The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/nfsclient/nfs_bio.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1989, 1993
    3  *      The Regents of the University of California.  All rights reserved.
    4  *
    5  * This code is derived from software contributed to Berkeley by
    6  * Rick Macklem at The University of Guelph.
    7  *
    8  * Redistribution and use in source and binary forms, with or without
    9  * modification, are permitted provided that the following conditions
   10  * are met:
   11  * 1. Redistributions of source code must retain the above copyright
   12  *    notice, this list of conditions and the following disclaimer.
   13  * 2. Redistributions in binary form must reproduce the above copyright
   14  *    notice, this list of conditions and the following disclaimer in the
   15  *    documentation and/or other materials provided with the distribution.
   16  * 4. Neither the name of the University nor the names of its contributors
   17  *    may be used to endorse or promote products derived from this software
   18  *    without specific prior written permission.
   19  *
   20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   30  * SUCH DAMAGE.
   31  *
   32  *      @(#)nfs_bio.c   8.9 (Berkeley) 3/30/95
   33  */
   34 
   35 #include <sys/cdefs.h>
   36 __FBSDID("$FreeBSD: releng/9.1/sys/nfsclient/nfs_bio.c 236096 2012-05-26 13:12:14Z rmacklem $");
   37 
   38 #include "opt_kdtrace.h"
   39 
   40 #include <sys/param.h>
   41 #include <sys/systm.h>
   42 #include <sys/bio.h>
   43 #include <sys/buf.h>
   44 #include <sys/kernel.h>
   45 #include <sys/mbuf.h>
   46 #include <sys/mount.h>
   47 #include <sys/proc.h>
   48 #include <sys/vmmeter.h>
   49 #include <sys/vnode.h>
   50 
   51 #include <vm/vm.h>
   52 #include <vm/vm_extern.h>
   53 #include <vm/vm_page.h>
   54 #include <vm/vm_object.h>
   55 #include <vm/vm_pager.h>
   56 #include <vm/vnode_pager.h>
   57 
   58 #include <nfs/nfsproto.h>
   59 #include <nfsclient/nfs.h>
   60 #include <nfsclient/nfsmount.h>
   61 #include <nfsclient/nfsnode.h>
   62 #include <nfs/nfs_kdtrace.h>
   63 
   64 static struct buf *nfs_getcacheblk(struct vnode *vp, daddr_t bn, int size,
   65                     struct thread *td);
   66 static int nfs_directio_write(struct vnode *vp, struct uio *uiop, 
   67                               struct ucred *cred, int ioflag);
   68 
   69 extern int nfs_directio_enable;
   70 extern int nfs_directio_allow_mmap;
   71 
   72 /*
   73  * Vnode op for VM getpages.
   74  */
   75 int
   76 nfs_getpages(struct vop_getpages_args *ap)
   77 {
   78         int i, error, nextoff, size, toff, count, npages;
   79         struct uio uio;
   80         struct iovec iov;
   81         vm_offset_t kva;
   82         struct buf *bp;
   83         struct vnode *vp;
   84         struct thread *td;
   85         struct ucred *cred;
   86         struct nfsmount *nmp;
   87         vm_object_t object;
   88         vm_page_t *pages;
   89         struct nfsnode *np;
   90 
   91         vp = ap->a_vp;
   92         np = VTONFS(vp);
   93         td = curthread;                         /* XXX */
   94         cred = curthread->td_ucred;             /* XXX */
   95         nmp = VFSTONFS(vp->v_mount);
   96         pages = ap->a_m;
   97         count = ap->a_count;
   98 
   99         if ((object = vp->v_object) == NULL) {
  100                 nfs_printf("nfs_getpages: called with non-merged cache vnode??\n");
  101                 return (VM_PAGER_ERROR);
  102         }
  103 
  104         if (nfs_directio_enable && !nfs_directio_allow_mmap) {
  105                 mtx_lock(&np->n_mtx);
  106                 if ((np->n_flag & NNONCACHE) && (vp->v_type == VREG)) {
  107                         mtx_unlock(&np->n_mtx);
  108                         nfs_printf("nfs_getpages: called on non-cacheable vnode??\n");
  109                         return (VM_PAGER_ERROR);
  110                 } else
  111                         mtx_unlock(&np->n_mtx);
  112         }
  113 
  114         mtx_lock(&nmp->nm_mtx);
  115         if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
  116             (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) {  
  117                 mtx_unlock(&nmp->nm_mtx);
  118                 /* We'll never get here for v4, because we always have fsinfo */
  119                 (void)nfs_fsinfo(nmp, vp, cred, td);
  120         } else
  121                 mtx_unlock(&nmp->nm_mtx);
  122 
  123         npages = btoc(count);
  124 
  125         /*
  126          * If the requested page is partially valid, just return it and
  127          * allow the pager to zero-out the blanks.  Partially valid pages
  128          * can only occur at the file EOF.
  129          */
  130         VM_OBJECT_LOCK(object);
  131         if (pages[ap->a_reqpage]->valid != 0) {
  132                 for (i = 0; i < npages; ++i) {
  133                         if (i != ap->a_reqpage) {
  134                                 vm_page_lock(pages[i]);
  135                                 vm_page_free(pages[i]);
  136                                 vm_page_unlock(pages[i]);
  137                         }
  138                 }
  139                 VM_OBJECT_UNLOCK(object);
  140                 return (0);
  141         }
  142         VM_OBJECT_UNLOCK(object);
  143 
  144         /*
  145          * We use only the kva address for the buffer, but this is extremely
  146          * convienient and fast.
  147          */
  148         bp = getpbuf(&nfs_pbuf_freecnt);
  149 
  150         kva = (vm_offset_t) bp->b_data;
  151         pmap_qenter(kva, pages, npages);
  152         PCPU_INC(cnt.v_vnodein);
  153         PCPU_ADD(cnt.v_vnodepgsin, npages);
  154 
  155         iov.iov_base = (caddr_t) kva;
  156         iov.iov_len = count;
  157         uio.uio_iov = &iov;
  158         uio.uio_iovcnt = 1;
  159         uio.uio_offset = IDX_TO_OFF(pages[0]->pindex);
  160         uio.uio_resid = count;
  161         uio.uio_segflg = UIO_SYSSPACE;
  162         uio.uio_rw = UIO_READ;
  163         uio.uio_td = td;
  164 
  165         error = (nmp->nm_rpcops->nr_readrpc)(vp, &uio, cred);
  166         pmap_qremove(kva, npages);
  167 
  168         relpbuf(bp, &nfs_pbuf_freecnt);
  169 
  170         if (error && (uio.uio_resid == count)) {
  171                 nfs_printf("nfs_getpages: error %d\n", error);
  172                 VM_OBJECT_LOCK(object);
  173                 for (i = 0; i < npages; ++i) {
  174                         if (i != ap->a_reqpage) {
  175                                 vm_page_lock(pages[i]);
  176                                 vm_page_free(pages[i]);
  177                                 vm_page_unlock(pages[i]);
  178                         }
  179                 }
  180                 VM_OBJECT_UNLOCK(object);
  181                 return (VM_PAGER_ERROR);
  182         }
  183 
  184         /*
  185          * Calculate the number of bytes read and validate only that number
  186          * of bytes.  Note that due to pending writes, size may be 0.  This
  187          * does not mean that the remaining data is invalid!
  188          */
  189 
  190         size = count - uio.uio_resid;
  191         VM_OBJECT_LOCK(object);
  192         for (i = 0, toff = 0; i < npages; i++, toff = nextoff) {
  193                 vm_page_t m;
  194                 nextoff = toff + PAGE_SIZE;
  195                 m = pages[i];
  196 
  197                 if (nextoff <= size) {
  198                         /*
  199                          * Read operation filled an entire page
  200                          */
  201                         m->valid = VM_PAGE_BITS_ALL;
  202                         KASSERT(m->dirty == 0,
  203                             ("nfs_getpages: page %p is dirty", m));
  204                 } else if (size > toff) {
  205                         /*
  206                          * Read operation filled a partial page.
  207                          */
  208                         m->valid = 0;
  209                         vm_page_set_valid(m, 0, size - toff);
  210                         KASSERT(m->dirty == 0,
  211                             ("nfs_getpages: page %p is dirty", m));
  212                 } else {
  213                         /*
  214                          * Read operation was short.  If no error occured
  215                          * we may have hit a zero-fill section.   We simply
  216                          * leave valid set to 0.
  217                          */
  218                         ;
  219                 }
  220                 if (i != ap->a_reqpage) {
  221                         /*
  222                          * Whether or not to leave the page activated is up in
  223                          * the air, but we should put the page on a page queue
  224                          * somewhere (it already is in the object).  Result:
  225                          * It appears that emperical results show that
  226                          * deactivating pages is best.
  227                          */
  228 
  229                         /*
  230                          * Just in case someone was asking for this page we
  231                          * now tell them that it is ok to use.
  232                          */
  233                         if (!error) {
  234                                 if (m->oflags & VPO_WANTED) {
  235                                         vm_page_lock(m);
  236                                         vm_page_activate(m);
  237                                         vm_page_unlock(m);
  238                                 } else {
  239                                         vm_page_lock(m);
  240                                         vm_page_deactivate(m);
  241                                         vm_page_unlock(m);
  242                                 }
  243                                 vm_page_wakeup(m);
  244                         } else {
  245                                 vm_page_lock(m);
  246                                 vm_page_free(m);
  247                                 vm_page_unlock(m);
  248                         }
  249                 }
  250         }
  251         VM_OBJECT_UNLOCK(object);
  252         return (0);
  253 }
  254 
  255 /*
  256  * Vnode op for VM putpages.
