1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause OR GPL-2.0
3 *
4 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved.
5 * Copyright (c) 2004 Infinicon Corporation. All rights reserved.
6 * Copyright (c) 2004 Intel Corporation. All rights reserved.
7 * Copyright (c) 2004 Topspin Corporation. All rights reserved.
8 * Copyright (c) 2004 Voltaire Corporation. All rights reserved.
9 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
10 * Copyright (c) 2005, 2006, 2007 Cisco Systems. All rights reserved.
11 *
12 * This software is available to you under a choice of one of two
13 * licenses. You may choose to be licensed under the terms of the GNU
14 * General Public License (GPL) Version 2, available from the file
15 * COPYING in the main directory of this source tree, or the
16 * OpenIB.org BSD license below:
17 *
18 * Redistribution and use in source and binary forms, with or
19 * without modification, are permitted provided that the following
20 * conditions are met:
21 *
22 * - Redistributions of source code must retain the above
23 * copyright notice, this list of conditions and the following
24 * disclaimer.
25 *
26 * - Redistributions in binary form must reproduce the above
27 * copyright notice, this list of conditions and the following
28 * disclaimer in the documentation and/or other materials
29 * provided with the distribution.
30 *
31 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
32 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
33 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
34 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
35 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
36 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
37 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
38 * SOFTWARE.
39 *
40 * $FreeBSD$
41 */
42
43 #if !defined(IB_VERBS_H)
44 #define IB_VERBS_H
45
46 #include <linux/types.h>
47 #include <linux/device.h>
48 #include <linux/mm.h>
49 #include <linux/dma-mapping.h>
50 #include <linux/kref.h>
51 #include <linux/list.h>
52 #include <linux/rwsem.h>
53 #include <linux/scatterlist.h>
54 #include <linux/workqueue.h>
55 #include <linux/socket.h>
56 #include <linux/if_ether.h>
57 #include <net/ipv6.h>
58 #include <net/ip.h>
59 #include <linux/string.h>
60 #include <linux/slab.h>
61 #include <linux/rcupdate.h>
62 #include <linux/netdevice.h>
63 #include <linux/xarray.h>
64 #include <netinet/ip.h>
65 #include <uapi/rdma/ib_user_verbs.h>
66 #include <rdma/signature.h>
67 #include <uapi/rdma/rdma_user_ioctl.h>
68 #include <uapi/rdma/ib_user_ioctl_verbs.h>
69
70 #include <asm/atomic.h>
71 #include <asm/uaccess.h>
72
73 struct ib_uqp_object;
74 struct ib_usrq_object;
75 struct ib_uwq_object;
76 struct ifla_vf_info;
77 struct ifla_vf_stats;
78 struct ib_uverbs_file;
79 struct uverbs_attr_bundle;
80
81 enum ib_uverbs_advise_mr_advice;
82
83 extern struct workqueue_struct *ib_wq;
84 extern struct workqueue_struct *ib_comp_wq;
85
86 struct ib_ucq_object;
87
88 union ib_gid {
89 u8 raw[16];
90 struct {
91 __be64 subnet_prefix;
92 __be64 interface_id;
93 } global;
94 };
95
96 extern union ib_gid zgid;
97
98 enum ib_gid_type {
99 /* If link layer is Ethernet, this is RoCE V1 */
100 IB_GID_TYPE_IB = 0,
101 IB_GID_TYPE_ROCE = 0,
102 IB_GID_TYPE_ROCE_UDP_ENCAP = 1,
103 IB_GID_TYPE_SIZE
104 };
105
106 #define ROCE_V2_UDP_DPORT 4791
107 struct ib_gid_attr {
108 enum ib_gid_type gid_type;
109 struct ifnet *ndev;
110 };
111
112 enum rdma_node_type {
113 /* IB values map to NodeInfo:NodeType. */
114 RDMA_NODE_IB_CA = 1,
115 RDMA_NODE_IB_SWITCH,
116 RDMA_NODE_IB_ROUTER,
117 RDMA_NODE_RNIC,
118 RDMA_NODE_USNIC,
119 RDMA_NODE_USNIC_UDP,
120 };
121
122 enum {
123 /* set the local administered indication */
124 IB_SA_WELL_KNOWN_GUID = BIT_ULL(57) | 2,
125 };
126
127 enum rdma_transport_type {
128 RDMA_TRANSPORT_IB,
129 RDMA_TRANSPORT_IWARP,
130 RDMA_TRANSPORT_USNIC,
131 RDMA_TRANSPORT_USNIC_UDP
132 };
133
134 enum rdma_protocol_type {
135 RDMA_PROTOCOL_IB,
136 RDMA_PROTOCOL_IBOE,
137 RDMA_PROTOCOL_IWARP,
138 RDMA_PROTOCOL_USNIC_UDP
139 };
140
141 __attribute_const__ enum rdma_transport_type
142 rdma_node_get_transport(enum rdma_node_type node_type);
143
144 enum rdma_network_type {
145 RDMA_NETWORK_IB,
146 RDMA_NETWORK_ROCE_V1 = RDMA_NETWORK_IB,
147 RDMA_NETWORK_IPV4,
148 RDMA_NETWORK_IPV6
149 };
150
151 static inline enum ib_gid_type ib_network_to_gid_type(enum rdma_network_type network_type)
152 {
153 if (network_type == RDMA_NETWORK_IPV4 ||
154 network_type == RDMA_NETWORK_IPV6)
155 return IB_GID_TYPE_ROCE_UDP_ENCAP;
156
157 /* IB_GID_TYPE_IB same as RDMA_NETWORK_ROCE_V1 */
158 return IB_GID_TYPE_IB;
159 }
160
161 static inline enum rdma_network_type ib_gid_to_network_type(enum ib_gid_type gid_type,
162 union ib_gid *gid)
163 {
164 if (gid_type == IB_GID_TYPE_IB)
165 return RDMA_NETWORK_IB;
166
167 if (ipv6_addr_v4mapped((struct in6_addr *)gid))
168 return RDMA_NETWORK_IPV4;
169 else
170 return RDMA_NETWORK_IPV6;
171 }
172
173 enum rdma_link_layer {
174 IB_LINK_LAYER_UNSPECIFIED,
175 IB_LINK_LAYER_INFINIBAND,
176 IB_LINK_LAYER_ETHERNET,
177 };
178
179 enum ib_device_cap_flags {
180 IB_DEVICE_RESIZE_MAX_WR = (1 << 0),
181 IB_DEVICE_BAD_PKEY_CNTR = (1 << 1),
182 IB_DEVICE_BAD_QKEY_CNTR = (1 << 2),
183 IB_DEVICE_RAW_MULTI = (1 << 3),
184 IB_DEVICE_AUTO_PATH_MIG = (1 << 4),
185 IB_DEVICE_CHANGE_PHY_PORT = (1 << 5),
186 IB_DEVICE_UD_AV_PORT_ENFORCE = (1 << 6),
187 IB_DEVICE_CURR_QP_STATE_MOD = (1 << 7),
188 IB_DEVICE_SHUTDOWN_PORT = (1 << 8),
189 IB_DEVICE_INIT_TYPE = (1 << 9),
190 IB_DEVICE_PORT_ACTIVE_EVENT = (1 << 10),
191 IB_DEVICE_SYS_IMAGE_GUID = (1 << 11),
192 IB_DEVICE_RC_RNR_NAK_GEN = (1 << 12),
193 IB_DEVICE_SRQ_RESIZE = (1 << 13),
194 IB_DEVICE_N_NOTIFY_CQ = (1 << 14),
195
196 /*
197 * This device supports a per-device lkey or stag that can be
198 * used without performing a memory registration for the local
199 * memory. Note that ULPs should never check this flag, but
200 * instead of use the local_dma_lkey flag in the ib_pd structure,
201 * which will always contain a usable lkey.
202 */
203 IB_DEVICE_LOCAL_DMA_LKEY = (1 << 15),
204 IB_DEVICE_RESERVED /* old SEND_W_INV */ = (1 << 16),
205 IB_DEVICE_MEM_WINDOW = (1 << 17),
206 /*
207 * Devices should set IB_DEVICE_UD_IP_SUM if they support
208 * insertion of UDP and TCP checksum on outgoing UD IPoIB
209 * messages and can verify the validity of checksum for
210 * incoming messages. Setting this flag implies that the
211 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode.
212 */
213 IB_DEVICE_UD_IP_CSUM = (1 << 18),
214 IB_DEVICE_UD_TSO = (1 << 19),
215 IB_DEVICE_XRC = (1 << 20),
216
217 /*
218 * This device supports the IB "base memory management extension",
219 * which includes support for fast registrations (IB_WR_REG_MR,
220 * IB_WR_LOCAL_INV and IB_WR_SEND_WITH_INV verbs). This flag should
221 * also be set by any iWarp device which must support FRs to comply
222 * to the iWarp verbs spec. iWarp devices also support the
223 * IB_WR_RDMA_READ_WITH_INV verb for RDMA READs that invalidate the
224 * stag.
225 */
226 IB_DEVICE_MEM_MGT_EXTENSIONS = (1 << 21),
227 IB_DEVICE_BLOCK_MULTICAST_LOOPBACK = (1 << 22),
228 IB_DEVICE_MEM_WINDOW_TYPE_2A = (1 << 23),
229 IB_DEVICE_MEM_WINDOW_TYPE_2B = (1 << 24),
230 IB_DEVICE_RC_IP_CSUM = (1 << 25),
231 IB_DEVICE_RAW_IP_CSUM = (1 << 26),
232 /*
233 * Devices should set IB_DEVICE_CROSS_CHANNEL if they
234 * support execution of WQEs that involve synchronization
235 * of I/O operations with single completion queue managed
236 * by hardware.
237 */
238 IB_DEVICE_CROSS_CHANNEL = (1 << 27),
239 IB_DEVICE_MANAGED_FLOW_STEERING = (1 << 29),
240 IB_DEVICE_SIGNATURE_HANDOVER = (1 << 30),
241 IB_DEVICE_ON_DEMAND_PAGING = (1ULL << 31),
242 IB_DEVICE_SG_GAPS_REG = (1ULL << 32),
243 IB_DEVICE_VIRTUAL_FUNCTION = (1ULL << 33),
244 IB_DEVICE_RAW_SCATTER_FCS = (1ULL << 34),
245 };
246
247 enum ib_atomic_cap {
248 IB_ATOMIC_NONE,
249 IB_ATOMIC_HCA,
250 IB_ATOMIC_GLOB
251 };
252
253 enum ib_odp_general_cap_bits {
254 IB_ODP_SUPPORT = 1 << 0,
255 };
256
257 enum ib_odp_transport_cap_bits {
258 IB_ODP_SUPPORT_SEND = 1 << 0,
259 IB_ODP_SUPPORT_RECV = 1 << 1,
260 IB_ODP_SUPPORT_WRITE = 1 << 2,
261 IB_ODP_SUPPORT_READ = 1 << 3,
262 IB_ODP_SUPPORT_ATOMIC = 1 << 4,
263 };
264
265 struct ib_odp_caps {
266 uint64_t general_caps;
267 struct {
268 uint32_t rc_odp_caps;
269 uint32_t uc_odp_caps;
270 uint32_t ud_odp_caps;
271 uint32_t xrc_odp_caps;
272 } per_transport_caps;
273 };
274
275 struct ib_rss_caps {
276 /* Corresponding bit will be set if qp type from
277 * 'enum ib_qp_type' is supported, e.g.
278 * supported_qpts |= 1 << IB_QPT_UD
279 */
280 u32 supported_qpts;
281 u32 max_rwq_indirection_tables;
282 u32 max_rwq_indirection_table_size;
283 };
284
285 enum ib_tm_cap_flags {
286 /* Support tag matching with rendezvous offload for RC transport */
287 IB_TM_CAP_RNDV_RC = 1 << 0,
288 };
289
290 struct ib_tm_caps {
291 /* Max size of RNDV header */
292 u32 max_rndv_hdr_size;
293 /* Max number of entries in tag matching list */
294 u32 max_num_tags;
295 /* From enum ib_tm_cap_flags */
296 u32 flags;
297 /* Max number of outstanding list operations */
298 u32 max_ops;
299 /* Max number of SGE in tag matching entry */
300 u32 max_sge;
301 };
302
303 enum ib_cq_creation_flags {
304 IB_CQ_FLAGS_TIMESTAMP_COMPLETION = 1 << 0,
305 IB_CQ_FLAGS_IGNORE_OVERRUN = 1 << 1,
306 };
307
308 struct ib_cq_init_attr {
309 unsigned int cqe;
310 u32 comp_vector;
311 u32 flags;
312 };
313
314 enum ib_cq_attr_mask {
315 IB_CQ_MODERATE = 1 << 0,
316 };
317
318 struct ib_cq_caps {
319 u16 max_cq_moderation_count;
320 u16 max_cq_moderation_period;
321 };
322
323 struct ib_dm_mr_attr {
324 u64 length;
325 u64 offset;
326 u32 access_flags;
327 };
328
329 struct ib_dm_alloc_attr {
330 u64 length;
331 u32 alignment;
332 u32 flags;
333 };
334
335 struct ib_device_attr {
336 u64 fw_ver;
337 __be64 sys_image_guid;
338 u64 max_mr_size;
339 u64 page_size_cap;
340 u32 vendor_id;
341 u32 vendor_part_id;
342 u32 hw_ver;
343 int max_qp;
344 int max_qp_wr;
345 u64 device_cap_flags;
346 int max_sge;
347 int max_sge_rd;
348 int max_cq;
349 int max_cqe;
350 int max_mr;
351 int max_pd;
352 int max_qp_rd_atom;
353 int max_ee_rd_atom;
354 int max_res_rd_atom;
355 int max_qp_init_rd_atom;
356 int max_ee_init_rd_atom;
357 enum ib_atomic_cap atomic_cap;
358 enum ib_atomic_cap masked_atomic_cap;
359 int max_ee;
360 int max_rdd;
361 int max_mw;
362 int max_raw_ipv6_qp;
363 int max_raw_ethy_qp;
364 int max_mcast_grp;
365 int max_mcast_qp_attach;
366 int max_total_mcast_qp_attach;
367 int max_ah;
368 int max_fmr;
369 int max_map_per_fmr;
370 int max_srq;
371 int max_srq_wr;
372 union {
373 int max_srq_sge;
374 int max_send_sge;
375 int max_recv_sge;
376 };
377 unsigned int max_fast_reg_page_list_len;
378 u16 max_pkeys;
379 u8 local_ca_ack_delay;
380 int sig_prot_cap;
381 int sig_guard_cap;
382 struct ib_odp_caps odp_caps;
383 uint64_t timestamp_mask;
384 uint64_t hca_core_clock; /* in KHZ */
385 struct ib_rss_caps rss_caps;
386 u32 max_wq_type_rq;
387 u32 raw_packet_caps; /* Use ib_raw_packet_caps enum */
388 struct ib_tm_caps tm_caps;
389 struct ib_cq_caps cq_caps;
390 u64 max_dm_size;
391 /* Max entries for sgl for optimized performance per READ */
392 u32 max_sgl_rd;
393 };
394
395 enum ib_mtu {
396 IB_MTU_256 = 1,
397 IB_MTU_512 = 2,
398 IB_MTU_1024 = 3,
399 IB_MTU_2048 = 4,
400 IB_MTU_4096 = 5
401 };
402
403 static inline int ib_mtu_enum_to_int(enum ib_mtu mtu)
404 {
405 switch (mtu) {
406 case IB_MTU_256: return 256;
407 case IB_MTU_512: return 512;
408 case IB_MTU_1024: return 1024;
409 case IB_MTU_2048: return 2048;
410 case IB_MTU_4096: return 4096;
411 default: return -1;
412 }
413 }
414
415 enum ib_port_state {
416 IB_PORT_NOP = 0,
417 IB_PORT_DOWN = 1,
418 IB_PORT_INIT = 2,
419 IB_PORT_ARMED = 3,
420 IB_PORT_ACTIVE = 4,
421 IB_PORT_ACTIVE_DEFER = 5,
422 IB_PORT_DUMMY = -1, /* force enum signed */
423 };
424
425 enum ib_port_cap_flags {
426 IB_PORT_SM = 1 << 1,
427 IB_PORT_NOTICE_SUP = 1 << 2,
428 IB_PORT_TRAP_SUP = 1 << 3,
429 IB_PORT_OPT_IPD_SUP = 1 << 4,
430 IB_PORT_AUTO_MIGR_SUP = 1 << 5,
431 IB_PORT_SL_MAP_SUP = 1 << 6,
432 IB_PORT_MKEY_NVRAM = 1 << 7,
433 IB_PORT_PKEY_NVRAM = 1 << 8,
434 IB_PORT_LED_INFO_SUP = 1 << 9,
435 IB_PORT_SM_DISABLED = 1 << 10,
436 IB_PORT_SYS_IMAGE_GUID_SUP = 1 << 11,
437 IB_PORT_PKEY_SW_EXT_PORT_TRAP_SUP = 1 << 12,
438 IB_PORT_EXTENDED_SPEEDS_SUP = 1 << 14,
439 IB_PORT_CM_SUP = 1 << 16,
440 IB_PORT_SNMP_TUNNEL_SUP = 1 << 17,
441 IB_PORT_REINIT_SUP = 1 << 18,
442 IB_PORT_DEVICE_MGMT_SUP = 1 << 19,
443 IB_PORT_VENDOR_CLASS_SUP = 1 << 20,
444 IB_PORT_DR_NOTICE_SUP = 1 << 21,
445 IB_PORT_CAP_MASK_NOTICE_SUP = 1 << 22,
446 IB_PORT_BOOT_MGMT_SUP = 1 << 23,
447 IB_PORT_LINK_LATENCY_SUP = 1 << 24,
448 IB_PORT_CLIENT_REG_SUP = 1 << 25,
449 IB_PORT_IP_BASED_GIDS = 1 << 26,
450 };
451
452 enum ib_port_phys_state {
453 IB_PORT_PHYS_STATE_SLEEP = 1,
454 IB_PORT_PHYS_STATE_POLLING = 2,
455 IB_PORT_PHYS_STATE_DISABLED = 3,
456 IB_PORT_PHYS_STATE_PORT_CONFIGURATION_TRAINING = 4,
457 IB_PORT_PHYS_STATE_LINK_UP = 5,
458 IB_PORT_PHYS_STATE_LINK_ERROR_RECOVERY = 6,
459 IB_PORT_PHYS_STATE_PHY_TEST = 7,
460 };
461
462 enum ib_port_width {
463 IB_WIDTH_1X = 1,
464 IB_WIDTH_2X = 16,
465 IB_WIDTH_4X = 2,
466 IB_WIDTH_8X = 4,
467 IB_WIDTH_12X = 8
468 };
469
470 static inline int ib_width_enum_to_int(enum ib_port_width width)
471 {
472 switch (width) {
473 case IB_WIDTH_1X: return 1;
474 case IB_WIDTH_2X: return 2;
475 case IB_WIDTH_4X: return 4;
476 case IB_WIDTH_8X: return 8;
477 case IB_WIDTH_12X: return 12;
478 default: return -1;
479 }
480 }
481
482 enum ib_port_speed {
483 IB_SPEED_SDR = 1,
484 IB_SPEED_DDR = 2,
485 IB_SPEED_QDR = 4,
486 IB_SPEED_FDR10 = 8,
487 IB_SPEED_FDR = 16,
488 IB_SPEED_EDR = 32,
489 IB_SPEED_HDR = 64,
490 IB_SPEED_NDR = 128
491 };
492
493 /**
494 * struct rdma_hw_stats
495 * @lock - Mutex to protect parallel write access to lifespan and values
496 * of counters, which are 64bits and not guaranteeed to be written
497 * atomicaly on 32bits systems.
