FreeBSD/Linux Kernel Cross Reference
sys/nfs/nfs_bio.c
1 /* $NetBSD: nfs_bio.c,v 1.116.2.3 2005/12/01 16:20:34 riz Exp $ */
2
3 /*
4 * Copyright (c) 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * Rick Macklem at The University of Guelph.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 * @(#)nfs_bio.c 8.9 (Berkeley) 3/30/95
35 */
36
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: nfs_bio.c,v 1.116.2.3 2005/12/01 16:20:34 riz Exp $");
39
40 #include "opt_nfs.h"
41 #include "opt_ddb.h"
42
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/resourcevar.h>
46 #include <sys/signalvar.h>
47 #include <sys/proc.h>
48 #include <sys/buf.h>
49 #include <sys/vnode.h>
50 #include <sys/mount.h>
51 #include <sys/kernel.h>
52 #include <sys/namei.h>
53 #include <sys/dirent.h>
54 #include <sys/malloc.h>
55
56 #include <uvm/uvm_extern.h>
57 #include <uvm/uvm.h>
58
59 #include <nfs/rpcv2.h>
60 #include <nfs/nfsproto.h>
61 #include <nfs/nfs.h>
62 #include <nfs/nfsmount.h>
63 #include <nfs/nqnfs.h>
64 #include <nfs/nfsnode.h>
65 #include <nfs/nfs_var.h>
66
67 extern int nfs_numasync;
68 extern int nfs_commitsize;
69 extern struct nfsstats nfsstats;
70
71 static int nfs_doio_read __P((struct buf *, struct uio *));
72 static int nfs_doio_write __P((struct buf *, struct uio *));
73 static int nfs_doio_phys __P((struct buf *, struct uio *));
74
75 /*
76 * Vnode op for read using bio
77 * Any similarity to readip() is purely coincidental
78 */
79 int
80 nfs_bioread(vp, uio, ioflag, cred, cflag)
81 struct vnode *vp;
82 struct uio *uio;
83 int ioflag, cflag;
84 struct ucred *cred;
85 {
86 struct nfsnode *np = VTONFS(vp);
87 struct buf *bp = NULL, *rabp;
88 struct vattr vattr;
89 struct proc *p;
90 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
91 struct nfsdircache *ndp = NULL, *nndp = NULL;
92 caddr_t baddr, ep, edp;
93 int got_buf = 0, error = 0, n = 0, on = 0, en, enn;
94 int enough = 0;
95 struct dirent *dp, *pdp;
96 off_t curoff = 0;
97
98 #ifdef DIAGNOSTIC
99 if (uio->uio_rw != UIO_READ)
100 panic("nfs_read mode");
101 #endif
102 if (uio->uio_resid == 0)
103 return (0);
104 if (vp->v_type != VDIR && uio->uio_offset < 0)
105 return (EINVAL);
106 p = uio->uio_procp;
107 #ifndef NFS_V2_ONLY
108 if ((nmp->nm_flag & NFSMNT_NFSV3) &&
109 !(nmp->nm_iflag & NFSMNT_GOTFSINFO))
110 (void)nfs_fsinfo(nmp, vp, cred, p);
111 #endif
112 if (vp->v_type != VDIR &&
113 (uio->uio_offset + uio->uio_resid) > nmp->nm_maxfilesize)
114 return (EFBIG);
115
116 /*
117 * For nfs, cache consistency can only be maintained approximately.
118 * Although RFC1094 does not specify the criteria, the following is
119 * believed to be compatible with the reference port.
120 * For nqnfs, full cache consistency is maintained within the loop.
121 * For nfs:
122 * If the file's modify time on the server has changed since the
123 * last read rpc or you have written to the file,
124 * you may have lost data cache consistency with the
125 * server, so flush all of the file's data out of the cache.
126 * Then force a getattr rpc to ensure that you have up to date
127 * attributes.
128 * NB: This implies that cache data can be read when up to
129 * NFS_ATTRTIMEO seconds out of date. If you find that you need current
130 * attributes this could be forced by setting n_attrstamp to 0 before
131 * the VOP_GETATTR() call.
132 */
133
134 if ((nmp->nm_flag & NFSMNT_NQNFS) == 0 && vp->v_type != VLNK) {
135 if (np->n_flag & NMODIFIED) {
136 if (vp->v_type != VREG) {
137 if (vp->v_type != VDIR)
138 panic("nfs: bioread, not dir");
139 nfs_invaldircache(vp, 0);
140 np->n_direofoffset = 0;
141 error = nfs_vinvalbuf(vp, V_SAVE, cred, p, 1);
142 if (error)
143 return (error);
144 }
145 NFS_INVALIDATE_ATTRCACHE(np);
146 error = VOP_GETATTR(vp, &vattr, cred, p);
147 if (error)
148 return (error);
149 np->n_mtime = vattr.va_mtime;
150 } else {
151 error = VOP_GETATTR(vp, &vattr, cred, p);
152 if (error)
153 return (error);
154 if (timespeccmp(&np->n_mtime, &vattr.va_mtime, !=)) {
155 if (vp->v_type == VDIR) {
156 nfs_invaldircache(vp, 0);
157 np->n_direofoffset = 0;
158 }
159 error = nfs_vinvalbuf(vp, V_SAVE, cred, p, 1);
160 if (error)
161 return (error);
162 np->n_mtime = vattr.va_mtime;
163 }
164 }
165 }
166
167 do {
168 #ifndef NFS_V2_ONLY
169 /*
170 * Get a valid lease. If cached data is stale, flush it.
171 */
172 if (nmp->nm_flag & NFSMNT_NQNFS) {
173 if (NQNFS_CKINVALID(vp, np, ND_READ)) {
174 do {
175 error = nqnfs_getlease(vp, ND_READ, cred, p);
176 } while (error == NQNFS_EXPIRED);
177 if (error)
178 return (error);
179 if (np->n_lrev != np->n_brev ||
180 (np->n_flag & NQNFSNONCACHE) ||
181 ((np->n_flag & NMODIFIED) && vp->v_type == VDIR)) {
182 if (vp->v_type == VDIR) {
183 nfs_invaldircache(vp, 0);
184 np->n_direofoffset = 0;
185 }
186 error = nfs_vinvalbuf(vp, V_SAVE, cred, p, 1);
187 if (error)
188 return (error);
189 np->n_brev = np->n_lrev;
190 }
191 } else if (vp->v_type == VDIR && (np->n_flag & NMODIFIED)) {
192 nfs_invaldircache(vp, 0);
193 error = nfs_vinvalbuf(vp, V_SAVE, cred, p, 1);
194 np->n_direofoffset = 0;
195 if (error)
196 return (error);
197 }
198 }
199 #endif
200 /*
201 * Don't cache symlinks.
