The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/nfsclient/nfs_bio.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1989, 1993
    3  *      The Regents of the University of California.  All rights reserved.
    4  *
    5  * This code is derived from software contributed to Berkeley by
    6  * Rick Macklem at The University of Guelph.
    7  *
    8  * Redistribution and use in source and binary forms, with or without
    9  * modification, are permitted provided that the following conditions
   10  * are met:
   11  * 1. Redistributions of source code must retain the above copyright
   12  *    notice, this list of conditions and the following disclaimer.
   13  * 2. Redistributions in binary form must reproduce the above copyright
   14  *    notice, this list of conditions and the following disclaimer in the
   15  *    documentation and/or other materials provided with the distribution.
   16  * 4. Neither the name of the University nor the names of its contributors
   17  *    may be used to endorse or promote products derived from this software
   18  *    without specific prior written permission.
   19  *
   20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   30  * SUCH DAMAGE.
   31  *
   32  *      @(#)nfs_bio.c   8.9 (Berkeley) 3/30/95
   33  */
   34 
   35 #include <sys/cdefs.h>
   36 __FBSDID("$FreeBSD: releng/8.2/sys/nfsclient/nfs_bio.c 214977 2010-11-08 10:23:39Z kib $");
   37 
   38 #include "opt_kdtrace.h"
   39 
   40 #include <sys/param.h>
   41 #include <sys/systm.h>
   42 #include <sys/bio.h>
   43 #include <sys/buf.h>
   44 #include <sys/kernel.h>
   45 #include <sys/mbuf.h>
   46 #include <sys/mount.h>
   47 #include <sys/proc.h>
   48 #include <sys/resourcevar.h>
   49 #include <sys/signalvar.h>
   50 #include <sys/vmmeter.h>
   51 #include <sys/vnode.h>
   52 
   53 #include <vm/vm.h>
   54 #include <vm/vm_extern.h>
   55 #include <vm/vm_page.h>
   56 #include <vm/vm_object.h>
   57 #include <vm/vm_pager.h>
   58 #include <vm/vnode_pager.h>
   59 
   60 #include <nfs/nfsproto.h>
   61 #include <nfsclient/nfs.h>
   62 #include <nfsclient/nfsmount.h>
   63 #include <nfsclient/nfsnode.h>
   64 #include <nfsclient/nfs_kdtrace.h>
   65 
   66 static struct buf *nfs_getcacheblk(struct vnode *vp, daddr_t bn, int size,
   67                     struct thread *td);
   68 static int nfs_directio_write(struct vnode *vp, struct uio *uiop, 
   69                               struct ucred *cred, int ioflag);
   70 
   71 extern int nfs_directio_enable;
   72 extern int nfs_directio_allow_mmap;
   73 
   74 /*
   75  * Vnode op for VM getpages.
   76  */
   77 int
   78 nfs_getpages(struct vop_getpages_args *ap)
   79 {
   80         int i, error, nextoff, size, toff, count, npages;
   81         struct uio uio;
   82         struct iovec iov;
   83         vm_offset_t kva;
   84         struct buf *bp;
   85         struct vnode *vp;
   86         struct thread *td;
   87         struct ucred *cred;
   88         struct nfsmount *nmp;
   89         vm_object_t object;
   90         vm_page_t *pages;
   91         struct nfsnode *np;
   92 
   93         vp = ap->a_vp;
   94         np = VTONFS(vp);
   95         td = curthread;                         /* XXX */
   96         cred = curthread->td_ucred;             /* XXX */
   97         nmp = VFSTONFS(vp->v_mount);
   98         pages = ap->a_m;
   99         count = ap->a_count;
  100 
  101         if ((object = vp->v_object) == NULL) {
  102                 nfs_printf("nfs_getpages: called with non-merged cache vnode??\n");
  103                 return (VM_PAGER_ERROR);
  104         }
  105 
  106         if (nfs_directio_enable && !nfs_directio_allow_mmap) {
  107                 mtx_lock(&np->n_mtx);
  108                 if ((np->n_flag & NNONCACHE) && (vp->v_type == VREG)) {
  109                         mtx_unlock(&np->n_mtx);
  110                         nfs_printf("nfs_getpages: called on non-cacheable vnode??\n");
  111                         return (VM_PAGER_ERROR);
  112                 } else
  113                         mtx_unlock(&np->n_mtx);
  114         }
  115 
  116         mtx_lock(&nmp->nm_mtx);
  117         if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
  118             (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) {  
  119                 mtx_unlock(&nmp->nm_mtx);
  120                 /* We'll never get here for v4, because we always have fsinfo */
  121                 (void)nfs_fsinfo(nmp, vp, cred, td);
  122         } else
  123                 mtx_unlock(&nmp->nm_mtx);
  124 
  125         npages = btoc(count);
  126 
  127         /*
  128          * If the requested page is partially valid, just return it and
  129          * allow the pager to zero-out the blanks.  Partially valid pages
  130          * can only occur at the file EOF.
  131          */
  132         VM_OBJECT_LOCK(object);
  133         if (pages[ap->a_reqpage]->valid != 0) {
  134                 vm_page_lock_queues();
  135                 for (i = 0; i < npages; ++i) {
  136                         if (i != ap->a_reqpage)
  137                                 vm_page_free(pages[i]);
  138                 }
  139                 vm_page_unlock_queues();
  140                 VM_OBJECT_UNLOCK(object);
  141                 return (0);
  142         }
  143         VM_OBJECT_UNLOCK(object);
  144 
  145         /*
  146          * We use only the kva address for the buffer, but this is extremely
  147          * convienient and fast.
  148          */
  149         bp = getpbuf(&nfs_pbuf_freecnt);
  150 
  151         kva = (vm_offset_t) bp->b_data;
  152         pmap_qenter(kva, pages, npages);
  153         PCPU_INC(cnt.v_vnodein);
  154         PCPU_ADD(cnt.v_vnodepgsin, npages);
  155 
  156         iov.iov_base = (caddr_t) kva;
  157         iov.iov_len = count;
  158         uio.uio_iov = &iov;
  159         uio.uio_iovcnt = 1;
  160         uio.uio_offset = IDX_TO_OFF(pages[0]->pindex);
  161         uio.uio_resid = count;
  162         uio.uio_segflg = UIO_SYSSPACE;
  163         uio.uio_rw = UIO_READ;
  164         uio.uio_td = td;
  165 
  166         error = (nmp->nm_rpcops->nr_readrpc)(vp, &uio, cred);
  167         pmap_qremove(kva, npages);
  168 
  169         relpbuf(bp, &nfs_pbuf_freecnt);
  170 
  171         if (error && (uio.uio_resid == count)) {
  172                 nfs_printf("nfs_getpages: error %d\n", error);
  173                 VM_OBJECT_LOCK(object);
  174                 vm_page_lock_queues();
  175                 for (i = 0; i < npages; ++i) {
  176                         if (i != ap->a_reqpage)
  177                                 vm_page_free(pages[i]);
  178                 }
  179                 vm_page_unlock_queues();
  180                 VM_OBJECT_UNLOCK(object);
  181                 return (VM_PAGER_ERROR);
  182         }
  183 
  184         /*
  185          * Calculate the number of bytes read and validate only that number
  186          * of bytes.  Note that due to pending writes, size may be 0.  This
  187          * does not mean that the remaining data is invalid!
  188          */
  189 
  190         size = count - uio.uio_resid;
  191         VM_OBJECT_LOCK(object);
  192         vm_page_lock_queues();
  193         for (i = 0, toff = 0; i < npages; i++, toff = nextoff) {
  194                 vm_page_t m;
  195                 nextoff = toff + PAGE_SIZE;
  196                 m = pages[i];
  197 
  198                 if (nextoff <= size) {
  199                         /*
  200                          * Read operation filled an entire page
  201                          */
  202                         m->valid = VM_PAGE_BITS_ALL;
  203                         KASSERT(m->dirty == 0,
  204                             ("nfs_getpages: page %p is dirty", m));
  205                 } else if (size > toff) {
  206                         /*
  207                          * Read operation filled a partial page.
  208                          */
  209                         m->valid = 0;
  210                         vm_page_set_valid(m, 0, size - toff);
  211                         KASSERT(m->dirty == 0,
  212                             ("nfs_getpages: page %p is dirty", m));
  213                 } else {
  214                         /*
  215                          * Read operation was short.  If no error occured
  216                          * we may have hit a zero-fill section.   We simply
  217                          * leave valid set to 0.
  218                          */
  219                         ;
  220                 }
  221                 if (i != ap->a_reqpage) {
  222                         /*
  223                          * Whether or not to leave the page activated is up in
  224                          * the air, but we should put the page on a page queue
  225                          * somewhere (it already is in the object).  Result:
  226                          * It appears that emperical results show that
  227                          * deactivating pages is best.
  228                          */
  229 
  230                         /*
  231                          * Just in case someone was asking for this page we
  232                          * now tell them that it is ok to use.
  233                          */
  234                         if (!error) {
  235                                 if (m->oflags & VPO_WANTED)
  236                                         vm_page_activate(m);
  237                                 else
  238                                         vm_page_deactivate(m);
  239                                 vm_page_wakeup(m);
  240                         } else {
  241                                 vm_page_free(m);
  242                         }
  243                 }
  244         }
  245         vm_page_unlock_queues();
  246         VM_OBJECT_UNLOCK(object);
  247         return (0);
  248 }
  249 
  250 /*
  251  * Vnode op for VM putpages.
