of conditions and the following disclaimer in the
   15  *    documentation and/or other materials provided with the distribution.
   16  * 3. All advertising materials mentioning features or use of this software
   17  *    must display the following acknowledgement:
   18  *      This product includes software developed by the University of
   19  *      California, Berkeley and its contributors.
   20  * 4. Neither the name of the University nor the names of its contributors
   21  *    may be used to endorse or promote products derived from this software
   22  *    without specific prior written permission.
   23  *
   24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   34  * SUCH DAMAGE.
   35  *
   36  *      @(#)nfs_bio.c   8.9 (Berkeley) 3/30/95
   37  * $FreeBSD$
   38  */
   39 
   40 
   41 #include <sys/param.h>
   42 #include <sys/systm.h>
   43 #include <sys/resourcevar.h>
   44 #include <sys/signalvar.h>
   45 #include <sys/proc.h>
   46 #include <sys/buf.h>
   47 #include <sys/vnode.h>
   48 #include <sys/mount.h>
   49 #include <sys/kernel.h>
   50 
   51 #include <vm/vm.h>
   52 #include <vm/vm_extern.h>
   53 #include <vm/vm_page.h>
   54 #include <vm/vm_object.h>
   55 #include <vm/vm_pager.h>
   56 #include <vm/vnode_pager.h>
   57 
   58 #include <nfs/rpcv2.h>
   59 #include <nfs/nfsproto.h>
   60 #include <nfs/nfs.h>
   61 #include <nfs/nfsmount.h>
   62 #include <nfs/nqnfs.h>
   63 #include <nfs/nfsnode.h>
   64 
   65 static struct buf *nfs_getcacheblk __P((struct vnode *vp, daddr_t bn, int size,
   66                                         struct proc *p));
   67 
   68 extern int nfs_numasync;
   69 extern int nfs_pbuf_freecnt;
   70 extern struct nfsstats nfsstats;
   71 
   72 /*
   73  * Vnode op for VM getpages.
   74  */
   75 int
   76 nfs_getpages(ap)
   77         struct vop_getpages_args /* {
   78                 struct vnode *a_vp;
   79                 vm_page_t *a_m;
   80                 int a_count;
   81                 int a_reqpage;
   82                 vm_ooffset_t a_offset;
   83         } */ *ap;
   84 {
   85         int i, error, nextoff, size, toff, count, npages;
   86         struct uio uio;
   87         struct iovec iov;
   88         vm_offset_t kva;
   89         struct buf *bp;
   90         struct vnode *vp;
   91         struct proc *p;
   92         struct ucred *cred;
   93         struct nfsmount *nmp;
   94         vm_page_t *pages;
   95 
   96         vp = ap->a_vp;
   97         p = curproc;                            /* XXX */
   98         cred = curproc->p_ucred;                /* XXX */
   99         nmp = VFSTONFS(vp->v_mount);
  100         pages = ap->a_m;
  101         count = ap->a_count;
  102 
  103         if (vp->v_object == NULL) {
  104                 printf("nfs_getpages: called with non-merged cache vnode??\n");
  105                 return VM_PAGER_ERROR;
  106         }
  107 
  108         if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
  109             (nmp->nm_state & NFSSTA_GOTFSINFO) == 0)
  110                 (void)nfs_fsinfo(nmp, vp, cred, p);
  111 
  112         npages = btoc(count);
  113 
  114         /*
  115          * If the requested page is partially valid, just return it and
  116          * allow the pager to zero-out the blanks.  Partially valid pages
  117          * can only occur at the file EOF.
  118          */
  119 
  120         {
  121                 vm_page_t m = pages[ap->a_reqpage];
  122 
  123                 if (m->valid != 0) {
  124                         /* handled by vm_fault now        */
  125                         /* vm_page_zero_invalid(m, TRUE); */
  126                         for (i = 0; i < npages; ++i) {
  127                                 if (i != ap->a_reqpage)
  128                                         vnode_pager_freepage(pages[i]);
  129                         }
  130                         return(0);
  131                 }
  132         }
  133 
  134         /*
  135          * We use only the kva address for the buffer, but this is extremely
  136          * convienient and fast.
  137          */
  138         bp = getpbuf(&nfs_pbuf_freecnt);
  139 
  140         kva = (vm_offset_t) bp->b_data;
  141         pmap_qenter(kva, pages, npages);
  142 
  143         iov.iov_base = (caddr_t) kva;
  144         iov.iov_len = count;
  145         uio.uio_iov = &iov;
  146         uio.uio_iovcnt = 1;
  147         uio.uio_offset = IDX_TO_OFF(pages[0]->pindex);
  148         uio.uio_resid = count;
  149         uio.uio_segflg = UIO_SYSSPACE;
  150         uio.uio_rw = UIO_READ;
  151         uio.uio_procp = p;
  152 
  153         error = nfs_readrpc(vp, &uio, cred);
  154         pmap_qremove(kva, npages);
  155 
  156         relpbuf(bp, &nfs_pbuf_freecnt);
  157 
  158         if (error && (uio.uio_resid == count)) {
  159                 printf("nfs_getpages: error %d\n", error);
  160                 for (i = 0; i < npages; ++i) {
  161                         if (i != ap->a_reqpage)
  162                                 vnode_pager_freepage(pages[i]);
  163                 }
  164                 return VM_PAGER_ERROR;
  165         }
  166 
  167         /*
  168          * Calculate the number of bytes read and validate only that number
  169          * of bytes.  Note that due to pending writes, size may be 0.  This
  170          * does not mean that the remaining data is invalid!
  171          */
  172 
  173         size = count - uio.uio_resid;
  174 
  175         for (i = 0, toff = 0; i < npages; i++, toff = nextoff) {
  176                 vm_page_t m;
  177                 nextoff = toff + PAGE_SIZE;
  178                 m = pages[i];
  179 
  180                 m->flags &= ~PG_ZERO;
  181 
  182                 if (nextoff <= size) {
  183                         /*
  184                          * Read operation filled an entire page
  185                          */
  186                         m->valid = VM_PAGE_BITS_ALL;
  187                         vm_page_undirty(m);
  188                 } else if (size > toff) {
  189                         /*
  190                          * Read operation filled a partial page.
  191                          */
  192                         m->valid = 0;
  193                         vm_page_set_validclean(m, 0, size - toff);
  194                         /* handled by vm_fault now        */
  195                         /* vm_page_zero_invalid(m, TRUE); */
  196                 } else {
  197                         /*
  198                          * Read operation was short.  If no error occured
  199                          * we may have hit a zero-fill section.   We simply
  200                          * leave valid set to 0.
  201                          */
  202                         ;
  203                 }
  204                 if (i != ap->a_reqpage) {
  205                         /*
  206                          * Whether or not to leave the page activated is up in
  207                          * the air, but we should put the page on a page queue
  208                          * somewhere (it already is in the object).  Result:
  209                          * It appears that emperical results show that
  210                          * deactivating pages is best.
  211                          */
  212 
  213                         /*
  214                          * Just in case someone was asking for this page we
  215                          * now tell them that it is ok to use.
  216                          */
  217                         if (!error) {
  218                                 if (m->flags & PG_WANTED)
  219                                         vm_page_activate(m);
  220                                 else
  221                                         vm_page_deactivate(m);
  222                                 vm_page_wakeup(m);
  223                         } else {
  224                                 vnode_pager_freepage(m);
  225                         }
  226                 }
  227         }
  228         return 0;
  229 }
  230 
  231 /*
  232  * Vnode op for VM putpages.
  233  */
  234 int
  235 nfs_putpages(ap)
  236         struct vop_putpages_args /* {
  237                 struct vnode *a_vp;
  238                 vm_page_t *a_m;
  239                 int a_count;
  240                 int a_sync;
  241                 int *a_rtvals;
  242                 vm_ooffset_t a_offset;
  243         } */ *ap;
  244 {
  245         struct uio uio;
  246         struct iovec iov;
  247         vm_offset_t kva;
  248         struct buf *bp;
  249         int iomode, must_commit, i, error, npages, count;
  250         off_t offset;
  251         int *rtvals;
  252         struct vnode *vp;
  253         struct proc *p;
  254         struct ucred *cred;
  255         struct nfsmount *nmp;
  256         struct nfsnode *np;
  257         vm_page_t *pages;
  258 
  259         vp = ap->a_vp;
  260         np = VTONFS(vp);
  261         p = curproc;                            /* XXX */
  262         cred = curproc->p_ucred;                /* XXX */
  263         nmp = VFSTONFS(vp->v_mount);
  264         pages = ap->a_m;
  265         count = ap->a_count;
  266         rtvals = ap->a_rtvals;
  267         npages = btoc(count);
  268         offset = IDX_TO_OFF(pages[0]->pindex);
  269 
  270         if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
  271             (nmp->nm_state & NFSSTA_GOTFSINFO) == 0)
  272                 (void)nfs_fsinfo(nmp, vp, cred, p);
  273 
  274         for (i = 0; i < npages; i++) {
  275                 rtvals[i] = VM_PAGER_AGAIN;
  276         }
  277 
  278         /*
  279          * When putting pages, do not extend file past EOF.
