FreeBSD/Linux Kernel Cross Reference
sys/nfs/nfs_socket.c
1 /* $OpenBSD: nfs_socket.c,v 1.143 2022/08/13 21:01:46 mvs Exp $ */
2 /* $NetBSD: nfs_socket.c,v 1.27 1996/04/15 20:20:00 thorpej Exp $ */
3
4 /*
5 * Copyright (c) 1989, 1991, 1993, 1995
6 * The Regents of the University of California. All rights reserved.
7 *
8 * This code is derived from software contributed to Berkeley by
9 * Rick Macklem at The University of Guelph.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. Neither the name of the University nor the names of its contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 * @(#)nfs_socket.c 8.5 (Berkeley) 3/30/95
36 */
37
38 /*
39 * Socket operations for use by nfs
40 */
41
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/proc.h>
45 #include <sys/mount.h>
46 #include <sys/kernel.h>
47 #include <sys/mbuf.h>
48 #include <sys/vnode.h>
49 #include <sys/protosw.h>
50 #include <sys/signalvar.h>
51 #include <sys/socket.h>
52 #include <sys/socketvar.h>
53 #include <sys/syslog.h>
54 #include <sys/tprintf.h>
55 #include <sys/namei.h>
56 #include <sys/pool.h>
57 #include <sys/queue.h>
58
59 #include <netinet/in.h>
60 #include <netinet/tcp.h>
61
62 #include <nfs/rpcv2.h>
63 #include <nfs/nfsproto.h>
64 #include <nfs/nfs.h>
65 #include <nfs/xdr_subs.h>
66 #include <nfs/nfsm_subs.h>
67 #include <nfs/nfsmount.h>
68 #include <nfs/nfs_var.h>
69
70 /* External data, mostly RPC constants in XDR form. */
71 extern u_int32_t rpc_reply, rpc_msgdenied, rpc_mismatch, rpc_vers,
72 rpc_auth_unix, rpc_msgaccepted, rpc_call, rpc_autherr;
73 extern u_int32_t nfs_prog;
74 extern struct nfsstats nfsstats;
75 extern int nfsv3_procid[NFS_NPROCS];
76 extern int nfs_ticks;
77
78 extern struct pool nfsrv_descript_pl;
79
80 /*
81 * There is a congestion window for outstanding rpcs maintained per mount
82 * point. The cwnd size is adjusted in roughly the way that:
83 * Van Jacobson, Congestion avoidance and Control, In "Proceedings of
84 * SIGCOMM '88". ACM, August 1988.
85 * describes for TCP. The cwnd size is chopped in half on a retransmit timeout
86 * and incremented by 1/cwnd when each rpc reply is received and a full cwnd
87 * of rpcs is in progress.
88 * (The sent count and cwnd are scaled for integer arith.)
89 * Variants of "slow start" were tried and were found to be too much of a
90 * performance hit (ave. rtt 3 times larger),
91 * I suspect due to the large rtt that nfs rpcs have.
92 */
93 #define NFS_CWNDSCALE 256
94 #define NFS_MAXCWND (NFS_CWNDSCALE * 32)
95 int nfs_backoff[8] = { 2, 4, 8, 16, 32, 64, 128, 256 };
96
97 /* RTT estimator */
98 enum nfs_rto_timers nfs_ptimers[NFS_NPROCS] = {
99 NFS_DEFAULT_TIMER, /* NULL */
100 NFS_GETATTR_TIMER, /* GETATTR */
101 NFS_DEFAULT_TIMER, /* SETATTR */
102 NFS_LOOKUP_TIMER, /* LOOKUP */
103 NFS_GETATTR_TIMER, /* ACCESS */
104 NFS_READ_TIMER, /* READLINK */
105 NFS_READ_TIMER, /* READ */
106 NFS_WRITE_TIMER, /* WRITE */
107 NFS_DEFAULT_TIMER, /* CREATE */
108 NFS_DEFAULT_TIMER, /* MKDIR */
109 NFS_DEFAULT_TIMER, /* SYMLINK */
110 NFS_DEFAULT_TIMER, /* MKNOD */
111 NFS_DEFAULT_TIMER, /* REMOVE */
112 NFS_DEFAULT_TIMER, /* RMDIR */
113 NFS_DEFAULT_TIMER, /* RENAME */
114 NFS_DEFAULT_TIMER, /* LINK */
115 NFS_READ_TIMER, /* READDIR */
116 NFS_READ_TIMER, /* READDIRPLUS */
117 NFS_DEFAULT_TIMER, /* FSSTAT */
118 NFS_DEFAULT_TIMER, /* FSINFO */
119 NFS_DEFAULT_TIMER, /* PATHCONF */
120 NFS_DEFAULT_TIMER, /* COMMIT */
121 NFS_DEFAULT_TIMER, /* NOOP */
122 };
123
124 void nfs_init_rtt(struct nfsmount *);
125 void nfs_update_rtt(struct nfsreq *);
126 int nfs_estimate_rto(struct nfsmount *, u_int32_t procnum);
127
128 void nfs_realign(struct mbuf **, int);
129 void nfs_realign_fixup(struct mbuf *, struct mbuf *, unsigned int *);
130
131 int nfs_rcvlock(struct nfsreq *);
132 int nfs_receive(struct nfsreq *, struct mbuf **, struct mbuf **);
133 int nfs_reconnect(struct nfsreq *);
134 int nfs_reply(struct nfsreq *);
135 void nfs_msg(struct nfsreq *, char *);
136 void nfs_rcvunlock(int *);
137
138 int nfsrv_getstream(struct nfssvc_sock *, int);
139
140 unsigned int nfs_realign_test = 0;
141 unsigned int nfs_realign_count = 0;
142
143 /* Initialize the RTT estimator state for a new mount point. */
144 void
145 nfs_init_rtt(struct nfsmount *nmp)
146 {
147 int i;
148
149 for (i = 0; i < NFS_MAX_TIMER; i++)
150 nmp->nm_srtt[i] = NFS_INITRTT;
151 for (i = 0; i < NFS_MAX_TIMER; i++)
152 nmp->nm_sdrtt[i] = 0;
153 }
154
155 /*
156 * Update a mount point's RTT estimator state using data from the
157 * passed-in request.
158 *
159 * Use a gain of 0.125 on the mean and a gain of 0.25 on the deviation.
160 *
161 * NB: Since the timer resolution of NFS_HZ is so course, it can often
162 * result in r_rtt == 0. Since r_rtt == N means that the actual RTT is
163 * between N + dt and N + 2 - dt ticks, add 1 before calculating the
164 * update values.
165 */
166 void
167 nfs_update_rtt(struct nfsreq *rep)
168 {
169 int t1 = rep->r_rtt + 1;
170 int index = nfs_ptimers[rep->r_procnum] - 1;
171 int *srtt = &rep->r_nmp->nm_srtt[index];
172 int *sdrtt = &rep->r_nmp->nm_sdrtt[index];
173
174 t1 -= *srtt >> 3;
175 *srtt += t1;
176 if (t1 < 0)
177 t1 = -t1;
178 t1 -= *sdrtt >> 2;
179 *sdrtt += t1;
180 }
181
182 /*
183 * Estimate RTO for an NFS RPC sent via an unreliable datagram.
184 *
185 * Use the mean and mean deviation of RTT for the appropriate type
186 * of RPC for the frequent RPCs and a default for the others.
187 * The justification for doing "other" this way is that these RPCs
188 * happen so infrequently that timer est. would probably be stale.
189 * Also, since many of these RPCs are non-idempotent, a conservative
190 * timeout is desired.
191 *
192 * getattr, lookup - A+2D
193 * read, write - A+4D
194 * other - nm_timeo
195 */
196 int
197 nfs_estimate_rto(struct nfsmount *nmp, u_int32_t procnum)
198 {
199 enum nfs_rto_timers timer = nfs_ptimers[procnum];
200 int index = timer - 1;
201 int rto;
202
203 switch (timer) {
204 case NFS_GETATTR_TIMER:
205 case NFS_LOOKUP_TIMER:
206 rto = ((nmp->nm_srtt[index] + 3) >> 2) +
207 ((nmp->nm_sdrtt[index] + 1) >> 1);
208 break;
209 case NFS_READ_TIMER:
210 case NFS_WRITE_TIMER:
211 rto = ((nmp->nm_srtt[index] + 7) >> 3) +
212 (nmp->nm_sdrtt[index] + 1);
213 break;
214 default:
215 rto = nmp->nm_timeo;
216 return (rto);
217 }
218
219 if (rto < NFS_MINRTO)
220 rto = NFS_MINRTO;
221 else if (rto > NFS_MAXRTO)
222 rto = NFS_MAXRTO;
223
224 return (rto);
225 }
226
227
228
229 /*
230 * Initialize sockets and congestion for a new NFS connection.