  252  */
  253 int
  254 nfs_putpages(struct vop_putpages_args *ap)
  255 {
  256         struct uio uio;
  257         struct iovec iov;
  258         vm_offset_t kva;
  259         struct buf *bp;
  260         int iomode, must_commit, i, error, npages, count;
  261         off_t offset;
  262         int *rtvals;
  263         struct vnode *vp;
  264         struct thread *td;
  265         struct ucred *cred;
  266         struct nfsmount *nmp;
  267         struct nfsnode *np;
  268         vm_page_t *pages;
  269 
  270         vp = ap->a_vp;
  271         np = VTONFS(vp);
  272         td = curthread;                         /* XXX */
  273         cred = curthread->td_ucred;             /* XXX */
  274         nmp = VFSTONFS(vp->v_mount);
  275         pages = ap->a_m;
  276         count = ap->a_count;
  277         rtvals = ap->a_rtvals;
  278         npages = btoc(count);
  279         offset = IDX_TO_OFF(pages[0]->pindex);
  280         
  281         mtx_lock(&nmp->nm_mtx);
  282         if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
  283             (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) {
  284                 mtx_unlock(&nmp->nm_mtx);
  285                 (void)nfs_fsinfo(nmp, vp, cred, td);
  286         } else
  287                 mtx_unlock(&nmp->nm_mtx);
  288 
  289         mtx_lock(&np->n_mtx);
  290         if (nfs_directio_enable && !nfs_directio_allow_mmap && 
  291             (np->n_flag & NNONCACHE) && (vp->v_type == VREG)) {
  292                 mtx_unlock(&np->n_mtx);         
  293                 nfs_printf("nfs_putpages: called on noncache-able vnode??\n");
  294                 mtx_lock(&np->n_mtx);
  295         }
  296 
  297         for (i = 0; i < npages; i++)
  298                 rtvals[i] = VM_PAGER_AGAIN;
  299 
  300         /*
  301          * When putting pages, do not extend file past EOF.
  302          */
  303         if (offset + count > np->n_size) {
  304                 count = np->n_size - offset;
  305                 if (count < 0)
  306                         count = 0;
  307         }
  308         mtx_unlock(&np->n_mtx);
  309 
  310         /*
  311          * We use only the kva address for the buffer, but this is extremely
  312          * convienient and fast.
  313          */
  314         bp = getpbuf(&nfs_pbuf_freecnt);
  315 
  316         kva = (vm_offset_t) bp->b_data;
  317         pmap_qenter(kva, pages, npages);
  318         PCPU_INC(cnt.v_vnodeout);
  319         PCPU_ADD(cnt.v_vnodepgsout, count);
  320 
  321         iov.iov_base = (caddr_t) kva;
  322         iov.iov_len = count;
  323         uio.uio_iov = &iov;
  324         uio.uio_iovcnt = 1;
  325         uio.uio_offset = offset;
  326         uio.uio_resid = count;
  327         uio.uio_segflg = UIO_SYSSPACE;
  328         uio.uio_rw = UIO_WRITE;
  329         uio.uio_td = td;
  330 
  331         if ((ap->a_sync & VM_PAGER_PUT_SYNC) == 0)
  332             iomode = NFSV3WRITE_UNSTABLE;
  333         else
  334             iomode = NFSV3WRITE_FILESYNC;
  335 
  336         error = (nmp->nm_rpcops->nr_writerpc)(vp, &uio, cred, &iomode, &must_commit);
  337 
  338         pmap_qremove(kva, npages);
  339         relpbuf(bp, &nfs_pbuf_freecnt);
  340 
  341         if (!error) {
  342                 int nwritten = round_page(count - uio.uio_resid) / PAGE_SIZE;
  343                 for (i = 0; i < nwritten; i++) {
  344                         rtvals[i] = VM_PAGER_OK;
  345                         vm_page_undirty(pages[i]);
  346                 }
  347                 if (must_commit) {
  348                         nfs_clearcommit(vp->v_mount);
  349                 }
  350         }
  351         return rtvals[0];
  352 }
  353 
  354 /*
  355  * For nfs, cache consistency can only be maintained approximately.
  356  * Although RFC1094 does not specify the criteria, the following is
  357  * believed to be compatible with the reference port.
  358  * For nfs:
  359  * If the file's modify time on the server has changed since the
  360  * last read rpc or you have written to the file,
  361  * you may have lost data cache consistency with the
  362  * server, so flush all of the file's data out of the cache.
  363  * Then force a getattr rpc to ensure that you have up to date
  364  * attributes.
  365  * NB: This implies that cache data can be read when up to
  366  * NFS_ATTRTIMEO seconds out of date. If you find that you need current
  367  * attributes this could be forced by setting n_attrstamp to 0 before
  368  * the VOP_GETATTR() call.
  369  */
  370 static inline int
  371 nfs_bioread_check_cons(struct vnode *vp, struct thread *td, struct ucred *cred)
  372 {
  373         int error = 0;
  374         struct vattr vattr;
  375         struct nfsnode *np = VTONFS(vp);
  376         int old_lock;
  377         struct nfsmount *nmp = VFSTONFS(vp->v_mount);
  378         
  379         /*
  380          * Grab the exclusive lock before checking whether the cache is
  381          * consistent.
  382          * XXX - We can make this cheaper later (by acquiring cheaper locks).
  383          * But for now, this suffices.
  384          */
  385         old_lock = nfs_upgrade_vnlock(vp);
  386         if (vp->v_iflag & VI_DOOMED) {
  387                 nfs_downgrade_vnlock(vp, old_lock);
  388                 return (EBADF);
  389         }
  390                 
  391         mtx_lock(&np->n_mtx);
  392         if (np->n_flag & NMODIFIED) {
  393                 mtx_unlock(&np->n_mtx);
  394                 if (vp->v_type != VREG) {
  395                         if (vp->v_type != VDIR)
  396                                 panic("nfs: bioread, not dir");
  397                         (nmp->nm_rpcops->nr_invaldir)(vp);
  398                         error = nfs_vinvalbuf(vp, V_SAVE, td, 1);
  399                         if (error)
  400                                 goto out;
  401                 }
  402                 np->n_attrstamp = 0;
  403                 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
  404                 error = VOP_GETATTR(vp, &vattr, cred);
  405                 if (error)
  406                         goto out;
  407                 mtx_lock(&np->n_mtx);
  408                 np->n_mtime = vattr.va_mtime;
  409                 mtx_unlock(&np->n_mtx);
  410         } else {
  411                 mtx_unlock(&np->n_mtx);
  412                 error = VOP_GETATTR(vp, &vattr, cred);
  413                 if (error)
  414                         return (error);
  415                 mtx_lock(&np->n_mtx);
  416                 if ((np->n_flag & NSIZECHANGED)
  417                     || (NFS_TIMESPEC_COMPARE(&np->n_mtime, &vattr.va_mtime))) {
  418                         mtx_unlock(&np->n_mtx);
  419                         if (vp->v_type == VDIR)
  420                                 (nmp->nm_rpcops->nr_invaldir)(vp);
  421                         error = nfs_vinvalbuf(vp, V_SAVE, td, 1);
  422                         if (error)
  423                                 goto out;
  424                         mtx_lock(&np->n_mtx);
  425                         np->n_mtime = vattr.va_mtime;
  426                         np->n_flag &= ~NSIZECHANGED;
  427                 }
  428                 mtx_unlock(&np->n_mtx);
  429         }
  430 out:    
  431         nfs_downgrade_vnlock(vp, old_lock);
  432         return error;
  433 }
  434 
  435 /*
  436  * Vnode op for read using bio
  437  */
  438 int
  439 nfs_bioread(struct vnode *vp, struct uio *uio, int ioflag, struct ucred *cred)
  440 {
  441         struct nfsnode *np = VTONFS(vp);
  442         int biosize, i;
  443         struct buf *bp, *rabp;
  444         struct thread *td;
  445         struct nfsmount *nmp = VFSTONFS(vp->v_mount);
  446         daddr_t lbn, rabn;
  447         int bcount;
  448         int seqcount;
  449         int nra, error = 0, n = 0, on = 0;
  450 
  451         KASSERT(uio->uio_rw == UIO_READ, ("nfs_read mode"));
  452         if (uio->uio_resid == 0)
  453                 return (0);
  454         if (uio->uio_offset < 0)        /* XXX VDIR cookies can be negative */
  455                 return (EINVAL);
  456         td = uio->uio_td;
  457 
  458         mtx_lock(&nmp->nm_mtx);
  459         if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
  460             (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) {
  461                 mtx_unlock(&nmp->nm_mtx);
  462                 (void)nfs_fsinfo(nmp, vp, cred, td);
  463         } else
  464                 mtx_unlock(&nmp->nm_mtx);               
  465 
  466         if (vp->v_type != VDIR &&
  467             (uio->uio_offset + uio->uio_resid) > nmp->nm_maxfilesize)
  468                 return (EFBIG);
  469 
  470         if (nfs_directio_enable && (ioflag & IO_DIRECT) && (vp->v_type == VREG))
  471                 /* No caching/ no readaheads. Just read data into the user buffer */
  472                 return nfs_readrpc(vp, uio, cred);
  473 
  474         biosize = vp->v_mount->mnt_stat.f_iosize;
  475         seqcount = (int)((off_t)(ioflag >> IO_SEQSHIFT) * biosize / BKVASIZE);
  476         
  477         error = nfs_bioread_check_cons(vp, td, cred);
  478         if (error)
  479                 return error;
  480 
  481         do {
  482             u_quad_t nsize;
  483                         
  484             mtx_lock(&np->n_mtx);
  485             nsize = np->n_size;
  486             mtx_unlock(&np->n_mtx);                 
  487 
  488             switch (vp->v_type) {
  489             case VREG:
  490                 nfsstats.biocache_reads++;
  491                 lbn = uio->uio_offset / biosize;
  492                 on = uio->uio_offset & (biosize - 1);
  493 
  494                 /*
  495                  * Start the read ahead(s), as required.