  280          */
  281 
  282         if (offset + count > np->n_size) {
  283                 count = np->n_size - offset;
  284                 if (count < 0)
  285                         count = 0;
  286         }
  287 
  288         /*
  289          * We use only the kva address for the buffer, but this is extremely
  290          * convienient and fast.
  291          */
  292         bp = getpbuf(&nfs_pbuf_freecnt);
  293 
  294         kva = (vm_offset_t) bp->b_data;
  295         pmap_qenter(kva, pages, npages);
  296 
  297         iov.iov_base = (caddr_t) kva;
  298         iov.iov_len = count;
  299         uio.uio_iov = &iov;
  300         uio.uio_iovcnt = 1;
  301         uio.uio_offset = offset;
  302         uio.uio_resid = count;
  303         uio.uio_segflg = UIO_SYSSPACE;
  304         uio.uio_rw = UIO_WRITE;
  305         uio.uio_procp = p;
  306 
  307         if ((ap->a_sync & VM_PAGER_PUT_SYNC) == 0)
  308             iomode = NFSV3WRITE_UNSTABLE;
  309         else
  310             iomode = NFSV3WRITE_FILESYNC;
  311 
  312         error = nfs_writerpc(vp, &uio, cred, &iomode, &must_commit);
  313 
  314         pmap_qremove(kva, npages);
  315         relpbuf(bp, &nfs_pbuf_freecnt);
  316 
  317         if (!error) {
  318                 int nwritten = round_page(count - uio.uio_resid) / PAGE_SIZE;
  319                 for (i = 0; i < nwritten; i++) {
  320                         rtvals[i] = VM_PAGER_OK;
  321                         vm_page_undirty(pages[i]);
  322                 }
  323                 if (must_commit)
  324                         nfs_clearcommit(vp->v_mount);
  325         }
  326         return rtvals[0];
  327 }
  328 
  329 /*
  330  * Vnode op for read using bio
  331  */
  332 int
  333 nfs_bioread(vp, uio, ioflag, cred)
  334         register struct vnode *vp;
  335         register struct uio *uio;
  336         int ioflag;
  337         struct ucred *cred;
  338 {
  339         register struct nfsnode *np = VTONFS(vp);
  340         register int biosize, i;
  341         struct buf *bp = 0, *rabp;
  342         struct vattr vattr;
  343         struct proc *p;
  344         struct nfsmount *nmp = VFSTONFS(vp->v_mount);
  345         daddr_t lbn, rabn;
  346         int bcount;
  347         int seqcount;
  348         int nra, error = 0, n = 0, on = 0;
  349 
  350 #ifdef DIAGNOSTIC
  351         if (uio->uio_rw != UIO_READ)
  352                 panic("nfs_read mode");
  353 #endif
  354         if (uio->uio_resid == 0)
  355                 return (0);
  356         if (uio->uio_offset < 0)        /* XXX VDIR cookies can be negative */
  357                 return (EINVAL);
  358         p = uio->uio_procp;
  359 
  360         if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
  361             (nmp->nm_state & NFSSTA_GOTFSINFO) == 0)
  362                 (void)nfs_fsinfo(nmp, vp, cred, p);
  363         if (vp->v_type != VDIR &&
  364             (uio->uio_offset + uio->uio_resid) > nmp->nm_maxfilesize)
  365                 return (EFBIG);
  366         biosize = vp->v_mount->mnt_stat.f_iosize;
  367         seqcount = (int)((off_t)(ioflag >> IO_SEQSHIFT) * biosize / BKVASIZE);
  368         /*
  369          * For nfs, cache consistency can only be maintained approximately.
  370          * Although RFC1094 does not specify the criteria, the following is
  371          * believed to be compatible with the reference port.
  372          * For nqnfs, full cache consistency is maintained within the loop.
  373          * For nfs:
  374          * If the file's modify time on the server has changed since the
  375          * last read rpc or you have written to the file,
  376          * you may have lost data cache consistency with the
  377          * server, so flush all of the file's data out of the cache.
  378          * Then force a getattr rpc to ensure that you have up to date
  379          * attributes.
  380          * NB: This implies that cache data can be read when up to
  381          * NFS_ATTRTIMEO seconds out of date. If you find that you need current
  382          * attributes this could be forced by setting n_attrstamp to 0 before
  383          * the VOP_GETATTR() call.
  384          */
  385         if ((nmp->nm_flag & NFSMNT_NQNFS) == 0) {
  386                 if (np->n_flag & NMODIFIED) {
  387                         if (vp->v_type != VREG) {
  388                                 if (vp->v_type != VDIR)
  389                                         panic("nfs: bioread, not dir");
  390                                 nfs_invaldir(vp);
  391                                 error = nfs_vinvalbuf(vp, V_SAVE, cred, p, 1);
  392                                 if (error)
  393                                         return (error);
  394                         }
  395                         np->n_attrstamp = 0;
  396                         error = VOP_GETATTR(vp, &vattr, cred, p);
  397                         if (error)
  398                                 return (error);
  399                         np->n_mtime = vattr.va_mtime.tv_sec;
  400                 } else {
  401                         error = VOP_GETATTR(vp, &vattr, cred, p);
  402                         if (error)
  403                                 return (error);
  404                         if ((np->n_flag & NSIZECHANGED)
  405                             || np->n_mtime != vattr.va_mtime.tv_sec) {
  406                                 if (vp->v_type == VDIR)
  407                                         nfs_invaldir(vp);
  408                                 error = nfs_vinvalbuf(vp, V_SAVE, cred, p, 1);
  409                                 if (error)
  410                                         return (error);
  411                                 np->n_mtime = vattr.va_mtime.tv_sec;
  412                                 np->n_flag &= ~NSIZECHANGED;
  413                         }
  414                 }
  415         }
  416         do {
  417 
  418             /*
  419              * Get a valid lease. If cached data is stale, flush it.
  420              */
  421             if (nmp->nm_flag & NFSMNT_NQNFS) {
  422                 if (NQNFS_CKINVALID(vp, np, ND_READ)) {
  423                     do {
  424                         error = nqnfs_getlease(vp, ND_READ, cred, p);
  425                     } while (error == NQNFS_EXPIRED);
  426                     if (error)
  427                         return (error);
  428                     if (np->n_lrev != np->n_brev ||
  429                         (np->n_flag & NQNFSNONCACHE) ||
  430                         ((np->n_flag & NMODIFIED) && vp->v_type == VDIR)) {
  431                         if (vp->v_type == VDIR)
  432                             nfs_invaldir(vp);
  433                         error = nfs_vinvalbuf(vp, V_SAVE, cred, p, 1);
  434                         if (error)
  435                             return (error);
  436                         np->n_brev = np->n_lrev;
  437                     }
  438                 } else if (vp->v_type == VDIR && (np->n_flag & NMODIFIED)) {
  439                     nfs_invaldir(vp);
  440                     error = nfs_vinvalbuf(vp, V_SAVE, cred, p, 1);
  441                     if (error)
  442                         return (error);
  443                 }
  444             }
  445             if (np->n_flag & NQNFSNONCACHE) {
  446                 switch (vp->v_type) {
  447                 case VREG:
  448                         return (nfs_readrpc(vp, uio, cred));
  449                 case VLNK:
  450                         return (nfs_readlinkrpc(vp, uio, cred));
  451                 case VDIR:
  452                         break;
  453                 default:
  454                         printf(" NQNFSNONCACHE: type %x unexpected\n",  
  455                                 vp->v_type);
  456                 };
  457             }
  458             switch (vp->v_type) {
  459             case VREG:
  460                 nfsstats.biocache_reads++;
  461                 lbn = uio->uio_offset / biosize;
  462                 on = uio->uio_offset & (biosize - 1);
  463 
  464                 /*
  465                  * Start the read ahead(s), as required.
