FreeBSD/Linux Kernel Cross Reference
sys/nfs/nfs_subs.c
1 /* $NetBSD: nfs_subs.c,v 1.132.2.5 2005/03/16 11:54:49 tron Exp $ */
2
3 /*
4 * Copyright (c) 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * Rick Macklem at The University of Guelph.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 * @(#)nfs_subs.c 8.8 (Berkeley) 5/22/95
35 */
36
37 /*
38 * Copyright 2000 Wasabi Systems, Inc.
39 * All rights reserved.
40 *
41 * Written by Frank van der Linden for Wasabi Systems, Inc.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. All advertising materials mentioning features or use of this software
52 * must display the following acknowledgement:
53 * This product includes software developed for the NetBSD Project by
54 * Wasabi Systems, Inc.
55 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
56 * or promote products derived from this software without specific prior
57 * written permission.
58 *
59 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
61 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
62 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
63 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
64 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
65 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
66 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
67 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
68 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
69 * POSSIBILITY OF SUCH DAMAGE.
70 */
71
72 #include <sys/cdefs.h>
73 __KERNEL_RCSID(0, "$NetBSD: nfs_subs.c,v 1.132.2.5 2005/03/16 11:54:49 tron Exp $");
74
75 #include "fs_nfs.h"
76 #include "opt_nfs.h"
77 #include "opt_nfsserver.h"
78 #include "opt_iso.h"
79 #include "opt_inet.h"
80
81 /*
82 * These functions support the macros and help fiddle mbuf chains for
83 * the nfs op functions. They do things like create the rpc header and
84 * copy data between mbuf chains and uio lists.
85 */
86 #include <sys/param.h>
87 #include <sys/proc.h>
88 #include <sys/systm.h>
89 #include <sys/kernel.h>
90 #include <sys/mount.h>
91 #include <sys/vnode.h>
92 #include <sys/namei.h>
93 #include <sys/mbuf.h>
94 #include <sys/socket.h>
95 #include <sys/stat.h>
96 #include <sys/malloc.h>
97 #include <sys/filedesc.h>
98 #include <sys/time.h>
99 #include <sys/dirent.h>
100
101 #include <uvm/uvm_extern.h>
102
103 #include <nfs/rpcv2.h>
104 #include <nfs/nfsproto.h>
105 #include <nfs/nfsnode.h>
106 #include <nfs/nfs.h>
107 #include <nfs/xdr_subs.h>
108 #include <nfs/nfsm_subs.h>
109 #include <nfs/nfsmount.h>
110 #include <nfs/nqnfs.h>
111 #include <nfs/nfsrtt.h>
112 #include <nfs/nfs_var.h>
113
114 #include <miscfs/specfs/specdev.h>
115
116 #include <netinet/in.h>
117 #ifdef ISO
118 #include <netiso/iso.h>
119 #endif
120
121 /*
122 * Data items converted to xdr at startup, since they are constant
123 * This is kinda hokey, but may save a little time doing byte swaps
124 */
125 u_int32_t nfs_xdrneg1;
126 u_int32_t rpc_call, rpc_vers, rpc_reply, rpc_msgdenied, rpc_autherr,
127 rpc_mismatch, rpc_auth_unix, rpc_msgaccepted,
128 rpc_auth_kerb;
129 u_int32_t nfs_prog, nqnfs_prog, nfs_true, nfs_false;
130
131 /* And other global data */
132 const nfstype nfsv2_type[9] =
133 { NFNON, NFREG, NFDIR, NFBLK, NFCHR, NFLNK, NFNON, NFCHR, NFNON };
134 const nfstype nfsv3_type[9] =
135 { NFNON, NFREG, NFDIR, NFBLK, NFCHR, NFLNK, NFSOCK, NFFIFO, NFNON };
136 const enum vtype nv2tov_type[8] =
137 { VNON, VREG, VDIR, VBLK, VCHR, VLNK, VNON, VNON };
138 const enum vtype nv3tov_type[8] =
139 { VNON, VREG, VDIR, VBLK, VCHR, VLNK, VSOCK, VFIFO };
140 int nfs_ticks;
141 int nfs_commitsize;
142
143 MALLOC_DEFINE(M_NFSDIROFF, "NFS diroff", "NFS directory cookies");
144
145 /* NFS client/server stats. */
146 struct nfsstats nfsstats;
147
148 /*
149 * Mapping of old NFS Version 2 RPC numbers to generic numbers.
150 */
151 const int nfsv3_procid[NFS_NPROCS] = {
152 NFSPROC_NULL,
153 NFSPROC_GETATTR,
154 NFSPROC_SETATTR,
155 NFSPROC_NOOP,
156 NFSPROC_LOOKUP,
157 NFSPROC_READLINK,
158 NFSPROC_READ,
159 NFSPROC_NOOP,
160 NFSPROC_WRITE,
161 NFSPROC_CREATE,
162 NFSPROC_REMOVE,
163 NFSPROC_RENAME,
164 NFSPROC_LINK,
165 NFSPROC_SYMLINK,
166 NFSPROC_MKDIR,
167 NFSPROC_RMDIR,
168 NFSPROC_READDIR,
169 NFSPROC_FSSTAT,
170 NFSPROC_NOOP,
171 NFSPROC_NOOP,
172 NFSPROC_NOOP,
173 NFSPROC_NOOP,
174 NFSPROC_NOOP,
175 NFSPROC_NOOP,
176 NFSPROC_NOOP,
177 NFSPROC_NOOP
178 };
179
180 /*
181 * and the reverse mapping from generic to Version 2 procedure numbers
182 */
183 const int nfsv2_procid[NFS_NPROCS] = {
184 NFSV2PROC_NULL,
185 NFSV2PROC_GETATTR,
186 NFSV2PROC_SETATTR,
187 NFSV2PROC_LOOKUP,
188 NFSV2PROC_NOOP,
189 NFSV2PROC_READLINK,
190 NFSV2PROC_READ,
191 NFSV2PROC_WRITE,
192 NFSV2PROC_CREATE,
193 NFSV2PROC_MKDIR,
194 NFSV2PROC_SYMLINK,
195 NFSV2PROC_CREATE,
196 NFSV2PROC_REMOVE,
197 NFSV2PROC_RMDIR,
198 NFSV2PROC_RENAME,
199 NFSV2PROC_LINK,
200 NFSV2PROC_READDIR,
201 NFSV2PROC_NOOP,
202 NFSV2PROC_STATFS,
203 NFSV2PROC_NOOP,
204 NFSV2PROC_NOOP,
205 NFSV2PROC_NOOP,
206 NFSV2PROC_NOOP,
207 NFSV2PROC_NOOP,
208 NFSV2PROC_NOOP,
209 NFSV2PROC_NOOP,
210 };
211
212 /*
213 * Maps errno values to nfs error numbers.
214 * Use NFSERR_IO as the catch all for ones not specifically defined in
215 * RFC 1094.
216 */
217 static const u_char nfsrv_v2errmap[ELAST] = {
218 NFSERR_PERM, NFSERR_NOENT, NFSERR_IO, NFSERR_IO, NFSERR_IO,
219 NFSERR_NXIO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
220 NFSERR_IO, NFSERR_IO, NFSERR_ACCES, NFSERR_IO, NFSERR_IO,
221 NFSERR_IO, NFSERR_EXIST, NFSERR_IO, NFSERR_NODEV, NFSERR_NOTDIR,
222 NFSERR_ISDIR, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
223 NFSERR_IO, NFSERR_FBIG, NFSERR_NOSPC, NFSERR_IO, NFSERR_ROFS,
224 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
225 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
226 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
227 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
228 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
229 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
230 NFSERR_IO, NFSERR_IO, NFSERR_NAMETOL, NFSERR_IO, NFSERR_IO,
231 NFSERR_NOTEMPTY, NFSERR_IO, NFSERR_IO, NFSERR_DQUOT, NFSERR_STALE,
232 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
233 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
234 NFSERR_IO, NFSERR_IO,
235 };
236
237 /*
238 * Maps errno values to nfs error numbers.
239 * Although it is not obvious whether or not NFS clients really care if
240 * a returned error value is in the specified list for the procedure, the
241 * safest thing to do is filter them appropriately. For Version 2, the
242 * X/Open XNFS document is the only specification that defines error values
243 * for each RPC (The RFC simply lists all possible error values for all RPCs),
244 * so I have decided to not do this for Version 2.
245 * The first entry is the default error return and the rest are the valid
246 * errors for that RPC in increasing numeric order.
247 */
248 static const short nfsv3err_null[] = {
249 0,
250 0,
251 };
252
253 static const short nfsv3err_getattr[] = {
254 NFSERR_IO,
255 NFSERR_IO,
256 NFSERR_STALE,
257 NFSERR_BADHANDLE,
258 NFSERR_SERVERFAULT,
259 0,
260 };
261
262 static const short nfsv3err_setattr[] = {
263 NFSERR_IO,
264 NFSERR_PERM,
265 NFSERR_IO,
266 NFSERR_ACCES,
267 NFSERR_INVAL,
268 NFSERR_NOSPC,
269 NFSERR_ROFS,
270 NFSERR_DQUOT,
271 NFSERR_STALE,
272 NFSERR_BADHANDLE,
273 NFSERR_NOT_SYNC,
274 NFSERR_SERVERFAULT,
275 0,
276 };
277
278 static const short nfsv3err_lookup[] = {
279 NFSERR_IO,
280 NFSERR_NOENT,
281 NFSERR_IO,
282 NFSERR_ACCES,
283 NFSERR_NOTDIR,
284 NFSERR_NAMETOL,
285 NFSERR_STALE,
286 NFSERR_BADHANDLE,
287 NFSERR_SERVERFAULT,
288 0,
289 };
290
291 static const short nfsv3err_access[] = {
292 NFSERR_IO,
293 NFSERR_IO,
294 NFSERR_STALE,
295 NFSERR_BADHANDLE,
296 NFSERR_SERVERFAULT,
297 0,
298 };
299
300 static const short nfsv3err_readlink[] = {
301 NFSERR_IO,
302 NFSERR_IO,
303 NFSERR_ACCES,
304 NFSERR_INVAL,
305 NFSERR_STALE,
306 NFSERR_BADHANDLE,
307 NFSERR_NOTSUPP,
308 NFSERR_SERVERFAULT,
309 0,
310 };
311
312 static const short nfsv3err_read[] = {
313 NFSERR_IO,
314 NFSERR_IO,
315 NFSERR_NXIO,
316 NFSERR_ACCES,
317 NFSERR_INVAL,
318 NFSERR_STALE,
319 NFSERR_BADHANDLE,
320 NFSERR_SERVERFAULT,
321 NFSERR_JUKEBOX,
322 0,
323 };
324
325 static const short nfsv3err_write[] = {
326 NFSERR_IO,
327 NFSERR_IO,
328 NFSERR_ACCES,
329 NFSERR_INVAL,
330 NFSERR_FBIG,
331 NFSERR_NOSPC,
332 NFSERR_ROFS,
333 NFSERR_DQUOT,
334 NFSERR_STALE,
335 NFSERR_BADHANDLE,
336 NFSERR_SERVERFAULT,
337 NFSERR_JUKEBOX,
338 0,
339 };
340
341 static const short nfsv3err_create[] = {
342 NFSERR_IO,
343 NFSERR_IO,