202 */
203 if (np->n_flag & NQNFSNONCACHE
204 || ((vp->v_flag & VROOT) && vp->v_type == VLNK)) {
205 switch (vp->v_type) {
206 case VREG:
207 return (nfs_readrpc(vp, uio));
208 case VLNK:
209 return (nfs_readlinkrpc(vp, uio, cred));
210 case VDIR:
211 break;
212 default:
213 printf(" NQNFSNONCACHE: type %x unexpected\n",
214 vp->v_type);
215 };
216 }
217 baddr = (caddr_t)0;
218 switch (vp->v_type) {
219 case VREG:
220 nfsstats.biocache_reads++;
221
222 error = 0;
223 while (uio->uio_resid > 0) {
224 void *win;
225 vsize_t bytelen;
226
227 nfs_delayedtruncate(vp);
228 if (np->n_size <= uio->uio_offset) {
229 break;
230 }
231 bytelen =
232 MIN(np->n_size - uio->uio_offset, uio->uio_resid);
233 win = ubc_alloc(&vp->v_uobj, uio->uio_offset,
234 &bytelen, UBC_READ);
235 error = uiomove(win, bytelen, uio);
236 ubc_release(win, 0);
237 if (error) {
238 /*
239 * XXXkludge
240 * the file has been truncated on the server.
241 * there isn't much we can do.
242 */
243 if (uio->uio_offset >= np->n_size) {
244 /* end of file */
245 error = 0;
246 } else {
247 break;
248 }
249 }
250 }
251 break;
252
253 case VLNK:
254 nfsstats.biocache_readlinks++;
255 bp = nfs_getcacheblk(vp, (daddr_t)0, NFS_MAXPATHLEN, p);
256 if (!bp)
257 return (EINTR);
258 if ((bp->b_flags & B_DONE) == 0) {
259 bp->b_flags |= B_READ;
260 error = nfs_doio(bp, p);
261 if (error) {
262 brelse(bp);
263 return (error);
264 }
265 }
266 n = MIN(uio->uio_resid, NFS_MAXPATHLEN - bp->b_resid);
267 got_buf = 1;
268 on = 0;
269 break;
270 case VDIR:
271 diragain:
272 nfsstats.biocache_readdirs++;
273 ndp = nfs_searchdircache(vp, uio->uio_offset,
274 (nmp->nm_flag & NFSMNT_XLATECOOKIE), 0);
275 if (!ndp) {
276 /*
277 * We've been handed a cookie that is not
278 * in the cache. If we're not translating
279 * 32 <-> 64, it may be a value that was
280 * flushed out of the cache because it grew
281 * too big. Let the server judge if it's
282 * valid or not. In the translation case,
283 * we have no way of validating this value,
284 * so punt.
285 */
286 if (nmp->nm_flag & NFSMNT_XLATECOOKIE)
287 return (EINVAL);
288 ndp = nfs_enterdircache(vp, uio->uio_offset,
289 uio->uio_offset, 0, 0);
290 }
291
292 if (uio->uio_offset != 0 &&
293 ndp->dc_cookie == np->n_direofoffset) {
294 nfs_putdircache(np, ndp);
295 nfsstats.direofcache_hits++;
296 return (0);
297 }
298
299 bp = nfs_getcacheblk(vp, ndp->dc_blkno, NFS_DIRBLKSIZ, p);
300 if (!bp)
301 return (EINTR);
302 if ((bp->b_flags & B_DONE) == 0) {
303 bp->b_flags |= B_READ;
304 bp->b_dcookie = ndp->dc_blkcookie;
305 error = nfs_doio(bp, p);
306 if (error) {
307 /*
308 * Yuck! The directory has been modified on the
309 * server. Punt and let the userland code
310 * deal with it.
311 */
312 nfs_putdircache(np, ndp);
313 brelse(bp);
314 if (error == NFSERR_BAD_COOKIE) {
315 nfs_invaldircache(vp, 0);
316 nfs_vinvalbuf(vp, 0, cred, p, 1);
317 error = EINVAL;
318 }
319 return (error);
320 }
321 }
322
323 /*
324 * Just return if we hit EOF right away with this
325 * block. Always check here, because direofoffset
326 * may have been set by an nfsiod since the last
327 * check.
328 */
329 if (np->n_direofoffset != 0 &&
330 ndp->dc_blkcookie == np->n_direofoffset) {
331 nfs_putdircache(np, ndp);
332 brelse(bp);
333 return (0);
334 }
335
336 /*
337 * Find the entry we were looking for in the block.
338 */
339
340 en = ndp->dc_entry;
341
342 pdp = dp = (struct dirent *)bp->b_data;
343 edp = bp->b_data + bp->b_bcount - bp->b_resid;
344 enn = 0;
345 while (enn < en && (caddr_t)dp < edp) {
346 pdp = dp;
347 dp = (struct dirent *)((caddr_t)dp + dp->d_reclen);
348 enn++;
349 }
350
351 /*
352 * If the entry number was bigger than the number of
353 * entries in the block, or the cookie of the previous
354 * entry doesn't match, the directory cache is
355 * stale. Flush it and try again (i.e. go to
356 * the server).
357 */
358 if ((caddr_t)dp >= edp || (caddr_t)dp + dp->d_reclen > edp ||
359 (en > 0 && NFS_GETCOOKIE(pdp) != ndp->dc_cookie)) {
360 #ifdef DEBUG
361 printf("invalid cache: %p %p %p off %lx %lx\n",
362 pdp, dp, edp,
363 (unsigned long)uio->uio_offset,
364 (unsigned long)NFS_GETCOOKIE(pdp));
365 #endif
366 nfs_putdircache(np, ndp);
367 brelse(bp);
368 nfs_invaldircache(vp, 0);
369 nfs_vinvalbuf(vp, 0, cred, p, 0);
370 goto diragain;
371 }
372
373 on = (caddr_t)dp - bp->b_data;
374
375 /*
376 * Cache all entries that may be exported to the
377 * user, as they may be thrown back at us. The
378 * NFSBIO_CACHECOOKIES flag indicates that all
379 * entries are being 'exported', so cache them all.