498 * @timestamp - Used by the core code to track when the last update was
499 * @lifespan - Used by the core code to determine how old the counters
500 * should be before being updated again. Stored in jiffies, defaults
501 * to 10 milliseconds, drivers can override the default be specifying
502 * their own value during their allocation routine.
503 * @name - Array of pointers to static names used for the counters in
504 * directory.
505 * @num_counters - How many hardware counters there are. If name is
506 * shorter than this number, a kernel oops will result. Driver authors
507 * are encouraged to leave BUILD_BUG_ON(ARRAY_SIZE(@name) < num_counters)
508 * in their code to prevent this.
509 * @value - Array of u64 counters that are accessed by the sysfs code and
510 * filled in by the drivers get_stats routine
511 */
512 struct rdma_hw_stats {
513 struct mutex lock; /* Protect lifespan and values[] */
514 unsigned long timestamp;
515 unsigned long lifespan;
516 const char * const *names;
517 int num_counters;
518 u64 value[];
519 };
520
521 #define RDMA_HW_STATS_DEFAULT_LIFESPAN 10
522 /**
523 * rdma_alloc_hw_stats_struct - Helper function to allocate dynamic struct
524 * for drivers.
525 * @names - Array of static const char *
526 * @num_counters - How many elements in array
527 * @lifespan - How many milliseconds between updates
528 */
529 static inline struct rdma_hw_stats *rdma_alloc_hw_stats_struct(
530 const char * const *names, int num_counters,
531 unsigned long lifespan)
532 {
533 struct rdma_hw_stats *stats;
534
535 stats = kzalloc(sizeof(*stats) + num_counters * sizeof(u64),
536 GFP_KERNEL);
537 if (!stats)
538 return NULL;
539 stats->names = names;
540 stats->num_counters = num_counters;
541 stats->lifespan = msecs_to_jiffies(lifespan);
542
543 return stats;
544 }
545
546
547 /* Define bits for the various functionality this port needs to be supported by
548 * the core.
549 */
550 /* Management 0x00000FFF */
551 #define RDMA_CORE_CAP_IB_MAD 0x00000001
552 #define RDMA_CORE_CAP_IB_SMI 0x00000002
553 #define RDMA_CORE_CAP_IB_CM 0x00000004
554 #define RDMA_CORE_CAP_IW_CM 0x00000008
555 #define RDMA_CORE_CAP_IB_SA 0x00000010
556 #define RDMA_CORE_CAP_OPA_MAD 0x00000020
557
558 /* Address format 0x000FF000 */
559 #define RDMA_CORE_CAP_AF_IB 0x00001000
560 #define RDMA_CORE_CAP_ETH_AH 0x00002000
561
562 /* Protocol 0xFFF00000 */
563 #define RDMA_CORE_CAP_PROT_IB 0x00100000
564 #define RDMA_CORE_CAP_PROT_ROCE 0x00200000
565 #define RDMA_CORE_CAP_PROT_IWARP 0x00400000
566 #define RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP 0x00800000
567
568 #define RDMA_CORE_PORT_IBA_IB (RDMA_CORE_CAP_PROT_IB \
569 | RDMA_CORE_CAP_IB_MAD \
570 | RDMA_CORE_CAP_IB_SMI \
571 | RDMA_CORE_CAP_IB_CM \
572 | RDMA_CORE_CAP_IB_SA \
573 | RDMA_CORE_CAP_AF_IB)
574 #define RDMA_CORE_PORT_IBA_ROCE (RDMA_CORE_CAP_PROT_ROCE \
575 | RDMA_CORE_CAP_IB_MAD \
576 | RDMA_CORE_CAP_IB_CM \
577 | RDMA_CORE_CAP_AF_IB \
578 | RDMA_CORE_CAP_ETH_AH)
579 #define RDMA_CORE_PORT_IBA_ROCE_UDP_ENCAP \
580 (RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP \
581 | RDMA_CORE_CAP_IB_MAD \
582 | RDMA_CORE_CAP_IB_CM \
583 | RDMA_CORE_CAP_AF_IB \
584 | RDMA_CORE_CAP_ETH_AH)
585 #define RDMA_CORE_PORT_IWARP (RDMA_CORE_CAP_PROT_IWARP \
586 | RDMA_CORE_CAP_IW_CM)
587 #define RDMA_CORE_PORT_INTEL_OPA (RDMA_CORE_PORT_IBA_IB \
588 | RDMA_CORE_CAP_OPA_MAD)
589
590 struct ib_port_attr {
591 u64 subnet_prefix;
592 enum ib_port_state state;
593 enum ib_mtu max_mtu;
594 enum ib_mtu active_mtu;
595 int gid_tbl_len;
596 unsigned int ip_gids:1;
597 /* This is the value from PortInfo CapabilityMask, defined by IBA */
598 u32 port_cap_flags;
599 u32 max_msg_sz;
600 u32 bad_pkey_cntr;
601 u32 qkey_viol_cntr;
602 u16 pkey_tbl_len;
603 u16 lid;
604 u16 sm_lid;
605 u8 lmc;
606 u8 max_vl_num;
607 u8 sm_sl;
608 u8 subnet_timeout;
609 u8 init_type_reply;
610 u8 active_width;
611 u8 active_speed;
612 u8 phys_state;
613 bool grh_required;
614 };
615
616 enum ib_device_modify_flags {
617 IB_DEVICE_MODIFY_SYS_IMAGE_GUID = 1 << 0,
618 IB_DEVICE_MODIFY_NODE_DESC = 1 << 1
619 };
620
621 #define IB_DEVICE_NODE_DESC_MAX 64
622
623 struct ib_device_modify {
624 u64 sys_image_guid;
625 char node_desc[IB_DEVICE_NODE_DESC_MAX];
626 };
627
628 enum ib_port_modify_flags {
629 IB_PORT_SHUTDOWN = 1,
630 IB_PORT_INIT_TYPE = (1<<2),
631 IB_PORT_RESET_QKEY_CNTR = (1<<3)
632 };
633
634 struct ib_port_modify {
635 u32 set_port_cap_mask;
636 u32 clr_port_cap_mask;
637 u8 init_type;
638 };
639
640 enum ib_event_type {
641 IB_EVENT_CQ_ERR,
642 IB_EVENT_QP_FATAL,
643 IB_EVENT_QP_REQ_ERR,
644 IB_EVENT_QP_ACCESS_ERR,
645 IB_EVENT_COMM_EST,
646 IB_EVENT_SQ_DRAINED,
647 IB_EVENT_PATH_MIG,
648 IB_EVENT_PATH_MIG_ERR,
649 IB_EVENT_DEVICE_FATAL,
650 IB_EVENT_PORT_ACTIVE,
651 IB_EVENT_PORT_ERR,
652 IB_EVENT_LID_CHANGE,
653 IB_EVENT_PKEY_CHANGE,
654 IB_EVENT_SM_CHANGE,
655 IB_EVENT_SRQ_ERR,
656 IB_EVENT_SRQ_LIMIT_REACHED,
657 IB_EVENT_QP_LAST_WQE_REACHED,
658 IB_EVENT_CLIENT_REREGISTER,
659 IB_EVENT_GID_CHANGE,
660 IB_EVENT_WQ_FATAL,
661 };
662
663 const char *__attribute_const__ ib_event_msg(enum ib_event_type event);
664
665 struct ib_event {
666 struct ib_device *device;
667 union {
668 struct ib_cq *cq;
669 struct ib_qp *qp;
670 struct ib_srq *srq;
671 struct ib_wq *wq;
672 u8 port_num;
673 } element;
674 enum ib_event_type event;
675 };
676
677 struct ib_event_handler {
678 struct ib_device *device;
679 void (*handler)(struct ib_event_handler *, struct ib_event *);
680 struct list_head list;
681 };
682
683 #define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler) \
684 do { \
685 (_ptr)->device = _device; \
686 (_ptr)->handler = _handler; \
687 INIT_LIST_HEAD(&(_ptr)->list); \
688 } while (0)
689
690 struct ib_global_route {
691 union ib_gid dgid;
692 u32 flow_label;
693 u8 sgid_index;
694 u8 hop_limit;
695 u8 traffic_class;
696 };
697
698 struct ib_grh {
699 __be32 version_tclass_flow;
700 __be16 paylen;
701 u8 next_hdr;
702 u8 hop_limit;
703 union ib_gid sgid;
704 union ib_gid dgid;
705 };
706
707 union rdma_network_hdr {
708 struct ib_grh ibgrh;
709 struct {
710 /* The IB spec states that if it's IPv4, the header
711 * is located in the last 20 bytes of the header.
712 */
713 u8 reserved[20];
714 struct ip roce4grh;
715 };
716 };
717
718 enum {
719 IB_MULTICAST_QPN = 0xffffff
720 };
721
722 #define IB_LID_PERMISSIVE cpu_to_be16(0xFFFF)
723 #define IB_MULTICAST_LID_BASE cpu_to_be16(0xC000)
724
725 enum ib_ah_flags {
726 IB_AH_GRH = 1
727 };
728
729 enum ib_rate {
730 IB_RATE_PORT_CURRENT = 0,
731 IB_RATE_2_5_GBPS = 2,
732 IB_RATE_5_GBPS = 5,
733 IB_RATE_10_GBPS = 3,
734 IB_RATE_20_GBPS = 6,
735 IB_RATE_30_GBPS = 4,
736 IB_RATE_40_GBPS = 7,
737 IB_RATE_60_GBPS = 8,
738 IB_RATE_80_GBPS = 9,
739 IB_RATE_120_GBPS = 10,
740 IB_RATE_14_GBPS = 11,
741 IB_RATE_56_GBPS = 12,
742 IB_RATE_112_GBPS = 13,
743 IB_RATE_168_GBPS = 14,
744 IB_RATE_25_GBPS = 15,
745 IB_RATE_100_GBPS = 16,
746 IB_RATE_200_GBPS = 17,
747 IB_RATE_300_GBPS = 18,
748 IB_RATE_28_GBPS = 19,
749 IB_RATE_50_GBPS = 20,
750 IB_RATE_400_GBPS = 21,
751 IB_RATE_600_GBPS = 22,
752 };
753
754 /**
755 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the
756 * base rate of 2.5 Gbit/sec. For example, IB_RATE_5_GBPS will be
757 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec.
758 * @rate: rate to convert.
759 */
760 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate);
761
762 /**
763 * ib_rate_to_mbps - Convert the IB rate enum to Mbps.
764 * For example, IB_RATE_2_5_GBPS will be converted to 2500.
765 * @rate: rate to convert.
766 */
767 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate);
768
769
770 /**
771 * enum ib_mr_type - memory region type
772 * @IB_MR_TYPE_MEM_REG: memory region that is used for
773 * normal registration
774 * @IB_MR_TYPE_SG_GAPS: memory region that is capable to
775 * register any arbitrary sg lists (without
776 * the normal mr constraints - see
777 * ib_map_mr_sg)
778 * @IB_MR_TYPE_DM: memory region that is used for device
779 * memory registration
780 * @IB_MR_TYPE_USER: memory region that is used for the user-space
781 * application
782 * @IB_MR_TYPE_DMA: memory region that is used for DMA operations
783 * without address translations (VA=PA)
784 * @IB_MR_TYPE_INTEGRITY: memory region that is used for
785 * data integrity operations
786 */
787 enum ib_mr_type {
788 IB_MR_TYPE_MEM_REG,
789 IB_MR_TYPE_SG_GAPS,
790 IB_MR_TYPE_DM,
791 IB_MR_TYPE_USER,
792 IB_MR_TYPE_DMA,
793 IB_MR_TYPE_INTEGRITY,
794 };
795
796 enum ib_mr_status_check {
797 IB_MR_CHECK_SIG_STATUS = 1,
798 };
799
800 /**
801 * struct ib_mr_status - Memory region status container
802 *
803 * @fail_status: Bitmask of MR checks status. For each
804 * failed check a corresponding status bit is set.
805 * @sig_err: Additional info for IB_MR_CEHCK_SIG_STATUS
806 * failure.
807 */
808 struct ib_mr_status {
809 u32 fail_status;
810 struct ib_sig_err sig_err;
811 };
812
813 /**
814 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate
815 * enum.
816 * @mult: multiple to convert.
817 */
818 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult);
819
820 struct ib_ah_attr {
821 struct ib_global_route grh;
822 u16 dlid;
823 u8 sl;
824 u8 src_path_bits;
825 u8 static_rate;
826 u8 ah_flags;
827 u8 port_num;
828 u8 dmac[ETH_ALEN];
829 };
830
831 enum ib_wc_status {
832 IB_WC_SUCCESS,
833 IB_WC_LOC_LEN_ERR,
834 IB_WC_LOC_QP_OP_ERR,
835 IB_WC_LOC_EEC_OP_ERR,
836 IB_WC_LOC_PROT_ERR,
837 IB_WC_WR_FLUSH_ERR,
838 IB_WC_MW_BIND_ERR,
839 IB_WC_BAD_RESP_ERR,
840 IB_WC_LOC_ACCESS_ERR,
841 IB_WC_REM_INV_REQ_ERR,
842 IB_WC_REM_ACCESS_ERR,
843 IB_WC_REM_OP_ERR,
844 IB_WC_RETRY_EXC_ERR,
845 IB_WC_RNR_RETRY_EXC_ERR,
846 IB_WC_LOC_RDD_VIOL_ERR,
847 IB_WC_REM_INV_RD_REQ_ERR,
848 IB_WC_REM_ABORT_ERR,
849 IB_WC_INV_EECN_ERR,
850 IB_WC_INV_EEC_STATE_ERR,
851 IB_WC_FATAL_ERR,
852 IB_WC_RESP_TIMEOUT_ERR,
853 IB_WC_GENERAL_ERR
854 };
855
856 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status);
857
858 enum ib_wc_opcode {
859 IB_WC_SEND,
860 IB_WC_RDMA_WRITE,
861 IB_WC_RDMA_READ,
862 IB_WC_COMP_SWAP,
863 IB_WC_FETCH_ADD,
864 IB_WC_LSO,
865 IB_WC_LOCAL_INV,
866 IB_WC_REG_MR,
867 IB_WC_MASKED_COMP_SWAP,
868 IB_WC_MASKED_FETCH_ADD,
869 /*
870 * Set value of IB_WC_RECV so consumers can test if a completion is a
871 * receive by testing (opcode & IB_WC_RECV).
872 */
873 IB_WC_RECV = 1 << 7,
874 IB_WC_RECV_RDMA_WITH_IMM,
875 IB_WC_DUMMY = -1, /* force enum signed */
876 };
877
878 enum ib_wc_flags {
879 IB_WC_GRH = 1,
880 IB_WC_WITH_IMM = (1<<1),
881 IB_WC_WITH_INVALIDATE = (1<<2),
882 IB_WC_IP_CSUM_OK = (1<<3),
883 IB_WC_WITH_SMAC = (1<<4),
884 IB_WC_WITH_VLAN = (1<<5),
885 IB_WC_WITH_NETWORK_HDR_TYPE = (1<<6),
886 };
887
888 struct ib_wc {
889 union {
890 u64 wr_id;
891 struct ib_cqe *wr_cqe;
892 };
893 enum ib_wc_status status;
894 enum ib_wc_opcode opcode;
895 u32 vendor_err;
896 u32 byte_len;
897 struct ib_qp *qp;
898 union {
899 __be32 imm_data;
900 u32 invalidate_rkey;
901 } ex;
902 u32 src_qp;
903 int wc_flags;
904 u16 pkey_index;
905 u16 slid;
906 u8 sl;
907 u8 dlid_path_bits;
908 u8 port_num; /* valid only for DR SMPs on switches */
909 u8 smac[ETH_ALEN];
910 u16 vlan_id;
911 u8 network_hdr_type;
912 };
913
914 enum ib_cq_notify_flags {
915 IB_CQ_SOLICITED = 1 << 0,
916 IB_CQ_NEXT_COMP = 1 << 1,
917 IB_CQ_SOLICITED_MASK = IB_CQ_SOLICITED | IB_CQ_NEXT_COMP,
918 IB_CQ_REPORT_MISSED_EVENTS = 1 << 2,
919 };
920
921 enum ib_srq_type {
922 IB_SRQT_BASIC,
923 IB_SRQT_XRC,
924 IB_SRQT_TM,
925 };
926
927 static inline bool ib_srq_has_cq(enum ib_srq_type srq_type)
928 {
929 return srq_type == IB_SRQT_XRC ||
930 srq_type == IB_SRQT_TM;
931 }
932
933 enum ib_srq_attr_mask {
934 IB_SRQ_MAX_WR = 1 << 0,
935 IB_SRQ_LIMIT = 1 << 1,
936 };
937
938 struct ib_srq_attr {
939 u32 max_wr;
940 u32 max_sge;
941 u32 srq_limit;
942 };
943
944 struct ib_srq_init_attr {
945 void (*event_handler)(struct ib_event *, void *);
946 void *srq_context;
947 struct ib_srq_attr attr;
948 enum ib_srq_type srq_type;
949
950 struct {
951 struct ib_cq *cq;
952 union {
953 struct {
954 struct ib_xrcd *xrcd;
955 } xrc;
956
957 struct {
958 u32 max_num_tags;
959 } tag_matching;
960 };
961 } ext;
962 };
963
964 struct ib_qp_cap {
965 u32 max_send_wr;
966 u32 max_recv_wr;
967 u32 max_send_sge;
968 u32 max_recv_sge;
969 u32 max_inline_data;
970
971 /*
972 * Maximum number of rdma_rw_ctx structures in flight at a time.
973 * ib_create_qp() will calculate the right amount of neededed WRs
974 * and MRs based on this.
975 */
976 u32 max_rdma_ctxs;
977 };
978
979 enum ib_sig_type {
980 IB_SIGNAL_ALL_WR,
981 IB_SIGNAL_REQ_WR
982 };
983
984 enum ib_qp_type {
985 /*
986 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries
987 * here (and in that order) since the MAD layer uses them as
988 * indices into a 2-entry table.
989 */
990 IB_QPT_SMI,
991 IB_QPT_GSI,
992
993 IB_QPT_RC,
994 IB_QPT_UC,
995 IB_QPT_UD,
996 IB_QPT_RAW_IPV6,
997 IB_QPT_RAW_ETHERTYPE,
998 IB_QPT_RAW_PACKET = 8,
999 IB_QPT_XRC_INI = 9,
1000 IB_QPT_XRC_TGT,
1001 IB_QPT_MAX,
1002 IB_QPT_DRIVER = 0xFF,
1003 /* Reserve a range for qp types internal to the low level driver.