231 * We do not free the sockaddr if error.
232 */
233 int
234 nfs_connect(struct nfsmount *nmp, struct nfsreq *rep)
235 {
236 struct socket *so;
237 int error, rcvreserve, sndreserve;
238 struct sockaddr *saddr;
239 struct sockaddr_in *sin;
240 struct mbuf *nam = NULL, *mopt = NULL;
241
242 if (!(nmp->nm_sotype == SOCK_DGRAM || nmp->nm_sotype == SOCK_STREAM))
243 return (EINVAL);
244
245 nmp->nm_so = NULL;
246 saddr = mtod(nmp->nm_nam, struct sockaddr *);
247 error = socreate(saddr->sa_family, &nmp->nm_so, nmp->nm_sotype,
248 nmp->nm_soproto);
249 if (error) {
250 nfs_disconnect(nmp);
251 return (error);
252 }
253
254 /* Allocate mbufs possibly waiting before grabbing the socket lock. */
255 if (nmp->nm_sotype == SOCK_STREAM || saddr->sa_family == AF_INET)
256 MGET(mopt, M_WAIT, MT_SOOPTS);
257 if (saddr->sa_family == AF_INET)
258 MGET(nam, M_WAIT, MT_SONAME);
259
260 so = nmp->nm_so;
261 solock(so);
262 nmp->nm_soflags = so->so_proto->pr_flags;
263
264 /*
265 * Some servers require that the client port be a reserved port number.
266 * We always allocate a reserved port, as this prevents filehandle
267 * disclosure through UDP port capture.
268 */
269 if (saddr->sa_family == AF_INET) {
270 int *ip;
271
272 mopt->m_len = sizeof(int);
273 ip = mtod(mopt, int *);
274 *ip = IP_PORTRANGE_LOW;
275 error = sosetopt(so, IPPROTO_IP, IP_PORTRANGE, mopt);
276 if (error)
277 goto bad;
278
279 sin = mtod(nam, struct sockaddr_in *);
280 memset(sin, 0, sizeof(*sin));
281 sin->sin_len = nam->m_len = sizeof(struct sockaddr_in);
282 sin->sin_family = AF_INET;
283 sin->sin_addr.s_addr = INADDR_ANY;
284 sin->sin_port = htons(0);
285 error = sobind(so, nam, &proc0);
286 if (error)
287 goto bad;
288
289 mopt->m_len = sizeof(int);
290 ip = mtod(mopt, int *);
291 *ip = IP_PORTRANGE_DEFAULT;
292 error = sosetopt(so, IPPROTO_IP, IP_PORTRANGE, mopt);
293 if (error)
294 goto bad;
295 }
296
297 /*
298 * Protocols that do not require connections may be optionally left
299 * unconnected for servers that reply from a port other than NFS_PORT.
300 */
301 if (nmp->nm_flag & NFSMNT_NOCONN) {
302 if (nmp->nm_soflags & PR_CONNREQUIRED) {
303 error = ENOTCONN;
304 goto bad;
305 }
306 } else {
307 error = soconnect(so, nmp->nm_nam);
308 if (error)
309 goto bad;
310
311 /*
312 * Wait for the connection to complete. Cribbed from the
313 * connect system call but with the wait timing out so
314 * that interruptible mounts don't hang here for a long time.
315 */
316 while ((so->so_state & SS_ISCONNECTING) && so->so_error == 0) {
317 sosleep_nsec(so, &so->so_timeo, PSOCK, "nfscon",
318 SEC_TO_NSEC(2));
319 if ((so->so_state & SS_ISCONNECTING) &&
320 so->so_error == 0 && rep &&
321 (error = nfs_sigintr(nmp, rep, rep->r_procp)) != 0){
322 so->so_state &= ~SS_ISCONNECTING;
323 goto bad;
324 }
325 }
326 if (so->so_error) {
327 error = so->so_error;
328 so->so_error = 0;
329 goto bad;
330 }
331 }
332 /*
333 * Always set receive timeout to detect server crash and reconnect.
334 * Otherwise, we can get stuck in soreceive forever.
335 */
336 so->so_rcv.sb_timeo_nsecs = SEC_TO_NSEC(5);
337 if (nmp->nm_flag & (NFSMNT_SOFT | NFSMNT_INT))
338 so->so_snd.sb_timeo_nsecs = SEC_TO_NSEC(5);
339 else
340 so->so_snd.sb_timeo_nsecs = INFSLP;
341 if (nmp->nm_sotype == SOCK_DGRAM) {
342 sndreserve = nmp->nm_wsize + NFS_MAXPKTHDR;
343 rcvreserve = (max(nmp->nm_rsize, nmp->nm_readdirsize) +
344 NFS_MAXPKTHDR) * 2;
345 } else if (nmp->nm_sotype == SOCK_STREAM) {
346 if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
347 *mtod(mopt, int32_t *) = 1;
348 mopt->m_len = sizeof(int32_t);
349 sosetopt(so, SOL_SOCKET, SO_KEEPALIVE, mopt);
350 }
351 if (so->so_proto->pr_protocol == IPPROTO_TCP) {
352 *mtod(mopt, int32_t *) = 1;
353 mopt->m_len = sizeof(int32_t);
354 sosetopt(so, IPPROTO_TCP, TCP_NODELAY, mopt);
355 }
356 sndreserve = (nmp->nm_wsize + NFS_MAXPKTHDR +
357 sizeof (u_int32_t)) * 2;
358 rcvreserve = (nmp->nm_rsize + NFS_MAXPKTHDR +
359 sizeof (u_int32_t)) * 2;
360 } else {
361 panic("%s: nm_sotype %d", __func__, nmp->nm_sotype);
362 }
363 error = soreserve(so, sndreserve, rcvreserve);
364 if (error)
365 goto bad;
366 so->so_rcv.sb_flags |= SB_NOINTR;
367 so->so_snd.sb_flags |= SB_NOINTR;
368 sounlock(so);
369
370 m_freem(mopt);
371 m_freem(nam);
372
373 /* Initialize other non-zero congestion variables */
374 nfs_init_rtt(nmp);
375 nmp->nm_cwnd = NFS_MAXCWND / 2; /* Initial send window */
376 nmp->nm_sent = 0;
377 nmp->nm_timeouts = 0;
378 return (0);
379
380 bad:
381 sounlock(so);
382
383 m_freem(mopt);
384 m_freem(nam);
385
386 nfs_disconnect(nmp);
387 return (error);
388 }
389
390 /*
391 * Reconnect routine:
392 * Called when a connection is broken on a reliable protocol.
393 * - clean up the old socket
394 * - nfs_connect() again
395 * - set R_MUSTRESEND for all outstanding requests on mount point
396 * If this fails the mount point is DEAD!
397 * nb: Must be called with the nfs_sndlock() set on the mount point.
398 */
399 int
400 nfs_reconnect(struct nfsreq *rep)
401 {
402 struct nfsreq *rp;
403 struct nfsmount *nmp = rep->r_nmp;
404 int error;
405
406 nfs_disconnect(nmp);
407 while ((error = nfs_connect(nmp, rep)) != 0) {
408 if (error == EINTR || error == ERESTART)
409 return (EINTR);
410 tsleep_nsec(&nowake, PSOCK, "nfsrecon", SEC_TO_NSEC(1));
411 }
412
413 /*
414 * Loop through outstanding request list and fix up all requests
415 * on old socket.
416 */
417 TAILQ_FOREACH(rp, &nmp->nm_reqsq, r_chain) {
418 rp->r_flags |= R_MUSTRESEND;
419 rp->r_rexmit = 0;
420 }
421 return (0);
422 }
423
424 /*
425 * NFS disconnect. Clean up and unlink.
426 */
427 void
428 nfs_disconnect(struct nfsmount *nmp)
429 {
430 struct socket *so;
431
432 if (nmp->nm_so) {
433 so = nmp->nm_so;
434 nmp->nm_so = NULL;
435 soshutdown(so, SHUT_RDWR);
436 soclose(so, 0);
437 }
438 }
439
440 /*
441 * This is the nfs send routine. For connection based socket types, it
442 * must be called with an nfs_sndlock() on the socket.
443 * "rep == NULL" indicates that it has been called from a server.
444 * For the client side:
445 * - return EINTR if the RPC is terminated, 0 otherwise
446 * - set R_MUSTRESEND if the send fails for any reason
447 * - do any cleanup required by recoverable socket errors (???)
448 * For the server side:
449 * - return EINTR or ERESTART if interrupted by a signal
450 * - return EPIPE if a connection is lost for connection based sockets (TCP...)
