The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/nfsclient/nfs_bio.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1989, 1993
    3  *      The Regents of the University of California.  All rights reserved.
    4  *
    5  * This code is derived from software contributed to Berkeley by
    6  * Rick Macklem at The University of Guelph.
    7  *
    8  * Redistribution and use in source and binary forms, with or without
    9  * modification, are permitted provided that the following conditions
   10  * are met:
   11  * 1. Redistributions of source code must retain the above copyright
   12  *    notice, this list of conditions and the following disclaimer.
   13  * 2. Redistributions in binary form must reproduce the above copyright
   14  *    notice, this list of conditions and the following disclaimer in the
   15  *    documentation and/or other materials provided with the distribution.
   16  * 4. Neither the name of the University nor the names of its contributors
   17  *    may be used to endorse or promote products derived from this software
   18  *    without specific prior written permission.
   19  *
   20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   30  * SUCH DAMAGE.
   31  *
   32  *      @(#)nfs_bio.c   8.9 (Berkeley) 3/30/95
   33  */
   34 
   35 #include <sys/cdefs.h>
   36 __FBSDID("$FreeBSD: releng/9.0/sys/nfsclient/nfs_bio.c 224733 2011-08-09 15:29:58Z jhb $");
   37 
   38 #include "opt_kdtrace.h"
   39 
   40 #include <sys/param.h>
   41 #include <sys/systm.h>
   42 #include <sys/bio.h>
   43 #include <sys/buf.h>
   44 #include <sys/kernel.h>
   45 #include <sys/mbuf.h>
   46 #include <sys/mount.h>
   47 #include <sys/proc.h>
   48 #include <sys/vmmeter.h>
   49 #include <sys/vnode.h>
   50 
   51 #include <vm/vm.h>
   52 #include <vm/vm_extern.h>
   53 #include <vm/vm_page.h>
   54 #include <vm/vm_object.h>
   55 #include <vm/vm_pager.h>
   56 #include <vm/vnode_pager.h>
   57 
   58 #include <nfs/nfsproto.h>
   59 #include <nfsclient/nfs.h>
   60 #include <nfsclient/nfsmount.h>
   61 #include <nfsclient/nfsnode.h>
   62 #include <nfs/nfs_kdtrace.h>
   63 
   64 static struct buf *nfs_getcacheblk(struct vnode *vp, daddr_t bn, int size,
   65                     struct thread *td);
   66 static int nfs_directio_write(struct vnode *vp, struct uio *uiop, 
   67                               struct ucred *cred, int ioflag);
   68 
   69 extern int nfs_directio_enable;
   70 extern int nfs_directio_allow_mmap;
   71 
   72 /*
   73  * Vnode op for VM getpages.
   74  */
   75 int
   76 nfs_getpages(struct vop_getpages_args *ap)
   77 {
   78         int i, error, nextoff, size, toff, count, npages;
   79         struct uio uio;
   80         struct iovec iov;
   81         vm_offset_t kva;
   82         struct buf *bp;
   83         struct vnode *vp;
   84         struct thread *td;
   85         struct ucred *cred;
   86         struct nfsmount *nmp;
   87         vm_object_t object;
   88         vm_page_t *pages;
   89         struct nfsnode *np;
   90 
   91         vp = ap->a_vp;
   92         np = VTONFS(vp);
   93         td = curthread;                         /* XXX */
   94         cred = curthread->td_ucred;             /* XXX */
   95         nmp = VFSTONFS(vp->v_mount);
   96         pages = ap->a_m;
   97         count = ap->a_count;
   98 
   99         if ((object = vp->v_object) == NULL) {
  100                 nfs_printf("nfs_getpages: called with non-merged cache vnode??\n");
  101                 return (VM_PAGER_ERROR);
  102         }
  103 
  104         if (nfs_directio_enable && !nfs_directio_allow_mmap) {
  105                 mtx_lock(&np->n_mtx);
  106                 if ((np->n_flag & NNONCACHE) && (vp->v_type == VREG)) {
  107                         mtx_unlock(&np->n_mtx);
  108                         nfs_printf("nfs_getpages: called on non-cacheable vnode??\n");
  109                         return (VM_PAGER_ERROR);
  110                 } else
  111                         mtx_unlock(&np->n_mtx);
  112         }
  113 
  114         mtx_lock(&nmp->nm_mtx);
  115         if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
  116             (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) {  
  117                 mtx_unlock(&nmp->nm_mtx);
  118                 /* We'll never get here for v4, because we always have fsinfo */
  119                 (void)nfs_fsinfo(nmp, vp, cred, td);
  120         } else
  121                 mtx_unlock(&nmp->nm_mtx);
  122 
  123         npages = btoc(count);
  124 
  125         /*
  126          * If the requested page is partially valid, just return it and
  127          * allow the pager to zero-out the blanks.  Partially valid pages
  128          * can only occur at the file EOF.
  129          */
  130         VM_OBJECT_LOCK(object);
  131         if (pages[ap->a_reqpage]->valid != 0) {
  132                 for (i = 0; i < npages; ++i) {
  133                         if (i != ap->a_reqpage) {
  134                                 vm_page_lock(pages[i]);
  135                                 vm_page_free(pages[i]);
  136                                 vm_page_unlock(pages[i]);
  137                         }
  138                 }
  139                 VM_OBJECT_UNLOCK(object);
  140                 return (0);
  141         }
  142         VM_OBJECT_UNLOCK(object);
  143 
  144         /*
  145          * We use only the kva address for the buffer, but this is extremely
  146          * convienient and fast.
  147          */
  148         bp = getpbuf(&nfs_pbuf_freecnt);
  149 
  150         kva = (vm_offset_t) bp->b_data;
  151         pmap_qenter(kva, pages, npages);
  152         PCPU_INC(cnt.v_vnodein);
  153         PCPU_ADD(cnt.v_vnodepgsin, npages);
  154 
  155         iov.iov_base = (caddr_t) kva;
  156         iov.iov_len = count;
  157         uio.uio_iov = &iov;
  158         uio.uio_iovcnt = 1;
  159         uio.uio_offset = IDX_TO_OFF(pages[0]->pindex);
  160         uio.uio_resid = count;
  161         uio.uio_segflg = UIO_SYSSPACE;
  162         uio.uio_rw = UIO_READ;
  163         uio.uio_td = td;
  164 
  165         error = (nmp->nm_rpcops->nr_readrpc)(vp, &uio, cred);
  166         pmap_qremove(kva, npages);
  167 
  168         relpbuf(bp, &nfs_pbuf_freecnt);
  169 
  170         if (error && (uio.uio_resid == count)) {
  171                 nfs_printf("nfs_getpages: error %d\n", error);
  172                 VM_OBJECT_LOCK(object);
  173                 for (i = 0; i < npages; ++i) {
  174                         if (i != ap->a_reqpage) {
  175                                 vm_page_lock(pages[i]);
  176                                 vm_page_free(pages[i]);
  177                                 vm_page_unlock(pages[i]);
  178                         }
  179                 }
  180                 VM_OBJECT_UNLOCK(object);
  181                 return (VM_PAGER_ERROR);
  182         }
  183 
  184         /*
  185          * Calculate the number of bytes read and validate only that number
  186          * of bytes.  Note that due to pending writes, size may be 0.  This
  187          * does not mean that the remaining data is invalid!
  188          */
  189 
  190         size = count - uio.uio_resid;
  191         VM_OBJECT_LOCK(object);
  192         for (i = 0, toff = 0; i < npages; i++, toff = nextoff) {
  193                 vm_page_t m;
  194                 nextoff = toff + PAGE_SIZE;
  195                 m = pages[i];
  196 
  197                 if (nextoff <= size) {
  198                         /*
  199                          * Read operation filled an entire page
  200                          */
  201                         m->valid = VM_PAGE_BITS_ALL;
  202                         KASSERT(m->dirty == 0,
  203                             ("nfs_getpages: page %p is dirty", m));
  204                 } else if (size > toff) {
  205                         /*
  206                          * Read operation filled a partial page.
  207                          */
  208                         m->valid = 0;
  209                         vm_page_set_valid(m, 0, size - toff);
  210                         KASSERT(m->dirty == 0,
  211                             ("nfs_getpages: page %p is dirty", m));
  212                 } else {
  213                         /*
  214                          * Read operation was short.  If no error occured
  215                          * we may have hit a zero-fill section.   We simply
  216                          * leave valid set to 0.
  217                          */
  218                         ;
  219                 }
  220                 if (i != ap->a_reqpage) {
  221                         /*
  222                          * Whether or not to leave the page activated is up in
  223                          * the air, but we should put the page on a page queue
  224                          * somewhere (it already is in the object).  Result:
  225                          * It appears that emperical results show that
  226                          * deactivating pages is best.
  227                          */
  228 
  229                         /*
  230                          * Just in case someone was asking for this page we
  231                          * now tell them that it is ok to use.
  232                          */
  233                         if (!error) {
  234                                 if (m->oflags & VPO_WANTED) {
  235                                         vm_page_lock(m);
  236                                         vm_page_activate(m);
  237                                         vm_page_unlock(m);
  238                                 } else {
  239                                         vm_page_lock(m);
  240                                         vm_page_deactivate(m);
  241                                         vm_page_unlock(m);
  242                                 }
  243                                 vm_page_wakeup(m);
  244                         } else {
  245                                 vm_page_lock(m);
  246                                 vm_page_free(m);
  247                                 vm_page_unlock(m);
  248                         }
  249                 }
  250         }
  251         VM_OBJECT_UNLOCK(object);
  252         return (0);
  253 }
  254 
  255 /*
  256  * Vnode op for VM putpages.
