1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause OR GPL-2.0
3 *
4 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved.
5 * Copyright (c) 2004 Infinicon Corporation. All rights reserved.
6 * Copyright (c) 2004 Intel Corporation. All rights reserved.
7 * Copyright (c) 2004 Topspin Corporation. All rights reserved.
8 * Copyright (c) 2004 Voltaire Corporation. All rights reserved.
9 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
10 * Copyright (c) 2005, 2006 Cisco Systems. All rights reserved.
11 *
12 * This software is available to you under a choice of one of two
13 * licenses. You may choose to be licensed under the terms of the GNU
14 * General Public License (GPL) Version 2, available from the file
15 * COPYING in the main directory of this source tree, or the
16 * OpenIB.org BSD license below:
17 *
18 * Redistribution and use in source and binary forms, with or
19 * without modification, are permitted provided that the following
20 * conditions are met:
21 *
22 * - Redistributions of source code must retain the above
23 * copyright notice, this list of conditions and the following
24 * disclaimer.
25 *
26 * - Redistributions in binary form must reproduce the above
27 * copyright notice, this list of conditions and the following
28 * disclaimer in the documentation and/or other materials
29 * provided with the distribution.
30 *
31 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
32 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
33 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
34 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
35 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
36 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
37 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
38 * SOFTWARE.
39 */
40
41 #include <sys/cdefs.h>
42 __FBSDID("$FreeBSD$");
43
44 #include <linux/errno.h>
45 #include <linux/err.h>
46 #include <linux/string.h>
47 #include <linux/slab.h>
48 #include <linux/in.h>
49 #include <linux/in6.h>
50 #include <linux/wait.h>
51
52 #include <rdma/ib_verbs.h>
53 #include <rdma/ib_cache.h>
54 #include <rdma/ib_addr.h>
55
56 #include <netinet/ip.h>
57 #include <netinet/ip6.h>
58
59 #include <machine/in_cksum.h>
60
61 #include "core_priv.h"
62
63 static const char * const ib_events[] = {
64 [IB_EVENT_CQ_ERR] = "CQ error",
65 [IB_EVENT_QP_FATAL] = "QP fatal error",
66 [IB_EVENT_QP_REQ_ERR] = "QP request error",
67 [IB_EVENT_QP_ACCESS_ERR] = "QP access error",
68 [IB_EVENT_COMM_EST] = "communication established",
69 [IB_EVENT_SQ_DRAINED] = "send queue drained",
70 [IB_EVENT_PATH_MIG] = "path migration successful",
71 [IB_EVENT_PATH_MIG_ERR] = "path migration error",
72 [IB_EVENT_DEVICE_FATAL] = "device fatal error",
73 [IB_EVENT_PORT_ACTIVE] = "port active",
74 [IB_EVENT_PORT_ERR] = "port error",
75 [IB_EVENT_LID_CHANGE] = "LID change",
76 [IB_EVENT_PKEY_CHANGE] = "P_key change",
77 [IB_EVENT_SM_CHANGE] = "SM change",
78 [IB_EVENT_SRQ_ERR] = "SRQ error",
79 [IB_EVENT_SRQ_LIMIT_REACHED] = "SRQ limit reached",
80 [IB_EVENT_QP_LAST_WQE_REACHED] = "last WQE reached",
81 [IB_EVENT_CLIENT_REREGISTER] = "client reregister",
82 [IB_EVENT_GID_CHANGE] = "GID changed",
83 };
84
85 const char *__attribute_const__ ib_event_msg(enum ib_event_type event)
86 {
87 size_t index = event;
88
89 return (index < ARRAY_SIZE(ib_events) && ib_events[index]) ?
90 ib_events[index] : "unrecognized event";
91 }
92 EXPORT_SYMBOL(ib_event_msg);
93
94 static const char * const wc_statuses[] = {
95 [IB_WC_SUCCESS] = "success",
96 [IB_WC_LOC_LEN_ERR] = "local length error",
97 [IB_WC_LOC_QP_OP_ERR] = "local QP operation error",
98 [IB_WC_LOC_EEC_OP_ERR] = "local EE context operation error",
99 [IB_WC_LOC_PROT_ERR] = "local protection error",
100 [IB_WC_WR_FLUSH_ERR] = "WR flushed",
101 [IB_WC_MW_BIND_ERR] = "memory management operation error",
102 [IB_WC_BAD_RESP_ERR] = "bad response error",
103 [IB_WC_LOC_ACCESS_ERR] = "local access error",
104 [IB_WC_REM_INV_REQ_ERR] = "invalid request error",
105 [IB_WC_REM_ACCESS_ERR] = "remote access error",
106 [IB_WC_REM_OP_ERR] = "remote operation error",
107 [IB_WC_RETRY_EXC_ERR] = "transport retry counter exceeded",
108 [IB_WC_RNR_RETRY_EXC_ERR] = "RNR retry counter exceeded",
109 [IB_WC_LOC_RDD_VIOL_ERR] = "local RDD violation error",
110 [IB_WC_REM_INV_RD_REQ_ERR] = "remote invalid RD request",
111 [IB_WC_REM_ABORT_ERR] = "operation aborted",
112 [IB_WC_INV_EECN_ERR] = "invalid EE context number",
113 [IB_WC_INV_EEC_STATE_ERR] = "invalid EE context state",
114 [IB_WC_FATAL_ERR] = "fatal error",
115 [IB_WC_RESP_TIMEOUT_ERR] = "response timeout error",
116 [IB_WC_GENERAL_ERR] = "general error",
117 };
118
119 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status)
120 {
121 size_t index = status;
122
123 return (index < ARRAY_SIZE(wc_statuses) && wc_statuses[index]) ?
124 wc_statuses[index] : "unrecognized status";
125 }
126 EXPORT_SYMBOL(ib_wc_status_msg);
127
128 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate)
129 {
130 switch (rate) {
131 case IB_RATE_2_5_GBPS: return 1;
132 case IB_RATE_5_GBPS: return 2;
133 case IB_RATE_10_GBPS: return 4;
134 case IB_RATE_20_GBPS: return 8;
135 case IB_RATE_30_GBPS: return 12;
136 case IB_RATE_40_GBPS: return 16;
137 case IB_RATE_60_GBPS: return 24;
138 case IB_RATE_80_GBPS: return 32;
139 case IB_RATE_120_GBPS: return 48;
140 case IB_RATE_14_GBPS: return 6;
141 case IB_RATE_56_GBPS: return 22;
142 case IB_RATE_112_GBPS: return 45;
143 case IB_RATE_168_GBPS: return 67;
144 case IB_RATE_25_GBPS: return 10;
145 case IB_RATE_100_GBPS: return 40;
146 case IB_RATE_200_GBPS: return 80;
147 case IB_RATE_300_GBPS: return 120;
148 case IB_RATE_28_GBPS: return 11;
149 case IB_RATE_50_GBPS: return 20;
150 case IB_RATE_400_GBPS: return 160;
151 case IB_RATE_600_GBPS: return 240;
152 default: return -1;
153 }
154 }
155 EXPORT_SYMBOL(ib_rate_to_mult);
156
157 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult)
158 {
159 switch (mult) {
160 case 1: return IB_RATE_2_5_GBPS;
161 case 2: return IB_RATE_5_GBPS;
162 case 4: return IB_RATE_10_GBPS;
163 case 8: return IB_RATE_20_GBPS;
164 case 12: return IB_RATE_30_GBPS;
165 case 16: return IB_RATE_40_GBPS;
166 case 24: return IB_RATE_60_GBPS;
167 case 32: return IB_RATE_80_GBPS;
168 case 48: return IB_RATE_120_GBPS;
169 case 6: return IB_RATE_14_GBPS;
170 case 22: return IB_RATE_56_GBPS;
171 case 45: return IB_RATE_112_GBPS;
172 case 67: return IB_RATE_168_GBPS;
173 case 10: return IB_RATE_25_GBPS;
174 case 40: return IB_RATE_100_GBPS;
175 case 80: return IB_RATE_200_GBPS;
176 case 120: return IB_RATE_300_GBPS;
177 case 11: return IB_RATE_28_GBPS;
178 case 20: return IB_RATE_50_GBPS;
179 case 160: return IB_RATE_400_GBPS;
180 case 240: return IB_RATE_600_GBPS;
181 default: return IB_RATE_PORT_CURRENT;
182 }
183 }
184 EXPORT_SYMBOL(mult_to_ib_rate);
185
186 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate)
187 {
188 switch (rate) {
189 case IB_RATE_2_5_GBPS: return 2500;
190 case IB_RATE_5_GBPS: return 5000;
191 case IB_RATE_10_GBPS: return 10000;
192 case IB_RATE_20_GBPS: return 20000;
193 case IB_RATE_30_GBPS: return 30000;
194 case IB_RATE_40_GBPS: return 40000;
195 case IB_RATE_60_GBPS: return 60000;
196 case IB_RATE_80_GBPS: return 80000;
197 case IB_RATE_120_GBPS: return 120000;
198 case IB_RATE_14_GBPS: return 14062;
199 case IB_RATE_56_GBPS: return 56250;
200 case IB_RATE_112_GBPS: return 112500;
201 case IB_RATE_168_GBPS: return 168750;
202 case IB_RATE_25_GBPS: return 25781;
203 case IB_RATE_100_GBPS: return 103125;
204 case IB_RATE_200_GBPS: return 206250;
205 case IB_RATE_300_GBPS: return 309375;
206 case IB_RATE_28_GBPS: return 28125;
207 case IB_RATE_50_GBPS: return 53125;
208 case IB_RATE_400_GBPS: return 425000;
209 case IB_RATE_600_GBPS: return 637500;
210 default: return -1;
211 }
212 }
213 EXPORT_SYMBOL(ib_rate_to_mbps);
214
215 __attribute_const__ enum rdma_transport_type
216 rdma_node_get_transport(enum rdma_node_type node_type)
217 {
218 switch (node_type) {
219 case RDMA_NODE_IB_CA:
220 case RDMA_NODE_IB_SWITCH:
221 case RDMA_NODE_IB_ROUTER:
222 return RDMA_TRANSPORT_IB;
223 case RDMA_NODE_RNIC:
224 return RDMA_TRANSPORT_IWARP;
225 case RDMA_NODE_USNIC:
226 return RDMA_TRANSPORT_USNIC;
227 case RDMA_NODE_USNIC_UDP:
228 return RDMA_TRANSPORT_USNIC_UDP;
229 default:
230 BUG();
231 return 0;
232 }
233 }
234 EXPORT_SYMBOL(rdma_node_get_transport);
235
236 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device, u8 port_num)
237 {
238 if (device->get_link_layer)
239 return device->get_link_layer(device, port_num);
240
241 switch (rdma_node_get_transport(device->node_type)) {
242 case RDMA_TRANSPORT_IB:
243 return IB_LINK_LAYER_INFINIBAND;
244 case RDMA_TRANSPORT_IWARP:
245 case RDMA_TRANSPORT_USNIC:
246 case RDMA_TRANSPORT_USNIC_UDP:
247 return IB_LINK_LAYER_ETHERNET;
248 default:
249 return IB_LINK_LAYER_UNSPECIFIED;
250 }
251 }
252 EXPORT_SYMBOL(rdma_port_get_link_layer);
253
254 /* Protection domains */
255
256 /**
257 * ib_alloc_pd - Allocates an unused protection domain.