451 * - do any cleanup required by recoverable socket errors (???)
452 */
453 int
454 nfs_send(struct socket *so, struct mbuf *nam, struct mbuf *top,
455 struct nfsreq *rep)
456 {
457 struct mbuf *sendnam;
458 int error, soflags, flags;
459
460 if (rep) {
461 if (rep->r_flags & R_SOFTTERM) {
462 m_freem(top);
463 return (EINTR);
464 }
465 if ((so = rep->r_nmp->nm_so) == NULL) {
466 rep->r_flags |= R_MUSTRESEND;
467 m_freem(top);
468 return (0);
469 }
470 rep->r_flags &= ~R_MUSTRESEND;
471 soflags = rep->r_nmp->nm_soflags;
472 } else
473 soflags = so->so_proto->pr_flags;
474 if ((soflags & PR_CONNREQUIRED) || (so->so_state & SS_ISCONNECTED))
475 sendnam = NULL;
476 else
477 sendnam = nam;
478 flags = 0;
479
480 error = sosend(so, sendnam, NULL, top, NULL, flags);
481 if (error) {
482 if (rep) {
483 /*
484 * Deal with errors for the client side.
485 */
486 if (rep->r_flags & R_SOFTTERM)
487 error = EINTR;
488 else
489 rep->r_flags |= R_MUSTRESEND;
490 }
491
492 /*
493 * Handle any recoverable (soft) socket errors here. (???)
494 */
495 if (error != EINTR && error != ERESTART &&
496 error != EWOULDBLOCK && error != EPIPE)
497 error = 0;
498 }
499 return (error);
500 }
501
502 #ifdef NFSCLIENT
503 /*
504 * Receive a Sun RPC Request/Reply. For SOCK_DGRAM, the work is all
505 * done by soreceive(), but for SOCK_STREAM we must deal with the Record
506 * Mark and consolidate the data into a new mbuf list.
507 * nb: Sometimes TCP passes the data up to soreceive() in long lists of
508 * small mbufs.
509 * For SOCK_STREAM we must be very careful to read an entire record once
510 * we have read any of it, even if the system call has been interrupted.
511 */
512 int
513 nfs_receive(struct nfsreq *rep, struct mbuf **aname, struct mbuf **mp)
514 {
515 struct socket *so;
516 struct uio auio;
517 struct iovec aio;
518 struct mbuf *m;
519 struct mbuf *control;
520 u_int32_t len;
521 struct mbuf **getnam;
522 int error, sotype, rcvflg;
523 struct proc *p = curproc; /* XXX */
524
525 /*
526 * Set up arguments for soreceive()
527 */
528 *mp = NULL;
529 *aname = NULL;
530 sotype = rep->r_nmp->nm_sotype;
531
532 /*
533 * For reliable protocols, lock against other senders/receivers
534 * in case a reconnect is necessary.
535 * For SOCK_STREAM, first get the Record Mark to find out how much
536 * more there is to get.
537 * We must lock the socket against other receivers
538 * until we have an entire rpc request/reply.
539 */
540 if (sotype != SOCK_DGRAM) {
541 error = nfs_sndlock(&rep->r_nmp->nm_flag, rep);
542 if (error)
543 return (error);
544 tryagain:
545 /*
546 * Check for fatal errors and resending request.
547 */
548 /*
549 * Ugh: If a reconnect attempt just happened, nm_so
550 * would have changed. NULL indicates a failed
551 * attempt that has essentially shut down this
552 * mount point.
553 */
554 if (rep->r_mrep || (rep->r_flags & R_SOFTTERM)) {
555 nfs_sndunlock(&rep->r_nmp->nm_flag);
556 return (EINTR);
557 }
558 so = rep->r_nmp->nm_so;
559 if (!so) {
560 error = nfs_reconnect(rep);
561 if (error) {
562 nfs_sndunlock(&rep->r_nmp->nm_flag);
563 return (error);
564 }
565 goto tryagain;
566 }
567 while (rep->r_flags & R_MUSTRESEND) {
568 m = m_copym(rep->r_mreq, 0, M_COPYALL, M_WAIT);
569 nfsstats.rpcretries++;
570 rep->r_rtt = 0;
571 rep->r_flags &= ~R_TIMING;
572 error = nfs_send(so, rep->r_nmp->nm_nam, m, rep);
573 if (error) {
574 if (error == EINTR || error == ERESTART ||
575 (error = nfs_reconnect(rep)) != 0) {
576 nfs_sndunlock(&rep->r_nmp->nm_flag);
577 return (error);
578 }
579 goto tryagain;
580 }
581 }
582 nfs_sndunlock(&rep->r_nmp->nm_flag);
583 if (sotype == SOCK_STREAM) {
584 aio.iov_base = (caddr_t) &len;
585 aio.iov_len = sizeof(u_int32_t);
586 auio.uio_iov = &aio;
587 auio.uio_iovcnt = 1;
588 auio.uio_segflg = UIO_SYSSPACE;
589 auio.uio_rw = UIO_READ;
590 auio.uio_offset = 0;
591 auio.uio_resid = sizeof(u_int32_t);
592 auio.uio_procp = p;
593 do {
594 rcvflg = MSG_WAITALL;
595 error = soreceive(so, NULL, &auio, NULL, NULL,
596 &rcvflg, 0);
597 if (error == EWOULDBLOCK && rep) {
598 if (rep->r_flags & R_SOFTTERM)
599 return (EINTR);
600 /*
601 * looks like the server died after it
602 * received the request, make sure
603 * that we will retransmit and we
604 * don't get stuck here forever.
605 */
606 if (rep->r_rexmit >=
607 rep->r_nmp->nm_retry) {
608 nfsstats.rpctimeouts++;
609 error = EPIPE;
610 }
611 }
612 } while (error == EWOULDBLOCK);
613 if (!error && auio.uio_resid > 0) {
614 log(LOG_INFO,
615 "short receive (%zu/%zu) from nfs server %s\n",
616 sizeof(u_int32_t) - auio.uio_resid,
617 sizeof(u_int32_t),
618 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname);
619 error = EPIPE;
620 }
621 if (error)
622 goto errout;
623
624 len = ntohl(len) & ~0x80000000;
625 /*
626 * This is SERIOUS! We are out of sync with the sender
627 * and forcing a disconnect/reconnect is all I can do.
628 */
629 if (len > NFS_MAXPACKET) {
630 log(LOG_ERR, "%s (%u) from nfs server %s\n",
631 "impossible packet length",
632 len,
633 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname);
634 error = EFBIG;
635 goto errout;
636 }
637 auio.uio_resid = len;
638 do {
639 rcvflg = MSG_WAITALL;
640 error = soreceive(so, NULL, &auio, mp, NULL,
641 &rcvflg, 0);
642 } while (error == EWOULDBLOCK || error == EINTR ||
643 error == ERESTART);
644 if (!error && auio.uio_resid > 0) {
645 log(LOG_INFO, "short receive (%zu/%u) from "
646 "nfs server %s\n", len - auio.uio_resid,
647 len, rep->r_nmp->nm_mountp->
648 mnt_stat.f_mntfromname);
649 error = EPIPE;
650 }
651 } else {
652 /*
653 * NB: Since uio_resid is big, MSG_WAITALL is ignored
654 * and soreceive() will return when it has either a
655 * control msg or a data msg.
656 * We have no use for control msg., but must grab them
657 * and then throw them away so we know what is going
658 * on.
659 */
660 auio.uio_resid = len = 100000000; /* Anything Big */
661 auio.uio_procp = p;
662 do {
663 rcvflg = 0;
664 error = soreceive(so, NULL, &auio, mp, &control,
665 &rcvflg, 0);
666 m_freem(control);
667 if (error == EWOULDBLOCK && rep) {
668 if (rep->r_flags & R_SOFTTERM)
669 return (EINTR);
670 }
671 } while (error == EWOULDBLOCK ||
672 (!error && *mp == NULL && control));
673 if ((rcvflg & MSG_EOR) == 0)
674 printf("Egad!!\n");
675 if (!error && *mp == NULL)
676 error = EPIPE;
677 len -= auio.uio_resid;
678 }
679 errout:
680 if (error && error != EINTR && error != ERESTART) {
681 m_freemp(mp);
682 if (error != EPIPE)
683 log(LOG_INFO,
684 "receive error %d from nfs server %s\n",
685 error,
686 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname);
687 error = nfs_sndlock(&rep->r_nmp->nm_flag, rep);
688 if (!error) {
689 error = nfs_reconnect(rep);
690 if (!error)
691 goto tryagain;
692 nfs_sndunlock(&rep->r_nmp->nm_flag);
693 }
694 }
695 } else {
696 if ((so = rep->r_nmp->nm_so) == NULL)
697 return (EACCES);
698 if (so->so_state & SS_ISCONNECTED)
699 getnam = NULL;
700 else
701 getnam = aname;
702 auio.uio_resid = len = 1000000;
703 auio.uio_procp = p;
704 do {
705 rcvflg = 0;
706 error = soreceive(so, getnam, &auio, mp, NULL,
707 &rcvflg, 0);
708 if (error == EWOULDBLOCK &&
709 (rep->r_flags & R_SOFTTERM))
710 return (EINTR);
711 } while (error == EWOULDBLOCK);
712 len -= auio.uio_resid;
713 }
714 if (error)
715 m_freemp(mp);
716 /*
717 * Search for any mbufs that are not a multiple of 4 bytes long
718 * or with m_data not longword aligned.