  257  */
  258 int
  259 nfs_putpages(struct vop_putpages_args *ap)
  260 {
  261         struct uio uio;
  262         struct iovec iov;
  263         vm_offset_t kva;
  264         struct buf *bp;
  265         int iomode, must_commit, i, error, npages, count;
  266         off_t offset;
  267         int *rtvals;
  268         struct vnode *vp;
  269         struct thread *td;
  270         struct ucred *cred;
  271         struct nfsmount *nmp;
  272         struct nfsnode *np;
  273         vm_page_t *pages;
  274 
  275         vp = ap->a_vp;
  276         np = VTONFS(vp);
  277         td = curthread;                         /* XXX */
  278         cred = curthread->td_ucred;             /* XXX */
  279         nmp = VFSTONFS(vp->v_mount);
  280         pages = ap->a_m;
  281         count = ap->a_count;
  282         rtvals = ap->a_rtvals;
  283         npages = btoc(count);
  284         offset = IDX_TO_OFF(pages[0]->pindex);
  285         
  286         mtx_lock(&nmp->nm_mtx);
  287         if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
  288             (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) {
  289                 mtx_unlock(&nmp->nm_mtx);
  290                 (void)nfs_fsinfo(nmp, vp, cred, td);
  291         } else
  292                 mtx_unlock(&nmp->nm_mtx);
  293 
  294         mtx_lock(&np->n_mtx);
  295         if (nfs_directio_enable && !nfs_directio_allow_mmap && 
  296             (np->n_flag & NNONCACHE) && (vp->v_type == VREG)) {
  297                 mtx_unlock(&np->n_mtx);         
  298                 nfs_printf("nfs_putpages: called on noncache-able vnode??\n");
  299                 mtx_lock(&np->n_mtx);
  300         }
  301 
  302         for (i = 0; i < npages; i++)
  303                 rtvals[i] = VM_PAGER_ERROR;
  304 
  305         /*
  306          * When putting pages, do not extend file past EOF.
  307          */
  308         if (offset + count > np->n_size) {
  309                 count = np->n_size - offset;
  310                 if (count < 0)
  311                         count = 0;
  312         }
  313         mtx_unlock(&np->n_mtx);
  314 
  315         /*
  316          * We use only the kva address for the buffer, but this is extremely
  317          * convienient and fast.
  318          */
  319         bp = getpbuf(&nfs_pbuf_freecnt);
  320 
  321         kva = (vm_offset_t) bp->b_data;
  322         pmap_qenter(kva, pages, npages);
  323         PCPU_INC(cnt.v_vnodeout);
  324         PCPU_ADD(cnt.v_vnodepgsout, count);
  325 
  326         iov.iov_base = (caddr_t) kva;
  327         iov.iov_len = count;
  328         uio.uio_iov = &iov;
  329         uio.uio_iovcnt = 1;
  330         uio.uio_offset = offset;
  331         uio.uio_resid = count;
  332         uio.uio_segflg = UIO_SYSSPACE;
  333         uio.uio_rw = UIO_WRITE;
  334         uio.uio_td = td;
  335 
  336         if ((ap->a_sync & VM_PAGER_PUT_SYNC) == 0)
  337             iomode = NFSV3WRITE_UNSTABLE;
  338         else
  339             iomode = NFSV3WRITE_FILESYNC;
  340 
  341         error = (nmp->nm_rpcops->nr_writerpc)(vp, &uio, cred, &iomode, &must_commit);
  342 
  343         pmap_qremove(kva, npages);
  344         relpbuf(bp, &nfs_pbuf_freecnt);
  345 
  346         if (!error) {
  347                 vnode_pager_undirty_pages(pages, rtvals, count - uio.uio_resid);
  348                 if (must_commit) {
  349                         nfs_clearcommit(vp->v_mount);
  350                 }
  351         }
  352         return rtvals[0];
  353 }
  354 
  355 /*
  356  * For nfs, cache consistency can only be maintained approximately.
  357  * Although RFC1094 does not specify the criteria, the following is
  358  * believed to be compatible with the reference port.
  359  * For nfs:
  360  * If the file's modify time on the server has changed since the
  361  * last read rpc or you have written to the file,
  362  * you may have lost data cache consistency with the
  363  * server, so flush all of the file's data out of the cache.
  364  * Then force a getattr rpc to ensure that you have up to date
  365  * attributes.
  366  * NB: This implies that cache data can be read when up to
  367  * NFS_ATTRTIMEO seconds out of date. If you find that you need current
  368  * attributes this could be forced by setting n_attrstamp to 0 before
  369  * the VOP_GETATTR() call.
  370  */
  371 static inline int
  372 nfs_bioread_check_cons(struct vnode *vp, struct thread *td, struct ucred *cred)
  373 {
  374         int error = 0;
  375         struct vattr vattr;
  376         struct nfsnode *np = VTONFS(vp);
  377         int old_lock;
  378         struct nfsmount *nmp = VFSTONFS(vp->v_mount);
  379         
  380         /*
  381          * Grab the exclusive lock before checking whether the cache is
  382          * consistent.
  383          * XXX - We can make this cheaper later (by acquiring cheaper locks).
  384          * But for now, this suffices.
  385          */
  386         old_lock = nfs_upgrade_vnlock(vp);
  387         if (vp->v_iflag & VI_DOOMED) {
  388                 nfs_downgrade_vnlock(vp, old_lock);
  389                 return (EBADF);
  390         }
  391                 
  392         mtx_lock(&np->n_mtx);
  393         if (np->n_flag & NMODIFIED) {
  394                 mtx_unlock(&np->n_mtx);
  395                 if (vp->v_type != VREG) {
  396                         if (vp->v_type != VDIR)
  397                                 panic("nfs: bioread, not dir");
  398                         (nmp->nm_rpcops->nr_invaldir)(vp);
  399                         error = nfs_vinvalbuf(vp, V_SAVE, td, 1);
  400                         if (error)
  401                                 goto out;
  402                 }
  403                 np->n_attrstamp = 0;
  404                 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
  405                 error = VOP_GETATTR(vp, &vattr, cred);
  406                 if (error)
  407                         goto out;
  408                 mtx_lock(&np->n_mtx);
  409                 np->n_mtime = vattr.va_mtime;
  410                 mtx_unlock(&np->n_mtx);
  411         } else {
  412                 mtx_unlock(&np->n_mtx);
  413                 error = VOP_GETATTR(vp, &vattr, cred);
  414                 if (error)
  415                         return (error);
  416                 mtx_lock(&np->n_mtx);
  417                 if ((np->n_flag & NSIZECHANGED)
  418                     || (NFS_TIMESPEC_COMPARE(&np->n_mtime, &vattr.va_mtime))) {
  419                         mtx_unlock(&np->n_mtx);
  420                         if (vp->v_type == VDIR)
  421                                 (nmp->nm_rpcops->nr_invaldir)(vp);
  422                         error = nfs_vinvalbuf(vp, V_SAVE, td, 1);
  423                         if (error)
  424                                 goto out;
  425                         mtx_lock(&np->n_mtx);
  426                         np->n_mtime = vattr.va_mtime;
  427                         np->n_flag &= ~NSIZECHANGED;
  428                 }
  429                 mtx_unlock(&np->n_mtx);
  430         }
  431 out:    
  432         nfs_downgrade_vnlock(vp, old_lock);
  433         return error;
  434 }
  435 
  436 /*
  437  * Vnode op for read using bio
  438  */
  439 int
  440 nfs_bioread(struct vnode *vp, struct uio *uio, int ioflag, struct ucred *cred)
  441 {
  442         struct nfsnode *np = VTONFS(vp);
  443         int biosize, i;
  444         struct buf *bp, *rabp;
  445         struct thread *td;
  446         struct nfsmount *nmp = VFSTONFS(vp->v_mount);
  447         daddr_t lbn, rabn;
  448         off_t end;
  449         int bcount;
  450         int seqcount;
  451         int nra, error = 0, n = 0, on = 0;
  452 
  453         KASSERT(uio->uio_rw == UIO_READ, ("nfs_read mode"));
  454         if (uio->uio_resid == 0)
  455                 return (0);
  456         if (uio->uio_offset < 0)        /* XXX VDIR cookies can be negative */
  457                 return (EINVAL);
  458         td = uio->uio_td;
  459 
  460         mtx_lock(&nmp->nm_mtx);
  461         if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
  462             (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) {
  463                 mtx_unlock(&nmp->nm_mtx);
  464                 (void)nfs_fsinfo(nmp, vp, cred, td);
  465         } else
  466                 mtx_unlock(&nmp->nm_mtx);               
  467 
  468         end = uio->uio_offset + uio->uio_resid;
  469         if (vp->v_type != VDIR &&
  470             (end > nmp->nm_maxfilesize || end < uio->uio_offset))
  471                 return (EFBIG);
  472 
  473         if (nfs_directio_enable && (ioflag & IO_DIRECT) && (vp->v_type == VREG))
  474                 /* No caching/ no readaheads. Just read data into the user buffer */
  475                 return nfs_readrpc(vp, uio, cred);
  476 
  477         biosize = vp->v_mount->mnt_stat.f_iosize;
  478         seqcount = (int)((off_t)(ioflag >> IO_SEQSHIFT) * biosize / BKVASIZE);
  479         
  480         error = nfs_bioread_check_cons(vp, td, cred);
  481         if (error)
  482                 return error;
  483 
  484         do {
  485             u_quad_t nsize;
  486                         
  487             mtx_lock(&np->n_mtx);
  488             nsize = np->n_size;
  489             mtx_unlock(&np->n_mtx);                 
  490 
  491             switch (vp->v_type) {
  492             case VREG:
  493                 nfsstats.biocache_reads++;
  494                 lbn = uio->uio_offset / biosize;
  495                 on = uio->uio_offset & (biosize - 1);
  496 
  497                 /*
  498                  * Start the read ahead(s), as required.