258 * @device: The device on which to allocate the protection domain.
259 *
260 * A protection domain object provides an association between QPs, shared
261 * receive queues, address handles, memory regions, and memory windows.
262 *
263 * Every PD has a local_dma_lkey which can be used as the lkey value for local
264 * memory operations.
265 */
266 struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
267 const char *caller)
268 {
269 struct ib_pd *pd;
270 int mr_access_flags = 0;
271 int ret;
272
273 pd = rdma_zalloc_drv_obj(device, ib_pd);
274 if (!pd)
275 return ERR_PTR(-ENOMEM);
276
277 pd->device = device;
278 pd->uobject = NULL;
279 pd->__internal_mr = NULL;
280 atomic_set(&pd->usecnt, 0);
281 pd->flags = flags;
282
283 ret = device->alloc_pd(pd, NULL);
284 if (ret) {
285 kfree(pd);
286 return ERR_PTR(ret);
287 }
288
289 if (device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY)
290 pd->local_dma_lkey = device->local_dma_lkey;
291 else
292 mr_access_flags |= IB_ACCESS_LOCAL_WRITE;
293
294 if (flags & IB_PD_UNSAFE_GLOBAL_RKEY) {
295 pr_warn("%s: enabling unsafe global rkey\n", caller);
296 mr_access_flags |= IB_ACCESS_REMOTE_READ | IB_ACCESS_REMOTE_WRITE;
297 }
298
299 if (mr_access_flags) {
300 struct ib_mr *mr;
301
302 mr = pd->device->get_dma_mr(pd, mr_access_flags);
303 if (IS_ERR(mr)) {
304 ib_dealloc_pd(pd);
305 return ERR_CAST(mr);
306 }
307
308 mr->device = pd->device;
309 mr->pd = pd;
310 mr->type = IB_MR_TYPE_DMA;
311 mr->uobject = NULL;
312 mr->need_inval = false;
313
314 pd->__internal_mr = mr;
315
316 if (!(device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY))
317 pd->local_dma_lkey = pd->__internal_mr->lkey;
318
319 if (flags & IB_PD_UNSAFE_GLOBAL_RKEY)
320 pd->unsafe_global_rkey = pd->__internal_mr->rkey;
321 }
322
323 return pd;
324 }
325 EXPORT_SYMBOL(__ib_alloc_pd);
326
327 /**
328 * ib_dealloc_pd_user - Deallocates a protection domain.
329 * @pd: The protection domain to deallocate.
330 * @udata: Valid user data or NULL for kernel object
331 *
332 * It is an error to call this function while any resources in the pd still
333 * exist. The caller is responsible to synchronously destroy them and
334 * guarantee no new allocations will happen.
335 */
336 void ib_dealloc_pd_user(struct ib_pd *pd, struct ib_udata *udata)
337 {
338 int ret;
339
340 if (pd->__internal_mr) {
341 ret = pd->device->dereg_mr(pd->__internal_mr, NULL);
342 WARN_ON(ret);
343 pd->__internal_mr = NULL;
344 }
345
346 /* uverbs manipulates usecnt with proper locking, while the kabi
347 requires the caller to guarantee we can't race here. */
348 WARN_ON(atomic_read(&pd->usecnt));
349
350 pd->device->dealloc_pd(pd, udata);
351 kfree(pd);
352 }
353 EXPORT_SYMBOL(ib_dealloc_pd_user);
354
355 /* Address handles */
356
357 static struct ib_ah *_ib_create_ah(struct ib_pd *pd,
358 struct ib_ah_attr *ah_attr,
359 u32 flags,
360 struct ib_udata *udata)
361 {
362 struct ib_device *device = pd->device;
363 struct ib_ah *ah;
364 int ret;
365
366 might_sleep_if(flags & RDMA_CREATE_AH_SLEEPABLE);
367
368 if (!device->create_ah)
369 return ERR_PTR(-EOPNOTSUPP);
370
371 ah = rdma_zalloc_drv_obj_gfp(
372 device, ib_ah,
373 (flags & RDMA_CREATE_AH_SLEEPABLE) ? GFP_KERNEL : GFP_ATOMIC);
374 if (!ah)
375 return ERR_PTR(-ENOMEM);
376
377 ah->device = device;
378 ah->pd = pd;
379
380 ret = device->create_ah(ah, ah_attr, flags, udata);
381 if (ret) {
382 kfree(ah);
383 return ERR_PTR(ret);
384 }
385
386 atomic_inc(&pd->usecnt);
387 return ah;
388 }
389
390 /**
391 * rdma_create_ah - Creates an address handle for the
392 * given address vector.
393 * @pd: The protection domain associated with the address handle.
394 * @ah_attr: The attributes of the address vector.
395 * @flags: Create address handle flags (see enum rdma_create_ah_flags).
396 *
397 * It returns 0 on success and returns appropriate error code on error.
398 * The address handle is used to reference a local or global destination
399 * in all UD QP post sends.
400 */
401 struct ib_ah *ib_create_ah(struct ib_pd *pd, struct ib_ah_attr *ah_attr,
402 u32 flags)
403 {
404 struct ib_ah *ah;
405
406 ah = _ib_create_ah(pd, ah_attr, flags, NULL);
407
408 return ah;
409 }
410 EXPORT_SYMBOL(ib_create_ah);
411
412 /**
413 * ib_create_user_ah - Creates an address handle for the
414 * given address vector.
415 * It resolves destination mac address for ah attribute of RoCE type.
416 * @pd: The protection domain associated with the address handle.
417 * @ah_attr: The attributes of the address vector.
418 * @udata: pointer to user's input output buffer information need by
419 * provider driver.
420 *
421 * It returns a valid address handle pointer on success and
422 * returns appropriate error code on error.
423 * The address handle is used to reference a local or global destination
424 * in all UD QP post sends.
425 */
426 struct ib_ah *ib_create_user_ah(struct ib_pd *pd,
427 struct ib_ah_attr *ah_attr,
428 struct ib_udata *udata)
429 {
430 int err;
431
432 if (rdma_protocol_roce(pd->device, ah_attr->port_num)) {
433 err = ib_resolve_eth_dmac(pd->device, ah_attr);
434 if (err)
435 return ERR_PTR(err);
436 }
437
438 return _ib_create_ah(pd, ah_attr, RDMA_CREATE_AH_SLEEPABLE, udata);
439 }
440 EXPORT_SYMBOL(ib_create_user_ah);
441
442 static int ib_get_header_version(const union rdma_network_hdr *hdr)
443 {
444 const struct ip *ip4h = (const struct ip *)&hdr->roce4grh;
445 struct ip ip4h_checked;
446 const struct ip6_hdr *ip6h = (const struct ip6_hdr *)&hdr->ibgrh;
447
448 /* If it's IPv6, the version must be 6, otherwise, the first
449 * 20 bytes (before the IPv4 header) are garbled.
450 */
451 if ((ip6h->ip6_vfc & IPV6_VERSION_MASK) != IPV6_VERSION)
452 return (ip4h->ip_v == 4) ? 4 : 0;
453 /* version may be 6 or 4 because the first 20 bytes could be garbled */
454
455 /* RoCE v2 requires no options, thus header length
456 * must be 5 words
457 */
458 if (ip4h->ip_hl != 5)
459 return 6;
460
461 /* Verify checksum.
462 * We can't write on scattered buffers so we need to copy to
463 * temp buffer.
464 */
465 memcpy(&ip4h_checked, ip4h, sizeof(ip4h_checked));
466 ip4h_checked.ip_sum = 0;
467 #if defined(INET) || defined(INET6)
468 ip4h_checked.ip_sum = in_cksum_hdr(&ip4h_checked);
469 #endif
470 /* if IPv4 header checksum is OK, believe it */
471 if (ip4h->ip_sum == ip4h_checked.ip_sum)
472 return 4;
473 return 6;
474 }
475
476 static enum rdma_network_type ib_get_net_type_by_grh(struct ib_device *device,
477 u8 port_num,
478 const struct ib_grh *grh)
479 {
480 int grh_version;
481
482 if (rdma_protocol_ib(device, port_num))
483 return RDMA_NETWORK_IB;
484
485 grh_version = ib_get_header_version((const union rdma_network_hdr *)grh);
486
487 if (grh_version == 4)
488 return RDMA_NETWORK_IPV4;
489
490 if (grh->next_hdr == IPPROTO_UDP)
491 return RDMA_NETWORK_IPV6;
492
493 return RDMA_NETWORK_ROCE_V1;
494 }
495
496 struct find_gid_index_context {
497 u16 vlan_id;
498 enum ib_gid_type gid_type;
499 };
500
501
502 /*
503 * This function will return true only if a inspected GID index
504 * matches the request based on the GID type and VLAN configuration
505 */
506 static bool find_gid_index(const union ib_gid *gid,
507 const struct ib_gid_attr *gid_attr,
508 void *context)
509 {
510 u16 vlan_diff;
511 struct find_gid_index_context *ctx =
512 (struct find_gid_index_context *)context;
513
514 if (ctx->gid_type != gid_attr->gid_type)
515 return false;
516
517 /*
518 * The following will verify:
519 * 1. VLAN ID matching for VLAN tagged requests.
520 * 2. prio-tagged/untagged to prio-tagged/untagged matching.
521 *
522 * This XOR is valid, since 0x0 < vlan_id < 0x0FFF.
523 */
524 vlan_diff = rdma_vlan_dev_vlan_id(gid_attr->ndev) ^ ctx->vlan_id;
525
526 return (vlan_diff == 0x0000 || vlan_diff == 0xFFFF);
527 }
528
529 static int get_sgid_index_from_eth(struct ib_device *device, u8 port_num,
530 u16 vlan_id, const union ib_gid *sgid,
531 enum ib_gid_type gid_type,
532 u16 *gid_index)
533 {
534 struct find_gid_index_context context = {.vlan_id = vlan_id,
535 .gid_type = gid_type};
536
537 return ib_find_gid_by_filter(device, sgid, port_num, find_gid_index,
538 &context, gid_index);
539 }
540
541 static int get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr,
542 enum rdma_network_type net_type,
543 union ib_gid *sgid, union ib_gid *dgid)
544 {
545 struct sockaddr_in src_in;
546 struct sockaddr_in dst_in;
547 __be32 src_saddr, dst_saddr;
548
549 if (!sgid || !dgid)
550 return -EINVAL;
551
552 if (net_type == RDMA_NETWORK_IPV4) {
553 memcpy(&src_in.sin_addr.s_addr,
554 &hdr->roce4grh.ip_src, 4);
555 memcpy(&dst_in.sin_addr.s_addr,
556 &hdr->roce4grh.ip_dst, 4);
557 src_saddr = src_in.sin_addr.s_addr;
558 dst_saddr = dst_in.sin_addr.s_addr;
559 ipv6_addr_set_v4mapped(src_saddr,
560 (struct in6_addr *)sgid);
561 ipv6_addr_set_v4mapped(dst_saddr,
562 (struct in6_addr *)dgid);
563 return 0;
564 } else if (net_type == RDMA_NETWORK_IPV6 ||
565 net_type == RDMA_NETWORK_IB) {
566 *dgid = hdr->ibgrh.dgid;
567 *sgid = hdr->ibgrh.sgid;
568 return 0;
569 } else {
570 return -EINVAL;
571 }
572 }
573
574 int ib_init_ah_from_wc(struct ib_device *device, u8 port_num,
575 const struct ib_wc *wc, const struct ib_grh *grh,
576 struct ib_ah_attr *ah_attr)
577 {
578 u32 flow_class;
579 u16 gid_index = 0;
580 int ret;
581 enum rdma_network_type net_type = RDMA_NETWORK_IB;
582 enum ib_gid_type gid_type = IB_GID_TYPE_IB;
583 int hoplimit = 0xff;
584 union ib_gid dgid;
585 union ib_gid sgid;
586
587 memset(ah_attr, 0, sizeof *ah_attr);
588 if (rdma_cap_eth_ah(device, port_num)) {
589 if (wc->wc_flags & IB_WC_WITH_NETWORK_HDR_TYPE)
590 net_type = wc->network_hdr_type;
591 else
592 net_type = ib_get_net_type_by_grh(device, port_num, grh);
593 gid_type = ib_network_to_gid_type(net_type);
594 }
595 ret = get_gids_from_rdma_hdr((const union rdma_network_hdr *)grh, net_type,
596 &sgid, &dgid);
597 if (ret)
598 return ret;
599
600 if (rdma_protocol_roce(device, port_num)) {
601 struct ib_gid_attr dgid_attr;
602 const u16 vlan_id = (wc->wc_flags & IB_WC_WITH_VLAN) ?