380 */
381
382 if (en == 0 && pdp == dp) {
383 dp = (struct dirent *)
384 ((caddr_t)dp + dp->d_reclen);
385 enn++;
386 }
387
388 if (uio->uio_resid < (bp->b_bcount - bp->b_resid - on)) {
389 n = uio->uio_resid;
390 enough = 1;
391 } else
392 n = bp->b_bcount - bp->b_resid - on;
393
394 ep = bp->b_data + on + n;
395
396 /*
397 * Find last complete entry to copy, caching entries
398 * (if requested) as we go.
399 */
400
401 while ((caddr_t)dp < ep && (caddr_t)dp + dp->d_reclen <= ep) {
402 if (cflag & NFSBIO_CACHECOOKIES) {
403 nndp = nfs_enterdircache(vp, NFS_GETCOOKIE(pdp),
404 ndp->dc_blkcookie, enn, bp->b_lblkno);
405 if (nmp->nm_flag & NFSMNT_XLATECOOKIE) {
406 NFS_STASHCOOKIE32(pdp,
407 nndp->dc_cookie32);
408 }
409 nfs_putdircache(np, nndp);
410 }
411 pdp = dp;
412 dp = (struct dirent *)((caddr_t)dp + dp->d_reclen);
413 enn++;
414 }
415 nfs_putdircache(np, ndp);
416
417 /*
418 * If the last requested entry was not the last in the
419 * buffer (happens if NFS_DIRFRAGSIZ < NFS_DIRBLKSIZ),
420 * cache the cookie of the last requested one, and
421 * set of the offset to it.
422 */
423
424 if ((on + n) < bp->b_bcount - bp->b_resid) {
425 curoff = NFS_GETCOOKIE(pdp);
426 nndp = nfs_enterdircache(vp, curoff, ndp->dc_blkcookie,
427 enn, bp->b_lblkno);
428 if (nmp->nm_flag & NFSMNT_XLATECOOKIE) {
429 NFS_STASHCOOKIE32(pdp, nndp->dc_cookie32);
430 curoff = nndp->dc_cookie32;
431 }
432 nfs_putdircache(np, nndp);
433 } else
434 curoff = bp->b_dcookie;
435
436 /*
437 * Always cache the entry for the next block,
438 * so that readaheads can use it.
439 */
440 nndp = nfs_enterdircache(vp, bp->b_dcookie, bp->b_dcookie, 0,0);
441 if (nmp->nm_flag & NFSMNT_XLATECOOKIE) {
442 if (curoff == bp->b_dcookie) {
443 NFS_STASHCOOKIE32(pdp, nndp->dc_cookie32);
444 curoff = nndp->dc_cookie32;
445 }
446 }
447
448 n = ((caddr_t)pdp + pdp->d_reclen) - (bp->b_data + on);
449
450 /*
451 * If not eof and read aheads are enabled, start one.
452 * (You need the current block first, so that you have the
453 * directory offset cookie of the next block.)
454 */
455 if (nfs_numasync > 0 && nmp->nm_readahead > 0 &&
456 np->n_direofoffset == 0 && !(np->n_flag & NQNFSNONCACHE)) {
457 rabp = nfs_getcacheblk(vp, nndp->dc_blkno,
458 NFS_DIRBLKSIZ, p);
459 if (rabp) {
460 if ((rabp->b_flags & (B_DONE | B_DELWRI)) == 0) {
461 rabp->b_dcookie = nndp->dc_cookie;
462 rabp->b_flags |= (B_READ | B_ASYNC);
463 if (nfs_asyncio(rabp)) {
464 rabp->b_flags |= B_INVAL;
465 brelse(rabp);
466 }
467 } else
468 brelse(rabp);
469 }
470 }
471 nfs_putdircache(np, nndp);
472 got_buf = 1;
473 break;
474 default:
475 printf(" nfsbioread: type %x unexpected\n",vp->v_type);
476 break;
477 }
478
479 if (n > 0) {
480 if (!baddr)
481 baddr = bp->b_data;
482 error = uiomove(baddr + on, (int)n, uio);
483 }
484 switch (vp->v_type) {
485 case VREG:
486 break;
487 case VLNK:
488 n = 0;
489 break;
490 case VDIR:
491 if (np->n_flag & NQNFSNONCACHE)
492 bp->b_flags |= B_INVAL;
493 uio->uio_offset = curoff;
494 if (enough)
495 n = 0;
496 break;
497 default:
498 printf(" nfsbioread: type %x unexpected\n",vp->v_type);
499 }
500 if (got_buf)
501 brelse(bp);
502 } while (error == 0 && uio->uio_resid > 0 && n > 0);
503 return (error);
504 }
505
506 /*
507 * Vnode op for write using bio
508 */
509 int
510 nfs_write(v)
511 void *v;
512 {
513 struct vop_write_args /* {
514 struct vnode *a_vp;
515 struct uio *a_uio;
516 int a_ioflag;
517 struct ucred *a_cred;
518 } */ *ap = v;
519 struct uio *uio = ap->a_uio;
520 struct proc *p = uio->uio_procp;
521 struct vnode *vp = ap->a_vp;
522 struct nfsnode *np = VTONFS(vp);
523 struct ucred *cred = ap->a_cred;
524 int ioflag = ap->a_ioflag;
525 struct vattr vattr;
526 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
527 void *win;
528 voff_t oldoff, origoff;
529 vsize_t bytelen;
530 int error = 0;
531 int extended = 0, wrotedta = 0;
532
533 #ifdef DIAGNOSTIC
534 if (uio->uio_rw != UIO_WRITE)
535 panic("nfs_write mode");
536 if (uio->uio_segflg == UIO_USERSPACE && uio->uio_procp != curproc)
537 panic("nfs_write proc");
538 #endif
539 if (vp->v_type != VREG)
540 return (EIO);
541 if (np->n_flag & NWRITEERR) {
542 np->n_flag &= ~NWRITEERR;
543 return (np->n_error);
544 }
545 #ifndef NFS_V2_ONLY
546 if ((nmp->nm_flag & NFSMNT_NFSV3) &&
547 !(nmp->nm_iflag & NFSMNT_GOTFSINFO))
548 (void)nfs_fsinfo(nmp, vp, cred, p);
549 #endif
550 if (ioflag & (IO_APPEND | IO_SYNC)) {
551 if (np->n_flag & NMODIFIED) {
552 NFS_INVALIDATE_ATTRCACHE(np);