  499                  */
  500                 if (nmp->nm_readahead > 0) {
  501                     for (nra = 0; nra < nmp->nm_readahead && nra < seqcount &&
  502                         (off_t)(lbn + 1 + nra) * biosize < nsize; nra++) {
  503                         rabn = lbn + 1 + nra;
  504                         if (incore(&vp->v_bufobj, rabn) == NULL) {
  505                             rabp = nfs_getcacheblk(vp, rabn, biosize, td);
  506                             if (!rabp) {
  507                                 error = nfs_sigintr(nmp, td);
  508                                 return (error ? error : EINTR);
  509                             }
  510                             if ((rabp->b_flags & (B_CACHE|B_DELWRI)) == 0) {
  511                                 rabp->b_flags |= B_ASYNC;
  512                                 rabp->b_iocmd = BIO_READ;
  513                                 vfs_busy_pages(rabp, 0);
  514                                 if (nfs_asyncio(nmp, rabp, cred, td)) {
  515                                     rabp->b_flags |= B_INVAL;
  516                                     rabp->b_ioflags |= BIO_ERROR;
  517                                     vfs_unbusy_pages(rabp);
  518                                     brelse(rabp);
  519                                     break;
  520                                 }
  521                             } else {
  522                                 brelse(rabp);
  523                             }
  524                         }
  525                     }
  526                 }
  527 
  528                 /* Note that bcount is *not* DEV_BSIZE aligned. */
  529                 bcount = biosize;
  530                 if ((off_t)lbn * biosize >= nsize) {
  531                         bcount = 0;
  532                 } else if ((off_t)(lbn + 1) * biosize > nsize) {
  533                         bcount = nsize - (off_t)lbn * biosize;
  534                 }
  535                 bp = nfs_getcacheblk(vp, lbn, bcount, td);
  536 
  537                 if (!bp) {
  538                         error = nfs_sigintr(nmp, td);
  539                         return (error ? error : EINTR);
  540                 }
  541 
  542                 /*
  543                  * If B_CACHE is not set, we must issue the read.  If this
  544                  * fails, we return an error.
  545                  */
  546 
  547                 if ((bp->b_flags & B_CACHE) == 0) {
  548                     bp->b_iocmd = BIO_READ;
  549                     vfs_busy_pages(bp, 0);
  550                     error = nfs_doio(vp, bp, cred, td);
  551                     if (error) {
  552                         brelse(bp);
  553                         return (error);
  554                     }
  555                 }
  556 
  557                 /*
  558                  * on is the offset into the current bp.  Figure out how many
  559                  * bytes we can copy out of the bp.  Note that bcount is
  560                  * NOT DEV_BSIZE aligned.
  561                  *
  562                  * Then figure out how many bytes we can copy into the uio.
  563                  */
  564 
  565                 n = 0;
  566                 if (on < bcount)
  567                         n = min((unsigned)(bcount - on), uio->uio_resid);
  568                 break;
  569             case VLNK:
  570                 nfsstats.biocache_readlinks++;
  571                 bp = nfs_getcacheblk(vp, (daddr_t)0, NFS_MAXPATHLEN, td);
  572                 if (!bp) {
  573                         error = nfs_sigintr(nmp, td);
  574                         return (error ? error : EINTR);
  575                 }
  576                 if ((bp->b_flags & B_CACHE) == 0) {
  577                     bp->b_iocmd = BIO_READ;
  578                     vfs_busy_pages(bp, 0);
  579                     error = nfs_doio(vp, bp, cred, td);
  580                     if (error) {
  581                         bp->b_ioflags |= BIO_ERROR;
  582                         brelse(bp);
  583                         return (error);
  584                     }
  585                 }
  586                 n = min(uio->uio_resid, NFS_MAXPATHLEN - bp->b_resid);
  587                 on = 0;
  588                 break;
  589             case VDIR:
  590                 nfsstats.biocache_readdirs++;
  591                 if (np->n_direofoffset
  592                     && uio->uio_offset >= np->n_direofoffset) {
  593                     return (0);
  594                 }
  595                 lbn = (uoff_t)uio->uio_offset / NFS_DIRBLKSIZ;
  596                 on = uio->uio_offset & (NFS_DIRBLKSIZ - 1);
  597                 bp = nfs_getcacheblk(vp, lbn, NFS_DIRBLKSIZ, td);
  598                 if (!bp) {
  599                     error = nfs_sigintr(nmp, td);
  600                     return (error ? error : EINTR);
  601                 }
  602                 if ((bp->b_flags & B_CACHE) == 0) {
  603                     bp->b_iocmd = BIO_READ;
  604                     vfs_busy_pages(bp, 0);
  605                     error = nfs_doio(vp, bp, cred, td);
  606                     if (error) {
  607                             brelse(bp);
  608                     }
  609                     while (error == NFSERR_BAD_COOKIE) {
  610                         (nmp->nm_rpcops->nr_invaldir)(vp);
  611                         error = nfs_vinvalbuf(vp, 0, td, 1);
  612                         /*
  613                          * Yuck! The directory has been modified on the
  614                          * server. The only way to get the block is by
  615                          * reading from the beginning to get all the
  616                          * offset cookies.
  617                          *
  618                          * Leave the last bp intact unless there is an error.
  619                          * Loop back up to the while if the error is another
  620                          * NFSERR_BAD_COOKIE (double yuch!).
  621                          */
  622                         for (i = 0; i <= lbn && !error; i++) {
  623                             if (np->n_direofoffset
  624                                 && (i * NFS_DIRBLKSIZ) >= np->n_direofoffset)
  625                                     return (0);
  626                             bp = nfs_getcacheblk(vp, i, NFS_DIRBLKSIZ, td);
  627                             if (!bp) {
  628                                 error = nfs_sigintr(nmp, td);
  629                                 return (error ? error : EINTR);
  630                             }
  631                             if ((bp->b_flags & B_CACHE) == 0) {
  632                                     bp->b_iocmd = BIO_READ;
  633                                     vfs_busy_pages(bp, 0);
  634                                     error = nfs_doio(vp, bp, cred, td);
  635                                     /*
  636                                      * no error + B_INVAL == directory EOF,
  637                                      * use the block.
  638                                      */
  639                                     if (error == 0 && (bp->b_flags & B_INVAL))
  640                                             break;
  641                             }
  642                             /*
  643                              * An error will throw away the block and the
  644                              * for loop will break out.  If no error and this
  645                              * is not the block we want, we throw away the
  646                              * block and go for the next one via the for loop.
  647                              */
  648                             if (error || i < lbn)
  649                                     brelse(bp);
  650                         }
  651                     }
  652                     /*
  653                      * The above while is repeated if we hit another cookie
  654                      * error.  If we hit an error and it wasn't a cookie error,
  655                      * we give up.
  656                      */
  657                     if (error)
  658                             return (error);
  659                 }
  660 
  661                 /*
  662                  * If not eof and read aheads are enabled, start one.
  663                  * (You need the current block first, so that you have the
  664                  *  directory offset cookie of the next block.)
  665                  */
  666                 if (nmp->nm_readahead > 0 &&
  667                     (bp->b_flags & B_INVAL) == 0 &&
  668                     (np->n_direofoffset == 0 ||
  669                     (lbn + 1) * NFS_DIRBLKSIZ < np->n_direofoffset) &&
  670                     incore(&vp->v_bufobj, lbn + 1) == NULL) {
  671                         rabp = nfs_getcacheblk(vp, lbn + 1, NFS_DIRBLKSIZ, td);
  672                         if (rabp) {
  673                             if ((rabp->b_flags & (B_CACHE|B_DELWRI)) == 0) {
  674                                 rabp->b_flags |= B_ASYNC;
  675                                 rabp->b_iocmd = BIO_READ;
  676                                 vfs_busy_pages(rabp, 0);
  677                                 if (nfs_asyncio(nmp, rabp, cred, td)) {
  678                                     rabp->b_flags |= B_INVAL;
  679                                     rabp->b_ioflags |= BIO_ERROR;
  680                                     vfs_unbusy_pages(rabp);
  681                                     brelse(rabp);
  682                                 }
  683                             } else {
  684                                 brelse(rabp);
  685                             }
  686                         }
  687                 }
  688                 /*
  689                  * Unlike VREG files, whos buffer size ( bp->b_bcount ) is
  690                  * chopped for the EOF condition, we cannot tell how large
  691                  * NFS directories are going to be until we hit EOF.  So
  692                  * an NFS directory buffer is *not* chopped to its EOF.  Now,
  693                  * it just so happens that b_resid will effectively chop it
  694                  * to EOF.  *BUT* this information is lost if the buffer goes
  695                  * away and is reconstituted into a B_CACHE state ( due to
  696                  * being VMIO ) later.  So we keep track of the directory eof
  697                  * in np->n_direofoffset and chop it off as an extra step
  698                  * right here.
  699                  */
  700                 n = lmin(uio->uio_resid, NFS_DIRBLKSIZ - bp->b_resid - on);
  701                 if (np->n_direofoffset && n > np->n_direofoffset - uio->uio_offset)
  702                         n = np->n_direofoffset - uio->uio_offset;
  703                 break;
  704             default:
  705                 nfs_printf(" nfs_bioread: type %x unexpected\n", vp->v_type);
  706                 bp = NULL;
  707                 break;
  708             };
  709 
  710             if (n > 0) {
  711                     error = uiomove(bp->b_data + on, (int)n, uio);
  712             }
  713             if (vp->v_type == VLNK)
  714                 n = 0;
  715             if (bp != NULL)
  716                 brelse(bp);
  717         } while (error == 0 && uio->uio_resid > 0 && n > 0);
  718         return (error);
  719 }
  720 
  721 /*
  722  * The NFS write path cannot handle iovecs with len > 1. So we need to 
  723  * break up iovecs accordingly (restricting them to wsize).