  496                  */
  497                 if (nmp->nm_readahead > 0) {
  498                     for (nra = 0; nra < nmp->nm_readahead && nra < seqcount &&
  499                         (off_t)(lbn + 1 + nra) * biosize < nsize; nra++) {
  500                         rabn = lbn + 1 + nra;
  501                         if (incore(&vp->v_bufobj, rabn) == NULL) {
  502                             rabp = nfs_getcacheblk(vp, rabn, biosize, td);
  503                             if (!rabp) {
  504                                 error = nfs_sigintr(nmp, td);
  505                                 return (error ? error : EINTR);
  506                             }
  507                             if ((rabp->b_flags & (B_CACHE|B_DELWRI)) == 0) {
  508                                 rabp->b_flags |= B_ASYNC;
  509                                 rabp->b_iocmd = BIO_READ;
  510                                 vfs_busy_pages(rabp, 0);
  511                                 if (nfs_asyncio(nmp, rabp, cred, td)) {
  512                                     rabp->b_flags |= B_INVAL;
  513                                     rabp->b_ioflags |= BIO_ERROR;
  514                                     vfs_unbusy_pages(rabp);
  515                                     brelse(rabp);
  516                                     break;
  517                                 }
  518                             } else {
  519                                 brelse(rabp);
  520                             }
  521                         }
  522                     }
  523                 }
  524 
  525                 /* Note that bcount is *not* DEV_BSIZE aligned. */
  526                 bcount = biosize;
  527                 if ((off_t)lbn * biosize >= nsize) {
  528                         bcount = 0;
  529                 } else if ((off_t)(lbn + 1) * biosize > nsize) {
  530                         bcount = nsize - (off_t)lbn * biosize;
  531                 }
  532                 bp = nfs_getcacheblk(vp, lbn, bcount, td);
  533 
  534                 if (!bp) {
  535                         error = nfs_sigintr(nmp, td);
  536                         return (error ? error : EINTR);
  537                 }
  538 
  539                 /*
  540                  * If B_CACHE is not set, we must issue the read.  If this
  541                  * fails, we return an error.
  542                  */
  543 
  544                 if ((bp->b_flags & B_CACHE) == 0) {
  545                     bp->b_iocmd = BIO_READ;
  546                     vfs_busy_pages(bp, 0);
  547                     error = nfs_doio(vp, bp, cred, td);
  548                     if (error) {
  549                         brelse(bp);
  550                         return (error);
  551                     }
  552                 }
  553 
  554                 /*
  555                  * on is the offset into the current bp.  Figure out how many
  556                  * bytes we can copy out of the bp.  Note that bcount is
  557                  * NOT DEV_BSIZE aligned.
  558                  *
  559                  * Then figure out how many bytes we can copy into the uio.
  560                  */
  561 
  562                 n = 0;
  563                 if (on < bcount)
  564                         n = min((unsigned)(bcount - on), uio->uio_resid);
  565                 break;
  566             case VLNK:
  567                 nfsstats.biocache_readlinks++;
  568                 bp = nfs_getcacheblk(vp, (daddr_t)0, NFS_MAXPATHLEN, td);
  569                 if (!bp) {
  570                         error = nfs_sigintr(nmp, td);
  571                         return (error ? error : EINTR);
  572                 }
  573                 if ((bp->b_flags & B_CACHE) == 0) {
  574                     bp->b_iocmd = BIO_READ;
  575                     vfs_busy_pages(bp, 0);
  576                     error = nfs_doio(vp, bp, cred, td);
  577                     if (error) {
  578                         bp->b_ioflags |= BIO_ERROR;
  579                         brelse(bp);
  580                         return (error);
  581                     }
  582                 }
  583                 n = min(uio->uio_resid, NFS_MAXPATHLEN - bp->b_resid);
  584                 on = 0;
  585                 break;
  586             case VDIR:
  587                 nfsstats.biocache_readdirs++;
  588                 if (np->n_direofoffset
  589                     && uio->uio_offset >= np->n_direofoffset) {
  590                     return (0);
  591                 }
  592                 lbn = (uoff_t)uio->uio_offset / NFS_DIRBLKSIZ;
  593                 on = uio->uio_offset & (NFS_DIRBLKSIZ - 1);
  594                 bp = nfs_getcacheblk(vp, lbn, NFS_DIRBLKSIZ, td);
  595                 if (!bp) {
  596                     error = nfs_sigintr(nmp, td);
  597                     return (error ? error : EINTR);
  598                 }
  599                 if ((bp->b_flags & B_CACHE) == 0) {
  600                     bp->b_iocmd = BIO_READ;
  601                     vfs_busy_pages(bp, 0);
  602                     error = nfs_doio(vp, bp, cred, td);
  603                     if (error) {
  604                             brelse(bp);
  605                     }
  606                     while (error == NFSERR_BAD_COOKIE) {
  607                         (nmp->nm_rpcops->nr_invaldir)(vp);
  608                         error = nfs_vinvalbuf(vp, 0, td, 1);
  609                         /*
  610                          * Yuck! The directory has been modified on the
  611                          * server. The only way to get the block is by
  612                          * reading from the beginning to get all the
  613                          * offset cookies.
  614                          *
  615                          * Leave the last bp intact unless there is an error.
  616                          * Loop back up to the while if the error is another
  617                          * NFSERR_BAD_COOKIE (double yuch!).
  618                          */
  619                         for (i = 0; i <= lbn && !error; i++) {
  620                             if (np->n_direofoffset
  621                                 && (i * NFS_DIRBLKSIZ) >= np->n_direofoffset)
  622                                     return (0);
  623                             bp = nfs_getcacheblk(vp, i, NFS_DIRBLKSIZ, td);
  624                             if (!bp) {
  625                                 error = nfs_sigintr(nmp, td);
  626                                 return (error ? error : EINTR);
  627                             }
  628                             if ((bp->b_flags & B_CACHE) == 0) {
  629                                     bp->b_iocmd = BIO_READ;
  630                                     vfs_busy_pages(bp, 0);
  631                                     error = nfs_doio(vp, bp, cred, td);
  632                                     /*
  633                                      * no error + B_INVAL == directory EOF,
  634                                      * use the block.
  635                                      */
  636                                     if (error == 0 && (bp->b_flags & B_INVAL))
  637                                             break;
  638                             }
  639                             /*
  640                              * An error will throw away the block and the
  641                              * for loop will break out.  If no error and this
  642                              * is not the block we want, we throw away the
  643                              * block and go for the next one via the for loop.
  644                              */
  645                             if (error || i < lbn)
  646                                     brelse(bp);
  647                         }
  648                     }
  649                     /*
  650                      * The above while is repeated if we hit another cookie
  651                      * error.  If we hit an error and it wasn't a cookie error,
  652                      * we give up.
  653                      */
  654                     if (error)
  655                             return (error);
  656                 }
  657 
  658                 /*
  659                  * If not eof and read aheads are enabled, start one.
  660                  * (You need the current block first, so that you have the
  661                  *  directory offset cookie of the next block.)
  662                  */
  663                 if (nmp->nm_readahead > 0 &&
  664                     (bp->b_flags & B_INVAL) == 0 &&
  665                     (np->n_direofoffset == 0 ||
  666                     (lbn + 1) * NFS_DIRBLKSIZ < np->n_direofoffset) &&
  667                     incore(&vp->v_bufobj, lbn + 1) == NULL) {
  668                         rabp = nfs_getcacheblk(vp, lbn + 1, NFS_DIRBLKSIZ, td);
  669                         if (rabp) {
  670                             if ((rabp->b_flags & (B_CACHE|B_DELWRI)) == 0) {
  671                                 rabp->b_flags |= B_ASYNC;
  672                                 rabp->b_iocmd = BIO_READ;
  673                                 vfs_busy_pages(rabp, 0);
  674                                 if (nfs_asyncio(nmp, rabp, cred, td)) {
  675                                     rabp->b_flags |= B_INVAL;
  676                                     rabp->b_ioflags |= BIO_ERROR;
  677                                     vfs_unbusy_pages(rabp);
  678                                     brelse(rabp);
  679                                 }
  680                             } else {
  681                                 brelse(rabp);
  682                             }
  683                         }
  684                 }
  685                 /*
  686                  * Unlike VREG files, whos buffer size ( bp->b_bcount ) is
  687                  * chopped for the EOF condition, we cannot tell how large
  688                  * NFS directories are going to be until we hit EOF.  So
  689                  * an NFS directory buffer is *not* chopped to its EOF.  Now,
  690                  * it just so happens that b_resid will effectively chop it
  691                  * to EOF.  *BUT* this information is lost if the buffer goes
  692                  * away and is reconstituted into a B_CACHE state ( due to
  693                  * being VMIO ) later.  So we keep track of the directory eof
  694                  * in np->n_direofoffset and chop it off as an extra step
  695                  * right here.
  696                  */
  697                 n = lmin(uio->uio_resid, NFS_DIRBLKSIZ - bp->b_resid - on);
  698                 if (np->n_direofoffset && n > np->n_direofoffset - uio->uio_offset)
  699                         n = np->n_direofoffset - uio->uio_offset;
  700                 break;
  701             default:
  702                 nfs_printf(" nfs_bioread: type %x unexpected\n", vp->v_type);
  703                 bp = NULL;
  704                 break;
  705             };
  706 
  707             if (n > 0) {
  708                     error = uiomove(bp->b_data + on, (int)n, uio);
  709             }
  710             if (vp->v_type == VLNK)
  711                 n = 0;
  712             if (bp != NULL)
  713                 brelse(bp);
  714         } while (error == 0 && uio->uio_resid > 0 && n > 0);
  715         return (error);
  716 }
  717 
  718 /*
  719  * The NFS write path cannot handle iovecs with len > 1. So we need to 
  720  * break up iovecs accordingly (restricting them to wsize).
  721  * For the SYNC case, we can do this with 1 copy (user buffer -> mbuf). 