553 error = nfs_vinvalbuf(vp, V_SAVE, cred, p, 1);
554 if (error)
555 return (error);
556 }
557 if (ioflag & IO_APPEND) {
558 NFS_INVALIDATE_ATTRCACHE(np);
559 error = VOP_GETATTR(vp, &vattr, cred, p);
560 if (error)
561 return (error);
562 uio->uio_offset = np->n_size;
563 }
564 }
565 if (uio->uio_offset < 0)
566 return (EINVAL);
567 if ((uio->uio_offset + uio->uio_resid) > nmp->nm_maxfilesize)
568 return (EFBIG);
569 if (uio->uio_resid == 0)
570 return (0);
571 /*
572 * Maybe this should be above the vnode op call, but so long as
573 * file servers have no limits, i don't think it matters
574 */
575 if (p && uio->uio_offset + uio->uio_resid >
576 p->p_rlimit[RLIMIT_FSIZE].rlim_cur) {
577 psignal(p, SIGXFSZ);
578 return (EFBIG);
579 }
580
581 if ((np->n_flag & NQNFSNONCACHE) && uio->uio_iovcnt == 1) {
582 int iomode = NFSV3WRITE_FILESYNC;
583 boolean_t stalewriteverf = FALSE;
584
585 lockmgr(&nmp->nm_writeverflock, LK_SHARED, NULL);
586 error = nfs_writerpc(vp, uio, &iomode, FALSE, &stalewriteverf);
587 lockmgr(&nmp->nm_writeverflock, LK_RELEASE, NULL);
588 if (stalewriteverf)
589 nfs_clearcommit(vp->v_mount);
590 return (error);
591 }
592
593 origoff = uio->uio_offset;
594 do {
595 boolean_t extending; /* if we are extending whole pages */
596 u_quad_t oldsize;
597 oldoff = uio->uio_offset;
598 bytelen = uio->uio_resid;
599
600 #ifndef NFS_V2_ONLY
601 /*
602 * Check for a valid write lease.
603 */
604 if ((nmp->nm_flag & NFSMNT_NQNFS) &&
605 NQNFS_CKINVALID(vp, np, ND_WRITE)) {
606 do {
607 error = nqnfs_getlease(vp, ND_WRITE, cred, p);
608 } while (error == NQNFS_EXPIRED);
609 if (error)
610 return (error);
611 if (np->n_lrev != np->n_brev ||
612 (np->n_flag & NQNFSNONCACHE)) {
613 error = nfs_vinvalbuf(vp, V_SAVE, cred, p, 1);
614 if (error)
615 return (error);
616 np->n_brev = np->n_lrev;
617 }
618 }
619 #endif
620 nfsstats.biocache_writes++;
621
622 oldsize = np->n_size;
623 np->n_flag |= NMODIFIED;
624 if (np->n_size < uio->uio_offset + bytelen) {
625 np->n_size = uio->uio_offset + bytelen;
626 }
627 extending = ((uio->uio_offset & PAGE_MASK) == 0 &&
628 (bytelen & PAGE_MASK) == 0 &&
629 uio->uio_offset >= vp->v_size);
630 win = ubc_alloc(&vp->v_uobj, uio->uio_offset, &bytelen,
631 UBC_WRITE | (extending ? UBC_FAULTBUSY : 0));
632 error = uiomove(win, bytelen, uio);
633 ubc_release(win, 0);
634 if (error) {
635 if (extending) {
636 /*
637 * backout size and free pages past eof.
638 */
639 np->n_size = oldsize;
640 simple_lock(&vp->v_interlock);
641 (void)VOP_PUTPAGES(vp, round_page(vp->v_size),
642 0, PGO_SYNCIO | PGO_FREE);
643 }
644 break;
645 }
646 wrotedta = 1;
647
648 /*
649 * update UVM's notion of the size now that we've
650 * copied the data into the vnode's pages.
651 */
652
653 if (vp->v_size < uio->uio_offset) {
654 uvm_vnp_setsize(vp, uio->uio_offset);
655 extended = 1;
656 }
657
658 if ((oldoff & ~(nmp->nm_wsize - 1)) !=
659 (uio->uio_offset & ~(nmp->nm_wsize - 1))) {
660 simple_lock(&vp->v_interlock);
661 error = VOP_PUTPAGES(vp,
662 trunc_page(oldoff & ~(nmp->nm_wsize - 1)),
663 round_page((uio->uio_offset + nmp->nm_wsize - 1) &
664 ~(nmp->nm_wsize - 1)), PGO_CLEANIT);
665 }
666 } while (uio->uio_resid > 0);
667 if (wrotedta)
668 VN_KNOTE(vp, NOTE_WRITE | (extended ? NOTE_EXTEND : 0));
669 if ((np->n_flag & NQNFSNONCACHE) || (ioflag & IO_SYNC)) {
670 simple_lock(&vp->v_interlock);
671 error = VOP_PUTPAGES(vp,
672 trunc_page(origoff & ~(nmp->nm_wsize - 1)),
673 round_page((uio->uio_offset + nmp->nm_wsize - 1) &
674 ~(nmp->nm_wsize - 1)),
675 PGO_CLEANIT | PGO_SYNCIO);
676 }
677 return error;
678 }
679
680 /*
681 * Get an nfs cache block.
682 * Allocate a new one if the block isn't currently in the cache
683 * and return the block marked busy. If the calling process is
684 * interrupted by a signal for an interruptible mount point, return
685 * NULL.
686 */
687 struct buf *
688 nfs_getcacheblk(vp, bn, size, p)
689 struct vnode *vp;
690 daddr_t bn;
691 int size;
692 struct proc *p;
693 {
694 struct buf *bp;
695 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
696
697 if (nmp->nm_flag & NFSMNT_INT) {
698 bp = getblk(vp, bn, size, PCATCH, 0);
699 while (bp == NULL) {
700 if (nfs_sigintr(nmp, NULL, p))
701 return (NULL);
702 bp = getblk(vp, bn, size, 0, 2 * hz);
703 }
704 } else
705 bp = getblk(vp, bn, size, 0, 0);
706 return (bp);
707 }
708
709 /*
710 * Flush and invalidate all dirty buffers. If another process is already
711 * doing the flush, just wait for completion.