  257  */
  258 int
  259 nfs_putpages(struct vop_putpages_args *ap)
  260 {
  261         struct uio uio;
  262         struct iovec iov;
  263         vm_offset_t kva;
  264         struct buf *bp;
  265         int iomode, must_commit, i, error, npages, count;
  266         off_t offset;
  267         int *rtvals;
  268         struct vnode *vp;
  269         struct thread *td;
  270         struct ucred *cred;
  271         struct nfsmount *nmp;
  272         struct nfsnode *np;
  273         vm_page_t *pages;
  274 
  275         vp = ap->a_vp;
  276         np = VTONFS(vp);
  277         td = curthread;                         /* XXX */
  278         /* Set the cred to n_writecred for the write rpcs. */
  279         if (np->n_writecred != NULL)
  280                 cred = crhold(np->n_writecred);
  281         else
  282                 cred = crhold(curthread->td_ucred);     /* XXX */
  283         nmp = VFSTONFS(vp->v_mount);
  284         pages = ap->a_m;
  285         count = ap->a_count;
  286         rtvals = ap->a_rtvals;
  287         npages = btoc(count);
  288         offset = IDX_TO_OFF(pages[0]->pindex);
  289         
  290         mtx_lock(&nmp->nm_mtx);
  291         if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
  292             (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) {
  293                 mtx_unlock(&nmp->nm_mtx);
  294                 (void)nfs_fsinfo(nmp, vp, cred, td);
  295         } else
  296                 mtx_unlock(&nmp->nm_mtx);
  297 
  298         mtx_lock(&np->n_mtx);
  299         if (nfs_directio_enable && !nfs_directio_allow_mmap && 
  300             (np->n_flag & NNONCACHE) && (vp->v_type == VREG)) {
  301                 mtx_unlock(&np->n_mtx);         
  302                 nfs_printf("nfs_putpages: called on noncache-able vnode??\n");
  303                 mtx_lock(&np->n_mtx);
  304         }
  305 
  306         for (i = 0; i < npages; i++)
  307                 rtvals[i] = VM_PAGER_ERROR;
  308 
  309         /*
  310          * When putting pages, do not extend file past EOF.
  311          */
  312         if (offset + count > np->n_size) {
  313                 count = np->n_size - offset;
  314                 if (count < 0)
  315                         count = 0;
  316         }
  317         mtx_unlock(&np->n_mtx);
  318 
  319         /*
  320          * We use only the kva address for the buffer, but this is extremely
  321          * convienient and fast.
  322          */
  323         bp = getpbuf(&nfs_pbuf_freecnt);
  324 
  325         kva = (vm_offset_t) bp->b_data;
  326         pmap_qenter(kva, pages, npages);
  327         PCPU_INC(cnt.v_vnodeout);
  328         PCPU_ADD(cnt.v_vnodepgsout, count);
  329 
  330         iov.iov_base = (caddr_t) kva;
  331         iov.iov_len = count;
  332         uio.uio_iov = &iov;
  333         uio.uio_iovcnt = 1;
  334         uio.uio_offset = offset;
  335         uio.uio_resid = count;
  336         uio.uio_segflg = UIO_SYSSPACE;
  337         uio.uio_rw = UIO_WRITE;
  338         uio.uio_td = td;
  339 
  340         if ((ap->a_sync & VM_PAGER_PUT_SYNC) == 0)
  341             iomode = NFSV3WRITE_UNSTABLE;
  342         else
  343             iomode = NFSV3WRITE_FILESYNC;
  344 
  345         error = (nmp->nm_rpcops->nr_writerpc)(vp, &uio, cred, &iomode, &must_commit);
  346         crfree(cred);
  347 
  348         pmap_qremove(kva, npages);
  349         relpbuf(bp, &nfs_pbuf_freecnt);
  350 
  351         if (!error) {
  352                 vnode_pager_undirty_pages(pages, rtvals, count - uio.uio_resid);
  353                 if (must_commit) {
  354                         nfs_clearcommit(vp->v_mount);
  355                 }
  356         }
  357         return rtvals[0];
  358 }
  359 
  360 /*
  361  * For nfs, cache consistency can only be maintained approximately.
  362  * Although RFC1094 does not specify the criteria, the following is
  363  * believed to be compatible with the reference port.
  364  * For nfs:
  365  * If the file's modify time on the server has changed since the
  366  * last read rpc or you have written to the file,
  367  * you may have lost data cache consistency with the
  368  * server, so flush all of the file's data out of the cache.
  369  * Then force a getattr rpc to ensure that you have up to date
  370  * attributes.
  371  * NB: This implies that cache data can be read when up to
  372  * NFS_ATTRTIMEO seconds out of date. If you find that you need current
  373  * attributes this could be forced by setting n_attrstamp to 0 before
  374  * the VOP_GETATTR() call.
  375  */
  376 static inline int
  377 nfs_bioread_check_cons(struct vnode *vp, struct thread *td, struct ucred *cred)
  378 {
  379         int error = 0;
  380         struct vattr vattr;
  381         struct nfsnode *np = VTONFS(vp);
  382         int old_lock;
  383         struct nfsmount *nmp = VFSTONFS(vp->v_mount);
  384         
  385         /*
  386          * Grab the exclusive lock before checking whether the cache is
  387          * consistent.
  388          * XXX - We can make this cheaper later (by acquiring cheaper locks).
  389          * But for now, this suffices.
  390          */
  391         old_lock = nfs_upgrade_vnlock(vp);
  392         if (vp->v_iflag & VI_DOOMED) {
  393                 nfs_downgrade_vnlock(vp, old_lock);
  394                 return (EBADF);
  395         }
  396                 
  397         mtx_lock(&np->n_mtx);
  398         if (np->n_flag & NMODIFIED) {
  399                 mtx_unlock(&np->n_mtx);
  400                 if (vp->v_type != VREG) {
  401                         if (vp->v_type != VDIR)
  402                                 panic("nfs: bioread, not dir");
  403                         (nmp->nm_rpcops->nr_invaldir)(vp);
  404                         error = nfs_vinvalbuf(vp, V_SAVE, td, 1);
  405                         if (error)
  406                                 goto out;
  407                 }
  408                 np->n_attrstamp = 0;
  409                 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
  410                 error = VOP_GETATTR(vp, &vattr, cred);
  411                 if (error)
  412                         goto out;
  413                 mtx_lock(&np->n_mtx);
  414                 np->n_mtime = vattr.va_mtime;
  415                 mtx_unlock(&np->n_mtx);
  416         } else {
  417                 mtx_unlock(&np->n_mtx);
  418                 error = VOP_GETATTR(vp, &vattr, cred);
  419                 if (error)
  420                         return (error);
  421                 mtx_lock(&np->n_mtx);
  422                 if ((np->n_flag & NSIZECHANGED)
  423                     || (NFS_TIMESPEC_COMPARE(&np->n_mtime, &vattr.va_mtime))) {
  424                         mtx_unlock(&np->n_mtx);
  425                         if (vp->v_type == VDIR)
  426                                 (nmp->nm_rpcops->nr_invaldir)(vp);
  427                         error = nfs_vinvalbuf(vp, V_SAVE, td, 1);
  428                         if (error)
  429                                 goto out;
  430                         mtx_lock(&np->n_mtx);
  431                         np->n_mtime = vattr.va_mtime;
  432                         np->n_flag &= ~NSIZECHANGED;
  433                 }
  434                 mtx_unlock(&np->n_mtx);
  435         }
  436 out:    
  437         nfs_downgrade_vnlock(vp, old_lock);
  438         return error;
  439 }
  440 
  441 /*
  442  * Vnode op for read using bio
  443  */
  444 int
  445 nfs_bioread(struct vnode *vp, struct uio *uio, int ioflag, struct ucred *cred)
  446 {
  447         struct nfsnode *np = VTONFS(vp);
  448         int biosize, i;
  449         struct buf *bp, *rabp;
  450         struct thread *td;
  451         struct nfsmount *nmp = VFSTONFS(vp->v_mount);
  452         daddr_t lbn, rabn;
  453         off_t end;
  454         int bcount;
  455         int seqcount;
  456         int nra, error = 0, n = 0, on = 0;
  457 
  458         KASSERT(uio->uio_rw == UIO_READ, ("nfs_read mode"));
  459         if (uio->uio_resid == 0)
  460                 return (0);
  461         if (uio->uio_offset < 0)        /* XXX VDIR cookies can be negative */
  462                 return (EINVAL);
  463         td = uio->uio_td;
  464 
  465         mtx_lock(&nmp->nm_mtx);
  466         if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
  467             (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) {
  468                 mtx_unlock(&nmp->nm_mtx);
  469                 (void)nfs_fsinfo(nmp, vp, cred, td);
  470         } else
  471                 mtx_unlock(&nmp->nm_mtx);               
  472 
  473         end = uio->uio_offset + uio->uio_resid;
  474         if (vp->v_type != VDIR &&
  475             (end > nmp->nm_maxfilesize || end < uio->uio_offset))
  476                 return (EFBIG);
  477 
  478         if (nfs_directio_enable && (ioflag & IO_DIRECT) && (vp->v_type == VREG))
  479                 /* No caching/ no readaheads. Just read data into the user buffer */
  480                 return nfs_readrpc(vp, uio, cred);
  481 
  482         biosize = vp->v_bufobj.bo_bsize;
  483         seqcount = (int)((off_t)(ioflag >> IO_SEQSHIFT) * biosize / BKVASIZE);
  484         
  485         error = nfs_bioread_check_cons(vp, td, cred);
  486         if (error)
  487                 return error;
  488 
  489         do {
  490             u_quad_t nsize;
  491                         
  492             mtx_lock(&np->n_mtx);
  493             nsize = np->n_size;
  494             mtx_unlock(&np->n_mtx);                 
  495 
  496             switch (vp->v_type) {
  497             case VREG:
  498                 nfsstats.biocache_reads++;
  499                 lbn = uio->uio_offset / biosize;
  500                 on = uio->uio_offset & (biosize - 1);
  501 
  502                 /*
  503                  * Start the read ahead(s), as required.