  722  * For the ASYNC case, 2 copies are needed. The first a copy from the 
  723  * user buffer to a staging buffer and then a second copy from the staging
  724  * buffer to mbufs. This can be optimized by copying from the user buffer
  725  * directly into mbufs and passing the chain down, but that requires a 
  726  * fair amount of re-working of the relevant codepaths (and can be done
  727  * later).
  728  */
  729 static int
  730 nfs_directio_write(vp, uiop, cred, ioflag)
  731         struct vnode *vp;
  732         struct uio *uiop;
  733         struct ucred *cred;
  734         int ioflag;
  735 {
  736         int error;
  737         struct nfsmount *nmp = VFSTONFS(vp->v_mount);
  738         struct thread *td = uiop->uio_td;
  739         int size;
  740         int wsize;
  741         
  742         mtx_lock(&nmp->nm_mtx);
  743         wsize = nmp->nm_wsize;
  744         mtx_unlock(&nmp->nm_mtx);
  745         if (ioflag & IO_SYNC) {
  746                 int iomode, must_commit;
  747                 struct uio uio;
  748                 struct iovec iov;
  749 do_sync:
  750                 while (uiop->uio_resid > 0) {
  751                         size = min(uiop->uio_resid, wsize);
  752                         size = min(uiop->uio_iov->iov_len, size);
  753                         iov.iov_base = uiop->uio_iov->iov_base;
  754                         iov.iov_len = size;
  755                         uio.uio_iov = &iov;
  756                         uio.uio_iovcnt = 1;
  757                         uio.uio_offset = uiop->uio_offset;
  758                         uio.uio_resid = size;
  759                         uio.uio_segflg = UIO_USERSPACE;
  760                         uio.uio_rw = UIO_WRITE;
  761                         uio.uio_td = td;
  762                         iomode = NFSV3WRITE_FILESYNC;
  763                         error = (nmp->nm_rpcops->nr_writerpc)(vp, &uio, cred, 
  764                                                       &iomode, &must_commit);
  765                         KASSERT((must_commit == 0), 
  766                                 ("nfs_directio_write: Did not commit write"));
  767                         if (error)
  768                                 return (error);
  769                         uiop->uio_offset += size;
  770                         uiop->uio_resid -= size;
  771                         if (uiop->uio_iov->iov_len <= size) {
  772                                 uiop->uio_iovcnt--;
  773                                 uiop->uio_iov++;
  774                         } else {
  775                                 uiop->uio_iov->iov_base = 
  776                                         (char *)uiop->uio_iov->iov_base + size;
  777                                 uiop->uio_iov->iov_len -= size;
  778                         }
  779                 }
  780         } else {
  781                 struct uio *t_uio;
  782                 struct iovec *t_iov;
  783                 struct buf *bp;
  784                 
  785                 /*
  786                  * Break up the write into blocksize chunks and hand these
  787                  * over to nfsiod's for write back.
  788                  * Unfortunately, this incurs a copy of the data. Since 
  789                  * the user could modify the buffer before the write is 
  790                  * initiated.
  791                  * 
  792                  * The obvious optimization here is that one of the 2 copies
  793                  * in the async write path can be eliminated by copying the
  794                  * data here directly into mbufs and passing the mbuf chain
  795                  * down. But that will require a fair amount of re-working
  796                  * of the code and can be done if there's enough interest
  797                  * in NFS directio access.
  798                  */
  799                 while (uiop->uio_resid > 0) {
  800                         size = min(uiop->uio_resid, wsize);
  801                         size = min(uiop->uio_iov->iov_len, size);
  802                         bp = getpbuf(&nfs_pbuf_freecnt);
  803                         t_uio = malloc(sizeof(struct uio), M_NFSDIRECTIO, M_WAITOK);
  804                         t_iov = malloc(sizeof(struct iovec), M_NFSDIRECTIO, M_WAITOK);
  805                         t_iov->iov_base = malloc(size, M_NFSDIRECTIO, M_WAITOK);
  806                         t_iov->iov_len = size;
  807                         t_uio->uio_iov = t_iov;
  808                         t_uio->uio_iovcnt = 1;
  809                         t_uio->uio_offset = uiop->uio_offset;
  810                         t_uio->uio_resid = size;
  811                         t_uio->uio_segflg = UIO_SYSSPACE;
  812                         t_uio->uio_rw = UIO_WRITE;
  813                         t_uio->uio_td = td;
  814                         bcopy(uiop->uio_iov->iov_base, t_iov->iov_base, size);
  815                         bp->b_flags |= B_DIRECT;
  816                         bp->b_iocmd = BIO_WRITE;
  817                         if (cred != NOCRED) {
  818                                 crhold(cred);
  819                                 bp->b_wcred = cred;
  820                         } else 
  821                                 bp->b_wcred = NOCRED;                   
  822                         bp->b_caller1 = (void *)t_uio;
  823                         bp->b_vp = vp;
  824                         error = nfs_asyncio(nmp, bp, NOCRED, td);
  825                         if (error) {
  826                                 free(t_iov->iov_base, M_NFSDIRECTIO);
  827                                 free(t_iov, M_NFSDIRECTIO);
  828                                 free(t_uio, M_NFSDIRECTIO);
  829                                 bp->b_vp = NULL;
  830                                 relpbuf(bp, &nfs_pbuf_freecnt);
  831                                 if (error == EINTR)
  832                                         return (error);
  833                                 goto do_sync;
  834                         }
  835                         uiop->uio_offset += size;
  836                         uiop->uio_resid -= size;
  837                         if (uiop->uio_iov->iov_len <= size) {
  838                                 uiop->uio_iovcnt--;
  839                                 uiop->uio_iov++;
  840                         } else {
  841                                 uiop->uio_iov->iov_base = 
  842                                         (char *)uiop->uio_iov->iov_base + size;
  843                                 uiop->uio_iov->iov_len -= size;
  844                         }
  845                 }
  846         }
  847         return (0);
  848 }
  849 
  850 /*
  851  * Vnode op for write using bio
  852  */
  853 int
  854 nfs_write(struct vop_write_args *ap)
  855 {
  856         int biosize;
  857         struct uio *uio = ap->a_uio;
  858         struct thread *td = uio->uio_td;
  859         struct vnode *vp = ap->a_vp;
  860         struct nfsnode *np = VTONFS(vp);
  861         struct ucred *cred = ap->a_cred;
  862         int ioflag = ap->a_ioflag;
  863         struct buf *bp;
  864         struct vattr vattr;
  865         struct nfsmount *nmp = VFSTONFS(vp->v_mount);
  866         daddr_t lbn;
  867         int bcount;
  868         int n, on, error = 0;
  869         struct proc *p = td?td->td_proc:NULL;
  870 
  871         KASSERT(uio->uio_rw == UIO_WRITE, ("nfs_write mode"));
  872         KASSERT(uio->uio_segflg != UIO_USERSPACE || uio->uio_td == curthread,
  873             ("nfs_write proc"));
  874         if (vp->v_type != VREG)
  875                 return (EIO);
  876         mtx_lock(&np->n_mtx);
  877         if (np->n_flag & NWRITEERR) {
  878                 np->n_flag &= ~NWRITEERR;
  879                 mtx_unlock(&np->n_mtx);
  880                 return (np->n_error);
  881         } else
  882                 mtx_unlock(&np->n_mtx);
  883         mtx_lock(&nmp->nm_mtx);
  884         if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
  885             (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) {
  886                 mtx_unlock(&nmp->nm_mtx);
  887                 (void)nfs_fsinfo(nmp, vp, cred, td);
  888         } else
  889                 mtx_unlock(&nmp->nm_mtx);
  890 
  891         /*
  892          * Synchronously flush pending buffers if we are in synchronous
  893          * mode or if we are appending.
  894          */
  895         if (ioflag & (IO_APPEND | IO_SYNC)) {
  896                 mtx_lock(&np->n_mtx);
  897                 if (np->n_flag & NMODIFIED) {
  898                         mtx_unlock(&np->n_mtx);
  899 #ifdef notyet /* Needs matching nonblock semantics elsewhere, too. */
  900                         /*
  901                          * Require non-blocking, synchronous writes to
  902                          * dirty files to inform the program it needs
  903                          * to fsync(2) explicitly.
  904                          */
  905                         if (ioflag & IO_NDELAY)
  906                                 return (EAGAIN);
  907 #endif
  908 flush_and_restart:
  909                         np->n_attrstamp = 0;
  910                         KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
  911                         error = nfs_vinvalbuf(vp, V_SAVE, td, 1);
  912                         if (error)
  913                                 return (error);
  914                 } else
  915                         mtx_unlock(&np->n_mtx);
  916         }
  917 
  918         /*
  919          * If IO_APPEND then load uio_offset.  We restart here if we cannot
  920          * get the append lock.
  921          */
  922         if (ioflag & IO_APPEND) {
  923                 np->n_attrstamp = 0;
  924                 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
  925                 error = VOP_GETATTR(vp, &vattr, cred);
  926                 if (error)
  927                         return (error);
  928                 mtx_lock(&np->n_mtx);
  929                 uio->uio_offset = np->n_size;
  930                 mtx_unlock(&np->n_mtx);
  931         }
  932 
  933         if (uio->uio_offset < 0)
  934                 return (EINVAL);
  935         if ((uio->uio_offset + uio->uio_resid) > nmp->nm_maxfilesize)
  936                 return (EFBIG);
  937         if (uio->uio_resid == 0)
  938                 return (0);
  939 
  940         if (nfs_directio_enable && (ioflag & IO_DIRECT) && vp->v_type == VREG)
  941                 return nfs_directio_write(vp, uio, cred, ioflag);
  942 
  943         /*
  944          * Maybe this should be above the vnode op call, but so long as
  945          * file servers have no limits, i don't think it matters
  946          */
  947         if (p != NULL) {
  948                 PROC_LOCK(p);
  949                 if (uio->uio_offset + uio->uio_resid >
  950                     lim_cur(p, RLIMIT_FSIZE)) {
  951                         psignal(p, SIGXFSZ);
  952                         PROC_UNLOCK(p);
  953                         return (EFBIG);
  954                 }
  955                 PROC_UNLOCK(p);
  956         }
  957 
  958         biosize = vp->v_mount->mnt_stat.f_iosize;
  959         /*
  960          * Find all of this file's B_NEEDCOMMIT buffers.  If our writes
  961          * would exceed the local maximum per-file write commit size when
  962          * combined with those, we must decide whether to flush,
  963          * go synchronous, or return error.  We don't bother checking
  964          * IO_UNIT -- we just make all writes atomic anyway, as there's
  965          * no point optimizing for something that really won't ever happen.