712 */
713 int
714 nfs_vinvalbuf(vp, flags, cred, p, intrflg)
715 struct vnode *vp;
716 int flags;
717 struct ucred *cred;
718 struct proc *p;
719 int intrflg;
720 {
721 struct nfsnode *np = VTONFS(vp);
722 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
723 int error = 0, slpflag, slptimeo;
724
725 if ((nmp->nm_flag & NFSMNT_INT) == 0)
726 intrflg = 0;
727 if (intrflg) {
728 slpflag = PCATCH;
729 slptimeo = 2 * hz;
730 } else {
731 slpflag = 0;
732 slptimeo = 0;
733 }
734 /*
735 * First wait for any other process doing a flush to complete.
736 */
737 simple_lock(&vp->v_interlock);
738 while (np->n_flag & NFLUSHINPROG) {
739 np->n_flag |= NFLUSHWANT;
740 error = ltsleep(&np->n_flag, PRIBIO + 2, "nfsvinval",
741 slptimeo, &vp->v_interlock);
742 if (error && intrflg && nfs_sigintr(nmp, NULL, p)) {
743 simple_unlock(&vp->v_interlock);
744 return EINTR;
745 }
746 }
747
748 /*
749 * Now, flush as required.
750 */
751 np->n_flag |= NFLUSHINPROG;
752 simple_unlock(&vp->v_interlock);
753 error = vinvalbuf(vp, flags, cred, p, slpflag, 0);
754 while (error) {
755 if (intrflg && nfs_sigintr(nmp, NULL, p)) {
756 error = EINTR;
757 break;
758 }
759 error = vinvalbuf(vp, flags, cred, p, 0, slptimeo);
760 }
761 simple_lock(&vp->v_interlock);
762 if (error == 0)
763 np->n_flag &= ~NMODIFIED;
764 np->n_flag &= ~NFLUSHINPROG;
765 if (np->n_flag & NFLUSHWANT) {
766 np->n_flag &= ~NFLUSHWANT;
767 wakeup(&np->n_flag);
768 }
769 simple_unlock(&vp->v_interlock);
770 return error;
771 }
772
773 /*
774 * Initiate asynchronous I/O. Return an error if no nfsiods are available.
775 * This is mainly to avoid queueing async I/O requests when the nfsiods
776 * are all hung on a dead server.
777 */
778
779 int
780 nfs_asyncio(bp)
781 struct buf *bp;
782 {
783 int i;
784 struct nfsmount *nmp;
785 int gotiod, slpflag = 0, slptimeo = 0, error;
786
787 if (nfs_numasync == 0)
788 return (EIO);
789
790 nmp = VFSTONFS(bp->b_vp->v_mount);
791 again:
792 if (nmp->nm_flag & NFSMNT_INT)
793 slpflag = PCATCH;
794 gotiod = FALSE;
795
796 /*
797 * Find a free iod to process this request.
798 */
799
800 for (i = 0; i < NFS_MAXASYNCDAEMON; i++) {
801 struct nfs_iod *iod = &nfs_asyncdaemon[i];
802
803 simple_lock(&iod->nid_slock);
804 if (iod->nid_want) {
805 /*
806 * Found one, so wake it up and tell it which
807 * mount to process.
808 */
809 iod->nid_want = NULL;
810 iod->nid_mount = nmp;
811 wakeup(&iod->nid_want);
812 simple_lock(&nmp->nm_slock);
813 simple_unlock(&iod->nid_slock);
814 nmp->nm_bufqiods++;
815 gotiod = TRUE;
816 break;
817 }
818 simple_unlock(&iod->nid_slock);
819 }
820
821 /*
822 * If none are free, we may already have an iod working on this mount
823 * point. If so, it will process our request.
824 */
825
826 if (!gotiod) {
827 simple_lock(&nmp->nm_slock);
828 if (nmp->nm_bufqiods > 0)
829 gotiod = TRUE;
830 }
831
832 LOCK_ASSERT(simple_lock_held(&nmp->nm_slock));
833
834 /*
835 * If we have an iod which can process the request, then queue
836 * the buffer. However, even if we have an iod, do not initiate
837 * queue cleaning if curproc is the pageout daemon. if the NFS mount
838 * is via local loopback, we may put curproc (pagedaemon) to sleep
839 * waiting for the writes to complete. But the server (ourself)
840 * may block the write, waiting for its (ie., our) pagedaemon
841 * to produce clean pages to handle the write: deadlock.
842 * XXX: start non-loopback mounts straight away? If "lots free",
843 * let pagedaemon start loopback writes anyway?
844 */
845 if (gotiod) {
846
847 /*
848 * Ensure that the queue never grows too large.
849 */
850 if (curproc == uvm.pagedaemon_proc) {
851 /* Enque for later, to avoid free-page deadlock */
852 (void) 0;
853 } else while (nmp->nm_bufqlen >= 2*nfs_numasync) {
854 nmp->nm_bufqwant = TRUE;
855 error = ltsleep(&nmp->nm_bufq,
856 slpflag | PRIBIO | PNORELOCK,
857 "nfsaio", slptimeo, &nmp->nm_slock);
858 if (error) {
859 if (nfs_sigintr(nmp, NULL, curproc))
860 return (EINTR);
861 if (slpflag == PCATCH) {
862 slpflag = 0;
863 slptimeo = 2 * hz;
864 }
865 }
866
867 /*
868 * We might have lost our iod while sleeping,
869 * so check and loop if nescessary.
870 */
871
872 if (nmp->nm_bufqiods == 0)
873 goto again;
874
875 simple_lock(&nmp->nm_slock);
876 }
877 TAILQ_INSERT_TAIL(&nmp->nm_bufq, bp, b_freelist);
878 nmp->nm_bufqlen++;
879 simple_unlock(&nmp->nm_slock);
880 return (0);
881 }
882 simple_unlock(&nmp->nm_slock);
883
884 /*
885 * All the iods are busy on other mounts, so return EIO to
886 * force the caller to process the i/o synchronously.