344 NFSERR_ACCES,
345 NFSERR_EXIST,
346 NFSERR_NOTDIR,
347 NFSERR_NOSPC,
348 NFSERR_ROFS,
349 NFSERR_NAMETOL,
350 NFSERR_DQUOT,
351 NFSERR_STALE,
352 NFSERR_BADHANDLE,
353 NFSERR_NOTSUPP,
354 NFSERR_SERVERFAULT,
355 0,
356 };
357
358 static const short nfsv3err_mkdir[] = {
359 NFSERR_IO,
360 NFSERR_IO,
361 NFSERR_ACCES,
362 NFSERR_EXIST,
363 NFSERR_NOTDIR,
364 NFSERR_NOSPC,
365 NFSERR_ROFS,
366 NFSERR_NAMETOL,
367 NFSERR_DQUOT,
368 NFSERR_STALE,
369 NFSERR_BADHANDLE,
370 NFSERR_NOTSUPP,
371 NFSERR_SERVERFAULT,
372 0,
373 };
374
375 static const short nfsv3err_symlink[] = {
376 NFSERR_IO,
377 NFSERR_IO,
378 NFSERR_ACCES,
379 NFSERR_EXIST,
380 NFSERR_NOTDIR,
381 NFSERR_NOSPC,
382 NFSERR_ROFS,
383 NFSERR_NAMETOL,
384 NFSERR_DQUOT,
385 NFSERR_STALE,
386 NFSERR_BADHANDLE,
387 NFSERR_NOTSUPP,
388 NFSERR_SERVERFAULT,
389 0,
390 };
391
392 static const short nfsv3err_mknod[] = {
393 NFSERR_IO,
394 NFSERR_IO,
395 NFSERR_ACCES,
396 NFSERR_EXIST,
397 NFSERR_NOTDIR,
398 NFSERR_NOSPC,
399 NFSERR_ROFS,
400 NFSERR_NAMETOL,
401 NFSERR_DQUOT,
402 NFSERR_STALE,
403 NFSERR_BADHANDLE,
404 NFSERR_NOTSUPP,
405 NFSERR_SERVERFAULT,
406 NFSERR_BADTYPE,
407 0,
408 };
409
410 static const short nfsv3err_remove[] = {
411 NFSERR_IO,
412 NFSERR_NOENT,
413 NFSERR_IO,
414 NFSERR_ACCES,
415 NFSERR_NOTDIR,
416 NFSERR_ROFS,
417 NFSERR_NAMETOL,
418 NFSERR_STALE,
419 NFSERR_BADHANDLE,
420 NFSERR_SERVERFAULT,
421 0,
422 };
423
424 static const short nfsv3err_rmdir[] = {
425 NFSERR_IO,
426 NFSERR_NOENT,
427 NFSERR_IO,
428 NFSERR_ACCES,
429 NFSERR_EXIST,
430 NFSERR_NOTDIR,
431 NFSERR_INVAL,
432 NFSERR_ROFS,
433 NFSERR_NAMETOL,
434 NFSERR_NOTEMPTY,
435 NFSERR_STALE,
436 NFSERR_BADHANDLE,
437 NFSERR_NOTSUPP,
438 NFSERR_SERVERFAULT,
439 0,
440 };
441
442 static const short nfsv3err_rename[] = {
443 NFSERR_IO,
444 NFSERR_NOENT,
445 NFSERR_IO,
446 NFSERR_ACCES,
447 NFSERR_EXIST,
448 NFSERR_XDEV,
449 NFSERR_NOTDIR,
450 NFSERR_ISDIR,
451 NFSERR_INVAL,
452 NFSERR_NOSPC,
453 NFSERR_ROFS,
454 NFSERR_MLINK,
455 NFSERR_NAMETOL,
456 NFSERR_NOTEMPTY,
457 NFSERR_DQUOT,
458 NFSERR_STALE,
459 NFSERR_BADHANDLE,
460 NFSERR_NOTSUPP,
461 NFSERR_SERVERFAULT,
462 0,
463 };
464
465 static const short nfsv3err_link[] = {
466 NFSERR_IO,
467 NFSERR_IO,
468 NFSERR_ACCES,
469 NFSERR_EXIST,
470 NFSERR_XDEV,
471 NFSERR_NOTDIR,
472 NFSERR_INVAL,
473 NFSERR_NOSPC,
474 NFSERR_ROFS,
475 NFSERR_MLINK,
476 NFSERR_NAMETOL,
477 NFSERR_DQUOT,
478 NFSERR_STALE,
479 NFSERR_BADHANDLE,
480 NFSERR_NOTSUPP,
481 NFSERR_SERVERFAULT,
482 0,
483 };
484
485 static const short nfsv3err_readdir[] = {
486 NFSERR_IO,
487 NFSERR_IO,
488 NFSERR_ACCES,
489 NFSERR_NOTDIR,
490 NFSERR_STALE,
491 NFSERR_BADHANDLE,
492 NFSERR_BAD_COOKIE,
493 NFSERR_TOOSMALL,
494 NFSERR_SERVERFAULT,
495 0,
496 };
497
498 static const short nfsv3err_readdirplus[] = {
499 NFSERR_IO,
500 NFSERR_IO,
501 NFSERR_ACCES,
502 NFSERR_NOTDIR,
503 NFSERR_STALE,
504 NFSERR_BADHANDLE,
505 NFSERR_BAD_COOKIE,
506 NFSERR_NOTSUPP,
507 NFSERR_TOOSMALL,
508 NFSERR_SERVERFAULT,
509 0,
510 };
511
512 static const short nfsv3err_fsstat[] = {
513 NFSERR_IO,
514 NFSERR_IO,
515 NFSERR_STALE,
516 NFSERR_BADHANDLE,
517 NFSERR_SERVERFAULT,
518 0,
519 };
520
521 static const short nfsv3err_fsinfo[] = {
522 NFSERR_STALE,
523 NFSERR_STALE,
524 NFSERR_BADHANDLE,
525 NFSERR_SERVERFAULT,
526 0,
527 };
528
529 static const short nfsv3err_pathconf[] = {
530 NFSERR_STALE,
531 NFSERR_STALE,
532 NFSERR_BADHANDLE,
533 NFSERR_SERVERFAULT,
534 0,
535 };
536
537 static const short nfsv3err_commit[] = {
538 NFSERR_IO,
539 NFSERR_IO,
540 NFSERR_STALE,
541 NFSERR_BADHANDLE,
542 NFSERR_SERVERFAULT,
543 0,
544 };
545
546 static const short * const nfsrv_v3errmap[] = {
547 nfsv3err_null,
548 nfsv3err_getattr,
549 nfsv3err_setattr,
550 nfsv3err_lookup,
551 nfsv3err_access,
552 nfsv3err_readlink,
553 nfsv3err_read,
554 nfsv3err_write,
555 nfsv3err_create,
556 nfsv3err_mkdir,
557 nfsv3err_symlink,
558 nfsv3err_mknod,
559 nfsv3err_remove,
560 nfsv3err_rmdir,
561 nfsv3err_rename,
562 nfsv3err_link,
563 nfsv3err_readdir,
564 nfsv3err_readdirplus,
565 nfsv3err_fsstat,
566 nfsv3err_fsinfo,
567 nfsv3err_pathconf,
568 nfsv3err_commit,
569 };
570
571 extern struct nfsrtt nfsrtt;
572 extern time_t nqnfsstarttime;
573 extern int nqsrv_clockskew;
574 extern int nqsrv_writeslack;
575 extern int nqsrv_maxlease;
576 extern const int nqnfs_piggy[NFS_NPROCS];
577 extern struct nfsnodehashhead *nfsnodehashtbl;
578 extern u_long nfsnodehash;
579
580 u_long nfsdirhashmask;
581
582 int nfs_webnamei __P((struct nameidata *, struct vnode *, struct proc *));
583
584 /*
585 * Create the header for an rpc request packet
586 * The hsiz is the size of the rest of the nfs request header.
587 * (just used to decide if a cluster is a good idea)
588 */
589 struct mbuf *
590 nfsm_reqh(np, procid, hsiz, bposp)
591 struct nfsnode *np;
592 u_long procid;
593 int hsiz;
594 caddr_t *bposp;
595 {
596 struct mbuf *mb;
597 caddr_t bpos;
598 #ifndef NFS_V2_ONLY
599 struct nfsmount *nmp;
600 u_int32_t *tl;
601 int nqflag;
602 #endif
603
604 mb = m_get(M_WAIT, MT_DATA);
605 MCLAIM(mb, &nfs_mowner);
606 if (hsiz >= MINCLSIZE)
607 m_clget(mb, M_WAIT);
608 mb->m_len = 0;
609 bpos = mtod(mb, caddr_t);
610
611 #ifndef NFS_V2_ONLY
612 /*
613 * For NQNFS, add lease request.
614 */
615 if (np) {
616 nmp = VFSTONFS(np->n_vnode->v_mount);
617 if (nmp->nm_flag & NFSMNT_NQNFS) {
618 nqflag = NQNFS_NEEDLEASE(np, procid);
619 if (nqflag) {
620 nfsm_build(tl, u_int32_t *, 2*NFSX_UNSIGNED);
621 *tl++ = txdr_unsigned(nqflag);
622 *tl = txdr_unsigned(nmp->nm_leaseterm);
623 } else {
624 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
625 *tl = 0;
626 }
627 }
628 }
629 #endif
630 /* Finally, return values */
631 *bposp = bpos;
632 return (mb);
633 }
634
635 /*
636 * Build the RPC header and fill in the authorization info.
637 * The authorization string argument is only used when the credentials
638 * come from outside of the kernel.
639 * Returns the head of the mbuf list.
640 */
641 struct mbuf *
642 nfsm_rpchead(cr, nmflag, procid, auth_type, auth_len, auth_str, verf_len,
643 verf_str, mrest, mrest_len, mbp, xidp)
644 struct ucred *cr;
645 int nmflag;
646 int procid;
647 int auth_type;
648 int auth_len;
649 char *auth_str;
650 int verf_len;
651 char *verf_str;
652 struct mbuf *mrest;
653 int mrest_len;
654 struct mbuf **mbp;
655 u_int32_t *xidp;
656 {
657 struct mbuf *mb;
658 u_int32_t *tl;
659 caddr_t bpos;
660 int i;
661 struct mbuf *mreq;
662 int siz, grpsiz, authsiz;
663
664 authsiz = nfsm_rndup(auth_len);
665 mb = m_gethdr(M_WAIT, MT_DATA);
666 MCLAIM(mb, &nfs_mowner);
667 if ((authsiz + 10 * NFSX_UNSIGNED) >= MINCLSIZE) {
668 m_clget(mb, M_WAIT);
669 } else if ((authsiz + 10 * NFSX_UNSIGNED) < MHLEN) {
670 MH_ALIGN(mb, authsiz + 10 * NFSX_UNSIGNED);
671 } else {
672 MH_ALIGN(mb, 8 * NFSX_UNSIGNED);
673 }
674 mb->m_len = 0;
675 mreq = mb;
676 bpos = mtod(mb, caddr_t);
677
678 /*
679 * First the RPC header.
680 */
681 nfsm_build(tl, u_int32_t *, 8 * NFSX_UNSIGNED);
682
683 *tl++ = *xidp = nfs_getxid();
684 *tl++ = rpc_call;
685 *tl++ = rpc_vers;
686 if (nmflag & NFSMNT_NQNFS) {
687 *tl++ = txdr_unsigned(NQNFS_PROG);
688 *tl++ = txdr_unsigned(NQNFS_VER3);
689 } else {
690 *tl++ = txdr_unsigned(NFS_PROG);
691 if (nmflag & NFSMNT_NFSV3)
692 *tl++ = txdr_unsigned(NFS_VER3);
693 else
694 *tl++ = txdr_unsigned(NFS_VER2);
695 }
696 if (nmflag & NFSMNT_NFSV3)
697 *tl++ = txdr_unsigned(procid);
698 else
699 *tl++ = txdr_unsigned(nfsv2_procid[procid]);
700
701 /*
702 * And then the authorization cred.
703 */
704 *tl++ = txdr_unsigned(auth_type);
705 *tl = txdr_unsigned(authsiz);
706 switch (auth_type) {
707 case RPCAUTH_UNIX:
708 nfsm_build(tl, u_int32_t *, auth_len);
709 *tl++ = 0; /* stamp ?? */
710 *tl++ = 0; /* NULL hostname */
711 *tl++ = txdr_unsigned(cr->cr_uid);
712 *tl++ = txdr_unsigned(cr->cr_gid);
713 grpsiz = (auth_len >> 2) - 5;
714 *tl++ = txdr_unsigned(grpsiz);
715 for (i = 0; i < grpsiz; i++)
716 *tl++ = txdr_unsigned(cr->cr_groups[i]);
717 break;
718 case RPCAUTH_KERB4:
719 siz = auth_len;
720 while (siz > 0) {
721 if (M_TRAILINGSPACE(mb) == 0) {
722 struct mbuf *mb2;
723 mb2 = m_get(M_WAIT, MT_DATA);
724 MCLAIM(mb2, &nfs_mowner);
725 if (siz >= MINCLSIZE)
726 m_clget(mb2, M_WAIT);
727 mb->m_next = mb2;
728 mb = mb2;
729 mb->m_len = 0;
730 bpos = mtod(mb, caddr_t);
731 }
732 i = min(siz, M_TRAILINGSPACE(mb));
733 memcpy(bpos, auth_str, i);
734 mb->m_len += i;
735 auth_str += i;
736 bpos += i;
737 siz -= i;
738 }
739 if ((siz = (nfsm_rndup(auth_len) - auth_len)) > 0) {
740 for (i = 0; i < siz; i++)
741 *bpos++ = '\0';
742 mb->m_len += siz;
743 }
744 break;
745 };
746
747 /*
748 * And the verifier...