  504                  */
  505                 if (nmp->nm_readahead > 0) {
  506                     for (nra = 0; nra < nmp->nm_readahead && nra < seqcount &&
  507                         (off_t)(lbn + 1 + nra) * biosize < nsize; nra++) {
  508                         rabn = lbn + 1 + nra;
  509                         if (incore(&vp->v_bufobj, rabn) == NULL) {
  510                             rabp = nfs_getcacheblk(vp, rabn, biosize, td);
  511                             if (!rabp) {
  512                                 error = nfs_sigintr(nmp, td);
  513                                 return (error ? error : EINTR);
  514                             }
  515                             if ((rabp->b_flags & (B_CACHE|B_DELWRI)) == 0) {
  516                                 rabp->b_flags |= B_ASYNC;
  517                                 rabp->b_iocmd = BIO_READ;
  518                                 vfs_busy_pages(rabp, 0);
  519                                 if (nfs_asyncio(nmp, rabp, cred, td)) {
  520                                     rabp->b_flags |= B_INVAL;
  521                                     rabp->b_ioflags |= BIO_ERROR;
  522                                     vfs_unbusy_pages(rabp);
  523                                     brelse(rabp);
  524                                     break;
  525                                 }
  526                             } else {
  527                                 brelse(rabp);
  528                             }
  529                         }
  530                     }
  531                 }
  532 
  533                 /* Note that bcount is *not* DEV_BSIZE aligned. */
  534                 bcount = biosize;
  535                 if ((off_t)lbn * biosize >= nsize) {
  536                         bcount = 0;
  537                 } else if ((off_t)(lbn + 1) * biosize > nsize) {
  538                         bcount = nsize - (off_t)lbn * biosize;
  539                 }
  540                 bp = nfs_getcacheblk(vp, lbn, bcount, td);
  541 
  542                 if (!bp) {
  543                         error = nfs_sigintr(nmp, td);
  544                         return (error ? error : EINTR);
  545                 }
  546 
  547                 /*
  548                  * If B_CACHE is not set, we must issue the read.  If this
  549                  * fails, we return an error.
  550                  */
  551 
  552                 if ((bp->b_flags & B_CACHE) == 0) {
  553                     bp->b_iocmd = BIO_READ;
  554                     vfs_busy_pages(bp, 0);
  555                     error = nfs_doio(vp, bp, cred, td);
  556                     if (error) {
  557                         brelse(bp);
  558                         return (error);
  559                     }
  560                 }
  561 
  562                 /*
  563                  * on is the offset into the current bp.  Figure out how many
  564                  * bytes we can copy out of the bp.  Note that bcount is
  565                  * NOT DEV_BSIZE aligned.
  566                  *
  567                  * Then figure out how many bytes we can copy into the uio.
  568                  */
  569 
  570                 n = 0;
  571                 if (on < bcount)
  572                         n = MIN((unsigned)(bcount - on), uio->uio_resid);
  573                 break;
  574             case VLNK:
  575                 nfsstats.biocache_readlinks++;
  576                 bp = nfs_getcacheblk(vp, (daddr_t)0, NFS_MAXPATHLEN, td);
  577                 if (!bp) {
  578                         error = nfs_sigintr(nmp, td);
  579                         return (error ? error : EINTR);
  580                 }
  581                 if ((bp->b_flags & B_CACHE) == 0) {
  582                     bp->b_iocmd = BIO_READ;
  583                     vfs_busy_pages(bp, 0);
  584                     error = nfs_doio(vp, bp, cred, td);
  585                     if (error) {
  586                         bp->b_ioflags |= BIO_ERROR;
  587                         brelse(bp);
  588                         return (error);
  589                     }
  590                 }
  591                 n = MIN(uio->uio_resid, NFS_MAXPATHLEN - bp->b_resid);
  592                 on = 0;
  593                 break;
  594             case VDIR:
  595                 nfsstats.biocache_readdirs++;
  596                 if (np->n_direofoffset
  597                     && uio->uio_offset >= np->n_direofoffset) {
  598                     return (0);
  599                 }
  600                 lbn = (uoff_t)uio->uio_offset / NFS_DIRBLKSIZ;
  601                 on = uio->uio_offset & (NFS_DIRBLKSIZ - 1);
  602                 bp = nfs_getcacheblk(vp, lbn, NFS_DIRBLKSIZ, td);
  603                 if (!bp) {
  604                     error = nfs_sigintr(nmp, td);
  605                     return (error ? error : EINTR);
  606                 }
  607                 if ((bp->b_flags & B_CACHE) == 0) {
  608                     bp->b_iocmd = BIO_READ;
  609                     vfs_busy_pages(bp, 0);
  610                     error = nfs_doio(vp, bp, cred, td);
  611                     if (error) {
  612                             brelse(bp);
  613                     }
  614                     while (error == NFSERR_BAD_COOKIE) {
  615                         (nmp->nm_rpcops->nr_invaldir)(vp);
  616                         error = nfs_vinvalbuf(vp, 0, td, 1);
  617                         /*
  618                          * Yuck! The directory has been modified on the
  619                          * server. The only way to get the block is by
  620                          * reading from the beginning to get all the
  621                          * offset cookies.
  622                          *
  623                          * Leave the last bp intact unless there is an error.
  624                          * Loop back up to the while if the error is another
  625                          * NFSERR_BAD_COOKIE (double yuch!).
  626                          */
  627                         for (i = 0; i <= lbn && !error; i++) {
  628                             if (np->n_direofoffset
  629                                 && (i * NFS_DIRBLKSIZ) >= np->n_direofoffset)
  630                                     return (0);
  631                             bp = nfs_getcacheblk(vp, i, NFS_DIRBLKSIZ, td);
  632                             if (!bp) {
  633                                 error = nfs_sigintr(nmp, td);
  634                                 return (error ? error : EINTR);
  635                             }
  636                             if ((bp->b_flags & B_CACHE) == 0) {
  637                                     bp->b_iocmd = BIO_READ;
  638                                     vfs_busy_pages(bp, 0);
  639                                     error = nfs_doio(vp, bp, cred, td);
  640                                     /*
  641                                      * no error + B_INVAL == directory EOF,
  642                                      * use the block.
  643                                      */
  644                                     if (error == 0 && (bp->b_flags & B_INVAL))
  645                                             break;
  646                             }
  647                             /*
  648                              * An error will throw away the block and the
  649                              * for loop will break out.  If no error and this
  650                              * is not the block we want, we throw away the
  651                              * block and go for the next one via the for loop.
  652                              */
  653                             if (error || i < lbn)
  654                                     brelse(bp);
  655                         }
  656                     }
  657                     /*
  658                      * The above while is repeated if we hit another cookie
  659                      * error.  If we hit an error and it wasn't a cookie error,
  660                      * we give up.
  661                      */
  662                     if (error)
  663                             return (error);
  664                 }
  665 
  666                 /*
  667                  * If not eof and read aheads are enabled, start one.
  668                  * (You need the current block first, so that you have the
  669                  *  directory offset cookie of the next block.)
  670                  */
  671                 if (nmp->nm_readahead > 0 &&
  672                     (bp->b_flags & B_INVAL) == 0 &&
  673                     (np->n_direofoffset == 0 ||
  674                     (lbn + 1) * NFS_DIRBLKSIZ < np->n_direofoffset) &&
  675                     incore(&vp->v_bufobj, lbn + 1) == NULL) {
  676                         rabp = nfs_getcacheblk(vp, lbn + 1, NFS_DIRBLKSIZ, td);
  677                         if (rabp) {
  678                             if ((rabp->b_flags & (B_CACHE|B_DELWRI)) == 0) {
  679                                 rabp->b_flags |= B_ASYNC;
  680                                 rabp->b_iocmd = BIO_READ;
  681                                 vfs_busy_pages(rabp, 0);
  682                                 if (nfs_asyncio(nmp, rabp, cred, td)) {
  683                                     rabp->b_flags |= B_INVAL;
  684                                     rabp->b_ioflags |= BIO_ERROR;
  685                                     vfs_unbusy_pages(rabp);
  686                                     brelse(rabp);
  687                                 }
  688                             } else {
  689                                 brelse(rabp);
  690                             }
  691                         }
  692                 }
  693                 /*
  694                  * Unlike VREG files, whos buffer size ( bp->b_bcount ) is
  695                  * chopped for the EOF condition, we cannot tell how large
  696                  * NFS directories are going to be until we hit EOF.  So
  697                  * an NFS directory buffer is *not* chopped to its EOF.  Now,
  698                  * it just so happens that b_resid will effectively chop it
  699                  * to EOF.  *BUT* this information is lost if the buffer goes
  700                  * away and is reconstituted into a B_CACHE state ( due to
  701                  * being VMIO ) later.  So we keep track of the directory eof
  702                  * in np->n_direofoffset and chop it off as an extra step
  703                  * right here.
  704                  */
  705                 n = lmin(uio->uio_resid, NFS_DIRBLKSIZ - bp->b_resid - on);
  706                 if (np->n_direofoffset && n > np->n_direofoffset - uio->uio_offset)
  707                         n = np->n_direofoffset - uio->uio_offset;
  708                 break;
  709             default:
  710                 nfs_printf(" nfs_bioread: type %x unexpected\n", vp->v_type);
  711                 bp = NULL;
  712                 break;
  713             };
  714 
  715             if (n > 0) {
  716                     error = uiomove(bp->b_data + on, (int)n, uio);
  717             }
  718             if (vp->v_type == VLNK)
  719                 n = 0;
  720             if (bp != NULL)
  721                 brelse(bp);
  722         } while (error == 0 && uio->uio_resid > 0 && n > 0);
  723         return (error);
  724 }
  725 
  726 /*
  727  * The NFS write path cannot handle iovecs with len > 1. So we need to 
  728  * break up iovecs accordingly (restricting them to wsize).