  966          */
  967         if (!(ioflag & IO_SYNC)) {
  968                 int nflag;
  969 
  970                 mtx_lock(&np->n_mtx);
  971                 nflag = np->n_flag;
  972                 mtx_unlock(&np->n_mtx);         
  973                 int needrestart = 0;
  974                 if (nmp->nm_wcommitsize < uio->uio_resid) {
  975                         /*
  976                          * If this request could not possibly be completed
  977                          * without exceeding the maximum outstanding write
  978                          * commit size, see if we can convert it into a
  979                          * synchronous write operation.
  980                          */
  981                         if (ioflag & IO_NDELAY)
  982                                 return (EAGAIN);
  983                         ioflag |= IO_SYNC;
  984                         if (nflag & NMODIFIED)
  985                                 needrestart = 1;
  986                 } else if (nflag & NMODIFIED) {
  987                         int wouldcommit = 0;
  988                         BO_LOCK(&vp->v_bufobj);
  989                         if (vp->v_bufobj.bo_dirty.bv_cnt != 0) {
  990                                 TAILQ_FOREACH(bp, &vp->v_bufobj.bo_dirty.bv_hd,
  991                                     b_bobufs) {
  992                                         if (bp->b_flags & B_NEEDCOMMIT)
  993                                                 wouldcommit += bp->b_bcount;
  994                                 }
  995                         }
  996                         BO_UNLOCK(&vp->v_bufobj);
  997                         /*
  998                          * Since we're not operating synchronously and
  999                          * bypassing the buffer cache, we are in a commit
 1000                          * and holding all of these buffers whether
 1001                          * transmitted or not.  If not limited, this
 1002                          * will lead to the buffer cache deadlocking,
 1003                          * as no one else can flush our uncommitted buffers.
 1004                          */
 1005                         wouldcommit += uio->uio_resid;
 1006                         /*
 1007                          * If we would initially exceed the maximum
 1008                          * outstanding write commit size, flush and restart.
 1009                          */
 1010                         if (wouldcommit > nmp->nm_wcommitsize)
 1011                                 needrestart = 1;
 1012                 }
 1013                 if (needrestart)
 1014                         goto flush_and_restart;
 1015         }
 1016 
 1017         do {
 1018                 nfsstats.biocache_writes++;
 1019                 lbn = uio->uio_offset / biosize;
 1020                 on = uio->uio_offset & (biosize-1);
 1021                 n = min((unsigned)(biosize - on), uio->uio_resid);
 1022 again:
 1023                 /*
 1024                  * Handle direct append and file extension cases, calculate
 1025                  * unaligned buffer size.
 1026                  */
 1027                 mtx_lock(&np->n_mtx);
 1028                 if (uio->uio_offset == np->n_size && n) {
 1029                         mtx_unlock(&np->n_mtx);
 1030                         /*
 1031                          * Get the buffer (in its pre-append state to maintain
 1032                          * B_CACHE if it was previously set).  Resize the
 1033                          * nfsnode after we have locked the buffer to prevent
 1034                          * readers from reading garbage.
 1035                          */
 1036                         bcount = on;
 1037                         bp = nfs_getcacheblk(vp, lbn, bcount, td);
 1038 
 1039                         if (bp != NULL) {
 1040                                 long save;
 1041 
 1042                                 mtx_lock(&np->n_mtx);
 1043                                 np->n_size = uio->uio_offset + n;
 1044                                 np->n_flag |= NMODIFIED;
 1045                                 vnode_pager_setsize(vp, np->n_size);
 1046                                 mtx_unlock(&np->n_mtx);
 1047 
 1048                                 save = bp->b_flags & B_CACHE;
 1049                                 bcount += n;
 1050                                 allocbuf(bp, bcount);
 1051                                 bp->b_flags |= save;
 1052                         }
 1053                 } else {
 1054                         /*
 1055                          * Obtain the locked cache block first, and then
 1056                          * adjust the file's size as appropriate.
 1057                          */
 1058                         bcount = on + n;
 1059                         if ((off_t)lbn * biosize + bcount < np->n_size) {
 1060                                 if ((off_t)(lbn + 1) * biosize < np->n_size)
 1061                                         bcount = biosize;
 1062                                 else
 1063                                         bcount = np->n_size - (off_t)lbn * biosize;
 1064                         }
 1065                         mtx_unlock(&np->n_mtx);
 1066                         bp = nfs_getcacheblk(vp, lbn, bcount, td);
 1067                         mtx_lock(&np->n_mtx);
 1068                         if (uio->uio_offset + n > np->n_size) {
 1069                                 np->n_size = uio->uio_offset + n;
 1070                                 np->n_flag |= NMODIFIED;
 1071                                 vnode_pager_setsize(vp, np->n_size);
 1072                         }
 1073                         mtx_unlock(&np->n_mtx);
 1074                 }
 1075 
 1076                 if (!bp) {
 1077                         error = nfs_sigintr(nmp, td);
 1078                         if (!error)
 1079                                 error = EINTR;
 1080                         break;
 1081                 }
 1082 
 1083                 /*
 1084                  * Issue a READ if B_CACHE is not set.  In special-append
 1085                  * mode, B_CACHE is based on the buffer prior to the write
 1086                  * op and is typically set, avoiding the read.  If a read
 1087                  * is required in special append mode, the server will
 1088                  * probably send us a short-read since we extended the file
 1089                  * on our end, resulting in b_resid == 0 and, thusly,
 1090                  * B_CACHE getting set.
 1091                  *
 1092                  * We can also avoid issuing the read if the write covers
 1093                  * the entire buffer.  We have to make sure the buffer state
 1094                  * is reasonable in this case since we will not be initiating
 1095                  * I/O.  See the comments in kern/vfs_bio.c's getblk() for
 1096                  * more information.
 1097                  *
 1098                  * B_CACHE may also be set due to the buffer being cached
 1099                  * normally.
 1100                  */
 1101 
 1102                 if (on == 0 && n == bcount) {
 1103                         bp->b_flags |= B_CACHE;
 1104                         bp->b_flags &= ~B_INVAL;
 1105                         bp->b_ioflags &= ~BIO_ERROR;
 1106                 }
 1107 
 1108                 if ((bp->b_flags & B_CACHE) == 0) {
 1109                         bp->b_iocmd = BIO_READ;
 1110                         vfs_busy_pages(bp, 0);
 1111                         error = nfs_doio(vp, bp, cred, td);
 1112                         if (error) {
 1113                                 brelse(bp);
 1114                                 break;
 1115                         }
 1116                 }
 1117                 if (bp->b_wcred == NOCRED)
 1118                         bp->b_wcred = crhold(cred);
 1119                 mtx_lock(&np->n_mtx);
 1120                 np->n_flag |= NMODIFIED;
 1121                 mtx_unlock(&np->n_mtx);
 1122 
 1123                 /*
 1124                  * If dirtyend exceeds file size, chop it down.  This should
 1125                  * not normally occur but there is an append race where it
 1126                  * might occur XXX, so we log it.
 1127                  *
 1128                  * If the chopping creates a reverse-indexed or degenerate
 1129                  * situation with dirtyoff/end, we 0 both of them.
 1130                  */
 1131 
 1132                 if (bp->b_dirtyend > bcount) {
 1133                         nfs_printf("NFS append race @%lx:%d\n",
 1134                             (long)bp->b_blkno * DEV_BSIZE,
 1135                             bp->b_dirtyend - bcount);
 1136                         bp->b_dirtyend = bcount;
 1137                 }
 1138 
 1139                 if (bp->b_dirtyoff >= bp->b_dirtyend)
 1140                         bp->b_dirtyoff = bp->b_dirtyend = 0;
 1141 
 1142                 /*
 1143                  * If the new write will leave a contiguous dirty
 1144                  * area, just update the b_dirtyoff and b_dirtyend,
 1145                  * otherwise force a write rpc of the old dirty area.
 1146                  *
 1147                  * While it is possible to merge discontiguous writes due to
 1148                  * our having a B_CACHE buffer ( and thus valid read data
 1149                  * for the hole), we don't because it could lead to
 1150                  * significant cache coherency problems with multiple clients,
 1151                  * especially if locking is implemented later on.
 1152                  *
 1153                  * as an optimization we could theoretically maintain
 1154                  * a linked list of discontinuous areas, but we would still
 1155                  * have to commit them separately so there isn't much
 1156                  * advantage to it except perhaps a bit of asynchronization.
 1157                  */
 1158 
 1159                 if (bp->b_dirtyend > 0 &&
 1160                     (on > bp->b_dirtyend || (on + n) < bp->b_dirtyoff)) {
 1161                         if (bwrite(bp) == EINTR) {
 1162                                 error = EINTR;
 1163                                 break;
 1164                         }
 1165                         goto again;
 1166                 }
 1167 
 1168                 error = uiomove((char *)bp->b_data + on, n, uio);
 1169 
 1170                 /*
 1171                  * Since this block is being modified, it must be written
 1172                  * again and not just committed.  Since write clustering does
 1173                  * not work for the stage 1 data write, only the stage 2
 1174                  * commit rpc, we have to clear B_CLUSTEROK as well.