749 */
750 nfsm_build(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
751 if (verf_str) {
752 *tl++ = txdr_unsigned(RPCAUTH_KERB4);
753 *tl = txdr_unsigned(verf_len);
754 siz = verf_len;
755 while (siz > 0) {
756 if (M_TRAILINGSPACE(mb) == 0) {
757 struct mbuf *mb2;
758 mb2 = m_get(M_WAIT, MT_DATA);
759 MCLAIM(mb2, &nfs_mowner);
760 if (siz >= MINCLSIZE)
761 m_clget(mb2, M_WAIT);
762 mb->m_next = mb2;
763 mb = mb2;
764 mb->m_len = 0;
765 bpos = mtod(mb, caddr_t);
766 }
767 i = min(siz, M_TRAILINGSPACE(mb));
768 memcpy(bpos, verf_str, i);
769 mb->m_len += i;
770 verf_str += i;
771 bpos += i;
772 siz -= i;
773 }
774 if ((siz = (nfsm_rndup(verf_len) - verf_len)) > 0) {
775 for (i = 0; i < siz; i++)
776 *bpos++ = '\0';
777 mb->m_len += siz;
778 }
779 } else {
780 *tl++ = txdr_unsigned(RPCAUTH_NULL);
781 *tl = 0;
782 }
783 mb->m_next = mrest;
784 mreq->m_pkthdr.len = authsiz + 10 * NFSX_UNSIGNED + mrest_len;
785 mreq->m_pkthdr.rcvif = (struct ifnet *)0;
786 *mbp = mb;
787 return (mreq);
788 }
789
790 /*
791 * copies mbuf chain to the uio scatter/gather list
792 */
793 int
794 nfsm_mbuftouio(mrep, uiop, siz, dpos)
795 struct mbuf **mrep;
796 struct uio *uiop;
797 int siz;
798 caddr_t *dpos;
799 {
800 char *mbufcp, *uiocp;
801 int xfer, left, len;
802 struct mbuf *mp;
803 long uiosiz, rem;
804 int error = 0;
805
806 mp = *mrep;
807 mbufcp = *dpos;
808 len = mtod(mp, caddr_t)+mp->m_len-mbufcp;
809 rem = nfsm_rndup(siz)-siz;
810 while (siz > 0) {
811 if (uiop->uio_iovcnt <= 0 || uiop->uio_iov == NULL)
812 return (EFBIG);
813 left = uiop->uio_iov->iov_len;
814 uiocp = uiop->uio_iov->iov_base;
815 if (left > siz)
816 left = siz;
817 uiosiz = left;
818 while (left > 0) {
819 while (len == 0) {
820 mp = mp->m_next;
821 if (mp == NULL)
822 return (EBADRPC);
823 mbufcp = mtod(mp, caddr_t);
824 len = mp->m_len;
825 }
826 xfer = (left > len) ? len : left;
827 #ifdef notdef
828 /* Not Yet.. */
829 if (uiop->uio_iov->iov_op != NULL)
830 (*(uiop->uio_iov->iov_op))
831 (mbufcp, uiocp, xfer);
832 else
833 #endif
834 if (uiop->uio_segflg == UIO_SYSSPACE)
835 memcpy(uiocp, mbufcp, xfer);
836 else
837 copyout(mbufcp, uiocp, xfer);
838 left -= xfer;
839 len -= xfer;
840 mbufcp += xfer;
841 uiocp += xfer;
842 uiop->uio_offset += xfer;
843 uiop->uio_resid -= xfer;
844 }
845 if (uiop->uio_iov->iov_len <= siz) {
846 uiop->uio_iovcnt--;
847 uiop->uio_iov++;
848 } else {
849 uiop->uio_iov->iov_base =
850 (caddr_t)uiop->uio_iov->iov_base + uiosiz;
851 uiop->uio_iov->iov_len -= uiosiz;
852 }
853 siz -= uiosiz;
854 }
855 *dpos = mbufcp;
856 *mrep = mp;
857 if (rem > 0) {
858 if (len < rem)
859 error = nfs_adv(mrep, dpos, rem, len);
860 else
861 *dpos += rem;
862 }
863 return (error);
864 }
865
866 /*
867 * copies a uio scatter/gather list to an mbuf chain.
868 * NOTE: can ony handle iovcnt == 1
869 */
870 int
871 nfsm_uiotombuf(uiop, mq, siz, bpos)
872 struct uio *uiop;
873 struct mbuf **mq;
874 int siz;
875 caddr_t *bpos;
876 {
877 char *uiocp;
878 struct mbuf *mp, *mp2;
879 int xfer, left, mlen;
880 int uiosiz, clflg, rem;
881 char *cp;
882
883 #ifdef DIAGNOSTIC
884 if (uiop->uio_iovcnt != 1)
885 panic("nfsm_uiotombuf: iovcnt != 1");
886 #endif
887
888 if (siz > MLEN) /* or should it >= MCLBYTES ?? */
889 clflg = 1;
890 else
891 clflg = 0;
892 rem = nfsm_rndup(siz)-siz;
893 mp = mp2 = *mq;
894 while (siz > 0) {
895 left = uiop->uio_iov->iov_len;
896 uiocp = uiop->uio_iov->iov_base;
897 if (left > siz)
898 left = siz;
899 uiosiz = left;
900 while (left > 0) {
901 mlen = M_TRAILINGSPACE(mp);
902 if (mlen == 0) {
903 mp = m_get(M_WAIT, MT_DATA);
904 MCLAIM(mp, &nfs_mowner);
905 if (clflg)
906 m_clget(mp, M_WAIT);
907 mp->m_len = 0;
908 mp2->m_next = mp;
909 mp2 = mp;
910 mlen = M_TRAILINGSPACE(mp);
911 }
912 xfer = (left > mlen) ? mlen : left;
913 #ifdef notdef
914 /* Not Yet.. */
915 if (uiop->uio_iov->iov_op != NULL)
916 (*(uiop->uio_iov->iov_op))
917 (uiocp, mtod(mp, caddr_t)+mp->m_len, xfer);
918 else
919 #endif
920 if (uiop->uio_segflg == UIO_SYSSPACE)
921 memcpy(mtod(mp, caddr_t)+mp->m_len, uiocp, xfer);
922 else
923 copyin(uiocp, mtod(mp, caddr_t)+mp->m_len, xfer);
924 mp->m_len += xfer;
925 left -= xfer;
926 uiocp += xfer;
927 uiop->uio_offset += xfer;
928 uiop->uio_resid -= xfer;
929 }
930 uiop->uio_iov->iov_base = (caddr_t)uiop->uio_iov->iov_base +
931 uiosiz;
932 uiop->uio_iov->iov_len -= uiosiz;
933 siz -= uiosiz;
934 }
935 if (rem > 0) {
936 if (rem > M_TRAILINGSPACE(mp)) {
937 mp = m_get(M_WAIT, MT_DATA);
938 MCLAIM(mp, &nfs_mowner);
939 mp->m_len = 0;
940 mp2->m_next = mp;
941 }
942 cp = mtod(mp, caddr_t)+mp->m_len;
943 for (left = 0; left < rem; left++)
944 *cp++ = '\0';
945 mp->m_len += rem;
946 *bpos = cp;
947 } else
948 *bpos = mtod(mp, caddr_t)+mp->m_len;
949 *mq = mp;
950 return (0);
951 }
952
953 /*
954 * Get at least "siz" bytes of correctly aligned data.
955 * When called the mbuf pointers are not necessarily correct,
956 * dsosp points to what ought to be in m_data and left contains
957 * what ought to be in m_len.
958 * This is used by the macros nfsm_dissect and nfsm_dissecton for tough
959 * cases. (The macros use the vars. dpos and dpos2)
960 */
961 int
962 nfsm_disct(mdp, dposp, siz, left, cp2)
963 struct mbuf **mdp;
964 caddr_t *dposp;
965 int siz;
966 int left;
967 caddr_t *cp2;
968 {
969 struct mbuf *m1, *m2;
970 struct mbuf *havebuf = NULL;
971 caddr_t src = *dposp;
972 caddr_t dst;
973 int len;
974
975 #ifdef DEBUG
976 if (left < 0)
977 panic("nfsm_disct: left < 0");
978 #endif
979 m1 = *mdp;
980 /*
981 * Skip through the mbuf chain looking for an mbuf with
982 * some data. If the first mbuf found has enough data
983 * and it is correctly aligned return it.
984 */
985 while (left == 0) {
986 havebuf = m1;
987 *mdp = m1 = m1->m_next;
988 if (m1 == NULL)
989 return (EBADRPC);
990 src = mtod(m1, caddr_t);
991 left = m1->m_len;
992 /*
993 * If we start a new mbuf and it is big enough
994 * and correctly aligned just return it, don't
995 * do any pull up.
996 */
997 if (left >= siz && nfsm_aligned(src)) {
998 *cp2 = src;
999 *dposp = src + siz;
1000 return (0);
1001 }
1002 }
1003 if (m1->m_flags & M_EXT) {
1004 if (havebuf) {
1005 /* If the first mbuf with data has external data
1006 * and there is a previous empty mbuf use it
1007 * to move the data into.
1008 */
1009 m2 = m1;
1010 *mdp = m1 = havebuf;
1011 if (m1->m_flags & M_EXT) {
1012 MEXTREMOVE(m1);
1013 }
1014 } else {
1015 /*
1016 * If the first mbuf has a external data
1017 * and there is no previous empty mbuf
1018 * allocate a new mbuf and move the external
1019 * data to the new mbuf. Also make the first
1020 * mbuf look empty.
1021 */
1022 m2 = m_get(M_WAIT, MT_DATA);
1023 m2->m_ext = m1->m_ext;
1024 m2->m_data = src;
1025 m2->m_len = left;
1026 MCLADDREFERENCE(m1, m2);
1027 MEXTREMOVE(m1);
1028 m2->m_next = m1->m_next;
1029 m1->m_next = m2;
1030 }
1031 m1->m_len = 0;
1032 if (m1->m_flags & M_PKTHDR)
1033 dst = m1->m_pktdat;
1034 else
1035 dst = m1->m_dat;
1036 m1->m_data = dst;
1037 } else {
1038 /*
1039 * If the first mbuf has no external data
1040 * move the data to the front of the mbuf.
1041 */
1042 if (m1->m_flags & M_PKTHDR)
1043 dst = m1->m_pktdat;
1044 else
1045 dst = m1->m_dat;
1046 m1->m_data = dst;
1047 if (dst != src)
1048 memmove(dst, src, left);
1049 dst += left;
1050 m1->m_len = left;
1051 m2 = m1->m_next;
1052 }
1053 *cp2 = m1->m_data;
1054 *dposp = mtod(m1, caddr_t) + siz;
1055 /*
1056 * Loop through mbufs pulling data up into first mbuf until
1057 * the first mbuf is full or there is no more data to
1058 * pullup.
1059 */
1060 while ((len = M_TRAILINGSPACE(m1)) != 0 && m2) {
1061 if ((len = min(len, m2->m_len)) != 0)
1062 memcpy(dst, m2->m_data, len);
1063 m1->m_len += len;
1064 dst += len;
1065 m2->m_data += len;
1066 m2->m_len -= len;
1067 m2 = m2->m_next;
1068 }
1069 if (m1->m_len < siz)
1070 return (EBADRPC);
1071 return (0);
1072 }
1073
1074 /*
1075 * Advance the position in the mbuf chain.
1076 */
1077 int
1078 nfs_adv(mdp, dposp, offs, left)
1079 struct mbuf **mdp;
1080 caddr_t *dposp;
1081 int offs;
1082 int left;
1083 {
1084 struct mbuf *m;
1085 int s;
1086
1087 m = *mdp;
1088 s = left;
1089 while (s < offs) {
1090 offs -= s;
1091 m = m->m_next;
1092 if (m == NULL)
1093 return (EBADRPC);
1094 s = m->m_len;
1095 }
1096 *mdp = m;
1097 *dposp = mtod(m, caddr_t)+offs;
1098 return (0);
1099 }
1100
1101 /*
1102 * Copy a string into mbufs for the hard cases...
1103 */
1104 int
1105 nfsm_strtmbuf(mb, bpos, cp, siz)
1106 struct mbuf **mb;
1107 char **bpos;
1108 const char *cp;
1109 long siz;
1110 {
1111 struct mbuf *m1 = NULL, *m2;
1112 long left, xfer, len, tlen;
1113 u_int32_t *tl;
1114 int putsize;
1115
1116 putsize = 1;
1117 m2 = *mb;
1118 left = M_TRAILINGSPACE(m2);
1119 if (left > 0) {
1120 tl = ((u_int32_t *)(*bpos));
1121 *tl++ = txdr_unsigned(siz);
1122 putsize = 0;
1123 left -= NFSX_UNSIGNED;
1124 m2->m_len += NFSX_UNSIGNED;
1125 if (left > 0) {
1126 memcpy((caddr_t) tl, cp, left);
1127 siz -= left;
1128 cp += left;
1129 m2->m_len += left;
1130 left = 0;
1131 }
1132 }
1133 /* Loop around adding mbufs */
1134 while (siz > 0) {
1135 m1 = m_get(M_WAIT, MT_DATA);
1136 MCLAIM(m1, &nfs_mowner);
1137 if (siz > MLEN)
1138 m_clget(m1, M_WAIT);
1139 m1->m_len = NFSMSIZ(m1);
1140 m2->m_next = m1;
1141 m2 = m1;
1142 tl = mtod(m1, u_int32_t *);
1143 tlen = 0;
1144 if (putsize) {
1145 *tl++ = txdr_unsigned(siz);
1146 m1->m_len -= NFSX_UNSIGNED;
1147 tlen = NFSX_UNSIGNED;
1148 putsize = 0;
1149 }
1150 if (siz < m1->m_len) {
1151 len = nfsm_rndup(siz);
1152 xfer = siz;
1153 if (xfer < len)
1154 *(tl+(xfer>>2)) = 0;
1155 } else {
1156 xfer = len = m1->m_len;
1157 }
1158 memcpy((caddr_t) tl, cp, xfer);
1159 m1->m_len = len+tlen;
1160 siz -= xfer;
1161 cp += xfer;
1162 }
1163 *mb = m1;
1164 *bpos = mtod(m1, caddr_t)+m1->m_len;
1165 return (0);
1166 }
1167
1168 /*
1169 * Directory caching routines. They work as follows:
1170 * - a cache is maintained per VDIR nfsnode.
1171 * - for each offset cookie that is exported to userspace, and can
1172 * thus be thrown back at us as an offset to VOP_READDIR, store
1173 * information in the cache.
1174 * - cached are:
1175 * - cookie itself
1176 * - blocknumber (essentially just a search key in the buffer cache)
1177 * - entry number in block.
1178 * - offset cookie of block in which this entry is stored
1179 * - 32 bit cookie if NFSMNT_XLATECOOKIE is used.