  729  * For the SYNC case, we can do this with 1 copy (user buffer -> mbuf). 
  730  * For the ASYNC case, 2 copies are needed. The first a copy from the 
  731  * user buffer to a staging buffer and then a second copy from the staging
  732  * buffer to mbufs. This can be optimized by copying from the user buffer
  733  * directly into mbufs and passing the chain down, but that requires a 
  734  * fair amount of re-working of the relevant codepaths (and can be done
  735  * later).
  736  */
  737 static int
  738 nfs_directio_write(vp, uiop, cred, ioflag)
  739         struct vnode *vp;
  740         struct uio *uiop;
  741         struct ucred *cred;
  742         int ioflag;
  743 {
  744         int error;
  745         struct nfsmount *nmp = VFSTONFS(vp->v_mount);
  746         struct thread *td = uiop->uio_td;
  747         int size;
  748         int wsize;
  749         
  750         mtx_lock(&nmp->nm_mtx);
  751         wsize = nmp->nm_wsize;
  752         mtx_unlock(&nmp->nm_mtx);
  753         if (ioflag & IO_SYNC) {
  754                 int iomode, must_commit;
  755                 struct uio uio;
  756                 struct iovec iov;
  757 do_sync:
  758                 while (uiop->uio_resid > 0) {
  759                         size = MIN(uiop->uio_resid, wsize);
  760                         size = MIN(uiop->uio_iov->iov_len, size);
  761                         iov.iov_base = uiop->uio_iov->iov_base;
  762                         iov.iov_len = size;
  763                         uio.uio_iov = &iov;
  764                         uio.uio_iovcnt = 1;
  765                         uio.uio_offset = uiop->uio_offset;
  766                         uio.uio_resid = size;
  767                         uio.uio_segflg = UIO_USERSPACE;
  768                         uio.uio_rw = UIO_WRITE;
  769                         uio.uio_td = td;
  770                         iomode = NFSV3WRITE_FILESYNC;
  771                         error = (nmp->nm_rpcops->nr_writerpc)(vp, &uio, cred, 
  772                                                       &iomode, &must_commit);
  773                         KASSERT((must_commit == 0), 
  774                                 ("nfs_directio_write: Did not commit write"));
  775                         if (error)
  776                                 return (error);
  777                         uiop->uio_offset += size;
  778                         uiop->uio_resid -= size;
  779                         if (uiop->uio_iov->iov_len <= size) {
  780                                 uiop->uio_iovcnt--;
  781                                 uiop->uio_iov++;
  782                         } else {
  783                                 uiop->uio_iov->iov_base = 
  784                                         (char *)uiop->uio_iov->iov_base + size;
  785                                 uiop->uio_iov->iov_len -= size;
  786                         }
  787                 }
  788         } else {
  789                 struct uio *t_uio;
  790                 struct iovec *t_iov;
  791                 struct buf *bp;
  792                 
  793                 /*
  794                  * Break up the write into blocksize chunks and hand these
  795                  * over to nfsiod's for write back.
  796                  * Unfortunately, this incurs a copy of the data. Since 
  797                  * the user could modify the buffer before the write is 
  798                  * initiated.
  799                  * 
  800                  * The obvious optimization here is that one of the 2 copies
  801                  * in the async write path can be eliminated by copying the
  802                  * data here directly into mbufs and passing the mbuf chain
  803                  * down. But that will require a fair amount of re-working
  804                  * of the code and can be done if there's enough interest
  805                  * in NFS directio access.
  806                  */
  807                 while (uiop->uio_resid > 0) {
  808                         size = MIN(uiop->uio_resid, wsize);
  809                         size = MIN(uiop->uio_iov->iov_len, size);
  810                         bp = getpbuf(&nfs_pbuf_freecnt);
  811                         t_uio = malloc(sizeof(struct uio), M_NFSDIRECTIO, M_WAITOK);
  812                         t_iov = malloc(sizeof(struct iovec), M_NFSDIRECTIO, M_WAITOK);
  813                         t_iov->iov_base = malloc(size, M_NFSDIRECTIO, M_WAITOK);
  814                         t_iov->iov_len = size;
  815                         t_uio->uio_iov = t_iov;
  816                         t_uio->uio_iovcnt = 1;
  817                         t_uio->uio_offset = uiop->uio_offset;
  818                         t_uio->uio_resid = size;
  819                         t_uio->uio_segflg = UIO_SYSSPACE;
  820                         t_uio->uio_rw = UIO_WRITE;
  821                         t_uio->uio_td = td;
  822                         KASSERT(uiop->uio_segflg == UIO_USERSPACE ||
  823                             uiop->uio_segflg == UIO_SYSSPACE,
  824                             ("nfs_directio_write: Bad uio_segflg"));
  825                         if (uiop->uio_segflg == UIO_USERSPACE) {
  826                                 error = copyin(uiop->uio_iov->iov_base,
  827                                     t_iov->iov_base, size);
  828                                 if (error != 0)
  829                                         goto err_free;
  830                         } else
  831                                 /*
  832                                  * UIO_SYSSPACE may never happen, but handle
  833                                  * it just in case it does.
  834                                  */
  835                                 bcopy(uiop->uio_iov->iov_base, t_iov->iov_base,
  836                                     size);
  837                         bp->b_flags |= B_DIRECT;
  838                         bp->b_iocmd = BIO_WRITE;
  839                         if (cred != NOCRED) {
  840                                 crhold(cred);
  841                                 bp->b_wcred = cred;
  842                         } else 
  843                                 bp->b_wcred = NOCRED;                   
  844                         bp->b_caller1 = (void *)t_uio;
  845                         bp->b_vp = vp;
  846                         error = nfs_asyncio(nmp, bp, NOCRED, td);
  847 err_free:
  848                         if (error) {
  849                                 free(t_iov->iov_base, M_NFSDIRECTIO);
  850                                 free(t_iov, M_NFSDIRECTIO);
  851                                 free(t_uio, M_NFSDIRECTIO);
  852                                 bp->b_vp = NULL;
  853                                 relpbuf(bp, &nfs_pbuf_freecnt);
  854                                 if (error == EINTR)
  855                                         return (error);
  856                                 goto do_sync;
  857                         }
  858                         uiop->uio_offset += size;
  859                         uiop->uio_resid -= size;
  860                         if (uiop->uio_iov->iov_len <= size) {
  861                                 uiop->uio_iovcnt--;
  862                                 uiop->uio_iov++;
  863                         } else {
  864                                 uiop->uio_iov->iov_base = 
  865                                         (char *)uiop->uio_iov->iov_base + size;
  866                                 uiop->uio_iov->iov_len -= size;
  867                         }
  868                 }
  869         }
  870         return (0);
  871 }
  872 
  873 /*
  874  * Vnode op for write using bio
  875  */
  876 int
  877 nfs_write(struct vop_write_args *ap)
  878 {
  879         int biosize;
  880         struct uio *uio = ap->a_uio;
  881         struct thread *td = uio->uio_td;
  882         struct vnode *vp = ap->a_vp;
  883         struct nfsnode *np = VTONFS(vp);
  884         struct ucred *cred = ap->a_cred;
  885         int ioflag = ap->a_ioflag;
  886         struct buf *bp;
  887         struct vattr vattr;
  888         struct nfsmount *nmp = VFSTONFS(vp->v_mount);
  889         daddr_t lbn;
  890         off_t end;
  891         int bcount;
  892         int n, on, error = 0;
  893 
  894         KASSERT(uio->uio_rw == UIO_WRITE, ("nfs_write mode"));
  895         KASSERT(uio->uio_segflg != UIO_USERSPACE || uio->uio_td == curthread,
  896             ("nfs_write proc"));
  897         if (vp->v_type != VREG)
  898                 return (EIO);
  899         mtx_lock(&np->n_mtx);
  900         if (np->n_flag & NWRITEERR) {
  901                 np->n_flag &= ~NWRITEERR;
  902                 mtx_unlock(&np->n_mtx);
  903                 return (np->n_error);
  904         } else
  905                 mtx_unlock(&np->n_mtx);
  906         mtx_lock(&nmp->nm_mtx);
  907         if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
  908             (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) {
  909                 mtx_unlock(&nmp->nm_mtx);
  910                 (void)nfs_fsinfo(nmp, vp, cred, td);
  911         } else
  912                 mtx_unlock(&nmp->nm_mtx);
  913 
  914         /*
  915          * Synchronously flush pending buffers if we are in synchronous
  916          * mode or if we are appending.
  917          */
  918         if (ioflag & (IO_APPEND | IO_SYNC)) {
  919                 mtx_lock(&np->n_mtx);
  920                 if (np->n_flag & NMODIFIED) {
  921                         mtx_unlock(&np->n_mtx);
  922 #ifdef notyet /* Needs matching nonblock semantics elsewhere, too. */
  923                         /*
  924                          * Require non-blocking, synchronous writes to
  925                          * dirty files to inform the program it needs
  926                          * to fsync(2) explicitly.
  927                          */
  928                         if (ioflag & IO_NDELAY)
  929                                 return (EAGAIN);
  930 #endif
  931 flush_and_restart:
  932                         np->n_attrstamp = 0;
  933                         KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
  934                         error = nfs_vinvalbuf(vp, V_SAVE, td, 1);
  935                         if (error)
  936                                 return (error);
  937                 } else
  938                         mtx_unlock(&np->n_mtx);
  939         }
  940 
  941         /*
  942          * If IO_APPEND then load uio_offset.  We restart here if we cannot
  943          * get the append lock.