  466                  */
  467                 if (nfs_numasync > 0 && nmp->nm_readahead > 0) {
  468                     for (nra = 0; nra < nmp->nm_readahead && nra < seqcount &&
  469                         (off_t)(lbn + 1 + nra) * biosize < np->n_size; nra++) {
  470                         rabn = lbn + 1 + nra;
  471                         if (!incore(vp, rabn)) {
  472                             rabp = nfs_getcacheblk(vp, rabn, biosize, p);
  473                             if (!rabp)
  474                                 return (EINTR);
  475                             if ((rabp->b_flags & (B_CACHE|B_DELWRI)) == 0) {
  476                                 rabp->b_flags |= (B_READ | B_ASYNC);
  477                                 vfs_busy_pages(rabp, 0);
  478                                 if (nfs_asyncio(rabp, cred, p)) {
  479                                     rabp->b_flags |= B_INVAL|B_ERROR;
  480                                     vfs_unbusy_pages(rabp);
  481                                     brelse(rabp);
  482                                     break;
  483                                 }
  484                             } else {
  485                                 brelse(rabp);
  486                             }
  487                         }
  488                     }
  489                 }
  490 
  491                 /*
  492                  * Obtain the buffer cache block.  Figure out the buffer size
  493                  * when we are at EOF.  If we are modifying the size of the
  494                  * buffer based on an EOF condition we need to hold 
  495                  * nfs_rslock() through obtaining the buffer to prevent
  496                  * a potential writer-appender from messing with n_size.
  497                  * Otherwise we may accidently truncate the buffer and
  498                  * lose dirty data.
  499                  *
  500                  * Note that bcount is *not* DEV_BSIZE aligned.
  501                  */
  502 
  503 again:
  504                 bcount = biosize;
  505                 if ((off_t)lbn * biosize >= np->n_size) {
  506                         bcount = 0;
  507                 } else if ((off_t)(lbn + 1) * biosize > np->n_size) {
  508                         bcount = np->n_size - (off_t)lbn * biosize;
  509                 }
  510                 if (bcount != biosize) {
  511                         switch(nfs_rslock(np, p)) {
  512                         case ENOLCK:
  513                                 goto again;
  514                                 /* not reached */
  515                         case EINTR:
  516                         case ERESTART:
  517                                 return(EINTR);
  518                                 /* not reached */
  519                         default:
  520                                 break;
  521                         }
  522                 }
  523 
  524                 bp = nfs_getcacheblk(vp, lbn, bcount, p);
  525 
  526                 if (bcount != biosize)
  527                         nfs_rsunlock(np, p);
  528                 if (!bp)
  529                         return (EINTR);
  530 
  531                 /*
  532                  * If B_CACHE is not set, we must issue the read.  If this
  533                  * fails, we return an error.
  534                  */
  535 
  536                 if ((bp->b_flags & B_CACHE) == 0) {
  537                     bp->b_flags |= B_READ;
  538                     vfs_busy_pages(bp, 0);
  539                     error = nfs_doio(bp, cred, p);
  540                     if (error) {
  541                         brelse(bp);
  542                         return (error);
  543                     }
  544                 }
  545 
  546                 /*
  547                  * on is the offset into the current bp.  Figure out how many
  548                  * bytes we can copy out of the bp.  Note that bcount is
  549                  * NOT DEV_BSIZE aligned.
  550                  *
  551                  * Then figure out how many bytes we can copy into the uio.
  552                  */
  553 
  554                 n = 0;
  555                 if (on < bcount)
  556                         n = min((unsigned)(bcount - on), uio->uio_resid);
  557                 break;
  558             case VLNK:
  559                 nfsstats.biocache_readlinks++;
  560                 bp = nfs_getcacheblk(vp, (daddr_t)0, NFS_MAXPATHLEN, p);
  561                 if (!bp)
  562                         return (EINTR);
  563                 if ((bp->b_flags & B_CACHE) == 0) {
  564                     bp->b_flags |= B_READ;
  565                     vfs_busy_pages(bp, 0);
  566                     error = nfs_doio(bp, cred, p);
  567                     if (error) {
  568                         bp->b_flags |= B_ERROR;
  569                         brelse(bp);
  570                         return (error);
  571                     }
  572                 }
  573                 n = min(uio->uio_resid, NFS_MAXPATHLEN - bp->b_resid);
  574                 on = 0;
  575                 break;
  576             case VDIR:
  577                 nfsstats.biocache_readdirs++;
  578                 if (np->n_direofoffset
  579                     && uio->uio_offset >= np->n_direofoffset) {
  580                     return (0);
  581                 }
  582                 lbn = (uoff_t)uio->uio_offset / NFS_DIRBLKSIZ;
  583                 on = uio->uio_offset & (NFS_DIRBLKSIZ - 1);
  584                 bp = nfs_getcacheblk(vp, lbn, NFS_DIRBLKSIZ, p);
  585                 if (!bp)
  586                     return (EINTR);
  587                 if ((bp->b_flags & B_CACHE) == 0) {
  588                     bp->b_flags |= B_READ;
  589                     vfs_busy_pages(bp, 0);
  590                     error = nfs_doio(bp, cred, p);
  591                     if (error) {
  592                             brelse(bp);
  593                     }
  594                     while (error == NFSERR_BAD_COOKIE) {
  595                         printf("got bad cookie vp %p bp %p\n", vp, bp);
  596                         nfs_invaldir(vp);
  597                         error = nfs_vinvalbuf(vp, 0, cred, p, 1);
  598                         /*
  599                          * Yuck! The directory has been modified on the
  600                          * server. The only way to get the block is by
  601                          * reading from the beginning to get all the
  602                          * offset cookies.
  603                          *
  604                          * Leave the last bp intact unless there is an error.
  605                          * Loop back up to the while if the error is another
  606                          * NFSERR_BAD_COOKIE (double yuch!).
  607                          */
  608                         for (i = 0; i <= lbn && !error; i++) {
  609                             if (np->n_direofoffset
  610                                 && (i * NFS_DIRBLKSIZ) >= np->n_direofoffset)
  611                                     return (0);
  612                             bp = nfs_getcacheblk(vp, i, NFS_DIRBLKSIZ, p);
  613                             if (!bp)
  614                                 return (EINTR);
  615                             if ((bp->b_flags & B_CACHE) == 0) {
  616                                     bp->b_flags |= B_READ;
  617                                     vfs_busy_pages(bp, 0);
  618                                     error = nfs_doio(bp, cred, p);
  619                                     /*
  620                                      * no error + B_INVAL == directory EOF,
  621                                      * use the block.
  622                                      */
  623                                     if (error == 0 && (bp->b_flags & B_INVAL))
  624                                             break;
  625                             }
  626                             /*
  627                              * An error will throw away the block and the
  628                              * for loop will break out.  If no error and this
  629                              * is not the block we want, we throw away the
  630                              * block and go for the next one via the for loop.
  631                              */
  632                             if (error || i < lbn)
  633                                     brelse(bp);
  634                         }
  635                     }
  636                     /*
  637                      * The above while is repeated if we hit another cookie
  638                      * error.  If we hit an error and it wasn't a cookie error,
  639                      * we give up.
  640                      */
  641                     if (error)
  642                             return (error);
  643                 }
  644 
  645                 /*
  646                  * If not eof and read aheads are enabled, start one.
  647                  * (You need the current block first, so that you have the
  648                  *  directory offset cookie of the next block.)