1004 * These qp types will not be visible at the IB core layer, so the
1005 * IB_QPT_MAX usages should not be affected in the core layer
1006 */
1007 IB_QPT_RESERVED1 = 0x1000,
1008 IB_QPT_RESERVED2,
1009 IB_QPT_RESERVED3,
1010 IB_QPT_RESERVED4,
1011 IB_QPT_RESERVED5,
1012 IB_QPT_RESERVED6,
1013 IB_QPT_RESERVED7,
1014 IB_QPT_RESERVED8,
1015 IB_QPT_RESERVED9,
1016 IB_QPT_RESERVED10,
1017 };
1018
1019 enum ib_qp_create_flags {
1020 IB_QP_CREATE_IPOIB_UD_LSO = 1 << 0,
1021 IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK = 1 << 1,
1022 IB_QP_CREATE_CROSS_CHANNEL = 1 << 2,
1023 IB_QP_CREATE_MANAGED_SEND = 1 << 3,
1024 IB_QP_CREATE_MANAGED_RECV = 1 << 4,
1025 IB_QP_CREATE_NETIF_QP = 1 << 5,
1026 IB_QP_CREATE_SIGNATURE_EN = 1 << 6,
1027 IB_QP_CREATE_USE_GFP_NOIO = 1 << 7,
1028 IB_QP_CREATE_SCATTER_FCS = 1 << 8,
1029 IB_QP_CREATE_CVLAN_STRIPPING = 1 << 9,
1030 IB_QP_CREATE_SOURCE_QPN = 1 << 10,
1031 IB_QP_CREATE_PCI_WRITE_END_PADDING = 1 << 11,
1032 /* reserve bits 26-31 for low level drivers' internal use */
1033 IB_QP_CREATE_RESERVED_START = 1 << 26,
1034 IB_QP_CREATE_RESERVED_END = 1 << 31,
1035 };
1036
1037 /*
1038 * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler
1039 * callback to destroy the passed in QP.
1040 */
1041
1042 struct ib_qp_init_attr {
1043 void (*event_handler)(struct ib_event *, void *);
1044 void *qp_context;
1045 struct ib_cq *send_cq;
1046 struct ib_cq *recv_cq;
1047 struct ib_srq *srq;
1048 struct ib_xrcd *xrcd; /* XRC TGT QPs only */
1049 struct ib_qp_cap cap;
1050 enum ib_sig_type sq_sig_type;
1051 enum ib_qp_type qp_type;
1052 enum ib_qp_create_flags create_flags;
1053
1054 /*
1055 * Only needed for special QP types, or when using the RW API.
1056 */
1057 u8 port_num;
1058 struct ib_rwq_ind_table *rwq_ind_tbl;
1059 u32 source_qpn;
1060 };
1061
1062 struct ib_qp_open_attr {
1063 void (*event_handler)(struct ib_event *, void *);
1064 void *qp_context;
1065 u32 qp_num;
1066 enum ib_qp_type qp_type;
1067 };
1068
1069 enum ib_rnr_timeout {
1070 IB_RNR_TIMER_655_36 = 0,
1071 IB_RNR_TIMER_000_01 = 1,
1072 IB_RNR_TIMER_000_02 = 2,
1073 IB_RNR_TIMER_000_03 = 3,
1074 IB_RNR_TIMER_000_04 = 4,
1075 IB_RNR_TIMER_000_06 = 5,
1076 IB_RNR_TIMER_000_08 = 6,
1077 IB_RNR_TIMER_000_12 = 7,
1078 IB_RNR_TIMER_000_16 = 8,
1079 IB_RNR_TIMER_000_24 = 9,
1080 IB_RNR_TIMER_000_32 = 10,
1081 IB_RNR_TIMER_000_48 = 11,
1082 IB_RNR_TIMER_000_64 = 12,
1083 IB_RNR_TIMER_000_96 = 13,
1084 IB_RNR_TIMER_001_28 = 14,
1085 IB_RNR_TIMER_001_92 = 15,
1086 IB_RNR_TIMER_002_56 = 16,
1087 IB_RNR_TIMER_003_84 = 17,
1088 IB_RNR_TIMER_005_12 = 18,
1089 IB_RNR_TIMER_007_68 = 19,
1090 IB_RNR_TIMER_010_24 = 20,
1091 IB_RNR_TIMER_015_36 = 21,
1092 IB_RNR_TIMER_020_48 = 22,
1093 IB_RNR_TIMER_030_72 = 23,
1094 IB_RNR_TIMER_040_96 = 24,
1095 IB_RNR_TIMER_061_44 = 25,
1096 IB_RNR_TIMER_081_92 = 26,
1097 IB_RNR_TIMER_122_88 = 27,
1098 IB_RNR_TIMER_163_84 = 28,
1099 IB_RNR_TIMER_245_76 = 29,
1100 IB_RNR_TIMER_327_68 = 30,
1101 IB_RNR_TIMER_491_52 = 31
1102 };
1103
1104 enum ib_qp_attr_mask {
1105 IB_QP_STATE = 1,
1106 IB_QP_CUR_STATE = (1<<1),
1107 IB_QP_EN_SQD_ASYNC_NOTIFY = (1<<2),
1108 IB_QP_ACCESS_FLAGS = (1<<3),
1109 IB_QP_PKEY_INDEX = (1<<4),
1110 IB_QP_PORT = (1<<5),
1111 IB_QP_QKEY = (1<<6),
1112 IB_QP_AV = (1<<7),
1113 IB_QP_PATH_MTU = (1<<8),
1114 IB_QP_TIMEOUT = (1<<9),
1115 IB_QP_RETRY_CNT = (1<<10),
1116 IB_QP_RNR_RETRY = (1<<11),
1117 IB_QP_RQ_PSN = (1<<12),
1118 IB_QP_MAX_QP_RD_ATOMIC = (1<<13),
1119 IB_QP_ALT_PATH = (1<<14),
1120 IB_QP_MIN_RNR_TIMER = (1<<15),
1121 IB_QP_SQ_PSN = (1<<16),
1122 IB_QP_MAX_DEST_RD_ATOMIC = (1<<17),
1123 IB_QP_PATH_MIG_STATE = (1<<18),
1124 IB_QP_CAP = (1<<19),
1125 IB_QP_DEST_QPN = (1<<20),
1126 IB_QP_RESERVED1 = (1<<21),
1127 IB_QP_RESERVED2 = (1<<22),
1128 IB_QP_RESERVED3 = (1<<23),
1129 IB_QP_RESERVED4 = (1<<24),
1130 IB_QP_RATE_LIMIT = (1<<25),
1131 };
1132
1133 enum ib_qp_state {
1134 IB_QPS_RESET,
1135 IB_QPS_INIT,
1136 IB_QPS_RTR,
1137 IB_QPS_RTS,
1138 IB_QPS_SQD,
1139 IB_QPS_SQE,
1140 IB_QPS_ERR,
1141 IB_QPS_DUMMY = -1, /* force enum signed */
1142 };
1143
1144 enum ib_mig_state {
1145 IB_MIG_MIGRATED,
1146 IB_MIG_REARM,
1147 IB_MIG_ARMED
1148 };
1149
1150 enum ib_mw_type {
1151 IB_MW_TYPE_1 = 1,
1152 IB_MW_TYPE_2 = 2
1153 };
1154
1155 struct ib_qp_attr {
1156 enum ib_qp_state qp_state;
1157 enum ib_qp_state cur_qp_state;
1158 enum ib_mtu path_mtu;
1159 enum ib_mig_state path_mig_state;
1160 u32 qkey;
1161 u32 rq_psn;
1162 u32 sq_psn;
1163 u32 dest_qp_num;
1164 int qp_access_flags;
1165 struct ib_qp_cap cap;
1166 struct ib_ah_attr ah_attr;
1167 struct ib_ah_attr alt_ah_attr;
1168 u16 pkey_index;
1169 u16 alt_pkey_index;
1170 u8 en_sqd_async_notify;
1171 u8 sq_draining;
1172 u8 max_rd_atomic;
1173 u8 max_dest_rd_atomic;
1174 u8 min_rnr_timer;
1175 u8 port_num;
1176 u8 timeout;
1177 u8 retry_cnt;
1178 u8 rnr_retry;
1179 u8 alt_port_num;
1180 u8 alt_timeout;
1181 u32 rate_limit;
1182 };
1183
1184 enum ib_wr_opcode {
1185 IB_WR_RDMA_WRITE,
1186 IB_WR_RDMA_WRITE_WITH_IMM,
1187 IB_WR_SEND,
1188 IB_WR_SEND_WITH_IMM,
1189 IB_WR_RDMA_READ,
1190 IB_WR_ATOMIC_CMP_AND_SWP,
1191 IB_WR_ATOMIC_FETCH_AND_ADD,
1192 IB_WR_LSO,
1193 IB_WR_SEND_WITH_INV,
1194 IB_WR_RDMA_READ_WITH_INV,
1195 IB_WR_LOCAL_INV,
1196 IB_WR_REG_MR,
1197 IB_WR_MASKED_ATOMIC_CMP_AND_SWP,
1198 IB_WR_MASKED_ATOMIC_FETCH_AND_ADD,
1199 IB_WR_REG_SIG_MR,
1200 /* reserve values for low level drivers' internal use.
1201 * These values will not be used at all in the ib core layer.
1202 */
1203 IB_WR_RESERVED1 = 0xf0,
1204 IB_WR_RESERVED2,
1205 IB_WR_RESERVED3,
1206 IB_WR_RESERVED4,
1207 IB_WR_RESERVED5,
1208 IB_WR_RESERVED6,
1209 IB_WR_RESERVED7,
1210 IB_WR_RESERVED8,
1211 IB_WR_RESERVED9,
1212 IB_WR_RESERVED10,
1213 IB_WR_DUMMY = -1, /* force enum signed */
1214 };
1215
1216 enum ib_send_flags {
1217 IB_SEND_FENCE = 1,
1218 IB_SEND_SIGNALED = (1<<1),
1219 IB_SEND_SOLICITED = (1<<2),
1220 IB_SEND_INLINE = (1<<3),
1221 IB_SEND_IP_CSUM = (1<<4),
1222
1223 /* reserve bits 26-31 for low level drivers' internal use */
1224 IB_SEND_RESERVED_START = (1 << 26),
1225 IB_SEND_RESERVED_END = (1 << 31),
1226 };
1227
1228 struct ib_sge {
1229 u64 addr;
1230 u32 length;
1231 u32 lkey;
1232 };
1233
1234 struct ib_cqe {
1235 void (*done)(struct ib_cq *cq, struct ib_wc *wc);
1236 };
1237
1238 struct ib_send_wr {
1239 struct ib_send_wr *next;
1240 union {
1241 u64 wr_id;
1242 struct ib_cqe *wr_cqe;
1243 };
1244 struct ib_sge *sg_list;
1245 int num_sge;
1246 enum ib_wr_opcode opcode;
1247 int send_flags;
1248 union {
1249 __be32 imm_data;
1250 u32 invalidate_rkey;
1251 } ex;
1252 };
1253
1254 struct ib_rdma_wr {
1255 struct ib_send_wr wr;
1256 u64 remote_addr;
1257 u32 rkey;
1258 };
1259
1260 static inline const struct ib_rdma_wr *rdma_wr(const struct ib_send_wr *wr)
1261 {
1262 return container_of(wr, struct ib_rdma_wr, wr);
1263 }
1264
1265 struct ib_atomic_wr {
1266 struct ib_send_wr wr;
1267 u64 remote_addr;
1268 u64 compare_add;
1269 u64 swap;
1270 u64 compare_add_mask;
1271 u64 swap_mask;
1272 u32 rkey;
1273 };
1274
1275 static inline const struct ib_atomic_wr *atomic_wr(const struct ib_send_wr *wr)
1276 {
1277 return container_of(wr, struct ib_atomic_wr, wr);
1278 }
1279
1280 struct ib_ud_wr {
1281 struct ib_send_wr wr;
1282 struct ib_ah *ah;
1283 void *header;
1284 int hlen;
1285 int mss;
1286 u32 remote_qpn;
1287 u32 remote_qkey;
1288 u16 pkey_index; /* valid for GSI only */
1289 u8 port_num; /* valid for DR SMPs on switch only */
1290 };
1291
1292 static inline const struct ib_ud_wr *ud_wr(const struct ib_send_wr *wr)
1293 {
1294 return container_of(wr, struct ib_ud_wr, wr);
1295 }
1296
1297 struct ib_reg_wr {
1298 struct ib_send_wr wr;
1299 struct ib_mr *mr;
1300 u32 key;
1301 int access;
1302 };
1303
1304 static inline const struct ib_reg_wr *reg_wr(const struct ib_send_wr *wr)
1305 {
1306 return container_of(wr, struct ib_reg_wr, wr);
1307 }
1308
1309 struct ib_sig_handover_wr {
1310 struct ib_send_wr wr;
1311 struct ib_sig_attrs *sig_attrs;
1312 struct ib_mr *sig_mr;
1313 int access_flags;
1314 struct ib_sge *prot;
1315 };
1316
1317 static inline const struct ib_sig_handover_wr *sig_handover_wr(const struct ib_send_wr *wr)
1318 {
1319 return container_of(wr, struct ib_sig_handover_wr, wr);
1320 }
1321
1322 struct ib_recv_wr {
1323 struct ib_recv_wr *next;
1324 union {
1325 u64 wr_id;
1326 struct ib_cqe *wr_cqe;
1327 };
1328 struct ib_sge *sg_list;
1329 int num_sge;
1330 };
1331
1332 enum ib_access_flags {
1333 IB_ACCESS_LOCAL_WRITE = IB_UVERBS_ACCESS_LOCAL_WRITE,
1334 IB_ACCESS_REMOTE_WRITE = IB_UVERBS_ACCESS_REMOTE_WRITE,
1335 IB_ACCESS_REMOTE_READ = IB_UVERBS_ACCESS_REMOTE_READ,
1336 IB_ACCESS_REMOTE_ATOMIC = IB_UVERBS_ACCESS_REMOTE_ATOMIC,
1337 IB_ACCESS_MW_BIND = IB_UVERBS_ACCESS_MW_BIND,
1338 IB_ZERO_BASED = IB_UVERBS_ACCESS_ZERO_BASED,
1339 IB_ACCESS_ON_DEMAND = IB_UVERBS_ACCESS_ON_DEMAND,
1340 IB_ACCESS_HUGETLB = IB_UVERBS_ACCESS_HUGETLB,
1341 IB_ACCESS_RELAXED_ORDERING = IB_UVERBS_ACCESS_RELAXED_ORDERING,
1342
1343 IB_ACCESS_OPTIONAL = IB_UVERBS_ACCESS_OPTIONAL_RANGE,
1344 IB_ACCESS_SUPPORTED =
1345 ((IB_ACCESS_HUGETLB << 1) - 1) | IB_ACCESS_OPTIONAL,
1346 };
1347
1348 /*
1349 * XXX: these are apparently used for ->rereg_user_mr, no idea why they
1350 * are hidden here instead of a uapi header!
1351 */
1352 enum ib_mr_rereg_flags {
1353 IB_MR_REREG_TRANS = 1,
1354 IB_MR_REREG_PD = (1<<1),
1355 IB_MR_REREG_ACCESS = (1<<2),
1356 IB_MR_REREG_SUPPORTED = ((IB_MR_REREG_ACCESS << 1) - 1)
1357 };
1358
1359 struct ib_fmr_attr {
1360 int max_pages;
1361 int max_maps;
1362 u8 page_shift;
1363 };
1364
1365 struct ib_umem;
1366
1367 enum rdma_remove_reason {
1368 /*
1369 * Userspace requested uobject deletion or initial try
1370 * to remove uobject via cleanup. Call could fail
1371 */
1372 RDMA_REMOVE_DESTROY,
1373 /* Context deletion. This call should delete the actual object itself */
1374 RDMA_REMOVE_CLOSE,
1375 /* Driver is being hot-unplugged. This call should delete the actual object itself */
1376 RDMA_REMOVE_DRIVER_REMOVE,
1377 /* uobj is being cleaned-up before being committed */
1378 RDMA_REMOVE_ABORT,
1379 };
1380
1381 struct ib_rdmacg_object {
1382 };
1383
1384 struct ib_ucontext {
1385 struct ib_device *device;
1386 struct ib_uverbs_file *ufile;
1387 /*
1388 * 'closing' can be read by the driver only during a destroy callback,
1389 * it is set when we are closing the file descriptor and indicates
1390 * that mm_sem may be locked.
1391 */
1392 bool closing;
1393
1394 bool cleanup_retryable;
1395
1396 struct ib_rdmacg_object cg_obj;
1397 /*
1398 * Implementation details of the RDMA core, don't use in drivers:
1399 */
1400 struct xarray mmap_xa;
1401 };
1402
1403 struct ib_uobject {
1404 u64 user_handle; /* handle given to us by userspace */
1405 /* ufile & ucontext owning this object */
1406 struct ib_uverbs_file *ufile;
1407 /* FIXME, save memory: ufile->context == context */
1408 struct ib_ucontext *context; /* associated user context */
1409 void *object; /* containing object */
1410 struct list_head list; /* link to context's list */
1411 struct ib_rdmacg_object cg_obj; /* rdmacg object */
1412 int id; /* index into kernel idr */
1413 struct kref ref;
1414 atomic_t usecnt; /* protects exclusive access */
1415 struct rcu_head rcu; /* kfree_rcu() overhead */
1416
1417 const struct uverbs_api_object *uapi_object;
1418 };
1419
1420 struct ib_udata {
1421 const u8 __user *inbuf;
1422 u8 __user *outbuf;
1423 size_t inlen;
1424 size_t outlen;
1425 };
1426
1427 struct ib_pd {
1428 u32 local_dma_lkey;
1429 u32 flags;
1430 struct ib_device *device;
1431 struct ib_uobject *uobject;
1432 atomic_t usecnt; /* count all resources */
1433
1434 u32 unsafe_global_rkey;
1435
1436 /*
1437 * Implementation details of the RDMA core, don't use in drivers:
1438 */
1439 struct ib_mr *__internal_mr;
1440 };
1441
1442 struct ib_xrcd {
1443 struct ib_device *device;
1444 atomic_t usecnt; /* count all exposed resources */
1445 struct inode *inode;
1446
1447 struct mutex tgt_qp_mutex;
1448 struct list_head tgt_qp_list;
1449 };
1450
1451 struct ib_ah {
1452 struct ib_device *device;
1453 struct ib_pd *pd;
1454 struct ib_uobject *uobject;
1455 };
1456
1457 typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context);
1458
1459 enum ib_poll_context {
1460 IB_POLL_DIRECT, /* caller context, no hw completions */
1461 IB_POLL_SOFTIRQ, /* poll from softirq context */
1462 IB_POLL_WORKQUEUE, /* poll from workqueue */
1463 };
1464
1465 struct ib_cq {
1466 struct ib_device *device;
1467 struct ib_ucq_object *uobject;
1468 ib_comp_handler comp_handler;
1469 void (*event_handler)(struct ib_event *, void *);
1470 void *cq_context;
1471 int cqe;
1472 atomic_t usecnt; /* count number of work queues */
1473 enum ib_poll_context poll_ctx;
1474 struct work_struct work;
1475 };
1476
1477 struct ib_srq {
1478 struct ib_device *device;
1479 struct ib_pd *pd;
1480 struct ib_usrq_object *uobject;
1481 void (*event_handler)(struct ib_event *, void *);
1482 void *srq_context;
1483 enum ib_srq_type srq_type;
1484 atomic_t usecnt;
1485
1486 struct {
1487 struct ib_cq *cq;
1488 union {
1489 struct {
1490 struct ib_xrcd *xrcd;
1491 u32 srq_num;
1492 } xrc;
1493 };
1494 } ext;
1495 };
1496
1497 enum ib_wq_type {
1498 IB_WQT_RQ
1499 };
1500
1501 enum ib_wq_state {
1502 IB_WQS_RESET,
1503 IB_WQS_RDY,
1504 IB_WQS_ERR
1505 };
1506
1507 struct ib_wq {
1508 struct ib_device *device;
1509 struct ib_uwq_object *uobject;
1510 void *wq_context;
1511 void (*event_handler)(struct ib_event *, void *);
1512 struct ib_pd *pd;
1513 struct ib_cq *cq;
1514 u32 wq_num;
1515 enum ib_wq_state state;
1516 enum ib_wq_type wq_type;
1517 atomic_t usecnt;
1518 };
1519
1520 enum ib_wq_flags {
1521 IB_WQ_FLAGS_CVLAN_STRIPPING = 1 << 0,
1522 IB_WQ_FLAGS_SCATTER_FCS = 1 << 1,
1523 IB_WQ_FLAGS_DELAY_DROP = 1 << 2,
1524 IB_WQ_FLAGS_PCI_WRITE_END_PADDING = 1 << 3,
1525 };
1526
1527 struct ib_wq_init_attr {
1528 void *wq_context;
1529 enum ib_wq_type wq_type;
1530 u32 max_wr;
1531 u32 max_sge;
1532 struct ib_cq *cq;
1533 void (*event_handler)(struct ib_event *, void *);
1534 u32 create_flags; /* Use enum ib_wq_flags */
1535 };
1536
1537 enum ib_wq_attr_mask {
1538 IB_WQ_STATE = 1 << 0,
1539 IB_WQ_CUR_STATE = 1 << 1,
1540 IB_WQ_FLAGS = 1 << 2,
1541 };
1542
1543 struct ib_wq_attr {
1544 enum ib_wq_state wq_state;
1545 enum ib_wq_state curr_wq_state;
1546 u32 flags; /* Use enum ib_wq_flags */
1547 u32 flags_mask; /* Use enum ib_wq_flags */
1548 };
1549
1550 struct ib_rwq_ind_table {
1551 struct ib_device *device;
1552 struct ib_uobject *uobject;
1553 atomic_t usecnt;
1554 u32 ind_tbl_num;
1555 u32 log_ind_tbl_size;
1556 struct ib_wq **ind_tbl;
1557 };
1558
1559 struct ib_rwq_ind_table_init_attr {
1560 u32 log_ind_tbl_size;
1561 /* Each entry is a pointer to Receive Work Queue */
1562 struct ib_wq **ind_tbl;
1563 };
1564
1565 /*
1566 * @max_write_sge: Maximum SGE elements per RDMA WRITE request.