603 wc->vlan_id : 0xffff;
604
605 if (!(wc->wc_flags & IB_WC_GRH))
606 return -EPROTOTYPE;
607
608 ret = get_sgid_index_from_eth(device, port_num, vlan_id,
609 &dgid, gid_type, &gid_index);
610 if (ret)
611 return ret;
612
613 ret = ib_get_cached_gid(device, port_num, gid_index, &dgid, &dgid_attr);
614 if (ret)
615 return ret;
616
617 if (dgid_attr.ndev == NULL)
618 return -ENODEV;
619
620 ret = rdma_addr_find_l2_eth_by_grh(&dgid, &sgid, ah_attr->dmac,
621 dgid_attr.ndev, &hoplimit);
622
623 dev_put(dgid_attr.ndev);
624 if (ret)
625 return ret;
626 }
627
628 ah_attr->dlid = wc->slid;
629 ah_attr->sl = wc->sl;
630 ah_attr->src_path_bits = wc->dlid_path_bits;
631 ah_attr->port_num = port_num;
632
633 if (wc->wc_flags & IB_WC_GRH) {
634 ah_attr->ah_flags = IB_AH_GRH;
635 ah_attr->grh.dgid = sgid;
636
637 if (!rdma_cap_eth_ah(device, port_num)) {
638 if (dgid.global.interface_id != cpu_to_be64(IB_SA_WELL_KNOWN_GUID)) {
639 ret = ib_find_cached_gid_by_port(device, &dgid,
640 IB_GID_TYPE_IB,
641 port_num, NULL,
642 &gid_index);
643 if (ret)
644 return ret;
645 }
646 }
647
648 ah_attr->grh.sgid_index = (u8) gid_index;
649 flow_class = be32_to_cpu(grh->version_tclass_flow);
650 ah_attr->grh.flow_label = flow_class & 0xFFFFF;
651 ah_attr->grh.hop_limit = hoplimit;
652 ah_attr->grh.traffic_class = (flow_class >> 20) & 0xFF;
653 }
654 return 0;
655 }
656 EXPORT_SYMBOL(ib_init_ah_from_wc);
657
658 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
659 const struct ib_grh *grh, u8 port_num)
660 {
661 struct ib_ah_attr ah_attr;
662 int ret;
663
664 ret = ib_init_ah_from_wc(pd->device, port_num, wc, grh, &ah_attr);
665 if (ret)
666 return ERR_PTR(ret);
667
668 return ib_create_ah(pd, &ah_attr, RDMA_CREATE_AH_SLEEPABLE);
669 }
670 EXPORT_SYMBOL(ib_create_ah_from_wc);
671
672 int ib_modify_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr)
673 {
674 return ah->device->modify_ah ?
675 ah->device->modify_ah(ah, ah_attr) :
676 -ENOSYS;
677 }
678 EXPORT_SYMBOL(ib_modify_ah);
679
680 int ib_query_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr)
681 {
682 return ah->device->query_ah ?
683 ah->device->query_ah(ah, ah_attr) :
684 -ENOSYS;
685 }
686 EXPORT_SYMBOL(ib_query_ah);
687
688 int ib_destroy_ah_user(struct ib_ah *ah, u32 flags, struct ib_udata *udata)
689 {
690 struct ib_pd *pd;
691
692 might_sleep_if(flags & RDMA_DESTROY_AH_SLEEPABLE);
693
694 pd = ah->pd;
695 ah->device->destroy_ah(ah, flags);
696 atomic_dec(&pd->usecnt);
697
698 kfree(ah);
699 return 0;
700 }
701 EXPORT_SYMBOL(ib_destroy_ah_user);
702
703 /* Shared receive queues */
704
705 struct ib_srq *ib_create_srq(struct ib_pd *pd,
706 struct ib_srq_init_attr *srq_init_attr)
707 {
708 struct ib_srq *srq;
709 int ret;
710
711 if (!pd->device->create_srq)
712 return ERR_PTR(-EOPNOTSUPP);
713
714 srq = rdma_zalloc_drv_obj(pd->device, ib_srq);
715 if (!srq)
716 return ERR_PTR(-ENOMEM);
717
718 srq->device = pd->device;
719 srq->pd = pd;
720 srq->event_handler = srq_init_attr->event_handler;
721 srq->srq_context = srq_init_attr->srq_context;
722 srq->srq_type = srq_init_attr->srq_type;
723
724 if (ib_srq_has_cq(srq->srq_type)) {
725 srq->ext.cq = srq_init_attr->ext.cq;
726 atomic_inc(&srq->ext.cq->usecnt);
727 }
728 if (srq->srq_type == IB_SRQT_XRC) {
729 srq->ext.xrc.xrcd = srq_init_attr->ext.xrc.xrcd;
730 atomic_inc(&srq->ext.xrc.xrcd->usecnt);
731 }
732 atomic_inc(&pd->usecnt);
733
734 ret = pd->device->create_srq(srq, srq_init_attr, NULL);
735 if (ret) {
736 atomic_dec(&srq->pd->usecnt);
737 if (srq->srq_type == IB_SRQT_XRC)
738 atomic_dec(&srq->ext.xrc.xrcd->usecnt);
739 if (ib_srq_has_cq(srq->srq_type))
740 atomic_dec(&srq->ext.cq->usecnt);
741 kfree(srq);
742 return ERR_PTR(ret);
743 }
744
745 return srq;
746 }
747 EXPORT_SYMBOL(ib_create_srq);
748
749 int ib_modify_srq(struct ib_srq *srq,
750 struct ib_srq_attr *srq_attr,
751 enum ib_srq_attr_mask srq_attr_mask)
752 {
753 return srq->device->modify_srq ?
754 srq->device->modify_srq(srq, srq_attr, srq_attr_mask, NULL) :
755 -ENOSYS;
756 }
757 EXPORT_SYMBOL(ib_modify_srq);
758
759 int ib_query_srq(struct ib_srq *srq,
760 struct ib_srq_attr *srq_attr)
761 {
762 return srq->device->query_srq ?
763 srq->device->query_srq(srq, srq_attr) : -ENOSYS;
764 }
765 EXPORT_SYMBOL(ib_query_srq);
766
767 int ib_destroy_srq_user(struct ib_srq *srq, struct ib_udata *udata)
768 {
769 if (atomic_read(&srq->usecnt))
770 return -EBUSY;
771
772 srq->device->destroy_srq(srq, udata);
773
774 atomic_dec(&srq->pd->usecnt);
775 if (srq->srq_type == IB_SRQT_XRC)
776 atomic_dec(&srq->ext.xrc.xrcd->usecnt);
777 if (ib_srq_has_cq(srq->srq_type))
778 atomic_dec(&srq->ext.cq->usecnt);
779 kfree(srq);
780
781 return 0;
782 }
783 EXPORT_SYMBOL(ib_destroy_srq_user);
784
785 /* Queue pairs */
786
787 static void __ib_shared_qp_event_handler(struct ib_event *event, void *context)
788 {
789 struct ib_qp *qp = context;
790 unsigned long flags;
791
792 spin_lock_irqsave(&qp->device->event_handler_lock, flags);
793 list_for_each_entry(event->element.qp, &qp->open_list, open_list)
794 if (event->element.qp->event_handler)
795 event->element.qp->event_handler(event, event->element.qp->qp_context);
796 spin_unlock_irqrestore(&qp->device->event_handler_lock, flags);
797 }
798
799 static void __ib_insert_xrcd_qp(struct ib_xrcd *xrcd, struct ib_qp *qp)
800 {
801 mutex_lock(&xrcd->tgt_qp_mutex);
802 list_add(&qp->xrcd_list, &xrcd->tgt_qp_list);
803 mutex_unlock(&xrcd->tgt_qp_mutex);
804 }
805
806 static struct ib_qp *__ib_open_qp(struct ib_qp *real_qp,
807 void (*event_handler)(struct ib_event *, void *),
808 void *qp_context)
809 {
810 struct ib_qp *qp;
811 unsigned long flags;
812
813 qp = kzalloc(sizeof *qp, GFP_KERNEL);
814 if (!qp)
815 return ERR_PTR(-ENOMEM);
816
817 qp->real_qp = real_qp;
818 atomic_inc(&real_qp->usecnt);
819 qp->device = real_qp->device;
820 qp->event_handler = event_handler;
821 qp->qp_context = qp_context;
822 qp->qp_num = real_qp->qp_num;
823 qp->qp_type = real_qp->qp_type;
824
825 spin_lock_irqsave(&real_qp->device->event_handler_lock, flags);
826 list_add(&qp->open_list, &real_qp->open_list);
827 spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags);
828
829 return qp;
830 }
831
832 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
833 struct ib_qp_open_attr *qp_open_attr)
834 {
835 struct ib_qp *qp, *real_qp;
836
837 if (qp_open_attr->qp_type != IB_QPT_XRC_TGT)
838 return ERR_PTR(-EINVAL);
839
840 qp = ERR_PTR(-EINVAL);
841 mutex_lock(&xrcd->tgt_qp_mutex);
842 list_for_each_entry(real_qp, &xrcd->tgt_qp_list, xrcd_list) {
843 if (real_qp->qp_num == qp_open_attr->qp_num) {
844 qp = __ib_open_qp(real_qp, qp_open_attr->event_handler,
845 qp_open_attr->qp_context);
846 break;
847 }
848 }
849 mutex_unlock(&xrcd->tgt_qp_mutex);
850 return qp;
851 }
852 EXPORT_SYMBOL(ib_open_qp);
853
854 static struct ib_qp *ib_create_xrc_qp(struct ib_qp *qp,
855 struct ib_qp_init_attr *qp_init_attr)
856 {
857 struct ib_qp *real_qp = qp;
858
859 qp->event_handler = __ib_shared_qp_event_handler;
860 qp->qp_context = qp;
861 qp->pd = NULL;
862 qp->send_cq = qp->recv_cq = NULL;
863 qp->srq = NULL;
864 qp->xrcd = qp_init_attr->xrcd;
865 atomic_inc(&qp_init_attr->xrcd->usecnt);
866 INIT_LIST_HEAD(&qp->open_list);
867
868 qp = __ib_open_qp(real_qp, qp_init_attr->event_handler,
869 qp_init_attr->qp_context);
870 if (!IS_ERR(qp))
871 __ib_insert_xrcd_qp(qp_init_attr->xrcd, real_qp);
872 else
873 real_qp->device->destroy_qp(real_qp, NULL);
874 return qp;
875 }
876
877 struct ib_qp *ib_create_qp(struct ib_pd *pd,
878 struct ib_qp_init_attr *qp_init_attr)
879 {
880 struct ib_device *device = pd ? pd->device : qp_init_attr->xrcd->device;
881 struct ib_qp *qp;
882
883 if (qp_init_attr->rwq_ind_tbl &&
884 (qp_init_attr->recv_cq ||
885 qp_init_attr->srq || qp_init_attr->cap.max_recv_wr ||
886 qp_init_attr->cap.max_recv_sge))
887 return ERR_PTR(-EINVAL);
888
889 qp = _ib_create_qp(device, pd, qp_init_attr, NULL, NULL);
890 if (IS_ERR(qp))
891 return qp;
892
893 qp->device = device;
894 qp->real_qp = qp;
895 qp->uobject = NULL;
896 qp->qp_type = qp_init_attr->qp_type;
897 qp->rwq_ind_tbl = qp_init_attr->rwq_ind_tbl;
898
899 atomic_set(&qp->usecnt, 0);
900 spin_lock_init(&qp->mr_lock);
901
902 if (qp_init_attr->qp_type == IB_QPT_XRC_TGT)
903 return ib_create_xrc_qp(qp, qp_init_attr);
904
905 qp->event_handler = qp_init_attr->event_handler;
906 qp->qp_context = qp_init_attr->qp_context;
907 if (qp_init_attr->qp_type == IB_QPT_XRC_INI) {
908 qp->recv_cq = NULL;
909 qp->srq = NULL;
910 } else {
911 qp->recv_cq = qp_init_attr->recv_cq;
912 if (qp_init_attr->recv_cq)
913 atomic_inc(&qp_init_attr->recv_cq->usecnt);
914 qp->srq = qp_init_attr->srq;
915 if (qp->srq)
916 atomic_inc(&qp_init_attr->srq->usecnt);
917 }
918
919 qp->pd = pd;
920 qp->send_cq = qp_init_attr->send_cq;
921 qp->xrcd = NULL;
922
923 atomic_inc(&pd->usecnt);
924 if (qp_init_attr->send_cq)
925 atomic_inc(&qp_init_attr->send_cq->usecnt);
926 if (qp_init_attr->rwq_ind_tbl)
927 atomic_inc(&qp->rwq_ind_tbl->usecnt);
928
929 /*
930 * Note: all hw drivers guarantee that max_send_sge is lower than
931 * the device RDMA WRITE SGE limit but not all hw drivers ensure that
932 * max_send_sge <= max_sge_rd.