1180 * - entries are looked up in a hash table
1181 * - also maintained is an LRU list of entries, used to determine
1182 * which ones to delete if the cache grows too large.
1183 * - if 32 <-> 64 translation mode is requested for a filesystem,
1184 * the cache also functions as a translation table
1185 * - in the translation case, invalidating the cache does not mean
1186 * flushing it, but just marking entries as invalid, except for
1187 * the <64bit cookie, 32bitcookie> pair which is still valid, to
1188 * still be able to use the cache as a translation table.
1189 * - 32 bit cookies are uniquely created by combining the hash table
1190 * entry value, and one generation count per hash table entry,
1191 * incremented each time an entry is appended to the chain.
1192 * - the cache is invalidated each time a direcory is modified
1193 * - sanity checks are also done; if an entry in a block turns
1194 * out not to have a matching cookie, the cache is invalidated
1195 * and a new block starting from the wanted offset is fetched from
1196 * the server.
1197 * - directory entries as read from the server are extended to contain
1198 * the 64bit and, optionally, the 32bit cookies, for sanity checking
1199 * the cache and exporting them to userspace through the cookie
1200 * argument to VOP_READDIR.
1201 */
1202
1203 u_long
1204 nfs_dirhash(off)
1205 off_t off;
1206 {
1207 int i;
1208 char *cp = (char *)&off;
1209 u_long sum = 0L;
1210
1211 for (i = 0 ; i < sizeof (off); i++)
1212 sum += *cp++;
1213
1214 return sum;
1215 }
1216
1217 #define _NFSDC_MTX(np) (&NFSTOV(np)->v_interlock)
1218 #define NFSDC_LOCK(np) simple_lock(_NFSDC_MTX(np))
1219 #define NFSDC_UNLOCK(np) simple_unlock(_NFSDC_MTX(np))
1220 #define NFSDC_ASSERT_LOCKED(np) LOCK_ASSERT(simple_lock_held(_NFSDC_MTX(np)))
1221
1222 void
1223 nfs_initdircache(vp)
1224 struct vnode *vp;
1225 {
1226 struct nfsnode *np = VTONFS(vp);
1227 struct nfsdirhashhead *dircache;
1228
1229 dircache = hashinit(NFS_DIRHASHSIZ, HASH_LIST, M_NFSDIROFF,
1230 M_WAITOK, &nfsdirhashmask);
1231
1232 NFSDC_LOCK(np);
1233 if (np->n_dircache == NULL) {
1234 np->n_dircachesize = 0;
1235 np->n_dblkno = 1;
1236 np->n_dircache = dircache;
1237 dircache = NULL;
1238 TAILQ_INIT(&np->n_dirchain);
1239 }
1240 NFSDC_UNLOCK(np);
1241 if (dircache)
1242 hashdone(dircache, M_NFSDIROFF);
1243 }
1244
1245 void
1246 nfs_initdirxlatecookie(vp)
1247 struct vnode *vp;
1248 {
1249 struct nfsnode *np = VTONFS(vp);
1250 unsigned *dirgens;
1251
1252 KASSERT(VFSTONFS(vp->v_mount)->nm_flag & NFSMNT_XLATECOOKIE);
1253
1254 dirgens = malloc(NFS_DIRHASHSIZ * sizeof (unsigned), M_NFSDIROFF,
1255 M_WAITOK|M_ZERO);
1256 NFSDC_LOCK(np);
1257 if (np->n_dirgens == NULL) {
1258 np->n_dirgens = dirgens;
1259 dirgens = NULL;
1260 }
1261 NFSDC_UNLOCK(np);
1262 if (dirgens)
1263 free(dirgens, M_NFSDIROFF);
1264 }
1265
1266 static const struct nfsdircache dzero;
1267
1268 static void nfs_unlinkdircache __P((struct nfsnode *np, struct nfsdircache *));
1269 static void nfs_putdircache_unlocked __P((struct nfsnode *,
1270 struct nfsdircache *));
1271
1272 static void
1273 nfs_unlinkdircache(np, ndp)
1274 struct nfsnode *np;
1275 struct nfsdircache *ndp;
1276 {
1277
1278 NFSDC_ASSERT_LOCKED(np);
1279 KASSERT(ndp != &dzero);
1280
1281 if (LIST_NEXT(ndp, dc_hash) == (void *)-1)
1282 return;
1283
1284 TAILQ_REMOVE(&np->n_dirchain, ndp, dc_chain);
1285 LIST_REMOVE(ndp, dc_hash);
1286 LIST_NEXT(ndp, dc_hash) = (void *)-1; /* mark as unlinked */
1287
1288 nfs_putdircache_unlocked(np, ndp);
1289 }
1290
1291 void
1292 nfs_putdircache(np, ndp)
1293 struct nfsnode *np;
1294 struct nfsdircache *ndp;
1295 {
1296 int ref;
1297
1298 if (ndp == &dzero)
1299 return;
1300
1301 KASSERT(ndp->dc_refcnt > 0);
1302 NFSDC_LOCK(np);
1303 ref = --ndp->dc_refcnt;
1304 NFSDC_UNLOCK(np);
1305
1306 if (ref == 0)
1307 free(ndp, M_NFSDIROFF);
1308 }
1309
1310 static void
1311 nfs_putdircache_unlocked(np, ndp)
1312 struct nfsnode *np;
1313 struct nfsdircache *ndp;
1314 {
1315 int ref;
1316
1317 NFSDC_ASSERT_LOCKED(np);
1318
1319 if (ndp == &dzero)
1320 return;
1321
1322 KASSERT(ndp->dc_refcnt > 0);
1323 ref = --ndp->dc_refcnt;
1324 if (ref == 0)
1325 free(ndp, M_NFSDIROFF);
1326 }
1327
1328 struct nfsdircache *
1329 nfs_searchdircache(vp, off, do32, hashent)
1330 struct vnode *vp;
1331 off_t off;
1332 int do32;
1333 int *hashent;
1334 {
1335 struct nfsdirhashhead *ndhp;
1336 struct nfsdircache *ndp = NULL;
1337 struct nfsnode *np = VTONFS(vp);
1338 unsigned ent;
1339
1340 /*
1341 * Zero is always a valid cookie.
1342 */
1343 if (off == 0)
1344 /* LINTED const cast away */
1345 return (struct nfsdircache *)&dzero;
1346
1347 if (!np->n_dircache)
1348 return NULL;
1349
1350 /*
1351 * We use a 32bit cookie as search key, directly reconstruct
1352 * the hashentry. Else use the hashfunction.
1353 */
1354 if (do32) {
1355 ent = (u_int32_t)off >> 24;
1356 if (ent >= NFS_DIRHASHSIZ)
1357 return NULL;
1358 ndhp = &np->n_dircache[ent];
1359 } else {
1360 ndhp = NFSDIRHASH(np, off);
1361 }
1362
1363 if (hashent)
1364 *hashent = (int)(ndhp - np->n_dircache);
1365
1366 NFSDC_LOCK(np);
1367 if (do32) {
1368 LIST_FOREACH(ndp, ndhp, dc_hash) {
1369 if (ndp->dc_cookie32 == (u_int32_t)off) {
1370 /*
1371 * An invalidated entry will become the
1372 * start of a new block fetched from
1373 * the server.
1374 */
1375 if (ndp->dc_flags & NFSDC_INVALID) {
1376 ndp->dc_blkcookie = ndp->dc_cookie;
1377 ndp->dc_blkno = np->n_dblkno++;
1378 ndp->dc_entry = 0;
1379 ndp->dc_flags &= ~NFSDC_INVALID;
1380 }
1381 break;
1382 }
1383 }
1384 } else {
1385 LIST_FOREACH(ndp, ndhp, dc_hash) {
1386 if (ndp->dc_cookie == off)
1387 break;
1388 }
1389 }
1390 if (ndp != NULL)
1391 ndp->dc_refcnt++;
1392 NFSDC_UNLOCK(np);
1393 return ndp;
1394 }
1395
1396
1397 struct nfsdircache *
1398 nfs_enterdircache(vp, off, blkoff, en, blkno)
1399 struct vnode *vp;
1400 off_t off, blkoff;
1401 int en;
1402 daddr_t blkno;
1403 {
1404 struct nfsnode *np = VTONFS(vp);
1405 struct nfsdirhashhead *ndhp;
1406 struct nfsdircache *ndp = NULL;
1407 struct nfsdircache *newndp = NULL;
1408 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1409 int hashent, gen, overwrite;
1410
1411 /*
1412 * XXX refuse entries for offset 0. amd(8) erroneously sets
1413 * cookie 0 for the '.' entry, making this necessary. This
1414 * isn't so bad, as 0 is a special case anyway.
1415 */
1416 if (off == 0)
1417 /* LINTED const cast away */
1418 return (struct nfsdircache *)&dzero;
1419
1420 if (!np->n_dircache)
1421 /*
1422 * XXX would like to do this in nfs_nget but vtype
1423 * isn't known at that time.
1424 */
1425 nfs_initdircache(vp);
1426
1427 if ((nmp->nm_flag & NFSMNT_XLATECOOKIE) && !np->n_dirgens)
1428 nfs_initdirxlatecookie(vp);
1429
1430 retry:
1431 ndp = nfs_searchdircache(vp, off, 0, &hashent);
1432
1433 NFSDC_LOCK(np);
1434 if (ndp && (ndp->dc_flags & NFSDC_INVALID) == 0) {
1435 /*
1436 * Overwriting an old entry. Check if it's the same.
1437 * If so, just return. If not, remove the old entry.
1438 */
1439 if (ndp->dc_blkcookie == blkoff && ndp->dc_entry == en)
1440 goto done;
1441 nfs_unlinkdircache(np, ndp);
1442 nfs_putdircache_unlocked(np, ndp);
1443 ndp = NULL;
1444 }
1445
1446 ndhp = &np->n_dircache[hashent];
1447
1448 if (!ndp) {
1449 if (newndp == NULL) {
1450 NFSDC_UNLOCK(np);
1451 newndp = malloc(sizeof(*ndp), M_NFSDIROFF, M_WAITOK);
1452 newndp->dc_refcnt = 1;
1453 LIST_NEXT(newndp, dc_hash) = (void *)-1;
1454 goto retry;
1455 }
1456 ndp = newndp;
1457 newndp = NULL;
1458 overwrite = 0;
1459 if (nmp->nm_flag & NFSMNT_XLATECOOKIE) {
1460 /*
1461 * We're allocating a new entry, so bump the
1462 * generation number.
1463 */
1464 gen = ++np->n_dirgens[hashent];
1465 if (gen == 0) {
1466 np->n_dirgens[hashent]++;
1467 gen++;
1468 }
1469 ndp->dc_cookie32 = (hashent << 24) | (gen & 0xffffff);
1470 }
1471 } else
1472 overwrite = 1;
1473
1474 /*
1475 * If the entry number is 0, we are at the start of a new block, so
1476 * allocate a new blocknumber.
1477 */
1478 if (en == 0)
1479 ndp->dc_blkno = np->n_dblkno++;
1480 else
1481 ndp->dc_blkno = blkno;
1482
1483 ndp->dc_cookie = off;
1484 ndp->dc_blkcookie = blkoff;
1485 ndp->dc_entry = en;
1486 ndp->dc_flags = 0;
1487
1488 if (overwrite)
1489 goto done;
1490
1491 /*
1492 * If the maximum directory cookie cache size has been reached
1493 * for this node, take one off the front. The idea is that
1494 * directories are typically read front-to-back once, so that
1495 * the oldest entries can be thrown away without much performance
1496 * loss.
1497 */
1498 if (np->n_dircachesize == NFS_MAXDIRCACHE) {
1499 nfs_unlinkdircache(np, TAILQ_FIRST(&np->n_dirchain));
1500 } else
1501 np->n_dircachesize++;
1502
1503 KASSERT(ndp->dc_refcnt == 1);
1504 LIST_INSERT_HEAD(ndhp, ndp, dc_hash);
1505 TAILQ_INSERT_TAIL(&np->n_dirchain, ndp, dc_chain);
1506 ndp->dc_refcnt++;
1507 done:
1508 KASSERT(ndp->dc_refcnt > 0);
1509 NFSDC_UNLOCK(np);
1510 if (newndp)
1511 nfs_putdircache(np, newndp);
1512 return ndp;
1513 }
1514
1515 void
1516 nfs_invaldircache(vp, forcefree)
1517 struct vnode *vp;
1518 int forcefree;
1519 {
1520 struct nfsnode *np = VTONFS(vp);
1521 struct nfsdircache *ndp = NULL;
1522 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1523
1524 #ifdef DIAGNOSTIC
1525 if (vp->v_type != VDIR)
1526 panic("nfs: invaldircache: not dir");
1527 #endif
1528
1529 if (!np->n_dircache)
1530 return;
1531
1532 NFSDC_LOCK(np);
1533 if (!(nmp->nm_flag & NFSMNT_XLATECOOKIE) || forcefree) {
1534 while ((ndp = TAILQ_FIRST(&np->n_dirchain)) != NULL) {
1535 KASSERT(!forcefree || ndp->dc_refcnt == 1);
1536 nfs_unlinkdircache(np, ndp);
1537 }
1538 np->n_dircachesize = 0;
1539 if (forcefree && np->n_dirgens) {
1540 FREE(np->n_dirgens, M_NFSDIROFF);
1541 np->n_dirgens = NULL;
1542 }
1543 } else {
1544 TAILQ_FOREACH(ndp, &np->n_dirchain, dc_chain)
1545 ndp->dc_flags |= NFSDC_INVALID;
1546 }
1547
1548 np->n_dblkno = 1;
1549 NFSDC_UNLOCK(np);
1550 }
1551
1552 /*
1553 * Called once before VFS init to initialize shared and
1554 * server-specific data structures.