  649                  */
  650                 if (nfs_numasync > 0 && nmp->nm_readahead > 0 &&
  651                     (bp->b_flags & B_INVAL) == 0 &&
  652                     (np->n_direofoffset == 0 ||
  653                     (lbn + 1) * NFS_DIRBLKSIZ < np->n_direofoffset) &&
  654                     !(np->n_flag & NQNFSNONCACHE) &&
  655                     !incore(vp, lbn + 1)) {
  656                         rabp = nfs_getcacheblk(vp, lbn + 1, NFS_DIRBLKSIZ, p);
  657                         if (rabp) {
  658                             if ((rabp->b_flags & (B_CACHE|B_DELWRI)) == 0) {
  659                                 rabp->b_flags |= (B_READ | B_ASYNC);
  660                                 vfs_busy_pages(rabp, 0);
  661                                 if (nfs_asyncio(rabp, cred, p)) {
  662                                     rabp->b_flags |= B_INVAL|B_ERROR;
  663                                     vfs_unbusy_pages(rabp);
  664                                     brelse(rabp);
  665                                 }
  666                             } else {
  667                                 brelse(rabp);
  668                             }
  669                         }
  670                 }
  671                 /*
  672                  * Unlike VREG files, whos buffer size ( bp->b_bcount ) is
  673                  * chopped for the EOF condition, we cannot tell how large
  674                  * NFS directories are going to be until we hit EOF.  So
  675                  * an NFS directory buffer is *not* chopped to its EOF.  Now,
  676                  * it just so happens that b_resid will effectively chop it
  677                  * to EOF.  *BUT* this information is lost if the buffer goes
  678                  * away and is reconstituted into a B_CACHE state ( due to
  679                  * being VMIO ) later.  So we keep track of the directory eof
  680                  * in np->n_direofoffset and chop it off as an extra step 
  681                  * right here.
  682                  */
  683                 n = lmin(uio->uio_resid, NFS_DIRBLKSIZ - bp->b_resid - on);
  684                 if (np->n_direofoffset && n > np->n_direofoffset - uio->uio_offset)
  685                         n = np->n_direofoffset - uio->uio_offset;
  686                 break;
  687             default:
  688                 printf(" nfs_bioread: type %x unexpected\n",vp->v_type);
  689                 break;
  690             };
  691 
  692             if (n > 0) {
  693                     error = uiomove(bp->b_data + on, (int)n, uio);
  694             }
  695             switch (vp->v_type) {
  696             case VREG:
  697                 break;
  698             case VLNK:
  699                 n = 0;
  700                 break;
  701             case VDIR:
  702                 /*
  703                  * Invalidate buffer if caching is disabled, forcing a
  704                  * re-read from the remote later.
  705                  */
  706                 if (np->n_flag & NQNFSNONCACHE)
  707                         bp->b_flags |= B_INVAL;
  708                 break;
  709             default:
  710                 printf(" nfs_bioread: type %x unexpected\n",vp->v_type);
  711             }
  712             brelse(bp);
  713         } while (error == 0 && uio->uio_resid > 0 && n > 0);
  714         return (error);
  715 }
  716 
  717 /*
  718  * Vnode op for write using bio
  719  */
  720 int
  721 nfs_write(ap)
  722         struct vop_write_args /* {
  723                 struct vnode *a_vp;
  724                 struct uio *a_uio;
  725                 int  a_ioflag;
  726                 struct ucred *a_cred;
  727         } */ *ap;
  728 {
  729         int biosize;
  730         struct uio *uio = ap->a_uio;
  731         struct proc *p = uio->uio_procp;
  732         struct vnode *vp = ap->a_vp;
  733         struct nfsnode *np = VTONFS(vp);
  734         struct ucred *cred = ap->a_cred;
  735         int ioflag = ap->a_ioflag;
  736         struct buf *bp;
  737         struct vattr vattr;
  738         struct nfsmount *nmp = VFSTONFS(vp->v_mount);
  739         daddr_t lbn;
  740         int bcount;
  741         int n, on, error = 0, iomode, must_commit;
  742         int haverslock = 0;
  743 
  744 #ifdef DIAGNOSTIC
  745         if (uio->uio_rw != UIO_WRITE)
  746                 panic("nfs_write mode");
  747         if (uio->uio_segflg == UIO_USERSPACE && uio->uio_procp != curproc)
  748                 panic("nfs_write proc");
  749 #endif
  750         if (vp->v_type != VREG)
  751                 return (EIO);
  752         if (np->n_flag & NWRITEERR) {
  753                 np->n_flag &= ~NWRITEERR;
  754                 return (np->n_error);
  755         }
  756         if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
  757             (nmp->nm_state & NFSSTA_GOTFSINFO) == 0)
  758                 (void)nfs_fsinfo(nmp, vp, cred, p);
  759 
  760         /*
  761          * Synchronously flush pending buffers if we are in synchronous
  762          * mode or if we are appending.
  763          */
  764         if (ioflag & (IO_APPEND | IO_SYNC)) {
  765                 if (np->n_flag & NMODIFIED) {
  766                         np->n_attrstamp = 0;
  767                         error = nfs_vinvalbuf(vp, V_SAVE, cred, p, 1);
  768                         if (error)
  769                                 return (error);
  770                 }
  771         }
  772 
  773         /*
  774          * If IO_APPEND then load uio_offset.  We restart here if we cannot
  775          * get the append lock.
  776          */
  777 restart:
  778         if (ioflag & IO_APPEND) {
  779                 np->n_attrstamp = 0;
  780                 error = VOP_GETATTR(vp, &vattr, cred, p);
  781                 if (error)
  782                         return (error);
  783                 uio->uio_offset = np->n_size;
  784         }
  785 
  786         if (uio->uio_offset < 0)
  787                 return (EINVAL);
  788         if ((uio->uio_offset + uio->uio_resid) > nmp->nm_maxfilesize)
  789                 return (EFBIG);
  790         if (uio->uio_resid == 0)
  791                 return (0);
  792 
  793         /*
  794          * We need to obtain the rslock if we intend to modify np->n_size
  795          * in order to guarentee the append point with multiple contending
  796          * writers, to guarentee that no other appenders modify n_size
  797          * while we are trying to obtain a truncated buffer (i.e. to avoid
  798          * accidently truncating data written by another appender due to
  799          * the race), and to ensure that the buffer is populated prior to
  800          * our extending of the file.  We hold rslock through the entire
  801          * operation.
  802          *
  803          * Note that we do not synchronize the case where someone truncates
  804          * the file while we are appending to it because attempting to lock
  805          * this case may deadlock other parts of the system unexpectedly.
  806          */
  807         if ((ioflag & IO_APPEND) ||
  808             uio->uio_offset + uio->uio_resid > np->n_size) {
  809                 switch(nfs_rslock(np, p)) {
  810                 case ENOLCK:
  811                         goto restart;
  812                         /* not reached */
  813                 case EINTR:
  814                 case ERESTART:
  815                         return(EINTR);
  816                         /* not reached */
  817                 default:
  818                         break;
  819                 }
  820                 haverslock = 1;
  821         }
  822 
  823         /*
  824          * Maybe this should be above the vnode op call, but so long as
  825          * file servers have no limits, i don't think it matters
  826          */
  827         if (p && uio->uio_offset + uio->uio_resid >
  828               p->p_rlimit[RLIMIT_FSIZE].rlim_cur) {
  829                 psignal(p, SIGXFSZ);
  830                 if (haverslock)
  831                         nfs_rsunlock(np, p);
  832                 return (EFBIG);
  833         }
  834 
  835         biosize = vp->v_mount->mnt_stat.f_iosize;
  836 
  837         do {
  838                 /*
  839                  * Check for a valid write lease.
  840                  */
  841                 if ((nmp->nm_flag & NFSMNT_NQNFS) &&
  842                     NQNFS_CKINVALID(vp, np, ND_WRITE)) {
  843                         do {
  844                                 error = nqnfs_getlease(vp, ND_WRITE, cred, p);
  845                         } while (error == NQNFS_EXPIRED);
  846                         if (error)
  847                                 break;
  848                         if (np->n_lrev != np->n_brev ||
  849                             (np->n_flag & NQNFSNONCACHE)) {
  850                                 error = nfs_vinvalbuf(vp, V_SAVE, cred, p, 1);
  851                                 if (error)
  852                                         break;
  853                                 np->n_brev = np->n_lrev;
  854                         }
  855                 }
  856                 if ((np->n_flag & NQNFSNONCACHE) && uio->uio_iovcnt == 1) {
  857                     iomode = NFSV3WRITE_FILESYNC;
  858                     error = nfs_writerpc(vp, uio, cred, &iomode, &must_commit);
  859                     if (must_commit)
  860                             nfs_clearcommit(vp->v_mount);
  861                     break;
  862                 }
  863                 nfsstats.biocache_writes++;
  864                 lbn = uio->uio_offset / biosize;
  865                 on = uio->uio_offset & (biosize-1);
  866                 n = min((unsigned)(biosize - on), uio->uio_resid);
  867 again:
  868                 /*
  869                  * Handle direct append and file extension cases, calculate
  870                  * unaligned buffer size.