1567 * @max_read_sge: Maximum SGE elements per RDMA READ request.
1568 */
1569 struct ib_qp {
1570 struct ib_device *device;
1571 struct ib_pd *pd;
1572 struct ib_cq *send_cq;
1573 struct ib_cq *recv_cq;
1574 spinlock_t mr_lock;
1575 struct ib_srq *srq;
1576 struct ib_xrcd *xrcd; /* XRC TGT QPs only */
1577 struct list_head xrcd_list;
1578
1579 /* count times opened, mcast attaches, flow attaches */
1580 atomic_t usecnt;
1581 struct list_head open_list;
1582 struct ib_qp *real_qp;
1583 struct ib_uqp_object *uobject;
1584 void (*event_handler)(struct ib_event *, void *);
1585 void *qp_context;
1586 u32 qp_num;
1587 u32 max_write_sge;
1588 u32 max_read_sge;
1589 enum ib_qp_type qp_type;
1590 struct ib_rwq_ind_table *rwq_ind_tbl;
1591 u8 port;
1592 };
1593
1594 struct ib_dm {
1595 struct ib_device *device;
1596 u32 length;
1597 u32 flags;
1598 struct ib_uobject *uobject;
1599 atomic_t usecnt;
1600 };
1601
1602 struct ib_mr {
1603 struct ib_device *device;
1604 struct ib_pd *pd;
1605 u32 lkey;
1606 u32 rkey;
1607 u64 iova;
1608 u64 length;
1609 unsigned int page_size;
1610 enum ib_mr_type type;
1611 bool need_inval;
1612 union {
1613 struct ib_uobject *uobject; /* user */
1614 struct list_head qp_entry; /* FR */
1615 };
1616
1617 struct ib_dm *dm;
1618 struct ib_sig_attrs *sig_attrs; /* only for IB_MR_TYPE_INTEGRITY MRs */
1619 };
1620
1621 struct ib_mw {
1622 struct ib_device *device;
1623 struct ib_pd *pd;
1624 struct ib_uobject *uobject;
1625 u32 rkey;
1626 enum ib_mw_type type;
1627 };
1628
1629 struct ib_fmr {
1630 struct ib_device *device;
1631 struct ib_pd *pd;
1632 struct list_head list;
1633 u32 lkey;
1634 u32 rkey;
1635 };
1636
1637 /* Supported steering options */
1638 enum ib_flow_attr_type {
1639 /* steering according to rule specifications */
1640 IB_FLOW_ATTR_NORMAL = 0x0,
1641 /* default unicast and multicast rule -
1642 * receive all Eth traffic which isn't steered to any QP
1643 */
1644 IB_FLOW_ATTR_ALL_DEFAULT = 0x1,
1645 /* default multicast rule -
1646 * receive all Eth multicast traffic which isn't steered to any QP
1647 */
1648 IB_FLOW_ATTR_MC_DEFAULT = 0x2,
1649 /* sniffer rule - receive all port traffic */
1650 IB_FLOW_ATTR_SNIFFER = 0x3
1651 };
1652
1653 /* Supported steering header types */
1654 enum ib_flow_spec_type {
1655 /* L2 headers*/
1656 IB_FLOW_SPEC_ETH = 0x20,
1657 IB_FLOW_SPEC_IB = 0x22,
1658 /* L3 header*/
1659 IB_FLOW_SPEC_IPV4 = 0x30,
1660 IB_FLOW_SPEC_IPV6 = 0x31,
1661 IB_FLOW_SPEC_ESP = 0x34,
1662 /* L4 headers*/
1663 IB_FLOW_SPEC_TCP = 0x40,
1664 IB_FLOW_SPEC_UDP = 0x41,
1665 IB_FLOW_SPEC_VXLAN_TUNNEL = 0x50,
1666 IB_FLOW_SPEC_GRE = 0x51,
1667 IB_FLOW_SPEC_MPLS = 0x60,
1668 IB_FLOW_SPEC_INNER = 0x100,
1669 /* Actions */
1670 IB_FLOW_SPEC_ACTION_TAG = 0x1000,
1671 IB_FLOW_SPEC_ACTION_DROP = 0x1001,
1672 IB_FLOW_SPEC_ACTION_HANDLE = 0x1002,
1673 IB_FLOW_SPEC_ACTION_COUNT = 0x1003,
1674 };
1675 #define IB_FLOW_SPEC_LAYER_MASK 0xF0
1676 #define IB_FLOW_SPEC_SUPPORT_LAYERS 10
1677
1678 /* Flow steering rule priority is set according to it's domain.
1679 * Lower domain value means higher priority.
1680 */
1681 enum ib_flow_domain {
1682 IB_FLOW_DOMAIN_USER,
1683 IB_FLOW_DOMAIN_ETHTOOL,
1684 IB_FLOW_DOMAIN_RFS,
1685 IB_FLOW_DOMAIN_NIC,
1686 IB_FLOW_DOMAIN_NUM /* Must be last */
1687 };
1688
1689 enum ib_flow_flags {
1690 IB_FLOW_ATTR_FLAGS_DONT_TRAP = 1UL << 1, /* Continue match, no steal */
1691 IB_FLOW_ATTR_FLAGS_RESERVED = 1UL << 2 /* Must be last */
1692 };
1693
1694 struct ib_flow_eth_filter {
1695 u8 dst_mac[6];
1696 u8 src_mac[6];
1697 __be16 ether_type;
1698 __be16 vlan_tag;
1699 /* Must be last */
1700 u8 real_sz[0];
1701 };
1702
1703 struct ib_flow_spec_eth {
1704 enum ib_flow_spec_type type;
1705 u16 size;
1706 struct ib_flow_eth_filter val;
1707 struct ib_flow_eth_filter mask;
1708 };
1709
1710 struct ib_flow_ib_filter {
1711 __be16 dlid;
1712 __u8 sl;
1713 /* Must be last */
1714 u8 real_sz[0];
1715 };
1716
1717 struct ib_flow_spec_ib {
1718 enum ib_flow_spec_type type;
1719 u16 size;
1720 struct ib_flow_ib_filter val;
1721 struct ib_flow_ib_filter mask;
1722 };
1723
1724 /* IPv4 header flags */
1725 enum ib_ipv4_flags {
1726 IB_IPV4_DONT_FRAG = 0x2, /* Don't enable packet fragmentation */
1727 IB_IPV4_MORE_FRAG = 0X4 /* For All fragmented packets except the
1728 last have this flag set */
1729 };
1730
1731 struct ib_flow_ipv4_filter {
1732 __be32 src_ip;
1733 __be32 dst_ip;
1734 u8 proto;
1735 u8 tos;
1736 u8 ttl;
1737 u8 flags;
1738 /* Must be last */
1739 u8 real_sz[0];
1740 };
1741
1742 struct ib_flow_spec_ipv4 {
1743 enum ib_flow_spec_type type;
1744 u16 size;
1745 struct ib_flow_ipv4_filter val;
1746 struct ib_flow_ipv4_filter mask;
1747 };
1748
1749 struct ib_flow_ipv6_filter {
1750 u8 src_ip[16];
1751 u8 dst_ip[16];
1752 __be32 flow_label;
1753 u8 next_hdr;
1754 u8 traffic_class;
1755 u8 hop_limit;
1756 /* Must be last */
1757 u8 real_sz[0];
1758 };
1759
1760 struct ib_flow_spec_ipv6 {
1761 enum ib_flow_spec_type type;
1762 u16 size;
1763 struct ib_flow_ipv6_filter val;
1764 struct ib_flow_ipv6_filter mask;
1765 };
1766
1767 struct ib_flow_tcp_udp_filter {
1768 __be16 dst_port;
1769 __be16 src_port;
1770 /* Must be last */
1771 u8 real_sz[0];
1772 };
1773
1774 struct ib_flow_spec_tcp_udp {
1775 enum ib_flow_spec_type type;
1776 u16 size;
1777 struct ib_flow_tcp_udp_filter val;
1778 struct ib_flow_tcp_udp_filter mask;
1779 };
1780
1781 struct ib_flow_tunnel_filter {
1782 __be32 tunnel_id;
1783 u8 real_sz[0];
1784 };
1785
1786 /* ib_flow_spec_tunnel describes the Vxlan tunnel
1787 * the tunnel_id from val has the vni value
1788 */
1789 struct ib_flow_spec_tunnel {
1790 u32 type;
1791 u16 size;
1792 struct ib_flow_tunnel_filter val;
1793 struct ib_flow_tunnel_filter mask;
1794 };
1795
1796 struct ib_flow_esp_filter {
1797 __be32 spi;
1798 __be32 seq;
1799 /* Must be last */
1800 u8 real_sz[0];
1801 };
1802
1803 struct ib_flow_spec_esp {
1804 u32 type;
1805 u16 size;
1806 struct ib_flow_esp_filter val;
1807 struct ib_flow_esp_filter mask;
1808 };
1809
1810 struct ib_flow_gre_filter {
1811 __be16 c_ks_res0_ver;
1812 __be16 protocol;
1813 __be32 key;
1814 /* Must be last */
1815 u8 real_sz[0];
1816 };
1817
1818 struct ib_flow_spec_gre {
1819 u32 type;
1820 u16 size;
1821 struct ib_flow_gre_filter val;
1822 struct ib_flow_gre_filter mask;
1823 };
1824
1825 struct ib_flow_mpls_filter {
1826 __be32 tag;
1827 /* Must be last */
1828 u8 real_sz[0];
1829 };
1830
1831 struct ib_flow_spec_mpls {
1832 u32 type;
1833 u16 size;
1834 struct ib_flow_mpls_filter val;
1835 struct ib_flow_mpls_filter mask;
1836 };
1837
1838 struct ib_flow_spec_action_tag {
1839 enum ib_flow_spec_type type;
1840 u16 size;
1841 u32 tag_id;
1842 };
1843
1844 struct ib_flow_spec_action_drop {
1845 enum ib_flow_spec_type type;
1846 u16 size;
1847 };
1848
1849 struct ib_flow_spec_action_handle {
1850 enum ib_flow_spec_type type;
1851 u16 size;
1852 struct ib_flow_action *act;
1853 };
1854
1855 enum ib_counters_description {
1856 IB_COUNTER_PACKETS,
1857 IB_COUNTER_BYTES,
1858 };
1859
1860 struct ib_flow_spec_action_count {
1861 enum ib_flow_spec_type type;
1862 u16 size;
1863 struct ib_counters *counters;
1864 };
1865
1866 union ib_flow_spec {
1867 struct {
1868 u32 type;
1869 u16 size;
1870 };
1871 struct ib_flow_spec_eth eth;
1872 struct ib_flow_spec_ib ib;
1873 struct ib_flow_spec_ipv4 ipv4;
1874 struct ib_flow_spec_tcp_udp tcp_udp;
1875 struct ib_flow_spec_ipv6 ipv6;
1876 struct ib_flow_spec_tunnel tunnel;
1877 struct ib_flow_spec_esp esp;
1878 struct ib_flow_spec_gre gre;
1879 struct ib_flow_spec_mpls mpls;
1880 struct ib_flow_spec_action_tag flow_tag;
1881 struct ib_flow_spec_action_drop drop;
1882 struct ib_flow_spec_action_handle action;
1883 struct ib_flow_spec_action_count flow_count;
1884 };
1885
1886 struct ib_flow_attr {
1887 enum ib_flow_attr_type type;
1888 u16 size;
1889 u16 priority;
1890 u32 flags;
1891 u8 num_of_specs;
1892 u8 port;
1893 union ib_flow_spec flows[0];
1894 };
1895
1896 struct ib_flow {
1897 struct ib_qp *qp;
1898 struct ib_device *device;
1899 struct ib_uobject *uobject;
1900 };
1901
1902 enum ib_flow_action_type {
1903 IB_FLOW_ACTION_UNSPECIFIED,
1904 IB_FLOW_ACTION_ESP = 1,
1905 };
1906
1907 struct ib_flow_action_attrs_esp_keymats {
1908 enum ib_uverbs_flow_action_esp_keymat protocol;
1909 union {
1910 struct ib_uverbs_flow_action_esp_keymat_aes_gcm aes_gcm;
1911 } keymat;
1912 };
1913
1914 struct ib_flow_action_attrs_esp_replays {
1915 enum ib_uverbs_flow_action_esp_replay protocol;
1916 union {
1917 struct ib_uverbs_flow_action_esp_replay_bmp bmp;
1918 } replay;
1919 };
1920
1921 enum ib_flow_action_attrs_esp_flags {
1922 /* All user-space flags at the top: Use enum ib_uverbs_flow_action_esp_flags
1923 * This is done in order to share the same flags between user-space and
1924 * kernel and spare an unnecessary translation.
1925 */
1926
1927 /* Kernel flags */
1928 IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED = 1ULL << 32,
1929 IB_FLOW_ACTION_ESP_FLAGS_MOD_ESP_ATTRS = 1ULL << 33,
1930 };
1931
1932 struct ib_flow_spec_list {
1933 struct ib_flow_spec_list *next;
1934 union ib_flow_spec spec;
1935 };
1936
1937 struct ib_flow_action_attrs_esp {
1938 struct ib_flow_action_attrs_esp_keymats *keymat;
1939 struct ib_flow_action_attrs_esp_replays *replay;
1940 struct ib_flow_spec_list *encap;
1941 /* Used only if IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED is enabled.
1942 * Value of 0 is a valid value.
1943 */
1944 u32 esn;
1945 u32 spi;
1946 u32 seq;
1947 u32 tfc_pad;
1948 /* Use enum ib_flow_action_attrs_esp_flags */
1949 u64 flags;
1950 u64 hard_limit_pkts;
1951 };
1952
1953 struct ib_flow_action {
1954 struct ib_device *device;
1955 struct ib_uobject *uobject;
1956 enum ib_flow_action_type type;
1957 atomic_t usecnt;
1958 };
1959
1960
1961 struct ib_mad_hdr;
1962 struct ib_grh;
1963
1964 enum ib_process_mad_flags {
1965 IB_MAD_IGNORE_MKEY = 1,
1966 IB_MAD_IGNORE_BKEY = 2,
1967 IB_MAD_IGNORE_ALL = IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY
1968 };
1969
1970 enum ib_mad_result {
1971 IB_MAD_RESULT_FAILURE = 0, /* (!SUCCESS is the important flag) */
1972 IB_MAD_RESULT_SUCCESS = 1 << 0, /* MAD was successfully processed */
1973 IB_MAD_RESULT_REPLY = 1 << 1, /* Reply packet needs to be sent */
1974 IB_MAD_RESULT_CONSUMED = 1 << 2 /* Packet consumed: stop processing */
1975 };
1976
1977 #define IB_DEVICE_NAME_MAX 64
1978
1979 struct ib_cache {
1980 rwlock_t lock;
1981 struct ib_event_handler event_handler;
1982 struct ib_pkey_cache **pkey_cache;
1983 struct ib_gid_table **gid_cache;
1984 u8 *lmc_cache;
1985 };
1986
1987 struct ib_dma_mapping_ops {
1988 int (*mapping_error)(struct ib_device *dev,
1989 u64 dma_addr);
1990 u64 (*map_single)(struct ib_device *dev,
1991 void *ptr, size_t size,
1992 enum dma_data_direction direction);
1993 void (*unmap_single)(struct ib_device *dev,
1994 u64 addr, size_t size,
1995 enum dma_data_direction direction);
1996 u64 (*map_page)(struct ib_device *dev,
1997 struct page *page, unsigned long offset,
1998 size_t size,
1999 enum dma_data_direction direction);
2000 void (*unmap_page)(struct ib_device *dev,
2001 u64 addr, size_t size,
2002 enum dma_data_direction direction);
2003 int (*map_sg)(struct ib_device *dev,
2004 struct scatterlist *sg, int nents,
2005 enum dma_data_direction direction);
2006 void (*unmap_sg)(struct ib_device *dev,
2007 struct scatterlist *sg, int nents,
2008 enum dma_data_direction direction);
2009 int (*map_sg_attrs)(struct ib_device *dev,
2010 struct scatterlist *sg, int nents,
2011 enum dma_data_direction direction,
2012 struct dma_attrs *attrs);
2013 void (*unmap_sg_attrs)(struct ib_device *dev,
2014 struct scatterlist *sg, int nents,
2015 enum dma_data_direction direction,
2016 struct dma_attrs *attrs);
2017 void (*sync_single_for_cpu)(struct ib_device *dev,
2018 u64 dma_handle,
2019 size_t size,
2020 enum dma_data_direction dir);
2021 void (*sync_single_for_device)(struct ib_device *dev,
2022 u64 dma_handle,
2023 size_t size,
2024 enum dma_data_direction dir);
2025 void *(*alloc_coherent)(struct ib_device *dev,
2026 size_t size,
2027 u64 *dma_handle,
2028 gfp_t flag);
2029 void (*free_coherent)(struct ib_device *dev,
2030 size_t size, void *cpu_addr,
2031 u64 dma_handle);
2032 };
2033
2034 struct iw_cm_verbs;
2035
2036 struct ib_port_immutable {
2037 int pkey_tbl_len;
2038 int gid_tbl_len;
2039 u32 core_cap_flags;
2040 u32 max_mad_size;
2041 };
2042
2043 struct ib_counters {
2044 struct ib_device *device;
2045 struct ib_uobject *uobject;
2046 /* num of objects attached */
2047 atomic_t usecnt;
2048 };
2049
2050 struct ib_counters_read_attr {
2051 u64 *counters_buff;
2052 u32 ncounters;
2053 u32 flags; /* use enum ib_read_counters_flags */
2054 };
2055
2056 #define INIT_RDMA_OBJ_SIZE(ib_struct, drv_struct, member) \
2057 .size_##ib_struct = \
2058 (sizeof(struct drv_struct) + \
2059 BUILD_BUG_ON_ZERO(offsetof(struct drv_struct, member)) + \
2060 BUILD_BUG_ON_ZERO( \
2061 !__same_type(((struct drv_struct *)NULL)->member, \
2062 struct ib_struct)))
2063
2064 #define rdma_zalloc_drv_obj_gfp(ib_dev, ib_type, gfp) \
2065 ((struct ib_type *)kzalloc(ib_dev->ops.size_##ib_type, gfp))
2066
2067 #define rdma_zalloc_drv_obj(ib_dev, ib_type) \
2068 rdma_zalloc_drv_obj_gfp(ib_dev, ib_type, GFP_KERNEL)
2069
2070 #define DECLARE_RDMA_OBJ_SIZE(ib_struct) size_t size_##ib_struct
2071
2072 struct rdma_user_mmap_entry {
2073 struct kref ref;
2074 struct ib_ucontext *ucontext;
2075 unsigned long start_pgoff;
2076 size_t npages;
2077 bool driver_removed;
2078 };
2079
2080 /* Return the offset (in bytes) the user should pass to libc's mmap() */
2081 static inline u64
2082 rdma_user_mmap_get_offset(const struct rdma_user_mmap_entry *entry)
2083 {
2084 return (u64)entry->start_pgoff << PAGE_SHIFT;
2085 }
2086
2087 struct ib_device_ops {
2088 enum rdma_driver_id driver_id;
2089 DECLARE_RDMA_OBJ_SIZE(ib_ah);
2090 DECLARE_RDMA_OBJ_SIZE(ib_cq);
2091 DECLARE_RDMA_OBJ_SIZE(ib_pd);
2092 DECLARE_RDMA_OBJ_SIZE(ib_srq);
2093 DECLARE_RDMA_OBJ_SIZE(ib_ucontext);
2094 };
2095
2096 #define INIT_IB_DEVICE_OPS(pop, driver, DRIVER) do { \
2097 (pop)[0] .driver_id = RDMA_DRIVER_##DRIVER; \
2098 (pop)[0] INIT_RDMA_OBJ_SIZE(ib_ah, driver##_ib_ah, ibah); \
2099 (pop)[0] INIT_RDMA_OBJ_SIZE(ib_cq, driver##_ib_cq, ibcq); \
2100 (pop)[0] INIT_RDMA_OBJ_SIZE(ib_pd, driver##_ib_pd, ibpd); \
2101 (pop)[0] INIT_RDMA_OBJ_SIZE(ib_srq, driver##_ib_srq, ibsrq); \
2102 (pop)[0] INIT_RDMA_OBJ_SIZE(ib_ucontext, driver##_ib_ucontext, ibucontext); \
2103 } while (0)
2104
2105 struct ib_device {
2106 struct device *dma_device;
2107 struct ib_device_ops ops;
2108
2109 char name[IB_DEVICE_NAME_MAX];
2110
2111 struct list_head event_handler_list;
2112 spinlock_t event_handler_lock;
2113
2114 spinlock_t client_data_lock;
2115 struct list_head core_list;
2116 /* Access to the client_data_list is protected by the client_data_lock
2117 * spinlock and the lists_rwsem read-write semaphore */
2118 struct list_head client_data_list;
2119
2120 struct ib_cache cache;
2121 /**
2122 * port_immutable is indexed by port number
2123 */
2124 struct ib_port_immutable *port_immutable;
2125
2126 int num_comp_vectors;
2127
2128 struct iw_cm_verbs *iwcm;
2129
2130 /**
2131 * alloc_hw_stats - Allocate a struct rdma_hw_stats and fill in the
2132 * driver initialized data. The struct is kfree()'ed by the sysfs
2133 * core when the device is removed. A lifespan of -1 in the return
2134 * struct tells the core to set a default lifespan.