  724  * For the SYNC case, we can do this with 1 copy (user buffer -> mbuf). 
  725  * For the ASYNC case, 2 copies are needed. The first a copy from the 
  726  * user buffer to a staging buffer and then a second copy from the staging
  727  * buffer to mbufs. This can be optimized by copying from the user buffer
  728  * directly into mbufs and passing the chain down, but that requires a 
  729  * fair amount of re-working of the relevant codepaths (and can be done
  730  * later).
  731  */
  732 static int
  733 nfs_directio_write(vp, uiop, cred, ioflag)
  734         struct vnode *vp;
  735         struct uio *uiop;
  736         struct ucred *cred;
  737         int ioflag;
  738 {
  739         int error;
  740         struct nfsmount *nmp = VFSTONFS(vp->v_mount);
  741         struct thread *td = uiop->uio_td;
  742         int size;
  743         int wsize;
  744         
  745         mtx_lock(&nmp->nm_mtx);
  746         wsize = nmp->nm_wsize;
  747         mtx_unlock(&nmp->nm_mtx);
  748         if (ioflag & IO_SYNC) {
  749                 int iomode, must_commit;
  750                 struct uio uio;
  751                 struct iovec iov;
  752 do_sync:
  753                 while (uiop->uio_resid > 0) {
  754                         size = min(uiop->uio_resid, wsize);
  755                         size = min(uiop->uio_iov->iov_len, size);
  756                         iov.iov_base = uiop->uio_iov->iov_base;
  757                         iov.iov_len = size;
  758                         uio.uio_iov = &iov;
  759                         uio.uio_iovcnt = 1;
  760                         uio.uio_offset = uiop->uio_offset;
  761                         uio.uio_resid = size;
  762                         uio.uio_segflg = UIO_USERSPACE;
  763                         uio.uio_rw = UIO_WRITE;
  764                         uio.uio_td = td;
  765                         iomode = NFSV3WRITE_FILESYNC;
  766                         error = (nmp->nm_rpcops->nr_writerpc)(vp, &uio, cred, 
  767                                                       &iomode, &must_commit);
  768                         KASSERT((must_commit == 0), 
  769                                 ("nfs_directio_write: Did not commit write"));
  770                         if (error)
  771                                 return (error);
  772                         uiop->uio_offset += size;
  773                         uiop->uio_resid -= size;
  774                         if (uiop->uio_iov->iov_len <= size) {
  775                                 uiop->uio_iovcnt--;
  776                                 uiop->uio_iov++;
  777                         } else {
  778                                 uiop->uio_iov->iov_base = 
  779                                         (char *)uiop->uio_iov->iov_base + size;
  780                                 uiop->uio_iov->iov_len -= size;
  781                         }
  782                 }
  783         } else {
  784                 struct uio *t_uio;
  785                 struct iovec *t_iov;
  786                 struct buf *bp;
  787                 
  788                 /*
  789                  * Break up the write into blocksize chunks and hand these
  790                  * over to nfsiod's for write back.
  791                  * Unfortunately, this incurs a copy of the data. Since 
  792                  * the user could modify the buffer before the write is 
  793                  * initiated.
  794                  * 
  795                  * The obvious optimization here is that one of the 2 copies
  796                  * in the async write path can be eliminated by copying the
  797                  * data here directly into mbufs and passing the mbuf chain
  798                  * down. But that will require a fair amount of re-working
  799                  * of the code and can be done if there's enough interest
  800                  * in NFS directio access.
  801                  */
  802                 while (uiop->uio_resid > 0) {
  803                         size = min(uiop->uio_resid, wsize);
  804                         size = min(uiop->uio_iov->iov_len, size);
  805                         bp = getpbuf(&nfs_pbuf_freecnt);
  806                         t_uio = malloc(sizeof(struct uio), M_NFSDIRECTIO, M_WAITOK);
  807                         t_iov = malloc(sizeof(struct iovec), M_NFSDIRECTIO, M_WAITOK);
  808                         t_iov->iov_base = malloc(size, M_NFSDIRECTIO, M_WAITOK);
  809                         t_iov->iov_len = size;
  810                         t_uio->uio_iov = t_iov;
  811                         t_uio->uio_iovcnt = 1;
  812                         t_uio->uio_offset = uiop->uio_offset;
  813                         t_uio->uio_resid = size;
  814                         t_uio->uio_segflg = UIO_SYSSPACE;
  815                         t_uio->uio_rw = UIO_WRITE;
  816                         t_uio->uio_td = td;
  817                         bcopy(uiop->uio_iov->iov_base, t_iov->iov_base, size);
  818                         bp->b_flags |= B_DIRECT;
  819                         bp->b_iocmd = BIO_WRITE;
  820                         if (cred != NOCRED) {
  821                                 crhold(cred);
  822                                 bp->b_wcred = cred;
  823                         } else 
  824                                 bp->b_wcred = NOCRED;                   
  825                         bp->b_caller1 = (void *)t_uio;
  826                         bp->b_vp = vp;
  827                         error = nfs_asyncio(nmp, bp, NOCRED, td);
  828                         if (error) {
  829                                 free(t_iov->iov_base, M_NFSDIRECTIO);
  830                                 free(t_iov, M_NFSDIRECTIO);
  831                                 free(t_uio, M_NFSDIRECTIO);
  832                                 bp->b_vp = NULL;
  833                                 relpbuf(bp, &nfs_pbuf_freecnt);
  834                                 if (error == EINTR)
  835                                         return (error);
  836                                 goto do_sync;
  837                         }
  838                         uiop->uio_offset += size;
  839                         uiop->uio_resid -= size;
  840                         if (uiop->uio_iov->iov_len <= size) {
  841                                 uiop->uio_iovcnt--;
  842                                 uiop->uio_iov++;
  843                         } else {
  844                                 uiop->uio_iov->iov_base = 
  845                                         (char *)uiop->uio_iov->iov_base + size;
  846                                 uiop->uio_iov->iov_len -= size;
  847                         }
  848                 }
  849         }
  850         return (0);
  851 }
  852 
  853 /*
  854  * Vnode op for write using bio
  855  */
  856 int
  857 nfs_write(struct vop_write_args *ap)
  858 {
  859         int biosize;
  860         struct uio *uio = ap->a_uio;
  861         struct thread *td = uio->uio_td;
  862         struct vnode *vp = ap->a_vp;
  863         struct nfsnode *np = VTONFS(vp);
  864         struct ucred *cred = ap->a_cred;
  865         int ioflag = ap->a_ioflag;
  866         struct buf *bp;
  867         struct vattr vattr;
  868         struct nfsmount *nmp = VFSTONFS(vp->v_mount);
  869         daddr_t lbn;
  870         off_t end;
  871         int bcount;
  872         int n, on, error = 0;
  873 
  874         KASSERT(uio->uio_rw == UIO_WRITE, ("nfs_write mode"));
  875         KASSERT(uio->uio_segflg != UIO_USERSPACE || uio->uio_td == curthread,
  876             ("nfs_write proc"));
  877         if (vp->v_type != VREG)
  878                 return (EIO);
  879         mtx_lock(&np->n_mtx);
  880         if (np->n_flag & NWRITEERR) {
  881                 np->n_flag &= ~NWRITEERR;
  882                 mtx_unlock(&np->n_mtx);
  883                 return (np->n_error);
  884         } else
  885                 mtx_unlock(&np->n_mtx);
  886         mtx_lock(&nmp->nm_mtx);
  887         if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
  888             (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) {
  889                 mtx_unlock(&nmp->nm_mtx);
  890                 (void)nfs_fsinfo(nmp, vp, cred, td);
  891         } else
  892                 mtx_unlock(&nmp->nm_mtx);
  893 
  894         /*
  895          * Synchronously flush pending buffers if we are in synchronous
  896          * mode or if we are appending.
  897          */
  898         if (ioflag & (IO_APPEND | IO_SYNC)) {
  899                 mtx_lock(&np->n_mtx);
  900                 if (np->n_flag & NMODIFIED) {
  901                         mtx_unlock(&np->n_mtx);
  902 #ifdef notyet /* Needs matching nonblock semantics elsewhere, too. */
  903                         /*
  904                          * Require non-blocking, synchronous writes to
  905                          * dirty files to inform the program it needs
  906                          * to fsync(2) explicitly.
  907                          */
  908                         if (ioflag & IO_NDELAY)
  909                                 return (EAGAIN);
  910 #endif
  911 flush_and_restart:
  912                         np->n_attrstamp = 0;
  913                         KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
  914                         error = nfs_vinvalbuf(vp, V_SAVE, td, 1);
  915                         if (error)
  916                                 return (error);
  917                 } else
  918                         mtx_unlock(&np->n_mtx);
  919         }
  920 
  921         /*
  922          * If IO_APPEND then load uio_offset.  We restart here if we cannot
  923          * get the append lock.
  924          */
  925         if (ioflag & IO_APPEND) {
  926                 np->n_attrstamp = 0;
  927                 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
  928                 error = VOP_GETATTR(vp, &vattr, cred);
  929                 if (error)
  930                         return (error);
  931                 mtx_lock(&np->n_mtx);
  932                 uio->uio_offset = np->n_size;
  933                 mtx_unlock(&np->n_mtx);
  934         }
  935 
  936         if (uio->uio_offset < 0)
  937                 return (EINVAL);
  938         end = uio->uio_offset + uio->uio_resid;
  939         if (end > nmp->nm_maxfilesize || end < uio->uio_offset)
  940                 return (EFBIG);
  941         if (uio->uio_resid == 0)
  942                 return (0);
  943 
  944         if (nfs_directio_enable && (ioflag & IO_DIRECT) && vp->v_type == VREG)
  945                 return nfs_directio_write(vp, uio, cred, ioflag);
  946 
  947         /*
  948          * Maybe this should be above the vnode op call, but so long as
  949          * file servers have no limits, i don't think it matters
  950          */
  951         if (vn_rlimit_fsize(vp, uio, td))
  952                 return (EFBIG);
  953 
  954         biosize = vp->v_mount->mnt_stat.f_iosize;
  955         /*
  956          * Find all of this file's B_NEEDCOMMIT buffers.  If our writes
  957          * would exceed the local maximum per-file write commit size when
  958          * combined with those, we must decide whether to flush,
  959          * go synchronous, or return error.  We don't bother checking
  960          * IO_UNIT -- we just make all writes atomic anyway, as there's
  961          * no point optimizing for something that really won't ever happen.