  944          */
  945         if (ioflag & IO_APPEND) {
  946                 np->n_attrstamp = 0;
  947                 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
  948                 error = VOP_GETATTR(vp, &vattr, cred);
  949                 if (error)
  950                         return (error);
  951                 mtx_lock(&np->n_mtx);
  952                 uio->uio_offset = np->n_size;
  953                 mtx_unlock(&np->n_mtx);
  954         }
  955 
  956         if (uio->uio_offset < 0)
  957                 return (EINVAL);
  958         end = uio->uio_offset + uio->uio_resid;
  959         if (end > nmp->nm_maxfilesize || end < uio->uio_offset)
  960                 return (EFBIG);
  961         if (uio->uio_resid == 0)
  962                 return (0);
  963 
  964         if (nfs_directio_enable && (ioflag & IO_DIRECT) && vp->v_type == VREG)
  965                 return nfs_directio_write(vp, uio, cred, ioflag);
  966 
  967         /*
  968          * Maybe this should be above the vnode op call, but so long as
  969          * file servers have no limits, i don't think it matters
  970          */
  971         if (vn_rlimit_fsize(vp, uio, td))
  972                 return (EFBIG);
  973 
  974         biosize = vp->v_bufobj.bo_bsize;
  975         /*
  976          * Find all of this file's B_NEEDCOMMIT buffers.  If our writes
  977          * would exceed the local maximum per-file write commit size when
  978          * combined with those, we must decide whether to flush,
  979          * go synchronous, or return error.  We don't bother checking
  980          * IO_UNIT -- we just make all writes atomic anyway, as there's
  981          * no point optimizing for something that really won't ever happen.
  982          */
  983         if (!(ioflag & IO_SYNC)) {
  984                 int nflag;
  985 
  986                 mtx_lock(&np->n_mtx);
  987                 nflag = np->n_flag;
  988                 mtx_unlock(&np->n_mtx);         
  989                 int needrestart = 0;
  990                 if (nmp->nm_wcommitsize < uio->uio_resid) {
  991                         /*
  992                          * If this request could not possibly be completed
  993                          * without exceeding the maximum outstanding write
  994                          * commit size, see if we can convert it into a
  995                          * synchronous write operation.
  996                          */
  997                         if (ioflag & IO_NDELAY)
  998                                 return (EAGAIN);
  999                         ioflag |= IO_SYNC;
 1000                         if (nflag & NMODIFIED)
 1001                                 needrestart = 1;
 1002                 } else if (nflag & NMODIFIED) {
 1003                         int wouldcommit = 0;
 1004                         BO_LOCK(&vp->v_bufobj);
 1005                         if (vp->v_bufobj.bo_dirty.bv_cnt != 0) {
 1006                                 TAILQ_FOREACH(bp, &vp->v_bufobj.bo_dirty.bv_hd,
 1007                                     b_bobufs) {
 1008                                         if (bp->b_flags & B_NEEDCOMMIT)
 1009                                                 wouldcommit += bp->b_bcount;
 1010                                 }
 1011                         }
 1012                         BO_UNLOCK(&vp->v_bufobj);
 1013                         /*
 1014                          * Since we're not operating synchronously and
 1015                          * bypassing the buffer cache, we are in a commit
 1016                          * and holding all of these buffers whether
 1017                          * transmitted or not.  If not limited, this
 1018                          * will lead to the buffer cache deadlocking,
 1019                          * as no one else can flush our uncommitted buffers.
 1020                          */
 1021                         wouldcommit += uio->uio_resid;
 1022                         /*
 1023                          * If we would initially exceed the maximum
 1024                          * outstanding write commit size, flush and restart.
 1025                          */
 1026                         if (wouldcommit > nmp->nm_wcommitsize)
 1027                                 needrestart = 1;
 1028                 }
 1029                 if (needrestart)
 1030                         goto flush_and_restart;
 1031         }
 1032 
 1033         do {
 1034                 nfsstats.biocache_writes++;
 1035                 lbn = uio->uio_offset / biosize;
 1036                 on = uio->uio_offset & (biosize-1);
 1037                 n = MIN((unsigned)(biosize - on), uio->uio_resid);
 1038 again:
 1039                 /*
 1040                  * Handle direct append and file extension cases, calculate
 1041                  * unaligned buffer size.
 1042                  */
 1043                 mtx_lock(&np->n_mtx);
 1044                 if (uio->uio_offset == np->n_size && n) {
 1045                         mtx_unlock(&np->n_mtx);
 1046                         /*
 1047                          * Get the buffer (in its pre-append state to maintain
 1048                          * B_CACHE if it was previously set).  Resize the
 1049                          * nfsnode after we have locked the buffer to prevent
 1050                          * readers from reading garbage.
 1051                          */
 1052                         bcount = on;
 1053                         bp = nfs_getcacheblk(vp, lbn, bcount, td);
 1054 
 1055                         if (bp != NULL) {
 1056                                 long save;
 1057 
 1058                                 mtx_lock(&np->n_mtx);
 1059                                 np->n_size = uio->uio_offset + n;
 1060                                 np->n_flag |= NMODIFIED;
 1061                                 vnode_pager_setsize(vp, np->n_size);
 1062                                 mtx_unlock(&np->n_mtx);
 1063 
 1064                                 save = bp->b_flags & B_CACHE;
 1065                                 bcount += n;
 1066                                 allocbuf(bp, bcount);
 1067                                 bp->b_flags |= save;
 1068                         }
 1069                 } else {
 1070                         /*
 1071                          * Obtain the locked cache block first, and then
 1072                          * adjust the file's size as appropriate.
 1073                          */
 1074                         bcount = on + n;
 1075                         if ((off_t)lbn * biosize + bcount < np->n_size) {
 1076                                 if ((off_t)(lbn + 1) * biosize < np->n_size)
 1077                                         bcount = biosize;
 1078                                 else
 1079                                         bcount = np->n_size - (off_t)lbn * biosize;
 1080                         }
 1081                         mtx_unlock(&np->n_mtx);
 1082                         bp = nfs_getcacheblk(vp, lbn, bcount, td);
 1083                         mtx_lock(&np->n_mtx);
 1084                         if (uio->uio_offset + n > np->n_size) {
 1085                                 np->n_size = uio->uio_offset + n;
 1086                                 np->n_flag |= NMODIFIED;
 1087                                 vnode_pager_setsize(vp, np->n_size);
 1088                         }
 1089                         mtx_unlock(&np->n_mtx);
 1090                 }
 1091 
 1092                 if (!bp) {
 1093                         error = nfs_sigintr(nmp, td);
 1094                         if (!error)
 1095                                 error = EINTR;
 1096                         break;
 1097                 }
 1098 
 1099                 /*
 1100                  * Issue a READ if B_CACHE is not set.  In special-append
 1101                  * mode, B_CACHE is based on the buffer prior to the write
 1102                  * op and is typically set, avoiding the read.  If a read
 1103                  * is required in special append mode, the server will
 1104                  * probably send us a short-read since we extended the file
 1105                  * on our end, resulting in b_resid == 0 and, thusly,
 1106                  * B_CACHE getting set.
 1107                  *
 1108                  * We can also avoid issuing the read if the write covers
 1109                  * the entire buffer.  We have to make sure the buffer state
 1110                  * is reasonable in this case since we will not be initiating
 1111                  * I/O.  See the comments in kern/vfs_bio.c's getblk() for
 1112                  * more information.
 1113                  *
 1114                  * B_CACHE may also be set due to the buffer being cached
 1115                  * normally.
 1116                  */
 1117 
 1118                 if (on == 0 && n == bcount) {
 1119                         bp->b_flags |= B_CACHE;
 1120                         bp->b_flags &= ~B_INVAL;
 1121                         bp->b_ioflags &= ~BIO_ERROR;
 1122                 }
 1123 
 1124                 if ((bp->b_flags & B_CACHE) == 0) {
 1125                         bp->b_iocmd = BIO_READ;
 1126                         vfs_busy_pages(bp, 0);
 1127                         error = nfs_doio(vp, bp, cred, td);
 1128                         if (error) {
 1129                                 brelse(bp);
 1130                                 break;
 1131                         }
 1132                 }
 1133                 if (bp->b_wcred == NOCRED)
 1134                         bp->b_wcred = crhold(cred);
 1135                 mtx_lock(&np->n_mtx);
 1136                 np->n_flag |= NMODIFIED;
 1137                 mtx_unlock(&np->n_mtx);
 1138 
 1139                 /*
 1140                  * If dirtyend exceeds file size, chop it down.  This should
 1141                  * not normally occur but there is an append race where it
 1142                  * might occur XXX, so we log it.
 1143                  *
 1144                  * If the chopping creates a reverse-indexed or degenerate
 1145                  * situation with dirtyoff/end, we 0 both of them.
 1146                  */
 1147 
 1148                 if (bp->b_dirtyend > bcount) {
 1149                         nfs_printf("NFS append race @%lx:%d\n",
 1150                             (long)bp->b_blkno * DEV_BSIZE,
 1151                             bp->b_dirtyend - bcount);
 1152                         bp->b_dirtyend = bcount;
 1153                 }
 1154 
 1155                 if (bp->b_dirtyoff >= bp->b_dirtyend)
 1156                         bp->b_dirtyoff = bp->b_dirtyend = 0;
 1157 
 1158                 /*
 1159                  * If the new write will leave a contiguous dirty
 1160                  * area, just update the b_dirtyoff and b_dirtyend,
 1161                  * otherwise force a write rpc of the old dirty area.
 1162                  *
 1163                  * While it is possible to merge discontiguous writes due to
 1164                  * our having a B_CACHE buffer ( and thus valid read data
 1165                  * for the hole), we don't because it could lead to
 1166                  * significant cache coherency problems with multiple clients,
 1167                  * especially if locking is implemented later on.
 1168                  *
 1169                  * as an optimization we could theoretically maintain
 1170                  * a linked list of discontinuous areas, but we would still
 1171                  * have to commit them separately so there isn't much
 1172                  * advantage to it except perhaps a bit of asynchronization.