1555 */
1556 void
1557 nfs_init()
1558 {
1559 nfsrtt.pos = 0;
1560 rpc_vers = txdr_unsigned(RPC_VER2);
1561 rpc_call = txdr_unsigned(RPC_CALL);
1562 rpc_reply = txdr_unsigned(RPC_REPLY);
1563 rpc_msgdenied = txdr_unsigned(RPC_MSGDENIED);
1564 rpc_msgaccepted = txdr_unsigned(RPC_MSGACCEPTED);
1565 rpc_mismatch = txdr_unsigned(RPC_MISMATCH);
1566 rpc_autherr = txdr_unsigned(RPC_AUTHERR);
1567 rpc_auth_unix = txdr_unsigned(RPCAUTH_UNIX);
1568 rpc_auth_kerb = txdr_unsigned(RPCAUTH_KERB4);
1569 nfs_prog = txdr_unsigned(NFS_PROG);
1570 nqnfs_prog = txdr_unsigned(NQNFS_PROG);
1571 nfs_true = txdr_unsigned(TRUE);
1572 nfs_false = txdr_unsigned(FALSE);
1573 nfs_xdrneg1 = txdr_unsigned(-1);
1574 nfs_ticks = (hz * NFS_TICKINTVL + 500) / 1000;
1575 if (nfs_ticks < 1)
1576 nfs_ticks = 1;
1577 #ifdef NFSSERVER
1578 nfsrv_init(0); /* Init server data structures */
1579 nfsrv_initcache(); /* Init the server request cache */
1580 pool_init(&nfs_srvdesc_pool, sizeof(struct nfsrv_descript),
1581 0, 0, 0, "nfsrvdescpl", &pool_allocator_nointr);
1582 #endif /* NFSSERVER */
1583
1584 #if defined(NFSSERVER) || !defined(NFS_V2_ONLY)
1585 /*
1586 * Initialize the nqnfs data structures.
1587 */
1588 if (nqnfsstarttime == 0) {
1589 nqnfsstarttime = boottime.tv_sec + nqsrv_maxlease
1590 + nqsrv_clockskew + nqsrv_writeslack;
1591 NQLOADNOVRAM(nqnfsstarttime);
1592 CIRCLEQ_INIT(&nqtimerhead);
1593 nqfhhashtbl = hashinit(NQLCHSZ, HASH_LIST, M_NQLEASE,
1594 M_WAITOK, &nqfhhash);
1595 }
1596 #endif
1597
1598 exithook_establish(nfs_exit, NULL);
1599
1600 /*
1601 * Initialize reply list and start timer
1602 */
1603 TAILQ_INIT(&nfs_reqq);
1604 nfs_timer(NULL);
1605 MOWNER_ATTACH(&nfs_mowner);
1606
1607 #ifdef NFS
1608 /* Initialize the kqueue structures */
1609 nfs_kqinit();
1610 /* Initialize the iod structures */
1611 nfs_iodinit();
1612 #endif
1613 }
1614
1615 #ifdef NFS
1616 /*
1617 * Called once at VFS init to initialize client-specific data structures.
1618 */
1619 void
1620 nfs_vfs_init()
1621 {
1622 nfs_nhinit(); /* Init the nfsnode table */
1623 nfs_commitsize = uvmexp.npages << (PAGE_SHIFT - 4);
1624 }
1625
1626 void
1627 nfs_vfs_reinit()
1628 {
1629 nfs_nhreinit();
1630 }
1631
1632 void
1633 nfs_vfs_done()
1634 {
1635 nfs_nhdone();
1636 }
1637
1638 /*
1639 * Attribute cache routines.
1640 * nfs_loadattrcache() - loads or updates the cache contents from attributes
1641 * that are on the mbuf list
1642 * nfs_getattrcache() - returns valid attributes if found in cache, returns
1643 * error otherwise
1644 */
1645
1646 /*
1647 * Load the attribute cache (that lives in the nfsnode entry) with
1648 * the values on the mbuf list and
1649 * Iff vap not NULL
1650 * copy the attributes to *vaper
1651 */
1652 int
1653 nfsm_loadattrcache(vpp, mdp, dposp, vaper, flags)
1654 struct vnode **vpp;
1655 struct mbuf **mdp;
1656 caddr_t *dposp;
1657 struct vattr *vaper;
1658 int flags;
1659 {
1660 int32_t t1;
1661 caddr_t cp2;
1662 int error = 0;
1663 struct mbuf *md;
1664 int v3 = NFS_ISV3(*vpp);
1665
1666 md = *mdp;
1667 t1 = (mtod(md, caddr_t) + md->m_len) - *dposp;
1668 error = nfsm_disct(mdp, dposp, NFSX_FATTR(v3), t1, &cp2);
1669 if (error)
1670 return (error);
1671 return nfs_loadattrcache(vpp, (struct nfs_fattr *)cp2, vaper, flags);
1672 }
1673
1674 int
1675 nfs_loadattrcache(vpp, fp, vaper, flags)
1676 struct vnode **vpp;
1677 struct nfs_fattr *fp;
1678 struct vattr *vaper;
1679 int flags;
1680 {
1681 struct vnode *vp = *vpp;
1682 struct vattr *vap;
1683 int v3 = NFS_ISV3(vp);
1684 enum vtype vtyp;
1685 u_short vmode;
1686 struct timespec mtime;
1687 struct vnode *nvp;
1688 int32_t rdev;
1689 struct nfsnode *np;
1690 extern int (**spec_nfsv2nodeop_p) __P((void *));
1691 uid_t uid;
1692 gid_t gid;
1693
1694 if (v3) {
1695 vtyp = nfsv3tov_type(fp->fa_type);
1696 vmode = fxdr_unsigned(u_short, fp->fa_mode);
1697 rdev = makedev(fxdr_unsigned(u_int32_t, fp->fa3_rdev.specdata1),
1698 fxdr_unsigned(u_int32_t, fp->fa3_rdev.specdata2));
1699 fxdr_nfsv3time(&fp->fa3_mtime, &mtime);
1700 } else {
1701 vtyp = nfsv2tov_type(fp->fa_type);
1702 vmode = fxdr_unsigned(u_short, fp->fa_mode);
1703 if (vtyp == VNON || vtyp == VREG)
1704 vtyp = IFTOVT(vmode);
1705 rdev = fxdr_unsigned(int32_t, fp->fa2_rdev);
1706 fxdr_nfsv2time(&fp->fa2_mtime, &mtime);
1707
1708 /*
1709 * Really ugly NFSv2 kludge.
1710 */
1711 if (vtyp == VCHR && rdev == 0xffffffff)
1712 vtyp = VFIFO;
1713 }
1714
1715 vmode &= ALLPERMS;
1716
1717 /*
1718 * If v_type == VNON it is a new node, so fill in the v_type,
1719 * n_mtime fields. Check to see if it represents a special
1720 * device, and if so, check for a possible alias. Once the
1721 * correct vnode has been obtained, fill in the rest of the
1722 * information.
1723 */
1724 np = VTONFS(vp);
1725 if (vp->v_type == VNON) {
1726 vp->v_type = vtyp;
1727 if (vp->v_type == VFIFO) {
1728 extern int (**fifo_nfsv2nodeop_p) __P((void *));
1729 vp->v_op = fifo_nfsv2nodeop_p;
1730 } else if (vp->v_type == VREG) {
1731 lockinit(&np->n_commitlock, PINOD, "nfsclock", 0, 0);
1732 } else if (vp->v_type == VCHR || vp->v_type == VBLK) {
1733 vp->v_op = spec_nfsv2nodeop_p;
1734 nvp = checkalias(vp, (dev_t)rdev, vp->v_mount);
1735 if (nvp) {
1736 /*
1737 * Discard unneeded vnode, but save its nfsnode.
1738 * Since the nfsnode does not have a lock, its
1739 * vnode lock has to be carried over.
1740 */
1741 /*
1742 * XXX is the old node sure to be locked here?
1743 */
1744 KASSERT(lockstatus(&vp->v_lock) ==
1745 LK_EXCLUSIVE);
1746 nvp->v_data = vp->v_data;
1747 vp->v_data = NULL;
1748 VOP_UNLOCK(vp, 0);
1749 vp->v_op = spec_vnodeop_p;
1750 vrele(vp);
1751 vgone(vp);
1752 lockmgr(&nvp->v_lock, LK_EXCLUSIVE,
1753 &nvp->v_interlock);
1754 /*
1755 * Reinitialize aliased node.
1756 */
1757 np->n_vnode = nvp;
1758 *vpp = vp = nvp;
1759 }
1760 }
1761 np->n_mtime = mtime;
1762 }
1763 uid = fxdr_unsigned(uid_t, fp->fa_uid);
1764 gid = fxdr_unsigned(gid_t, fp->fa_gid);
1765 vap = np->n_vattr;
1766
1767 /*
1768 * Invalidate access cache if uid, gid or mode changed.
1769 */
1770 if (np->n_accstamp != -1 &&
1771 (gid != vap->va_gid || uid != vap->va_uid || vmode != vap->va_mode))
1772 np->n_accstamp = -1;
1773
1774 vap->va_type = vtyp;
1775 vap->va_mode = vmode;
1776 vap->va_rdev = (dev_t)rdev;
1777 vap->va_mtime = mtime;
1778 vap->va_fsid = vp->v_mount->mnt_stat.f_fsid.val[0];
1779 switch (vtyp) {
1780 case VDIR:
1781 vap->va_blocksize = NFS_DIRFRAGSIZ;
1782 break;
1783 case VBLK:
1784 vap->va_blocksize = BLKDEV_IOSIZE;
1785 break;
1786 case VCHR:
1787 vap->va_blocksize = MAXBSIZE;
1788 break;
1789 default:
1790 vap->va_blocksize = v3 ? vp->v_mount->mnt_stat.f_iosize :
1791 fxdr_unsigned(int32_t, fp->fa2_blocksize);
1792 break;
1793 }
1794 if (v3) {
1795 vap->va_nlink = fxdr_unsigned(u_short, fp->fa_nlink);
1796 vap->va_uid = uid;
1797 vap->va_gid = gid;
1798 vap->va_size = fxdr_hyper(&fp->fa3_size);
1799 vap->va_bytes = fxdr_hyper(&fp->fa3_used);
1800 vap->va_fileid = fxdr_unsigned(int32_t,
1801 fp->fa3_fileid.nfsuquad[1]);
1802 fxdr_nfsv3time(&fp->fa3_atime, &vap->va_atime);
1803 fxdr_nfsv3time(&fp->fa3_ctime, &vap->va_ctime);
1804 vap->va_flags = 0;
1805 vap->va_filerev = 0;
1806 } else {
1807 vap->va_nlink = fxdr_unsigned(u_short, fp->fa_nlink);
1808 vap->va_uid = uid;
1809 vap->va_gid = gid;
1810 vap->va_size = fxdr_unsigned(u_int32_t, fp->fa2_size);
1811 vap->va_bytes = fxdr_unsigned(int32_t, fp->fa2_blocks)
1812 * NFS_FABLKSIZE;
1813 vap->va_fileid = fxdr_unsigned(int32_t, fp->fa2_fileid);
1814 fxdr_nfsv2time(&fp->fa2_atime, &vap->va_atime);
1815 vap->va_flags = 0;
1816 vap->va_ctime.tv_sec = fxdr_unsigned(u_int32_t,
1817 fp->fa2_ctime.nfsv2_sec);
1818 vap->va_ctime.tv_nsec = 0;
1819 vap->va_gen = fxdr_unsigned(u_int32_t,fp->fa2_ctime.nfsv2_usec);
1820 vap->va_filerev = 0;
1821 }
1822 if (vap->va_size != np->n_size) {
1823 if ((np->n_flag & NMODIFIED) && vap->va_size < np->n_size) {
1824 vap->va_size = np->n_size;
1825 } else {
1826 np->n_size = vap->va_size;
1827 if (vap->va_type == VREG) {
1828 /*
1829 * we can't free pages if NAC_NOTRUNC because
1830 * the pages can be owned by ourselves.