  962          */
  963         if (!(ioflag & IO_SYNC)) {
  964                 int nflag;
  965 
  966                 mtx_lock(&np->n_mtx);
  967                 nflag = np->n_flag;
  968                 mtx_unlock(&np->n_mtx);         
  969                 int needrestart = 0;
  970                 if (nmp->nm_wcommitsize < uio->uio_resid) {
  971                         /*
  972                          * If this request could not possibly be completed
  973                          * without exceeding the maximum outstanding write
  974                          * commit size, see if we can convert it into a
  975                          * synchronous write operation.
  976                          */
  977                         if (ioflag & IO_NDELAY)
  978                                 return (EAGAIN);
  979                         ioflag |= IO_SYNC;
  980                         if (nflag & NMODIFIED)
  981                                 needrestart = 1;
  982                 } else if (nflag & NMODIFIED) {
  983                         int wouldcommit = 0;
  984                         BO_LOCK(&vp->v_bufobj);
  985                         if (vp->v_bufobj.bo_dirty.bv_cnt != 0) {
  986                                 TAILQ_FOREACH(bp, &vp->v_bufobj.bo_dirty.bv_hd,
  987                                     b_bobufs) {
  988                                         if (bp->b_flags & B_NEEDCOMMIT)
  989                                                 wouldcommit += bp->b_bcount;
  990                                 }
  991                         }
  992                         BO_UNLOCK(&vp->v_bufobj);
  993                         /*
  994                          * Since we're not operating synchronously and
  995                          * bypassing the buffer cache, we are in a commit
  996                          * and holding all of these buffers whether
  997                          * transmitted or not.  If not limited, this
  998                          * will lead to the buffer cache deadlocking,
  999                          * as no one else can flush our uncommitted buffers.
 1000                          */
 1001                         wouldcommit += uio->uio_resid;
 1002                         /*
 1003                          * If we would initially exceed the maximum
 1004                          * outstanding write commit size, flush and restart.
 1005                          */
 1006                         if (wouldcommit > nmp->nm_wcommitsize)
 1007                                 needrestart = 1;
 1008                 }
 1009                 if (needrestart)
 1010                         goto flush_and_restart;
 1011         }
 1012 
 1013         do {
 1014                 nfsstats.biocache_writes++;
 1015                 lbn = uio->uio_offset / biosize;
 1016                 on = uio->uio_offset & (biosize-1);
 1017                 n = min((unsigned)(biosize - on), uio->uio_resid);
 1018 again:
 1019                 /*
 1020                  * Handle direct append and file extension cases, calculate
 1021                  * unaligned buffer size.
 1022                  */
 1023                 mtx_lock(&np->n_mtx);
 1024                 if (uio->uio_offset == np->n_size && n) {
 1025                         mtx_unlock(&np->n_mtx);
 1026                         /*
 1027                          * Get the buffer (in its pre-append state to maintain
 1028                          * B_CACHE if it was previously set).  Resize the
 1029                          * nfsnode after we have locked the buffer to prevent
 1030                          * readers from reading garbage.
 1031                          */
 1032                         bcount = on;
 1033                         bp = nfs_getcacheblk(vp, lbn, bcount, td);
 1034 
 1035                         if (bp != NULL) {
 1036                                 long save;
 1037 
 1038                                 mtx_lock(&np->n_mtx);
 1039                                 np->n_size = uio->uio_offset + n;
 1040                                 np->n_flag |= NMODIFIED;
 1041                                 vnode_pager_setsize(vp, np->n_size);
 1042                                 mtx_unlock(&np->n_mtx);
 1043 
 1044                                 save = bp->b_flags & B_CACHE;
 1045                                 bcount += n;
 1046                                 allocbuf(bp, bcount);
 1047                                 bp->b_flags |= save;
 1048                         }
 1049                 } else {
 1050                         /*
 1051                          * Obtain the locked cache block first, and then
 1052                          * adjust the file's size as appropriate.
 1053                          */
 1054                         bcount = on + n;
 1055                         if ((off_t)lbn * biosize + bcount < np->n_size) {
 1056                                 if ((off_t)(lbn + 1) * biosize < np->n_size)
 1057                                         bcount = biosize;
 1058                                 else
 1059                                         bcount = np->n_size - (off_t)lbn * biosize;
 1060                         }
 1061                         mtx_unlock(&np->n_mtx);
 1062                         bp = nfs_getcacheblk(vp, lbn, bcount, td);
 1063                         mtx_lock(&np->n_mtx);
 1064                         if (uio->uio_offset + n > np->n_size) {
 1065                                 np->n_size = uio->uio_offset + n;
 1066                                 np->n_flag |= NMODIFIED;
 1067                                 vnode_pager_setsize(vp, np->n_size);
 1068                         }
 1069                         mtx_unlock(&np->n_mtx);
 1070                 }
 1071 
 1072                 if (!bp) {
 1073                         error = nfs_sigintr(nmp, td);
 1074                         if (!error)
 1075                                 error = EINTR;
 1076                         break;
 1077                 }
 1078 
 1079                 /*
 1080                  * Issue a READ if B_CACHE is not set.  In special-append
 1081                  * mode, B_CACHE is based on the buffer prior to the write
 1082                  * op and is typically set, avoiding the read.  If a read
 1083                  * is required in special append mode, the server will
 1084                  * probably send us a short-read since we extended the file
 1085                  * on our end, resulting in b_resid == 0 and, thusly,
 1086                  * B_CACHE getting set.
 1087                  *
 1088                  * We can also avoid issuing the read if the write covers
 1089                  * the entire buffer.  We have to make sure the buffer state
 1090                  * is reasonable in this case since we will not be initiating
 1091                  * I/O.  See the comments in kern/vfs_bio.c's getblk() for
 1092                  * more information.
 1093                  *
 1094                  * B_CACHE may also be set due to the buffer being cached
 1095                  * normally.
 1096                  */
 1097 
 1098                 if (on == 0 && n == bcount) {
 1099                         bp->b_flags |= B_CACHE;
 1100                         bp->b_flags &= ~B_INVAL;
 1101                         bp->b_ioflags &= ~BIO_ERROR;
 1102                 }
 1103 
 1104                 if ((bp->b_flags & B_CACHE) == 0) {
 1105                         bp->b_iocmd = BIO_READ;
 1106                         vfs_busy_pages(bp, 0);
 1107                         error = nfs_doio(vp, bp, cred, td);
 1108                         if (error) {
 1109                                 brelse(bp);
 1110                                 break;
 1111                         }
 1112                 }
 1113                 if (bp->b_wcred == NOCRED)
 1114                         bp->b_wcred = crhold(cred);
 1115                 mtx_lock(&np->n_mtx);
 1116                 np->n_flag |= NMODIFIED;
 1117                 mtx_unlock(&np->n_mtx);
 1118 
 1119                 /*
 1120                  * If dirtyend exceeds file size, chop it down.  This should
 1121                  * not normally occur but there is an append race where it
 1122                  * might occur XXX, so we log it.
 1123                  *
 1124                  * If the chopping creates a reverse-indexed or degenerate
 1125                  * situation with dirtyoff/end, we 0 both of them.
 1126                  */
 1127 
 1128                 if (bp->b_dirtyend > bcount) {
 1129                         nfs_printf("NFS append race @%lx:%d\n",
 1130                             (long)bp->b_blkno * DEV_BSIZE,
 1131                             bp->b_dirtyend - bcount);
 1132                         bp->b_dirtyend = bcount;
 1133                 }
 1134 
 1135                 if (bp->b_dirtyoff >= bp->b_dirtyend)
 1136                         bp->b_dirtyoff = bp->b_dirtyend = 0;
 1137 
 1138                 /*
 1139                  * If the new write will leave a contiguous dirty
 1140                  * area, just update the b_dirtyoff and b_dirtyend,
 1141                  * otherwise force a write rpc of the old dirty area.
 1142                  *
 1143                  * While it is possible to merge discontiguous writes due to
 1144                  * our having a B_CACHE buffer ( and thus valid read data
 1145                  * for the hole), we don't because it could lead to
 1146                  * significant cache coherency problems with multiple clients,
 1147                  * especially if locking is implemented later on.
 1148                  *
 1149                  * as an optimization we could theoretically maintain
 1150                  * a linked list of discontinuous areas, but we would still
 1151                  * have to commit them separately so there isn't much
 1152                  * advantage to it except perhaps a bit of asynchronization.
 1153                  */
 1154 
 1155                 if (bp->b_dirtyend > 0 &&
 1156                     (on > bp->b_dirtyend || (on + n) < bp->b_dirtyoff)) {
 1157                         if (bwrite(bp) == EINTR) {
 1158                                 error = EINTR;
 1159                                 break;
 1160                         }
 1161                         goto again;
 1162                 }
 1163 
 1164                 error = uiomove((char *)bp->b_data + on, n, uio);
 1165 
 1166                 /*
 1167                  * Since this block is being modified, it must be written
 1168                  * again and not just committed.  Since write clustering does
 1169                  * not work for the stage 1 data write, only the stage 2
 1170                  * commit rpc, we have to clear B_CLUSTEROK as well.