2135 */
2136 struct rdma_hw_stats *(*alloc_hw_stats)(struct ib_device *device,
2137 u8 port_num);
2138 /**
2139 * get_hw_stats - Fill in the counter value(s) in the stats struct.
2140 * @index - The index in the value array we wish to have updated, or
2141 * num_counters if we want all stats updated
2142 * Return codes -
2143 * < 0 - Error, no counters updated
2144 * index - Updated the single counter pointed to by index
2145 * num_counters - Updated all counters (will reset the timestamp
2146 * and prevent further calls for lifespan milliseconds)
2147 * Drivers are allowed to update all counters in leiu of just the
2148 * one given in index at their option
2149 */
2150 int (*get_hw_stats)(struct ib_device *device,
2151 struct rdma_hw_stats *stats,
2152 u8 port, int index);
2153 int (*query_device)(struct ib_device *device,
2154 struct ib_device_attr *device_attr,
2155 struct ib_udata *udata);
2156 int (*query_port)(struct ib_device *device,
2157 u8 port_num,
2158 struct ib_port_attr *port_attr);
2159 enum rdma_link_layer (*get_link_layer)(struct ib_device *device,
2160 u8 port_num);
2161 /* When calling get_netdev, the HW vendor's driver should return the
2162 * net device of device @device at port @port_num or NULL if such
2163 * a net device doesn't exist. The vendor driver should call dev_hold
2164 * on this net device. The HW vendor's device driver must guarantee
2165 * that this function returns NULL before the net device reaches
2166 * NETDEV_UNREGISTER_FINAL state.
2167 */
2168 struct ifnet *(*get_netdev)(struct ib_device *device,
2169 u8 port_num);
2170 int (*query_gid)(struct ib_device *device,
2171 u8 port_num, int index,
2172 union ib_gid *gid);
2173 /* When calling add_gid, the HW vendor's driver should
2174 * add the gid of device @device at gid index @index of
2175 * port @port_num to be @gid. Meta-info of that gid (for example,
2176 * the network device related to this gid is available
2177 * at @attr. @context allows the HW vendor driver to store extra
2178 * information together with a GID entry. The HW vendor may allocate
2179 * memory to contain this information and store it in @context when a
2180 * new GID entry is written to. Params are consistent until the next
2181 * call of add_gid or delete_gid. The function should return 0 on
2182 * success or error otherwise. The function could be called
2183 * concurrently for different ports. This function is only called
2184 * when roce_gid_table is used.
2185 */
2186 int (*add_gid)(struct ib_device *device,
2187 u8 port_num,
2188 unsigned int index,
2189 const union ib_gid *gid,
2190 const struct ib_gid_attr *attr,
2191 void **context);
2192 /* When calling del_gid, the HW vendor's driver should delete the
2193 * gid of device @device at gid index @index of port @port_num.
2194 * Upon the deletion of a GID entry, the HW vendor must free any
2195 * allocated memory. The caller will clear @context afterwards.
2196 * This function is only called when roce_gid_table is used.
2197 */
2198 int (*del_gid)(struct ib_device *device,
2199 u8 port_num,
2200 unsigned int index,
2201 void **context);
2202 int (*query_pkey)(struct ib_device *device,
2203 u8 port_num, u16 index, u16 *pkey);
2204 int (*modify_device)(struct ib_device *device,
2205 int device_modify_mask,
2206 struct ib_device_modify *device_modify);
2207 int (*modify_port)(struct ib_device *device,
2208 u8 port_num, int port_modify_mask,
2209 struct ib_port_modify *port_modify);
2210 int (*alloc_ucontext)(struct ib_ucontext *uctx,
2211 struct ib_udata *udata);
2212 void (*dealloc_ucontext)(struct ib_ucontext *context);
2213 int (*mmap)(struct ib_ucontext *context,
2214 struct vm_area_struct *vma);
2215 int (*alloc_pd)(struct ib_pd *pd,
2216 struct ib_udata *udata);
2217 void (*dealloc_pd)(struct ib_pd *pd, struct ib_udata *udata);
2218 int (*create_ah)(struct ib_ah *ah, struct ib_ah_attr *ah_attr,
2219 u32 flags, struct ib_udata *udata);
2220 int (*modify_ah)(struct ib_ah *ah,
2221 struct ib_ah_attr *ah_attr);
2222 int (*query_ah)(struct ib_ah *ah,
2223 struct ib_ah_attr *ah_attr);
2224 void (*destroy_ah)(struct ib_ah *ah, u32 flags);
2225 int (*create_srq)(struct ib_srq *srq,
2226 struct ib_srq_init_attr *srq_init_attr,
2227 struct ib_udata *udata);
2228 int (*modify_srq)(struct ib_srq *srq,
2229 struct ib_srq_attr *srq_attr,
2230 enum ib_srq_attr_mask srq_attr_mask,
2231 struct ib_udata *udata);
2232 int (*query_srq)(struct ib_srq *srq,
2233 struct ib_srq_attr *srq_attr);
2234 void (*destroy_srq)(struct ib_srq *srq, struct ib_udata *udata);
2235 int (*post_srq_recv)(struct ib_srq *srq,
2236 const struct ib_recv_wr *recv_wr,
2237 const struct ib_recv_wr **bad_recv_wr);
2238 struct ib_qp * (*create_qp)(struct ib_pd *pd,
2239 struct ib_qp_init_attr *qp_init_attr,
2240 struct ib_udata *udata);
2241 int (*modify_qp)(struct ib_qp *qp,
2242 struct ib_qp_attr *qp_attr,
2243 int qp_attr_mask,
2244 struct ib_udata *udata);
2245 int (*query_qp)(struct ib_qp *qp,
2246 struct ib_qp_attr *qp_attr,
2247 int qp_attr_mask,
2248 struct ib_qp_init_attr *qp_init_attr);
2249 int (*destroy_qp)(struct ib_qp *qp, struct ib_udata *udata);
2250 int (*post_send)(struct ib_qp *qp,
2251 const struct ib_send_wr *send_wr,
2252 const struct ib_send_wr **bad_send_wr);
2253 int (*post_recv)(struct ib_qp *qp,
2254 const struct ib_recv_wr *recv_wr,
2255 const struct ib_recv_wr **bad_recv_wr);
2256 int (*create_cq)(struct ib_cq *,
2257 const struct ib_cq_init_attr *attr,
2258 struct ib_udata *udata);
2259 int (*modify_cq)(struct ib_cq *cq, u16 cq_count,
2260 u16 cq_period);
2261 void (*destroy_cq)(struct ib_cq *cq, struct ib_udata *udata);
2262 int (*resize_cq)(struct ib_cq *cq, int cqe,
2263 struct ib_udata *udata);
2264 int (*poll_cq)(struct ib_cq *cq, int num_entries,
2265 struct ib_wc *wc);
2266 int (*peek_cq)(struct ib_cq *cq, int wc_cnt);
2267 int (*req_notify_cq)(struct ib_cq *cq,
2268 enum ib_cq_notify_flags flags);
2269 int (*req_ncomp_notif)(struct ib_cq *cq,
2270 int wc_cnt);
2271 struct ib_mr * (*get_dma_mr)(struct ib_pd *pd,
2272 int mr_access_flags);
2273 struct ib_mr * (*reg_user_mr)(struct ib_pd *pd,
2274 u64 start, u64 length,
2275 u64 virt_addr,
2276 int mr_access_flags,
2277 struct ib_udata *udata);
2278 int (*rereg_user_mr)(struct ib_mr *mr,
2279 int flags,
2280 u64 start, u64 length,
2281 u64 virt_addr,
2282 int mr_access_flags,
2283 struct ib_pd *pd,
2284 struct ib_udata *udata);
2285 int (*dereg_mr)(struct ib_mr *mr, struct ib_udata *udata);
2286 struct ib_mr * (*alloc_mr)(struct ib_pd *pd, enum ib_mr_type mr_type,
2287 u32 max_num_sg, struct ib_udata *udata);
2288 int (*advise_mr)(struct ib_pd *pd,
2289 enum ib_uverbs_advise_mr_advice advice, u32 flags,
2290 const struct ib_sge *sg_list, u32 num_sge,
2291 struct uverbs_attr_bundle *attrs);
2292 int (*map_mr_sg)(struct ib_mr *mr,
2293 struct scatterlist *sg,
2294 int sg_nents,
2295 unsigned int *sg_offset);
2296 struct ib_mw * (*alloc_mw)(struct ib_pd *pd,
2297 enum ib_mw_type type,
2298 struct ib_udata *udata);
2299 int (*dealloc_mw)(struct ib_mw *mw);
2300 struct ib_fmr * (*alloc_fmr)(struct ib_pd *pd,
2301 int mr_access_flags,
2302 struct ib_fmr_attr *fmr_attr);
2303 int (*map_phys_fmr)(struct ib_fmr *fmr,
2304 u64 *page_list, int list_len,
2305 u64 iova);
2306 int (*unmap_fmr)(struct list_head *fmr_list);
2307 int (*dealloc_fmr)(struct ib_fmr *fmr);
2308 int (*attach_mcast)(struct ib_qp *qp,
2309 union ib_gid *gid,
2310 u16 lid);
2311 int (*detach_mcast)(struct ib_qp *qp,
2312 union ib_gid *gid,
2313 u16 lid);
2314 int (*process_mad)(struct ib_device *device,
2315 int process_mad_flags,
2316 u8 port_num,
2317 const struct ib_wc *in_wc,
2318 const struct ib_grh *in_grh,
2319 const struct ib_mad_hdr *in_mad,
2320 size_t in_mad_size,
2321 struct ib_mad_hdr *out_mad,
2322 size_t *out_mad_size,
2323 u16 *out_mad_pkey_index);
2324 struct ib_xrcd * (*alloc_xrcd)(struct ib_device *device,
2325 struct ib_udata *udata);
2326 int (*dealloc_xrcd)(struct ib_xrcd *xrcd, struct ib_udata *udata);
2327 struct ib_flow * (*create_flow)(struct ib_qp *qp,
2328 struct ib_flow_attr
2329 *flow_attr,
2330 int domain, struct ib_udata *udata);
2331 int (*destroy_flow)(struct ib_flow *flow_id);
2332 struct ib_flow_action *(*create_flow_action_esp)(
2333 struct ib_device *device,
2334 const struct ib_flow_action_attrs_esp *attr,
2335 struct uverbs_attr_bundle *attrs);
2336 int (*destroy_flow_action)(struct ib_flow_action *action);
2337 int (*modify_flow_action_esp)(
2338 struct ib_flow_action *action,
2339 const struct ib_flow_action_attrs_esp *attr,
2340 struct uverbs_attr_bundle *attrs);
2341 int (*check_mr_status)(struct ib_mr *mr, u32 check_mask,
2342 struct ib_mr_status *mr_status);
2343 /**
2344 * This will be called once refcount of an entry in mmap_xa reaches
2345 * zero. The type of the memory that was mapped may differ between
2346 * entries and is opaque to the rdma_user_mmap interface.
2347 * Therefore needs to be implemented by the driver in mmap_free.
2348 */
2349 void (*mmap_free)(struct rdma_user_mmap_entry *entry);
2350 void (*disassociate_ucontext)(struct ib_ucontext *ibcontext);
2351 void (*drain_rq)(struct ib_qp *qp);
2352 void (*drain_sq)(struct ib_qp *qp);
2353 int (*set_vf_link_state)(struct ib_device *device, int vf, u8 port,
2354 int state);
2355 int (*get_vf_config)(struct ib_device *device, int vf, u8 port,
2356 struct ifla_vf_info *ivf);
2357 int (*get_vf_stats)(struct ib_device *device, int vf, u8 port,
2358 struct ifla_vf_stats *stats);
2359 int (*set_vf_guid)(struct ib_device *device, int vf, u8 port, u64 guid,
2360 int type);
2361 struct ib_wq * (*create_wq)(struct ib_pd *pd,
2362 struct ib_wq_init_attr *init_attr,
2363 struct ib_udata *udata);
2364 void (*destroy_wq)(struct ib_wq *wq, struct ib_udata *udata);
2365 int (*modify_wq)(struct ib_wq *wq,
2366 struct ib_wq_attr *attr,
2367 u32 wq_attr_mask,
2368 struct ib_udata *udata);
2369 struct ib_rwq_ind_table * (*create_rwq_ind_table)(struct ib_device *device,
2370 struct ib_rwq_ind_table_init_attr *init_attr,
2371 struct ib_udata *udata);
2372 int (*destroy_rwq_ind_table)(struct ib_rwq_ind_table *wq_ind_table);
2373 struct ib_dm *(*alloc_dm)(struct ib_device *device,
2374 struct ib_ucontext *context,
2375 struct ib_dm_alloc_attr *attr,
2376 struct uverbs_attr_bundle *attrs);
2377 int (*dealloc_dm)(struct ib_dm *dm, struct uverbs_attr_bundle *attrs);
2378 struct ib_mr *(*reg_dm_mr)(struct ib_pd *pd, struct ib_dm *dm,
2379 struct ib_dm_mr_attr *attr,
2380 struct uverbs_attr_bundle *attrs);
2381 struct ib_counters *(*create_counters)(
2382 struct ib_device *device, struct uverbs_attr_bundle *attrs);
2383 int (*destroy_counters)(struct ib_counters *counters);
2384 int (*read_counters)(struct ib_counters *counters,
2385 struct ib_counters_read_attr *counters_read_attr,
2386 struct uverbs_attr_bundle *attrs);
2387 struct ib_dma_mapping_ops *dma_ops;
2388
2389 struct module *owner;
2390 struct device dev;
2391 struct kobject *ports_parent;
2392 struct list_head port_list;
2393
2394 enum {
2395 IB_DEV_UNINITIALIZED,
2396 IB_DEV_REGISTERED,
2397 IB_DEV_UNREGISTERED
2398 } reg_state;
2399
2400 int uverbs_abi_ver;
2401 u64 uverbs_cmd_mask;
2402 u64 uverbs_ex_cmd_mask;
2403
2404 char node_desc[IB_DEVICE_NODE_DESC_MAX];
2405 __be64 node_guid;
2406 u32 local_dma_lkey;
2407 u16 is_switch:1;
2408 u8 node_type;
2409 u8 phys_port_cnt;
2410 struct ib_device_attr attrs;
2411 struct attribute_group *hw_stats_ag;
2412 struct rdma_hw_stats *hw_stats;
2413
2414 const struct uapi_definition *driver_def;
2415
2416 /**
2417 * The following mandatory functions are used only at device
2418 * registration. Keep functions such as these at the end of this
2419 * structure to avoid cache line misses when accessing struct ib_device
2420 * in fast paths.
2421 */
2422 int (*get_port_immutable)(struct ib_device *, u8, struct ib_port_immutable *);
2423 void (*get_dev_fw_str)(struct ib_device *, char *str, size_t str_len);
2424 };
2425
2426 struct ib_client {
2427 char *name;
2428 void (*add) (struct ib_device *);
2429 void (*remove)(struct ib_device *, void *client_data);
2430
2431 /* Returns the net_dev belonging to this ib_client and matching the
2432 * given parameters.
2433 * @dev: An RDMA device that the net_dev use for communication.
2434 * @port: A physical port number on the RDMA device.
2435 * @pkey: P_Key that the net_dev uses if applicable.
2436 * @gid: A GID that the net_dev uses to communicate.
2437 * @addr: An IP address the net_dev is configured with.
2438 * @client_data: The device's client data set by ib_set_client_data().
2439 *
2440 * An ib_client that implements a net_dev on top of RDMA devices
2441 * (such as IP over IB) should implement this callback, allowing the
2442 * rdma_cm module to find the right net_dev for a given request.