933 */
934 qp->max_write_sge = qp_init_attr->cap.max_send_sge;
935 qp->max_read_sge = min_t(u32, qp_init_attr->cap.max_send_sge,
936 device->attrs.max_sge_rd);
937
938 return qp;
939 }
940 EXPORT_SYMBOL(ib_create_qp);
941
942 static const struct {
943 int valid;
944 enum ib_qp_attr_mask req_param[IB_QPT_MAX];
945 enum ib_qp_attr_mask opt_param[IB_QPT_MAX];
946 } qp_state_table[IB_QPS_ERR + 1][IB_QPS_ERR + 1] = {
947 [IB_QPS_RESET] = {
948 [IB_QPS_RESET] = { .valid = 1 },
949 [IB_QPS_INIT] = {
950 .valid = 1,
951 .req_param = {
952 [IB_QPT_UD] = (IB_QP_PKEY_INDEX |
953 IB_QP_PORT |
954 IB_QP_QKEY),
955 [IB_QPT_RAW_PACKET] = IB_QP_PORT,
956 [IB_QPT_UC] = (IB_QP_PKEY_INDEX |
957 IB_QP_PORT |
958 IB_QP_ACCESS_FLAGS),
959 [IB_QPT_RC] = (IB_QP_PKEY_INDEX |
960 IB_QP_PORT |
961 IB_QP_ACCESS_FLAGS),
962 [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX |
963 IB_QP_PORT |
964 IB_QP_ACCESS_FLAGS),
965 [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX |
966 IB_QP_PORT |
967 IB_QP_ACCESS_FLAGS),
968 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX |
969 IB_QP_QKEY),
970 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX |
971 IB_QP_QKEY),
972 }
973 },
974 },
975 [IB_QPS_INIT] = {
976 [IB_QPS_RESET] = { .valid = 1 },
977 [IB_QPS_ERR] = { .valid = 1 },
978 [IB_QPS_INIT] = {
979 .valid = 1,
980 .opt_param = {
981 [IB_QPT_UD] = (IB_QP_PKEY_INDEX |
982 IB_QP_PORT |
983 IB_QP_QKEY),
984 [IB_QPT_UC] = (IB_QP_PKEY_INDEX |
985 IB_QP_PORT |
986 IB_QP_ACCESS_FLAGS),
987 [IB_QPT_RC] = (IB_QP_PKEY_INDEX |
988 IB_QP_PORT |
989 IB_QP_ACCESS_FLAGS),
990 [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX |
991 IB_QP_PORT |
992 IB_QP_ACCESS_FLAGS),
993 [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX |
994 IB_QP_PORT |
995 IB_QP_ACCESS_FLAGS),
996 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX |
997 IB_QP_QKEY),
998 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX |
999 IB_QP_QKEY),
1000 }
1001 },
1002 [IB_QPS_RTR] = {
1003 .valid = 1,
1004 .req_param = {
1005 [IB_QPT_UC] = (IB_QP_AV |
1006 IB_QP_PATH_MTU |
1007 IB_QP_DEST_QPN |
1008 IB_QP_RQ_PSN),
1009 [IB_QPT_RC] = (IB_QP_AV |
1010 IB_QP_PATH_MTU |
1011 IB_QP_DEST_QPN |
1012 IB_QP_RQ_PSN |
1013 IB_QP_MAX_DEST_RD_ATOMIC |
1014 IB_QP_MIN_RNR_TIMER),
1015 [IB_QPT_XRC_INI] = (IB_QP_AV |
1016 IB_QP_PATH_MTU |
1017 IB_QP_DEST_QPN |
1018 IB_QP_RQ_PSN),
1019 [IB_QPT_XRC_TGT] = (IB_QP_AV |
1020 IB_QP_PATH_MTU |
1021 IB_QP_DEST_QPN |
1022 IB_QP_RQ_PSN |
1023 IB_QP_MAX_DEST_RD_ATOMIC |
1024 IB_QP_MIN_RNR_TIMER),
1025 },
1026 .opt_param = {
1027 [IB_QPT_UD] = (IB_QP_PKEY_INDEX |
1028 IB_QP_QKEY),
1029 [IB_QPT_UC] = (IB_QP_ALT_PATH |
1030 IB_QP_ACCESS_FLAGS |
1031 IB_QP_PKEY_INDEX),
1032 [IB_QPT_RC] = (IB_QP_ALT_PATH |
1033 IB_QP_ACCESS_FLAGS |
1034 IB_QP_PKEY_INDEX),
1035 [IB_QPT_XRC_INI] = (IB_QP_ALT_PATH |
1036 IB_QP_ACCESS_FLAGS |
1037 IB_QP_PKEY_INDEX),
1038 [IB_QPT_XRC_TGT] = (IB_QP_ALT_PATH |
1039 IB_QP_ACCESS_FLAGS |
1040 IB_QP_PKEY_INDEX),
1041 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX |
1042 IB_QP_QKEY),
1043 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX |
1044 IB_QP_QKEY),
1045 },
1046 },
1047 },
1048 [IB_QPS_RTR] = {
1049 [IB_QPS_RESET] = { .valid = 1 },
1050 [IB_QPS_ERR] = { .valid = 1 },
1051 [IB_QPS_RTS] = {
1052 .valid = 1,
1053 .req_param = {
1054 [IB_QPT_UD] = IB_QP_SQ_PSN,
1055 [IB_QPT_UC] = IB_QP_SQ_PSN,
1056 [IB_QPT_RC] = (IB_QP_TIMEOUT |
1057 IB_QP_RETRY_CNT |
1058 IB_QP_RNR_RETRY |
1059 IB_QP_SQ_PSN |
1060 IB_QP_MAX_QP_RD_ATOMIC),
1061 [IB_QPT_XRC_INI] = (IB_QP_TIMEOUT |
1062 IB_QP_RETRY_CNT |
1063 IB_QP_RNR_RETRY |
1064 IB_QP_SQ_PSN |
1065 IB_QP_MAX_QP_RD_ATOMIC),
1066 [IB_QPT_XRC_TGT] = (IB_QP_TIMEOUT |
1067 IB_QP_SQ_PSN),
1068 [IB_QPT_SMI] = IB_QP_SQ_PSN,
1069 [IB_QPT_GSI] = IB_QP_SQ_PSN,
1070 },
1071 .opt_param = {
1072 [IB_QPT_UD] = (IB_QP_CUR_STATE |
1073 IB_QP_QKEY),
1074 [IB_QPT_UC] = (IB_QP_CUR_STATE |
1075 IB_QP_ALT_PATH |
1076 IB_QP_ACCESS_FLAGS |
1077 IB_QP_PATH_MIG_STATE),
1078 [IB_QPT_RC] = (IB_QP_CUR_STATE |
1079 IB_QP_ALT_PATH |
1080 IB_QP_ACCESS_FLAGS |
1081 IB_QP_MIN_RNR_TIMER |
1082 IB_QP_PATH_MIG_STATE),
1083 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE |
1084 IB_QP_ALT_PATH |
1085 IB_QP_ACCESS_FLAGS |
1086 IB_QP_PATH_MIG_STATE),
1087 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE |
1088 IB_QP_ALT_PATH |
1089 IB_QP_ACCESS_FLAGS |
1090 IB_QP_MIN_RNR_TIMER |
1091 IB_QP_PATH_MIG_STATE),
1092 [IB_QPT_SMI] = (IB_QP_CUR_STATE |
1093 IB_QP_QKEY),
1094 [IB_QPT_GSI] = (IB_QP_CUR_STATE |
1095 IB_QP_QKEY),
1096 [IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT,
1097 }
1098 }
1099 },
1100 [IB_QPS_RTS] = {
1101 [IB_QPS_RESET] = { .valid = 1 },
1102 [IB_QPS_ERR] = { .valid = 1 },
1103 [IB_QPS_RTS] = {
1104 .valid = 1,
1105 .opt_param = {
1106 [IB_QPT_UD] = (IB_QP_CUR_STATE |
1107 IB_QP_QKEY),
1108 [IB_QPT_UC] = (IB_QP_CUR_STATE |
1109 IB_QP_ACCESS_FLAGS |
1110 IB_QP_ALT_PATH |
1111 IB_QP_PATH_MIG_STATE),
1112 [IB_QPT_RC] = (IB_QP_CUR_STATE |
1113 IB_QP_ACCESS_FLAGS |
1114 IB_QP_ALT_PATH |
1115 IB_QP_PATH_MIG_STATE |
1116 IB_QP_MIN_RNR_TIMER),
1117 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE |
1118 IB_QP_ACCESS_FLAGS |
1119 IB_QP_ALT_PATH |
1120 IB_QP_PATH_MIG_STATE),
1121 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE |
1122 IB_QP_ACCESS_FLAGS |
1123 IB_QP_ALT_PATH |
1124 IB_QP_PATH_MIG_STATE |
1125 IB_QP_MIN_RNR_TIMER),
1126 [IB_QPT_SMI] = (IB_QP_CUR_STATE |
1127 IB_QP_QKEY),
1128 [IB_QPT_GSI] = (IB_QP_CUR_STATE |
1129 IB_QP_QKEY),
1130 [IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT,
1131 }
1132 },
1133 [IB_QPS_SQD] = {
1134 .valid = 1,
1135 .opt_param = {
1136 [IB_QPT_UD] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1137 [IB_QPT_UC] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1138 [IB_QPT_RC] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1139 [IB_QPT_XRC_INI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1140 [IB_QPT_XRC_TGT] = IB_QP_EN_SQD_ASYNC_NOTIFY, /* ??? */
1141 [IB_QPT_SMI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1142 [IB_QPT_GSI] = IB_QP_EN_SQD_ASYNC_NOTIFY
1143 }
1144 },
1145 },
1146 [IB_QPS_SQD] = {
1147 [IB_QPS_RESET] = { .valid = 1 },
1148 [IB_QPS_ERR] = { .valid = 1 },
1149 [IB_QPS_RTS] = {
1150 .valid = 1,
1151 .opt_param = {
1152 [IB_QPT_UD] = (IB_QP_CUR_STATE |
1153 IB_QP_QKEY),
1154 [IB_QPT_UC] = (IB_QP_CUR_STATE |
1155 IB_QP_ALT_PATH |
1156 IB_QP_ACCESS_FLAGS |
1157 IB_QP_PATH_MIG_STATE),
1158 [IB_QPT_RC] = (IB_QP_CUR_STATE |