719 * These could cause pointer alignment problems, so copy them to
720 * well aligned mbufs.
721 */
722 nfs_realign(mp, 5 * NFSX_UNSIGNED);
723 return (error);
724 }
725
726 /*
727 * Implement receipt of reply on a socket.
728 * We must search through the list of received datagrams matching them
729 * with outstanding requests using the xid, until ours is found.
730 */
731 int
732 nfs_reply(struct nfsreq *myrep)
733 {
734 struct nfsreq *rep;
735 struct nfsmount *nmp = myrep->r_nmp;
736 struct nfsm_info info;
737 struct mbuf *nam;
738 u_int32_t rxid, *tl, t1;
739 caddr_t cp2;
740 int error;
741
742 /*
743 * Loop around until we get our own reply
744 */
745 for (;;) {
746 /*
747 * Lock against other receivers so that I don't get stuck in
748 * sbwait() after someone else has received my reply for me.
749 * Also necessary for connection based protocols to avoid
750 * race conditions during a reconnect.
751 */
752 error = nfs_rcvlock(myrep);
753 if (error)
754 return (error == EALREADY ? 0 : error);
755
756 /*
757 * Get the next Rpc reply off the socket
758 */
759 error = nfs_receive(myrep, &nam, &info.nmi_mrep);
760 nfs_rcvunlock(&nmp->nm_flag);
761 if (error) {
762
763 /*
764 * Ignore routing errors on connectionless protocols??
765 */
766 if (NFSIGNORE_SOERROR(nmp->nm_soflags, error)) {
767 if (nmp->nm_so)
768 nmp->nm_so->so_error = 0;
769 continue;
770 }
771 return (error);
772 }
773 m_freem(nam);
774
775 /*
776 * Get the xid and check that it is an rpc reply
777 */
778 info.nmi_md = info.nmi_mrep;
779 info.nmi_dpos = mtod(info.nmi_md, caddr_t);
780 nfsm_dissect(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
781 rxid = *tl++;
782 if (*tl != rpc_reply) {
783 nfsstats.rpcinvalid++;
784 m_freem(info.nmi_mrep);
785 nfsmout:
786 continue;
787 }
788
789 /*
790 * Loop through the request list to match up the reply
791 * Iff no match, just drop the datagram
792 */
793 TAILQ_FOREACH(rep, &nmp->nm_reqsq, r_chain) {
794 if (rep->r_mrep == NULL && rxid == rep->r_xid) {
795 /* Found it.. */
796 rep->r_mrep = info.nmi_mrep;
797 rep->r_md = info.nmi_md;
798 rep->r_dpos = info.nmi_dpos;
799
800 /*
801 * Update congestion window.
802 * Do the additive increase of
803 * one rpc/rtt.
804 */
805 if (nmp->nm_cwnd <= nmp->nm_sent) {
806 nmp->nm_cwnd +=
807 (NFS_CWNDSCALE * NFS_CWNDSCALE +
808 (nmp->nm_cwnd >> 1)) / nmp->nm_cwnd;
809 if (nmp->nm_cwnd > NFS_MAXCWND)
810 nmp->nm_cwnd = NFS_MAXCWND;
811 }
812 rep->r_flags &= ~R_SENT;
813 nmp->nm_sent -= NFS_CWNDSCALE;
814
815 if (rep->r_flags & R_TIMING)
816 nfs_update_rtt(rep);
817
818 nmp->nm_timeouts = 0;
819 break;
820 }
821 }
822 /*
823 * If not matched to a request, drop it.
824 * If it's mine, get out.
825 */
826 if (rep == 0) {
827 nfsstats.rpcunexpected++;
828 m_freem(info.nmi_mrep);
829 } else if (rep == myrep) {
830 if (rep->r_mrep == NULL)
831 panic("nfsreply nil");
832 return (0);
833 }
834 }
835 }
836
837 /*
838 * nfs_request - goes something like this
839 * - fill in request struct
840 * - links it into list
841 * - calls nfs_send() for first transmit
842 * - calls nfs_receive() to get reply
843 * - break down rpc header and return with nfs reply pointed to
844 * by mrep or error
845 * nb: always frees up mreq mbuf list
846 */
847 int
848 nfs_request(struct vnode *vp, int procnum, struct nfsm_info *infop)
849 {
850 struct mbuf *m;
851 u_int32_t *tl;
852 struct nfsmount *nmp;
853 caddr_t cp2;
854 int t1, i, error = 0;
855 int trylater_delay;
856 struct nfsreq *rep;
857 struct nfsm_info info;
858
859 rep = pool_get(&nfsreqpl, PR_WAITOK);
860 rep->r_nmp = VFSTONFS(vp->v_mount);
861 rep->r_vp = vp;
862 rep->r_procp = infop->nmi_procp;
863 rep->r_procnum = procnum;
864
865 /* empty mbuf for AUTH_UNIX header */
866 rep->r_mreq = m_gethdr(M_WAIT, MT_DATA);
867 rep->r_mreq->m_next = infop->nmi_mreq;
868 rep->r_mreq->m_len = 0;
869 m_calchdrlen(rep->r_mreq);
870
871 trylater_delay = NFS_MINTIMEO;
872
873 nmp = rep->r_nmp;
874
875 /* Get the RPC header with authorization. */
876 nfsm_rpchead(rep, infop->nmi_cred, RPCAUTH_UNIX);
877 m = rep->r_mreq;
878
879 /*
880 * For stream protocols, insert a Sun RPC Record Mark.
881 */
882 if (nmp->nm_sotype == SOCK_STREAM) {
883 M_PREPEND(m, NFSX_UNSIGNED, M_WAIT);
884 *mtod(m, u_int32_t *) = htonl(0x80000000 |
885 (m->m_pkthdr.len - NFSX_UNSIGNED));
886 }
887
888 tryagain:
889 rep->r_rtt = rep->r_rexmit = 0;
890 if (nfs_ptimers[rep->r_procnum] != NFS_DEFAULT_TIMER)
891 rep->r_flags = R_TIMING;
892 else
893 rep->r_flags = 0;
894 rep->r_mrep = NULL;
895
896 /*
897 * Do the client side RPC.
898 */
899 nfsstats.rpcrequests++;
900 /*
901 * Chain request into list of outstanding requests. Be sure
902 * to put it LAST so timer finds oldest requests first.
903 */
904 if (TAILQ_EMPTY(&nmp->nm_reqsq))
905 timeout_add(&nmp->nm_rtimeout, nfs_ticks);
906 TAILQ_INSERT_TAIL(&nmp->nm_reqsq, rep, r_chain);
907
908 /*
909 * If backing off another request or avoiding congestion, don't
910 * send this one now but let timer do it. If not timing a request,
911 * do it now.
912 */
913 if (nmp->nm_so && (nmp->nm_sotype != SOCK_DGRAM ||
914 (nmp->nm_flag & NFSMNT_DUMBTIMR) ||
915 nmp->nm_sent < nmp->nm_cwnd)) {
916 if (nmp->nm_soflags & PR_CONNREQUIRED)
917 error = nfs_sndlock(&nmp->nm_flag, rep);
918 if (!error) {
919 error = nfs_send(nmp->nm_so, nmp->nm_nam,
920 m_copym(m, 0, M_COPYALL, M_WAIT), rep);
921 if (nmp->nm_soflags & PR_CONNREQUIRED)
922 nfs_sndunlock(&nmp->nm_flag);
923 }
924 if (!error && (rep->r_flags & R_MUSTRESEND) == 0) {
925 nmp->nm_sent += NFS_CWNDSCALE;
926 rep->r_flags |= R_SENT;
927 }
928 } else {
929 rep->r_rtt = -1;
930 }
931
932 /*
933 * Wait for the reply from our send or the timer's.
934 */
935 if (!error || error == EPIPE)
936 error = nfs_reply(rep);
937
938 /*
939 * RPC done, unlink the request.