2443 *
2444 * The caller is responsible for calling dev_put on the returned
2445 * netdev. */
2446 struct ifnet *(*get_net_dev_by_params)(
2447 struct ib_device *dev,
2448 u8 port,
2449 u16 pkey,
2450 const union ib_gid *gid,
2451 const struct sockaddr *addr,
2452 void *client_data);
2453 struct list_head list;
2454 };
2455
2456 struct ib_device *ib_alloc_device(size_t size);
2457 void ib_dealloc_device(struct ib_device *device);
2458
2459 void ib_get_device_fw_str(struct ib_device *device, char *str, size_t str_len);
2460
2461 int ib_register_device(struct ib_device *device,
2462 int (*port_callback)(struct ib_device *,
2463 u8, struct kobject *));
2464 void ib_unregister_device(struct ib_device *device);
2465
2466 int ib_register_client (struct ib_client *client);
2467 void ib_unregister_client(struct ib_client *client);
2468
2469 void *ib_get_client_data(struct ib_device *device, struct ib_client *client);
2470 void ib_set_client_data(struct ib_device *device, struct ib_client *client,
2471 void *data);
2472
2473 int rdma_user_mmap_io(struct ib_ucontext *ucontext, struct vm_area_struct *vma,
2474 unsigned long pfn, unsigned long size, pgprot_t prot,
2475 struct rdma_user_mmap_entry *entry);
2476 int rdma_user_mmap_entry_insert(struct ib_ucontext *ucontext,
2477 struct rdma_user_mmap_entry *entry,
2478 size_t length);
2479 int rdma_user_mmap_entry_insert_range(struct ib_ucontext *ucontext,
2480 struct rdma_user_mmap_entry *entry,
2481 size_t length, u32 min_pgoff,
2482 u32 max_pgoff);
2483
2484 struct rdma_user_mmap_entry *
2485 rdma_user_mmap_entry_get_pgoff(struct ib_ucontext *ucontext,
2486 unsigned long pgoff);
2487 struct rdma_user_mmap_entry *
2488 rdma_user_mmap_entry_get(struct ib_ucontext *ucontext,
2489 struct vm_area_struct *vma);
2490 void rdma_user_mmap_entry_put(struct rdma_user_mmap_entry *entry);
2491
2492 void rdma_user_mmap_entry_remove(struct rdma_user_mmap_entry *entry);
2493 static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len)
2494 {
2495 return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0;
2496 }
2497
2498 static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len)
2499 {
2500 return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0;
2501 }
2502
2503 static inline bool ib_is_buffer_cleared(const void __user *p,
2504 size_t len)
2505 {
2506 bool ret;
2507 u8 *buf;
2508
2509 if (len > USHRT_MAX)
2510 return false;
2511
2512 buf = memdup_user(p, len);
2513 if (IS_ERR(buf))
2514 return false;
2515
2516 ret = !memchr_inv(buf, 0, len);
2517 kfree(buf);
2518 return ret;
2519 }
2520
2521 static inline bool ib_is_udata_cleared(struct ib_udata *udata,
2522 size_t offset,
2523 size_t len)
2524 {
2525 return ib_is_buffer_cleared(udata->inbuf + offset, len);
2526 }
2527
2528 /**
2529 * ib_is_destroy_retryable - Check whether the uobject destruction
2530 * is retryable.
2531 * @ret: The initial destruction return code
2532 * @why: remove reason
2533 * @uobj: The uobject that is destroyed
2534 *
2535 * This function is a helper function that IB layer and low-level drivers
2536 * can use to consider whether the destruction of the given uobject is
2537 * retry-able.
2538 * It checks the original return code, if it wasn't success the destruction
2539 * is retryable according to the ucontext state (i.e. cleanup_retryable) and
2540 * the remove reason. (i.e. why).
2541 * Must be called with the object locked for destroy.
2542 */
2543 static inline bool ib_is_destroy_retryable(int ret, enum rdma_remove_reason why,
2544 struct ib_uobject *uobj)
2545 {
2546 return ret && (why == RDMA_REMOVE_DESTROY ||
2547 uobj->context->cleanup_retryable);
2548 }
2549
2550 /**
2551 * ib_destroy_usecnt - Called during destruction to check the usecnt
2552 * @usecnt: The usecnt atomic
2553 * @why: remove reason
2554 * @uobj: The uobject that is destroyed
2555 *
2556 * Non-zero usecnts will block destruction unless destruction was triggered by
2557 * a ucontext cleanup.
2558 */
2559 static inline int ib_destroy_usecnt(atomic_t *usecnt,
2560 enum rdma_remove_reason why,
2561 struct ib_uobject *uobj)
2562 {
2563 if (atomic_read(usecnt) && ib_is_destroy_retryable(-EBUSY, why, uobj))
2564 return -EBUSY;
2565 return 0;
2566 }
2567
2568 /**
2569 * ib_modify_qp_is_ok - Check that the supplied attribute mask
2570 * contains all required attributes and no attributes not allowed for
2571 * the given QP state transition.
2572 * @cur_state: Current QP state
2573 * @next_state: Next QP state
2574 * @type: QP type
2575 * @mask: Mask of supplied QP attributes
2576 *
2577 * This function is a helper function that a low-level driver's
2578 * modify_qp method can use to validate the consumer's input. It
2579 * checks that cur_state and next_state are valid QP states, that a
2580 * transition from cur_state to next_state is allowed by the IB spec,
2581 * and that the attribute mask supplied is allowed for the transition.
2582 */
2583 bool ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
2584 enum ib_qp_type type, enum ib_qp_attr_mask mask);
2585
2586 int ib_register_event_handler (struct ib_event_handler *event_handler);
2587 int ib_unregister_event_handler(struct ib_event_handler *event_handler);
2588 void ib_dispatch_event(struct ib_event *event);
2589
2590 int ib_query_port(struct ib_device *device,
2591 u8 port_num, struct ib_port_attr *port_attr);
2592
2593 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device,
2594 u8 port_num);
2595
2596 /**
2597 * rdma_cap_ib_switch - Check if the device is IB switch
2598 * @device: Device to check
2599 *
2600 * Device driver is responsible for setting is_switch bit on
2601 * in ib_device structure at init time.
2602 *
2603 * Return: true if the device is IB switch.
2604 */
2605 static inline bool rdma_cap_ib_switch(const struct ib_device *device)
2606 {
2607 return device->is_switch;
2608 }
2609
2610 /**
2611 * rdma_start_port - Return the first valid port number for the device
2612 * specified
2613 *
2614 * @device: Device to be checked
2615 *
2616 * Return start port number
2617 */
2618 static inline u8 rdma_start_port(const struct ib_device *device)
2619 {
2620 return rdma_cap_ib_switch(device) ? 0 : 1;
2621 }
2622
2623 /**
2624 * rdma_end_port - Return the last valid port number for the device
2625 * specified
2626 *
2627 * @device: Device to be checked
2628 *
2629 * Return last port number
2630 */
2631 static inline u8 rdma_end_port(const struct ib_device *device)
2632 {
2633 return rdma_cap_ib_switch(device) ? 0 : device->phys_port_cnt;
2634 }
2635
2636 static inline int rdma_is_port_valid(const struct ib_device *device,
2637 unsigned int port)
2638 {
2639 return (port >= rdma_start_port(device) &&
2640 port <= rdma_end_port(device));
2641 }
2642
2643 static inline bool rdma_protocol_ib(const struct ib_device *device, u8 port_num)
2644 {
2645 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IB;
2646 }
2647
2648 static inline bool rdma_protocol_roce(const struct ib_device *device, u8 port_num)
2649 {
2650 return device->port_immutable[port_num].core_cap_flags &
2651 (RDMA_CORE_CAP_PROT_ROCE | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP);
2652 }
2653
2654 static inline bool rdma_protocol_roce_udp_encap(const struct ib_device *device, u8 port_num)
2655 {
2656 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP;
2657 }
2658
2659 static inline bool rdma_protocol_roce_eth_encap(const struct ib_device *device, u8 port_num)
2660 {
2661 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_ROCE;
2662 }
2663
2664 static inline bool rdma_protocol_iwarp(const struct ib_device *device, u8 port_num)
2665 {
2666 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IWARP;
2667 }
2668
2669 static inline bool rdma_ib_or_roce(const struct ib_device *device, u8 port_num)
2670 {
2671 return rdma_protocol_ib(device, port_num) ||
2672 rdma_protocol_roce(device, port_num);
2673 }
2674
2675 /**
2676 * rdma_cap_ib_mad - Check if the port of a device supports Infiniband
2677 * Management Datagrams.
2678 * @device: Device to check
2679 * @port_num: Port number to check
2680 *
2681 * Management Datagrams (MAD) are a required part of the InfiniBand
2682 * specification and are supported on all InfiniBand devices. A slightly
2683 * extended version are also supported on OPA interfaces.
2684 *
2685 * Return: true if the port supports sending/receiving of MAD packets.
2686 */
2687 static inline bool rdma_cap_ib_mad(const struct ib_device *device, u8 port_num)
2688 {
2689 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_MAD;
2690 }
2691
2692 /**
2693 * rdma_cap_opa_mad - Check if the port of device provides support for OPA
2694 * Management Datagrams.
2695 * @device: Device to check
2696 * @port_num: Port number to check
2697 *
2698 * Intel OmniPath devices extend and/or replace the InfiniBand Management
2699 * datagrams with their own versions. These OPA MADs share many but not all of
2700 * the characteristics of InfiniBand MADs.
2701 *
2702 * OPA MADs differ in the following ways:
2703 *
2704 * 1) MADs are variable size up to 2K
2705 * IBTA defined MADs remain fixed at 256 bytes
2706 * 2) OPA SMPs must carry valid PKeys
2707 * 3) OPA SMP packets are a different format
2708 *
2709 * Return: true if the port supports OPA MAD packet formats.
2710 */
2711 static inline bool rdma_cap_opa_mad(struct ib_device *device, u8 port_num)
2712 {
2713 return (device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_OPA_MAD)
2714 == RDMA_CORE_CAP_OPA_MAD;
2715 }
2716
2717 /**
2718 * rdma_cap_ib_smi - Check if the port of a device provides an Infiniband
2719 * Subnet Management Agent (SMA) on the Subnet Management Interface (SMI).
2720 * @device: Device to check
2721 * @port_num: Port number to check
2722 *
2723 * Each InfiniBand node is required to provide a Subnet Management Agent
2724 * that the subnet manager can access. Prior to the fabric being fully
2725 * configured by the subnet manager, the SMA is accessed via a well known
2726 * interface called the Subnet Management Interface (SMI). This interface
2727 * uses directed route packets to communicate with the SM to get around the
2728 * chicken and egg problem of the SM needing to know what's on the fabric
2729 * in order to configure the fabric, and needing to configure the fabric in
2730 * order to send packets to the devices on the fabric. These directed
2731 * route packets do not need the fabric fully configured in order to reach
2732 * their destination. The SMI is the only method allowed to send
2733 * directed route packets on an InfiniBand fabric.
2734 *
2735 * Return: true if the port provides an SMI.
2736 */
2737 static inline bool rdma_cap_ib_smi(const struct ib_device *device, u8 port_num)
2738 {
2739 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SMI;
2740 }
2741
2742 /**
2743 * rdma_cap_ib_cm - Check if the port of device has the capability Infiniband
2744 * Communication Manager.
2745 * @device: Device to check
2746 * @port_num: Port number to check
2747 *
2748 * The InfiniBand Communication Manager is one of many pre-defined General
2749 * Service Agents (GSA) that are accessed via the General Service
2750 * Interface (GSI). It's role is to facilitate establishment of connections
2751 * between nodes as well as other management related tasks for established
2752 * connections.
2753 *
2754 * Return: true if the port supports an IB CM (this does not guarantee that
2755 * a CM is actually running however).
2756 */
2757 static inline bool rdma_cap_ib_cm(const struct ib_device *device, u8 port_num)
2758 {
2759 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_CM;
2760 }
2761
2762 /**
2763 * rdma_cap_iw_cm - Check if the port of device has the capability IWARP
2764 * Communication Manager.
2765 * @device: Device to check
2766 * @port_num: Port number to check
2767 *
2768 * Similar to above, but specific to iWARP connections which have a different
2769 * managment protocol than InfiniBand.
2770 *
2771 * Return: true if the port supports an iWARP CM (this does not guarantee that
2772 * a CM is actually running however).
2773 */
2774 static inline bool rdma_cap_iw_cm(const struct ib_device *device, u8 port_num)
2775 {
2776 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IW_CM;
2777 }
2778
2779 /**
2780 * rdma_cap_ib_sa - Check if the port of device has the capability Infiniband
2781 * Subnet Administration.
2782 * @device: Device to check
2783 * @port_num: Port number to check
2784 *
2785 * An InfiniBand Subnet Administration (SA) service is a pre-defined General
2786 * Service Agent (GSA) provided by the Subnet Manager (SM). On InfiniBand
2787 * fabrics, devices should resolve routes to other hosts by contacting the
2788 * SA to query the proper route.
2789 *
2790 * Return: true if the port should act as a client to the fabric Subnet
2791 * Administration interface. This does not imply that the SA service is
2792 * running locally.
2793 */
2794 static inline bool rdma_cap_ib_sa(const struct ib_device *device, u8 port_num)
2795 {
2796 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SA;
2797 }
2798
2799 /**
2800 * rdma_cap_ib_mcast - Check if the port of device has the capability Infiniband
2801 * Multicast.
2802 * @device: Device to check
2803 * @port_num: Port number to check
2804 *
2805 * InfiniBand multicast registration is more complex than normal IPv4 or
2806 * IPv6 multicast registration. Each Host Channel Adapter must register
2807 * with the Subnet Manager when it wishes to join a multicast group. It
2808 * should do so only once regardless of how many queue pairs it subscribes
2809 * to this group. And it should leave the group only after all queue pairs
2810 * attached to the group have been detached.
2811 *
2812 * Return: true if the port must undertake the additional adminstrative
2813 * overhead of registering/unregistering with the SM and tracking of the
2814 * total number of queue pairs attached to the multicast group.
2815 */
2816 static inline bool rdma_cap_ib_mcast(const struct ib_device *device, u8 port_num)
2817 {
2818 return rdma_cap_ib_sa(device, port_num);
2819 }
2820
2821 /**
2822 * rdma_cap_af_ib - Check if the port of device has the capability
2823 * Native Infiniband Address.
2824 * @device: Device to check
2825 * @port_num: Port number to check
2826 *
2827 * InfiniBand addressing uses a port's GUID + Subnet Prefix to make a default
2828 * GID. RoCE uses a different mechanism, but still generates a GID via
2829 * a prescribed mechanism and port specific data.
2830 *
2831 * Return: true if the port uses a GID address to identify devices on the
2832 * network.
2833 */
2834 static inline bool rdma_cap_af_ib(const struct ib_device *device, u8 port_num)
2835 {
2836 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_AF_IB;
2837 }
2838
2839 /**
2840 * rdma_cap_eth_ah - Check if the port of device has the capability
2841 * Ethernet Address Handle.
2842 * @device: Device to check
2843 * @port_num: Port number to check
2844 *
2845 * RoCE is InfiniBand over Ethernet, and it uses a well defined technique
2846 * to fabricate GIDs over Ethernet/IP specific addresses native to the
2847 * port. Normally, packet headers are generated by the sending host
2848 * adapter, but when sending connectionless datagrams, we must manually
2849 * inject the proper headers for the fabric we are communicating over.
2850 *
2851 * Return: true if we are running as a RoCE port and must force the
2852 * addition of a Global Route Header built from our Ethernet Address
2853 * Handle into our header list for connectionless packets.
2854 */
2855 static inline bool rdma_cap_eth_ah(const struct ib_device *device, u8 port_num)
2856 {
2857 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_ETH_AH;
2858 }
2859
2860 /**
2861 * rdma_max_mad_size - Return the max MAD size required by this RDMA Port.
2862 *
2863 * @device: Device
2864 * @port_num: Port number
2865 *
2866 * This MAD size includes the MAD headers and MAD payload. No other headers
2867 * are included.
2868 *
2869 * Return the max MAD size required by the Port. Will return 0 if the port
2870 * does not support MADs
2871 */
2872 static inline size_t rdma_max_mad_size(const struct ib_device *device, u8 port_num)
2873 {
2874 return device->port_immutable[port_num].max_mad_size;
2875 }
2876
2877 /**
2878 * rdma_cap_roce_gid_table - Check if the port of device uses roce_gid_table
2879 * @device: Device to check
2880 * @port_num: Port number to check
2881 *
2882 * RoCE GID table mechanism manages the various GIDs for a device.
2883 *
2884 * NOTE: if allocating the port's GID table has failed, this call will still
2885 * return true, but any RoCE GID table API will fail.
2886 *
2887 * Return: true if the port uses RoCE GID table mechanism in order to manage
2888 * its GIDs.
2889 */
2890 static inline bool rdma_cap_roce_gid_table(const struct ib_device *device,
2891 u8 port_num)
2892 {
2893 return rdma_protocol_roce(device, port_num) &&
2894 device->add_gid && device->del_gid;
2895 }
2896
2897 /*
2898 * Check if the device supports READ W/ INVALIDATE.
2899 */
2900 static inline bool rdma_cap_read_inv(struct ib_device *dev, u32 port_num)
2901 {
2902 /*
2903 * iWarp drivers must support READ W/ INVALIDATE. No other protocol
2904 * has support for it yet.
2905 */
2906 return rdma_protocol_iwarp(dev, port_num);
2907 }
2908
2909 int ib_query_gid(struct ib_device *device,
2910 u8 port_num, int index, union ib_gid *gid,
2911 struct ib_gid_attr *attr);
2912
2913 int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port,
2914 int state);
2915 int ib_get_vf_config(struct ib_device *device, int vf, u8 port,
2916 struct ifla_vf_info *info);
2917 int ib_get_vf_stats(struct ib_device *device, int vf, u8 port,
2918 struct ifla_vf_stats *stats);
2919 int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid,
2920 int type);
2921
2922 int ib_query_pkey(struct ib_device *device,
2923 u8 port_num, u16 index, u16 *pkey);
2924
2925 int ib_modify_device(struct ib_device *device,
2926 int device_modify_mask,
2927 struct ib_device_modify *device_modify);
2928
2929 int ib_modify_port(struct ib_device *device,
2930 u8 port_num, int port_modify_mask,
2931 struct ib_port_modify *port_modify);
2932
2933 int ib_find_gid(struct ib_device *device, union ib_gid *gid,
2934 enum ib_gid_type gid_type, struct ifnet *ndev,
2935 u8 *port_num, u16 *index);
2936
2937 int ib_find_pkey(struct ib_device *device,
2938 u8 port_num, u16 pkey, u16 *index);
2939
2940 enum ib_pd_flags {
2941 /*
2942 * Create a memory registration for all memory in the system and place
2943 * the rkey for it into pd->unsafe_global_rkey. This can be used by
2944 * ULPs to avoid the overhead of dynamic MRs.
2945 *
2946 * This flag is generally considered unsafe and must only be used in
2947 * extremly trusted environments. Every use of it will log a warning
2948 * in the kernel log.
2949 */
2950 IB_PD_UNSAFE_GLOBAL_RKEY = 0x01,
2951 };
2952
2953 struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
2954 const char *caller);
2955 #define ib_alloc_pd(device, flags) \
2956 __ib_alloc_pd((device), (flags), __func__)
2957
2958 /**
2959 * ib_dealloc_pd_user - Deallocate kernel/user PD
2960 * @pd: The protection domain
2961 * @udata: Valid user data or NULL for kernel objects
2962 */
2963 void ib_dealloc_pd_user(struct ib_pd *pd, struct ib_udata *udata);
2964
2965 /**
2966 * ib_dealloc_pd - Deallocate kernel PD
2967 * @pd: The protection domain
2968 *
2969 * NOTE: for user PD use ib_dealloc_pd_user with valid udata!