1159 IB_QP_ALT_PATH |
1160 IB_QP_ACCESS_FLAGS |
1161 IB_QP_MIN_RNR_TIMER |
1162 IB_QP_PATH_MIG_STATE),
1163 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE |
1164 IB_QP_ALT_PATH |
1165 IB_QP_ACCESS_FLAGS |
1166 IB_QP_PATH_MIG_STATE),
1167 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE |
1168 IB_QP_ALT_PATH |
1169 IB_QP_ACCESS_FLAGS |
1170 IB_QP_MIN_RNR_TIMER |
1171 IB_QP_PATH_MIG_STATE),
1172 [IB_QPT_SMI] = (IB_QP_CUR_STATE |
1173 IB_QP_QKEY),
1174 [IB_QPT_GSI] = (IB_QP_CUR_STATE |
1175 IB_QP_QKEY),
1176 }
1177 },
1178 [IB_QPS_SQD] = {
1179 .valid = 1,
1180 .opt_param = {
1181 [IB_QPT_UD] = (IB_QP_PKEY_INDEX |
1182 IB_QP_QKEY),
1183 [IB_QPT_UC] = (IB_QP_AV |
1184 IB_QP_ALT_PATH |
1185 IB_QP_ACCESS_FLAGS |
1186 IB_QP_PKEY_INDEX |
1187 IB_QP_PATH_MIG_STATE),
1188 [IB_QPT_RC] = (IB_QP_PORT |
1189 IB_QP_AV |
1190 IB_QP_TIMEOUT |
1191 IB_QP_RETRY_CNT |
1192 IB_QP_RNR_RETRY |
1193 IB_QP_MAX_QP_RD_ATOMIC |
1194 IB_QP_MAX_DEST_RD_ATOMIC |
1195 IB_QP_ALT_PATH |
1196 IB_QP_ACCESS_FLAGS |
1197 IB_QP_PKEY_INDEX |
1198 IB_QP_MIN_RNR_TIMER |
1199 IB_QP_PATH_MIG_STATE),
1200 [IB_QPT_XRC_INI] = (IB_QP_PORT |
1201 IB_QP_AV |
1202 IB_QP_TIMEOUT |
1203 IB_QP_RETRY_CNT |
1204 IB_QP_RNR_RETRY |
1205 IB_QP_MAX_QP_RD_ATOMIC |
1206 IB_QP_ALT_PATH |
1207 IB_QP_ACCESS_FLAGS |
1208 IB_QP_PKEY_INDEX |
1209 IB_QP_PATH_MIG_STATE),
1210 [IB_QPT_XRC_TGT] = (IB_QP_PORT |
1211 IB_QP_AV |
1212 IB_QP_TIMEOUT |
1213 IB_QP_MAX_DEST_RD_ATOMIC |
1214 IB_QP_ALT_PATH |
1215 IB_QP_ACCESS_FLAGS |
1216 IB_QP_PKEY_INDEX |
1217 IB_QP_MIN_RNR_TIMER |
1218 IB_QP_PATH_MIG_STATE),
1219 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX |
1220 IB_QP_QKEY),
1221 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX |
1222 IB_QP_QKEY),
1223 }
1224 }
1225 },
1226 [IB_QPS_SQE] = {
1227 [IB_QPS_RESET] = { .valid = 1 },
1228 [IB_QPS_ERR] = { .valid = 1 },
1229 [IB_QPS_RTS] = {
1230 .valid = 1,
1231 .opt_param = {
1232 [IB_QPT_UD] = (IB_QP_CUR_STATE |
1233 IB_QP_QKEY),
1234 [IB_QPT_UC] = (IB_QP_CUR_STATE |
1235 IB_QP_ACCESS_FLAGS),
1236 [IB_QPT_SMI] = (IB_QP_CUR_STATE |
1237 IB_QP_QKEY),
1238 [IB_QPT_GSI] = (IB_QP_CUR_STATE |
1239 IB_QP_QKEY),
1240 }
1241 }
1242 },
1243 [IB_QPS_ERR] = {
1244 [IB_QPS_RESET] = { .valid = 1 },
1245 [IB_QPS_ERR] = { .valid = 1 }
1246 }
1247 };
1248
1249 bool ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
1250 enum ib_qp_type type, enum ib_qp_attr_mask mask)
1251 {
1252 enum ib_qp_attr_mask req_param, opt_param;
1253
1254 if (mask & IB_QP_CUR_STATE &&
1255 cur_state != IB_QPS_RTR && cur_state != IB_QPS_RTS &&
1256 cur_state != IB_QPS_SQD && cur_state != IB_QPS_SQE)
1257 return false;
1258
1259 if (!qp_state_table[cur_state][next_state].valid)
1260 return false;
1261
1262 req_param = qp_state_table[cur_state][next_state].req_param[type];
1263 opt_param = qp_state_table[cur_state][next_state].opt_param[type];
1264
1265 if ((mask & req_param) != req_param)
1266 return false;
1267
1268 if (mask & ~(req_param | opt_param | IB_QP_STATE))
1269 return false;
1270
1271 return true;
1272 }
1273 EXPORT_SYMBOL(ib_modify_qp_is_ok);
1274
1275 int ib_resolve_eth_dmac(struct ib_device *device,
1276 struct ib_ah_attr *ah_attr)
1277 {
1278 struct ib_gid_attr sgid_attr;
1279 union ib_gid sgid;
1280 int hop_limit;
1281 int ret;
1282
1283 if (ah_attr->port_num < rdma_start_port(device) ||
1284 ah_attr->port_num > rdma_end_port(device))
1285 return -EINVAL;
1286
1287 if (!rdma_cap_eth_ah(device, ah_attr->port_num))
1288 return 0;
1289
1290 if (rdma_is_multicast_addr((struct in6_addr *)ah_attr->grh.dgid.raw)) {
1291 if (ipv6_addr_v4mapped((struct in6_addr *)ah_attr->grh.dgid.raw)) {
1292 __be32 addr = 0;
1293
1294 memcpy(&addr, ah_attr->grh.dgid.raw + 12, 4);
1295 ip_eth_mc_map(addr, (char *)ah_attr->dmac);
1296 } else {
1297 ipv6_eth_mc_map((struct in6_addr *)ah_attr->grh.dgid.raw,
1298 (char *)ah_attr->dmac);
1299 }
1300 return 0;
1301 }
1302
1303 ret = ib_query_gid(device,
1304 ah_attr->port_num,
1305 ah_attr->grh.sgid_index,
1306 &sgid, &sgid_attr);
1307 if (ret != 0)
1308 return (ret);
1309 if (!sgid_attr.ndev)
1310 return -ENXIO;
1311
1312 ret = rdma_addr_find_l2_eth_by_grh(&sgid,
1313 &ah_attr->grh.dgid,
1314 ah_attr->dmac,
1315 sgid_attr.ndev, &hop_limit);
1316 dev_put(sgid_attr.ndev);
1317
1318 ah_attr->grh.hop_limit = hop_limit;
1319 return ret;
1320 }
1321 EXPORT_SYMBOL(ib_resolve_eth_dmac);
1322
1323 static bool is_qp_type_connected(const struct ib_qp *qp)
1324 {
1325 return (qp->qp_type == IB_QPT_UC ||
1326 qp->qp_type == IB_QPT_RC ||
1327 qp->qp_type == IB_QPT_XRC_INI ||
1328 qp->qp_type == IB_QPT_XRC_TGT);
1329 }
1330
1331 /**
1332 * IB core internal function to perform QP attributes modification.
1333 */
1334 static int _ib_modify_qp(struct ib_qp *qp, struct ib_qp_attr *attr,
1335 int attr_mask, struct ib_udata *udata)
1336 {
1337 u8 port = attr_mask & IB_QP_PORT ? attr->port_num : qp->port;
1338 int ret;
1339
1340 if (port < rdma_start_port(qp->device) ||
1341 port > rdma_end_port(qp->device))
1342 return -EINVAL;
1343
1344 if (attr_mask & IB_QP_ALT_PATH) {
1345 /*
1346 * Today the core code can only handle alternate paths and APM
1347 * for IB. Ban them in roce mode.
1348 */
1349 if (!(rdma_protocol_ib(qp->device,
1350 attr->alt_ah_attr.port_num) &&
1351 rdma_protocol_ib(qp->device, port))) {
1352 ret = EINVAL;
1353 goto out;
1354 }
1355 }
1356
1357 /*
1358 * If the user provided the qp_attr then we have to resolve it. Kernel
1359 * users have to provide already resolved rdma_ah_attr's
1360 */
1361 if (udata && (attr_mask & IB_QP_AV) &&
1362 rdma_protocol_roce(qp->device, port) &&
1363 is_qp_type_connected(qp)) {
1364 ret = ib_resolve_eth_dmac(qp->device, &attr->ah_attr);
1365 if (ret)
1366 goto out;
1367 }
1368
1369 if (rdma_ib_or_roce(qp->device, port)) {
1370 if (attr_mask & IB_QP_RQ_PSN && attr->rq_psn & ~0xffffff) {
1371 dev_warn(&qp->device->dev,
1372 "%s rq_psn overflow, masking to 24 bits\n",
1373 __func__);
1374 attr->rq_psn &= 0xffffff;
1375 }
1376
1377 if (attr_mask & IB_QP_SQ_PSN && attr->sq_psn & ~0xffffff) {
1378 dev_warn(&qp->device->dev,
1379 " %s sq_psn overflow, masking to 24 bits\n",
1380 __func__);
1381 attr->sq_psn &= 0xffffff;
1382 }
1383 }
1384
1385 ret = qp->device->modify_qp(qp, attr, attr_mask, udata);
1386 if (ret)
1387 goto out;
1388
1389 if (attr_mask & IB_QP_PORT)
1390 qp->port = attr->port_num;
1391 out:
1392 return ret;
1393 }
1394
1395 /**
1396 * ib_modify_qp_with_udata - Modifies the attributes for the specified QP.