 1173                  */
 1174 
 1175                 if (bp->b_dirtyend > 0 &&
 1176                     (on > bp->b_dirtyend || (on + n) < bp->b_dirtyoff)) {
 1177                         if (bwrite(bp) == EINTR) {
 1178                                 error = EINTR;
 1179                                 break;
 1180                         }
 1181                         goto again;
 1182                 }
 1183 
 1184                 error = uiomove((char *)bp->b_data + on, n, uio);
 1185 
 1186                 /*
 1187                  * Since this block is being modified, it must be written
 1188                  * again and not just committed.  Since write clustering does
 1189                  * not work for the stage 1 data write, only the stage 2
 1190                  * commit rpc, we have to clear B_CLUSTEROK as well.
 1191                  */
 1192                 bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
 1193 
 1194                 if (error) {
 1195                         bp->b_ioflags |= BIO_ERROR;
 1196                         brelse(bp);
 1197                         break;
 1198                 }
 1199 
 1200                 /*
 1201                  * Only update dirtyoff/dirtyend if not a degenerate
 1202                  * condition.
 1203                  */
 1204                 if (n) {
 1205                         if (bp->b_dirtyend > 0) {
 1206                                 bp->b_dirtyoff = min(on, bp->b_dirtyoff);
 1207                                 bp->b_dirtyend = max((on + n), bp->b_dirtyend);
 1208                         } else {
 1209                                 bp->b_dirtyoff = on;
 1210                                 bp->b_dirtyend = on + n;
 1211                         }
 1212                         vfs_bio_set_valid(bp, on, n);
 1213                 }
 1214 
 1215                 /*
 1216                  * If IO_SYNC do bwrite().
 1217                  *
 1218                  * IO_INVAL appears to be unused.  The idea appears to be
 1219                  * to turn off caching in this case.  Very odd.  XXX
 1220                  */
 1221                 if ((ioflag & IO_SYNC)) {
 1222                         if (ioflag & IO_INVAL)
 1223                                 bp->b_flags |= B_NOCACHE;
 1224                         error = bwrite(bp);
 1225                         if (error)
 1226                                 break;
 1227                 } else if ((n + on) == biosize) {
 1228                         bp->b_flags |= B_ASYNC;
 1229                         (void) (nmp->nm_rpcops->nr_writebp)(bp, 0, NULL);
 1230                 } else {
 1231                         bdwrite(bp);
 1232                 }
 1233         } while (uio->uio_resid > 0 && n > 0);
 1234 
 1235         return (error);
 1236 }
 1237 
 1238 /*
 1239  * Get an nfs cache block.
 1240  *
 1241  * Allocate a new one if the block isn't currently in the cache
 1242  * and return the block marked busy. If the calling process is
 1243  * interrupted by a signal for an interruptible mount point, return
 1244  * NULL.
 1245  *
 1246  * The caller must carefully deal with the possible B_INVAL state of
 1247  * the buffer.  nfs_doio() clears B_INVAL (and nfs_asyncio() clears it
 1248  * indirectly), so synchronous reads can be issued without worrying about
 1249  * the B_INVAL state.  We have to be a little more careful when dealing
 1250  * with writes (see comments in nfs_write()) when extending a file past
 1251  * its EOF.
 1252  */
 1253 static struct buf *
 1254 nfs_getcacheblk(struct vnode *vp, daddr_t bn, int size, struct thread *td)
 1255 {
 1256         struct buf *bp;
 1257         struct mount *mp;
 1258         struct nfsmount *nmp;
 1259 
 1260         mp = vp->v_mount;
 1261         nmp = VFSTONFS(mp);
 1262 
 1263         if (nmp->nm_flag & NFSMNT_INT) {
 1264                 sigset_t oldset;
 1265 
 1266                 nfs_set_sigmask(td, &oldset);
 1267                 bp = getblk(vp, bn, size, NFS_PCATCH, 0, 0);
 1268                 nfs_restore_sigmask(td, &oldset);
 1269                 while (bp == NULL) {
 1270                         if (nfs_sigintr(nmp, td))
 1271                                 return (NULL);
 1272                         bp = getblk(vp, bn, size, 0, 2 * hz, 0);
 1273                 }
 1274         } else {
 1275                 bp = getblk(vp, bn, size, 0, 0, 0);
 1276         }
 1277 
 1278         if (vp->v_type == VREG)
 1279                 bp->b_blkno = bn * (vp->v_bufobj.bo_bsize / DEV_BSIZE);
 1280         return (bp);
 1281 }
 1282 
 1283 /*
 1284  * Flush and invalidate all dirty buffers. If another process is already
 1285  * doing the flush, just wait for completion.
 1286  */
 1287 int
 1288 nfs_vinvalbuf(struct vnode *vp, int flags, struct thread *td, int intrflg)
 1289 {
 1290         struct nfsnode *np = VTONFS(vp);
 1291         struct nfsmount *nmp = VFSTONFS(vp->v_mount);
 1292         int error = 0, slpflag, slptimeo;
 1293         int old_lock = 0;
 1294 
 1295         ASSERT_VOP_LOCKED(vp, "nfs_vinvalbuf");
 1296 
 1297         if ((nmp->nm_flag & NFSMNT_INT) == 0)
 1298                 intrflg = 0;
 1299         if (intrflg) {
 1300                 slpflag = NFS_PCATCH;
 1301                 slptimeo = 2 * hz;
 1302         } else {
 1303                 slpflag = 0;
 1304                 slptimeo = 0;
 1305         }
 1306 
 1307         old_lock = nfs_upgrade_vnlock(vp);
 1308         if (vp->v_iflag & VI_DOOMED) {
 1309                 /*
 1310                  * Since vgonel() uses the generic vinvalbuf() to flush
 1311                  * dirty buffers and it does not call this function, it
 1312                  * is safe to just return OK when VI_DOOMED is set.
 1313                  */
 1314                 nfs_downgrade_vnlock(vp, old_lock);
 1315                 return (0);
 1316         }
 1317 
 1318         /*
 1319          * Now, flush as required.
 1320          */
 1321         if ((flags & V_SAVE) && (vp->v_bufobj.bo_object != NULL)) {
 1322                 VM_OBJECT_LOCK(vp->v_bufobj.bo_object);
 1323                 vm_object_page_clean(vp->v_bufobj.bo_object, 0, 0, OBJPC_SYNC);
 1324                 VM_OBJECT_UNLOCK(vp->v_bufobj.bo_object);
 1325                 /*
 1326                  * If the page clean was interrupted, fail the invalidation.
 1327                  * Not doing so, we run the risk of losing dirty pages in the 
 1328                  * vinvalbuf() call below.
 1329                  */
 1330                 if (intrflg && (error = nfs_sigintr(nmp, td)))
 1331                         goto out;
 1332         }
 1333 
 1334         error = vinvalbuf(vp, flags, slpflag, 0);
 1335         while (error) {
 1336                 if (intrflg && (error = nfs_sigintr(nmp, td)))
 1337                         goto out;
 1338                 error = vinvalbuf(vp, flags, 0, slptimeo);
 1339         }
 1340         mtx_lock(&np->n_mtx);
 1341         if (np->n_directio_asyncwr == 0)
 1342                 np->n_flag &= ~NMODIFIED;
 1343         mtx_unlock(&np->n_mtx);
 1344 out:
 1345         nfs_downgrade_vnlock(vp, old_lock);
 1346         return error;
 1347 }
 1348 
 1349 /*
 1350  * Initiate asynchronous I/O. Return an error if no nfsiods are available.
 1351  * This is mainly to avoid queueing async I/O requests when the nfsiods
 1352  * are all hung on a dead server.
 1353  *
 1354  * Note: nfs_asyncio() does not clear (BIO_ERROR|B_INVAL) but when the bp
 1355  * is eventually dequeued by the async daemon, nfs_doio() *will*.
 1356  */
 1357 int
 1358 nfs_asyncio(struct nfsmount *nmp, struct buf *bp, struct ucred *cred, struct thread *td)
 1359 {
 1360         int iod;
 1361         int gotiod;
 1362         int slpflag = 0;
 1363         int slptimeo = 0;
 1364         int error, error2;
 1365 
 1366         /*
 1367          * Commits are usually short and sweet so lets save some cpu and
 1368          * leave the async daemons for more important rpc's (such as reads
 1369          * and writes).
 1370          */
 1371         mtx_lock(&nfs_iod_mtx);
 1372         if (bp->b_iocmd == BIO_WRITE && (bp->b_flags & B_NEEDCOMMIT) &&
 1373             (nmp->nm_bufqiods > nfs_numasync / 2)) {
 1374                 mtx_unlock(&nfs_iod_mtx);
 1375                 return(EIO);
 1376         }
 1377 again:
 1378         if (nmp->nm_flag & NFSMNT_INT)
 1379                 slpflag = NFS_PCATCH;
 1380         gotiod = FALSE;
 1381 
 1382         /*
 1383          * Find a free iod to process this request.
 1384          */
 1385         for (iod = 0; iod < nfs_numasync; iod++)
 1386                 if (nfs_iodwant[iod] == NFSIOD_AVAILABLE) {
 1387                         gotiod = TRUE;
 1388                         break;
 1389                 }
 1390 
 1391         /*
 1392          * Try to create one if none are free.
 1393          */
 1394         if (!gotiod)
 1395                 nfs_nfsiodnew();
 1396         else {
 1397                 /*
 1398                  * Found one, so wake it up and tell it which
 1399                  * mount to process.
 1400                  */
 1401                 NFS_DPF(ASYNCIO, ("nfs_asyncio: waking iod %d for mount %p\n",
 1402                     iod, nmp));
 1403                 nfs_iodwant[iod] = NFSIOD_NOT_AVAILABLE;
 1404                 nfs_iodmount[iod] = nmp;
 1405                 nmp->nm_bufqiods++;
 1406                 wakeup(&nfs_iodwant[iod]);
 1407         }
 1408 
 1409         /*
 1410          * If none are free, we may already have an iod working on this mount
 1411          * point.  If so, it will process our request.