 1175                  */
 1176                 bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
 1177 
 1178                 if (error) {
 1179                         bp->b_ioflags |= BIO_ERROR;
 1180                         brelse(bp);
 1181                         break;
 1182                 }
 1183 
 1184                 /*
 1185                  * Only update dirtyoff/dirtyend if not a degenerate
 1186                  * condition.
 1187                  */
 1188                 if (n) {
 1189                         if (bp->b_dirtyend > 0) {
 1190                                 bp->b_dirtyoff = min(on, bp->b_dirtyoff);
 1191                                 bp->b_dirtyend = max((on + n), bp->b_dirtyend);
 1192                         } else {
 1193                                 bp->b_dirtyoff = on;
 1194                                 bp->b_dirtyend = on + n;
 1195                         }
 1196                         vfs_bio_set_valid(bp, on, n);
 1197                 }
 1198 
 1199                 /*
 1200                  * If IO_SYNC do bwrite().
 1201                  *
 1202                  * IO_INVAL appears to be unused.  The idea appears to be
 1203                  * to turn off caching in this case.  Very odd.  XXX
 1204                  */
 1205                 if ((ioflag & IO_SYNC)) {
 1206                         if (ioflag & IO_INVAL)
 1207                                 bp->b_flags |= B_NOCACHE;
 1208                         error = bwrite(bp);
 1209                         if (error)
 1210                                 break;
 1211                 } else if ((n + on) == biosize) {
 1212                         bp->b_flags |= B_ASYNC;
 1213                         (void) (nmp->nm_rpcops->nr_writebp)(bp, 0, NULL);
 1214                 } else {
 1215                         bdwrite(bp);
 1216                 }
 1217         } while (uio->uio_resid > 0 && n > 0);
 1218 
 1219         return (error);
 1220 }
 1221 
 1222 /*
 1223  * Get an nfs cache block.
 1224  *
 1225  * Allocate a new one if the block isn't currently in the cache
 1226  * and return the block marked busy. If the calling process is
 1227  * interrupted by a signal for an interruptible mount point, return
 1228  * NULL.
 1229  *
 1230  * The caller must carefully deal with the possible B_INVAL state of
 1231  * the buffer.  nfs_doio() clears B_INVAL (and nfs_asyncio() clears it
 1232  * indirectly), so synchronous reads can be issued without worrying about
 1233  * the B_INVAL state.  We have to be a little more careful when dealing
 1234  * with writes (see comments in nfs_write()) when extending a file past
 1235  * its EOF.
 1236  */
 1237 static struct buf *
 1238 nfs_getcacheblk(struct vnode *vp, daddr_t bn, int size, struct thread *td)
 1239 {
 1240         struct buf *bp;
 1241         struct mount *mp;
 1242         struct nfsmount *nmp;
 1243 
 1244         mp = vp->v_mount;
 1245         nmp = VFSTONFS(mp);
 1246 
 1247         if (nmp->nm_flag & NFSMNT_INT) {
 1248                 sigset_t oldset;
 1249 
 1250                 nfs_set_sigmask(td, &oldset);
 1251                 bp = getblk(vp, bn, size, NFS_PCATCH, 0, 0);
 1252                 nfs_restore_sigmask(td, &oldset);
 1253                 while (bp == NULL) {
 1254                         if (nfs_sigintr(nmp, td))
 1255                                 return (NULL);
 1256                         bp = getblk(vp, bn, size, 0, 2 * hz, 0);
 1257                 }
 1258         } else {
 1259                 bp = getblk(vp, bn, size, 0, 0, 0);
 1260         }
 1261 
 1262         if (vp->v_type == VREG) {
 1263                 int biosize;
 1264 
 1265                 biosize = mp->mnt_stat.f_iosize;
 1266                 bp->b_blkno = bn * (biosize / DEV_BSIZE);
 1267         }
 1268         return (bp);
 1269 }
 1270 
 1271 /*
 1272  * Flush and invalidate all dirty buffers. If another process is already
 1273  * doing the flush, just wait for completion.
 1274  */
 1275 int
 1276 nfs_vinvalbuf(struct vnode *vp, int flags, struct thread *td, int intrflg)
 1277 {
 1278         struct nfsnode *np = VTONFS(vp);
 1279         struct nfsmount *nmp = VFSTONFS(vp->v_mount);
 1280         int error = 0, slpflag, slptimeo;
 1281         int old_lock = 0;
 1282 
 1283         ASSERT_VOP_LOCKED(vp, "nfs_vinvalbuf");
 1284 
 1285         if ((nmp->nm_flag & NFSMNT_INT) == 0)
 1286                 intrflg = 0;
 1287         if (intrflg) {
 1288                 slpflag = NFS_PCATCH;
 1289                 slptimeo = 2 * hz;
 1290         } else {
 1291                 slpflag = 0;
 1292                 slptimeo = 0;
 1293         }
 1294 
 1295         old_lock = nfs_upgrade_vnlock(vp);
 1296         if (vp->v_iflag & VI_DOOMED) {
 1297                 /*
 1298                  * Since vgonel() uses the generic vinvalbuf() to flush
 1299                  * dirty buffers and it does not call this function, it
 1300                  * is safe to just return OK when VI_DOOMED is set.
 1301                  */
 1302                 nfs_downgrade_vnlock(vp, old_lock);
 1303                 return (0);
 1304         }
 1305 
 1306         /*
 1307          * Now, flush as required.
 1308          */
 1309         if ((flags & V_SAVE) && (vp->v_bufobj.bo_object != NULL)) {
 1310                 VM_OBJECT_LOCK(vp->v_bufobj.bo_object);
 1311                 vm_object_page_clean(vp->v_bufobj.bo_object, 0, 0, OBJPC_SYNC);
 1312                 VM_OBJECT_UNLOCK(vp->v_bufobj.bo_object);
 1313                 /*
 1314                  * If the page clean was interrupted, fail the invalidation.
 1315                  * Not doing so, we run the risk of losing dirty pages in the 
 1316                  * vinvalbuf() call below.
 1317                  */
 1318                 if (intrflg && (error = nfs_sigintr(nmp, td)))
 1319                         goto out;
 1320         }
 1321 
 1322         error = vinvalbuf(vp, flags, slpflag, 0);
 1323         while (error) {
 1324                 if (intrflg && (error = nfs_sigintr(nmp, td)))
 1325                         goto out;
 1326                 error = vinvalbuf(vp, flags, 0, slptimeo);
 1327         }
 1328         mtx_lock(&np->n_mtx);
 1329         if (np->n_directio_asyncwr == 0)
 1330                 np->n_flag &= ~NMODIFIED;
 1331         mtx_unlock(&np->n_mtx);
 1332 out:
 1333         nfs_downgrade_vnlock(vp, old_lock);
 1334         return error;
 1335 }
 1336 
 1337 /*
 1338  * Initiate asynchronous I/O. Return an error if no nfsiods are available.
 1339  * This is mainly to avoid queueing async I/O requests when the nfsiods
 1340  * are all hung on a dead server.
 1341  *
 1342  * Note: nfs_asyncio() does not clear (BIO_ERROR|B_INVAL) but when the bp
 1343  * is eventually dequeued by the async daemon, nfs_doio() *will*.
 1344  */
 1345 int
 1346 nfs_asyncio(struct nfsmount *nmp, struct buf *bp, struct ucred *cred, struct thread *td)
 1347 {
 1348         int iod;
 1349         int gotiod;
 1350         int slpflag = 0;
 1351         int slptimeo = 0;
 1352         int error, error2;
 1353 
 1354         /*
 1355          * Commits are usually short and sweet so lets save some cpu and
 1356          * leave the async daemons for more important rpc's (such as reads
 1357          * and writes).
 1358          */
 1359         mtx_lock(&nfs_iod_mtx);
 1360         if (bp->b_iocmd == BIO_WRITE && (bp->b_flags & B_NEEDCOMMIT) &&
 1361             (nmp->nm_bufqiods > nfs_numasync / 2)) {
 1362                 mtx_unlock(&nfs_iod_mtx);
 1363                 return(EIO);
 1364         }
 1365 again:
 1366         if (nmp->nm_flag & NFSMNT_INT)
 1367                 slpflag = NFS_PCATCH;
 1368         gotiod = FALSE;
 1369 
 1370         /*
 1371          * Find a free iod to process this request.
 1372          */
 1373         for (iod = 0; iod < nfs_numasync; iod++)
 1374                 if (nfs_iodwant[iod] == NFSIOD_AVAILABLE) {
 1375                         gotiod = TRUE;
 1376                         break;
 1377                 }
 1378 
 1379         /*
 1380          * Try to create one if none are free.
 1381          */
 1382         if (!gotiod)
 1383                 nfs_nfsiodnew();
 1384         else {
 1385                 /*
 1386                  * Found one, so wake it up and tell it which
 1387                  * mount to process.
 1388                  */
 1389                 NFS_DPF(ASYNCIO, ("nfs_asyncio: waking iod %d for mount %p\n",
 1390                     iod, nmp));
 1391                 nfs_iodwant[iod] = NFSIOD_NOT_AVAILABLE;
 1392                 nfs_iodmount[iod] = nmp;
 1393                 nmp->nm_bufqiods++;
 1394                 wakeup(&nfs_iodwant[iod]);
 1395         }
 1396 
 1397         /*
 1398          * If none are free, we may already have an iod working on this mount
 1399          * point.  If so, it will process our request.