  871                  */
  872 
  873                 if (uio->uio_offset == np->n_size && n) {
  874                         /*
  875                          * Get the buffer (in its pre-append state to maintain
  876                          * B_CACHE if it was previously set).  Resize the
  877                          * nfsnode after we have locked the buffer to prevent
  878                          * readers from reading garbage.
  879                          */
  880                         bcount = on;
  881                         bp = nfs_getcacheblk(vp, lbn, bcount, p);
  882 
  883                         if (bp != NULL) {
  884                                 long save;
  885 
  886                                 np->n_size = uio->uio_offset + n;
  887                                 np->n_flag |= NMODIFIED;
  888                                 vnode_pager_setsize(vp, np->n_size);
  889 
  890                                 save = bp->b_flags & B_CACHE;
  891                                 bcount += n;
  892                                 allocbuf(bp, bcount);
  893                                 bp->b_flags |= save;
  894                         }
  895                 } else {
  896                         /*
  897                          * Obtain the locked cache block first, and then 
  898                          * adjust the file's size as appropriate.
  899                          */
  900                         bcount = on + n;
  901                         if ((off_t)lbn * biosize + bcount < np->n_size) {
  902                                 if ((off_t)(lbn + 1) * biosize < np->n_size)
  903                                         bcount = biosize;
  904                                 else
  905                                         bcount = np->n_size - (off_t)lbn * biosize;
  906                         }
  907                         bp = nfs_getcacheblk(vp, lbn, bcount, p);
  908                         if (uio->uio_offset + n > np->n_size) {
  909                                 np->n_size = uio->uio_offset + n;
  910                                 np->n_flag |= NMODIFIED;
  911                                 vnode_pager_setsize(vp, np->n_size);
  912                         }
  913                 }
  914 
  915                 if (!bp) {
  916                         error = EINTR;
  917                         break;
  918                 }
  919 
  920                 /*
  921                  * Issue a READ if B_CACHE is not set.  In special-append
  922                  * mode, B_CACHE is based on the buffer prior to the write
  923                  * op and is typically set, avoiding the read.  If a read
  924                  * is required in special append mode, the server will
  925                  * probably send us a short-read since we extended the file
  926                  * on our end, resulting in b_resid == 0 and, thusly, 
  927                  * B_CACHE getting set.
  928                  *
  929                  * We can also avoid issuing the read if the write covers
  930                  * the entire buffer.  We have to make sure the buffer state
  931                  * is reasonable in this case since we will not be initiating
  932                  * I/O.  See the comments in kern/vfs_bio.c's getblk() for
  933                  * more information.
  934                  *
  935                  * B_CACHE may also be set due to the buffer being cached
  936                  * normally.
  937                  */
  938 
  939                 if (on == 0 && n == bcount) {
  940                         bp->b_flags |= B_CACHE;
  941                         bp->b_flags &= ~(B_ERROR | B_INVAL);
  942                 }
  943 
  944                 if ((bp->b_flags & B_CACHE) == 0) {
  945                         bp->b_flags |= B_READ;
  946                         vfs_busy_pages(bp, 0);
  947                         error = nfs_doio(bp, cred, p);
  948                         if (error) {
  949                                 brelse(bp);
  950                                 break;
  951                         }
  952                 }
  953                 if (!bp) {
  954                         error = EINTR;
  955                         break;
  956                 }
  957                 if (bp->b_wcred == NOCRED) {
  958                         crhold(cred);
  959                         bp->b_wcred = cred;
  960                 }
  961                 np->n_flag |= NMODIFIED;
  962 
  963                 /*
  964                  * If dirtyend exceeds file size, chop it down.  This should
  965                  * not normally occur but there is an append race where it
  966                  * might occur XXX, so we log it. 
  967                  *
  968                  * If the chopping creates a reverse-indexed or degenerate
  969                  * situation with dirtyoff/end, we 0 both of them.
  970                  */
  971 
  972                 if (bp->b_dirtyend > bcount) {
  973                         printf("NFS append race @%lx:%d\n", 
  974                             (long)bp->b_blkno * DEV_BSIZE, 
  975                             bp->b_dirtyend - bcount);
  976                         bp->b_dirtyend = bcount;
  977                 }
  978 
  979                 if (bp->b_dirtyoff >= bp->b_dirtyend)
  980                         bp->b_dirtyoff = bp->b_dirtyend = 0;
  981 
  982                 /*
  983                  * If the new write will leave a contiguous dirty
  984                  * area, just update the b_dirtyoff and b_dirtyend,
  985                  * otherwise force a write rpc of the old dirty area.
  986                  *
  987                  * While it is possible to merge discontiguous writes due to 
  988                  * our having a B_CACHE buffer ( and thus valid read data
  989                  * for the hole), we don't because it could lead to 
  990                  * significant cache coherency problems with multiple clients,
  991                  * especially if locking is implemented later on.
  992                  *
  993                  * as an optimization we could theoretically maintain
  994                  * a linked list of discontinuous areas, but we would still
  995                  * have to commit them separately so there isn't much
  996                  * advantage to it except perhaps a bit of asynchronization.
  997                  */
  998 
  999                 if (bp->b_dirtyend > 0 &&
 1000                     (on > bp->b_dirtyend || (on + n) < bp->b_dirtyoff)) {
 1001                         if (VOP_BWRITE(bp->b_vp, bp) == EINTR) {
 1002                                 error = EINTR;
 1003                                 break;
 1004                         }
 1005                         goto again;
 1006                 }
 1007 
 1008                 /*
 1009                  * Check for valid write lease and get one as required.
 1010                  * In case getblk() and/or bwrite() delayed us.
 1011                  */
 1012                 if ((nmp->nm_flag & NFSMNT_NQNFS) &&
 1013                     NQNFS_CKINVALID(vp, np, ND_WRITE)) {
 1014                         do {
 1015                                 error = nqnfs_getlease(vp, ND_WRITE, cred, p);
 1016                         } while (error == NQNFS_EXPIRED);
 1017                         if (error) {
 1018                                 brelse(bp);
 1019                                 break;
 1020                         }
 1021                         if (np->n_lrev != np->n_brev ||
 1022                             (np->n_flag & NQNFSNONCACHE)) {
 1023                                 brelse(bp);
 1024                                 error = nfs_vinvalbuf(vp, V_SAVE, cred, p, 1);
 1025                                 if (error)
 1026                                         break;
 1027                                 np->n_brev = np->n_lrev;
 1028                                 goto again;
 1029                         }
 1030                 }
 1031 
 1032                 error = uiomove((char *)bp->b_data + on, n, uio);
 1033 
 1034                 /*
 1035                  * Since this block is being modified, it must be written
 1036                  * again and not just committed.  Since write clustering does
 1037                  * not work for the stage 1 data write, only the stage 2
 1038                  * commit rpc, we have to clear B_CLUSTEROK as well.
 1039                  */
 1040                 bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
 1041 
 1042                 if (error) {
 1043                         bp->b_flags |= B_ERROR;
 1044                         brelse(bp);
 1045                         break;
 1046                 }
 1047 
 1048                 /*
 1049                  * Only update dirtyoff/dirtyend if not a degenerate 
 1050                  * condition.
 1051                  */
 1052                 if (n) {
 1053                         if (bp->b_dirtyend > 0) {
 1054                                 bp->b_dirtyoff = min(on, bp->b_dirtyoff);
 1055                                 bp->b_dirtyend = max((on + n), bp->b_dirtyend);
 1056                         } else {
 1057                                 bp->b_dirtyoff = on;
 1058                                 bp->b_dirtyend = on + n;
 1059                         }
 1060                         vfs_bio_set_validclean(bp, on, n);
 1061                 }
 1062                 /*
 1063                  * If IO_NOWDRAIN then set B_NOWDRAIN (e.g. nfs-backed VN
 1064                  * filesystem).  XXX also use for loopback NFS mounts.
 1065                  */
 1066                 if (ioflag & IO_NOWDRAIN)
 1067                         bp->b_flags |= B_NOWDRAIN;
 1068 
 1069                 /*
 1070                  * If the lease is non-cachable or IO_SYNC do bwrite().