940 */
941 TAILQ_REMOVE(&nmp->nm_reqsq, rep, r_chain);
942 if (TAILQ_EMPTY(&nmp->nm_reqsq))
943 timeout_del(&nmp->nm_rtimeout);
944
945 /*
946 * Decrement the outstanding request count.
947 */
948 if (rep->r_flags & R_SENT) {
949 rep->r_flags &= ~R_SENT; /* paranoia */
950 nmp->nm_sent -= NFS_CWNDSCALE;
951 }
952
953 /*
954 * If there was a successful reply and a tprintf msg.
955 * tprintf a response.
956 */
957 if (!error && (rep->r_flags & R_TPRINTFMSG))
958 nfs_msg(rep, "is alive again");
959 info.nmi_mrep = rep->r_mrep;
960 info.nmi_md = rep->r_md;
961 info.nmi_dpos = rep->r_dpos;
962 if (error) {
963 infop->nmi_mrep = NULL;
964 goto nfsmout1;
965 }
966
967 /*
968 * break down the rpc header and check if ok
969 */
970 nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
971 if (*tl++ == rpc_msgdenied) {
972 if (*tl == rpc_mismatch)
973 error = EOPNOTSUPP;
974 else
975 error = EACCES; /* Should be EAUTH. */
976 infop->nmi_mrep = NULL;
977 goto nfsmout1;
978 }
979
980 /*
981 * Since we only support RPCAUTH_UNIX atm we step over the
982 * reply verifer type, and in the (error) case that there really
983 * is any data in it, we advance over it.
984 */
985 tl++; /* Step over verifer type */
986 i = fxdr_unsigned(int32_t, *tl);
987 if (i > 0)
988 nfsm_adv(nfsm_rndup(i)); /* Should not happen */
989
990 nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
991 /* 0 == ok */
992 if (*tl == 0) {
993 nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
994 if (*tl != 0) {
995 error = fxdr_unsigned(int, *tl);
996 if ((nmp->nm_flag & NFSMNT_NFSV3) &&
997 error == NFSERR_TRYLATER) {
998 m_freem(info.nmi_mrep);
999 error = 0;
1000 tsleep_nsec(&nowake, PSOCK, "nfsretry",
1001 SEC_TO_NSEC(trylater_delay));
1002 trylater_delay *= NFS_TIMEOUTMUL;
1003 if (trylater_delay > NFS_MAXTIMEO)
1004 trylater_delay = NFS_MAXTIMEO;
1005
1006 goto tryagain;
1007 }
1008
1009 /*
1010 * If the File Handle was stale, invalidate the
1011 * lookup cache, just in case.
1012 */
1013 if (error == ESTALE)
1014 cache_purge(rep->r_vp);
1015 }
1016 goto nfsmout;
1017 }
1018
1019 error = EPROTONOSUPPORT;
1020
1021 nfsmout:
1022 infop->nmi_mrep = info.nmi_mrep;
1023 infop->nmi_md = info.nmi_md;
1024 infop->nmi_dpos = info.nmi_dpos;
1025 nfsmout1:
1026 m_freem(rep->r_mreq);
1027 pool_put(&nfsreqpl, rep);
1028 return (error);
1029 }
1030 #endif /* NFSCLIENT */
1031
1032 /*
1033 * Generate the rpc reply header
1034 * siz arg. is used to decide if adding a cluster is worthwhile
1035 */
1036 int
1037 nfs_rephead(int siz, struct nfsrv_descript *nd, struct nfssvc_sock *slp,
1038 int err, struct mbuf **mrq, struct mbuf **mbp)
1039 {
1040 u_int32_t *tl;
1041 struct mbuf *mreq;
1042 struct mbuf *mb;
1043
1044 MGETHDR(mreq, M_WAIT, MT_DATA);
1045 mb = mreq;
1046 /*
1047 * If this is a big reply, use a cluster else
1048 * try and leave leading space for the lower level headers.
1049 */
1050 siz += RPC_REPLYSIZ;
1051 if (siz >= MHLEN - max_hdr) {
1052 MCLGET(mreq, M_WAIT);
1053 } else
1054 mreq->m_data += max_hdr;
1055 tl = mtod(mreq, u_int32_t *);
1056 mreq->m_len = 6 * NFSX_UNSIGNED;
1057 *tl++ = txdr_unsigned(nd->nd_retxid);
1058 *tl++ = rpc_reply;
1059 if (err == ERPCMISMATCH || (err & NFSERR_AUTHERR)) {
1060 *tl++ = rpc_msgdenied;
1061 if (err & NFSERR_AUTHERR) {
1062 *tl++ = rpc_autherr;
1063 *tl = txdr_unsigned(err & ~NFSERR_AUTHERR);
1064 mreq->m_len -= NFSX_UNSIGNED;
1065 } else {
1066 *tl++ = rpc_mismatch;
1067 *tl++ = txdr_unsigned(RPC_VER2);
1068 *tl = txdr_unsigned(RPC_VER2);
1069 }
1070 } else {
1071 *tl++ = rpc_msgaccepted;
1072
1073 /* AUTH_UNIX requires RPCAUTH_NULL. */
1074 *tl++ = 0;
1075 *tl++ = 0;
1076
1077 switch (err) {
1078 case EPROGUNAVAIL:
1079 *tl = txdr_unsigned(RPC_PROGUNAVAIL);
1080 break;
1081 case EPROGMISMATCH:
1082 *tl = txdr_unsigned(RPC_PROGMISMATCH);
1083 tl = nfsm_build(&mb, 2 * NFSX_UNSIGNED);
1084 *tl++ = txdr_unsigned(NFS_VER2);
1085 *tl = txdr_unsigned(NFS_VER3);
1086 break;
1087 case EPROCUNAVAIL:
1088 *tl = txdr_unsigned(RPC_PROCUNAVAIL);
1089 break;
1090 case EBADRPC:
1091 *tl = txdr_unsigned(RPC_GARBAGE);
1092 break;
1093 default:
1094 *tl = 0;
1095 if (err != NFSERR_RETVOID) {
1096 tl = nfsm_build(&mb, NFSX_UNSIGNED);
1097 if (err)
1098 *tl = txdr_unsigned(nfsrv_errmap(nd, err));
1099 else
1100 *tl = 0;
1101 }
1102 break;
1103 };
1104 }
1105
1106 *mrq = mreq;
1107 if (mbp != NULL)
1108 *mbp = mb;
1109 if (err != 0 && err != NFSERR_RETVOID)
1110 nfsstats.srvrpc_errs++;
1111 return (0);
1112 }
1113
1114 /*
1115 * nfs timer routine
1116 * Scan the nfsreq list and retransmit any requests that have timed out.
1117 */
1118 void
1119 nfs_timer(void *arg)
1120 {
1121 struct nfsmount *nmp = arg;
1122 struct nfsreq *rep;
1123 struct mbuf *m;
1124 struct socket *so;
1125 int timeo, error;
1126
1127 NET_LOCK();
1128 TAILQ_FOREACH(rep, &nmp->nm_reqsq, r_chain) {
1129 if (rep->r_mrep || (rep->r_flags & R_SOFTTERM))
1130 continue;
1131 if (nfs_sigintr(nmp, rep, rep->r_procp)) {
1132 rep->r_flags |= R_SOFTTERM;
1133 continue;
1134 }
1135 if (rep->r_rtt >= 0) {
1136 rep->r_rtt++;
1137 if (nmp->nm_flag & NFSMNT_DUMBTIMR)
1138 timeo = nmp->nm_timeo;
1139 else
1140 timeo = nfs_estimate_rto(nmp, rep->r_procnum);
1141 if (nmp->nm_timeouts > 0)
1142 timeo *= nfs_backoff[nmp->nm_timeouts - 1];
1143 if (rep->r_rtt <= timeo)
1144 continue;
1145 if (nmp->nm_timeouts < nitems(nfs_backoff))
1146 nmp->nm_timeouts++;
1147 }
1148
1149 /* Check for server not responding. */
1150 if ((rep->r_flags & R_TPRINTFMSG) == 0 && rep->r_rexmit > 4) {
1151 nfs_msg(rep, "not responding");
1152 rep->r_flags |= R_TPRINTFMSG;
1153 }
1154 if (rep->r_rexmit >= nmp->nm_retry) { /* too many */
1155 nfsstats.rpctimeouts++;
1156 rep->r_flags |= R_SOFTTERM;
1157 continue;
1158 }
1159 if (nmp->nm_sotype != SOCK_DGRAM) {
1160 if (++rep->r_rexmit > NFS_MAXREXMIT)
1161 rep->r_rexmit = NFS_MAXREXMIT;
1162 continue;
1163 }
1164
1165 if ((so = nmp->nm_so) == NULL)
1166 continue;
1167
1168 /*
1169 * If there is enough space and the window allows..