 1412          */
 1413         if (!gotiod) {
 1414                 if (nmp->nm_bufqiods > 0) {
 1415                         NFS_DPF(ASYNCIO,
 1416                 ("nfs_asyncio: %d iods are already processing mount %p\n",
 1417                                  nmp->nm_bufqiods, nmp));
 1418                         gotiod = TRUE;
 1419                 }
 1420         }
 1421 
 1422         /*
 1423          * If we have an iod which can process the request, then queue
 1424          * the buffer.
 1425          */
 1426         if (gotiod) {
 1427                 /*
 1428                  * Ensure that the queue never grows too large.  We still want
 1429                  * to asynchronize so we block rather then return EIO.
 1430                  */
 1431                 while (nmp->nm_bufqlen >= 2 * nfs_numasync) {
 1432                         NFS_DPF(ASYNCIO,
 1433                 ("nfs_asyncio: waiting for mount %p queue to drain\n", nmp));
 1434                         nmp->nm_bufqwant = TRUE;
 1435                         error = nfs_msleep(td, &nmp->nm_bufq, &nfs_iod_mtx, 
 1436                                            slpflag | PRIBIO,
 1437                                            "nfsaio", slptimeo);
 1438                         if (error) {
 1439                                 error2 = nfs_sigintr(nmp, td);
 1440                                 if (error2) {
 1441                                         mtx_unlock(&nfs_iod_mtx);
 1442                                         return (error2);
 1443                                 }
 1444                                 if (slpflag == NFS_PCATCH) {
 1445                                         slpflag = 0;
 1446                                         slptimeo = 2 * hz;
 1447                                 }
 1448                         }
 1449                         /*
 1450                          * We might have lost our iod while sleeping,
 1451                          * so check and loop if nescessary.
 1452                          */
 1453                         goto again;
 1454                 }
 1455 
 1456                 /* We might have lost our nfsiod */
 1457                 if (nmp->nm_bufqiods == 0) {
 1458                         NFS_DPF(ASYNCIO,
 1459 ("nfs_asyncio: no iods after mount %p queue was drained, looping\n", nmp));
 1460                         goto again;
 1461                 }
 1462 
 1463                 if (bp->b_iocmd == BIO_READ) {
 1464                         if (bp->b_rcred == NOCRED && cred != NOCRED)
 1465                                 bp->b_rcred = crhold(cred);
 1466                 } else {
 1467                         if (bp->b_wcred == NOCRED && cred != NOCRED)
 1468                                 bp->b_wcred = crhold(cred);
 1469                 }
 1470 
 1471                 if (bp->b_flags & B_REMFREE)
 1472                         bremfreef(bp);
 1473                 BUF_KERNPROC(bp);
 1474                 TAILQ_INSERT_TAIL(&nmp->nm_bufq, bp, b_freelist);
 1475                 nmp->nm_bufqlen++;
 1476                 if ((bp->b_flags & B_DIRECT) && bp->b_iocmd == BIO_WRITE) {
 1477                         mtx_lock(&(VTONFS(bp->b_vp))->n_mtx);                   
 1478                         VTONFS(bp->b_vp)->n_flag |= NMODIFIED;
 1479                         VTONFS(bp->b_vp)->n_directio_asyncwr++;
 1480                         mtx_unlock(&(VTONFS(bp->b_vp))->n_mtx);
 1481                 }
 1482                 mtx_unlock(&nfs_iod_mtx);
 1483                 return (0);
 1484         }
 1485 
 1486         mtx_unlock(&nfs_iod_mtx);
 1487 
 1488         /*
 1489          * All the iods are busy on other mounts, so return EIO to
 1490          * force the caller to process the i/o synchronously.
 1491          */
 1492         NFS_DPF(ASYNCIO, ("nfs_asyncio: no iods available, i/o is synchronous\n"));
 1493         return (EIO);
 1494 }
 1495 
 1496 void
 1497 nfs_doio_directwrite(struct buf *bp)
 1498 {
 1499         int iomode, must_commit;
 1500         struct uio *uiop = (struct uio *)bp->b_caller1;
 1501         char *iov_base = uiop->uio_iov->iov_base;
 1502         struct nfsmount *nmp = VFSTONFS(bp->b_vp->v_mount);
 1503         
 1504         iomode = NFSV3WRITE_FILESYNC;
 1505         uiop->uio_td = NULL; /* NULL since we're in nfsiod */
 1506         (nmp->nm_rpcops->nr_writerpc)(bp->b_vp, uiop, bp->b_wcred, &iomode, &must_commit);
 1507         KASSERT((must_commit == 0), ("nfs_doio_directwrite: Did not commit write"));
 1508         free(iov_base, M_NFSDIRECTIO);
 1509         free(uiop->uio_iov, M_NFSDIRECTIO);
 1510         free(uiop, M_NFSDIRECTIO);
 1511         if ((bp->b_flags & B_DIRECT) && bp->b_iocmd == BIO_WRITE) {
 1512                 struct nfsnode *np = VTONFS(bp->b_vp);
 1513                 mtx_lock(&np->n_mtx);
 1514                 np->n_directio_asyncwr--;
 1515                 if (np->n_directio_asyncwr == 0) {
 1516                         VTONFS(bp->b_vp)->n_flag &= ~NMODIFIED;
 1517                         if ((np->n_flag & NFSYNCWAIT)) {
 1518                                 np->n_flag &= ~NFSYNCWAIT;
 1519                                 wakeup((caddr_t)&np->n_directio_asyncwr);
 1520                         }
 1521                 }
 1522                 mtx_unlock(&np->n_mtx);
 1523         }
 1524         bp->b_vp = NULL;
 1525         relpbuf(bp, &nfs_pbuf_freecnt);
 1526 }
 1527 
 1528 /*
 1529  * Do an I/O operation to/from a cache block. This may be called
 1530  * synchronously or from an nfsiod.
 1531  */
 1532 int
 1533 nfs_doio(struct vnode *vp, struct buf *bp, struct ucred *cr, struct thread *td)
 1534 {
 1535         struct uio *uiop;
 1536         struct nfsnode *np;
 1537         struct nfsmount *nmp;
 1538         int error = 0, iomode, must_commit = 0;
 1539         struct uio uio;
 1540         struct iovec io;
 1541         struct proc *p = td ? td->td_proc : NULL;
 1542         uint8_t iocmd;
 1543         
 1544         np = VTONFS(vp);
 1545         nmp = VFSTONFS(vp->v_mount);
 1546         uiop = &uio;
 1547         uiop->uio_iov = &io;
 1548         uiop->uio_iovcnt = 1;
 1549         uiop->uio_segflg = UIO_SYSSPACE;
 1550         uiop->uio_td = td;
 1551 
 1552         /*
 1553          * clear BIO_ERROR and B_INVAL state prior to initiating the I/O.  We
 1554          * do this here so we do not have to do it in all the code that
 1555          * calls us.
 1556          */
 1557         bp->b_flags &= ~B_INVAL;
 1558         bp->b_ioflags &= ~BIO_ERROR;
 1559 
 1560         KASSERT(!(bp->b_flags & B_DONE), ("nfs_doio: bp %p already marked done", bp));
 1561         iocmd = bp->b_iocmd;
 1562         if (iocmd == BIO_READ) {
 1563             io.iov_len = uiop->uio_resid = bp->b_bcount;
 1564             io.iov_base = bp->b_data;
 1565             uiop->uio_rw = UIO_READ;
 1566 
 1567             switch (vp->v_type) {
 1568             case VREG:
 1569                 uiop->uio_offset = ((off_t)bp->b_blkno) * DEV_BSIZE;
 1570                 nfsstats.read_bios++;
 1571                 error = (nmp->nm_rpcops->nr_readrpc)(vp, uiop, cr);
 1572 
 1573                 if (!error) {
 1574                     if (uiop->uio_resid) {
 1575                         /*
 1576                          * If we had a short read with no error, we must have
 1577                          * hit a file hole.  We should zero-fill the remainder.
 1578                          * This can also occur if the server hits the file EOF.
 1579                          *
 1580                          * Holes used to be able to occur due to pending
 1581                          * writes, but that is not possible any longer.
 1582                          */
 1583                         int nread = bp->b_bcount - uiop->uio_resid;
 1584                         int left  = uiop->uio_resid;
 1585 
 1586                         if (left > 0)
 1587                                 bzero((char *)bp->b_data + nread, left);
 1588                         uiop->uio_resid = 0;
 1589                     }
 1590                 }
 1591                 /* ASSERT_VOP_LOCKED(vp, "nfs_doio"); */
 1592                 if (p && (vp->v_vflag & VV_TEXT)) {
 1593                         mtx_lock(&np->n_mtx);
 1594                         if (NFS_TIMESPEC_COMPARE(&np->n_mtime, &np->n_vattr.va_mtime)) {
 1595                                 mtx_unlock(&np->n_mtx);
 1596                                 PROC_LOCK(p);
 1597                                 killproc(p, "text file modification");
 1598                                 PROC_UNLOCK(p);
 1599                         } else
 1600                                 mtx_unlock(&np->n_mtx);
 1601                 }
 1602                 break;
 1603             case VLNK:
 1604                 uiop->uio_offset = (off_t)0;
 1605                 nfsstats.readlink_bios++;
 1606                 error = (nmp->nm_rpcops->nr_readlinkrpc)(vp, uiop, cr);
 1607                 break;
 1608             case VDIR:
 1609                 nfsstats.readdir_bios++;
 1610                 uiop->uio_offset = ((u_quad_t)bp->b_lblkno) * NFS_DIRBLKSIZ;
 1611                 if ((nmp->nm_flag & NFSMNT_RDIRPLUS) != 0) {
 1612                         error = nfs_readdirplusrpc(vp, uiop, cr);
 1613                         if (error == NFSERR_NOTSUPP)
 1614                                 nmp->nm_flag &= ~NFSMNT_RDIRPLUS;
 1615                 }
 1616                 if ((nmp->nm_flag & NFSMNT_RDIRPLUS) == 0)
 1617                         error = nfs_readdirrpc(vp, uiop, cr);
 1618                 /*
 1619                  * end-of-directory sets B_INVAL but does not generate an
 1620                  * error.