 1171                  */
 1172                 bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
 1173 
 1174                 if (error) {
 1175                         bp->b_ioflags |= BIO_ERROR;
 1176                         brelse(bp);
 1177                         break;
 1178                 }
 1179 
 1180                 /*
 1181                  * Only update dirtyoff/dirtyend if not a degenerate
 1182                  * condition.
 1183                  */
 1184                 if (n) {
 1185                         if (bp->b_dirtyend > 0) {
 1186                                 bp->b_dirtyoff = min(on, bp->b_dirtyoff);
 1187                                 bp->b_dirtyend = max((on + n), bp->b_dirtyend);
 1188                         } else {
 1189                                 bp->b_dirtyoff = on;
 1190                                 bp->b_dirtyend = on + n;
 1191                         }
 1192                         vfs_bio_set_valid(bp, on, n);
 1193                 }
 1194 
 1195                 /*
 1196                  * If IO_SYNC do bwrite().
 1197                  *
 1198                  * IO_INVAL appears to be unused.  The idea appears to be
 1199                  * to turn off caching in this case.  Very odd.  XXX
 1200                  */
 1201                 if ((ioflag & IO_SYNC)) {
 1202                         if (ioflag & IO_INVAL)
 1203                                 bp->b_flags |= B_NOCACHE;
 1204                         error = bwrite(bp);
 1205                         if (error)
 1206                                 break;
 1207                 } else if ((n + on) == biosize) {
 1208                         bp->b_flags |= B_ASYNC;
 1209                         (void) (nmp->nm_rpcops->nr_writebp)(bp, 0, NULL);
 1210                 } else {
 1211                         bdwrite(bp);
 1212                 }
 1213         } while (uio->uio_resid > 0 && n > 0);
 1214 
 1215         return (error);
 1216 }
 1217 
 1218 /*
 1219  * Get an nfs cache block.
 1220  *
 1221  * Allocate a new one if the block isn't currently in the cache
 1222  * and return the block marked busy. If the calling process is
 1223  * interrupted by a signal for an interruptible mount point, return
 1224  * NULL.
 1225  *
 1226  * The caller must carefully deal with the possible B_INVAL state of
 1227  * the buffer.  nfs_doio() clears B_INVAL (and nfs_asyncio() clears it
 1228  * indirectly), so synchronous reads can be issued without worrying about
 1229  * the B_INVAL state.  We have to be a little more careful when dealing
 1230  * with writes (see comments in nfs_write()) when extending a file past
 1231  * its EOF.
 1232  */
 1233 static struct buf *
 1234 nfs_getcacheblk(struct vnode *vp, daddr_t bn, int size, struct thread *td)
 1235 {
 1236         struct buf *bp;
 1237         struct mount *mp;
 1238         struct nfsmount *nmp;
 1239 
 1240         mp = vp->v_mount;
 1241         nmp = VFSTONFS(mp);
 1242 
 1243         if (nmp->nm_flag & NFSMNT_INT) {
 1244                 sigset_t oldset;
 1245 
 1246                 nfs_set_sigmask(td, &oldset);
 1247                 bp = getblk(vp, bn, size, NFS_PCATCH, 0, 0);
 1248                 nfs_restore_sigmask(td, &oldset);
 1249                 while (bp == NULL) {
 1250                         if (nfs_sigintr(nmp, td))
 1251                                 return (NULL);
 1252                         bp = getblk(vp, bn, size, 0, 2 * hz, 0);
 1253                 }
 1254         } else {
 1255                 bp = getblk(vp, bn, size, 0, 0, 0);
 1256         }
 1257 
 1258         if (vp->v_type == VREG) {
 1259                 int biosize;
 1260 
 1261                 biosize = mp->mnt_stat.f_iosize;
 1262                 bp->b_blkno = bn * (biosize / DEV_BSIZE);
 1263         }
 1264         return (bp);
 1265 }
 1266 
 1267 /*
 1268  * Flush and invalidate all dirty buffers. If another process is already
 1269  * doing the flush, just wait for completion.
 1270  */
 1271 int
 1272 nfs_vinvalbuf(struct vnode *vp, int flags, struct thread *td, int intrflg)
 1273 {
 1274         struct nfsnode *np = VTONFS(vp);
 1275         struct nfsmount *nmp = VFSTONFS(vp->v_mount);
 1276         int error = 0, slpflag, slptimeo;
 1277         int old_lock = 0;
 1278 
 1279         ASSERT_VOP_LOCKED(vp, "nfs_vinvalbuf");
 1280 
 1281         if ((nmp->nm_flag & NFSMNT_INT) == 0)
 1282                 intrflg = 0;
 1283         if (intrflg) {
 1284                 slpflag = NFS_PCATCH;
 1285                 slptimeo = 2 * hz;
 1286         } else {
 1287                 slpflag = 0;
 1288                 slptimeo = 0;
 1289         }
 1290 
 1291         old_lock = nfs_upgrade_vnlock(vp);
 1292         if (vp->v_iflag & VI_DOOMED) {
 1293                 /*
 1294                  * Since vgonel() uses the generic vinvalbuf() to flush
 1295                  * dirty buffers and it does not call this function, it
 1296                  * is safe to just return OK when VI_DOOMED is set.
 1297                  */
 1298                 nfs_downgrade_vnlock(vp, old_lock);
 1299                 return (0);
 1300         }
 1301 
 1302         /*
 1303          * Now, flush as required.
 1304          */
 1305         if ((flags & V_SAVE) && (vp->v_bufobj.bo_object != NULL)) {
 1306                 VM_OBJECT_LOCK(vp->v_bufobj.bo_object);
 1307                 vm_object_page_clean(vp->v_bufobj.bo_object, 0, 0, OBJPC_SYNC);
 1308                 VM_OBJECT_UNLOCK(vp->v_bufobj.bo_object);
 1309                 /*
 1310                  * If the page clean was interrupted, fail the invalidation.
 1311                  * Not doing so, we run the risk of losing dirty pages in the 
 1312                  * vinvalbuf() call below.
 1313                  */
 1314                 if (intrflg && (error = nfs_sigintr(nmp, td)))
 1315                         goto out;
 1316         }
 1317 
 1318         error = vinvalbuf(vp, flags, slpflag, 0);
 1319         while (error) {
 1320                 if (intrflg && (error = nfs_sigintr(nmp, td)))
 1321                         goto out;
 1322                 error = vinvalbuf(vp, flags, 0, slptimeo);
 1323         }
 1324         mtx_lock(&np->n_mtx);
 1325         if (np->n_directio_asyncwr == 0)
 1326                 np->n_flag &= ~NMODIFIED;
 1327         mtx_unlock(&np->n_mtx);
 1328 out:
 1329         nfs_downgrade_vnlock(vp, old_lock);
 1330         return error;
 1331 }
 1332 
 1333 /*
 1334  * Initiate asynchronous I/O. Return an error if no nfsiods are available.
 1335  * This is mainly to avoid queueing async I/O requests when the nfsiods
 1336  * are all hung on a dead server.
 1337  *
 1338  * Note: nfs_asyncio() does not clear (BIO_ERROR|B_INVAL) but when the bp
 1339  * is eventually dequeued by the async daemon, nfs_doio() *will*.
 1340  */
 1341 int
 1342 nfs_asyncio(struct nfsmount *nmp, struct buf *bp, struct ucred *cred, struct thread *td)
 1343 {
 1344         int iod;
 1345         int gotiod;
 1346         int slpflag = 0;
 1347         int slptimeo = 0;
 1348         int error, error2;
 1349 
 1350         /*
 1351          * Commits are usually short and sweet so lets save some cpu and
 1352          * leave the async daemons for more important rpc's (such as reads
 1353          * and writes).
 1354          */
 1355         mtx_lock(&nfs_iod_mtx);
 1356         if (bp->b_iocmd == BIO_WRITE && (bp->b_flags & B_NEEDCOMMIT) &&
 1357             (nmp->nm_bufqiods > nfs_numasync / 2)) {
 1358                 mtx_unlock(&nfs_iod_mtx);
 1359                 return(EIO);
 1360         }
 1361 again:
 1362         if (nmp->nm_flag & NFSMNT_INT)
 1363                 slpflag = NFS_PCATCH;
 1364         gotiod = FALSE;
 1365 
 1366         /*
 1367          * Find a free iod to process this request.
 1368          */
 1369         for (iod = 0; iod < nfs_numasync; iod++)
 1370                 if (nfs_iodwant[iod] == NFSIOD_AVAILABLE) {
 1371                         gotiod = TRUE;
 1372                         break;
 1373                 }
 1374 
 1375         /*
 1376          * Try to create one if none are free.
 1377          */
 1378         if (!gotiod)
 1379                 nfs_nfsiodnew();
 1380         else {
 1381                 /*
 1382                  * Found one, so wake it up and tell it which
 1383                  * mount to process.
 1384                  */
 1385                 NFS_DPF(ASYNCIO, ("nfs_asyncio: waking iod %d for mount %p\n",
 1386                     iod, nmp));
 1387                 nfs_iodwant[iod] = NFSIOD_NOT_AVAILABLE;
 1388                 nfs_iodmount[iod] = nmp;
 1389                 nmp->nm_bufqiods++;
 1390                 wakeup(&nfs_iodwant[iod]);
 1391         }
 1392 
 1393         /*
 1394          * If none are free, we may already have an iod working on this mount
 1395          * point.  If so, it will process our request.
 1396          */
 1397         if (!gotiod) {
 1398                 if (nmp->nm_bufqiods > 0) {
 1399                         NFS_DPF(ASYNCIO,
 1400                 ("nfs_asyncio: %d iods are already processing mount %p\n",
 1401                                  nmp->nm_bufqiods, nmp));
 1402                         gotiod = TRUE;
 1403                 }
 1404         }
 1405 
 1406         /*
 1407          * If we have an iod which can process the request, then queue
 1408          * the buffer.