1397 * @ib_qp: The QP to modify.
1398 * @attr: On input, specifies the QP attributes to modify. On output,
1399 * the current values of selected QP attributes are returned.
1400 * @attr_mask: A bit-mask used to specify which attributes of the QP
1401 * are being modified.
1402 * @udata: pointer to user's input output buffer information
1403 * are being modified.
1404 * It returns 0 on success and returns appropriate error code on error.
1405 */
1406 int ib_modify_qp_with_udata(struct ib_qp *ib_qp, struct ib_qp_attr *attr,
1407 int attr_mask, struct ib_udata *udata)
1408 {
1409 return _ib_modify_qp(ib_qp->real_qp, attr, attr_mask, udata);
1410 }
1411 EXPORT_SYMBOL(ib_modify_qp_with_udata);
1412
1413 int ib_modify_qp(struct ib_qp *qp,
1414 struct ib_qp_attr *qp_attr,
1415 int qp_attr_mask)
1416 {
1417 if (qp_attr_mask & IB_QP_AV) {
1418 int ret;
1419
1420 ret = ib_resolve_eth_dmac(qp->device, &qp_attr->ah_attr);
1421 if (ret)
1422 return ret;
1423 }
1424
1425 return qp->device->modify_qp(qp->real_qp, qp_attr, qp_attr_mask, NULL);
1426 }
1427 EXPORT_SYMBOL(ib_modify_qp);
1428
1429 int ib_query_qp(struct ib_qp *qp,
1430 struct ib_qp_attr *qp_attr,
1431 int qp_attr_mask,
1432 struct ib_qp_init_attr *qp_init_attr)
1433 {
1434 return qp->device->query_qp ?
1435 qp->device->query_qp(qp->real_qp, qp_attr, qp_attr_mask, qp_init_attr) :
1436 -ENOSYS;
1437 }
1438 EXPORT_SYMBOL(ib_query_qp);
1439
1440 int ib_close_qp(struct ib_qp *qp)
1441 {
1442 struct ib_qp *real_qp;
1443 unsigned long flags;
1444
1445 real_qp = qp->real_qp;
1446 if (real_qp == qp)
1447 return -EINVAL;
1448
1449 spin_lock_irqsave(&real_qp->device->event_handler_lock, flags);
1450 list_del(&qp->open_list);
1451 spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags);
1452
1453 atomic_dec(&real_qp->usecnt);
1454 kfree(qp);
1455
1456 return 0;
1457 }
1458 EXPORT_SYMBOL(ib_close_qp);
1459
1460 static int __ib_destroy_shared_qp(struct ib_qp *qp)
1461 {
1462 struct ib_xrcd *xrcd;
1463 struct ib_qp *real_qp;
1464 int ret;
1465
1466 real_qp = qp->real_qp;
1467 xrcd = real_qp->xrcd;
1468
1469 mutex_lock(&xrcd->tgt_qp_mutex);
1470 ib_close_qp(qp);
1471 if (atomic_read(&real_qp->usecnt) == 0)
1472 list_del(&real_qp->xrcd_list);
1473 else
1474 real_qp = NULL;
1475 mutex_unlock(&xrcd->tgt_qp_mutex);
1476
1477 if (real_qp) {
1478 ret = ib_destroy_qp(real_qp);
1479 if (!ret)
1480 atomic_dec(&xrcd->usecnt);
1481 else
1482 __ib_insert_xrcd_qp(xrcd, real_qp);
1483 }
1484
1485 return 0;
1486 }
1487
1488 int ib_destroy_qp_user(struct ib_qp *qp, struct ib_udata *udata)
1489 {
1490 struct ib_pd *pd;
1491 struct ib_cq *scq, *rcq;
1492 struct ib_srq *srq;
1493 struct ib_rwq_ind_table *ind_tbl;
1494 int ret;
1495
1496 if (atomic_read(&qp->usecnt))
1497 return -EBUSY;
1498
1499 if (qp->real_qp != qp)
1500 return __ib_destroy_shared_qp(qp);
1501
1502 pd = qp->pd;
1503 scq = qp->send_cq;
1504 rcq = qp->recv_cq;
1505 srq = qp->srq;
1506 ind_tbl = qp->rwq_ind_tbl;
1507
1508 ret = qp->device->destroy_qp(qp, udata);
1509 if (!ret) {
1510 if (pd)
1511 atomic_dec(&pd->usecnt);
1512 if (scq)
1513 atomic_dec(&scq->usecnt);
1514 if (rcq)
1515 atomic_dec(&rcq->usecnt);
1516 if (srq)
1517 atomic_dec(&srq->usecnt);
1518 if (ind_tbl)
1519 atomic_dec(&ind_tbl->usecnt);
1520 }
1521
1522 return ret;
1523 }
1524 EXPORT_SYMBOL(ib_destroy_qp_user);
1525
1526 /* Completion queues */
1527
1528 struct ib_cq *__ib_create_cq(struct ib_device *device,
1529 ib_comp_handler comp_handler,
1530 void (*event_handler)(struct ib_event *, void *),
1531 void *cq_context,
1532 const struct ib_cq_init_attr *cq_attr,
1533 const char *caller)
1534 {
1535 struct ib_cq *cq;
1536 int ret;
1537
1538 cq = rdma_zalloc_drv_obj(device, ib_cq);
1539 if (!cq)
1540 return ERR_PTR(-ENOMEM);
1541
1542 cq->device = device;
1543 cq->uobject = NULL;
1544 cq->comp_handler = comp_handler;
1545 cq->event_handler = event_handler;
1546 cq->cq_context = cq_context;
1547 atomic_set(&cq->usecnt, 0);
1548
1549 ret = device->create_cq(cq, cq_attr, NULL);
1550 if (ret) {
1551 kfree(cq);
1552 return ERR_PTR(ret);
1553 }
1554
1555 return cq;
1556 }
1557 EXPORT_SYMBOL(__ib_create_cq);
1558
1559 int ib_modify_cq(struct ib_cq *cq, u16 cq_count, u16 cq_period)
1560 {
1561 return cq->device->modify_cq ?
1562 cq->device->modify_cq(cq, cq_count, cq_period) : -ENOSYS;
1563 }
1564 EXPORT_SYMBOL(ib_modify_cq);
1565
1566 int ib_destroy_cq_user(struct ib_cq *cq, struct ib_udata *udata)
1567 {
1568 if (atomic_read(&cq->usecnt))
1569 return -EBUSY;
1570
1571 cq->device->destroy_cq(cq, udata);
1572 kfree(cq);
1573 return 0;
1574 }
1575 EXPORT_SYMBOL(ib_destroy_cq_user);
1576
1577 int ib_resize_cq(struct ib_cq *cq, int cqe)
1578 {
1579 return cq->device->resize_cq ?
1580 cq->device->resize_cq(cq, cqe, NULL) : -ENOSYS;
1581 }
1582 EXPORT_SYMBOL(ib_resize_cq);
1583
1584 /* Memory regions */
1585
1586 int ib_dereg_mr_user(struct ib_mr *mr, struct ib_udata *udata)
1587 {
1588 struct ib_pd *pd = mr->pd;
1589 struct ib_dm *dm = mr->dm;
1590 struct ib_sig_attrs *sig_attrs = mr->sig_attrs;
1591 int ret;
1592
1593 ret = mr->device->dereg_mr(mr, udata);
1594 if (!ret) {
1595 atomic_dec(&pd->usecnt);
1596 if (dm)
1597 atomic_dec(&dm->usecnt);
1598 kfree(sig_attrs);
1599 }
1600
1601 return ret;
1602 }
1603 EXPORT_SYMBOL(ib_dereg_mr_user);
1604
1605 /**
1606 * ib_alloc_mr_user() - Allocates a memory region
1607 * @pd: protection domain associated with the region
1608 * @mr_type: memory region type
1609 * @max_num_sg: maximum sg entries available for registration.
1610 * @udata: user data or null for kernel objects
1611 *
1612 * Notes:
1613 * Memory registeration page/sg lists must not exceed max_num_sg.
1614 * For mr_type IB_MR_TYPE_MEM_REG, the total length cannot exceed
1615 * max_num_sg * used_page_size.
1616 *
1617 */
1618 struct ib_mr *ib_alloc_mr_user(struct ib_pd *pd, enum ib_mr_type mr_type,
1619 u32 max_num_sg, struct ib_udata *udata)
1620 {
1621 struct ib_mr *mr;
1622
1623 if (!pd->device->alloc_mr) {
1624 mr = ERR_PTR(-EOPNOTSUPP);
1625 goto out;
1626 }
1627
1628 if (mr_type == IB_MR_TYPE_INTEGRITY) {
1629 WARN_ON_ONCE(1);
1630 mr = ERR_PTR(-EINVAL);
1631 goto out;
1632 }
1633
1634 mr = pd->device->alloc_mr(pd, mr_type, max_num_sg, udata);
1635 if (!IS_ERR(mr)) {
1636 mr->device = pd->device;
1637 mr->pd = pd;
1638 mr->dm = NULL;
1639 mr->uobject = NULL;
1640 atomic_inc(&pd->usecnt);
1641 mr->need_inval = false;
1642 mr->type = mr_type;
1643 mr->sig_attrs = NULL;
1644 }
1645
1646 out:
1647 return mr;
1648 }
1649 EXPORT_SYMBOL(ib_alloc_mr_user);
1650
1651 /* "Fast" memory regions */
1652
1653 struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
1654 int mr_access_flags,
1655 struct ib_fmr_attr *fmr_attr)
1656 {
1657 struct ib_fmr *fmr;
1658
1659 if (!pd->device->alloc_fmr)
1660 return ERR_PTR(-ENOSYS);
1661
1662 fmr = pd->device->alloc_fmr(pd, mr_access_flags, fmr_attr);
1663 if (!IS_ERR(fmr)) {
1664 fmr->device = pd->device;
1665 fmr->pd = pd;
1666 atomic_inc(&pd->usecnt);
1667 }
1668
1669 return fmr;
1670 }
1671 EXPORT_SYMBOL(ib_alloc_fmr);
1672
1673 int ib_unmap_fmr(struct list_head *fmr_list)
1674 {
1675 struct ib_fmr *fmr;
1676
1677 if (list_empty(fmr_list))
1678 return 0;
1679
1680 fmr = list_entry(fmr_list->next, struct ib_fmr, list);
1681 return fmr->device->unmap_fmr(fmr_list);
1682 }
1683 EXPORT_SYMBOL(ib_unmap_fmr);
1684
1685 int ib_dealloc_fmr(struct ib_fmr *fmr)
1686 {
1687 struct ib_pd *pd;
1688 int ret;
1689
1690 pd = fmr->pd;
1691 ret = fmr->device->dealloc_fmr(fmr);
1692 if (!ret)
1693 atomic_dec(&pd->usecnt);
1694
1695 return ret;
1696 }
1697 EXPORT_SYMBOL(ib_dealloc_fmr);
1698
1699 /* Multicast groups */
1700
1701 static bool is_valid_mcast_lid(struct ib_qp *qp, u16 lid)
1702 {
1703 struct ib_qp_init_attr init_attr = {};
1704 struct ib_qp_attr attr = {};
1705 int num_eth_ports = 0;
1706 int port;
1707
1708 /* If QP state >= init, it is assigned to a port and we can check this
1709 * port only.