887 */
888
889 return (EIO);
890 }
891
892 /*
893 * nfs_doio for read.
894 */
895 static int
896 nfs_doio_read(bp, uiop)
897 struct buf *bp;
898 struct uio *uiop;
899 {
900 struct vnode *vp = bp->b_vp;
901 struct nfsnode *np = VTONFS(vp);
902 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
903 int error = 0;
904
905 uiop->uio_rw = UIO_READ;
906 switch (vp->v_type) {
907 case VREG:
908 nfsstats.read_bios++;
909 error = nfs_readrpc(vp, uiop);
910 if (!error && uiop->uio_resid) {
911 int diff, len;
912
913 /*
914 * If len > 0, there is a hole in the file and
915 * no writes after the hole have been pushed to
916 * the server yet.
917 * Just zero fill the rest of the valid area.
918 */
919
920 diff = bp->b_bcount - uiop->uio_resid;
921 len = np->n_size - ((((off_t)bp->b_blkno) << DEV_BSHIFT)
922 + diff);
923 if (len > 0) {
924 len = MIN(len, uiop->uio_resid);
925 memset((char *)bp->b_data + diff, 0, len);
926 }
927 }
928 if (uiop->uio_procp && (vp->v_flag & VTEXT) &&
929 (((nmp->nm_flag & NFSMNT_NQNFS) &&
930 NQNFS_CKINVALID(vp, np, ND_READ) &&
931 np->n_lrev != np->n_brev) ||
932 (!(nmp->nm_flag & NFSMNT_NQNFS) &&
933 timespeccmp(&np->n_mtime, &np->n_vattr->va_mtime, !=)))) {
934 uprintf("Process killed due to "
935 "text file modification\n");
936 psignal(uiop->uio_procp, SIGKILL);
937 #if 0 /* XXX NJWLWP */
938 uiop->uio_procp->p_holdcnt++;
939 #endif
940 }
941 break;
942 case VLNK:
943 KASSERT(uiop->uio_offset == (off_t)0);
944 nfsstats.readlink_bios++;
945 error = nfs_readlinkrpc(vp, uiop, curproc->p_ucred);
946 break;
947 case VDIR:
948 nfsstats.readdir_bios++;
949 uiop->uio_offset = bp->b_dcookie;
950 if (nmp->nm_flag & NFSMNT_RDIRPLUS) {
951 error = nfs_readdirplusrpc(vp, uiop, np->n_rcred);
952 if (error == NFSERR_NOTSUPP)
953 nmp->nm_flag &= ~NFSMNT_RDIRPLUS;
954 }
955 if ((nmp->nm_flag & NFSMNT_RDIRPLUS) == 0)
956 error = nfs_readdirrpc(vp, uiop, np->n_rcred);
957 if (!error) {
958 bp->b_dcookie = uiop->uio_offset;
959 }
960 break;
961 default:
962 printf("nfs_doio: type %x unexpected\n", vp->v_type);
963 break;
964 }
965 if (error) {
966 bp->b_flags |= B_ERROR;
967 bp->b_error = error;
968 }
969 return error;
970 }
971
972 /*
973 * nfs_doio for write.
974 */
975 static int
976 nfs_doio_write(bp, uiop)
977 struct buf *bp;
978 struct uio *uiop;
979 {
980 struct vnode *vp = bp->b_vp;
981 struct nfsnode *np = VTONFS(vp);
982 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
983 int iomode;
984 boolean_t stalewriteverf = FALSE;
985 int i, npages = (bp->b_bcount + PAGE_SIZE - 1) >> PAGE_SHIFT;
986 struct vm_page *pgs[npages];
987 boolean_t needcommit = TRUE; /* need only COMMIT RPC */
988 boolean_t pageprotected;
989 struct uvm_object *uobj = &vp->v_uobj;
990 int error;
991 off_t off, cnt;
992
993 if ((bp->b_flags & B_ASYNC) != 0 && NFS_ISV3(vp)) {
994 iomode = NFSV3WRITE_UNSTABLE;
995 } else {
996 iomode = NFSV3WRITE_FILESYNC;
997 }
998
999 again:
1000 lockmgr(&nmp->nm_writeverflock, LK_SHARED, NULL);
1001
1002 for (i = 0; i < npages; i++) {
1003 pgs[i] = uvm_pageratop((vaddr_t)bp->b_data + (i << PAGE_SHIFT));
1004 if (pgs[i]->uobject == uobj &&
1005 pgs[i]->offset == uiop->uio_offset + (i << PAGE_SHIFT)) {
1006 KASSERT(pgs[i]->flags & PG_BUSY);
1007 /*
1008 * this page belongs to our object.
1009 */
1010 simple_lock(&uobj->vmobjlock);
1011 /*
1012 * write out the page stably if it's about to
1013 * be released because we can't resend it
1014 * on the server crash.
1015 *
1016 * XXX assuming PG_RELEASE|PG_PAGEOUT won't be
1017 * changed until unbusy the page.
1018 */
1019 if (pgs[i]->flags & (PG_RELEASED|PG_PAGEOUT))
1020 iomode = NFSV3WRITE_FILESYNC;
1021 /*
1022 * if we met a page which hasn't been sent yet,
1023 * we need do WRITE RPC.
1024 */
1025 if ((pgs[i]->flags & PG_NEEDCOMMIT) == 0)
1026 needcommit = FALSE;
1027 simple_unlock(&uobj->vmobjlock);
1028 } else {
1029 iomode = NFSV3WRITE_FILESYNC;
1030 needcommit = FALSE;
1031 }
1032 }
1033 if (!needcommit && iomode == NFSV3WRITE_UNSTABLE) {
1034 simple_lock(&uobj->vmobjlock);
1035 for (i = 0; i < npages; i++) {
1036 pgs[i]->flags |= PG_NEEDCOMMIT | PG_RDONLY;
1037 pmap_page_protect(pgs[i], VM_PROT_READ);
1038 }
1039 simple_unlock(&uobj->vmobjlock);
1040 pageprotected = TRUE; /* pages can't be modified during i/o. */
1041 } else
1042 pageprotected = FALSE;
1043
1044 /*
1045 * Send the data to the server if necessary,
1046 * otherwise just send a commit rpc.