 1071                  *
 1072                  * IO_INVAL appears to be unused.  The idea appears to be
 1073                  * to turn off caching in this case.  Very odd.  XXX
 1074                  */
 1075                 if ((np->n_flag & NQNFSNONCACHE) || (ioflag & IO_SYNC)) {
 1076                         if (ioflag & IO_INVAL)
 1077                                 bp->b_flags |= B_NOCACHE;
 1078                         error = VOP_BWRITE(bp->b_vp, bp);
 1079                         if (error)
 1080                                 break;
 1081                         if (np->n_flag & NQNFSNONCACHE) {
 1082                                 error = nfs_vinvalbuf(vp, V_SAVE, cred, p, 1);
 1083                                 if (error)
 1084                                         break;
 1085                         }
 1086                 } else if ((n + on) == biosize &&
 1087                         (nmp->nm_flag & NFSMNT_NQNFS) == 0) {
 1088                         bp->b_flags |= B_ASYNC;
 1089                         (void)nfs_writebp(bp, 0, 0);
 1090                 } else {
 1091                         bdwrite(bp);
 1092                 }
 1093         } while (uio->uio_resid > 0 && n > 0);
 1094 
 1095         if (haverslock)
 1096                 nfs_rsunlock(np, p);
 1097 
 1098         return (error);
 1099 }
 1100 
 1101 /*
 1102  * Get an nfs cache block.
 1103  *
 1104  * Allocate a new one if the block isn't currently in the cache
 1105  * and return the block marked busy. If the calling process is
 1106  * interrupted by a signal for an interruptible mount point, return
 1107  * NULL.
 1108  *
 1109  * The caller must carefully deal with the possible B_INVAL state of
 1110  * the buffer.  nfs_doio() clears B_INVAL (and nfs_asyncio() clears it
 1111  * indirectly), so synchronous reads can be issued without worrying about
 1112  * the B_INVAL state.  We have to be a little more careful when dealing
 1113  * with writes (see comments in nfs_write()) when extending a file past
 1114  * its EOF.
 1115  */
 1116 static struct buf *
 1117 nfs_getcacheblk(vp, bn, size, p)
 1118         struct vnode *vp;
 1119         daddr_t bn;
 1120         int size;
 1121         struct proc *p;
 1122 {
 1123         register struct buf *bp;
 1124         struct mount *mp;
 1125         struct nfsmount *nmp;
 1126 
 1127         mp = vp->v_mount;
 1128         nmp = VFSTONFS(mp);
 1129 
 1130         if (nmp->nm_flag & NFSMNT_INT) {
 1131                 bp = getblk(vp, bn, size, PCATCH, 0);
 1132                 while (bp == (struct buf *)0) {
 1133                         if (nfs_sigintr(nmp, (struct nfsreq *)0, p))
 1134                                 return ((struct buf *)0);
 1135                         bp = getblk(vp, bn, size, 0, 2 * hz);
 1136                 }
 1137         } else {
 1138                 bp = getblk(vp, bn, size, 0, 0);
 1139         }
 1140 
 1141         if (vp->v_type == VREG) {
 1142                 int biosize;
 1143 
 1144                 biosize = mp->mnt_stat.f_iosize;
 1145                 bp->b_blkno = bn * (biosize / DEV_BSIZE);
 1146         }
 1147         return (bp);
 1148 }
 1149 
 1150 /*
 1151  * Flush and invalidate all dirty buffers. If another process is already
 1152  * doing the flush, just wait for completion.
 1153  */
 1154 int
 1155 nfs_vinvalbuf(vp, flags, cred, p, intrflg)
 1156         struct vnode *vp;
 1157         int flags;
 1158         struct ucred *cred;
 1159         struct proc *p;
 1160         int intrflg;
 1161 {
 1162         register struct nfsnode *np = VTONFS(vp);
 1163         struct nfsmount *nmp = VFSTONFS(vp->v_mount);
 1164         int error = 0, slpflag, slptimeo;
 1165 
 1166         if (vp->v_flag & VXLOCK) {
 1167                 return (0);
 1168         }
 1169 
 1170         if ((nmp->nm_flag & NFSMNT_INT) == 0)
 1171                 intrflg = 0;
 1172         if (intrflg) {
 1173                 slpflag = PCATCH;
 1174                 slptimeo = 2 * hz;
 1175         } else {
 1176                 slpflag = 0;
 1177                 slptimeo = 0;
 1178         }
 1179         /*
 1180          * First wait for any other process doing a flush to complete.
 1181          */
 1182         while (np->n_flag & NFLUSHINPROG) {
 1183                 np->n_flag |= NFLUSHWANT;
 1184                 error = tsleep((caddr_t)&np->n_flag, PRIBIO + 2, "nfsvinval",
 1185                         slptimeo);
 1186                 if (error && intrflg && nfs_sigintr(nmp, (struct nfsreq *)0, p))
 1187                         return (EINTR);
 1188         }
 1189 
 1190         /*
 1191          * Now, flush as required.
 1192          */
 1193         np->n_flag |= NFLUSHINPROG;
 1194         error = vinvalbuf(vp, flags, cred, p, slpflag, 0);
 1195         while (error) {
 1196                 if (intrflg && nfs_sigintr(nmp, (struct nfsreq *)0, p)) {
 1197                         np->n_flag &= ~NFLUSHINPROG;
 1198                         if (np->n_flag & NFLUSHWANT) {
 1199                                 np->n_flag &= ~NFLUSHWANT;
 1200                                 wakeup((caddr_t)&np->n_flag);
 1201                         }
 1202                         return (EINTR);
 1203                 }
 1204                 error = vinvalbuf(vp, flags, cred, p, 0, slptimeo);
 1205         }
 1206         np->n_flag &= ~(NMODIFIED | NFLUSHINPROG);
 1207         if (np->n_flag & NFLUSHWANT) {
 1208                 np->n_flag &= ~NFLUSHWANT;
 1209                 wakeup((caddr_t)&np->n_flag);
 1210         }
 1211         return (0);
 1212 }
 1213 
 1214 /*
 1215  * Initiate asynchronous I/O. Return an error if no nfsiods are available.
 1216  * This is mainly to avoid queueing async I/O requests when the nfsiods
 1217  * are all hung on a dead server.
 1218  *
 1219  * Note: nfs_asyncio() does not clear (B_ERROR|B_INVAL) but when the bp
 1220  * is eventually dequeued by the async daemon, nfs_doio() *will*.
 1221  */
 1222 int
 1223 nfs_asyncio(bp, cred, procp)
 1224         register struct buf *bp;
 1225         struct ucred *cred;
 1226         struct proc *procp;
 1227 {
 1228         struct nfsmount *nmp;
 1229         int i;
 1230         int gotiod;
 1231         int slpflag = 0;
 1232         int slptimeo = 0;
 1233         int error;
 1234 
 1235         /*
 1236          * If no async daemons then return EIO to force caller to run the rpc
 1237          * synchronously.
 1238          */
 1239         if (nfs_numasync == 0)
 1240                 return (EIO);
 1241 
 1242         nmp = VFSTONFS(bp->b_vp->v_mount);
 1243 
 1244         /*
 1245          * Commits are usually short and sweet so lets save some cpu and 
 1246          * leave the async daemons for more important rpc's (such as reads
 1247          * and writes).
 1248          */
 1249         if ((bp->b_flags & (B_READ|B_NEEDCOMMIT)) == B_NEEDCOMMIT &&
 1250             (nmp->nm_bufqiods > nfs_numasync / 2)) {
 1251                 return(EIO);
 1252         }
 1253 
 1254 again:
 1255         if (nmp->nm_flag & NFSMNT_INT)
 1256                 slpflag = PCATCH;
 1257         gotiod = FALSE;
 1258 
 1259         /*
 1260          * Find a free iod to process this request.
 1261          */
 1262         for (i = 0; i < NFS_MAXASYNCDAEMON; i++)
 1263                 if (nfs_iodwant[i]) {
 1264                         /*
 1265                          * Found one, so wake it up and tell it which
 1266                          * mount to process.
 1267                          */
 1268                         NFS_DPF(ASYNCIO,
 1269                                 ("nfs_asyncio: waking iod %d for mount %p\n",
 1270                                  i, nmp));
 1271                         nfs_iodwant[i] = (struct proc *)0;
 1272                         nfs_iodmount[i] = nmp;
 1273                         nmp->nm_bufqiods++;
 1274                         wakeup((caddr_t)&nfs_iodwant[i]);
 1275                         gotiod = TRUE;
 1276                         break;
 1277                 }
 1278 
 1279         /*
 1280          * If none are free, we may already have an iod working on this mount
 1281          * point.  If so, it will process our request.