1710 */
1711 if (!ib_query_qp(qp, &attr, IB_QP_STATE | IB_QP_PORT, &init_attr)) {
1712 if (attr.qp_state >= IB_QPS_INIT) {
1713 if (rdma_port_get_link_layer(qp->device, attr.port_num) !=
1714 IB_LINK_LAYER_INFINIBAND)
1715 return true;
1716 goto lid_check;
1717 }
1718 }
1719
1720 /* Can't get a quick answer, iterate over all ports */
1721 for (port = 0; port < qp->device->phys_port_cnt; port++)
1722 if (rdma_port_get_link_layer(qp->device, port) !=
1723 IB_LINK_LAYER_INFINIBAND)
1724 num_eth_ports++;
1725
1726 /* If we have at lease one Ethernet port, RoCE annex declares that
1727 * multicast LID should be ignored. We can't tell at this step if the
1728 * QP belongs to an IB or Ethernet port.
1729 */
1730 if (num_eth_ports)
1731 return true;
1732
1733 /* If all the ports are IB, we can check according to IB spec. */
1734 lid_check:
1735 return !(lid < be16_to_cpu(IB_MULTICAST_LID_BASE) ||
1736 lid == be16_to_cpu(IB_LID_PERMISSIVE));
1737 }
1738
1739 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
1740 {
1741 int ret;
1742
1743 if (!qp->device->attach_mcast)
1744 return -ENOSYS;
1745
1746 if (!rdma_is_multicast_addr((struct in6_addr *)gid->raw) ||
1747 qp->qp_type != IB_QPT_UD || !is_valid_mcast_lid(qp, lid))
1748 return -EINVAL;
1749
1750 ret = qp->device->attach_mcast(qp, gid, lid);
1751 if (!ret)
1752 atomic_inc(&qp->usecnt);
1753 return ret;
1754 }
1755 EXPORT_SYMBOL(ib_attach_mcast);
1756
1757 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
1758 {
1759 int ret;
1760
1761 if (!qp->device->detach_mcast)
1762 return -ENOSYS;
1763
1764 if (!rdma_is_multicast_addr((struct in6_addr *)gid->raw) ||
1765 qp->qp_type != IB_QPT_UD || !is_valid_mcast_lid(qp, lid))
1766 return -EINVAL;
1767
1768 ret = qp->device->detach_mcast(qp, gid, lid);
1769 if (!ret)
1770 atomic_dec(&qp->usecnt);
1771 return ret;
1772 }
1773 EXPORT_SYMBOL(ib_detach_mcast);
1774
1775 struct ib_xrcd *__ib_alloc_xrcd(struct ib_device *device, const char *caller)
1776 {
1777 struct ib_xrcd *xrcd;
1778
1779 if (!device->alloc_xrcd)
1780 return ERR_PTR(-EOPNOTSUPP);
1781
1782 xrcd = device->alloc_xrcd(device, NULL);
1783 if (!IS_ERR(xrcd)) {
1784 xrcd->device = device;
1785 xrcd->inode = NULL;
1786 atomic_set(&xrcd->usecnt, 0);
1787 mutex_init(&xrcd->tgt_qp_mutex);
1788 INIT_LIST_HEAD(&xrcd->tgt_qp_list);
1789 }
1790
1791 return xrcd;
1792 }
1793 EXPORT_SYMBOL(__ib_alloc_xrcd);
1794
1795 int ib_dealloc_xrcd(struct ib_xrcd *xrcd, struct ib_udata *udata)
1796 {
1797 struct ib_qp *qp;
1798 int ret;
1799
1800 if (atomic_read(&xrcd->usecnt))
1801 return -EBUSY;
1802
1803 while (!list_empty(&xrcd->tgt_qp_list)) {
1804 qp = list_entry(xrcd->tgt_qp_list.next, struct ib_qp, xrcd_list);
1805 ret = ib_destroy_qp(qp);
1806 if (ret)
1807 return ret;
1808 }
1809 mutex_destroy(&xrcd->tgt_qp_mutex);
1810
1811 return xrcd->device->dealloc_xrcd(xrcd, udata);
1812 }
1813 EXPORT_SYMBOL(ib_dealloc_xrcd);
1814
1815 /**
1816 * ib_create_wq - Creates a WQ associated with the specified protection
1817 * domain.
1818 * @pd: The protection domain associated with the WQ.
1819 * @wq_init_attr: A list of initial attributes required to create the
1820 * WQ. If WQ creation succeeds, then the attributes are updated to
1821 * the actual capabilities of the created WQ.
1822 *
1823 * wq_init_attr->max_wr and wq_init_attr->max_sge determine
1824 * the requested size of the WQ, and set to the actual values allocated
1825 * on return.
1826 * If ib_create_wq() succeeds, then max_wr and max_sge will always be
1827 * at least as large as the requested values.
1828 */
1829 struct ib_wq *ib_create_wq(struct ib_pd *pd,
1830 struct ib_wq_init_attr *wq_attr)
1831 {
1832 struct ib_wq *wq;
1833
1834 if (!pd->device->create_wq)
1835 return ERR_PTR(-ENOSYS);
1836
1837 wq = pd->device->create_wq(pd, wq_attr, NULL);
1838 if (!IS_ERR(wq)) {
1839 wq->event_handler = wq_attr->event_handler;
1840 wq->wq_context = wq_attr->wq_context;
1841 wq->wq_type = wq_attr->wq_type;
1842 wq->cq = wq_attr->cq;
1843 wq->device = pd->device;
1844 wq->pd = pd;
1845 wq->uobject = NULL;
1846 atomic_inc(&pd->usecnt);
1847 atomic_inc(&wq_attr->cq->usecnt);
1848 atomic_set(&wq->usecnt, 0);
1849 }
1850 return wq;
1851 }
1852 EXPORT_SYMBOL(ib_create_wq);
1853
1854 /**
1855 * ib_destroy_wq - Destroys the specified user WQ.
1856 * @wq: The WQ to destroy.
1857 * @udata: Valid user data
1858 */
1859 int ib_destroy_wq(struct ib_wq *wq, struct ib_udata *udata)
1860 {
1861 struct ib_cq *cq = wq->cq;
1862 struct ib_pd *pd = wq->pd;
1863
1864 if (atomic_read(&wq->usecnt))
1865 return -EBUSY;
1866
1867 wq->device->destroy_wq(wq, udata);
1868 atomic_dec(&pd->usecnt);
1869 atomic_dec(&cq->usecnt);
1870
1871 return 0;
1872 }
1873 EXPORT_SYMBOL(ib_destroy_wq);
1874
1875 /**
1876 * ib_modify_wq - Modifies the specified WQ.
1877 * @wq: The WQ to modify.
1878 * @wq_attr: On input, specifies the WQ attributes to modify.
1879 * @wq_attr_mask: A bit-mask used to specify which attributes of the WQ
1880 * are being modified.
1881 * On output, the current values of selected WQ attributes are returned.
1882 */
1883 int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *wq_attr,
1884 u32 wq_attr_mask)
1885 {
1886 int err;
1887
1888 if (!wq->device->modify_wq)
1889 return -ENOSYS;
1890
1891 err = wq->device->modify_wq(wq, wq_attr, wq_attr_mask, NULL);
1892 return err;
1893 }
1894 EXPORT_SYMBOL(ib_modify_wq);
1895
1896 /*
1897 * ib_create_rwq_ind_table - Creates a RQ Indirection Table.
1898 * @device: The device on which to create the rwq indirection table.
1899 * @ib_rwq_ind_table_init_attr: A list of initial attributes required to
1900 * create the Indirection Table.
1901 *
1902 * Note: The life time of ib_rwq_ind_table_init_attr->ind_tbl is not less
1903 * than the created ib_rwq_ind_table object and the caller is responsible
1904 * for its memory allocation/free.
1905 */
1906 struct ib_rwq_ind_table *ib_create_rwq_ind_table(struct ib_device *device,
1907 struct ib_rwq_ind_table_init_attr *init_attr)
1908 {
1909 struct ib_rwq_ind_table *rwq_ind_table;
1910 int i;
1911 u32 table_size;
1912
1913 if (!device->create_rwq_ind_table)
1914 return ERR_PTR(-ENOSYS);
1915
1916 table_size = (1 << init_attr->log_ind_tbl_size);
1917 rwq_ind_table = device->create_rwq_ind_table(device,
1918 init_attr, NULL);
1919 if (IS_ERR(rwq_ind_table))
1920 return rwq_ind_table;
1921
1922 rwq_ind_table->ind_tbl = init_attr->ind_tbl;
1923 rwq_ind_table->log_ind_tbl_size = init_attr->log_ind_tbl_size;
1924 rwq_ind_table->device = device;
1925 rwq_ind_table->uobject = NULL;
1926 atomic_set(&rwq_ind_table->usecnt, 0);
1927
1928 for (i = 0; i < table_size; i++)
1929 atomic_inc(&rwq_ind_table->ind_tbl[i]->usecnt);
1930
1931 return rwq_ind_table;
1932 }
1933 EXPORT_SYMBOL(ib_create_rwq_ind_table);
1934
1935 /*
1936 * ib_destroy_rwq_ind_table - Destroys the specified Indirection Table.
1937 * @wq_ind_table: The Indirection Table to destroy.
1938 */
1939 int ib_destroy_rwq_ind_table(struct ib_rwq_ind_table *rwq_ind_table)
1940 {
1941 int err, i;
1942 u32 table_size = (1 << rwq_ind_table->log_ind_tbl_size);
1943 struct ib_wq **ind_tbl = rwq_ind_table->ind_tbl;
1944
1945 if (atomic_read(&rwq_ind_table->usecnt))
1946 return -EBUSY;
1947
1948 err = rwq_ind_table->device->destroy_rwq_ind_table(rwq_ind_table);
1949 if (!err) {
1950 for (i = 0; i < table_size; i++)
1951 atomic_dec(&ind_tbl[i]->usecnt);
1952 }
1953
1954 return err;
1955 }
1956 EXPORT_SYMBOL(ib_destroy_rwq_ind_table);
1957
1958 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
1959 struct ib_mr_status *mr_status)
1960 {
1961 return mr->device->check_mr_status ?