 1409          */
 1410         if (gotiod) {
 1411                 /*
 1412                  * Ensure that the queue never grows too large.  We still want
 1413                  * to asynchronize so we block rather then return EIO.
 1414                  */
 1415                 while (nmp->nm_bufqlen >= 2 * nfs_numasync) {
 1416                         NFS_DPF(ASYNCIO,
 1417                 ("nfs_asyncio: waiting for mount %p queue to drain\n", nmp));
 1418                         nmp->nm_bufqwant = TRUE;
 1419                         error = nfs_msleep(td, &nmp->nm_bufq, &nfs_iod_mtx, 
 1420                                            slpflag | PRIBIO,
 1421                                            "nfsaio", slptimeo);
 1422                         if (error) {
 1423                                 error2 = nfs_sigintr(nmp, td);
 1424                                 if (error2) {
 1425                                         mtx_unlock(&nfs_iod_mtx);
 1426                                         return (error2);
 1427                                 }
 1428                                 if (slpflag == NFS_PCATCH) {
 1429                                         slpflag = 0;
 1430                                         slptimeo = 2 * hz;
 1431                                 }
 1432                         }
 1433                         /*
 1434                          * We might have lost our iod while sleeping,
 1435                          * so check and loop if nescessary.
 1436                          */
 1437                         goto again;
 1438                 }
 1439 
 1440                 /* We might have lost our nfsiod */
 1441                 if (nmp->nm_bufqiods == 0) {
 1442                         NFS_DPF(ASYNCIO,
 1443 ("nfs_asyncio: no iods after mount %p queue was drained, looping\n", nmp));
 1444                         goto again;
 1445                 }
 1446 
 1447                 if (bp->b_iocmd == BIO_READ) {
 1448                         if (bp->b_rcred == NOCRED && cred != NOCRED)
 1449                                 bp->b_rcred = crhold(cred);
 1450                 } else {
 1451                         if (bp->b_wcred == NOCRED && cred != NOCRED)
 1452                                 bp->b_wcred = crhold(cred);
 1453                 }
 1454 
 1455                 if (bp->b_flags & B_REMFREE)
 1456                         bremfreef(bp);
 1457                 BUF_KERNPROC(bp);
 1458                 TAILQ_INSERT_TAIL(&nmp->nm_bufq, bp, b_freelist);
 1459                 nmp->nm_bufqlen++;
 1460                 if ((bp->b_flags & B_DIRECT) && bp->b_iocmd == BIO_WRITE) {
 1461                         mtx_lock(&(VTONFS(bp->b_vp))->n_mtx);                   
 1462                         VTONFS(bp->b_vp)->n_flag |= NMODIFIED;
 1463                         VTONFS(bp->b_vp)->n_directio_asyncwr++;
 1464                         mtx_unlock(&(VTONFS(bp->b_vp))->n_mtx);
 1465                 }
 1466                 mtx_unlock(&nfs_iod_mtx);
 1467                 return (0);
 1468         }
 1469 
 1470         mtx_unlock(&nfs_iod_mtx);
 1471 
 1472         /*
 1473          * All the iods are busy on other mounts, so return EIO to
 1474          * force the caller to process the i/o synchronously.
 1475          */
 1476         NFS_DPF(ASYNCIO, ("nfs_asyncio: no iods available, i/o is synchronous\n"));
 1477         return (EIO);
 1478 }
 1479 
 1480 void
 1481 nfs_doio_directwrite(struct buf *bp)
 1482 {
 1483         int iomode, must_commit;
 1484         struct uio *uiop = (struct uio *)bp->b_caller1;
 1485         char *iov_base = uiop->uio_iov->iov_base;
 1486         struct nfsmount *nmp = VFSTONFS(bp->b_vp->v_mount);
 1487         
 1488         iomode = NFSV3WRITE_FILESYNC;
 1489         uiop->uio_td = NULL; /* NULL since we're in nfsiod */
 1490         (nmp->nm_rpcops->nr_writerpc)(bp->b_vp, uiop, bp->b_wcred, &iomode, &must_commit);
 1491         KASSERT((must_commit == 0), ("nfs_doio_directwrite: Did not commit write"));
 1492         free(iov_base, M_NFSDIRECTIO);
 1493         free(uiop->uio_iov, M_NFSDIRECTIO);
 1494         free(uiop, M_NFSDIRECTIO);
 1495         if ((bp->b_flags & B_DIRECT) && bp->b_iocmd == BIO_WRITE) {
 1496                 struct nfsnode *np = VTONFS(bp->b_vp);
 1497                 mtx_lock(&np->n_mtx);
 1498                 np->n_directio_asyncwr--;
 1499                 if (np->n_directio_asyncwr == 0) {
 1500                         VTONFS(bp->b_vp)->n_flag &= ~NMODIFIED;
 1501                         if ((np->n_flag & NFSYNCWAIT)) {
 1502                                 np->n_flag &= ~NFSYNCWAIT;
 1503                                 wakeup((caddr_t)&np->n_directio_asyncwr);
 1504                         }
 1505                 }
 1506                 mtx_unlock(&np->n_mtx);
 1507         }
 1508         bp->b_vp = NULL;
 1509         relpbuf(bp, &nfs_pbuf_freecnt);
 1510 }
 1511 
 1512 /*
 1513  * Do an I/O operation to/from a cache block. This may be called
 1514  * synchronously or from an nfsiod.
 1515  */
 1516 int
 1517 nfs_doio(struct vnode *vp, struct buf *bp, struct ucred *cr, struct thread *td)
 1518 {
 1519         struct uio *uiop;
 1520         struct nfsnode *np;
 1521         struct nfsmount *nmp;
 1522         int error = 0, iomode, must_commit = 0;
 1523         struct uio uio;
 1524         struct iovec io;
 1525         struct proc *p = td ? td->td_proc : NULL;
 1526         uint8_t iocmd;
 1527         
 1528         np = VTONFS(vp);
 1529         nmp = VFSTONFS(vp->v_mount);
 1530         uiop = &uio;
 1531         uiop->uio_iov = &io;
 1532         uiop->uio_iovcnt = 1;
 1533         uiop->uio_segflg = UIO_SYSSPACE;
 1534         uiop->uio_td = td;
 1535 
 1536         /*
 1537          * clear BIO_ERROR and B_INVAL state prior to initiating the I/O.  We
 1538          * do this here so we do not have to do it in all the code that
 1539          * calls us.
 1540          */
 1541         bp->b_flags &= ~B_INVAL;
 1542         bp->b_ioflags &= ~BIO_ERROR;
 1543 
 1544         KASSERT(!(bp->b_flags & B_DONE), ("nfs_doio: bp %p already marked done", bp));
 1545         iocmd = bp->b_iocmd;
 1546         if (iocmd == BIO_READ) {
 1547             io.iov_len = uiop->uio_resid = bp->b_bcount;
 1548             io.iov_base = bp->b_data;
 1549             uiop->uio_rw = UIO_READ;
 1550 
 1551             switch (vp->v_type) {
 1552             case VREG:
 1553                 uiop->uio_offset = ((off_t)bp->b_blkno) * DEV_BSIZE;
 1554                 nfsstats.read_bios++;
 1555                 error = (nmp->nm_rpcops->nr_readrpc)(vp, uiop, cr);
 1556 
 1557                 if (!error) {
 1558                     if (uiop->uio_resid) {
 1559                         /*
 1560                          * If we had a short read with no error, we must have
 1561                          * hit a file hole.  We should zero-fill the remainder.
 1562                          * This can also occur if the server hits the file EOF.
 1563                          *
 1564                          * Holes used to be able to occur due to pending
 1565                          * writes, but that is not possible any longer.
 1566                          */
 1567                         int nread = bp->b_bcount - uiop->uio_resid;
 1568                         int left  = uiop->uio_resid;
 1569 
 1570                         if (left > 0)
 1571                                 bzero((char *)bp->b_data + nread, left);
 1572                         uiop->uio_resid = 0;
 1573                     }
 1574                 }
 1575                 /* ASSERT_VOP_LOCKED(vp, "nfs_doio"); */
 1576                 if (p && (vp->v_vflag & VV_TEXT)) {
 1577                         mtx_lock(&np->n_mtx);
 1578                         if (NFS_TIMESPEC_COMPARE(&np->n_mtime, &np->n_vattr.va_mtime)) {
 1579                                 mtx_unlock(&np->n_mtx);
 1580                                 PROC_LOCK(p);
 1581                                 killproc(p, "text file modification");
 1582                                 PROC_UNLOCK(p);
 1583                         } else
 1584                                 mtx_unlock(&np->n_mtx);
 1585                 }
 1586                 break;
 1587             case VLNK:
 1588                 uiop->uio_offset = (off_t)0;
 1589                 nfsstats.readlink_bios++;
 1590                 error = (nmp->nm_rpcops->nr_readlinkrpc)(vp, uiop, cr);
 1591                 break;
 1592             case VDIR:
 1593                 nfsstats.readdir_bios++;
 1594                 uiop->uio_offset = ((u_quad_t)bp->b_lblkno) * NFS_DIRBLKSIZ;
 1595                 if ((nmp->nm_flag & NFSMNT_RDIRPLUS) != 0) {
 1596                         error = nfs_readdirplusrpc(vp, uiop, cr);
 1597                         if (error == NFSERR_NOTSUPP)
 1598                                 nmp->nm_flag &= ~NFSMNT_RDIRPLUS;
 1599                 }
 1600                 if ((nmp->nm_flag & NFSMNT_RDIRPLUS) == 0)
 1601                         error = nfs_readdirrpc(vp, uiop, cr);
 1602                 /*
 1603                  * end-of-directory sets B_INVAL but does not generate an
 1604                  * error.