 1400          */
 1401         if (!gotiod) {
 1402                 if (nmp->nm_bufqiods > 0) {
 1403                         NFS_DPF(ASYNCIO,
 1404                 ("nfs_asyncio: %d iods are already processing mount %p\n",
 1405                                  nmp->nm_bufqiods, nmp));
 1406                         gotiod = TRUE;
 1407                 }
 1408         }
 1409 
 1410         /*
 1411          * If we have an iod which can process the request, then queue
 1412          * the buffer.
 1413          */
 1414         if (gotiod) {
 1415                 /*
 1416                  * Ensure that the queue never grows too large.  We still want
 1417                  * to asynchronize so we block rather then return EIO.
 1418                  */
 1419                 while (nmp->nm_bufqlen >= 2 * nfs_numasync) {
 1420                         NFS_DPF(ASYNCIO,
 1421                 ("nfs_asyncio: waiting for mount %p queue to drain\n", nmp));
 1422                         nmp->nm_bufqwant = TRUE;
 1423                         error = nfs_msleep(td, &nmp->nm_bufq, &nfs_iod_mtx, 
 1424                                            slpflag | PRIBIO,
 1425                                            "nfsaio", slptimeo);
 1426                         if (error) {
 1427                                 error2 = nfs_sigintr(nmp, td);
 1428                                 if (error2) {
 1429                                         mtx_unlock(&nfs_iod_mtx);
 1430                                         return (error2);
 1431                                 }
 1432                                 if (slpflag == NFS_PCATCH) {
 1433                                         slpflag = 0;
 1434                                         slptimeo = 2 * hz;
 1435                                 }
 1436                         }
 1437                         /*
 1438                          * We might have lost our iod while sleeping,
 1439                          * so check and loop if nescessary.
 1440                          */
 1441                         goto again;
 1442                 }
 1443 
 1444                 /* We might have lost our nfsiod */
 1445                 if (nmp->nm_bufqiods == 0) {
 1446                         NFS_DPF(ASYNCIO,
 1447 ("nfs_asyncio: no iods after mount %p queue was drained, looping\n", nmp));
 1448                         goto again;
 1449                 }
 1450 
 1451                 if (bp->b_iocmd == BIO_READ) {
 1452                         if (bp->b_rcred == NOCRED && cred != NOCRED)
 1453                                 bp->b_rcred = crhold(cred);
 1454                 } else {
 1455                         if (bp->b_wcred == NOCRED && cred != NOCRED)
 1456                                 bp->b_wcred = crhold(cred);
 1457                 }
 1458 
 1459                 if (bp->b_flags & B_REMFREE)
 1460                         bremfreef(bp);
 1461                 BUF_KERNPROC(bp);
 1462                 TAILQ_INSERT_TAIL(&nmp->nm_bufq, bp, b_freelist);
 1463                 nmp->nm_bufqlen++;
 1464                 if ((bp->b_flags & B_DIRECT) && bp->b_iocmd == BIO_WRITE) {
 1465                         mtx_lock(&(VTONFS(bp->b_vp))->n_mtx);                   
 1466                         VTONFS(bp->b_vp)->n_flag |= NMODIFIED;
 1467                         VTONFS(bp->b_vp)->n_directio_asyncwr++;
 1468                         mtx_unlock(&(VTONFS(bp->b_vp))->n_mtx);
 1469                 }
 1470                 mtx_unlock(&nfs_iod_mtx);
 1471                 return (0);
 1472         }
 1473 
 1474         mtx_unlock(&nfs_iod_mtx);
 1475 
 1476         /*
 1477          * All the iods are busy on other mounts, so return EIO to
 1478          * force the caller to process the i/o synchronously.
 1479          */
 1480         NFS_DPF(ASYNCIO, ("nfs_asyncio: no iods available, i/o is synchronous\n"));
 1481         return (EIO);
 1482 }
 1483 
 1484 void
 1485 nfs_doio_directwrite(struct buf *bp)
 1486 {
 1487         int iomode, must_commit;
 1488         struct uio *uiop = (struct uio *)bp->b_caller1;
 1489         char *iov_base = uiop->uio_iov->iov_base;
 1490         struct nfsmount *nmp = VFSTONFS(bp->b_vp->v_mount);
 1491         
 1492         iomode = NFSV3WRITE_FILESYNC;
 1493         uiop->uio_td = NULL; /* NULL since we're in nfsiod */
 1494         (nmp->nm_rpcops->nr_writerpc)(bp->b_vp, uiop, bp->b_wcred, &iomode, &must_commit);
 1495         KASSERT((must_commit == 0), ("nfs_doio_directwrite: Did not commit write"));
 1496         free(iov_base, M_NFSDIRECTIO);
 1497         free(uiop->uio_iov, M_NFSDIRECTIO);
 1498         free(uiop, M_NFSDIRECTIO);
 1499         if ((bp->b_flags & B_DIRECT) && bp->b_iocmd == BIO_WRITE) {
 1500                 struct nfsnode *np = VTONFS(bp->b_vp);
 1501                 mtx_lock(&np->n_mtx);
 1502                 np->n_directio_asyncwr--;
 1503                 if (np->n_directio_asyncwr == 0) {
 1504                         VTONFS(bp->b_vp)->n_flag &= ~NMODIFIED;
 1505                         if ((np->n_flag & NFSYNCWAIT)) {
 1506                                 np->n_flag &= ~NFSYNCWAIT;
 1507                                 wakeup((caddr_t)&np->n_directio_asyncwr);
 1508                         }
 1509                 }
 1510                 mtx_unlock(&np->n_mtx);
 1511         }
 1512         bp->b_vp = NULL;
 1513         relpbuf(bp, &nfs_pbuf_freecnt);
 1514 }
 1515 
 1516 /*
 1517  * Do an I/O operation to/from a cache block. This may be called
 1518  * synchronously or from an nfsiod.
 1519  */
 1520 int
 1521 nfs_doio(struct vnode *vp, struct buf *bp, struct ucred *cr, struct thread *td)
 1522 {
 1523         struct uio *uiop;
 1524         struct nfsnode *np;
 1525         struct nfsmount *nmp;
 1526         int error = 0, iomode, must_commit = 0;
 1527         struct uio uio;
 1528         struct iovec io;
 1529         struct proc *p = td ? td->td_proc : NULL;
 1530         uint8_t iocmd;
 1531         
 1532         np = VTONFS(vp);
 1533         nmp = VFSTONFS(vp->v_mount);
 1534         uiop = &uio;
 1535         uiop->uio_iov = &io;
 1536         uiop->uio_iovcnt = 1;
 1537         uiop->uio_segflg = UIO_SYSSPACE;
 1538         uiop->uio_td = td;
 1539 
 1540         /*
 1541          * clear BIO_ERROR and B_INVAL state prior to initiating the I/O.  We
 1542          * do this here so we do not have to do it in all the code that
 1543          * calls us.
 1544          */
 1545         bp->b_flags &= ~B_INVAL;
 1546         bp->b_ioflags &= ~BIO_ERROR;
 1547 
 1548         KASSERT(!(bp->b_flags & B_DONE), ("nfs_doio: bp %p already marked done", bp));
 1549         iocmd = bp->b_iocmd;
 1550         if (iocmd == BIO_READ) {
 1551             io.iov_len = uiop->uio_resid = bp->b_bcount;
 1552             io.iov_base = bp->b_data;
 1553             uiop->uio_rw = UIO_READ;
 1554 
 1555             switch (vp->v_type) {
 1556             case VREG:
 1557                 uiop->uio_offset = ((off_t)bp->b_blkno) * DEV_BSIZE;
 1558                 nfsstats.read_bios++;
 1559                 error = (nmp->nm_rpcops->nr_readrpc)(vp, uiop, cr);
 1560 
 1561                 if (!error) {
 1562                     if (uiop->uio_resid) {
 1563                         /*
 1564                          * If we had a short read with no error, we must have
 1565                          * hit a file hole.  We should zero-fill the remainder.
 1566                          * This can also occur if the server hits the file EOF.
 1567                          *
 1568                          * Holes used to be able to occur due to pending
 1569                          * writes, but that is not possible any longer.
 1570                          */
 1571                         int nread = bp->b_bcount - uiop->uio_resid;
 1572                         int left  = uiop->uio_resid;
 1573 
 1574                         if (left > 0)
 1575                                 bzero((char *)bp->b_data + nread, left);
 1576                         uiop->uio_resid = 0;
 1577                     }
 1578                 }
 1579                 /* ASSERT_VOP_LOCKED(vp, "nfs_doio"); */
 1580                 if (p && (vp->v_vflag & VV_TEXT)) {
 1581                         mtx_lock(&np->n_mtx);
 1582                         if (NFS_TIMESPEC_COMPARE(&np->n_mtime, &np->n_vattr.va_mtime)) {
 1583                                 mtx_unlock(&np->n_mtx);
 1584                                 PROC_LOCK(p);
 1585                                 killproc(p, "text file modification");
 1586                                 PROC_UNLOCK(p);
 1587                         } else
 1588                                 mtx_unlock(&np->n_mtx);
 1589                 }
 1590                 break;
 1591             case VLNK:
 1592                 uiop->uio_offset = (off_t)0;
 1593                 nfsstats.readlink_bios++;
 1594                 error = (nmp->nm_rpcops->nr_readlinkrpc)(vp, uiop, cr);
 1595                 break;
 1596             case VDIR:
 1597                 nfsstats.readdir_bios++;
 1598                 uiop->uio_offset = ((u_quad_t)bp->b_lblkno) * NFS_DIRBLKSIZ;
 1599                 if ((nmp->nm_flag & NFSMNT_RDIRPLUS) != 0) {
 1600                         error = nfs_readdirplusrpc(vp, uiop, cr);
 1601                         if (error == NFSERR_NOTSUPP)
 1602                                 nmp->nm_flag &= ~NFSMNT_RDIRPLUS;
 1603                 }
 1604                 if ((nmp->nm_flag & NFSMNT_RDIRPLUS) == 0)
 1605                         error = nfs_readdirrpc(vp, uiop, cr);
 1606                 /*
 1607                  * end-of-directory sets B_INVAL but does not generate an
 1608                  * error.