1831 */
1832 if (flags & NAC_NOTRUNC) {
1833 np->n_flag |= NTRUNCDELAYED;
1834 } else {
1835 simple_lock(&vp->v_interlock);
1836 (void)VOP_PUTPAGES(vp, 0,
1837 0, PGO_SYNCIO | PGO_CLEANIT |
1838 PGO_FREE | PGO_ALLPAGES);
1839 uvm_vnp_setsize(vp, np->n_size);
1840 }
1841 }
1842 }
1843 }
1844 np->n_attrstamp = time.tv_sec;
1845 if (vaper != NULL) {
1846 memcpy((caddr_t)vaper, (caddr_t)vap, sizeof(*vap));
1847 if (np->n_flag & NCHG) {
1848 if (np->n_flag & NACC)
1849 vaper->va_atime = np->n_atim;
1850 if (np->n_flag & NUPD)
1851 vaper->va_mtime = np->n_mtim;
1852 }
1853 }
1854 return (0);
1855 }
1856
1857 /*
1858 * Check the time stamp
1859 * If the cache is valid, copy contents to *vap and return 0
1860 * otherwise return an error
1861 */
1862 int
1863 nfs_getattrcache(vp, vaper)
1864 struct vnode *vp;
1865 struct vattr *vaper;
1866 {
1867 struct nfsnode *np = VTONFS(vp);
1868 struct vattr *vap;
1869
1870 if (np->n_attrstamp == 0 ||
1871 (time.tv_sec - np->n_attrstamp) >= NFS_ATTRTIMEO(np)) {
1872 nfsstats.attrcache_misses++;
1873 return (ENOENT);
1874 }
1875 nfsstats.attrcache_hits++;
1876 vap = np->n_vattr;
1877 if (vap->va_size != np->n_size) {
1878 if (vap->va_type == VREG) {
1879 if (np->n_flag & NMODIFIED) {
1880 if (vap->va_size < np->n_size)
1881 vap->va_size = np->n_size;
1882 else
1883 np->n_size = vap->va_size;
1884 } else
1885 np->n_size = vap->va_size;
1886 uvm_vnp_setsize(vp, np->n_size);
1887 } else
1888 np->n_size = vap->va_size;
1889 }
1890 memcpy((caddr_t)vaper, (caddr_t)vap, sizeof(struct vattr));
1891 if (np->n_flag & NCHG) {
1892 if (np->n_flag & NACC)
1893 vaper->va_atime = np->n_atim;
1894 if (np->n_flag & NUPD)
1895 vaper->va_mtime = np->n_mtim;
1896 }
1897 return (0);
1898 }
1899
1900 void
1901 nfs_delayedtruncate(vp)
1902 struct vnode *vp;
1903 {
1904 struct nfsnode *np = VTONFS(vp);
1905
1906 if (np->n_flag & NTRUNCDELAYED) {
1907 np->n_flag &= ~NTRUNCDELAYED;
1908 simple_lock(&vp->v_interlock);
1909 (void)VOP_PUTPAGES(vp, 0,
1910 0, PGO_SYNCIO | PGO_CLEANIT | PGO_FREE | PGO_ALLPAGES);
1911 uvm_vnp_setsize(vp, np->n_size);
1912 }
1913 }
1914
1915 /*
1916 * Heuristic to see if the server XDR encodes directory cookies or not.
1917 * it is not supposed to, but a lot of servers may do this. Also, since
1918 * most/all servers will implement V2 as well, it is expected that they
1919 * may return just 32 bits worth of cookie information, so we need to
1920 * find out in which 32 bits this information is available. We do this
1921 * to avoid trouble with emulated binaries that can't handle 64 bit
1922 * directory offsets.
1923 */
1924
1925 void
1926 nfs_cookieheuristic(vp, flagp, p, cred)
1927 struct vnode *vp;
1928 int *flagp;
1929 struct proc *p;
1930 struct ucred *cred;
1931 {
1932 struct uio auio;
1933 struct iovec aiov;
1934 caddr_t buf, cp;
1935 struct dirent *dp;
1936 off_t *cookies = NULL, *cop;
1937 int error, eof, nc, len;
1938
1939 MALLOC(buf, caddr_t, NFS_DIRFRAGSIZ, M_TEMP, M_WAITOK);
1940
1941 aiov.iov_base = buf;
1942 aiov.iov_len = NFS_DIRFRAGSIZ;
1943 auio.uio_iov = &aiov;
1944 auio.uio_iovcnt = 1;
1945 auio.uio_rw = UIO_READ;
1946 auio.uio_segflg = UIO_SYSSPACE;
1947 auio.uio_procp = p;
1948 auio.uio_resid = NFS_DIRFRAGSIZ;
1949 auio.uio_offset = 0;
1950
1951 error = VOP_READDIR(vp, &auio, cred, &eof, &cookies, &nc);
1952
1953 len = NFS_DIRFRAGSIZ - auio.uio_resid;
1954 if (error || len == 0) {
1955 FREE(buf, M_TEMP);
1956 if (cookies)
1957 free(cookies, M_TEMP);
1958 return;
1959 }
1960
1961 /*
1962 * Find the first valid entry and look at its offset cookie.
1963 */
1964
1965 cp = buf;
1966 for (cop = cookies; len > 0; len -= dp->d_reclen) {
1967 dp = (struct dirent *)cp;
1968 if (dp->d_fileno != 0 && len >= dp->d_reclen) {
1969 if ((*cop >> 32) != 0 && (*cop & 0xffffffffLL) == 0) {
1970 *flagp |= NFSMNT_SWAPCOOKIE;
1971 nfs_invaldircache(vp, 0);
1972 nfs_vinvalbuf(vp, 0, cred, p, 1);
1973 }
1974 break;
1975 }
1976 cop++;
1977 cp += dp->d_reclen;
1978 }
1979
1980 FREE(buf, M_TEMP);
1981 free(cookies, M_TEMP);
1982 }
1983 #endif /* NFS */
1984
1985 /*
1986 * Set up nameidata for a lookup() call and do it.
1987 *
1988 * If pubflag is set, this call is done for a lookup operation on the
1989 * public filehandle. In that case we allow crossing mountpoints and
1990 * absolute pathnames. However, the caller is expected to check that
1991 * the lookup result is within the public fs, and deny access if
1992 * it is not.
1993 */
1994 int
1995 nfs_namei(ndp, fhp, len, slp, nam, mdp, dposp, retdirp, p, kerbflag, pubflag)
1996 struct nameidata *ndp;
1997 fhandle_t *fhp;
1998 uint32_t len;
1999 struct nfssvc_sock *slp;
2000 struct mbuf *nam;
2001 struct mbuf **mdp;
2002 caddr_t *dposp;
2003 struct vnode **retdirp;
2004 struct proc *p;
2005 int kerbflag, pubflag;
2006 {
2007 int i, rem;
2008 struct mbuf *md;
2009 char *fromcp, *tocp, *cp;
2010 struct iovec aiov;
2011 struct uio auio;
2012 struct vnode *dp;
2013 int error, rdonly, linklen;
2014 struct componentname *cnp = &ndp->ni_cnd;
2015
2016 *retdirp = (struct vnode *)0;
2017
2018 if ((len + 1) > MAXPATHLEN)
2019 return (ENAMETOOLONG);
2020 cnp->cn_pnbuf = PNBUF_GET();
2021
2022 /*
2023 * Copy the name from the mbuf list to ndp->ni_pnbuf
2024 * and set the various ndp fields appropriately.
2025 */
2026 fromcp = *dposp;
2027 tocp = cnp->cn_pnbuf;
2028 md = *mdp;
2029 rem = mtod(md, caddr_t) + md->m_len - fromcp;
2030 for (i = 0; i < len; i++) {
2031 while (rem == 0) {
2032 md = md->m_next;
2033 if (md == NULL) {
2034 error = EBADRPC;
2035 goto out;
2036 }
2037 fromcp = mtod(md, caddr_t);
2038 rem = md->m_len;
2039 }
2040 if (*fromcp == '\0' || (!pubflag && *fromcp == '/')) {
2041 error = EACCES;
2042 goto out;
2043 }
2044 *tocp++ = *fromcp++;
2045 rem--;
2046 }
2047 *tocp = '\0';
2048 *mdp = md;
2049 *dposp = fromcp;
2050 len = nfsm_rndup(len)-len;
2051 if (len > 0) {
2052 if (rem >= len)
2053 *dposp += len;
2054 else if ((error = nfs_adv(mdp, dposp, len, rem)) != 0)
2055 goto out;
2056 }
2057
2058 /*
2059 * Extract and set starting directory.
2060 */
2061 error = nfsrv_fhtovp(fhp, FALSE, &dp, ndp->ni_cnd.cn_cred, slp,
2062 nam, &rdonly, kerbflag, pubflag);
2063 if (error)
2064 goto out;
2065 if (dp->v_type != VDIR) {
2066 vrele(dp);
2067 error = ENOTDIR;
2068 goto out;
2069 }
2070
2071 if (rdonly)
2072 cnp->cn_flags |= RDONLY;
2073
2074 *retdirp = dp;
2075
2076 if (pubflag) {
2077 /*
2078 * Oh joy. For WebNFS, handle those pesky '%' escapes,
2079 * and the 'native path' indicator.
2080 */
2081 cp = PNBUF_GET();
2082 fromcp = cnp->cn_pnbuf;
2083 tocp = cp;
2084 if ((unsigned char)*fromcp >= WEBNFS_SPECCHAR_START) {
2085 switch ((unsigned char)*fromcp) {
2086 case WEBNFS_NATIVE_CHAR:
2087 /*
2088 * 'Native' path for us is the same
2089 * as a path according to the NFS spec,
2090 * just skip the escape char.
2091 */
2092 fromcp++;
2093 break;
2094 /*
2095 * More may be added in the future, range 0x80-0xff
2096 */
2097 default:
2098 error = EIO;
2099 PNBUF_PUT(cp);
2100 goto out;
2101 }
2102 }
2103 /*
2104 * Translate the '%' escapes, URL-style.
2105 */
2106 while (*fromcp != '\0') {
2107 if (*fromcp == WEBNFS_ESC_CHAR) {
2108 if (fromcp[1] != '\0' && fromcp[2] != '\0') {
2109 fromcp++;
2110 *tocp++ = HEXSTRTOI(fromcp);
2111 fromcp += 2;
2112 continue;
2113 } else {
2114 error = ENOENT;
2115 PNBUF_PUT(cp);
2116 goto out;
2117 }
2118 } else
2119 *tocp++ = *fromcp++;
2120 }
2121 *tocp = '\0';
2122 PNBUF_PUT(cnp->cn_pnbuf);
2123 cnp->cn_pnbuf = cp;
2124 }
2125
2126 ndp->ni_pathlen = (tocp - cnp->cn_pnbuf) + 1;
2127 ndp->ni_segflg = UIO_SYSSPACE;
2128 ndp->ni_rootdir = rootvnode;
2129
2130 if (pubflag) {
2131 ndp->ni_loopcnt = 0;
2132 if (cnp->cn_pnbuf[0] == '/')
2133 dp = rootvnode;
2134 } else {
2135 cnp->cn_flags |= NOCROSSMOUNT;
2136 }
2137
2138 cnp->cn_proc = p;
2139 VREF(dp);
2140
2141 for (;;) {
2142 cnp->cn_nameptr = cnp->cn_pnbuf;
2143 ndp->ni_startdir = dp;
2144 /*
2145 * And call lookup() to do the real work
2146 */
2147 error = lookup(ndp);
2148 if (error) {
2149 PNBUF_PUT(cnp->cn_pnbuf);
2150 return (error);
2151 }
2152 /*
2153 * Check for encountering a symbolic link
2154 */
2155 if ((cnp->cn_flags & ISSYMLINK) == 0) {
2156 if (cnp->cn_flags & (SAVENAME | SAVESTART))
2157 cnp->cn_flags |= HASBUF;
2158 else
2159 PNBUF_PUT(cnp->cn_pnbuf);
2160 return (0);
2161 } else {
2162 if ((cnp->cn_flags & LOCKPARENT) && (cnp->cn_flags & ISLASTCN))
2163 VOP_UNLOCK(ndp->ni_dvp, 0);
2164 if (!pubflag) {
2165 error = EINVAL;
2166 break;
2167 }
2168
2169 if (ndp->ni_loopcnt++ >= MAXSYMLINKS) {
2170 error = ELOOP;
2171 break;
2172 }
2173 if (ndp->ni_vp->v_mount->mnt_flag & MNT_SYMPERM) {
2174 error = VOP_ACCESS(ndp->ni_vp, VEXEC, cnp->cn_cred,
2175 cnp->cn_proc);
2176 if (error != 0)
2177 break;
2178 }
2179 if (ndp->ni_pathlen > 1)
2180 cp = PNBUF_GET();
2181 else
2182 cp = cnp->cn_pnbuf;
2183 aiov.iov_base = cp;
2184 aiov.iov_len = MAXPATHLEN;
2185 auio.uio_iov = &aiov;
2186 auio.uio_iovcnt = 1;
2187 auio.uio_offset = 0;
2188 auio.uio_rw = UIO_READ;
2189 auio.uio_segflg = UIO_SYSSPACE;
2190 auio.uio_procp = (struct proc *)0;
2191 auio.uio_resid = MAXPATHLEN;
2192 error = VOP_READLINK(ndp->ni_vp, &auio, cnp->cn_cred);
2193 if (error) {
2194 badlink:
2195 if (ndp->ni_pathlen > 1)
2196 PNBUF_PUT(cp);
2197 break;
2198 }
2199 linklen = MAXPATHLEN - auio.uio_resid;
2200 if (linklen == 0) {
2201 error = ENOENT;
2202 goto badlink;
2203 }
2204 if (linklen + ndp->ni_pathlen >= MAXPATHLEN) {
2205 error = ENAMETOOLONG;
2206 goto badlink;
2207 }
2208 if (ndp->ni_pathlen > 1) {
2209 memcpy(cp + linklen, ndp->ni_next, ndp->ni_pathlen);
2210 PNBUF_PUT(cnp->cn_pnbuf);
2211 cnp->cn_pnbuf = cp;
2212 } else
2213 cnp->cn_pnbuf[linklen] = '\0';
2214 ndp->ni_pathlen += linklen;
2215 vput(ndp->ni_vp);
2216 dp = ndp->ni_dvp;
2217 /*
2218 * Check if root directory should replace current directory.