1047 */
1048
1049 if (needcommit) {
1050
1051 /*
1052 * If the buffer is in the range that we already committed,
1053 * there's nothing to do.
1054 *
1055 * If it's in the range that we need to commit, push the
1056 * whole range at once, otherwise only push the buffer.
1057 * In both these cases, acquire the commit lock to avoid
1058 * other processes modifying the range.
1059 */
1060
1061 off = uiop->uio_offset;
1062 cnt = bp->b_bcount;
1063 lockmgr(&np->n_commitlock, LK_EXCLUSIVE, NULL);
1064 if (!nfs_in_committed_range(vp, off, bp->b_bcount)) {
1065 boolean_t pushedrange;
1066 if (nfs_in_tobecommitted_range(vp, off, bp->b_bcount)) {
1067 pushedrange = TRUE;
1068 off = np->n_pushlo;
1069 cnt = np->n_pushhi - np->n_pushlo;
1070 } else {
1071 pushedrange = FALSE;
1072 }
1073 error = nfs_commit(vp, off, cnt, curproc);
1074 if (error == 0) {
1075 if (pushedrange) {
1076 nfs_merge_commit_ranges(vp);
1077 } else {
1078 nfs_add_committed_range(vp, off, cnt);
1079 }
1080 }
1081 } else {
1082 error = 0;
1083 }
1084 lockmgr(&np->n_commitlock, LK_RELEASE, NULL);
1085 lockmgr(&nmp->nm_writeverflock, LK_RELEASE, NULL);
1086 if (!error) {
1087 /*
1088 * pages are now on stable storage.
1089 */
1090 uiop->uio_resid = 0;
1091 simple_lock(&uobj->vmobjlock);
1092 for (i = 0; i < npages; i++) {
1093 pgs[i]->flags &= ~(PG_NEEDCOMMIT | PG_RDONLY);
1094 }
1095 simple_unlock(&uobj->vmobjlock);
1096 return 0;
1097 } else if (error == NFSERR_STALEWRITEVERF) {
1098 nfs_clearcommit(vp->v_mount);
1099 goto again;
1100 }
1101 if (error) {
1102 bp->b_flags |= B_ERROR;
1103 bp->b_error = np->n_error = error;
1104 np->n_flag |= NWRITEERR;
1105 }
1106 return error;
1107 }
1108 off = uiop->uio_offset;
1109 cnt = bp->b_bcount;
1110 uiop->uio_rw = UIO_WRITE;
1111 nfsstats.write_bios++;
1112 error = nfs_writerpc(vp, uiop, &iomode, pageprotected, &stalewriteverf);
1113 if (!error && iomode == NFSV3WRITE_UNSTABLE) {
1114 /*
1115 * we need to commit pages later.
1116 */
1117 lockmgr(&np->n_commitlock, LK_EXCLUSIVE, NULL);
1118 nfs_add_tobecommitted_range(vp, off, cnt);
1119 /*
1120 * if there can be too many uncommitted pages, commit them now.
1121 */
1122 if (np->n_pushhi - np->n_pushlo > nfs_commitsize) {
1123 off = np->n_pushlo;
1124 cnt = nfs_commitsize >> 1;
1125 error = nfs_commit(vp, off, cnt, curproc);
1126 if (!error) {
1127 nfs_add_committed_range(vp, off, cnt);
1128 nfs_del_tobecommitted_range(vp, off, cnt);
1129 }
1130 if (error == NFSERR_STALEWRITEVERF) {
1131 stalewriteverf = TRUE;
1132 error = 0; /* it isn't a real error */
1133 }
1134 } else {
1135 /*
1136 * re-dirty pages so that they will be passed
1137 * to us later again.
1138 */
1139 simple_lock(&uobj->vmobjlock);
1140 for (i = 0; i < npages; i++) {
1141 pgs[i]->flags &= ~PG_CLEAN;
1142 }
1143 simple_unlock(&uobj->vmobjlock);
1144 }
1145 lockmgr(&np->n_commitlock, LK_RELEASE, NULL);
1146 } else if (!error) {
1147 /*
1148 * pages are now on stable storage.
1149 */
1150 lockmgr(&np->n_commitlock, LK_EXCLUSIVE, NULL);
1151 nfs_del_committed_range(vp, off, cnt);
1152 lockmgr(&np->n_commitlock, LK_RELEASE, NULL);
1153 simple_lock(&uobj->vmobjlock);
1154 for (i = 0; i < npages; i++) {
1155 pgs[i]->flags &= ~(PG_NEEDCOMMIT | PG_RDONLY);
1156 }
1157 simple_unlock(&uobj->vmobjlock);
1158 } else {
1159 /*
1160 * we got an error.
1161 */
1162 bp->b_flags |= B_ERROR;
1163 bp->b_error = np->n_error = error;
1164 np->n_flag |= NWRITEERR;
1165 }
1166
1167 lockmgr(&nmp->nm_writeverflock, LK_RELEASE, NULL);
1168
1169 if (stalewriteverf) {
1170 nfs_clearcommit(vp->v_mount);
1171 }
1172 return error;
1173 }
1174
1175 /*
1176 * nfs_doio for B_PHYS.
1177 */
1178 static int
1179 nfs_doio_phys(bp, uiop)
1180 struct buf *bp;
1181 struct uio *uiop;
1182 {
1183 struct vnode *vp = bp->b_vp;
1184 int error;
1185
1186 uiop->uio_offset = ((off_t)bp->b_blkno) << DEV_BSHIFT;
1187 if (bp->b_flags & B_READ) {
1188 uiop->uio_rw = UIO_READ;
1189 nfsstats.read_physios++;
1190 error = nfs_readrpc(vp, uiop);
1191 } else {
1192 int iomode = NFSV3WRITE_DATASYNC;
1193 boolean_t stalewriteverf;
1194 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1195
1196 uiop->uio_rw = UIO_WRITE;
1197 nfsstats.write_physios++;
1198 lockmgr(&nmp->nm_writeverflock, LK_SHARED, NULL);
1199 error = nfs_writerpc(vp, uiop, &iomode, FALSE, &stalewriteverf);
1200 lockmgr(&nmp->nm_writeverflock, LK_RELEASE, NULL);
1201 if (stalewriteverf) {
1202 nfs_clearcommit(bp->b_vp->v_mount);
1203 }
1204 }
1205 if (error) {
1206 bp->b_flags |= B_ERROR;
1207 bp->b_error = error;
1208 }
1209 return error;
1210 }
1211
1212 /*
1213 * Do an I/O operation to/from a cache block. This may be called
1214 * synchronously or from an nfsiod.