1170 * Resend it
1171 * Set r_rtt to -1 in case we fail to send it now.
1172 */
1173 rep->r_rtt = -1;
1174 if (sbspace(so, &so->so_snd) >= rep->r_mreq->m_pkthdr.len &&
1175 ((nmp->nm_flag & NFSMNT_DUMBTIMR) ||
1176 (rep->r_flags & R_SENT) ||
1177 nmp->nm_sent < nmp->nm_cwnd) &&
1178 (m = m_copym(rep->r_mreq, 0, M_COPYALL, M_DONTWAIT))){
1179 if ((nmp->nm_flag & NFSMNT_NOCONN) == 0)
1180 error = pru_send(so, m, NULL, NULL);
1181 else
1182 error = pru_send(so, m, nmp->nm_nam, NULL);
1183 if (error) {
1184 if (NFSIGNORE_SOERROR(nmp->nm_soflags, error))
1185 so->so_error = 0;
1186 } else {
1187 /*
1188 * Iff first send, start timing
1189 * else turn timing off, backoff timer
1190 * and divide congestion window by 2.
1191 */
1192 if (rep->r_flags & R_SENT) {
1193 rep->r_flags &= ~R_TIMING;
1194 if (++rep->r_rexmit > NFS_MAXREXMIT)
1195 rep->r_rexmit = NFS_MAXREXMIT;
1196 nmp->nm_cwnd >>= 1;
1197 if (nmp->nm_cwnd < NFS_CWNDSCALE)
1198 nmp->nm_cwnd = NFS_CWNDSCALE;
1199 nfsstats.rpcretries++;
1200 } else {
1201 rep->r_flags |= R_SENT;
1202 nmp->nm_sent += NFS_CWNDSCALE;
1203 }
1204 rep->r_rtt = 0;
1205 }
1206 }
1207 }
1208 NET_UNLOCK();
1209 timeout_add(&nmp->nm_rtimeout, nfs_ticks);
1210 }
1211
1212 /*
1213 * Test for a termination condition pending on the process.
1214 * This is used for NFSMNT_INT mounts.
1215 */
1216 int
1217 nfs_sigintr(struct nfsmount *nmp, struct nfsreq *rep, struct proc *p)
1218 {
1219
1220 if (rep && (rep->r_flags & R_SOFTTERM))
1221 return (EINTR);
1222 if (!(nmp->nm_flag & NFSMNT_INT))
1223 return (0);
1224 if (p && (SIGPENDING(p) & ~p->p_p->ps_sigacts->ps_sigignore &
1225 NFSINT_SIGMASK))
1226 return (EINTR);
1227 return (0);
1228 }
1229
1230 /*
1231 * Lock a socket against others.
1232 * Necessary for STREAM sockets to ensure you get an entire rpc request/reply
1233 * and also to avoid race conditions between the processes with nfs requests
1234 * in progress when a reconnect is necessary.
1235 */
1236 int
1237 nfs_sndlock(int *flagp, struct nfsreq *rep)
1238 {
1239 uint64_t slptimeo = INFSLP;
1240 struct proc *p;
1241 int slpflag = 0;
1242
1243 if (rep) {
1244 p = rep->r_procp;
1245 if (rep->r_nmp->nm_flag & NFSMNT_INT)
1246 slpflag = PCATCH;
1247 } else
1248 p = NULL;
1249 while (*flagp & NFSMNT_SNDLOCK) {
1250 if (rep && nfs_sigintr(rep->r_nmp, rep, p))
1251 return (EINTR);
1252 *flagp |= NFSMNT_WANTSND;
1253 tsleep_nsec(flagp, slpflag | (PZERO - 1), "nfsndlck", slptimeo);
1254 if (slpflag == PCATCH) {
1255 slpflag = 0;
1256 slptimeo = SEC_TO_NSEC(2);
1257 }
1258 }
1259 *flagp |= NFSMNT_SNDLOCK;
1260 return (0);
1261 }
1262
1263 /*
1264 * Unlock the stream socket for others.
1265 */
1266 void
1267 nfs_sndunlock(int *flagp)
1268 {
1269
1270 if ((*flagp & NFSMNT_SNDLOCK) == 0)
1271 panic("nfs sndunlock");
1272 *flagp &= ~NFSMNT_SNDLOCK;
1273 if (*flagp & NFSMNT_WANTSND) {
1274 *flagp &= ~NFSMNT_WANTSND;
1275 wakeup((caddr_t)flagp);
1276 }
1277 }
1278
1279 int
1280 nfs_rcvlock(struct nfsreq *rep)
1281 {
1282 uint64_t slptimeo = INFSLP;
1283 int *flagp = &rep->r_nmp->nm_flag;
1284 int slpflag;
1285
1286 if (*flagp & NFSMNT_INT)
1287 slpflag = PCATCH;
1288 else
1289 slpflag = 0;
1290
1291 while (*flagp & NFSMNT_RCVLOCK) {
1292 if (nfs_sigintr(rep->r_nmp, rep, rep->r_procp))
1293 return (EINTR);
1294 *flagp |= NFSMNT_WANTRCV;
1295 tsleep_nsec(flagp, slpflag | (PZERO - 1), "nfsrcvlk", slptimeo);
1296 if (rep->r_mrep != NULL) {
1297 /*
1298 * Don't take the lock if our reply has been received
1299 * while we where sleeping.
1300 */
1301 return (EALREADY);
1302 }
1303 if (slpflag == PCATCH) {
1304 slpflag = 0;
1305 slptimeo = SEC_TO_NSEC(2);
1306 }
1307 }
1308 *flagp |= NFSMNT_RCVLOCK;
1309 return (0);
1310 }
1311
1312 /*
1313 * Unlock the stream socket for others.
1314 */
1315 void
1316 nfs_rcvunlock(int *flagp)
1317 {
1318
1319 if ((*flagp & NFSMNT_RCVLOCK) == 0)
1320 panic("nfs rcvunlock");
1321 *flagp &= ~NFSMNT_RCVLOCK;
1322 if (*flagp & NFSMNT_WANTRCV) {
1323 *flagp &= ~NFSMNT_WANTRCV;
1324 wakeup(flagp);
1325 }
1326 }
1327
1328 /*
1329 * Auxiliary routine to align the length of mbuf copies made with m_copyback().
1330 */
1331 void
1332 nfs_realign_fixup(struct mbuf *m, struct mbuf *n, unsigned int *off)
1333 {
1334 size_t padding;
1335
1336 /*
1337 * The maximum number of bytes that m_copyback() places in a mbuf is
1338 * always an aligned quantity, so realign happens at the chain's tail.
1339 */
1340 while (n->m_next != NULL)
1341 n = n->m_next;
1342
1343 /*
1344 * Pad from the next elements in the source chain. Loop until the
1345 * destination chain is aligned, or the end of the source is reached.
1346 */
1347 do {
1348 m = m->m_next;
1349 if (m == NULL)
1350 return;
1351
1352 padding = min(ALIGN(n->m_len) - n->m_len, m->m_len);
1353 if (padding > m_trailingspace(n))
1354 panic("nfs_realign_fixup: no memory to pad to");
1355
1356 bcopy(mtod(m, void *), mtod(n, char *) + n->m_len, padding);
1357
1358 n->m_len += padding;
1359 m_adj(m, padding);
1360 *off += padding;
1361
1362 } while (!ALIGNED_POINTER(n->m_len, void *));
1363 }
1364
1365 /*
1366 * The NFS RPC parsing code uses the data address and the length of mbuf
1367 * structures to calculate on-memory addresses. This function makes sure these
1368 * parameters are correctly aligned.
1369 */
1370 void
1371 nfs_realign(struct mbuf **pm, int hsiz)
1372 {
1373 struct mbuf *m;
1374 struct mbuf *n = NULL;
1375 unsigned int off = 0;
1376
1377 ++nfs_realign_test;
1378 while ((m = *pm) != NULL) {
1379 if (!ALIGNED_POINTER(m->m_data, void *) ||
1380 !ALIGNED_POINTER(m->m_len, void *)) {
1381 MGET(n, M_WAIT, MT_DATA);
1382 #define ALIGN_POINTER(n) ((u_int)(((n) + sizeof(void *)) & ~sizeof(void *)))
1383 if (ALIGN_POINTER(m->m_len) >= MINCLSIZE) {
1384 MCLGET(n, M_WAIT);
1385 }
1386 n->m_len = 0;
1387 break;
1388 }
1389 pm = &m->m_next;
1390 }
1391 /*
1392 * If n is non-NULL, loop on m copying data, then replace the
1393 * portion of the chain that had to be realigned.