 1282          */
 1283         if (!gotiod) {
 1284                 if (nmp->nm_bufqiods > 0) {
 1285                         NFS_DPF(ASYNCIO,
 1286                                 ("nfs_asyncio: %d iods are already processing mount %p\n",
 1287                                  nmp->nm_bufqiods, nmp));
 1288                         gotiod = TRUE;
 1289                 }
 1290         }
 1291 
 1292         /*
 1293          * If we have an iod which can process the request, then queue
 1294          * the buffer.
 1295          */
 1296         if (gotiod) {
 1297                 /*
 1298                  * Ensure that the queue never grows too large.  We still want
 1299                  * to asynchronize so we block rather then return EIO.
 1300                  */
 1301                 while (nmp->nm_bufqlen >= 2*nfs_numasync) {
 1302                         NFS_DPF(ASYNCIO,
 1303                                 ("nfs_asyncio: waiting for mount %p queue to drain\n", nmp));
 1304                         nmp->nm_bufqwant = TRUE;
 1305                         error = tsleep(&nmp->nm_bufq, slpflag | PRIBIO,
 1306                                        "nfsaio", slptimeo);
 1307                         if (error) {
 1308                                 if (nfs_sigintr(nmp, NULL, procp))
 1309                                         return (EINTR);
 1310                                 if (slpflag == PCATCH) {
 1311                                         slpflag = 0;
 1312                                         slptimeo = 2 * hz;
 1313                                 }
 1314                         }
 1315                         /*
 1316                          * We might have lost our iod while sleeping,
 1317                          * so check and loop if nescessary.
 1318                          */
 1319                         if (nmp->nm_bufqiods == 0) {
 1320                                 NFS_DPF(ASYNCIO,
 1321                                         ("nfs_asyncio: no iods after mount %p queue was drained, looping\n", nmp));
 1322                                 goto again;
 1323                         }
 1324                 }
 1325 
 1326                 if (bp->b_flags & B_READ) {
 1327                         if (bp->b_rcred == NOCRED && cred != NOCRED) {
 1328                                 crhold(cred);
 1329                                 bp->b_rcred = cred;
 1330                         }
 1331                 } else {
 1332                         bp->b_flags |= B_WRITEINPROG;
 1333                         if (bp->b_wcred == NOCRED && cred != NOCRED) {
 1334                                 crhold(cred);
 1335                                 bp->b_wcred = cred;
 1336                         }
 1337                 }
 1338 
 1339                 BUF_KERNPROC(bp);
 1340                 TAILQ_INSERT_TAIL(&nmp->nm_bufq, bp, b_freelist);
 1341                 nmp->nm_bufqlen++;
 1342                 return (0);
 1343         }
 1344 
 1345         /*
 1346          * All the iods are busy on other mounts, so return EIO to
 1347          * force the caller to process the i/o synchronously.
 1348          */
 1349         NFS_DPF(ASYNCIO, ("nfs_asyncio: no iods available, i/o is synchronous\n"));
 1350         return (EIO);
 1351 }
 1352 
 1353 /*
 1354  * Do an I/O operation to/from a cache block. This may be called
 1355  * synchronously or from an nfsiod.
 1356  */
 1357 int
 1358 nfs_doio(bp, cr, p)
 1359         struct buf *bp;
 1360         struct ucred *cr;
 1361         struct proc *p;
 1362 {
 1363         struct uio *uiop;
 1364         struct vnode *vp;
 1365         struct nfsnode *np;
 1366         struct nfsmount *nmp;
 1367         int error = 0, iomode, must_commit = 0;
 1368         struct uio uio;
 1369         struct iovec io;
 1370 
 1371         vp = bp->b_vp;
 1372         np = VTONFS(vp);
 1373         nmp = VFSTONFS(vp->v_mount);
 1374         uiop = &uio;
 1375         uiop->uio_iov = &io;
 1376         uiop->uio_iovcnt = 1;
 1377         uiop->uio_segflg = UIO_SYSSPACE;
 1378         uiop->uio_procp = p;
 1379 
 1380         /*
 1381          * clear B_ERROR and B_INVAL state prior to initiating the I/O.  We
 1382          * do this here so we do not have to do it in all the code that
 1383          * calls us.
 1384          */
 1385         bp->b_flags &= ~(B_ERROR | B_INVAL);
 1386 
 1387         KASSERT(!(bp->b_flags & B_DONE), ("nfs_doio: bp %p already marked done", bp));
 1388 
 1389         /*
 1390          * Historically, paging was done with physio, but no more.
 1391          */
 1392         if (bp->b_flags & B_PHYS) {
 1393             /*
 1394              * ...though reading /dev/drum still gets us here.
 1395              */
 1396             io.iov_len = uiop->uio_resid = bp->b_bcount;
 1397             /* mapping was done by vmapbuf() */
 1398             io.iov_base = bp->b_data;
 1399             uiop->uio_offset = ((off_t)bp->b_blkno) * DEV_BSIZE;
 1400             if (bp->b_flags & B_READ) {
 1401                 uiop->uio_rw = UIO_READ;
 1402                 nfsstats.read_physios++;
 1403                 error = nfs_readrpc(vp, uiop, cr);
 1404             } else {
 1405                 int com;
 1406 
 1407                 iomode = NFSV3WRITE_DATASYNC;
 1408                 uiop->uio_rw = UIO_WRITE;
 1409                 nfsstats.write_physios++;
 1410                 error = nfs_writerpc(vp, uiop, cr, &iomode, &com);
 1411             }
 1412             if (error) {
 1413                 bp->b_flags |= B_ERROR;
 1414                 bp->b_error = error;
 1415             }
 1416         } else if (bp->b_flags & B_READ) {
 1417             io.iov_len = uiop->uio_resid = bp->b_bcount;
 1418             io.iov_base = bp->b_data;
 1419             uiop->uio_rw = UIO_READ;
 1420 
 1421             switch (vp->v_type) {
 1422             case VREG:
 1423                 uiop->uio_offset = ((off_t)bp->b_blkno) * DEV_BSIZE;
 1424                 nfsstats.read_bios++;
 1425                 error = nfs_readrpc(vp, uiop, cr);
 1426 
 1427                 if (!error) {
 1428                     if (uiop->uio_resid) {
 1429                         /*
 1430                          * If we had a short read with no error, we must have
 1431                          * hit a file hole.  We should zero-fill the remainder.
 1432                          * This can also occur if the server hits the file EOF.
 1433                          *
 1434                          * Holes used to be able to occur due to pending 
 1435                          * writes, but that is not possible any longer.
 1436                          */
 1437                         int nread = bp->b_bcount - uiop->uio_resid;
 1438                         int left  = uiop->uio_resid;
 1439 
 1440                         if (left > 0)
 1441                                 bzero((char *)bp->b_data + nread, left);
 1442                         uiop->uio_resid = 0;
 1443                     }
 1444                 }
 1445                 if (p && (vp->v_flag & VTEXT) &&
 1446                         (((nmp->nm_flag & NFSMNT_NQNFS) &&
 1447                           NQNFS_CKINVALID(vp, np, ND_READ) &&
 1448                           np->n_lrev != np->n_brev) ||
 1449                          (!(nmp->nm_flag & NFSMNT_NQNFS) &&
 1450                           np->n_mtime != np->n_vattr.va_mtime.tv_sec))) {
 1451                         uprintf("Process killed due to text file modification\n");
 1452                         psignal(p, SIGKILL);
 1453                         PHOLD(p);
 1454                 }
 1455                 break;
 1456             case VLNK:
 1457                 uiop->uio_offset = (off_t)0;
 1458                 nfsstats.readlink_bios++;
 1459                 error = nfs_readlinkrpc(vp, uiop, cr);
 1460                 break;
 1461             case VDIR:
 1462                 nfsstats.readdir_bios++;
 1463                 uiop->uio_offset = ((u_quad_t)bp->b_lblkno) * NFS_DIRBLKSIZ;
 1464                 if (nmp->nm_flag & NFSMNT_RDIRPLUS) {
 1465                         error = nfs_readdirplusrpc(vp, uiop, cr);
 1466                         if (error == NFSERR_NOTSUPP)
 1467                                 nmp->nm_flag &= ~NFSMNT_RDIRPLUS;
 1468                 }
 1469                 if ((nmp->nm_flag & NFSMNT_RDIRPLUS) == 0)
 1470                         error = nfs_readdirrpc(vp, uiop, cr);
 1471                 /*
 1472                  * end-of-directory sets B_INVAL but does not generate an
 1473                  * error.