2219 */
2220 if (cnp->cn_pnbuf[0] == '/') {
2221 vrele(dp);
2222 dp = ndp->ni_rootdir;
2223 VREF(dp);
2224 }
2225 }
2226 }
2227 vrele(ndp->ni_dvp);
2228 vput(ndp->ni_vp);
2229 ndp->ni_vp = NULL;
2230 out:
2231 PNBUF_PUT(cnp->cn_pnbuf);
2232 return (error);
2233 }
2234
2235 /*
2236 * A fiddled version of m_adj() that ensures null fill to a 32-bit
2237 * boundary and only trims off the back end
2238 *
2239 * 1. trim off 'len' bytes as m_adj(mp, -len).
2240 * 2. add zero-padding 'nul' bytes at the end of the mbuf chain.
2241 */
2242 void
2243 nfs_zeropad(mp, len, nul)
2244 struct mbuf *mp;
2245 int len;
2246 int nul;
2247 {
2248 struct mbuf *m;
2249 int count;
2250
2251 /*
2252 * Trim from tail. Scan the mbuf chain,
2253 * calculating its length and finding the last mbuf.
2254 * If the adjustment only affects this mbuf, then just
2255 * adjust and return. Otherwise, rescan and truncate
2256 * after the remaining size.
2257 */
2258 count = 0;
2259 m = mp;
2260 for (;;) {
2261 count += m->m_len;
2262 if (m->m_next == NULL)
2263 break;
2264 m = m->m_next;
2265 }
2266
2267 KDASSERT(count >= len);
2268
2269 if (m->m_len >= len) {
2270 m->m_len -= len;
2271 } else {
2272 count -= len;
2273 /*
2274 * Correct length for chain is "count".
2275 * Find the mbuf with last data, adjust its length,
2276 * and toss data from remaining mbufs on chain.
2277 */
2278 for (m = mp; m; m = m->m_next) {
2279 if (m->m_len >= count) {
2280 m->m_len = count;
2281 break;
2282 }
2283 count -= m->m_len;
2284 }
2285 m_freem(m->m_next);
2286 m->m_next = NULL;
2287 }
2288
2289 KDASSERT(m->m_next == NULL);
2290
2291 /*
2292 * zero-padding.
2293 */
2294 if (nul > 0) {
2295 char *cp;
2296 int i;
2297
2298 if (M_ROMAP(m) || M_TRAILINGSPACE(m) < nul) {
2299 struct mbuf *n;
2300
2301 KDASSERT(MLEN >= nul);
2302 n = m_get(M_WAIT, MT_DATA);
2303 MCLAIM(n, &nfs_mowner);
2304 n->m_len = nul;
2305 n->m_next = NULL;
2306 m->m_next = n;
2307 cp = mtod(n, caddr_t);
2308 } else {
2309 cp = mtod(m, caddr_t) + m->m_len;
2310 m->m_len += nul;
2311 }
2312 for (i = 0; i < nul; i++)
2313 *cp++ = '\0';
2314 }
2315 return;
2316 }
2317
2318 /*
2319 * Make these functions instead of macros, so that the kernel text size
2320 * doesn't get too big...
2321 */
2322 void
2323 nfsm_srvwcc(nfsd, before_ret, before_vap, after_ret, after_vap, mbp, bposp)
2324 struct nfsrv_descript *nfsd;
2325 int before_ret;
2326 struct vattr *before_vap;
2327 int after_ret;
2328 struct vattr *after_vap;
2329 struct mbuf **mbp;
2330 char **bposp;
2331 {
2332 struct mbuf *mb = *mbp;
2333 char *bpos = *bposp;
2334 u_int32_t *tl;
2335
2336 if (before_ret) {
2337 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
2338 *tl = nfs_false;
2339 } else {
2340 nfsm_build(tl, u_int32_t *, 7 * NFSX_UNSIGNED);
2341 *tl++ = nfs_true;
2342 txdr_hyper(before_vap->va_size, tl);
2343 tl += 2;
2344 txdr_nfsv3time(&(before_vap->va_mtime), tl);
2345 tl += 2;
2346 txdr_nfsv3time(&(before_vap->va_ctime), tl);
2347 }
2348 *bposp = bpos;
2349 *mbp = mb;
2350 nfsm_srvpostopattr(nfsd, after_ret, after_vap, mbp, bposp);
2351 }
2352
2353 void
2354 nfsm_srvpostopattr(nfsd, after_ret, after_vap, mbp, bposp)
2355 struct nfsrv_descript *nfsd;
2356 int after_ret;
2357 struct vattr *after_vap;
2358 struct mbuf **mbp;
2359 char **bposp;
2360 {
2361 struct mbuf *mb = *mbp;
2362 char *bpos = *bposp;
2363 u_int32_t *tl;
2364 struct nfs_fattr *fp;
2365
2366 if (after_ret) {
2367 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
2368 *tl = nfs_false;
2369 } else {
2370 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED + NFSX_V3FATTR);
2371 *tl++ = nfs_true;
2372 fp = (struct nfs_fattr *)tl;
2373 nfsm_srvfattr(nfsd, after_vap, fp);
2374 }
2375 *mbp = mb;
2376 *bposp = bpos;
2377 }
2378
2379 void
2380 nfsm_srvfattr(nfsd, vap, fp)
2381 struct nfsrv_descript *nfsd;
2382 struct vattr *vap;
2383 struct nfs_fattr *fp;
2384 {
2385
2386 fp->fa_nlink = txdr_unsigned(vap->va_nlink);
2387 fp->fa_uid = txdr_unsigned(vap->va_uid);
2388 fp->fa_gid = txdr_unsigned(vap->va_gid);
2389 if (nfsd->nd_flag & ND_NFSV3) {
2390 fp->fa_type = vtonfsv3_type(vap->va_type);
2391 fp->fa_mode = vtonfsv3_mode(vap->va_mode);
2392 txdr_hyper(vap->va_size, &fp->fa3_size);
2393 txdr_hyper(vap->va_bytes, &fp->fa3_used);
2394 fp->fa3_rdev.specdata1 = txdr_unsigned(major(vap->va_rdev));
2395 fp->fa3_rdev.specdata2 = txdr_unsigned(minor(vap->va_rdev));
2396 fp->fa3_fsid.nfsuquad[0] = 0;
2397 fp->fa3_fsid.nfsuquad[1] = txdr_unsigned(vap->va_fsid);
2398 fp->fa3_fileid.nfsuquad[0] = 0;
2399 fp->fa3_fileid.nfsuquad[1] = txdr_unsigned(vap->va_fileid);
2400 txdr_nfsv3time(&vap->va_atime, &fp->fa3_atime);
2401 txdr_nfsv3time(&vap->va_mtime, &fp->fa3_mtime);
2402 txdr_nfsv3time(&vap->va_ctime, &fp->fa3_ctime);
2403 } else {
2404 fp->fa_type = vtonfsv2_type(vap->va_type);
2405 fp->fa_mode = vtonfsv2_mode(vap->va_type, vap->va_mode);
2406 fp->fa2_size = txdr_unsigned(vap->va_size);
2407 fp->fa2_blocksize = txdr_unsigned(vap->va_blocksize);
2408 if (vap->va_type == VFIFO)
2409 fp->fa2_rdev = 0xffffffff;
2410 else
2411 fp->fa2_rdev = txdr_unsigned(vap->va_rdev);
2412 fp->fa2_blocks = txdr_unsigned(vap->va_bytes / NFS_FABLKSIZE);
2413 fp->fa2_fsid = txdr_unsigned(vap->va_fsid);
2414 fp->fa2_fileid = txdr_unsigned(vap->va_fileid);
2415 txdr_nfsv2time(&vap->va_atime, &fp->fa2_atime);
2416 txdr_nfsv2time(&vap->va_mtime, &fp->fa2_mtime);
2417 txdr_nfsv2time(&vap->va_ctime, &fp->fa2_ctime);
2418 }
2419 }
2420
2421 /*
2422 * nfsrv_fhtovp() - convert a fh to a vnode ptr (optionally locked)
2423 * - look up fsid in mount list (if not found ret error)
2424 * - get vp and export rights by calling VFS_FHTOVP()
2425 * - if cred->cr_uid == 0 or MNT_EXPORTANON set it to credanon
2426 * - if not lockflag unlock it with VOP_UNLOCK()
2427 */
2428 int
2429 nfsrv_fhtovp(fhp, lockflag, vpp, cred, slp, nam, rdonlyp, kerbflag, pubflag)
2430 fhandle_t *fhp;
2431 int lockflag;
2432 struct vnode **vpp;
2433 struct ucred *cred;
2434 struct nfssvc_sock *slp;
2435 struct mbuf *nam;
2436 int *rdonlyp;
2437 int kerbflag;
2438 {
2439 struct mount *mp;
2440 int i;
2441 struct ucred *credanon;
2442 int error, exflags;
2443 struct sockaddr_in *saddr;
2444
2445 *vpp = (struct vnode *)0;
2446
2447 if (nfs_ispublicfh(fhp)) {
2448 if (!pubflag || !nfs_pub.np_valid)
2449 return (ESTALE);
2450 fhp = &nfs_pub.np_handle;
2451 }
2452
2453 mp = vfs_getvfs(&fhp->fh_fsid);
2454 if (!mp)
2455 return (ESTALE);
2456 error = VFS_CHECKEXP(mp, nam, &exflags, &credanon);
2457 if (error)
2458 return (error);
2459 error = VFS_FHTOVP(mp, &fhp->fh_fid, vpp);
2460 if (error)
2461 return (error);
2462
2463 if (!(exflags & (MNT_EXNORESPORT|MNT_EXPUBLIC))) {
2464 saddr = mtod(nam, struct sockaddr_in *);
2465 if ((saddr->sin_family == AF_INET) &&
2466 ntohs(saddr->sin_port) >= IPPORT_RESERVED) {
2467 vput(*vpp);
2468 return (NFSERR_AUTHERR | AUTH_TOOWEAK);
2469 }
2470 #ifdef INET6
2471 if ((saddr->sin_family == AF_INET6) &&
2472 ntohs(saddr->sin_port) >= IPV6PORT_RESERVED) {
2473 vput(*vpp);
2474 return (NFSERR_AUTHERR | AUTH_TOOWEAK);
2475 }
2476 #endif
2477 }
2478 /*
2479 * Check/setup credentials.
2480 */
2481 if (exflags & MNT_EXKERB) {
2482 if (!kerbflag) {
2483 vput(*vpp);
2484 return (NFSERR_AUTHERR | AUTH_TOOWEAK);
2485 }
2486 } else if (kerbflag) {
2487 vput(*vpp);
2488 return (NFSERR_AUTHERR | AUTH_TOOWEAK);
2489 } else if (cred->cr_uid == 0 || (exflags & MNT_EXPORTANON)) {
2490 cred->cr_uid = credanon->cr_uid;
2491 cred->cr_gid = credanon->cr_gid;
2492 for (i = 0; i < credanon->cr_ngroups && i < NGROUPS; i++)
2493 cred->cr_groups[i] = credanon->cr_groups[i];
2494 cred->cr_ngroups = i;
2495 }
2496 if (exflags & MNT_EXRDONLY)
2497 *rdonlyp = 1;
2498 else
2499 *rdonlyp = 0;
2500 if (!lockflag)
2501 VOP_UNLOCK(*vpp, 0);
2502 return (0);
2503 }
2504
2505 /*
2506 * WebNFS: check if a filehandle is a public filehandle. For v3, this
2507 * means a length of 0, for v2 it means all zeroes. nfsm_srvmtofh has
2508 * transformed this to all zeroes in both cases, so check for it.
2509 */
2510 int
2511 nfs_ispublicfh(fhp)
2512 fhandle_t *fhp;
2513 {
2514 char *cp = (char *)fhp;
2515 int i;
2516
2517 for (i = 0; i < NFSX_V3FH; i++)
2518 if (*cp++ != 0)
2519 return (FALSE);
2520 return (TRUE);
2521 }
2522
2523 /*
2524 * This function compares two net addresses by family and returns TRUE
2525 * if they are the same host.
2526 * If there is any doubt, return FALSE.
2527 * The AF_INET family is handled as a special case so that address mbufs
2528 * don't need to be saved to store "struct in_addr", which is only 4 bytes.