1394 */
1395 if (n != NULL) {
1396 ++nfs_realign_count;
1397 while (m) {
1398 m_copyback(n, off, m->m_len, mtod(m, caddr_t), M_WAIT);
1399
1400 /*
1401 * If an unaligned amount of memory was copied, fix up
1402 * the last mbuf created by m_copyback().
1403 */
1404 if (!ALIGNED_POINTER(m->m_len, void *))
1405 nfs_realign_fixup(m, n, &off);
1406
1407 off += m->m_len;
1408 m = m->m_next;
1409 }
1410 m_freemp(pm);
1411 *pm = n;
1412 }
1413 }
1414
1415
1416 /*
1417 * Parse an RPC request
1418 * - verify it
1419 * - fill in the cred struct.
1420 */
1421 int
1422 nfs_getreq(struct nfsrv_descript *nd, struct nfsd *nfsd, int has_header)
1423 {
1424 int len, i;
1425 u_int32_t *tl;
1426 int32_t t1;
1427 caddr_t cp2;
1428 u_int32_t nfsvers, auth_type;
1429 int error = 0;
1430 struct nfsm_info info;
1431
1432 info.nmi_mrep = nd->nd_mrep;
1433 info.nmi_md = nd->nd_md;
1434 info.nmi_dpos = nd->nd_dpos;
1435 if (has_header) {
1436 nfsm_dissect(tl, u_int32_t *, 10 * NFSX_UNSIGNED);
1437 nd->nd_retxid = fxdr_unsigned(u_int32_t, *tl++);
1438 if (*tl++ != rpc_call) {
1439 m_freem(info.nmi_mrep);
1440 return (EBADRPC);
1441 }
1442 } else
1443 nfsm_dissect(tl, u_int32_t *, 8 * NFSX_UNSIGNED);
1444 nd->nd_repstat = 0;
1445 nd->nd_flag = 0;
1446 if (*tl++ != rpc_vers) {
1447 nd->nd_repstat = ERPCMISMATCH;
1448 nd->nd_procnum = NFSPROC_NOOP;
1449 return (0);
1450 }
1451 if (*tl != nfs_prog) {
1452 nd->nd_repstat = EPROGUNAVAIL;
1453 nd->nd_procnum = NFSPROC_NOOP;
1454 return (0);
1455 }
1456 tl++;
1457 nfsvers = fxdr_unsigned(u_int32_t, *tl++);
1458 if (nfsvers != NFS_VER2 && nfsvers != NFS_VER3) {
1459 nd->nd_repstat = EPROGMISMATCH;
1460 nd->nd_procnum = NFSPROC_NOOP;
1461 return (0);
1462 }
1463 if (nfsvers == NFS_VER3)
1464 nd->nd_flag = ND_NFSV3;
1465 nd->nd_procnum = fxdr_unsigned(u_int32_t, *tl++);
1466 if (nd->nd_procnum == NFSPROC_NULL)
1467 return (0);
1468 if (nd->nd_procnum >= NFS_NPROCS ||
1469 (nd->nd_procnum > NFSPROC_COMMIT) ||
1470 (!nd->nd_flag && nd->nd_procnum > NFSV2PROC_STATFS)) {
1471 nd->nd_repstat = EPROCUNAVAIL;
1472 nd->nd_procnum = NFSPROC_NOOP;
1473 return (0);
1474 }
1475 if ((nd->nd_flag & ND_NFSV3) == 0)
1476 nd->nd_procnum = nfsv3_procid[nd->nd_procnum];
1477 auth_type = *tl++;
1478 len = fxdr_unsigned(int, *tl++);
1479 if (len < 0 || len > RPCAUTH_MAXSIZ) {
1480 m_freem(info.nmi_mrep);
1481 return (EBADRPC);
1482 }
1483
1484 /* Handle auth_unix */
1485 if (auth_type == rpc_auth_unix) {
1486 len = fxdr_unsigned(int, *++tl);
1487 if (len < 0 || len > NFS_MAXNAMLEN) {
1488 m_freem(info.nmi_mrep);
1489 return (EBADRPC);
1490 }
1491 nfsm_adv(nfsm_rndup(len));
1492 nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
1493 memset(&nd->nd_cr, 0, sizeof (struct ucred));
1494 refcnt_init(&nd->nd_cr.cr_refcnt);
1495 nd->nd_cr.cr_uid = fxdr_unsigned(uid_t, *tl++);
1496 nd->nd_cr.cr_gid = fxdr_unsigned(gid_t, *tl++);
1497 len = fxdr_unsigned(int, *tl);
1498 if (len < 0 || len > RPCAUTH_UNIXGIDS) {
1499 m_freem(info.nmi_mrep);
1500 return (EBADRPC);
1501 }
1502 nfsm_dissect(tl, u_int32_t *, (len + 2) * NFSX_UNSIGNED);
1503 for (i = 0; i < len; i++) {
1504 if (i < NGROUPS_MAX)
1505 nd->nd_cr.cr_groups[i] =
1506 fxdr_unsigned(gid_t, *tl++);
1507 else
1508 tl++;
1509 }
1510 nd->nd_cr.cr_ngroups = (len > NGROUPS_MAX) ? NGROUPS_MAX : len;
1511 len = fxdr_unsigned(int, *++tl);
1512 if (len < 0 || len > RPCAUTH_MAXSIZ) {
1513 m_freem(info.nmi_mrep);
1514 return (EBADRPC);
1515 }
1516 if (len > 0)
1517 nfsm_adv(nfsm_rndup(len));
1518 } else {
1519 nd->nd_repstat = (NFSERR_AUTHERR | AUTH_REJECTCRED);
1520 nd->nd_procnum = NFSPROC_NOOP;
1521 return (0);
1522 }
1523
1524 nd->nd_md = info.nmi_md;
1525 nd->nd_dpos = info.nmi_dpos;
1526 return (0);
1527 nfsmout:
1528 return (error);
1529 }
1530
1531 void
1532 nfs_msg(struct nfsreq *rep, char *msg)
1533 {
1534 tpr_t tpr;
1535
1536 if (rep->r_procp)
1537 tpr = tprintf_open(rep->r_procp);
1538 else
1539 tpr = NULL;
1540
1541 tprintf(tpr, "nfs server %s: %s\n",
1542 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname, msg);
1543 tprintf_close(tpr);
1544 }
1545
1546 #ifdef NFSSERVER
1547 /*
1548 * Socket upcall routine for the nfsd sockets.
1549 * The caddr_t arg is a pointer to the "struct nfssvc_sock".
1550 * Essentially do as much as possible non-blocking, else punt and it will
1551 * be called with M_WAIT from an nfsd.
1552 */
1553 void
1554 nfsrv_rcv(struct socket *so, caddr_t arg, int waitflag)
1555 {
1556 struct nfssvc_sock *slp = (struct nfssvc_sock *)arg;
1557 struct mbuf *m;
1558 struct mbuf *mp, *nam;
1559 struct uio auio;
1560 int flags, error;
1561
1562 KERNEL_LOCK();
1563
1564 if ((slp->ns_flag & SLP_VALID) == 0)
1565 goto out;
1566
1567 /* Defer soreceive() to an nfsd. */
1568 if (waitflag == M_DONTWAIT) {
1569 slp->ns_flag |= SLP_NEEDQ;
1570 goto dorecs;
1571 }
1572
1573 auio.uio_procp = NULL;
1574 if (so->so_type == SOCK_STREAM) {
1575 /*
1576 * Do soreceive().
1577 */
1578 auio.uio_resid = 1000000000;
1579 flags = MSG_DONTWAIT;
1580 error = soreceive(so, &nam, &auio, &mp, NULL,
1581 &flags, 0);
1582 if (error || mp == NULL) {
1583 if (error == EWOULDBLOCK)
1584 slp->ns_flag |= SLP_NEEDQ;
1585 else
1586 slp->ns_flag |= SLP_DISCONN;
1587 goto dorecs;
1588 }
1589 m = mp;
1590 if (slp->ns_rawend) {
1591 slp->ns_rawend->m_next = m;
1592 slp->ns_cc += 1000000000 - auio.uio_resid;
1593 } else {
1594 slp->ns_raw = m;
1595 slp->ns_cc = 1000000000 - auio.uio_resid;
1596 }
1597 while (m->m_next)
1598 m = m->m_next;
1599 slp->ns_rawend = m;
1600
1601 /*
1602 * Now try and parse record(s) out of the raw stream data.