 1605                  */
 1606                 if (error == 0 && uiop->uio_resid == bp->b_bcount)
 1607                         bp->b_flags |= B_INVAL;
 1608                 break;
 1609             default:
 1610                 nfs_printf("nfs_doio:  type %x unexpected\n", vp->v_type);
 1611                 break;
 1612             };
 1613             if (error) {
 1614                 bp->b_ioflags |= BIO_ERROR;
 1615                 bp->b_error = error;
 1616             }
 1617         } else {
 1618             /*
 1619              * If we only need to commit, try to commit
 1620              */
 1621             if (bp->b_flags & B_NEEDCOMMIT) {
 1622                     int retv;
 1623                     off_t off;
 1624 
 1625                     off = ((u_quad_t)bp->b_blkno) * DEV_BSIZE + bp->b_dirtyoff;
 1626                     retv = (nmp->nm_rpcops->nr_commit)(
 1627                                 vp, off, bp->b_dirtyend-bp->b_dirtyoff,
 1628                                 bp->b_wcred, td);
 1629                     if (retv == 0) {
 1630                             bp->b_dirtyoff = bp->b_dirtyend = 0;
 1631                             bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
 1632                             bp->b_resid = 0;
 1633                             bufdone(bp);
 1634                             return (0);
 1635                     }
 1636                     if (retv == NFSERR_STALEWRITEVERF) {
 1637                             nfs_clearcommit(vp->v_mount);
 1638                     }
 1639             }
 1640 
 1641             /*
 1642              * Setup for actual write
 1643              */
 1644             mtx_lock(&np->n_mtx);
 1645             if ((off_t)bp->b_blkno * DEV_BSIZE + bp->b_dirtyend > np->n_size)
 1646                 bp->b_dirtyend = np->n_size - (off_t)bp->b_blkno * DEV_BSIZE;
 1647             mtx_unlock(&np->n_mtx);
 1648 
 1649             if (bp->b_dirtyend > bp->b_dirtyoff) {
 1650                 io.iov_len = uiop->uio_resid = bp->b_dirtyend
 1651                     - bp->b_dirtyoff;
 1652                 uiop->uio_offset = (off_t)bp->b_blkno * DEV_BSIZE
 1653                     + bp->b_dirtyoff;
 1654                 io.iov_base = (char *)bp->b_data + bp->b_dirtyoff;
 1655                 uiop->uio_rw = UIO_WRITE;
 1656                 nfsstats.write_bios++;
 1657 
 1658                 if ((bp->b_flags & (B_ASYNC | B_NEEDCOMMIT | B_NOCACHE | B_CLUSTER)) == B_ASYNC)
 1659                     iomode = NFSV3WRITE_UNSTABLE;
 1660                 else
 1661                     iomode = NFSV3WRITE_FILESYNC;
 1662 
 1663                 error = (nmp->nm_rpcops->nr_writerpc)(vp, uiop, cr, &iomode, &must_commit);
 1664 
 1665                 /*
 1666                  * When setting B_NEEDCOMMIT also set B_CLUSTEROK to try
 1667                  * to cluster the buffers needing commit.  This will allow
 1668                  * the system to submit a single commit rpc for the whole
 1669                  * cluster.  We can do this even if the buffer is not 100%
 1670                  * dirty (relative to the NFS blocksize), so we optimize the
 1671                  * append-to-file-case.
 1672                  *
 1673                  * (when clearing B_NEEDCOMMIT, B_CLUSTEROK must also be
 1674                  * cleared because write clustering only works for commit
 1675                  * rpc's, not for the data portion of the write).
 1676                  */
 1677 
 1678                 if (!error && iomode == NFSV3WRITE_UNSTABLE) {
 1679                     bp->b_flags |= B_NEEDCOMMIT;
 1680                     if (bp->b_dirtyoff == 0
 1681                         && bp->b_dirtyend == bp->b_bcount)
 1682                         bp->b_flags |= B_CLUSTEROK;
 1683                 } else {
 1684                     bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
 1685                 }
 1686 
 1687                 /*
 1688                  * For an interrupted write, the buffer is still valid
 1689                  * and the write hasn't been pushed to the server yet,
 1690                  * so we can't set BIO_ERROR and report the interruption
 1691                  * by setting B_EINTR. For the B_ASYNC case, B_EINTR
 1692                  * is not relevant, so the rpc attempt is essentially
 1693                  * a noop.  For the case of a V3 write rpc not being
 1694                  * committed to stable storage, the block is still
 1695                  * dirty and requires either a commit rpc or another
 1696                  * write rpc with iomode == NFSV3WRITE_FILESYNC before
 1697                  * the block is reused. This is indicated by setting
 1698                  * the B_DELWRI and B_NEEDCOMMIT flags.
 1699                  *
 1700                  * If the buffer is marked B_PAGING, it does not reside on
 1701                  * the vp's paging queues so we cannot call bdirty().  The
 1702                  * bp in this case is not an NFS cache block so we should
 1703                  * be safe. XXX
 1704                  *
 1705                  * The logic below breaks up errors into recoverable and 
 1706                  * unrecoverable. For the former, we clear B_INVAL|B_NOCACHE
 1707                  * and keep the buffer around for potential write retries.
 1708                  * For the latter (eg ESTALE), we toss the buffer away (B_INVAL)
 1709                  * and save the error in the nfsnode. This is less than ideal 
 1710                  * but necessary. Keeping such buffers around could potentially
 1711                  * cause buffer exhaustion eventually (they can never be written
 1712                  * out, so will get constantly be re-dirtied). It also causes
 1713                  * all sorts of vfs panics. For non-recoverable write errors, 
 1714                  * also invalidate the attrcache, so we'll be forced to go over
 1715                  * the wire for this object, returning an error to user on next
 1716                  * call (most of the time).
 1717                  */
 1718                 if (error == EINTR || error == EIO || error == ETIMEDOUT
 1719                     || (!error && (bp->b_flags & B_NEEDCOMMIT))) {
 1720                         int s;
 1721 
 1722                         s = splbio();
 1723                         bp->b_flags &= ~(B_INVAL|B_NOCACHE);
 1724                         if ((bp->b_flags & B_PAGING) == 0) {
 1725                             bdirty(bp);
 1726                             bp->b_flags &= ~B_DONE;
 1727                         }
 1728                         if (error && (bp->b_flags & B_ASYNC) == 0)
 1729                             bp->b_flags |= B_EINTR;
 1730                         splx(s);
 1731                 } else {
 1732                     if (error) {
 1733                         bp->b_ioflags |= BIO_ERROR;
 1734                         bp->b_flags |= B_INVAL;
 1735                         bp->b_error = np->n_error = error;
 1736                         mtx_lock(&np->n_mtx);
 1737                         np->n_flag |= NWRITEERR;
 1738                         np->n_attrstamp = 0;
 1739                         KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
 1740                         mtx_unlock(&np->n_mtx);
 1741                     }
 1742                     bp->b_dirtyoff = bp->b_dirtyend = 0;
 1743                 }
 1744             } else {
 1745                 bp->b_resid = 0;
 1746                 bufdone(bp);
 1747                 return (0);
 1748             }
 1749         }
 1750         bp->b_resid = uiop->uio_resid;
 1751         if (must_commit)
 1752             nfs_clearcommit(vp->v_mount);
 1753         bufdone(bp);
 1754         return (error);
 1755 }
 1756 
 1757 /*
 1758  * Used to aid in handling ftruncate() operations on the NFS client side.
 1759  * Truncation creates a number of special problems for NFS.  We have to
 1760  * throw away VM pages and buffer cache buffers that are beyond EOF, and
 1761  * we have to properly handle VM pages or (potentially dirty) buffers
 1762  * that straddle the truncation point.
 1763  */
 1764 
 1765 int
 1766 nfs_meta_setsize(struct vnode *vp, struct ucred *cred, struct thread *td, u_quad_t nsize)
 1767 {
 1768         struct nfsnode *np = VTONFS(vp);
 1769         u_quad_t tsize;
 1770         int biosize = vp->v_mount->mnt_stat.f_iosize;
 1771         int error = 0;
 1772 
 1773         mtx_lock(&np->n_mtx);
 1774         tsize = np->n_size;
 1775         np->n_size = nsize;
 1776         mtx_unlock(&np->n_mtx);
 1777 
 1778         if (nsize < tsize) {
 1779                 struct buf *bp;
 1780                 daddr_t lbn;
 1781                 int bufsize;
 1782 
 1783                 /*
 1784                  * vtruncbuf() doesn't get the buffer overlapping the 
 1785                  * truncation point.  We may have a B_DELWRI and/or B_CACHE
 1786                  * buffer that now needs to be truncated.
 1787                  */
 1788                 error = vtruncbuf(vp, cred, td, nsize, biosize);
 1789                 lbn = nsize / biosize;
 1790                 bufsize = nsize & (biosize - 1);
 1791                 bp = nfs_getcacheblk(vp, lbn, bufsize, td);
 1792                 if (!bp)
 1793                         return EINTR;
 1794                 if (bp->b_dirtyoff > bp->b_bcount)
 1795                         bp->b_dirtyoff = bp->b_bcount;
 1796                 if (bp->b_dirtyend > bp->b_bcount)
 1797                         bp->b_dirtyend = bp->b_bcount;
 1798                 bp->b_flags |= B_RELBUF;  /* don't leave garbage around */
 1799                 brelse(bp);
 1800         } else {
 1801                 vnode_pager_setsize(vp, nsize);
 1802         }
 1803         return(error);
 1804 }
 1805 

Cache object: b36acf15a64fad8866d9eca400859ba0


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.