2529 */
2530 int
2531 netaddr_match(family, haddr, nam)
2532 int family;
2533 union nethostaddr *haddr;
2534 struct mbuf *nam;
2535 {
2536 struct sockaddr_in *inetaddr;
2537
2538 switch (family) {
2539 case AF_INET:
2540 inetaddr = mtod(nam, struct sockaddr_in *);
2541 if (inetaddr->sin_family == AF_INET &&
2542 inetaddr->sin_addr.s_addr == haddr->had_inetaddr)
2543 return (1);
2544 break;
2545 #ifdef INET6
2546 case AF_INET6:
2547 {
2548 struct sockaddr_in6 *sin6_1, *sin6_2;
2549
2550 sin6_1 = mtod(nam, struct sockaddr_in6 *);
2551 sin6_2 = mtod(haddr->had_nam, struct sockaddr_in6 *);
2552 if (sin6_1->sin6_family == AF_INET6 &&
2553 IN6_ARE_ADDR_EQUAL(&sin6_1->sin6_addr, &sin6_2->sin6_addr))
2554 return 1;
2555 }
2556 #endif
2557 #ifdef ISO
2558 case AF_ISO:
2559 {
2560 struct sockaddr_iso *isoaddr1, *isoaddr2;
2561
2562 isoaddr1 = mtod(nam, struct sockaddr_iso *);
2563 isoaddr2 = mtod(haddr->had_nam, struct sockaddr_iso *);
2564 if (isoaddr1->siso_family == AF_ISO &&
2565 isoaddr1->siso_nlen > 0 &&
2566 isoaddr1->siso_nlen == isoaddr2->siso_nlen &&
2567 SAME_ISOADDR(isoaddr1, isoaddr2))
2568 return (1);
2569 break;
2570 }
2571 #endif /* ISO */
2572 default:
2573 break;
2574 };
2575 return (0);
2576 }
2577
2578 /*
2579 * The write verifier has changed (probably due to a server reboot), so all
2580 * PG_NEEDCOMMIT pages will have to be written again. Since they are marked
2581 * as dirty or are being written out just now, all this takes is clearing
2582 * the PG_NEEDCOMMIT flag. Once done the new write verifier can be set for
2583 * the mount point.
2584 */
2585 void
2586 nfs_clearcommit(mp)
2587 struct mount *mp;
2588 {
2589 struct vnode *vp;
2590 struct nfsnode *np;
2591 struct vm_page *pg;
2592 struct nfsmount *nmp = VFSTONFS(mp);
2593
2594 lockmgr(&nmp->nm_writeverflock, LK_EXCLUSIVE, NULL);
2595
2596 LIST_FOREACH(vp, &mp->mnt_vnodelist, v_mntvnodes) {
2597 KASSERT(vp->v_mount == mp);
2598 if (vp->v_type != VREG)
2599 continue;
2600 np = VTONFS(vp);
2601 np->n_pushlo = np->n_pushhi = np->n_pushedlo =
2602 np->n_pushedhi = 0;
2603 np->n_commitflags &=
2604 ~(NFS_COMMIT_PUSH_VALID | NFS_COMMIT_PUSHED_VALID);
2605 simple_lock(&vp->v_uobj.vmobjlock);
2606 TAILQ_FOREACH(pg, &vp->v_uobj.memq, listq) {
2607 pg->flags &= ~PG_NEEDCOMMIT;
2608 }
2609 simple_unlock(&vp->v_uobj.vmobjlock);
2610 }
2611 simple_lock(&nmp->nm_slock);
2612 nmp->nm_iflag &= ~NFSMNT_STALEWRITEVERF;
2613 simple_unlock(&nmp->nm_slock);
2614 lockmgr(&nmp->nm_writeverflock, LK_RELEASE, NULL);
2615 }
2616
2617 void
2618 nfs_merge_commit_ranges(vp)
2619 struct vnode *vp;
2620 {
2621 struct nfsnode *np = VTONFS(vp);
2622
2623 KASSERT(np->n_commitflags & NFS_COMMIT_PUSH_VALID);
2624
2625 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID)) {
2626 np->n_pushedlo = np->n_pushlo;
2627 np->n_pushedhi = np->n_pushhi;
2628 np->n_commitflags |= NFS_COMMIT_PUSHED_VALID;
2629 } else {
2630 if (np->n_pushlo < np->n_pushedlo)
2631 np->n_pushedlo = np->n_pushlo;
2632 if (np->n_pushhi > np->n_pushedhi)
2633 np->n_pushedhi = np->n_pushhi;
2634 }
2635
2636 np->n_pushlo = np->n_pushhi = 0;
2637 np->n_commitflags &= ~NFS_COMMIT_PUSH_VALID;
2638
2639 #ifdef NFS_DEBUG_COMMIT
2640 printf("merge: committed: %u - %u\n", (unsigned)np->n_pushedlo,
2641 (unsigned)np->n_pushedhi);
2642 #endif
2643 }
2644
2645 int
2646 nfs_in_committed_range(vp, off, len)
2647 struct vnode *vp;
2648 off_t off, len;
2649 {
2650 struct nfsnode *np = VTONFS(vp);
2651 off_t lo, hi;
2652
2653 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID))
2654 return 0;
2655 lo = off;
2656 hi = lo + len;
2657
2658 return (lo >= np->n_pushedlo && hi <= np->n_pushedhi);
2659 }
2660
2661 int
2662 nfs_in_tobecommitted_range(vp, off, len)
2663 struct vnode *vp;
2664 off_t off, len;
2665 {
2666 struct nfsnode *np = VTONFS(vp);
2667 off_t lo, hi;
2668
2669 if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID))
2670 return 0;
2671 lo = off;
2672 hi = lo + len;
2673
2674 return (lo >= np->n_pushlo && hi <= np->n_pushhi);
2675 }
2676
2677 void
2678 nfs_add_committed_range(vp, off, len)
2679 struct vnode *vp;
2680 off_t off, len;
2681 {
2682 struct nfsnode *np = VTONFS(vp);
2683 off_t lo, hi;
2684
2685 lo = off;
2686 hi = lo + len;
2687
2688 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID)) {
2689 np->n_pushedlo = lo;
2690 np->n_pushedhi = hi;
2691 np->n_commitflags |= NFS_COMMIT_PUSHED_VALID;
2692 } else {
2693 if (hi > np->n_pushedhi)
2694 np->n_pushedhi = hi;
2695 if (lo < np->n_pushedlo)
2696 np->n_pushedlo = lo;
2697 }
2698 #ifdef NFS_DEBUG_COMMIT
2699 printf("add: committed: %u - %u\n", (unsigned)np->n_pushedlo,
2700 (unsigned)np->n_pushedhi);
2701 #endif
2702 }
2703
2704 void
2705 nfs_del_committed_range(vp, off, len)
2706 struct vnode *vp;
2707 off_t off, len;
2708 {
2709 struct nfsnode *np = VTONFS(vp);
2710 off_t lo, hi;
2711
2712 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID))
2713 return;
2714
2715 lo = off;
2716 hi = lo + len;
2717
2718 if (lo > np->n_pushedhi || hi < np->n_pushedlo)
2719 return;
2720 if (lo <= np->n_pushedlo)
2721 np->n_pushedlo = hi;
2722 else if (hi >= np->n_pushedhi)
2723 np->n_pushedhi = lo;
2724 else {
2725 /*
2726 * XXX There's only one range. If the deleted range
2727 * is in the middle, pick the largest of the
2728 * contiguous ranges that it leaves.
2729 */
2730 if ((np->n_pushedlo - lo) > (hi - np->n_pushedhi))
2731 np->n_pushedhi = lo;
2732 else
2733 np->n_pushedlo = hi;
2734 }
2735 #ifdef NFS_DEBUG_COMMIT
2736 printf("del: committed: %u - %u\n", (unsigned)np->n_pushedlo,
2737 (unsigned)np->n_pushedhi);
2738 #endif
2739 }
2740
2741 void
2742 nfs_add_tobecommitted_range(vp, off, len)
2743 struct vnode *vp;
2744 off_t off, len;
2745 {
2746 struct nfsnode *np = VTONFS(vp);
2747 off_t lo, hi;
2748
2749 lo = off;
2750 hi = lo + len;
2751
2752 if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID)) {
2753 np->n_pushlo = lo;
2754 np->n_pushhi = hi;
2755 np->n_commitflags |= NFS_COMMIT_PUSH_VALID;
2756 } else {
2757 if (lo < np->n_pushlo)
2758 np->n_pushlo = lo;
2759 if (hi > np->n_pushhi)
2760 np->n_pushhi = hi;
2761 }
2762 #ifdef NFS_DEBUG_COMMIT
2763 printf("add: tobecommitted: %u - %u\n", (unsigned)np->n_pushlo,
2764 (unsigned)np->n_pushhi);
2765 #endif
2766 }
2767
2768 void
2769 nfs_del_tobecommitted_range(vp, off, len)
2770 struct vnode *vp;
2771 off_t off, len;
2772 {
2773 struct nfsnode *np = VTONFS(vp);
2774 off_t lo, hi;
2775
2776 if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID))
2777 return;
2778
2779 lo = off;
2780 hi = lo + len;
2781
2782 if (lo > np->n_pushhi || hi < np->n_pushlo)
2783 return;
2784
2785 if (lo <= np->n_pushlo)
2786 np->n_pushlo = hi;
2787 else if (hi >= np->n_pushhi)
2788 np->n_pushhi = lo;
2789 else {
2790 /*
2791 * XXX There's only one range. If the deleted range
2792 * is in the middle, pick the largest of the
2793 * contiguous ranges that it leaves.
2794 */
2795 if ((np->n_pushlo - lo) > (hi - np->n_pushhi))
2796 np->n_pushhi = lo;
2797 else
2798 np->n_pushlo = hi;
2799 }
2800 #ifdef NFS_DEBUG_COMMIT
2801 printf("del: tobecommitted: %u - %u\n", (unsigned)np->n_pushlo,
2802 (unsigned)np->n_pushhi);
2803 #endif
2804 }
2805
2806 /*
2807 * Map errnos to NFS error numbers. For Version 3 also filter out error
2808 * numbers not specified for the associated procedure.
2809 */
2810 int
2811 nfsrv_errmap(nd, err)
2812 struct nfsrv_descript *nd;
2813 int err;
2814 {
2815 const short *defaulterrp, *errp;
2816
2817 if (nd->nd_flag & ND_NFSV3) {
2818 if (nd->nd_procnum <= NFSPROC_COMMIT) {
2819 errp = defaulterrp = nfsrv_v3errmap[nd->nd_procnum];
2820 while (*++errp) {
2821 if (*errp == err)
2822 return (err);
2823 else if (*errp > err)
2824 break;
2825 }
2826 return ((int)*defaulterrp);
2827 } else
2828 return (err & 0xffff);
2829 }
2830 if (err <= ELAST)
2831 return ((int)nfsrv_v2errmap[err - 1]);
2832 return (NFSERR_IO);
2833 }
2834
2835 /*
2836 * Sort the group list in increasing numerical order.
2837 * (Insertion sort by Chris Torek, who was grossed out by the bubble sort
2838 * that used to be here.)
2839 */
2840 void
2841 nfsrvw_sort(list, num)
2842 gid_t *list;
2843 int num;
2844 {
2845 int i, j;
2846 gid_t v;
2847
2848 /* Insertion sort. */
2849 for (i = 1; i < num; i++) {
2850 v = list[i];
2851 /* find correct slot for value v, moving others up */
2852 for (j = i; --j >= 0 && v < list[j];)
2853 list[j + 1] = list[j];
2854 list[j + 1] = v;
2855 }
2856 }
2857
2858 /*
2859 * copy credentials making sure that the result can be compared with memcmp().
2860 */
2861 void
2862 nfsrv_setcred(incred, outcred)
2863 struct ucred *incred, *outcred;
2864 {
2865 int i;
2866
2867 memset((caddr_t)outcred, 0, sizeof (struct ucred));
2868 outcred->cr_ref = 1;
2869 outcred->cr_uid = incred->cr_uid;
2870 outcred->cr_gid = incred->cr_gid;
2871 outcred->cr_ngroups = incred->cr_ngroups;
2872 for (i = 0; i < incred->cr_ngroups; i++)
2873 outcred->cr_groups[i] = incred->cr_groups[i];
2874 nfsrvw_sort(outcred->cr_groups, outcred->cr_ngroups);
2875 }
2876
2877 u_int32_t
2878 nfs_getxid()
2879 {
2880 static u_int32_t base;
2881 static u_int32_t nfs_xid = 0;
2882 static struct simplelock nfs_xidlock = SIMPLELOCK_INITIALIZER;
2883 u_int32_t newxid;
2884
2885 simple_lock(&nfs_xidlock);
2886 /*
2887 * derive initial xid from system time
2888 * XXX time is invalid if root not yet mounted
2889 */
2890 if (__predict_false(!base && (rootvp))) {
2891 struct timeval tv;
2892
2893 microtime(&tv);
2894 base = tv.tv_sec << 12;
2895 nfs_xid = base;
2896 }
2897
2898 /*
2899 * Skip zero xid if it should ever happen.
2900 */
2901 if (__predict_false(++nfs_xid == 0))
2902 nfs_xid++;
2903 newxid = nfs_xid;
2904 simple_unlock(&nfs_xidlock);
2905
2906 return txdr_unsigned(newxid);
2907 }
2908
2909 /*
2910 * assign a new xid for existing request.
2911 * used for NFSERR_JUKEBOX handling.
2912 */
2913 void
2914 nfs_renewxid(struct nfsreq *req)
2915 {
2916 u_int32_t xid;
2917 int off;
2918
2919 xid = nfs_getxid();
2920 if (req->r_nmp->nm_sotype == SOCK_STREAM)
2921 off = sizeof(u_int32_t); /* RPC record mark */
2922 else
2923 off = 0;
2924
2925 m_copyback(req->r_mreq, off, sizeof(xid), (void *)&xid);
2926 req->r_xid = xid;
2927 }
Cache object: 2d3709e2bdd51603d47db6861da062a5
|