1603 */
1604 error = nfsrv_getstream(slp, waitflag);
1605 if (error) {
1606 if (error == EPERM)
1607 slp->ns_flag |= SLP_DISCONN;
1608 else
1609 slp->ns_flag |= SLP_NEEDQ;
1610 }
1611 } else {
1612 do {
1613 auio.uio_resid = 1000000000;
1614 flags = MSG_DONTWAIT;
1615 error = soreceive(so, &nam, &auio, &mp,
1616 NULL, &flags, 0);
1617 if (mp) {
1618 if (nam) {
1619 m = nam;
1620 m->m_next = mp;
1621 } else
1622 m = mp;
1623 if (slp->ns_recend)
1624 slp->ns_recend->m_nextpkt = m;
1625 else
1626 slp->ns_rec = m;
1627 slp->ns_recend = m;
1628 m->m_nextpkt = NULL;
1629 }
1630 if (error) {
1631 if ((so->so_proto->pr_flags & PR_CONNREQUIRED)
1632 && error != EWOULDBLOCK) {
1633 slp->ns_flag |= SLP_DISCONN;
1634 goto dorecs;
1635 }
1636 }
1637 } while (mp);
1638 }
1639
1640 /*
1641 * Now try and process the request records, non-blocking.
1642 */
1643 dorecs:
1644 if (waitflag == M_DONTWAIT &&
1645 (slp->ns_rec || (slp->ns_flag & (SLP_NEEDQ | SLP_DISCONN))))
1646 nfsrv_wakenfsd(slp);
1647
1648 out:
1649 KERNEL_UNLOCK();
1650 }
1651
1652 /*
1653 * Try and extract an RPC request from the mbuf data list received on a
1654 * stream socket. The "waitflag" argument indicates whether or not it
1655 * can sleep.
1656 */
1657 int
1658 nfsrv_getstream(struct nfssvc_sock *slp, int waitflag)
1659 {
1660 struct mbuf *m, **mpp;
1661 char *cp1, *cp2;
1662 int len;
1663 struct mbuf *om, *m2, *recm;
1664 u_int32_t recmark;
1665
1666 if (slp->ns_flag & SLP_GETSTREAM)
1667 return (0);
1668 slp->ns_flag |= SLP_GETSTREAM;
1669 for (;;) {
1670 if (slp->ns_reclen == 0) {
1671 if (slp->ns_cc < NFSX_UNSIGNED) {
1672 slp->ns_flag &= ~SLP_GETSTREAM;
1673 return (0);
1674 }
1675 m = slp->ns_raw;
1676 if (m->m_len >= NFSX_UNSIGNED) {
1677 bcopy(mtod(m, caddr_t), &recmark,
1678 NFSX_UNSIGNED);
1679 m->m_data += NFSX_UNSIGNED;
1680 m->m_len -= NFSX_UNSIGNED;
1681 } else {
1682 cp1 = (caddr_t)&recmark;
1683 cp2 = mtod(m, caddr_t);
1684 while (cp1 < ((caddr_t)&recmark) + NFSX_UNSIGNED) {
1685 while (m->m_len == 0) {
1686 m = m->m_next;
1687 cp2 = mtod(m, caddr_t);
1688 }
1689 *cp1++ = *cp2++;
1690 m->m_data++;
1691 m->m_len--;
1692 }
1693 }
1694 slp->ns_cc -= NFSX_UNSIGNED;
1695 recmark = ntohl(recmark);
1696 slp->ns_reclen = recmark & ~0x80000000;
1697 if (recmark & 0x80000000)
1698 slp->ns_flag |= SLP_LASTFRAG;
1699 else
1700 slp->ns_flag &= ~SLP_LASTFRAG;
1701 if (slp->ns_reclen > NFS_MAXPACKET) {
1702 slp->ns_flag &= ~SLP_GETSTREAM;
1703 return (EPERM);
1704 }
1705 }
1706
1707 /*
1708 * Now get the record part.
1709 */
1710 recm = NULL;
1711 if (slp->ns_cc == slp->ns_reclen) {
1712 recm = slp->ns_raw;
1713 slp->ns_raw = slp->ns_rawend = NULL;
1714 slp->ns_cc = slp->ns_reclen = 0;
1715 } else if (slp->ns_cc > slp->ns_reclen) {
1716 len = 0;
1717 m = slp->ns_raw;
1718 om = NULL;
1719 while (len < slp->ns_reclen) {
1720 if ((len + m->m_len) > slp->ns_reclen) {
1721 m2 = m_copym(m, 0, slp->ns_reclen - len,
1722 waitflag);
1723 if (m2) {
1724 if (om) {
1725 om->m_next = m2;
1726 recm = slp->ns_raw;
1727 } else
1728 recm = m2;
1729 m->m_data += slp->ns_reclen-len;
1730 m->m_len -= slp->ns_reclen-len;
1731 len = slp->ns_reclen;
1732 } else {
1733 slp->ns_flag &= ~SLP_GETSTREAM;
1734 return (EWOULDBLOCK);
1735 }
1736 } else if ((len + m->m_len) == slp->ns_reclen) {
1737 om = m;
1738 len += m->m_len;
1739 m = m->m_next;
1740 recm = slp->ns_raw;
1741 om->m_next = NULL;
1742 } else {
1743 om = m;
1744 len += m->m_len;
1745 m = m->m_next;
1746 }
1747 }
1748 slp->ns_raw = m;
1749 slp->ns_cc -= len;
1750 slp->ns_reclen = 0;
1751 } else {
1752 slp->ns_flag &= ~SLP_GETSTREAM;
1753 return (0);
1754 }
1755
1756 /*
1757 * Accumulate the fragments into a record.
1758 */
1759 mpp = &slp->ns_frag;
1760 while (*mpp)
1761 mpp = &((*mpp)->m_next);
1762 *mpp = recm;
1763 if (slp->ns_flag & SLP_LASTFRAG) {
1764 if (slp->ns_recend)
1765 slp->ns_recend->m_nextpkt = slp->ns_frag;
1766 else
1767 slp->ns_rec = slp->ns_frag;
1768 slp->ns_recend = slp->ns_frag;
1769 slp->ns_frag = NULL;
1770 }
1771 }
1772 }
1773
1774 /*
1775 * Parse an RPC header.
1776 */
1777 int
1778 nfsrv_dorec(struct nfssvc_sock *slp, struct nfsd *nfsd,
1779 struct nfsrv_descript **ndp)
1780 {
1781 struct mbuf *m, *nam;
1782 struct nfsrv_descript *nd;
1783 int error;
1784
1785 *ndp = NULL;
1786 if ((slp->ns_flag & SLP_VALID) == 0 ||
1787 (m = slp->ns_rec) == NULL)
1788 return (ENOBUFS);
1789 slp->ns_rec = m->m_nextpkt;
1790 if (slp->ns_rec)
1791 m->m_nextpkt = NULL;
1792 else
1793 slp->ns_recend = NULL;
1794 if (m->m_type == MT_SONAME) {
1795 nam = m;
1796 m = m->m_next;
1797 nam->m_next = NULL;
1798 } else
1799 nam = NULL;
1800 nd = pool_get(&nfsrv_descript_pl, PR_WAITOK);
1801 nfs_realign(&m, 10 * NFSX_UNSIGNED);
1802 nd->nd_md = nd->nd_mrep = m;
1803 nd->nd_nam2 = nam;
1804 nd->nd_dpos = mtod(m, caddr_t);
1805 error = nfs_getreq(nd, nfsd, 1);
1806 if (error) {
1807 m_freem(nam);
1808 pool_put(&nfsrv_descript_pl, nd);
1809 return (error);
1810 }
1811 *ndp = nd;
1812 nfsd->nfsd_nd = nd;
1813 return (0);
1814 }
1815
1816
1817 /*
1818 * Search for a sleeping nfsd and wake it up.
1819 * SIDE EFFECT: If none found, set NFSD_CHECKSLP flag, so that one of the
1820 * running nfsds will go look for the work in the nfssvc_sock list.
1821 */
1822 void
1823 nfsrv_wakenfsd(struct nfssvc_sock *slp)
1824 {
1825 struct nfsd *nfsd;
1826
1827 if ((slp->ns_flag & SLP_VALID) == 0)
1828 return;
1829
1830 TAILQ_FOREACH(nfsd, &nfsd_head, nfsd_chain) {
1831 if (nfsd->nfsd_flag & NFSD_WAITING) {
1832 nfsd->nfsd_flag &= ~NFSD_WAITING;
1833 if (nfsd->nfsd_slp)
1834 panic("nfsd wakeup");
1835 slp->ns_sref++;
1836 nfsd->nfsd_slp = slp;
1837 wakeup_one(nfsd);
1838 return;
1839 }
1840 }
1841
1842 slp->ns_flag |= SLP_DOREC;
1843 nfsd_head_flag |= NFSD_CHECKSLP;
1844 }
1845 #endif /* NFSSERVER */
Cache object: 66b05cbeda6bfd54da9d3c4e9f22c5d6
|