 1621                  */
 1622                 if (error == 0 && uiop->uio_resid == bp->b_bcount)
 1623                         bp->b_flags |= B_INVAL;
 1624                 break;
 1625             default:
 1626                 nfs_printf("nfs_doio:  type %x unexpected\n", vp->v_type);
 1627                 break;
 1628             };
 1629             if (error) {
 1630                 bp->b_ioflags |= BIO_ERROR;
 1631                 bp->b_error = error;
 1632             }
 1633         } else {
 1634             /*
 1635              * If we only need to commit, try to commit
 1636              */
 1637             if (bp->b_flags & B_NEEDCOMMIT) {
 1638                     int retv;
 1639                     off_t off;
 1640 
 1641                     off = ((u_quad_t)bp->b_blkno) * DEV_BSIZE + bp->b_dirtyoff;
 1642                     retv = (nmp->nm_rpcops->nr_commit)(
 1643                                 vp, off, bp->b_dirtyend-bp->b_dirtyoff,
 1644                                 bp->b_wcred, td);
 1645                     if (retv == 0) {
 1646                             bp->b_dirtyoff = bp->b_dirtyend = 0;
 1647                             bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
 1648                             bp->b_resid = 0;
 1649                             bufdone(bp);
 1650                             return (0);
 1651                     }
 1652                     if (retv == NFSERR_STALEWRITEVERF) {
 1653                             nfs_clearcommit(vp->v_mount);
 1654                     }
 1655             }
 1656 
 1657             /*
 1658              * Setup for actual write
 1659              */
 1660             mtx_lock(&np->n_mtx);
 1661             if ((off_t)bp->b_blkno * DEV_BSIZE + bp->b_dirtyend > np->n_size)
 1662                 bp->b_dirtyend = np->n_size - (off_t)bp->b_blkno * DEV_BSIZE;
 1663             mtx_unlock(&np->n_mtx);
 1664 
 1665             if (bp->b_dirtyend > bp->b_dirtyoff) {
 1666                 io.iov_len = uiop->uio_resid = bp->b_dirtyend
 1667                     - bp->b_dirtyoff;
 1668                 uiop->uio_offset = (off_t)bp->b_blkno * DEV_BSIZE
 1669                     + bp->b_dirtyoff;
 1670                 io.iov_base = (char *)bp->b_data + bp->b_dirtyoff;
 1671                 uiop->uio_rw = UIO_WRITE;
 1672                 nfsstats.write_bios++;
 1673 
 1674                 if ((bp->b_flags & (B_ASYNC | B_NEEDCOMMIT | B_NOCACHE | B_CLUSTER)) == B_ASYNC)
 1675                     iomode = NFSV3WRITE_UNSTABLE;
 1676                 else
 1677                     iomode = NFSV3WRITE_FILESYNC;
 1678 
 1679                 error = (nmp->nm_rpcops->nr_writerpc)(vp, uiop, cr, &iomode, &must_commit);
 1680 
 1681                 /*
 1682                  * When setting B_NEEDCOMMIT also set B_CLUSTEROK to try
 1683                  * to cluster the buffers needing commit.  This will allow
 1684                  * the system to submit a single commit rpc for the whole
 1685                  * cluster.  We can do this even if the buffer is not 100%
 1686                  * dirty (relative to the NFS blocksize), so we optimize the
 1687                  * append-to-file-case.
 1688                  *
 1689                  * (when clearing B_NEEDCOMMIT, B_CLUSTEROK must also be
 1690                  * cleared because write clustering only works for commit
 1691                  * rpc's, not for the data portion of the write).
 1692                  */
 1693 
 1694                 if (!error && iomode == NFSV3WRITE_UNSTABLE) {
 1695                     bp->b_flags |= B_NEEDCOMMIT;
 1696                     if (bp->b_dirtyoff == 0
 1697                         && bp->b_dirtyend == bp->b_bcount)
 1698                         bp->b_flags |= B_CLUSTEROK;
 1699                 } else {
 1700                     bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
 1701                 }
 1702 
 1703                 /*
 1704                  * For an interrupted write, the buffer is still valid
 1705                  * and the write hasn't been pushed to the server yet,
 1706                  * so we can't set BIO_ERROR and report the interruption
 1707                  * by setting B_EINTR. For the B_ASYNC case, B_EINTR
 1708                  * is not relevant, so the rpc attempt is essentially
 1709                  * a noop.  For the case of a V3 write rpc not being
 1710                  * committed to stable storage, the block is still
 1711                  * dirty and requires either a commit rpc or another
 1712                  * write rpc with iomode == NFSV3WRITE_FILESYNC before
 1713                  * the block is reused. This is indicated by setting
 1714                  * the B_DELWRI and B_NEEDCOMMIT flags.
 1715                  *
 1716                  * If the buffer is marked B_PAGING, it does not reside on
 1717                  * the vp's paging queues so we cannot call bdirty().  The
 1718                  * bp in this case is not an NFS cache block so we should
 1719                  * be safe. XXX
 1720                  *
 1721                  * The logic below breaks up errors into recoverable and 
 1722                  * unrecoverable. For the former, we clear B_INVAL|B_NOCACHE
 1723                  * and keep the buffer around for potential write retries.
 1724                  * For the latter (eg ESTALE), we toss the buffer away (B_INVAL)
 1725                  * and save the error in the nfsnode. This is less than ideal 
 1726                  * but necessary. Keeping such buffers around could potentially
 1727                  * cause buffer exhaustion eventually (they can never be written
 1728                  * out, so will get constantly be re-dirtied). It also causes
 1729                  * all sorts of vfs panics. For non-recoverable write errors, 
 1730                  * also invalidate the attrcache, so we'll be forced to go over
 1731                  * the wire for this object, returning an error to user on next
 1732                  * call (most of the time).
 1733                  */
 1734                 if (error == EINTR || error == EIO || error == ETIMEDOUT
 1735                     || (!error && (bp->b_flags & B_NEEDCOMMIT))) {
 1736                         int s;
 1737 
 1738                         s = splbio();
 1739                         bp->b_flags &= ~(B_INVAL|B_NOCACHE);
 1740                         if ((bp->b_flags & B_PAGING) == 0) {
 1741                             bdirty(bp);
 1742                             bp->b_flags &= ~B_DONE;
 1743                         }
 1744                         if (error && (bp->b_flags & B_ASYNC) == 0)
 1745                             bp->b_flags |= B_EINTR;
 1746                         splx(s);
 1747                 } else {
 1748                     if (error) {
 1749                         bp->b_ioflags |= BIO_ERROR;
 1750                         bp->b_flags |= B_INVAL;
 1751                         bp->b_error = np->n_error = error;
 1752                         mtx_lock(&np->n_mtx);
 1753                         np->n_flag |= NWRITEERR;
 1754                         np->n_attrstamp = 0;
 1755                         KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
 1756                         mtx_unlock(&np->n_mtx);
 1757                     }
 1758                     bp->b_dirtyoff = bp->b_dirtyend = 0;
 1759                 }
 1760             } else {
 1761                 bp->b_resid = 0;
 1762                 bufdone(bp);
 1763                 return (0);
 1764             }
 1765         }
 1766         bp->b_resid = uiop->uio_resid;
 1767         if (must_commit)
 1768             nfs_clearcommit(vp->v_mount);
 1769         bufdone(bp);
 1770         return (error);
 1771 }
 1772 
 1773 /*
 1774  * Used to aid in handling ftruncate() operations on the NFS client side.
 1775  * Truncation creates a number of special problems for NFS.  We have to
 1776  * throw away VM pages and buffer cache buffers that are beyond EOF, and
 1777  * we have to properly handle VM pages or (potentially dirty) buffers
 1778  * that straddle the truncation point.
 1779  */
 1780 
 1781 int
 1782 nfs_meta_setsize(struct vnode *vp, struct ucred *cred, struct thread *td, u_quad_t nsize)
 1783 {
 1784         struct nfsnode *np = VTONFS(vp);
 1785         u_quad_t tsize;
 1786         int biosize = vp->v_bufobj.bo_bsize;
 1787         int error = 0;
 1788 
 1789         mtx_lock(&np->n_mtx);
 1790         tsize = np->n_size;
 1791         np->n_size = nsize;
 1792         mtx_unlock(&np->n_mtx);
 1793 
 1794         if (nsize < tsize) {
 1795                 struct buf *bp;
 1796                 daddr_t lbn;
 1797                 int bufsize;
 1798 
 1799                 /*
 1800                  * vtruncbuf() doesn't get the buffer overlapping the 
 1801                  * truncation point.  We may have a B_DELWRI and/or B_CACHE
 1802                  * buffer that now needs to be truncated.
 1803                  */
 1804                 error = vtruncbuf(vp, cred, td, nsize, biosize);
 1805                 lbn = nsize / biosize;
 1806                 bufsize = nsize & (biosize - 1);
 1807                 bp = nfs_getcacheblk(vp, lbn, bufsize, td);
 1808                 if (!bp)
 1809                         return EINTR;
 1810                 if (bp->b_dirtyoff > bp->b_bcount)
 1811                         bp->b_dirtyoff = bp->b_bcount;
 1812                 if (bp->b_dirtyend > bp->b_bcount)
 1813                         bp->b_dirtyend = bp->b_bcount;
 1814                 bp->b_flags |= B_RELBUF;  /* don't leave garbage around */
 1815                 brelse(bp);
 1816         } else {
 1817                 vnode_pager_setsize(vp, nsize);
 1818         }
 1819         return(error);
 1820 }
 1821 

Cache object: d0450d2f5afea28b980819ac88e69c5d


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.