2970 */
2971 static inline void ib_dealloc_pd(struct ib_pd *pd)
2972 {
2973 ib_dealloc_pd_user(pd, NULL);
2974 }
2975
2976 enum rdma_create_ah_flags {
2977 /* In a sleepable context */
2978 RDMA_CREATE_AH_SLEEPABLE = BIT(0),
2979 };
2980
2981 /**
2982 * ib_create_ah - Creates an address handle for the given address vector.
2983 * @pd: The protection domain associated with the address handle.
2984 * @ah_attr: The attributes of the address vector.
2985 * @flags: Create address handle flags (see enum rdma_create_ah_flags).
2986 *
2987 * The address handle is used to reference a local or global destination
2988 * in all UD QP post sends.
2989 */
2990 struct ib_ah *ib_create_ah(struct ib_pd *pd, struct ib_ah_attr *ah_attr,
2991 u32 flags);
2992
2993 /**
2994 * ib_create_user_ah - Creates an address handle for the given address vector.
2995 * It resolves destination mac address for ah attribute of RoCE type.
2996 * @pd: The protection domain associated with the address handle.
2997 * @ah_attr: The attributes of the address vector.
2998 * @udata: pointer to user's input output buffer information need by
2999 * provider driver.
3000 *
3001 * It returns 0 on success and returns appropriate error code on error.
3002 * The address handle is used to reference a local or global destination
3003 * in all UD QP post sends.
3004 */
3005 struct ib_ah *ib_create_user_ah(struct ib_pd *pd,
3006 struct ib_ah_attr *ah_attr,
3007 struct ib_udata *udata);
3008
3009 /**
3010 * ib_init_ah_from_wc - Initializes address handle attributes from a
3011 * work completion.
3012 * @device: Device on which the received message arrived.
3013 * @port_num: Port on which the received message arrived.
3014 * @wc: Work completion associated with the received message.
3015 * @grh: References the received global route header. This parameter is
3016 * ignored unless the work completion indicates that the GRH is valid.
3017 * @ah_attr: Returned attributes that can be used when creating an address
3018 * handle for replying to the message.
3019 */
3020 int ib_init_ah_from_wc(struct ib_device *device, u8 port_num,
3021 const struct ib_wc *wc, const struct ib_grh *grh,
3022 struct ib_ah_attr *ah_attr);
3023
3024 /**
3025 * ib_create_ah_from_wc - Creates an address handle associated with the
3026 * sender of the specified work completion.
3027 * @pd: The protection domain associated with the address handle.
3028 * @wc: Work completion information associated with a received message.
3029 * @grh: References the received global route header. This parameter is
3030 * ignored unless the work completion indicates that the GRH is valid.
3031 * @port_num: The outbound port number to associate with the address.
3032 *
3033 * The address handle is used to reference a local or global destination
3034 * in all UD QP post sends.
3035 */
3036 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
3037 const struct ib_grh *grh, u8 port_num);
3038
3039 /**
3040 * ib_modify_ah - Modifies the address vector associated with an address
3041 * handle.
3042 * @ah: The address handle to modify.
3043 * @ah_attr: The new address vector attributes to associate with the
3044 * address handle.
3045 */
3046 int ib_modify_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr);
3047
3048 /**
3049 * ib_query_ah - Queries the address vector associated with an address
3050 * handle.
3051 * @ah: The address handle to query.
3052 * @ah_attr: The address vector attributes associated with the address
3053 * handle.
3054 */
3055 int ib_query_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr);
3056
3057 enum rdma_destroy_ah_flags {
3058 /* In a sleepable context */
3059 RDMA_DESTROY_AH_SLEEPABLE = BIT(0),
3060 };
3061
3062 /**
3063 * ib_destroy_ah_user - Destroys an address handle.
3064 * @ah: The address handle to destroy.
3065 * @flags: Destroy address handle flags (see enum rdma_destroy_ah_flags).
3066 * @udata: Valid user data or NULL for kernel objects
3067 */
3068 int ib_destroy_ah_user(struct ib_ah *ah, u32 flags, struct ib_udata *udata);
3069
3070 /**
3071 * rdma_destroy_ah - Destroys an kernel address handle.
3072 * @ah: The address handle to destroy.
3073 * @flags: Destroy address handle flags (see enum rdma_destroy_ah_flags).
3074 *
3075 * NOTE: for user ah use ib_destroy_ah_user with valid udata!
3076 */
3077 static inline int ib_destroy_ah(struct ib_ah *ah, u32 flags)
3078 {
3079 return ib_destroy_ah_user(ah, flags, NULL);
3080 }
3081
3082 /**
3083 * ib_create_srq - Creates a SRQ associated with the specified protection
3084 * domain.
3085 * @pd: The protection domain associated with the SRQ.
3086 * @srq_init_attr: A list of initial attributes required to create the
3087 * SRQ. If SRQ creation succeeds, then the attributes are updated to
3088 * the actual capabilities of the created SRQ.
3089 *
3090 * srq_attr->max_wr and srq_attr->max_sge are read the determine the
3091 * requested size of the SRQ, and set to the actual values allocated
3092 * on return. If ib_create_srq() succeeds, then max_wr and max_sge
3093 * will always be at least as large as the requested values.
3094 */
3095 struct ib_srq *ib_create_srq(struct ib_pd *pd,
3096 struct ib_srq_init_attr *srq_init_attr);
3097
3098 /**
3099 * ib_modify_srq - Modifies the attributes for the specified SRQ.
3100 * @srq: The SRQ to modify.
3101 * @srq_attr: On input, specifies the SRQ attributes to modify. On output,
3102 * the current values of selected SRQ attributes are returned.
3103 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ
3104 * are being modified.
3105 *
3106 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or
3107 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when
3108 * the number of receives queued drops below the limit.
3109 */
3110 int ib_modify_srq(struct ib_srq *srq,
3111 struct ib_srq_attr *srq_attr,
3112 enum ib_srq_attr_mask srq_attr_mask);
3113
3114 /**
3115 * ib_query_srq - Returns the attribute list and current values for the
3116 * specified SRQ.
3117 * @srq: The SRQ to query.
3118 * @srq_attr: The attributes of the specified SRQ.
3119 */
3120 int ib_query_srq(struct ib_srq *srq,
3121 struct ib_srq_attr *srq_attr);
3122
3123 /**
3124 * ib_destroy_srq_user - Destroys the specified SRQ.
3125 * @srq: The SRQ to destroy.
3126 * @udata: Valid user data or NULL for kernel objects
3127 */
3128 int ib_destroy_srq_user(struct ib_srq *srq, struct ib_udata *udata);
3129
3130 /**
3131 * ib_destroy_srq - Destroys the specified kernel SRQ.
3132 * @srq: The SRQ to destroy.
3133 *
3134 * NOTE: for user srq use ib_destroy_srq_user with valid udata!
3135 */
3136 static inline int ib_destroy_srq(struct ib_srq *srq)
3137 {
3138 return ib_destroy_srq_user(srq, NULL);
3139 }
3140
3141 /**
3142 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ.
3143 * @srq: The SRQ to post the work request on.
3144 * @recv_wr: A list of work requests to post on the receive queue.
3145 * @bad_recv_wr: On an immediate failure, this parameter will reference
3146 * the work request that failed to be posted on the QP.
3147 */
3148 static inline int ib_post_srq_recv(struct ib_srq *srq,
3149 const struct ib_recv_wr *recv_wr,
3150 const struct ib_recv_wr **bad_recv_wr)
3151 {
3152 return srq->device->post_srq_recv(srq, recv_wr, bad_recv_wr);
3153 }
3154
3155 /**
3156 * ib_create_qp - Creates a QP associated with the specified protection
3157 * domain.
3158 * @pd: The protection domain associated with the QP.
3159 * @qp_init_attr: A list of initial attributes required to create the
3160 * QP. If QP creation succeeds, then the attributes are updated to
3161 * the actual capabilities of the created QP.
3162 */
3163 struct ib_qp *ib_create_qp(struct ib_pd *pd,
3164 struct ib_qp_init_attr *qp_init_attr);
3165
3166 /**
3167 * ib_modify_qp_with_udata - Modifies the attributes for the specified QP.
3168 * @qp: The QP to modify.
3169 * @attr: On input, specifies the QP attributes to modify. On output,
3170 * the current values of selected QP attributes are returned.
3171 * @attr_mask: A bit-mask used to specify which attributes of the QP
3172 * are being modified.
3173 * @udata: pointer to user's input output buffer information
3174 * are being modified.
3175 * It returns 0 on success and returns appropriate error code on error.
3176 */
3177 int ib_modify_qp_with_udata(struct ib_qp *qp,
3178 struct ib_qp_attr *attr,
3179 int attr_mask,
3180 struct ib_udata *udata);
3181
3182 /**
3183 * ib_modify_qp - Modifies the attributes for the specified QP and then
3184 * transitions the QP to the given state.
3185 * @qp: The QP to modify.
3186 * @qp_attr: On input, specifies the QP attributes to modify. On output,
3187 * the current values of selected QP attributes are returned.
3188 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP
3189 * are being modified.
3190 */
3191 int ib_modify_qp(struct ib_qp *qp,
3192 struct ib_qp_attr *qp_attr,
3193 int qp_attr_mask);
3194
3195 /**
3196 * ib_query_qp - Returns the attribute list and current values for the
3197 * specified QP.
3198 * @qp: The QP to query.
3199 * @qp_attr: The attributes of the specified QP.
3200 * @qp_attr_mask: A bit-mask used to select specific attributes to query.
3201 * @qp_init_attr: Additional attributes of the selected QP.
3202 *
3203 * The qp_attr_mask may be used to limit the query to gathering only the
3204 * selected attributes.
3205 */
3206 int ib_query_qp(struct ib_qp *qp,
3207 struct ib_qp_attr *qp_attr,
3208 int qp_attr_mask,
3209 struct ib_qp_init_attr *qp_init_attr);
3210
3211 /**
3212 * ib_destroy_qp - Destroys the specified QP.
3213 * @qp: The QP to destroy.
3214 * @udata: Valid udata or NULL for kernel objects
3215 */
3216 int ib_destroy_qp_user(struct ib_qp *qp, struct ib_udata *udata);
3217
3218 /**
3219 * ib_destroy_qp - Destroys the specified kernel QP.
3220 * @qp: The QP to destroy.
3221 *
3222 * NOTE: for user qp use ib_destroy_qp_user with valid udata!
3223 */
3224 static inline int ib_destroy_qp(struct ib_qp *qp)
3225 {
3226 return ib_destroy_qp_user(qp, NULL);
3227 }
3228
3229 /**
3230 * ib_open_qp - Obtain a reference to an existing sharable QP.
3231 * @xrcd - XRC domain
3232 * @qp_open_attr: Attributes identifying the QP to open.
3233 *
3234 * Returns a reference to a sharable QP.
3235 */
3236 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
3237 struct ib_qp_open_attr *qp_open_attr);
3238
3239 /**
3240 * ib_close_qp - Release an external reference to a QP.
3241 * @qp: The QP handle to release
3242 *
3243 * The opened QP handle is released by the caller. The underlying
3244 * shared QP is not destroyed until all internal references are released.
3245 */
3246 int ib_close_qp(struct ib_qp *qp);
3247
3248 /**
3249 * ib_post_send - Posts a list of work requests to the send queue of
3250 * the specified QP.
3251 * @qp: The QP to post the work request on.
3252 * @send_wr: A list of work requests to post on the send queue.
3253 * @bad_send_wr: On an immediate failure, this parameter will reference
3254 * the work request that failed to be posted on the QP.
3255 *
3256 * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate
3257 * error is returned, the QP state shall not be affected,
3258 * ib_post_send() will return an immediate error after queueing any
3259 * earlier work requests in the list.
3260 */
3261 static inline int ib_post_send(struct ib_qp *qp,
3262 const struct ib_send_wr *send_wr,
3263 const struct ib_send_wr **bad_send_wr)
3264 {
3265 return qp->device->post_send(qp, send_wr, bad_send_wr);
3266 }
3267
3268 /**
3269 * ib_post_recv - Posts a list of work requests to the receive queue of
3270 * the specified QP.
3271 * @qp: The QP to post the work request on.
3272 * @recv_wr: A list of work requests to post on the receive queue.
3273 * @bad_recv_wr: On an immediate failure, this parameter will reference
3274 * the work request that failed to be posted on the QP.
3275 */
3276 static inline int ib_post_recv(struct ib_qp *qp,
3277 const struct ib_recv_wr *recv_wr,
3278 const struct ib_recv_wr **bad_recv_wr)
3279 {
3280 return qp->device->post_recv(qp, recv_wr, bad_recv_wr);
3281 }
3282
3283 struct ib_cq *__ib_alloc_cq_user(struct ib_device *dev, void *private,
3284 int nr_cqe, int comp_vector,
3285 enum ib_poll_context poll_ctx,
3286 const char *caller, struct ib_udata *udata);
3287
3288 /**
3289 * ib_alloc_cq_user: Allocate kernel/user CQ
3290 * @dev: The IB device
3291 * @private: Private data attached to the CQE
3292 * @nr_cqe: Number of CQEs in the CQ
3293 * @comp_vector: Completion vector used for the IRQs
3294 * @poll_ctx: Context used for polling the CQ
3295 * @udata: Valid user data or NULL for kernel objects
3296 */
3297 static inline struct ib_cq *ib_alloc_cq_user(struct ib_device *dev,
3298 void *private, int nr_cqe,
3299 int comp_vector,
3300 enum ib_poll_context poll_ctx,
3301 struct ib_udata *udata)
3302 {
3303 return __ib_alloc_cq_user(dev, private, nr_cqe, comp_vector, poll_ctx,
3304 "ibcore", udata);
3305 }
3306
3307 /**
3308 * ib_alloc_cq: Allocate kernel CQ
3309 * @dev: The IB device
3310 * @private: Private data attached to the CQE
3311 * @nr_cqe: Number of CQEs in the CQ
3312 * @comp_vector: Completion vector used for the IRQs
3313 * @poll_ctx: Context used for polling the CQ
3314 *
3315 * NOTE: for user cq use ib_alloc_cq_user with valid udata!
3316 */
3317 static inline struct ib_cq *ib_alloc_cq(struct ib_device *dev, void *private,
3318 int nr_cqe, int comp_vector,
3319 enum ib_poll_context poll_ctx)
3320 {
3321 return ib_alloc_cq_user(dev, private, nr_cqe, comp_vector, poll_ctx,
3322 NULL);
3323 }
3324
3325 /**
3326 * ib_free_cq_user - Free kernel/user CQ
3327 * @cq: The CQ to free
3328 * @udata: Valid user data or NULL for kernel objects
3329 */
3330 void ib_free_cq_user(struct ib_cq *cq, struct ib_udata *udata);
3331
3332 /**
3333 * ib_free_cq - Free kernel CQ
3334 * @cq: The CQ to free
3335 *
3336 * NOTE: for user cq use ib_free_cq_user with valid udata!
3337 */
3338 static inline void ib_free_cq(struct ib_cq *cq)
3339 {
3340 ib_free_cq_user(cq, NULL);
3341 }
3342
3343 /**
3344 * ib_create_cq - Creates a CQ on the specified device.
3345 * @device: The device on which to create the CQ.
3346 * @comp_handler: A user-specified callback that is invoked when a
3347 * completion event occurs on the CQ.
3348 * @event_handler: A user-specified callback that is invoked when an
3349 * asynchronous event not associated with a completion occurs on the CQ.
3350 * @cq_context: Context associated with the CQ returned to the user via
3351 * the associated completion and event handlers.
3352 * @cq_attr: The attributes the CQ should be created upon.
3353 *
3354 * Users can examine the cq structure to determine the actual CQ size.
3355 */
3356 struct ib_cq *__ib_create_cq(struct ib_device *device,
3357 ib_comp_handler comp_handler,
3358 void (*event_handler)(struct ib_event *, void *),
3359 void *cq_context,
3360 const struct ib_cq_init_attr *cq_attr,
3361 const char *caller);
3362 #define ib_create_cq(device, cmp_hndlr, evt_hndlr, cq_ctxt, cq_attr) \
3363 __ib_create_cq((device), (cmp_hndlr), (evt_hndlr), (cq_ctxt), (cq_attr), "ibcore")
3364
3365 /**
3366 * ib_resize_cq - Modifies the capacity of the CQ.
3367 * @cq: The CQ to resize.
3368 * @cqe: The minimum size of the CQ.
3369 *
3370 * Users can examine the cq structure to determine the actual CQ size.
3371 */
3372 int ib_resize_cq(struct ib_cq *cq, int cqe);
3373
3374 /**
3375 * ib_modify_cq - Modifies moderation params of the CQ
3376 * @cq: The CQ to modify.
3377 * @cq_count: number of CQEs that will trigger an event
3378 * @cq_period: max period of time in usec before triggering an event
3379 *
3380 */
3381 int ib_modify_cq(struct ib_cq *cq, u16 cq_count, u16 cq_period);
3382
3383 /**
3384 * ib_destroy_cq_user - Destroys the specified CQ.
3385 * @cq: The CQ to destroy.
3386 * @udata: Valid user data or NULL for kernel objects
3387 */
3388 int ib_destroy_cq_user(struct ib_cq *cq, struct ib_udata *udata);
3389
3390 /**
3391 * ib_destroy_cq - Destroys the specified kernel CQ.
3392 * @cq: The CQ to destroy.
3393 *
3394 * NOTE: for user cq use ib_destroy_cq_user with valid udata!
3395 */
3396 static inline void ib_destroy_cq(struct ib_cq *cq)
3397 {
3398 ib_destroy_cq_user(cq, NULL);
3399 }
3400
3401 /**
3402 * ib_poll_cq - poll a CQ for completion(s)
3403 * @cq:the CQ being polled
3404 * @num_entries:maximum number of completions to return
3405 * @wc:array of at least @num_entries &struct ib_wc where completions
3406 * will be returned
3407 *
3408 * Poll a CQ for (possibly multiple) completions. If the return value
3409 * is < 0, an error occurred. If the return value is >= 0, it is the
3410 * number of completions returned. If the return value is
3411 * non-negative and < num_entries, then the CQ was emptied.
3412 */
3413 static inline int ib_poll_cq(struct ib_cq *cq, int num_entries,
3414 struct ib_wc *wc)
3415 {
3416 return cq->device->poll_cq(cq, num_entries, wc);
3417 }
3418
3419 /**
3420 * ib_peek_cq - Returns the number of unreaped completions currently
3421 * on the specified CQ.
3422 * @cq: The CQ to peek.
3423 * @wc_cnt: A minimum number of unreaped completions to check for.
3424 *
3425 * If the number of unreaped completions is greater than or equal to wc_cnt,
3426 * this function returns wc_cnt, otherwise, it returns the actual number of
3427 * unreaped completions.
3428 */
3429 int ib_peek_cq(struct ib_cq *cq, int wc_cnt);
3430
3431 /**
3432 * ib_req_notify_cq - Request completion notification on a CQ.
3433 * @cq: The CQ to generate an event for.
3434 * @flags:
3435 * Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP
3436 * to request an event on the next solicited event or next work
3437 * completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS
3438 * may also be |ed in to request a hint about missed events, as
3439 * described below.
3440 *
3441 * Return Value:
3442 * < 0 means an error occurred while requesting notification
3443 * == 0 means notification was requested successfully, and if
3444 * IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events
3445 * were missed and it is safe to wait for another event. In
3446 * this case is it guaranteed that any work completions added
3447 * to the CQ since the last CQ poll will trigger a completion
3448 * notification event.