1215 */
1216 int
1217 nfs_doio(bp, p)
1218 struct buf *bp;
1219 struct proc *p;
1220 {
1221 int error;
1222 struct uio uio;
1223 struct uio *uiop = &uio;
1224 struct iovec io;
1225 UVMHIST_FUNC("nfs_doio"); UVMHIST_CALLED(ubchist);
1226
1227 uiop->uio_iov = &io;
1228 uiop->uio_iovcnt = 1;
1229 uiop->uio_segflg = UIO_SYSSPACE;
1230 uiop->uio_procp = p;
1231 uiop->uio_offset = (((off_t)bp->b_blkno) << DEV_BSHIFT);
1232 io.iov_base = bp->b_data;
1233 io.iov_len = uiop->uio_resid = bp->b_bcount;
1234
1235 /*
1236 * Historically, paging was done with physio, but no more...
1237 */
1238 if (bp->b_flags & B_PHYS) {
1239 /*
1240 * ...though reading /dev/drum still gets us here.
1241 */
1242 error = nfs_doio_phys(bp, uiop);
1243 } else if (bp->b_flags & B_READ) {
1244 error = nfs_doio_read(bp, uiop);
1245 } else {
1246 error = nfs_doio_write(bp, uiop);
1247 }
1248 bp->b_resid = uiop->uio_resid;
1249 biodone(bp);
1250 return (error);
1251 }
1252
1253 /*
1254 * Vnode op for VM getpages.
1255 */
1256
1257 int
1258 nfs_getpages(v)
1259 void *v;
1260 {
1261 struct vop_getpages_args /* {
1262 struct vnode *a_vp;
1263 voff_t a_offset;
1264 struct vm_page **a_m;
1265 int *a_count;
1266 int a_centeridx;
1267 vm_prot_t a_access_type;
1268 int a_advice;
1269 int a_flags;
1270 } */ *ap = v;
1271
1272 struct vnode *vp = ap->a_vp;
1273 struct uvm_object *uobj = &vp->v_uobj;
1274 struct nfsnode *np = VTONFS(vp);
1275 const int npages = *ap->a_count;
1276 struct vm_page *pg, **pgs, *opgs[npages];
1277 off_t origoffset, len;
1278 int i, error;
1279 boolean_t v3 = NFS_ISV3(vp);
1280 boolean_t write = (ap->a_access_type & VM_PROT_WRITE) != 0;
1281 boolean_t locked = (ap->a_flags & PGO_LOCKED) != 0;
1282
1283 /*
1284 * call the genfs code to get the pages. `pgs' may be NULL
1285 * when doing read-ahead.
1286 */
1287
1288 pgs = ap->a_m;
1289 if (write && locked && v3) {
1290 KASSERT(pgs != NULL);
1291 #ifdef DEBUG
1292
1293 /*
1294 * If PGO_LOCKED is set, real pages shouldn't exists
1295 * in the array.
1296 */
1297
1298 for (i = 0; i < npages; i++)
1299 KDASSERT(pgs[i] == NULL || pgs[i] == PGO_DONTCARE);
1300 #endif
1301 memcpy(opgs, pgs, npages * sizeof(struct vm_pages *));
1302 }
1303 error = genfs_getpages(v);
1304 if (error) {
1305 return (error);
1306 }
1307
1308 /*
1309 * for read faults where the nfs node is not yet marked NMODIFIED,
1310 * set PG_RDONLY on the pages so that we come back here if someone
1311 * tries to modify later via the mapping that will be entered for
1312 * this fault.
1313 */
1314
1315 if (!write && (np->n_flag & NMODIFIED) == 0 && pgs != NULL) {
1316 if (!locked) {
1317 simple_lock(&uobj->vmobjlock);
1318 }
1319 for (i = 0; i < npages; i++) {
1320 pg = pgs[i];
1321 if (pg == NULL || pg == PGO_DONTCARE) {
1322 continue;
1323 }
1324 pg->flags |= PG_RDONLY;
1325 }
1326 if (!locked) {
1327 simple_unlock(&uobj->vmobjlock);
1328 }
1329 }
1330 if (!write) {
1331 return (0);
1332 }
1333
1334 /*
1335 * this is a write fault, update the commit info.
1336 */
1337
1338 origoffset = ap->a_offset;
1339 len = npages << PAGE_SHIFT;
1340
1341 if (v3) {
1342 error = lockmgr(&np->n_commitlock,
1343 LK_EXCLUSIVE | (locked ? LK_NOWAIT : 0), NULL);
1344 if (error) {
1345 KASSERT(locked != 0);
1346
1347 /*
1348 * Since PGO_LOCKED is set, we need to unbusy
1349 * all pages fetched by genfs_getpages() above,
1350 * tell the caller that there are no pages
1351 * available and put back original pgs array.
1352 */
1353
1354 uvm_lock_pageq();
1355 uvm_page_unbusy(pgs, npages);
1356 uvm_unlock_pageq();
1357 *ap->a_count = 0;
1358 memcpy(pgs, opgs,
1359 npages * sizeof(struct vm_pages *));
1360 return (error);
1361 }
1362 nfs_del_committed_range(vp, origoffset, len);
1363 nfs_del_tobecommitted_range(vp, origoffset, len);
1364 }
1365 np->n_flag |= NMODIFIED;
1366 if (!locked) {
1367 simple_lock(&uobj->vmobjlock);
1368 }
1369 for (i = 0; i < npages; i++) {
1370 pg = pgs[i];
1371 if (pg == NULL || pg == PGO_DONTCARE) {
1372 continue;
1373 }
1374 pg->flags &= ~(PG_NEEDCOMMIT | PG_RDONLY);
1375 }
1376 if (!locked) {
1377 simple_unlock(&uobj->vmobjlock);
1378 }
1379 if (v3) {
1380 lockmgr(&np->n_commitlock, LK_RELEASE, NULL);
1381 }
1382 return (0);
1383 }
Cache object: ab702534b867dbb5bf26e50d2de3e06d
|