1962 mr->device->check_mr_status(mr, check_mask, mr_status) : -ENOSYS;
1963 }
1964 EXPORT_SYMBOL(ib_check_mr_status);
1965
1966 int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port,
1967 int state)
1968 {
1969 if (!device->set_vf_link_state)
1970 return -ENOSYS;
1971
1972 return device->set_vf_link_state(device, vf, port, state);
1973 }
1974 EXPORT_SYMBOL(ib_set_vf_link_state);
1975
1976 int ib_get_vf_config(struct ib_device *device, int vf, u8 port,
1977 struct ifla_vf_info *info)
1978 {
1979 if (!device->get_vf_config)
1980 return -ENOSYS;
1981
1982 return device->get_vf_config(device, vf, port, info);
1983 }
1984 EXPORT_SYMBOL(ib_get_vf_config);
1985
1986 int ib_get_vf_stats(struct ib_device *device, int vf, u8 port,
1987 struct ifla_vf_stats *stats)
1988 {
1989 if (!device->get_vf_stats)
1990 return -ENOSYS;
1991
1992 return device->get_vf_stats(device, vf, port, stats);
1993 }
1994 EXPORT_SYMBOL(ib_get_vf_stats);
1995
1996 int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid,
1997 int type)
1998 {
1999 if (!device->set_vf_guid)
2000 return -ENOSYS;
2001
2002 return device->set_vf_guid(device, vf, port, guid, type);
2003 }
2004 EXPORT_SYMBOL(ib_set_vf_guid);
2005
2006 /**
2007 * ib_map_mr_sg() - Map the largest prefix of a dma mapped SG list
2008 * and set it the memory region.
2009 * @mr: memory region
2010 * @sg: dma mapped scatterlist
2011 * @sg_nents: number of entries in sg
2012 * @sg_offset: offset in bytes into sg
2013 * @page_size: page vector desired page size
2014 *
2015 * Constraints:
2016 * - The first sg element is allowed to have an offset.
2017 * - Each sg element must either be aligned to page_size or virtually
2018 * contiguous to the previous element. In case an sg element has a
2019 * non-contiguous offset, the mapping prefix will not include it.
2020 * - The last sg element is allowed to have length less than page_size.
2021 * - If sg_nents total byte length exceeds the mr max_num_sge * page_size
2022 * then only max_num_sg entries will be mapped.
2023 * - If the MR was allocated with type IB_MR_TYPE_SG_GAPS, none of these
2024 * constraints holds and the page_size argument is ignored.
2025 *
2026 * Returns the number of sg elements that were mapped to the memory region.
2027 *
2028 * After this completes successfully, the memory region
2029 * is ready for registration.
2030 */
2031 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
2032 unsigned int *sg_offset, unsigned int page_size)
2033 {
2034 if (unlikely(!mr->device->map_mr_sg))
2035 return -ENOSYS;
2036
2037 mr->page_size = page_size;
2038
2039 return mr->device->map_mr_sg(mr, sg, sg_nents, sg_offset);
2040 }
2041 EXPORT_SYMBOL(ib_map_mr_sg);
2042
2043 /**
2044 * ib_sg_to_pages() - Convert the largest prefix of a sg list
2045 * to a page vector
2046 * @mr: memory region
2047 * @sgl: dma mapped scatterlist
2048 * @sg_nents: number of entries in sg
2049 * @sg_offset_p: IN: start offset in bytes into sg
2050 * OUT: offset in bytes for element n of the sg of the first
2051 * byte that has not been processed where n is the return
2052 * value of this function.
2053 * @set_page: driver page assignment function pointer
2054 *
2055 * Core service helper for drivers to convert the largest
2056 * prefix of given sg list to a page vector. The sg list
2057 * prefix converted is the prefix that meet the requirements
2058 * of ib_map_mr_sg.
2059 *
2060 * Returns the number of sg elements that were assigned to
2061 * a page vector.
2062 */
2063 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
2064 unsigned int *sg_offset_p, int (*set_page)(struct ib_mr *, u64))
2065 {
2066 struct scatterlist *sg;
2067 u64 last_end_dma_addr = 0;
2068 unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0;
2069 unsigned int last_page_off = 0;
2070 u64 page_mask = ~((u64)mr->page_size - 1);
2071 int i, ret;
2072
2073 if (unlikely(sg_nents <= 0 || sg_offset > sg_dma_len(&sgl[0])))
2074 return -EINVAL;
2075
2076 mr->iova = sg_dma_address(&sgl[0]) + sg_offset;
2077 mr->length = 0;
2078
2079 for_each_sg(sgl, sg, sg_nents, i) {
2080 u64 dma_addr = sg_dma_address(sg) + sg_offset;
2081 u64 prev_addr = dma_addr;
2082 unsigned int dma_len = sg_dma_len(sg) - sg_offset;
2083 u64 end_dma_addr = dma_addr + dma_len;
2084 u64 page_addr = dma_addr & page_mask;
2085
2086 /*
2087 * For the second and later elements, check whether either the
2088 * end of element i-1 or the start of element i is not aligned
2089 * on a page boundary.
2090 */
2091 if (i && (last_page_off != 0 || page_addr != dma_addr)) {
2092 /* Stop mapping if there is a gap. */
2093 if (last_end_dma_addr != dma_addr)
2094 break;
2095
2096 /*
2097 * Coalesce this element with the last. If it is small
2098 * enough just update mr->length. Otherwise start
2099 * mapping from the next page.
2100 */
2101 goto next_page;
2102 }
2103
2104 do {
2105 ret = set_page(mr, page_addr);
2106 if (unlikely(ret < 0)) {
2107 sg_offset = prev_addr - sg_dma_address(sg);
2108 mr->length += prev_addr - dma_addr;
2109 if (sg_offset_p)
2110 *sg_offset_p = sg_offset;
2111 return i || sg_offset ? i : ret;
2112 }
2113 prev_addr = page_addr;
2114 next_page:
2115 page_addr += mr->page_size;
2116 } while (page_addr < end_dma_addr);
2117
2118 mr->length += dma_len;
2119 last_end_dma_addr = end_dma_addr;
2120 last_page_off = end_dma_addr & ~page_mask;
2121
2122 sg_offset = 0;
2123 }
2124
2125 if (sg_offset_p)
2126 *sg_offset_p = 0;
2127 return i;
2128 }
2129 EXPORT_SYMBOL(ib_sg_to_pages);
2130
2131 struct ib_drain_cqe {
2132 struct ib_cqe cqe;
2133 struct completion done;
2134 };
2135
2136 static void ib_drain_qp_done(struct ib_cq *cq, struct ib_wc *wc)
2137 {
2138 struct ib_drain_cqe *cqe = container_of(wc->wr_cqe, struct ib_drain_cqe,
2139 cqe);
2140
2141 complete(&cqe->done);
2142 }
2143
2144 /*
2145 * Post a WR and block until its completion is reaped for the SQ.
2146 */
2147 static void __ib_drain_sq(struct ib_qp *qp)
2148 {
2149 struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
2150 struct ib_drain_cqe sdrain;
2151 const struct ib_send_wr *bad_swr;
2152 struct ib_rdma_wr swr = {
2153 .wr = {
2154 .opcode = IB_WR_RDMA_WRITE,
2155 .wr_cqe = &sdrain.cqe,
2156 },
2157 };
2158 int ret;
2159
2160 if (qp->send_cq->poll_ctx == IB_POLL_DIRECT) {
2161 WARN_ONCE(qp->send_cq->poll_ctx == IB_POLL_DIRECT,
2162 "IB_POLL_DIRECT poll_ctx not supported for drain\n");
2163 return;
2164 }
2165
2166 sdrain.cqe.done = ib_drain_qp_done;
2167 init_completion(&sdrain.done);
2168
2169 ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
2170 if (ret) {
2171 WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
2172 return;
2173 }
2174
2175 ret = ib_post_send(qp, &swr.wr, &bad_swr);
2176 if (ret) {
2177 WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
2178 return;
2179 }
2180
2181 wait_for_completion(&sdrain.done);
2182 }
2183
2184 /*
2185 * Post a WR and block until its completion is reaped for the RQ.
2186 */
2187 static void __ib_drain_rq(struct ib_qp *qp)
2188 {
2189 struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
2190 struct ib_drain_cqe rdrain;
2191 struct ib_recv_wr rwr = {};
2192 const struct ib_recv_wr *bad_rwr;
2193 int ret;
2194
2195 if (qp->recv_cq->poll_ctx == IB_POLL_DIRECT) {
2196 WARN_ONCE(qp->recv_cq->poll_ctx == IB_POLL_DIRECT,
2197 "IB_POLL_DIRECT poll_ctx not supported for drain\n");
2198 return;
2199 }
2200
2201 rwr.wr_cqe = &rdrain.cqe;
2202 rdrain.cqe.done = ib_drain_qp_done;
2203 init_completion(&rdrain.done);
2204
2205 ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
2206 if (ret) {
2207 WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
2208 return;
2209 }
2210
2211 ret = ib_post_recv(qp, &rwr, &bad_rwr);
2212 if (ret) {
2213 WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
2214 return;
2215 }
2216
2217 wait_for_completion(&rdrain.done);
2218 }
2219
2220 /**
2221 * ib_drain_sq() - Block until all SQ CQEs have been consumed by the
2222 * application.
2223 * @qp: queue pair to drain
2224 *
2225 * If the device has a provider-specific drain function, then
2226 * call that. Otherwise call the generic drain function
2227 * __ib_drain_sq().
2228 *
2229 * The caller must:
2230 *
2231 * ensure there is room in the CQ and SQ for the drain work request and
2232 * completion.
2233 *
2234 * allocate the CQ using ib_alloc_cq() and the CQ poll context cannot be
2235 * IB_POLL_DIRECT.
2236 *
2237 * ensure that there are no other contexts that are posting WRs concurrently.
2238 * Otherwise the drain is not guaranteed.
2239 */
2240 void ib_drain_sq(struct ib_qp *qp)
2241 {
2242 if (qp->device->drain_sq)
2243 qp->device->drain_sq(qp);
2244 else
2245 __ib_drain_sq(qp);
2246 }
2247 EXPORT_SYMBOL(ib_drain_sq);
2248
2249 /**
2250 * ib_drain_rq() - Block until all RQ CQEs have been consumed by the
2251 * application.
2252 * @qp: queue pair to drain
2253 *
2254 * If the device has a provider-specific drain function, then
2255 * call that. Otherwise call the generic drain function
2256 * __ib_drain_rq().
2257 *
2258 * The caller must:
2259 *
2260 * ensure there is room in the CQ and RQ for the drain work request and
2261 * completion.
2262 *
2263 * allocate the CQ using ib_alloc_cq() and the CQ poll context cannot be
2264 * IB_POLL_DIRECT.
2265 *
2266 * ensure that there are no other contexts that are posting WRs concurrently.
2267 * Otherwise the drain is not guaranteed.
2268 */
2269 void ib_drain_rq(struct ib_qp *qp)
2270 {
2271 if (qp->device->drain_rq)
2272 qp->device->drain_rq(qp);
2273 else
2274 __ib_drain_rq(qp);
2275 }
2276 EXPORT_SYMBOL(ib_drain_rq);
2277
2278 /**
2279 * ib_drain_qp() - Block until all CQEs have been consumed by the
2280 * application on both the RQ and SQ.
2281 * @qp: queue pair to drain
2282 *
2283 * The caller must:
2284 *
2285 * ensure there is room in the CQ(s), SQ, and RQ for drain work requests
2286 * and completions.
2287 *
2288 * allocate the CQs using ib_alloc_cq() and the CQ poll context cannot be
2289 * IB_POLL_DIRECT.
2290 *
2291 * ensure that there are no other contexts that are posting WRs concurrently.
2292 * Otherwise the drain is not guaranteed.
2293 */
2294 void ib_drain_qp(struct ib_qp *qp)
2295 {
2296 ib_drain_sq(qp);
2297 if (!qp->srq)
2298 ib_drain_rq(qp);
2299 }
2300 EXPORT_SYMBOL(ib_drain_qp);
Cache object: eebcd69e041cb93406d7d726a28476e4
|