 1474                  */
 1475                 if (error == 0 && uiop->uio_resid == bp->b_bcount)
 1476                         bp->b_flags |= B_INVAL;
 1477                 break;
 1478             default:
 1479                 printf("nfs_doio:  type %x unexpected\n",vp->v_type);
 1480                 break;
 1481             };
 1482             if (error) {
 1483                 bp->b_flags |= B_ERROR;
 1484                 bp->b_error = error;
 1485             }
 1486         } else {
 1487             /* 
 1488              * If we only need to commit, try to commit
 1489              */
 1490             if (bp->b_flags & B_NEEDCOMMIT) {
 1491                     int retv;
 1492                     off_t off;
 1493 
 1494                     off = ((u_quad_t)bp->b_blkno) * DEV_BSIZE + bp->b_dirtyoff;
 1495                     bp->b_flags |= B_WRITEINPROG;
 1496                     retv = nfs_commit(
 1497                                 bp->b_vp, off, bp->b_dirtyend-bp->b_dirtyoff,
 1498                                 bp->b_wcred, p);
 1499                     bp->b_flags &= ~B_WRITEINPROG;
 1500                     if (retv == 0) {
 1501                             bp->b_dirtyoff = bp->b_dirtyend = 0;
 1502                             bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
 1503                             bp->b_resid = 0;
 1504                             biodone(bp);
 1505                             return (0);
 1506                     }
 1507                     if (retv == NFSERR_STALEWRITEVERF) {
 1508                             nfs_clearcommit(bp->b_vp->v_mount);
 1509                     }
 1510             }
 1511 
 1512             /*
 1513              * Setup for actual write
 1514              */
 1515 
 1516             if ((off_t)bp->b_blkno * DEV_BSIZE + bp->b_dirtyend > np->n_size)
 1517                 bp->b_dirtyend = np->n_size - (off_t)bp->b_blkno * DEV_BSIZE;
 1518 
 1519             if (bp->b_dirtyend > bp->b_dirtyoff) {
 1520                 io.iov_len = uiop->uio_resid = bp->b_dirtyend
 1521                     - bp->b_dirtyoff;
 1522                 uiop->uio_offset = (off_t)bp->b_blkno * DEV_BSIZE
 1523                     + bp->b_dirtyoff;
 1524                 io.iov_base = (char *)bp->b_data + bp->b_dirtyoff;
 1525                 uiop->uio_rw = UIO_WRITE;
 1526                 nfsstats.write_bios++;
 1527 
 1528                 if ((bp->b_flags & (B_ASYNC | B_NEEDCOMMIT | B_NOCACHE | B_CLUSTER)) == B_ASYNC)
 1529                     iomode = NFSV3WRITE_UNSTABLE;
 1530                 else
 1531                     iomode = NFSV3WRITE_FILESYNC;
 1532 
 1533                 bp->b_flags |= B_WRITEINPROG;
 1534                 error = nfs_writerpc(vp, uiop, cr, &iomode, &must_commit);
 1535 
 1536                 /*
 1537                  * When setting B_NEEDCOMMIT also set B_CLUSTEROK to try
 1538                  * to cluster the buffers needing commit.  This will allow
 1539                  * the system to submit a single commit rpc for the whole
 1540                  * cluster.  We can do this even if the buffer is not 100% 
 1541                  * dirty (relative to the NFS blocksize), so we optimize the
 1542                  * append-to-file-case.
 1543                  *
 1544                  * (when clearing B_NEEDCOMMIT, B_CLUSTEROK must also be
 1545                  * cleared because write clustering only works for commit
 1546                  * rpc's, not for the data portion of the write).
 1547                  */
 1548 
 1549                 if (!error && iomode == NFSV3WRITE_UNSTABLE) {
 1550                     bp->b_flags |= B_NEEDCOMMIT;
 1551                     if (bp->b_dirtyoff == 0
 1552                         && bp->b_dirtyend == bp->b_bcount)
 1553                         bp->b_flags |= B_CLUSTEROK;
 1554                 } else {
 1555                     bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
 1556                 }
 1557                 bp->b_flags &= ~B_WRITEINPROG;
 1558 
 1559                 /*
 1560                  * For an interrupted write, the buffer is still valid
 1561                  * and the write hasn't been pushed to the server yet,
 1562                  * so we can't set B_ERROR and report the interruption
 1563                  * by setting B_EINTR. For the B_ASYNC case, B_EINTR
 1564                  * is not relevant, so the rpc attempt is essentially
 1565                  * a noop.  For the case of a V3 write rpc not being
 1566                  * committed to stable storage, the block is still
 1567                  * dirty and requires either a commit rpc or another
 1568                  * write rpc with iomode == NFSV3WRITE_FILESYNC before
 1569                  * the block is reused. This is indicated by setting
 1570                  * the B_DELWRI and B_NEEDCOMMIT flags.
 1571                  *
 1572                  * If the buffer is marked B_PAGING, it does not reside on
 1573                  * the vp's paging queues so we cannot call bdirty().  The
 1574                  * bp in this case is not an NFS cache block so we should
 1575                  * be safe. XXX
 1576                  */
 1577                 if (error == EINTR
 1578                     || (!error && (bp->b_flags & B_NEEDCOMMIT))) {
 1579                         int s;
 1580 
 1581                         s = splbio();
 1582                         bp->b_flags &= ~(B_INVAL|B_NOCACHE);
 1583                         if ((bp->b_flags & B_PAGING) == 0) {
 1584                             bdirty(bp);
 1585                             bp->b_flags &= ~B_DONE;
 1586                         }
 1587                         if (error && (bp->b_flags & B_ASYNC) == 0)
 1588                             bp->b_flags |= B_EINTR;
 1589                         splx(s);
 1590                 } else {
 1591                     if (error) {
 1592                         bp->b_flags |= B_ERROR;
 1593                         bp->b_error = np->n_error = error;
 1594                         np->n_flag |= NWRITEERR;
 1595                     }
 1596                     bp->b_dirtyoff = bp->b_dirtyend = 0;
 1597                 }
 1598             } else {
 1599                 bp->b_resid = 0;
 1600                 biodone(bp);
 1601                 return (0);
 1602             }
 1603         }
 1604         bp->b_resid = uiop->uio_resid;
 1605         if (must_commit)
 1606             nfs_clearcommit(vp->v_mount);
 1607         biodone(bp);
 1608         return (error);
 1609 }
 1610 
 1611 /*
 1612  * Used to aid in handling ftruncate() operations on the NFS client side.
 1613  * Truncation creates a number of special problems for NFS.  We have to
 1614  * throw away VM pages and buffer cache buffers that are beyond EOF, and
 1615  * we have to properly handle VM pages or (potentially dirty) buffers
 1616  * that straddle the truncation point.
 1617  */
 1618 
 1619 int
 1620 nfs_meta_setsize(struct vnode *vp, struct ucred *cred, struct proc *p, u_quad_t nsize)
 1621 {
 1622         struct nfsnode *np = VTONFS(vp);
 1623         u_quad_t tsize = np->n_size;
 1624         int biosize = vp->v_mount->mnt_stat.f_iosize;
 1625         int error = 0;
 1626 
 1627         np->n_size = nsize;
 1628 
 1629         if (np->n_size < tsize) {
 1630                 struct buf *bp;
 1631                 daddr_t lbn;
 1632                 int bufsize;
 1633 
 1634                 /*
 1635                  * vtruncbuf() doesn't get the buffer overlapping the 
 1636                  * truncation point.  We may have a B_DELWRI and/or B_CACHE
 1637                  * buffer that now needs to be truncated.
 1638                  */
 1639                 error = vtruncbuf(vp, cred, p, nsize, biosize);
 1640                 lbn = nsize / biosize;
 1641                 bufsize = nsize & (biosize - 1);
 1642                 bp = nfs_getcacheblk(vp, lbn, bufsize, p);
 1643                 if (bp->b_dirtyoff > bp->b_bcount)
 1644                         bp->b_dirtyoff = bp->b_bcount;
 1645                 if (bp->b_dirtyend > bp->b_bcount)
 1646                         bp->b_dirtyend = bp->b_bcount;
 1647                 bp->b_flags |= B_RELBUF;  /* don't leave garbage around */
 1648                 brelse(bp);
 1649         } else {
 1650                 vnode_pager_setsize(vp, nsize);
 1651         }
 1652         return(error);
 1653 }
 1654 

Cache object: f90a15c872d517485541660472cd4e9f


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.