 1609                  */
 1610                 if (error == 0 && uiop->uio_resid == bp->b_bcount)
 1611                         bp->b_flags |= B_INVAL;
 1612                 break;
 1613             default:
 1614                 nfs_printf("nfs_doio:  type %x unexpected\n", vp->v_type);
 1615                 break;
 1616             };
 1617             if (error) {
 1618                 bp->b_ioflags |= BIO_ERROR;
 1619                 bp->b_error = error;
 1620             }
 1621         } else {
 1622             /*
 1623              * If we only need to commit, try to commit
 1624              */
 1625             if (bp->b_flags & B_NEEDCOMMIT) {
 1626                     int retv;
 1627                     off_t off;
 1628 
 1629                     off = ((u_quad_t)bp->b_blkno) * DEV_BSIZE + bp->b_dirtyoff;
 1630                     retv = (nmp->nm_rpcops->nr_commit)(
 1631                                 vp, off, bp->b_dirtyend-bp->b_dirtyoff,
 1632                                 bp->b_wcred, td);
 1633                     if (retv == 0) {
 1634                             bp->b_dirtyoff = bp->b_dirtyend = 0;
 1635                             bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
 1636                             bp->b_resid = 0;
 1637                             bufdone(bp);
 1638                             return (0);
 1639                     }
 1640                     if (retv == NFSERR_STALEWRITEVERF) {
 1641                             nfs_clearcommit(vp->v_mount);
 1642                     }
 1643             }
 1644 
 1645             /*
 1646              * Setup for actual write
 1647              */
 1648             mtx_lock(&np->n_mtx);
 1649             if ((off_t)bp->b_blkno * DEV_BSIZE + bp->b_dirtyend > np->n_size)
 1650                 bp->b_dirtyend = np->n_size - (off_t)bp->b_blkno * DEV_BSIZE;
 1651             mtx_unlock(&np->n_mtx);
 1652 
 1653             if (bp->b_dirtyend > bp->b_dirtyoff) {
 1654                 io.iov_len = uiop->uio_resid = bp->b_dirtyend
 1655                     - bp->b_dirtyoff;
 1656                 uiop->uio_offset = (off_t)bp->b_blkno * DEV_BSIZE
 1657                     + bp->b_dirtyoff;
 1658                 io.iov_base = (char *)bp->b_data + bp->b_dirtyoff;
 1659                 uiop->uio_rw = UIO_WRITE;
 1660                 nfsstats.write_bios++;
 1661 
 1662                 if ((bp->b_flags & (B_ASYNC | B_NEEDCOMMIT | B_NOCACHE | B_CLUSTER)) == B_ASYNC)
 1663                     iomode = NFSV3WRITE_UNSTABLE;
 1664                 else
 1665                     iomode = NFSV3WRITE_FILESYNC;
 1666 
 1667                 error = (nmp->nm_rpcops->nr_writerpc)(vp, uiop, cr, &iomode, &must_commit);
 1668 
 1669                 /*
 1670                  * When setting B_NEEDCOMMIT also set B_CLUSTEROK to try
 1671                  * to cluster the buffers needing commit.  This will allow
 1672                  * the system to submit a single commit rpc for the whole
 1673                  * cluster.  We can do this even if the buffer is not 100%
 1674                  * dirty (relative to the NFS blocksize), so we optimize the
 1675                  * append-to-file-case.
 1676                  *
 1677                  * (when clearing B_NEEDCOMMIT, B_CLUSTEROK must also be
 1678                  * cleared because write clustering only works for commit
 1679                  * rpc's, not for the data portion of the write).
 1680                  */
 1681 
 1682                 if (!error && iomode == NFSV3WRITE_UNSTABLE) {
 1683                     bp->b_flags |= B_NEEDCOMMIT;
 1684                     if (bp->b_dirtyoff == 0
 1685                         && bp->b_dirtyend == bp->b_bcount)
 1686                         bp->b_flags |= B_CLUSTEROK;
 1687                 } else {
 1688                     bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
 1689                 }
 1690 
 1691                 /*
 1692                  * For an interrupted write, the buffer is still valid
 1693                  * and the write hasn't been pushed to the server yet,
 1694                  * so we can't set BIO_ERROR and report the interruption
 1695                  * by setting B_EINTR. For the B_ASYNC case, B_EINTR
 1696                  * is not relevant, so the rpc attempt is essentially
 1697                  * a noop.  For the case of a V3 write rpc not being
 1698                  * committed to stable storage, the block is still
 1699                  * dirty and requires either a commit rpc or another
 1700                  * write rpc with iomode == NFSV3WRITE_FILESYNC before
 1701                  * the block is reused. This is indicated by setting
 1702                  * the B_DELWRI and B_NEEDCOMMIT flags.
 1703                  *
 1704                  * If the buffer is marked B_PAGING, it does not reside on
 1705                  * the vp's paging queues so we cannot call bdirty().  The
 1706                  * bp in this case is not an NFS cache block so we should
 1707                  * be safe. XXX
 1708                  *
 1709                  * The logic below breaks up errors into recoverable and 
 1710                  * unrecoverable. For the former, we clear B_INVAL|B_NOCACHE
 1711                  * and keep the buffer around for potential write retries.
 1712                  * For the latter (eg ESTALE), we toss the buffer away (B_INVAL)
 1713                  * and save the error in the nfsnode. This is less than ideal 
 1714                  * but necessary. Keeping such buffers around could potentially
 1715                  * cause buffer exhaustion eventually (they can never be written
 1716                  * out, so will get constantly be re-dirtied). It also causes
 1717                  * all sorts of vfs panics. For non-recoverable write errors, 
 1718                  * also invalidate the attrcache, so we'll be forced to go over
 1719                  * the wire for this object, returning an error to user on next
 1720                  * call (most of the time).
 1721                  */
 1722                 if (error == EINTR || error == EIO || error == ETIMEDOUT
 1723                     || (!error && (bp->b_flags & B_NEEDCOMMIT))) {
 1724                         int s;
 1725 
 1726                         s = splbio();
 1727                         bp->b_flags &= ~(B_INVAL|B_NOCACHE);
 1728                         if ((bp->b_flags & B_PAGING) == 0) {
 1729                             bdirty(bp);
 1730                             bp->b_flags &= ~B_DONE;
 1731                         }
 1732                         if (error && (bp->b_flags & B_ASYNC) == 0)
 1733                             bp->b_flags |= B_EINTR;
 1734                         splx(s);
 1735                 } else {
 1736                     if (error) {
 1737                         bp->b_ioflags |= BIO_ERROR;
 1738                         bp->b_flags |= B_INVAL;
 1739                         bp->b_error = np->n_error = error;
 1740                         mtx_lock(&np->n_mtx);
 1741                         np->n_flag |= NWRITEERR;
 1742                         np->n_attrstamp = 0;
 1743                         KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
 1744                         mtx_unlock(&np->n_mtx);
 1745                     }
 1746                     bp->b_dirtyoff = bp->b_dirtyend = 0;
 1747                 }
 1748             } else {
 1749                 bp->b_resid = 0;
 1750                 bufdone(bp);
 1751                 return (0);
 1752             }
 1753         }
 1754         bp->b_resid = uiop->uio_resid;
 1755         if (must_commit)
 1756             nfs_clearcommit(vp->v_mount);
 1757         bufdone(bp);
 1758         return (error);
 1759 }
 1760 
 1761 /*
 1762  * Used to aid in handling ftruncate() operations on the NFS client side.
 1763  * Truncation creates a number of special problems for NFS.  We have to
 1764  * throw away VM pages and buffer cache buffers that are beyond EOF, and
 1765  * we have to properly handle VM pages or (potentially dirty) buffers
 1766  * that straddle the truncation point.
 1767  */
 1768 
 1769 int
 1770 nfs_meta_setsize(struct vnode *vp, struct ucred *cred, struct thread *td, u_quad_t nsize)
 1771 {
 1772         struct nfsnode *np = VTONFS(vp);
 1773         u_quad_t tsize;
 1774         int biosize = vp->v_mount->mnt_stat.f_iosize;
 1775         int error = 0;
 1776 
 1777         mtx_lock(&np->n_mtx);
 1778         tsize = np->n_size;
 1779         np->n_size = nsize;
 1780         mtx_unlock(&np->n_mtx);
 1781 
 1782         if (nsize < tsize) {
 1783                 struct buf *bp;
 1784                 daddr_t lbn;
 1785                 int bufsize;
 1786 
 1787                 /*
 1788                  * vtruncbuf() doesn't get the buffer overlapping the 
 1789                  * truncation point.  We may have a B_DELWRI and/or B_CACHE
 1790                  * buffer that now needs to be truncated.
 1791                  */
 1792                 error = vtruncbuf(vp, cred, td, nsize, biosize);
 1793                 lbn = nsize / biosize;
 1794                 bufsize = nsize & (biosize - 1);
 1795                 bp = nfs_getcacheblk(vp, lbn, bufsize, td);
 1796                 if (!bp)
 1797                         return EINTR;
 1798                 if (bp->b_dirtyoff > bp->b_bcount)
 1799                         bp->b_dirtyoff = bp->b_bcount;
 1800                 if (bp->b_dirtyend > bp->b_bcount)
 1801                         bp->b_dirtyend = bp->b_bcount;
 1802                 bp->b_flags |= B_RELBUF;  /* don't leave garbage around */
 1803                 brelse(bp);
 1804         } else {
 1805                 vnode_pager_setsize(vp, nsize);
 1806         }
 1807         return(error);
 1808 }
 1809 

Cache object: cf1cfd2ea8497443b2c63ecf3c4bd97f


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.