3449 * > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed
3450 * in. It means that the consumer must poll the CQ again to
3451 * make sure it is empty to avoid missing an event because of a
3452 * race between requesting notification and an entry being
3453 * added to the CQ. This return value means it is possible
3454 * (but not guaranteed) that a work completion has been added
3455 * to the CQ since the last poll without triggering a
3456 * completion notification event.
3457 */
3458 static inline int ib_req_notify_cq(struct ib_cq *cq,
3459 enum ib_cq_notify_flags flags)
3460 {
3461 return cq->device->req_notify_cq(cq, flags);
3462 }
3463
3464 /**
3465 * ib_req_ncomp_notif - Request completion notification when there are
3466 * at least the specified number of unreaped completions on the CQ.
3467 * @cq: The CQ to generate an event for.
3468 * @wc_cnt: The number of unreaped completions that should be on the
3469 * CQ before an event is generated.
3470 */
3471 static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt)
3472 {
3473 return cq->device->req_ncomp_notif ?
3474 cq->device->req_ncomp_notif(cq, wc_cnt) :
3475 -ENOSYS;
3476 }
3477
3478 /**
3479 * ib_dma_mapping_error - check a DMA addr for error
3480 * @dev: The device for which the dma_addr was created
3481 * @dma_addr: The DMA address to check
3482 */
3483 static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr)
3484 {
3485 if (dev->dma_ops)
3486 return dev->dma_ops->mapping_error(dev, dma_addr);
3487 return dma_mapping_error(dev->dma_device, dma_addr);
3488 }
3489
3490 /**
3491 * ib_dma_map_single - Map a kernel virtual address to DMA address
3492 * @dev: The device for which the dma_addr is to be created
3493 * @cpu_addr: The kernel virtual address
3494 * @size: The size of the region in bytes
3495 * @direction: The direction of the DMA
3496 */
3497 static inline u64 ib_dma_map_single(struct ib_device *dev,
3498 void *cpu_addr, size_t size,
3499 enum dma_data_direction direction)
3500 {
3501 if (dev->dma_ops)
3502 return dev->dma_ops->map_single(dev, cpu_addr, size, direction);
3503 return dma_map_single(dev->dma_device, cpu_addr, size, direction);
3504 }
3505
3506 /**
3507 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single()
3508 * @dev: The device for which the DMA address was created
3509 * @addr: The DMA address
3510 * @size: The size of the region in bytes
3511 * @direction: The direction of the DMA
3512 */
3513 static inline void ib_dma_unmap_single(struct ib_device *dev,
3514 u64 addr, size_t size,
3515 enum dma_data_direction direction)
3516 {
3517 if (dev->dma_ops)
3518 dev->dma_ops->unmap_single(dev, addr, size, direction);
3519 else
3520 dma_unmap_single(dev->dma_device, addr, size, direction);
3521 }
3522
3523 static inline u64 ib_dma_map_single_attrs(struct ib_device *dev,
3524 void *cpu_addr, size_t size,
3525 enum dma_data_direction direction,
3526 struct dma_attrs *dma_attrs)
3527 {
3528 return dma_map_single_attrs(dev->dma_device, cpu_addr, size,
3529 direction, dma_attrs);
3530 }
3531
3532 static inline void ib_dma_unmap_single_attrs(struct ib_device *dev,
3533 u64 addr, size_t size,
3534 enum dma_data_direction direction,
3535 struct dma_attrs *dma_attrs)
3536 {
3537 return dma_unmap_single_attrs(dev->dma_device, addr, size,
3538 direction, dma_attrs);
3539 }
3540
3541 /**
3542 * ib_dma_map_page - Map a physical page to DMA address
3543 * @dev: The device for which the dma_addr is to be created
3544 * @page: The page to be mapped
3545 * @offset: The offset within the page
3546 * @size: The size of the region in bytes
3547 * @direction: The direction of the DMA
3548 */
3549 static inline u64 ib_dma_map_page(struct ib_device *dev,
3550 struct page *page,
3551 unsigned long offset,
3552 size_t size,
3553 enum dma_data_direction direction)
3554 {
3555 if (dev->dma_ops)
3556 return dev->dma_ops->map_page(dev, page, offset, size, direction);
3557 return dma_map_page(dev->dma_device, page, offset, size, direction);
3558 }
3559
3560 /**
3561 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page()
3562 * @dev: The device for which the DMA address was created
3563 * @addr: The DMA address
3564 * @size: The size of the region in bytes
3565 * @direction: The direction of the DMA
3566 */
3567 static inline void ib_dma_unmap_page(struct ib_device *dev,
3568 u64 addr, size_t size,
3569 enum dma_data_direction direction)
3570 {
3571 if (dev->dma_ops)
3572 dev->dma_ops->unmap_page(dev, addr, size, direction);
3573 else
3574 dma_unmap_page(dev->dma_device, addr, size, direction);
3575 }
3576
3577 /**
3578 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses
3579 * @dev: The device for which the DMA addresses are to be created
3580 * @sg: The array of scatter/gather entries
3581 * @nents: The number of scatter/gather entries
3582 * @direction: The direction of the DMA
3583 */
3584 static inline int ib_dma_map_sg(struct ib_device *dev,
3585 struct scatterlist *sg, int nents,
3586 enum dma_data_direction direction)
3587 {
3588 if (dev->dma_ops)
3589 return dev->dma_ops->map_sg(dev, sg, nents, direction);
3590 return dma_map_sg(dev->dma_device, sg, nents, direction);
3591 }
3592
3593 /**
3594 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses
3595 * @dev: The device for which the DMA addresses were created
3596 * @sg: The array of scatter/gather entries
3597 * @nents: The number of scatter/gather entries
3598 * @direction: The direction of the DMA
3599 */
3600 static inline void ib_dma_unmap_sg(struct ib_device *dev,
3601 struct scatterlist *sg, int nents,
3602 enum dma_data_direction direction)
3603 {
3604 if (dev->dma_ops)
3605 dev->dma_ops->unmap_sg(dev, sg, nents, direction);
3606 else
3607 dma_unmap_sg(dev->dma_device, sg, nents, direction);
3608 }
3609
3610 static inline int ib_dma_map_sg_attrs(struct ib_device *dev,
3611 struct scatterlist *sg, int nents,
3612 enum dma_data_direction direction,
3613 struct dma_attrs *dma_attrs)
3614 {
3615 if (dev->dma_ops)
3616 return dev->dma_ops->map_sg_attrs(dev, sg, nents, direction,
3617 dma_attrs);
3618 else
3619 return dma_map_sg_attrs(dev->dma_device, sg, nents, direction,
3620 dma_attrs);
3621 }
3622
3623 static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev,
3624 struct scatterlist *sg, int nents,
3625 enum dma_data_direction direction,
3626 struct dma_attrs *dma_attrs)
3627 {
3628 if (dev->dma_ops)
3629 return dev->dma_ops->unmap_sg_attrs(dev, sg, nents, direction,
3630 dma_attrs);
3631 else
3632 dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction,
3633 dma_attrs);
3634 }
3635 /**
3636 * ib_sg_dma_address - Return the DMA address from a scatter/gather entry
3637 * @dev: The device for which the DMA addresses were created
3638 * @sg: The scatter/gather entry
3639 *
3640 * Note: this function is obsolete. To do: change all occurrences of
3641 * ib_sg_dma_address() into sg_dma_address().
3642 */
3643 static inline u64 ib_sg_dma_address(struct ib_device *dev,
3644 struct scatterlist *sg)
3645 {
3646 return sg_dma_address(sg);
3647 }
3648
3649 /**
3650 * ib_sg_dma_len - Return the DMA length from a scatter/gather entry
3651 * @dev: The device for which the DMA addresses were created
3652 * @sg: The scatter/gather entry
3653 *
3654 * Note: this function is obsolete. To do: change all occurrences of
3655 * ib_sg_dma_len() into sg_dma_len().
3656 */
3657 static inline unsigned int ib_sg_dma_len(struct ib_device *dev,
3658 struct scatterlist *sg)
3659 {
3660 return sg_dma_len(sg);
3661 }
3662
3663 /**
3664 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU
3665 * @dev: The device for which the DMA address was created
3666 * @addr: The DMA address
3667 * @size: The size of the region in bytes
3668 * @dir: The direction of the DMA
3669 */
3670 static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev,
3671 u64 addr,
3672 size_t size,
3673 enum dma_data_direction dir)
3674 {
3675 if (dev->dma_ops)
3676 dev->dma_ops->sync_single_for_cpu(dev, addr, size, dir);
3677 else
3678 dma_sync_single_for_cpu(dev->dma_device, addr, size, dir);
3679 }
3680
3681 /**
3682 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device
3683 * @dev: The device for which the DMA address was created
3684 * @addr: The DMA address
3685 * @size: The size of the region in bytes
3686 * @dir: The direction of the DMA
3687 */
3688 static inline void ib_dma_sync_single_for_device(struct ib_device *dev,
3689 u64 addr,
3690 size_t size,
3691 enum dma_data_direction dir)
3692 {
3693 if (dev->dma_ops)
3694 dev->dma_ops->sync_single_for_device(dev, addr, size, dir);
3695 else
3696 dma_sync_single_for_device(dev->dma_device, addr, size, dir);
3697 }
3698
3699 /**
3700 * ib_dma_alloc_coherent - Allocate memory and map it for DMA
3701 * @dev: The device for which the DMA address is requested
3702 * @size: The size of the region to allocate in bytes
3703 * @dma_handle: A pointer for returning the DMA address of the region
3704 * @flag: memory allocator flags
3705 */
3706 static inline void *ib_dma_alloc_coherent(struct ib_device *dev,
3707 size_t size,
3708 u64 *dma_handle,
3709 gfp_t flag)
3710 {
3711 if (dev->dma_ops)
3712 return dev->dma_ops->alloc_coherent(dev, size, dma_handle, flag);
3713 else {
3714 dma_addr_t handle;
3715 void *ret;
3716
3717 ret = dma_alloc_coherent(dev->dma_device, size, &handle, flag);
3718 *dma_handle = handle;
3719 return ret;
3720 }
3721 }
3722
3723 /**
3724 * ib_dma_free_coherent - Free memory allocated by ib_dma_alloc_coherent()
3725 * @dev: The device for which the DMA addresses were allocated
3726 * @size: The size of the region
3727 * @cpu_addr: the address returned by ib_dma_alloc_coherent()
3728 * @dma_handle: the DMA address returned by ib_dma_alloc_coherent()
3729 */
3730 static inline void ib_dma_free_coherent(struct ib_device *dev,
3731 size_t size, void *cpu_addr,
3732 u64 dma_handle)
3733 {
3734 if (dev->dma_ops)
3735 dev->dma_ops->free_coherent(dev, size, cpu_addr, dma_handle);
3736 else
3737 dma_free_coherent(dev->dma_device, size, cpu_addr, dma_handle);
3738 }
3739
3740 /**
3741 * ib_dereg_mr - Deregisters a memory region and removes it from the
3742 * HCA translation table.
3743 * @mr: The memory region to deregister.
3744 *
3745 * This function can fail, if the memory region has memory windows bound to it.
3746 */
3747 int ib_dereg_mr_user(struct ib_mr *mr, struct ib_udata *udata);
3748
3749 /**
3750 * ib_dereg_mr - Deregisters a kernel memory region and removes it from the
3751 * HCA translation table.
3752 * @mr: The memory region to deregister.
3753 *
3754 * This function can fail, if the memory region has memory windows bound to it.
3755 *
3756 * NOTE: for user mr use ib_dereg_mr_user with valid udata!
3757 */
3758 static inline int ib_dereg_mr(struct ib_mr *mr)
3759 {
3760 return ib_dereg_mr_user(mr, NULL);
3761 }
3762
3763 struct ib_mr *ib_alloc_mr_user(struct ib_pd *pd, enum ib_mr_type mr_type,
3764 u32 max_num_sg, struct ib_udata *udata);
3765
3766 static inline struct ib_mr *ib_alloc_mr(struct ib_pd *pd,
3767 enum ib_mr_type mr_type, u32 max_num_sg)
3768 {
3769 return ib_alloc_mr_user(pd, mr_type, max_num_sg, NULL);
3770 }
3771
3772 struct ib_mr *ib_alloc_mr_integrity(struct ib_pd *pd,
3773 u32 max_num_data_sg,
3774 u32 max_num_meta_sg);
3775
3776 /**
3777 * ib_update_fast_reg_key - updates the key portion of the fast_reg MR
3778 * R_Key and L_Key.
3779 * @mr - struct ib_mr pointer to be updated.
3780 * @newkey - new key to be used.
3781 */
3782 static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey)
3783 {
3784 mr->lkey = (mr->lkey & 0xffffff00) | newkey;
3785 mr->rkey = (mr->rkey & 0xffffff00) | newkey;
3786 }
3787
3788 /**
3789 * ib_inc_rkey - increments the key portion of the given rkey. Can be used
3790 * for calculating a new rkey for type 2 memory windows.
3791 * @rkey - the rkey to increment.
3792 */
3793 static inline u32 ib_inc_rkey(u32 rkey)
3794 {
3795 const u32 mask = 0x000000ff;
3796 return ((rkey + 1) & mask) | (rkey & ~mask);
3797 }
3798
3799 /**
3800 * ib_alloc_fmr - Allocates a unmapped fast memory region.
3801 * @pd: The protection domain associated with the unmapped region.
3802 * @mr_access_flags: Specifies the memory access rights.
3803 * @fmr_attr: Attributes of the unmapped region.
3804 *
3805 * A fast memory region must be mapped before it can be used as part of
3806 * a work request.
3807 */
3808 struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
3809 int mr_access_flags,
3810 struct ib_fmr_attr *fmr_attr);
3811
3812 /**
3813 * ib_map_phys_fmr - Maps a list of physical pages to a fast memory region.
3814 * @fmr: The fast memory region to associate with the pages.
3815 * @page_list: An array of physical pages to map to the fast memory region.
3816 * @list_len: The number of pages in page_list.
3817 * @iova: The I/O virtual address to use with the mapped region.
3818 */
3819 static inline int ib_map_phys_fmr(struct ib_fmr *fmr,
3820 u64 *page_list, int list_len,
3821 u64 iova)
3822 {
3823 return fmr->device->map_phys_fmr(fmr, page_list, list_len, iova);
3824 }
3825
3826 /**
3827 * ib_unmap_fmr - Removes the mapping from a list of fast memory regions.
3828 * @fmr_list: A linked list of fast memory regions to unmap.
3829 */
3830 int ib_unmap_fmr(struct list_head *fmr_list);
3831
3832 /**
3833 * ib_dealloc_fmr - Deallocates a fast memory region.
3834 * @fmr: The fast memory region to deallocate.
3835 */
3836 int ib_dealloc_fmr(struct ib_fmr *fmr);
3837
3838 /**
3839 * ib_attach_mcast - Attaches the specified QP to a multicast group.
3840 * @qp: QP to attach to the multicast group. The QP must be type
3841 * IB_QPT_UD.
3842 * @gid: Multicast group GID.
3843 * @lid: Multicast group LID in host byte order.
3844 *
3845 * In order to send and receive multicast packets, subnet
3846 * administration must have created the multicast group and configured
3847 * the fabric appropriately. The port associated with the specified
3848 * QP must also be a member of the multicast group.
3849 */
3850 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
3851
3852 /**
3853 * ib_detach_mcast - Detaches the specified QP from a multicast group.
3854 * @qp: QP to detach from the multicast group.
3855 * @gid: Multicast group GID.
3856 * @lid: Multicast group LID in host byte order.
3857 */
3858 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
3859
3860 /**
3861 * ib_alloc_xrcd - Allocates an XRC domain.
3862 * @device: The device on which to allocate the XRC domain.
3863 * @caller: Module name for kernel consumers
3864 */
3865 struct ib_xrcd *__ib_alloc_xrcd(struct ib_device *device, const char *caller);
3866 #define ib_alloc_xrcd(device) \
3867 __ib_alloc_xrcd((device), "ibcore")
3868
3869 /**
3870 * ib_dealloc_xrcd - Deallocates an XRC domain.
3871 * @xrcd: The XRC domain to deallocate.
3872 * @udata: Valid user data or NULL for kernel object
3873 */
3874 int ib_dealloc_xrcd(struct ib_xrcd *xrcd, struct ib_udata *udata);
3875
3876 static inline int ib_check_mr_access(int flags)
3877 {
3878 /*
3879 * Local write permission is required if remote write or
3880 * remote atomic permission is also requested.
3881 */
3882 if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) &&
3883 !(flags & IB_ACCESS_LOCAL_WRITE))
3884 return -EINVAL;
3885
3886 if (flags & ~IB_ACCESS_SUPPORTED)
3887 return -EINVAL;
3888
3889 return 0;
3890 }
3891
3892 static inline bool ib_access_writable(int access_flags)
3893 {
3894 /*
3895 * We have writable memory backing the MR if any of the following
3896 * access flags are set. "Local write" and "remote write" obviously
3897 * require write access. "Remote atomic" can do things like fetch and
3898 * add, which will modify memory, and "MW bind" can change permissions
3899 * by binding a window.
3900 */
3901 return access_flags &
3902 (IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_WRITE |
3903 IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_MW_BIND);
3904 }
3905
3906 /**
3907 * ib_check_mr_status: lightweight check of MR status.
3908 * This routine may provide status checks on a selected
3909 * ib_mr. first use is for signature status check.
3910 *
3911 * @mr: A memory region.
3912 * @check_mask: Bitmask of which checks to perform from
3913 * ib_mr_status_check enumeration.
3914 * @mr_status: The container of relevant status checks.
3915 * failed checks will be indicated in the status bitmask
3916 * and the relevant info shall be in the error item.
3917 */
3918 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
3919 struct ib_mr_status *mr_status);
3920
3921 struct ifnet *ib_get_net_dev_by_params(struct ib_device *dev, u8 port,
3922 u16 pkey, const union ib_gid *gid,
3923 const struct sockaddr *addr);
3924 struct ib_wq *ib_create_wq(struct ib_pd *pd,
3925 struct ib_wq_init_attr *init_attr);
3926 int ib_destroy_wq(struct ib_wq *wq, struct ib_udata *udata);
3927 int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *attr,
3928 u32 wq_attr_mask);
3929 struct ib_rwq_ind_table *ib_create_rwq_ind_table(struct ib_device *device,
3930 struct ib_rwq_ind_table_init_attr*
3931 wq_ind_table_init_attr);
3932 int ib_destroy_rwq_ind_table(struct ib_rwq_ind_table *wq_ind_table);
3933
3934 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
3935 unsigned int *sg_offset, unsigned int page_size);
3936
3937 static inline int
3938 ib_map_mr_sg_zbva(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
3939 unsigned int *sg_offset, unsigned int page_size)
3940 {
3941 int n;
3942
3943 n = ib_map_mr_sg(mr, sg, sg_nents, sg_offset, page_size);
3944 mr->iova = 0;
3945
3946 return n;
3947 }
3948
3949 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
3950 unsigned int *sg_offset, int (*set_page)(struct ib_mr *, u64));
3951
3952 void ib_drain_rq(struct ib_qp *qp);
3953 void ib_drain_sq(struct ib_qp *qp);
3954 void ib_drain_qp(struct ib_qp *qp);
3955
3956 struct ib_ucontext *ib_uverbs_get_ucontext_file(struct ib_uverbs_file *ufile);
3957
3958 int uverbs_destroy_def_handler(struct uverbs_attr_bundle *attrs);
3959
3960 int ib_resolve_eth_dmac(struct ib_device *device,
3961 struct ib_ah_attr *ah_attr);
3962 #endif /* IB_VERBS_H */
Cache object: 5da3481abf5337e53a6a6036664682dd
|